
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Randomized Algorithms for Scalable Machine Learning

Permalink
https://escholarship.org/uc/item/2t98p3s0

Author
Kleiner, Ariel Jacob

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2t98p3s0
https://escholarship.org
http://www.cdlib.org/

Randomized Algorithms for Scalable Machine Learning

by

Ariel Jacob Kleiner

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Chair
Professor Peter J. Bickel

Professor Martin J. Wainwright

Fall 2012

Randomized Algorithms for Scalable Machine Learning

Copyright 2012
by

Ariel Jacob Kleiner

1

Abstract

Randomized Algorithms for Scalable Machine Learning

by

Ariel Jacob Kleiner

Doctor of Philosophy in Computer Science

Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Many existing procedures in machine learning and statistics are computationally in-
tractable in the setting of large-scale data. As a result, the advent of rapidly increasing
dataset sizes, which should be a boon yielding improved statistical performance, instead
severely blunts the usefulness of a variety of existing inferential methods. In this work, we
use randomness to ameliorate this lack of scalability by reducing complex, computationally
difficult inferential problems to larger sets of significantly smaller and more tractable sub-
problems. This approach allows us to devise algorithms which are both more efficient and
more amenable to use of parallel and distributed computation. We propose novel randomized
algorithms for two broad classes of problems that arise in machine learning and statistics:
estimator quality assessment and semidefinite programming. For the former, we present the
Bag of Little Bootstraps (BLB), a procedure which incorporates features of both the boot-
strap and subsampling to obtain substantial computational gains while retaining the boot-
strap’s accuracy and automation; we also present a novel diagnostic procedure which lever-
ages increasing dataset sizes combined with increasingly powerful computational resources
to render existing estimator quality assessment methodology more automatically usable.
For semidefinite programming, we present Random Conic Pursuit, a procedure that solves
semidefinite programs via repeated optimization over randomly selected two-dimensional
subcones of the positive semidefinite cone. As we demonstrate via both theoretical and
empirical analyses, these algorithms are scalable, readily benefit from the use of parallel
and distributed computing resources, are generically applicable and easily implemented, and
have favorable theoretical properties.

i

Contents

Contents i

1 Introduction 1

2 A Scalable Bootstrap for Massive Data 5
2.1 Introduction . 5
2.2 Bag of Little Bootstraps (BLB) . 8
2.3 Statistical Performance . 11
2.4 Computational Scalability . 19
2.5 Hyperparameter Selection . 22
2.6 Real Data . 24
2.7 Time Series . 26
2.A Appendix: Proofs . 26
2.B Appendix: Additional Real Data Results . 33

3 A General Bootstrap Performance Diagnostic 36
3.1 Introduction . 36
3.2 Setting and Notation . 38
3.3 The Diagnostic . 39
3.4 Simulation Study . 42
3.5 Real Data . 45

4 Random Conic Pursuit for Semidefinite Programming 48
4.1 Introduction . 48
4.2 Random Conic Pursuit . 49
4.3 Applications and Experiments . 51
4.4 Analysis . 56
4.5 Related Work . 59
4.A Appendix: Proofs . 59

5 Conclusion 63

Bibliography 66

ii

Acknowledgments

I have been tremendously fortunate over the years—both as a Ph.D. student and beforehand—
to be surrounded by wonderful family, friends, and colleagues. Their support, encourage-
ment, mentorship, and collaboration have enduringly illuminated my path.

First and foremost, I am deeply grateful to my mother Hanna, my father Myron, and
my sister Orli. They have always supported me in every possible way, and any words that I
might place upon this page would constitute only a pale facsimile of my true appreciation.
I cannot imagine having a more amazing family.

I also owe my profound thanks to my Ph.D. advisor, Michael Jordan. Mike’s mentorship
and support throughout my years as a Ph.D. student have been truly irreplaceable. I could
not have asked for a better academic role model or a better guide in my exploration of the
world of machine learning and statistics.

In addition to Mike, I have had the pleasure of collaborating and interacting with a re-
markable group of colleagues and friends while at UC Berkeley. I had the good fortune to
work with Ameet Talwalkar, Purnamrita Sarkar, and Ali Rahimi (as well as Mike) on dif-
ferent facets of the research presented in this dissertation. My interaction and collaboration
with them and with various members of SAIL over the years have been an integral part of
my development as a researcher and practitioner of machine learning and statistics. I am
also very happy to count many of my colleagues in SAIL and in UC Berkeley Computer
Science more broadly as my friends. My experience at Berkeley has been unparalleled, and
it is difficult to imagine a group of people having greater collective academic and technical
acumen.

Finally, I am lucky to have extraordinary friends from throughout my life, who have been
an enduring source of perspective, support, and fun. You all know who you are, and you
have my sincere thanks.

1

Chapter 1

Introduction

Massive datasets are increasingly common in modern data analysis applications, and dataset
sizes are growing rapidly. For example, the datasets used to develop models of the actions
of internet users (e.g., to predict the probability that a user will click on a given adver-
tisement) routinely contain billions of data points, each having millions or tens of millions
of covariates [1, 43]. In natural language processing, whether engaged in language mod-
eling or machine translation, datasets can contain billions of documents and trillions of
tokens [16, 75]. Beyond such computational fields, the natural sciences are faced with a
similar deluge of data. For instance, experiments and data collection efforts in the physical
sciences already generate petabytes of data [5], and modern biology involves the collection
and analysis of rapidly growing troves of genomic data [20, 35, 68].

These vast quantities of data which are increasingly available present both substantial
opportunities and substantial challenges for machine learning and statistics. Indeed, more
data holds the promise of permitting more accurate, as well as more fine-grained, estimation
and inference. However, realizing this potential requires the ability to efficiently store, pro-
cess, and analyze large datasets, which often exceed the storage and processing capabilities
of individual processors or compute nodes. With the emergence of multicore and cloud com-
puting and the development of software systems—such as Google’s MapReduce [26], Hadoop
MapReduce [41], and the Spark cluster computing system [82]—designed to permit robustly
leveraging these parallel and distributed architectures, we now have available computing
infrastructure which is well suited to storing and processing large datasets. Nonetheless,
applying sophisticated data analysis techniques to large datasets often remains challenging,
as many existing inferential procedures require computing time (or space) which scales quite
adversely as the number of available data points or the data dimensionality increase; fur-
thermore, existing inferential methods are frequently not readily able to utilize parallel and
distributed computing resources to achieve scalability.

As a result, procedures in machine learning and statistics have increasingly been devel-
oped with an eye toward computational efficiency and scalability. For instance, techniques
which repose upon certain types of convex optimization problems (in particular, empirical
risk minimizers including logistic regression and Support Vector Machines) have prompted

CHAPTER 1. INTRODUCTION 2

and benefited from advances in the efficiency and scalability of optimization algorithms.
The realization that stochastic gradient descent, despite not readily providing high-precision
solutions to optimization problems, yields substantial efficiency gains in statistical settings—
without sacrificing statistical performance—was an important step [14]. Though stochastic
gradient descent is not straightforwardly parallelizable, initially limiting its efficiency gains
to the serial single-processor setting, subsequent efforts have successfully yielded variants
well-suited to multicore and distributed computing architectures [62, 83]. Such work on op-
timization in the context of statistical learning in fact benefits from and is closely related to
a larger body of work on scalable, parallel and distributed optimization algorithms [7, 29].
Beyond procedures based on convex optimization, estimation via the EM algorithm has
witnessed analogous developments of (serial) online and large-scale distributed variants en-
abling more efficient and scalable maximum likelihood estimation in probabilistic models
with latent variables [53, 79]. Distributed computation in these cases can be achieved via
the map-reduce paradigm, which has been recognized as providing easily accessible (though
not necessarily very optimized) data parallelism for the EM algorithm and various other
basic learning algorithms that can be seen as optimizing sums of functions evaluated at in-
dividual data points [21]. Efficient and scalable inference in certain classes of probabilistic
models has also recently received a good deal of attention. The latent Dirichlet allocation
(LDA) model [13] has been a particular focus of work in this vein, which has yielded online
inferential techniques as well as inferential methods that are well-suited to implementation
on multicore or large-scale cluster computing architectures [4, 48, 61, 81]. Similar techniques
for achieving scalable inference via data parallelism have also begun to emerge for other
probabilistic models, such as the Indian Buffet Process [28]. Work having a slightly different
focus within the realm of probabilistic modeling has yielded efficiently parallelizable approx-
imate inference methods for graphical models having large numbers of nodes [38, 39, 37];
these algorithms have been accompanied by the development of a computational framework
for the effective parallelization of learning procedures defined on large graphs [56, 57].

Despite this burgeoning body of work, the development of methodology for large-scale
estimation and inference remains far from complete. Only specific classes of problems or
models are addressed by recently developed techniques, such as those discussed above, and
even in these cases, new and improved techniques continue to emerge. Importantly, a number
of important classes of problems in machine learning and statistics have not been substan-
tially addressed from the standpoint of computational efficiency and scalability. Thus, in this
dissertation, we develop new methods which advance the state of the art in computational ef-
ficiency and scalability for two important problem classes: estimator quality assessment and
semidefinite programming. In both cases, we use randomness to reduce complex, computa-
tionally difficult inferential problems to larger sets of significantly smaller and more tractable
subproblems. This approach yields both serial efficiency gains and the ability to readily uti-
lize parallel and distributed computing resources to achieve scalability, without sacrificing
statistical performance. The resulting algorithms are furthermore generically applicable and
easily implemented. In the case of estimator quality assessment, we also develop a novel
diagnostic procedure which leverages increasing dataset sizes combined with increasingly

CHAPTER 1. INTRODUCTION 3

powerful computational resources to render existing estimator quality assessment methodol-
ogy more automatically usable.

Chapter 2 addresses computational efficiency and scalability for the core inferential prob-
lem of estimator quality assessment. Although the bootstrap [30] provides a simple and
powerful means of assessing the quality of estimators, in settings involving large datasets—
which are increasingly prevalent—the computation of bootstrap-based quantities can be pro-
hibitively demanding computationally. While variants such as subsampling [67] and the m
out of n bootstrap [9] can be used in principle to reduce the cost of bootstrap computations,
we find that these methods are generally not robust to specification of hyperparameters (such
as the number of subsampled data points), and they often require use of more prior informa-
tion (such as rates of convergence of estimators) than the bootstrap. As an alternative, we
introduce the Bag of Little Bootstraps (BLB), a new procedure which incorporates features
of both the bootstrap and subsampling to yield a robust, computationally efficient means of
assessing the quality of estimators. BLB is well suited to modern parallel and distributed
computing architectures and furthermore retains the generic applicability and statistical ef-
ficiency of the bootstrap. We demonstrate BLB’s favorable statistical performance via a
theoretical analysis elucidating the procedure’s properties, as well as a simulation study
comparing BLB to the bootstrap, the m out of n bootstrap, and subsampling. In addition,
we present results from a large-scale distributed implementation of BLB demonstrating its
computational superiority on massive data, a method for adaptively selecting BLB’s hyper-
parameters, an empirical study applying BLB to several real datasets, and an extension of
BLB to time series data.

Remaining within the context of estimator quality assessment, Chapter 3 introduces a
general performance diagnostic for the bootstrap which improves its level of automation by
leveraging the availability of increasingly large datasets coupled with increasingly powerful
computing resources. Indeed, as datasets become larger, more complex, and more available
to diverse groups of analysts, it would be quite useful to be able to automatically and
generically assess the quality of estimates, much as we are able to automatically train and
evaluate predictive models such as classifiers. However, despite the fundamental importance
of estimator quality assessment in data analysis, this task has eluded highly automatic
solutions. While the bootstrap provides perhaps the most promising step in this direction,
its level of automation is limited by the difficulty of evaluating its finite sample performance
and even its asymptotic consistency. Thus, we present a general diagnostic procedure which
directly and automatically evaluates the accuracy of the bootstrap’s outputs, determining
whether or not the bootstrap is performing satisfactorily when applied to a given dataset
and estimator. We show via an extensive empirical evaluation on a variety of estimators and
simulated and real datasets that our proposed diagnostic is effective.

Chapter 4 shifts to the problem of semidefinite programming, which underlies a vari-
ety of procedures in machine learning and statistics; standard generic methods for solving
semidefinite programs (SDPs) generally scale quite adversely in the problem dimensionality.
We present a novel algorithm, Random Conic Pursuit, that solves SDPs via repeated opti-
mization over randomly selected two-dimensional subcones of the positive semidefinite cone.

CHAPTER 1. INTRODUCTION 4

This scheme is simple, easily implemented, applicable to very general SDPs, scalable, and
theoretically interesting. Its advantages are realized at the expense of an ability to readily
compute highly exact solutions, though useful approximate solutions are easily obtained.
This property renders Random Conic Pursuit of particular interest for machine learning and
statistical applications, in which the relevant SDPs are generally based upon random data
and so exact minima are often not a priority. Indeed, we present empirical results to this
effect for various SDPs encountered in machine learning and statistics; we also provide an
analysis that yields insight into the theoretical properties and convergence of the algorithm.

Finally, Chapter 5 concludes with a discussion of open questions and potential avenues
of future work.

5

Chapter 2

A Scalable Bootstrap for Massive
Data

2.1 Introduction

The development of the bootstrap and related resampling-based methods in the 1960s and
1970s heralded an era in statistics in which inference and computation became increasingly
intertwined [30, 27]. By exploiting the basic capabilities of the classical von Neumann com-
puter to simulate and iterate, the bootstrap made it possible to use computers not only to
compute estimates but also to assess the quality of estimators, yielding results that are quite
generally consistent [8, 36, 77] and often more accurate than those based upon asymptotic
approximation [44]. Moreover, the bootstrap aligned statistics to computing technology, such
that advances in speed and storage capacity of computers could immediately allow statistical
methods to scale to larger datasets.

Two recent trends are worthy of attention in this regard. First, the growth in size
of datasets is accelerating, with “massive” datasets becoming increasingly prevalent. Sec-
ond, computational resources are shifting toward parallel and distributed architectures, with
multicore and cloud computing platforms providing access to hundreds or thousands of pro-
cessors. The second trend is seen as a mitigating factor with respect to the first, in that
parallel and distributed architectures present new capabilities for storage and manipulation
of data. However, from an inferential point of view, it is not yet clear how statistical method-
ology will transport to a world involving massive data on parallel and distributed computing
platforms.

While massive data bring many statistical issues to the fore, including issues in ex-
ploratory data analysis and data visualization, there remains the core inferential need to
assess the quality of estimators. Indeed, the uncertainty and biases in estimates based on
large data can remain quite significant, as large datasets are often high dimensional, are
frequently used to fit complex models with large numbers of parameters, and can have many
potential sources of bias. Furthermore, even if sufficient data are available to allow highly

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 6

accurate estimation, the ability to efficiently assess estimator quality remains essential to
allow efficient use of available resources by processing only as much data as is necessary to
achieve a desired accuracy or confidence.

The bootstrap brings to bear various desirable features in the massive data setting,
notably its relatively automatic nature and its applicability to a wide variety of inferential
problems. It can be used to assess bias, to quantify the uncertainty in an estimate (e.g.,
via a standard error or a confidence interval), or to assess risk. However, these virtues are
realized at the expense of a substantial computational burden. Bootstrap-based quantities
typically must be computed via a form of Monte Carlo approximation in which the estimator
in question is repeatedly applied to resamples of the entire original observed dataset.

Because these resamples have size on the order of that of the original data, with approx-
imately 63% of data points appearing at least once in each resample, the usefulness of the
bootstrap is severely blunted by the large datasets increasingly encountered in practice. In
the massive data setting, computation of even a single point estimate on the full dataset
can be quite computationally demanding, and so repeated computation of an estimator on
comparably sized resamples can be prohibitively costly. To mitigate this problem, one might
naturally attempt to exploit the modern trend toward parallel and distributed computing.
Indeed, at first glance, the bootstrap would seem ideally suited to straightforwardly lever-
aging parallel and distributed computing architectures: one might imagine using different
processors or compute nodes to process different bootstrap resamples independently in par-
allel. However, the large size of bootstrap resamples in the massive data setting renders this
approach problematic, as the cost of transferring data to independent processors or compute
nodes can be overly high, as is the cost of operating on even a single resample using an
independent set of computing resources.

While the literature does contain some discussion of techniques for improving the compu-
tational efficiency of the bootstrap, that work is largely devoted to reducing the number of
resamples required [31, 33]. These techniques in general introduce significant additional com-
plexity of implementation and do not eliminate the crippling need for repeated computation
of the estimator on resamples having size comparable to that of the original dataset.

Another landmark in the development of simulation-based inference is subsampling [67]
and the closely related m out of n bootstrap [9]. These methods (which were introduced
to achieve statistical consistency in edge cases in which the bootstrap fails) initially appear
to remedy the bootstrap’s key computational shortcoming, as they only require repeated
computation of the estimator under consideration on resamples (or subsamples) that can
be significantly smaller than the original dataset. However, these procedures also have
drawbacks. As we show in our simulation study, their success is sensitive to the choice of
resample (or subsample) size (i.e., m in the m out of n bootstrap). Additionally, because the
variability of an estimator on a subsample differs from its variability on the full dataset, these
procedures must perform a rescaling of their output, and this rescaling requires knowledge
and explicit use of the convergence rate of the estimator in question; these methods are
thus less automatic and easily deployable than the bootstrap. While schemes have been
proposed for data-driven selection of an optimal resample size [11], they require significantly

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 7

greater computation which would eliminate any computational gains. Also, there has been
work on the m out of n bootstrap that has sought to reduce computational costs using two
different values of m in conjunction with extrapolation [12, 10]. However, these approaches
explicitly utilize series expansions of the estimator’s sampling distribution and hence are less
automatically usable; they also require execution of the m out of n bootstrap for multiple
values of m.

Motivated by the need for an automatic, accurate means of assessing estimator quality
that is scalable to large datasets, we introduce a new procedure, the Bag of Little Bootstraps
(BLB), which functions by combining the results of bootstrapping multiple small subsets of
a larger original dataset. Instead of applying the estimator directly to each small subset,
as in the m out of n bootstrap and subsampling, BLB applies the bootstrap to each small
subset; in the resampling process of each individual bootstrap run, weighted resamples are
formed such that the effect is that of sampling the small subset n times with replacement,
but the computational cost is that associated with the size of the small subset. This has
the effect that, despite operating only on subsets of the original dataset, BLB does not
require analytical rescaling of its output. Overall, BLB has a significantly more favorable
computational profile than the bootstrap, as it only requires repeated computation of the
estimator under consideration on quantities of data that can be much smaller than the
original dataset. As a result, BLB is well suited to implementation on modern distributed
and parallel computing architectures which are often used to process large datasets. Also,
our procedure maintains the bootstrap’s generic applicability, favorable statistical properties
(i.e., consistency and higher-order correctness), and simplicity of implementation. Finally,
as we show in experiments, BLB is consistently more robust than alternatives such as the m
out of n bootstrap and subsampling.

The remainder of our presentation is organized as follows. In Section 2.2, we formal-
ize our statistical setting and notation, present BLB in detail, and discuss the procedure’s
computational characteristics. Subsequently, in Section 2.3, we elucidate BLB’s statistical
properties via a theoretical analysis (Section 2.3.1) showing that BLB shares the bootstrap’s
consistency and higher-order correctness, as well as a simulation study (Section 2.3.2) which
compares BLB to the bootstrap, the m out of n bootstrap, and subsampling. Section 2.4 dis-
cusses a large-scale implementation of BLB on a distributed computing system and presents
results illustrating the procedure’s superior computational performance in the massive data
setting. We present a method for adaptively selecting BLB’s hyperparameters in Section 2.5.
Finally, we apply BLB (as well as the bootstrap and the m out of n bootstrap, for compar-
ison) to several real datasets in Section 2.6, and we present an extension of BLB to time
series data in Section 2.7.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 8

2.2 Bag of Little Bootstraps (BLB)

2.2.1 Setting and Notation

We assume that we observe a sample X1, . . . , Xn ∈ X drawn i.i.d. from some (unknown)
underlying distribution P ∈ P ; we denote by Pn = n−1

∑n
i=1 δXi the corresponding empirical

distribution. Based only on this observed data, we compute an estimate θ̂n ∈ Θ of some
(unknown) population value θ ∈ Θ associated with P . For example, θ̂n might estimate a
measure of correlation, the parameters of a regressor, or the prediction accuracy of a trained
classification model. When we wish to explicitly indicate the data used to compute an
estimate, we shall write θ̂(Pn). Noting that θ̂n is a random quantity because it is based on n
random observations, we define Qn(P) ∈ Q as the true underlying distribution of θ̂n, which
is determined by both P and the form of the estimator. Our end goal is the computation of
an estimator quality assessment ξ(Qn(P), P) : Q× P → Ξ, for Ξ a vector space; to lighten
notation, we shall interchangeably write ξ(Qn(P)) in place of ξ(Qn(P), P). For instance, ξ
might compute a quantile, a confidence region, a standard error, or a bias. In practice, we
do not have direct knowledge of P or Qn(P), and so we must estimate ξ(Qn(P)) itself based
only on the observed data and knowledge of the form of the estimator under consideration.

Note that we allow ξ to depend directly on P in addition to Qn(P) because ξ might
operate on the distribution of a centered and normalized version of θ̂n. For example, if ξ
computes a confidence region, it might manipulate the distribution of the statistic

√
n(θ̂n−θ),

which is determined by both Qn(P) and θ; because θ cannot in general be obtained directly
from Qn(P), a direct dependence on P is required in this case. Nonetheless, given knowledge
of Qn(P), any direct dependence of ξ on P generally has a simple form, often only involving
the parameter θ. Additionally, rather than restricting Qn(P) to be the distribution of θ̂n, we
could instead allow it to be the distribution of a more general statistic, such as (θ̂n, σ̂n), where
σ̂n is an estimate of the standard deviation of θ̂n (e.g., this would apply when constructing
confidence intervals based on the distribution of the studentized statistic (θ̂n − θ)/σ̂n). Our
subsequent development generalizes straightforwardly to this setting, but to simplify the
exposition, we will largely assume that Qn(P) is the distribution of θ̂n.

Under our notation, the bootstrap simply computes the data-driven plugin approximation
ξ(Qn(P)) ≈ ξ(Qn(Pn)). Although ξ(Qn(Pn)) cannot be computed exactly in most cases,
it is generally amenable to straightforward Monte Carlo approximation via the following
algorithm [33]: repeatedly resample n points i.i.d. from Pn, compute the estimate on each
resample, form the empirical distribution Q∗n of the computed estimates, and approximate
ξ(Qn(P)) ≈ ξ(Q∗n).

Similarly, using our notation, the m out of n bootstrap (and subsampling) functions
as follows, for m < n [9, 67]: repeatedly resample m points i.i.d. from Pn (subsample
m points without replacement from X1, . . . , Xn), compute the estimate on each resample
(subsample), form the empirical distribution Q∗m of the computed estimates, approximate
ξ(Qm(P)) ≈ ξ(Q∗m), and apply an analytical correction to in turn approximate ξ(Qn(P)).
This final analytical correction uses prior knowledge of the convergence rate of θ̂n as n

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 9

increases and is necessary because each value of the estimate is computed based on only m
rather than n points.

We use 1d to denote the d-dimensional vector of ones, and we let Id denote the d × d
identity matrix.

2.2.2 Bag of Little Bootstraps

The Bag of Little Bootstraps (BLB) functions by averaging the results of bootstrapping
multiple small subsets of X1, . . . , Xn. More formally, given a subset size b < n, BLB samples
s subsets of size b from the original n data points, uniformly at random (one can also
impose the constraint that the subsets be disjoint). Let I1, . . . , Is ⊂ {1, . . . , n} be the

corresponding index multisets (note that |Ij| = b,∀j), and let P(j)
n,b = b−1

∑
i∈Ij δXi be the

empirical distribution corresponding to subset j. BLB’s estimate of ξ(Qn(P)) is then given
by

s−1

s∑
j=1

ξ(Qn(P(j)
n,b)). (2.1)

Although the terms ξ(Qn(P(j)
n,b)) in (2.1) cannot be computed analytically in general, they

can be computed numerically via straightforward Monte Carlo approximation in the manner
of the bootstrap: for each term j, repeatedly resample n points i.i.d. from P(j)

n,b, compute the
estimate on each resample, form the empirical distribution Q∗n,j of the computed estimates,

and approximate ξ(Qn(P(j)
n,b)) ≈ ξ(Q∗n,j).

Now, to realize the substantial computational benefits afforded by BLB, we utilize the
following crucial fact: each BLB resample, despite having nominal size n, contains at most
b distinct data points. In particular, to generate each resample, it suffices to draw a vector
of counts from an n-trial uniform multinomial distribution over b objects. We can then
represent each resample by simply maintaining the at most b distinct points present within
it, accompanied by corresponding sampled counts (i.e., each resample requires only storage
space in O(b)). In turn, if the estimator can work directly with this weighted data repre-
sentation, then the computational requirements of the estimator—with respect to both time
and storage space—scale only in b, rather than n. Fortunately, this property does indeed
hold for many if not most commonly used estimators, such as general M-estimators. The
resulting BLB algorithm, including Monte Carlo resampling, is shown in Algorithm 1.

Thus, BLB only requires repeated computation on small subsets of the original dataset
and avoids the bootstrap’s problematic need for repeated computation of the estimate on
resamples having size comparable to that of the original dataset. A simple and standard
calculation [33] shows that each bootstrap resample contains approximately 0.632n distinct
points, which is large if n is large. In contrast, as discussed above, each BLB resample con-
tains at most b distinct points, and b can be chosen to be much smaller than n or 0.632n. For
example, we might take b = nγ where γ ∈ [0.5, 1]. More concretely, if n = 1, 000, 000, then
each bootstrap resample would contain approximately 632, 000 distinct points, whereas with

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 10

Algorithm 1: Bag of Little Bootstraps (BLB)

Input: Data X1, . . . , Xn

θ̂: estimator of interest
ξ: estimator quality assessment

b: subset size
s: number of sampled subsets
r: number of Monte Carlo iterations

Output: An estimate of ξ(Qn(P))

for j ← 1 to s do
// Subsample the data

Randomly sample a set I = {i1, . . . , ib} of b indices from {1, . . . , n} without
replacement
[or, choose I to be a disjoint subset of size b from a predefined random partition of
{1, . . . , n}]
// Approximate ξ(Qn(P(j)

n,b))

for k ← 1 to r do
Sample (n1, . . . , nb) ∼ Multinomial(n,1b/b)

P∗n,k ← n−1
∑b

a=1 naδXia
θ̂∗n,k ← θ̂(P∗n,k)

end
Q∗n,j ← r−1

∑r
k=1 δθ̂∗n,k

ξ∗n,j ← ξ(Q∗n,j)
end

// Average values of ξ(Qn(P(j)
n,b)) computed for different data subsets

return s−1
∑s

j=1 ξ
∗
n,j

b = n0.6 each BLB subsample and resample would contain at most 3, 981 distinct points.
If each data point occupies 1 MB of storage space, then the original dataset would occupy
1 TB, a bootstrap resample would occupy approximately 632 GB, and each BLB subsample
or resample would occupy at most 4 GB. As a result, the cost of computing the estimate on
each BLB resample is generally substantially lower than the cost of computing the estimate
on each bootstrap resample, or on the full dataset. Furthermore, as we show in our simula-
tion study and scalability experiments below, BLB typically requires less total computation
(across multiple data subsets and resamples) than the bootstrap to reach comparably high
accuracy; fairly modest values of s and r suffice.

Due to its much smaller subsample and resample sizes, BLB is also significantly more
amenable than the bootstrap to distribution of different subsamples and resamples and their
associated computations to independent compute nodes; therefore, BLB allows for simple
distributed and parallel implementations, enabling additional large computational gains. In
the large data setting, computing a single full-data point estimate often requires simultaneous
distributed computation across multiple compute nodes, among which the observed dataset
is partitioned. Given the large size of each bootstrap resample, computing the estimate on

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 11

even a single such resample in turn also requires the use of a comparably large cluster of
compute nodes; the bootstrap requires repetition of this computation for multiple resamples.
Each computation of the estimate is thus quite costly, and the aggregate computational
costs of this repeated distributed computation are quite high (indeed, the computation for
each bootstrap resample requires use of an entire cluster of compute nodes and incurs the
associated overhead).

In contrast, BLB straightforwardly permits computation on multiple (or even all) sub-
samples and resamples simultaneously in parallel: because BLB subsamples and resamples
can be significantly smaller than the original dataset, they can be transferred to, stored by,
and processed on individual (or very small sets of) compute nodes. For example, we could
naturally leverage modern hierarchical distributed architectures by distributing subsamples
to different compute nodes and subsequently using intra-node parallelism to compute across
different resamples generated from the same subsample. Thus, relative to the bootstrap,
BLB both decreases the total computational cost of assessing estimator quality and allows
more natural use of parallel and distributed computational resources. Moreover, even if only
a single compute node is available, BLB allows the following somewhat counterintuitive pos-
sibility: even if it is prohibitive to actually compute a point estimate for the full observed
data using a single compute node (because the full dataset is large), it may still be possible
to efficiently assess such a point estimate’s quality using only a single compute node by
processing one subsample (and the associated resamples) at a time.

Returning to equation (2.1), unlike the plugin approximation ξ(Qn(Pn)) used by the

bootstrap, the plugin approximations ξ(Qn(P(j)
n,b)) used by BLB are based on empirical dis-

tributions P(j)
n,b which are more compact and hence, as we have seen, less computationally

demanding than the full empirical distribution Pn. However, each P(j)
n,b is inferior to Pn as an

approximation to the true underlying distribution P , and so BLB averages across multiple
different realizations of P(j)

n,b to improve the quality of the final result. This procedure yields
significant computational benefits over the bootstrap (as discussed above and demonstrated
empirically in Section 2.4), while having the same generic applicability and favorable statis-
tical properties as the bootstrap (as shown in the next section), in addition to being more
robust than the m out of n bootstrap and subsampling to the choice of subset size (see our
simulation study below).

2.3 Statistical Performance

2.3.1 Consistency and Higher-Order Correctness

We now show that BLB has statistical properties—in particular, asymptotic consistency
and higher-order correctness—which are identical to those of the bootstrap, under the same
conditions that have been used in prior analysis of the bootstrap. Note that if θ̂n is consistent
(i.e., approaches θ in probability) as n→∞, then it has a degenerate limiting distribution.
Thus, in studying the asymptotics of the bootstrap and related procedures, it is typical

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 12

to assume that ξ manipulates the distribution of a centered and normalized version of θ̂n
(though this distribution is still determined by Qn(P) and P). Additionally, as in standard
analyses of the bootstrap, we do not explicitly account here for error introduced by use of
Monte Carlo approximation to compute the individual plugin approximations ξ(Qn(P(j)

n,b)).
The following theorem states that (under standard assumptions) as b, n → ∞, the es-

timates s−1
∑s

j=1 ξ(Qn(P(j)
n,b)) returned by BLB approach the population value ξ(Qn(P)) in

probability. Interestingly, the only assumption about b required for this result is that b→∞,
though in practice we would generally take b to be a slowly growing function of n.

Theorem 1. Suppose that θ̂n = φ(Pn) and θ = φ(P), where φ is Hadamard differentiable at

P tangentially to some subspace, with P , Pn, and P(j)
n,b viewed as maps from some Donsker

class F to R such that Fδ is measurable for every δ > 0, where Fδ = {f − g : f, g ∈
F , ρP (f − g) < δ} and ρP (f) = (P (f − Pf)2)

1/2
. Additionally, assume that ξ(Qn(P)) is a

function of the distribution of
√
n(φ(Pn) − φ(P)) which is continuous in the space of such

distributions with respect to a metric that metrizes weak convergence. Then,

s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

P→ 0

as n→∞, for any sequence b→∞ and for any fixed s.

See the appendix for a proof of this theorem, as well as for proofs of all other results
in this section. Note that the assumptions of Theorem 1 are standard in analysis of the
bootstrap and in fact hold in many practically interesting cases. For example, M-estimators
are generally Hadamard differentiable (under some regularity conditions) [76, 77], and the
assumptions on ξ are satisfied if, for example, ξ computes a cdf value. Theorem 1 can also be
generalized to hold for sequences s→∞ and more general forms of ξ, but such generalization
appears to require stronger assumptions, such as uniform integrability of the ξ(Qn(P(j)

n,b));
the need for stronger assumptions in order to obtain more general consistency results has
also been noted in prior work on the bootstrap (e.g., see [42]).

Moving beyond analysis of the asymptotic consistency of BLB, we now characterize its
higher-order correctness (i.e., the rate of convergence of its output to ξ(Qn(P))). A great
deal of prior work has been devoted to showing that the bootstrap is higher-order correct in
many cases (e.g., see the seminal book by Hall [44]), meaning that it converges to the true
value ξ(Qn(P)) at a rate of OP (1/n) or faster. In contrast, methods based on analytical
asymptotic approximation are generally correct only at order OP (1/

√
n). The bootstrap

converges more quickly due to its ability to utilize the full empirical distribution of the
observed data (rather than, for example, only low-order sample moments), which allows it
to better capture finite-sample deviations of the distribution of the quantity of interest from
its asymptotic limiting distribution.

As shown by the following theorem, BLB shares the same degree of higher-order correct-
ness as the bootstrap, assuming that s and b are chosen to be sufficiently large. Importantly,

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 13

sufficiently large values of b here can still be significantly smaller than n, with b/n → 0 as
n → ∞. Following prior analyses of the bootstrap, we now make the standard assump-
tion that ξ can be represented via an asymptotic series expansion in powers of 1/

√
n. In

fact, prior work provides such expansions in a variety of settings. When ξ computes a cdf
value, these expansions are termed Edgeworth expansions; if ξ computes a quantile, then the
relevant expansions are Cornish-Fisher expansions. See [44] for a full development of such
expansions both in generality as well as for specific forms of the estimator, including smooth
functions of mean-like statistics and curve estimators.

Theorem 2. Suppose that ξ(Qn(P)) admits an expansion as an asymptotic series

ξ(Qn(P)) = z +
p1√
n

+ · · ·+ pk
nk/2

+ o

(
1

nk/2

)
, (2.2)

where z is a constant independent of P and the pk are polynomials in the moments of P .
Additionally, assume that the empirical version of ξ(Qn(P)) for any j admits a similar
expansion

ξ(Qn(P(j)
n,b)) = z +

p̂
(j)
1√
n

+ · · ·+ p̂
(j)
k

nk/2
+ oP

(
1

nk/2

)
, (2.3)

where z is as defined above and the p̂
(j)
k are polynomials in the moments of P(j)

n,b obtained by

replacing the moments of P in the pk with those of P(j)
n,b. Then, assuming that b ≤ n and

E(p̂
(1)
k)2 <∞ for k ∈ {1, 2},∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ = OP

√

Var(p̂
(1)
k − pk|Pn)
√
ns

+OP

(
1

n

)
+O

(
1

b
√
n

)
.

(2.4)

Therefore, taking s = Ω(nVar(p̂
(1)
k − pk|Pn)) and b = Ω(

√
n) yields∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ = OP

(
1

n

)
,

in which case BLB enjoys the same level of higher-order correctness as the bootstrap.

Note that it is natural to assume above that ξ(Qn(P(j)
n,b)) can be expanded in powers of

1/
√
n, rather than 1/

√
b, because Qn(P(j)

n,b) is the distribution of the estimate computed on

n points sampled from P(j)
n,b. The fact that only b points are represented in P(j)

n,b enters via

the p̂
(j)
k , which are polynomials in the sample moments of those b points.

Theorem 2 indicates that, like the bootstrap, BLB can converge at rate OP (1/n) (as-

suming that s and b grow at a sufficient rate). Additionally, because Var(p̂
(1)
k − pk|Pn) is

decreasing in probability as b and n increase, s can grow significantly more slowly than n

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 14

(indeed, unconditionally, p̂
(j)
k − pk = OP (1/

√
b)). While Var(p̂

(1)
k − pk|Pn) can in principle be

computed given an observed dataset, as it depends only on Pn and the form of the estimator
under consideration, we can also obtain a general upper bound (in probability) on the rate
of decrease of this conditional variance:

Remark 1. Assuming that E(p̂
(1)
k)4 <∞, Var(p̂

(1)
k − pk|Pn) = OP (1/

√
n) +O(1/b).

The following result, which applies to the alternative variant of BLB that constrains
the s randomly sampled subsets to be disjoint, also highlights the fact that s can grow
substantially more slowly than n:

Theorem 3. Under the assumptions of Theorem 2, and assuming that BLB uses disjoint
random subsets of the observed data (rather than simple random subsamples), we have∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ = OP

(
1√
nbs

)
+O

(
1

b
√
n

)
. (2.5)

Therefore, if s ∼ (n/b) and b = Ω(
√
n), then∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ = OP

(
1

n

)
,

in which case BLB enjoys the same level of higher-order correctness as the bootstrap.

Finally, while the assumptions of the two preceding theorems generally require that ξ
studentizes the estimator under consideration (which involves dividing by an estimate of
standard error), similar results hold even if the estimator is not studentized. In particular,
not studentizing slows the convergence rate of both the bootstrap and BLB by the same
factor, generally causing the loss of a factor of OP (1/

√
n) [76].

2.3.2 Simulation Study

We investigate empirically the statistical performance characteristics of BLB and compare
to the statistical performance of existing methods via experiments on simulated data. Use
of simulated data is necessary here because it allows knowledge of P , Qn(P), and hence
ξ(Qn(P)); this ground truth is required for evaluation of statistical correctness. For different
datasets and estimation tasks, we study the convergence properties of BLB as well as the
bootstrap, the m out of n bootstrap, and subsampling.

We consider two different settings: regression and classification. For both settings, the
data have the form Xi = (X̃i, Yi) ∼ P , i.i.d. for i = 1, . . . , n, where X̃i ∈ Rd; Yi ∈ R for
regression, whereas Yi ∈ {0, 1} for classification. In each case, θ̂n estimates a parameter
vector in Rd for a linear or generalized linear model of the mapping between X̃i and Yi.
We define ξ as a procedure that computes a set of marginal 95% confidence intervals, one

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 15

for each element of the estimated parameter vector. In particular, given an estimator’s
sampling distribution Q (or an approximation thereof), ξ computes the boundaries of the
relevant confidence intervals as the 2.5th and 97.5th percentiles of the marginal component-
wise distributions defined by Q (averaging across ξ’s simply consists of averaging these
percentile estimates).

To evaluate the various quality assessment procedures on a given estimation task and true
underlying data distribution P , we first compute the ground truth ξ(Qn(P)) by generating
2, 000 realizations of datasets of size n from P , computing θ̂n on each, and using this collec-
tion of θ̂n’s to form a high-fidelity approximation to Qn(P). Then, for an independent dataset
realization of size n from the true underlying distribution, we run each quality assessment
procedure (without parallelization) until it converges and record the estimate of ξ(Qn(P))
produced after each iteration (e.g., after each bootstrap resample or BLB subsample is pro-
cessed), as well as the cumulative processing time required to produce that estimate. Every
such estimate is evaluated based on the average (across dimensions) relative deviation of its
component-wise confidence intervals’ widths from the corresponding true widths; given an
estimated confidence interval width c and a true width co, the relative deviation of c from
co is defined as |c − co|/co. We repeat this process on five independent dataset realizations
of size n and average the resulting relative errors and corresponding processing times across
these five datasets to obtain a trajectory of relative error versus time for each quality assess-
ment procedure. The relative errors’ variances are small relative to the relevant differences
between their means, and so these variances are not shown in our plots. Note that we eval-
uate based on confidence interval widths, rather than coverage probabilities, to control the
running times of our experiments: in our experimental setting, even a single run of a quality
assessment procedure requires non-trivial time, and computing coverage probabilities would
require a large number of such runs. All experiments in this section were implemented and
executed using MATLAB on a single processor. To maintain consistency of notation, we
refer to the m out of n bootstrap as the b out of n bootstrap throughout the remainder of
this section. For BLB, the b out of n bootstrap, and subsampling, we consider b = nγ with
γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}; we use r = 100 in all runs of BLB.

In the regression setting, we generate each dataset from a true underlying distribution P
consisting of either a linear model Yi = X̃T

i 1d + εi or a model Yi = X̃T
i 1d + X̃T

i X̃i + εi having
a quadratic term, with d = 100 and n = 20, 000. The X̃i and εi are drawn independently
from one of the following pairs of distributions: X̃i ∼ Normal(0, Id) with εi ∼ Normal(0, 10);
X̃i,j ∼ StudentT(3) i.i.d. for j = 1, . . . , d with εi ∼ Normal(0, 10); or X̃i,j ∼ Gamma(1 +
5(j − 1)/max(d− 1, 1), 2)− 2[1 + 5(j − 1)/max(d− 1, 1), 2] independently for j = 1, . . . , d
with εi ∼ Gamma(1, 2) − 2. All of these distributions have EX̃i = Eεi = 0, and the last
X̃i distribution has non-zero skewness which varies among the dimensions. In the regression
setting under both the linear and quadratic data generating distributions, our estimator θ̂n
consists of a linear (in X̃i) least squares regression with a small L2 penalty on the parameter
vector to encourage numerical stability (we set the weight on this penalty term to 10−5).
The true average (across dimensions) marginal confidence interval width for the estimated
parameter vector is approximately 0.1 under the linear data generating distributions (for all

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 16

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1
R

el
at

iv
e

E
rr

or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

SS−0.5
SS−0.6
SS−0.7
SS−0.8
SS−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

SS−0.5
SS−0.6
SS−0.7
SS−0.8
SS−0.9
BOOT

0 5 10 15
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

SS−0.5
SS−0.6
SS−0.7
SS−0.8
SS−0.9
BOOT

Figure 2.1: Relative error vs. processing time for regression setting. The top row shows BLB
with bootstrap (BOOT), the middle row shows b out of n bootstrap (BOFN), and the bottom
row shows subsampling (SS). For BLB, BOFN, and SS, b = nγ with the value of γ for each
trajectory given in the legend. The left column shows results for linear regression with linear
data generating distribution and Gamma X̃i distribution. The middle column shows results
for linear regression with quadratic data generating distribution and Gamma X̃i distribution.
The right column shows results for linear regression with linear data generating distribution
and StudentT X̃i distribution.

X̃i distributions) and approximately 1 under the quadratic data generating distributions.
Figure 2.1 shows results for the regression setting under the linear and quadratic data

generating distributions with the Gamma and StudentT X̃i distributions; similar results hold
for the Normal X̃i distribution. In all cases, BLB (top row) succeeds in converging to low
relative error significantly more quickly than the bootstrap, for all values of b considered.
In contrast, the b out of n bootstrap (middle row) fails to converge to low relative error for
smaller values of b (below n0.7). Additionally, subsampling (bottom row) performs strictly

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 17

worse than the b out of n bootstrap, as subsampling fails to converge to low relative error
for both smaller and larger values of b (e.g., for b = n0.9). Note that fairly modest values
of s suffice for convergence of BLB (recall that s values are implicit in the time axes of
our plots), with s at convergence ranging from 1-2 for b = n0.9 up to 10-14 for b = n0.5,
in the experiments shown in Figure 2.1; larger values of s are required for smaller values
of b, which accords with both intuition and our theoretical analysis. Under the quadratic
data generating distribution with StudentT X̃i distribution (plots not shown), none of the
procedures (including the bootstrap) converge to low relative error, which is unsurprising
given the StudentT(3) distribution’s lack of moments beyond order two.

For the classification setting, we generate each dataset considered from either a linear
model Yi ∼ Bernoulli((1 + exp(−X̃T

i 1))−1) or a model Yi ∼ Bernoulli((1 + exp(−X̃T
i 1 −

X̃T
i X̃i))

−1) having a quadratic term, with d = 10. We use the three different distributions
on X̃i defined in the regression setting. Our estimator, under both the linear and quadratic
data generating distributions, consists of a linear (in X̃i) logistic regression fit via Newton’s
method, again using an L2 penalty term with weight 10−5 to encourage numerical stability.
For this estimation task with n = 20, 000, the true average (across dimensions) marginal
confidence interval width for the estimated parameter vector is approximately 0.1 under the
linear data generating distributions (for all X̃i distributions) and approximately 0.02 under
the quadratic data generating distributions.

Figure 2.2 shows results for the classification setting under the linear and quadratic data
generating distributions with the Gamma and StudentT X̃i distributions, and n = 20, 000
(as in Figure 2.1); results for the Normal X̃i distribution are qualitatively similar. Here, the
performance of the various procedures is more varied than in the regression setting. The
case of the linear data generating distribution with Gamma X̃i distribution (left column of
Figure 2.2) appears to be the most challenging. In this setting, BLB converges to relative
error comparable to that of the bootstrap for b > n0.6, while converging to higher relative
errors for the smallest values of b considered. For the larger values of b, which are still
significantly smaller than n, we again converge to low relative error faster than the bootstrap.
We are also once again more robust than the b out of n bootstrap, which fails to converge
to low relative error for b ≤ n0.7. In fact, even for b ≤ n0.6, BLB’s performance is superior
to that of the b out of n bootstrap. Qualitatively similar results hold for the other data
generating distributions, but with BLB and the b out of n bootstrap both performing better
relative to the bootstrap. In the experiments shown in Figure 2.2, the values of s (which are
implicit in the time axes of our plots) required for convergence of BLB range from 1-2 for
b = n0.9 up to 10-20 for b ≤ n0.6 (for cases in which BLB converges to low relative error).
As in the regression setting, subsampling (plots not shown) has performance strictly worse
than that of the b out of n bootstrap in all cases.

To further examine the cases in which BLB (when using small values of b) does not
converge to relative error comparable to that of the bootstrap, we explore how the various
procedures’ relative errors vary with n. In particular, for different values of n (and b), we
run each procedure as described above and report the relative error that it achieves after
it converges (i.e., after it has processed sufficiently many subsets, in the case of BLB, or

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 18

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.5
BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
R

el
at

iv
e

E
rr

or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BOFN−0.5
BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.2: Relative error vs. processing time for classification setting with n = 20, 000.
The top row shows BLB with bootstrap (BOOT); bottom row shows b out of n bootstrap
(BOFN). For both BLB and BOFN, b = nγ with the value of γ for each trajectory given in
the legend. The left column shows results for logistic regression with linear data generating
distribution and Gamma X̃i distribution. The middle column shows results for logistic
regression with quadratic data generating distribution and Gamma X̃i distribution. The
right column shows results for logistic regression with linear data generating distribution
and StudentT X̃i distribution.

resamples, in the case of the b out of n bootstrap and the bootstrap, to allow its output
to stabilize). Figure 2.3 shows results for the classification setting under the linear data
generating distribution with the Gamma and StudentT X̃i distributions; qualitatively similar
results hold for the Normal X̃i distribution. As expected based on our previous results for
fixed n, BLB’s relative error here is higher than that of the bootstrap for the smallest values
of b and n considered. Nonetheless, BLB’s relative error decreases to that of the bootstrap as
n increases—for all considered values of γ, with b = nγ—in accordance with our theoretical
analysis; indeed, as n increases, we can set b to progressively more slowly growing functions
of n while still achieving low relative error. Furthermore, BLB’s relative error is consistently
substantially lower than that of the b out of n bootstrap and decreases more quickly to the
low relative error of the bootstrap as n increases.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 19

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

n

BOFN−0.5
BLB−0.5
BOFN−0.6
BLB−0.6
BOFN−0.7
BLB−0.7
BOOT

0 1 2 3 4 5

x 10
5

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

n

BOFN−0.5
BLB−0.5
BOFN−0.6
BLB−0.6
BOFN−0.7
BLB−0.7
BOOT

Figure 2.3: Relative error (after convergence) vs. n for BLB, the b out of n bootstrap
(BOFN), and the bootstrap (BOOT) in the classification setting. For both BLB and BOFN,
b = nγ with the relevant values of γ given in the legend. The left plot shows results for
logistic regression with linear data generating distribution and Gamma X̃i distribution. The
right plot shows results for logistic regression with linear data generating distribution and
StudentT X̃i distribution.

2.4 Computational Scalability

The experiments of the preceding section, though primarily intended to investigate statis-
tical performance, also provide some insight into computational performance: as seen in
Figures 2.1 and 2.2, when computing on a single processor, BLB generally requires less time,
and hence less total computation, than the bootstrap to attain comparably high accuracy.
Those results only hint at BLB’s superior ability to scale computationally to large datasets,
which we now demonstrate in full in the following discussion and via large-scale experiments
on a distributed computing platform.

As discussed in Section 2.2, modern massive datasets often exceed both the processing
and storage capabilities of individual processors or compute nodes, thus necessitating the
use of parallel and distributed computing architectures. As a result, the scalability of a
quality assessment method is closely tied to its ability to effectively utilize such computing
resources.

Recall from our exposition in preceding sections that, due to the large size of bootstrap
resamples, the following is the most natural avenue for applying the bootstrap to large-scale
data using distributed computing: given data partitioned across a cluster of compute nodes,
parallelize the estimate computation on each resample across the cluster, and compute on
one resample at a time. This approach, while at least potentially feasible, remains quite
problematic. Each computation of the estimate will require the use of an entire cluster
of compute nodes, and the bootstrap repeatedly incurs the associated overhead, such as

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 20

the cost of repeatedly communicating intermediate data among nodes. Additionally, many
cluster computing systems currently in widespread use (e.g., Hadoop MapReduce [41]) store
data only on disk, rather than in memory, due to physical size constraints (if the dataset size
exceeds the amount of available memory) or architectural constraints (e.g., the need for fault
tolerance). In that case, the bootstrap incurs the extreme costs associated with repeatedly
reading a very large dataset from disk—reads from disk are orders of magnitude slower than
reads from memory. Though disk read costs may be acceptable when (slowly) computing
only a single full-data point estimate, they easily become prohibitive when computing many
estimates on one hundred or more resamples. Furthermore, as we have seen, executing the
bootstrap at scale requires implementing the estimator such that it can be run on data
distributed over a cluster of compute nodes.

In contrast, BLB permits computation on multiple (or even all) subsamples and resam-
ples simultaneously in parallel, allowing for straightforward distributed and parallel imple-
mentations which enable effective scalability and large computational gains. Because BLB
subsamples and resamples can be significantly smaller than the original dataset, they can
be transferred to, stored by, and processed independently on individual (or very small sets
of) compute nodes. For instance, we can distribute subsamples to different compute nodes
and subsequently use intra-node parallelism to compute across different resamples generated
from the same subsample. Note that generation and distribution of the subsamples requires
only a single pass over the full dataset (i.e., only a single read of the full dataset from disk, if
it is stored only on disk), after which all required data (i.e., the subsamples) can potentially
be stored in memory. Beyond this significant architectural benefit, we also achieve imple-
mentation and algorithmic benefits: we do not need to parallelize the estimator internally to
take advantage of the available parallelism, as BLB uses this available parallelism to compute
on multiple resamples simultaneously, and exposing the estimator to only b rather than n
distinct points significantly reduces the computational cost of estimation, particularly if the
estimator computation scales super-linearly.

Given the shortcomings of the m out of n bootstrap and subsampling illustrated in the
preceding section, we do not include these methods in the scalability experiments of this
section. However, it is worth noting that these procedures have a significant computational
shortcoming in the setting of large-scale data: the m out of n bootstrap and subsampling
require repeated access to many different random subsets of the original dataset (in contrast
to the relatively few, potentially disjoint, subsamples required by BLB), and this access can
be quite costly when the data is distributed across a cluster of compute nodes.

We now detail our large-scale experiments on a distributed computing platform. For this
empirical study, we use the experimental setup of Section 2.3.2, with some modification to
accommodate larger scale and distributed computation. First, we now use d = 3, 000 and n =
6, 000, 000 so that the size of a full observed dataset is approximately 150 GB. The full dataset
is partitioned across a number of compute nodes. We again use simulated data to allow
knowledge of ground truth; due to the substantially larger data size and attendant higher
running times, we now use 200 independent realizations of datasets of size n to numerically
compute the ground truth. As our focus is now computational (rather than statistical)

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 21

performance, we present results here for a single data generating distribution which yields
representative statistical performance based on the results of the previous section; for a
given dataset size, changing the underlying data generating distribution does not alter the
computational resources required for storage and processing. For the experiments in this
section, we consider the classification setting with StudentT X̃i distribution. The mapping
between X̃i and Yi remains similar to that of the linear data generating distribution in
Section 2.3.2, but with the addition of a normalization factor to prevent degeneracy when
using larger d: Yi ∼ Bernoulli((1+exp(−X̃T

i 1/
√
d))−1). We implement the logistic regression

using L-BFGS [63] due to the significantly larger value of d.
We compare the performance of BLB and the bootstrap, both implemented as described

above. That is, our implementation of BLB processes all subsamples simultaneously in par-
allel on independent compute nodes; we use r = 50, s = 5, and b = n0.7. Our implementation
of the bootstrap uses all available processors to compute on one resample at a time, with
computation of the logistic regression parameter estimates parallelized across the available
compute nodes by simply distributing the relevant gradient computations among the differ-
ent nodes upon which the data is partitioned. We utilize Poisson resampling [77] to generate
bootstrap resamples, thereby avoiding the complexity of generating a random multinomial
vector of length n in a distributed fashion. Due to high running times, we show results for
a single trial of each method, though we have observed little variability in qualitative out-
comes during development of these experiments. All experiments in this section are run on
Amazon EC2 and implemented in the Scala programming language using the Spark cluster
computing framework [82], which provides the ability to either read data from disk (in which
case performance is similar to that of Hadoop MapReduce) or cache it in memory across a
cluster of compute nodes (provided that sufficient memory is available) for faster repeated
access.

In the left plot of Figure 2.4, we show results obtained using a cluster of 10 worker
nodes, each having 6 GB of memory and 8 compute cores; thus, the total memory of the
cluster is 60 GB, and the full dataset (150 GB) can only be stored on disk (the available
disk space is ample and far exceeds the dataset size). As expected, the time required by the
bootstrap to produce even a low-accuracy output is prohibitively high, while BLB provides
a high-accuracy output quite quickly, in less than the time required to process even a sin-
gle bootstrap resample. In the right plot of Figure 2.4, we show results obtained using a
cluster of 20 worker nodes, each having 12 GB of memory and 4 compute cores; thus, the
total memory of the cluster is 240 GB, and we cache the full dataset in memory for faster
repeated access. Unsurprisingly, the bootstrap’s performance improves significantly with
respect to the previous disk-bound experiment. However, the performance of BLB (which
also improves), remains substantially better than that of the bootstrap.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 22

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.7
BOOT

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.7
BOOT

Figure 2.4: Relative error vs. processing time for BLB (with b = n0.7) and the bootstrap
(BOOT) on 150 GB of data in the classification setting. The left plot shows results with
the full dataset stored only on disk; the right plot shows results with the full dataset cached
in memory. Because BLB’s computation is fully parallelized across all subsamples, we show
only the processing time and relative error of BLB’s final output.

2.5 Hyperparameter Selection

Like existing resampling-based procedures such as the bootstrap, BLB requires the specifi-
cation of hyperparameters controlling the number of subsamples and resamples processed.
Setting such hyperparameters to be sufficiently large is necessary to ensure good statistical
performance; however, setting them to be unnecessarily large results in wasted computa-
tion. Prior work on the bootstrap and related procedures—which largely does not address
computational issues—generally assumes that a procedure’s user will simply select a priori a
large, constant number of resamples to be processed (with the exception of [73], which does
not provide a general solution for this issue). However, this approach reduces the level of
automation of these methods and can be quite inefficient in the large data setting, in which
each subsample or resample can require a substantial amount of computation.

Thus, we now examine the dependence of BLB’s performance on the choice of r and
s, with the goal of better understanding their influence and providing guidance toward
achieving adaptive methods for their selection. For any particular application of BLB, we
seek to select the minimal values of r and s which are sufficiently large to yield good statistical
performance.

Recall that in the simulation study of Section 2.3.2, across all of the settings considered,
fairly modest values of r (100 for confidence intervals) and s (from 1-2 for b = n0.9 up to
10-20 for b = n0.6) were sufficient. The left plot of Figure 2.5 provides further insight into the
influence of r and s, giving the relative errors achieved by BLB with b = n0.7 for different r, s
pairs in the classification setting with linear data generating distribution and StudentT X̃i

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 23

s

r

1 3 5 10 25 50 100 200

500

200

100

50

40

30

20

10

5 0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

r Stats CI STDERR

mean 89.6 67.7
min 50 40
max 150 110

Figure 2.5: Results for BLB hyperparameter selection in the classification setting with linear
data generating distribution and StudentT X̃i distribution. The left plot shows the relative
error achieved by BLB for different values of r and s, with b = n0.7. The right plot shows
relative error vs. processing time (without parallelization) for BLB using adaptive selection
of r and s (the resulting stopping times of the BLB trajectories are marked by large squares)
and the bootstrap (BOOT); for BLB, b = nγ with the value of γ for each trajectory given in
the legend. The table gives statistics of the different values of r selected by BLB’s adaptive
hyperparameter selection (across multiple subsamples, with b = n0.7) when ξ is either our
usual confidence interval width-based quality measure (CI), or a component-wise standard
error (STDERR); the relative errors achieved by BLB and the bootstrap are comparable in
both cases.

distribution. In particular, note that for all but the smallest values of r and s, it is possible
to choose these values independently such that BLB achieves low relative error; in this case,
selecting s ≥ 3, r ≥ 50 is sufficient.

While these results are useful and provide some guidance for hyperparameter selection,
we expect the sufficient values of r and s to change based on the identity of ξ (e.g., we
expect a confidence interval to be harder to compute and hence to require larger r than a
standard error) and the properties of the underlying data. Thus, to help avoid the need to
set r and s to be conservatively and inefficiently large, we now provide a means for adaptive
hyperparameter selection, which we validate empirically.

Concretely, to select r adaptively in the inner loop of Algorithm 1, we propose an iterative
scheme whereby, for any given subsample j, we continue to process resamples and update
ξ∗n,j until it has ceased to change significantly. Noting that the values θ̂∗n,k used to compute
ξ∗n,j are conditionally i.i.d. given a subsample, for most forms of ξ the series of computed ξ∗n,j
values will be well behaved and will converge (in many cases at rate O(1/

√
r), though with

unknown constant) to a constant target value as more resamples are processed. Therefore, it
suffices to process resamples (i.e., to increase r) until we are satisfied that ξ∗n,j has ceased to
fluctuate significantly; we propose using Algorithm 2 to assess this convergence. The same
scheme can be used to select s adaptively by processing more subsamples (i.e., increasing s)
until BLB’s output value s−1

∑s
j=1 ξ

∗
n,j has stabilized; in this case, one can simultaneously

also choose r adaptively and independently for each subsample. When parallelizing across
subsamples and resamples, one can simply process batches of subsamples and resamples

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 24

Algorithm 2: Convergence Assessment

Input: A series z(1), z(2), . . . , z(t) ∈ Rd

w ∈ N: window size (< t)
ε ∈ R: target relative error (> 0)

Output: true if and only if the input series is deemed to have ceased to fluctuate
beyond the target relative error

if ∀j ∈ [1, w], 1
d

∑d
i=1

|z(t−j)i −z(t)i |
|z(t)i |

≤ ε then

return true
else

return false
end

(with batch size determined by the available parallelism) until the output stabilizes.
The right plot of Figure 2.5 shows the results of applying such adaptive hyperparameter

selection in a representative empirical setting from our earlier simulation study (without
parallelization). For selection of r we use ε = 0.05 and w = 20, and for selection of s we
use ε = 0.05 and w = 3. As illustrated in the plot, the adaptive hyperparameter selection
allows BLB to cease computing shortly after it has converged (to low relative error), limiting
the amount of unnecessary computation that is performed without degradation of statistical
performance. Though selected a priori, ε and w are more intuitively interpretable and less
dependent on the details of ξ and the underlying data generating distribution than r and
s. Indeed, the aforementioned specific values of ε and w yield results of comparably good
quality when also used for the other data generation settings considered in Section 2.3.2, when
applied to a variety of real datasets in Section 2.6 below, and when used in conjunction with
different forms of ξ (see the table in Figure 2.5, which shows that smaller values of r are
selected when ξ is easier to compute). Thus, our scheme significantly helps to alleviate the
burden of a priori hyperparameter selection.

Automatic selection of a value of b in a computationally efficient manner would also be
desirable but is more difficult due to the inability to easily reuse computations performed for
different values of b. One could consider similarly increasing b from some small value until
the output of BLB stabilizes (an approach reminiscent of the method proposed in [11] for the
m out of n bootstrap); devising a means of doing so efficiently is the subject of future work.
Nonetheless, based on our fairly extensive empirical investigation, it seems that b = n0.7 is a
reasonable and effective choice in many situations.

2.6 Real Data

In this section, we present the results of applying BLB to several different real datasets. In
this case, given the absence of ground truth, it is not possible to objectively evaluate the

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 25

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.6: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI connect4 dataset (logistic regression, d = 42, n = 67, 557). The left plot
shows results for BLB (using adaptive hyperparameter selection, with the output at conver-
gence marked by large squares) and the bootstrap (BOOT). The right plot shows results for
the b out of n bootstrap (BOFN). For both BLB and BOFN, b = nγ with the value of γ for
each trajectory given in the legend.

statistical correctness of any particular estimator quality assessment method; rather, we are
reduced to comparing the outputs of various methods (in this case, BLB, the bootstrap, and
the b out of n bootstrap) to each other. Because we cannot determine the relative error
of each procedure’s output without knowledge of ground truth, we now instead report the
average (across dimensions) absolute confidence interval width yielded by each procedure.

Figure 2.6 shows results for BLB, the bootstrap, and the b out of n bootstrap on the UCI
connect4 dataset [34], where the model is logistic regression (as in the classification setting of
our simulation study above), d = 42, and n = 67, 557. We select the BLB hyperparameters
r and s using the adaptive method described in the preceding section. Notably, the outputs
of BLB for all values of b considered, and the output of the bootstrap, are tightly clustered
around the same value; additionally, as expected, BLB converges more quickly than the
bootstrap. However, the values produced by the b out of n bootstrap vary significantly as
b changes, thus further highlighting this procedure’s lack of robustness. We have obtained
qualitatively similar results on six additional datasets from the UCI dataset repository (ct-
slice, magic, millionsong, parkinsons, poker, shuttle) [34] with different estimators (linear
regression and logistic regression) and a range of different values of n and d (see the appendix
for plots of these results).

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 26

2.7 Time Series

While we have focused thus far on the setting of i.i.d. data, variants of the bootstrap—
such as the moving block bootstrap and the stationary bootstrap—have been proposed to
handle other data analysis settings such as that of time series [33, 45, 50, 54, 66]. These
bootstrap variants can be used within BLB, in computing the requisite plugin approximations
ξ(Qn(P(j)

n,b)), to obtain variants of our procedure which are applicable in non-i.i.d. settings.
The advantages (e.g., with respect to scalability) of such BLB variants over variants of the
bootstrap (and its relatives) remain identical to the advantages discussed above in the context
of large-scale i.i.d. data. We briefly demonstrate the extensibility of BLB by combining our
procedure with the stationary bootstrap [66] to obtain a “stationary BLB” which is suitable
for assessing the quality of estimators applied to large-scale stationary time series data.

To extend BLB in this manner, we must simply alter both the subsample selection mech-
anism and the resample generation mechanism such that both of these processes respect the
underlying data generating process. In particular, for stationary time series data it suffices
to select each subsample as a (uniformly) randomly positioned block of length b within the
observed time series of length n. Given a subsample of size b, we generate each resample by
applying the stationary bootstrap to the subsample to obtain a series of length n. That is,
given p ∈ [0, 1] (a hyperparameter of the stationary bootstrap), we first select uniformly at
random a data point in the subsample series and then repeat the following process until we
have amassed a new series of length n: with probability 1 − p we append to our resample
the next point in the subsample series (wrapping around to the beginning if we reach the
end of the subsample series), and with probability p we (uniformly at random) select and
append a new point in the subsample series. Given subsamples and resamples generated in
this manner, we execute the remainder of the BLB procedure as described in Algorithm 1.

We now present simulation results comparing the performance of the bootstrap, BLB, the
stationary bootstrap, and stationary BLB. In this experiment, initially introduced in [66],
we generate observed data consisting of a stationary time series X1, . . . , Xn ∈ R where
Xt = Zt +Zt−1 +Zt−2 +Zt−3 +Zt−4 and the Zt are drawn independently from Normal(0, 1).
We consider the task of estimating the standard deviation of the rescaled mean

∑n
i=1 Xt/

√
n,

which is approximately 5; we set p = 0.1 for the stationary bootstrap and stationary BLB.
The results in Table 2.1 (for n = 5, 000) show the improvement of the stationary bootstrap
over the bootstrap, the similar improvement of stationary BLB over BLB, and the fact
that the statistical performance of stationary BLB is comparable to that of the stationary
bootstrap for b ≥ n0.7. Note that this exploration of stationary BLB is intended as a proof of
concept, and additional investigation would help to further elucidate and perhaps improve
the performance characteristics of this BLB extension.

2.A Appendix: Proofs

We provide here full proofs of the theoretical results included in Section 2.3.1 above.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 27

Method Standard Stationary

BLB-0.6 2.2± .1 4.2± .1
BLB-0.7 2.2± .04 4.5± .1
BLB-0.8 2.2± .1 4.6± .2
BLB-0.9 2.2± .1 4.6± .1
BOOT 2.2± .1 4.6± .2

Table 2.1: Comparison of standard and stationary bootstrap (BOOT) and BLB on stationary
time series data with n = 5, 000. We report the average and standard deviation of estimates
(after convergence) of the standard deviation of the rescaled mean aggregated over 10 trials.
The true population value of the standard deviation of the rescaled mean is approximately 5.

2.A.1 Consistency

We first define some additional notation, following that used in [77]. Let l∞(F) be the set of
all uniformly bounded real functions on F , and let BL1(l∞(F)) denote the set of all functions
h : l∞(F) → [0, 1] such that |h(z1) − h(z2)| ≤ ‖z1 − z2‖F ,∀z1, z2 ∈ l∞(F), where ‖ · ‖F is
the uniform norm for maps from F to R. We define Pf to be the expectation of f(X) when
X ∼ P ; as suggested by this notation, throughout this section we will view distributions
such as P , Pn, and P(j)

n,b as maps from some function class F to R. E(·)∗ and E(·)∗ denote
the outer and inner expectation of (·), respectively, and we indicate outer probability via

P ∗. X
d
= Y denotes that the random variables X and Y are equal in distribution, and Fδ is

defined as the set {f − g : f, g ∈ F , ρP (f − g) < δ}, where ρP (·) is the variance semimetric:

ρP (f) = (P (f − Pf)2)
1/2

.
Following prior analyses of the bootstrap [36, 77], we first observe that, conditioning on

P(j)
n,b for any j as b, n→∞, resamples from the subsampled empirical distribution P(j)

n,b behave
asymptotically as though they were drawn directly from P , the true underlying distribution:

Lemma 1. Given P(j)
n,b for any j, let X∗1 , . . . , X

∗
n ∼ P(j)

n,b i.i.d., and define P∗n,b = n−1
∑n

i=1 δX∗i .

Additionally, we define the resampled empirical process G∗n,b =
√
n(P∗n,b−P(j)

n,b). Then, for F
a Donsker class of measurable functions such that Fδ is measurable for every δ > 0,

sup
h∈BL1(l∞(F))

∣∣∣EP(j)
n,b
h(G∗n,b)− Eh(GP)

∣∣∣ P ∗→ 0,

as n → ∞, for any sequence b → ∞, where EP(j)
n,b

denotes expectation conditional on the

contents of the subscript and GP is a P -Brownian bridge process. “Furthermore, the sequence
EP(j)

n,b
h(G∗n,b)∗ − EP(j)

n,b
h(G∗n,b)∗ converges to zero in probability for every h ∈ BL1(l∞(F)). If

P ∗‖f − Pf‖2
F <∞, then the convergence is also outer almost surely.” [77]

Proof. Note that P(j)
n,b

d
= Pb. Hence, applying Theorem 3.6.3 in [77] with the identification

(n, kn)↔ (b, n) yields the desired result.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 28

Lemma 1 states that, conditionally on the sequence P(j)
n,b, the sequence of processes G∗n,b

converges in distribution to the P -Brownian bridge process GP , in probability. Noting that
the empirical process Gn =

√
n(Pn−P) also converges in distribution to GP (recall that F is

a Donsker class by assumption), it follows that size n resamples generated from P(j)
n,b behave

asymptotically as though they were drawn directly from P . Under standard assumptions, it

then follows that ξ(Qn(P(j)
n,b))− ξ(Qn(P))

P→ 0:

Lemma 2. Under the assumptions of Theorem 1, for any j,

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

P→ 0

as n→∞, for any sequence b→∞.

Proof. Let R be the random element to which
√
n(φ(Pn)− φ(P)) converges in distribution;

note that the functional delta method [76] provides the form of R in terms of φ and P . The
delta method for the bootstrap (see Theorem 23.9 in [76]) in conjunction with Lemma 1

implies that, under our assumptions,
√
n(φ(P∗n,b) − φ(P(j)

n,b)) also converges conditionally in

distribution to R, given P(j)
n,b, in probability. Thus, the distribution of

√
n(φ(Pn) − φ(P))

and the distribution of
√
n(φ(P∗n,b)−φ(P(j)

n,b)), the latter conditionally on P(j)
n,b, have the same

asymptotic limit in probability. As a result, given the assumed continuity of ξ, it follows
that ξ(Qn(P(j)

n,b)) and ξ(Qn(P)) have the same asymptotic limit, in probability.

The above lemma indicates that each individual ξ(Qn(P(j)
n,b)) is asymptotically consistent

as b, n→∞. Theorem 1 immediately follows:

Proof of Theorem 1. Lemma 2 in conjunction with the continuous mapping theorem [76]
implies the desired result.

2.A.2 Higher-Order Correctness

We first prove two supporting lemmas.

Lemma 3. Assume that X1, . . . , Xb ∼ P are i.i.d., and let p̂k(X1, . . . , Xb) be the sam-
ple version of pk based on X1, . . . , Xb, as defined in Theorem 2. Then, assuming that
E[p̂k(X1, . . . , Xb)

2] <∞,

Var(p̂k(X1, . . . , Xb)− pk) = Var(p̂k(X1, . . . , Xb)) = O(1/b).

Proof. By definition, the p̂k are simply polynomials in sample moments. Thus, we can write

p̂k = p̂k(X1, . . . , Xb) =
B∑
β=1

cβ

Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)
, (2.6)

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 29

where each g
(β)
α raises its argument to some power. Now, observe that for any β,

Vβ =

Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)

is a V-statistic of order Aβ applied to the b observations X1, . . . , Xb. Let hβ(x1, . . . , xAβ)

denote the kernel of this V-statistic, which is a symmetrized version of
∏Aβ

α=1 g
(β)
α (xα). It

follows that p̂k =
∑B

β=1 cβVβ is itself a V-statistic of order A = maxβ Aβ with kernel

h(x1, . . . , xA) =
∑B

β=1 cβhβ(x1, . . . , xAβ), applied to the b observations X1, . . . , Xb. Let U
denote the corresponding U-statistic having kernel h. Then, using Proposition 3.5(ii) and
Corollary 3.2(i) in [70], we have

Var(p̂k − pk) = Var(p̂k) = Var(U) +O(b−2) ≤ A

b
Var(h(X1, . . . , XA)) +O(b−2) = O(1/b).

Lemma 4. Assume that X1, . . . , Xb ∼ P are i.i.d., and let p̂k(X1, . . . , Xb) be the sam-
ple version of pk based on X1, . . . , Xb, as defined in Theorem 2. Then, assuming that
E|p̂k(X1, . . . , Xb)| <∞,

|E[p̂k(X1, . . . , Xb)]− pk| = O(1/b).

Proof. As noted in the proof of Lemma 3, we can write

p̂k(X1, . . . , Xb) =
B∑
β=1

cβ

Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)
,

where each g
(β)
α raises its argument to some power. Similarly,

pk =
B∑
β=1

cβ

Aβ∏
α=1

Eg(β)
α (X1),

and so

|E[p̂k(X1, . . . , Xb)]− pk| =

∣∣∣∣∣∣
B∑
β=1

cβ

Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)
−

B∑
β=1

cβ

Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣
≤

B∑
β=1

|cβ| ·

∣∣∣∣∣∣E
 Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)− Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣ .

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 30

Given that the number of terms in the outer sum on the right-hand side is constant with
respect to b, to prove the desired result it is sufficient to show that, for any β,

∆β =

∣∣∣∣∣∣E
 Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)− Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣ = O

(
1

b

)
.

Observe that

E

 Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

) = b−AβE

 b∑
i1,...,iAβ=1

Aβ∏
α=1

g(β)
α (Xiα)

 . (2.7)

If i1, . . . , iAβ are all distinct, then E
∏Aβ

α=1 g
(β)
α (Xiα) =

∏Aβ
α=1 Eg

(β)
α (X1) because X1, . . . , Xb

are i.i.d.. Additionally, the right-hand summation in (2.7) has b!/(b − Aβ)! terms in which
i1, . . . , iAβ are all distinct; correspondingly, there are bAβ − b!/(b − Aβ)! terms in which
∃α, α′ s.t. iα = iα′ . Therefore, it follows that

E

 Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

) = b−Aβ

 b!

(b− Aβ)!

Aβ∏
α=1

Eg(β)
α (X1) +

∑
1≤i1,...,iAβ≤b
∃α,α′ s.t. iα=iα′

E

Aβ∏
α=1

g(β)
α (Xiα)

and

∆β =

∣∣∣∣∣∣E
 Aβ∏
α=1

(
b−1

b∑
i=1

g(β)
α (Xi)

)− Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣
= b−Aβ

∣∣∣∣∣∣∣∣∣
(

b!

(b− Aβ)!
− bAβ

) Aβ∏
α=1

Eg(β)
α (X1) +

∑
1≤i1,...,iAβ≤b
∃α,α′ s.t. iα=iα′

E

Aβ∏
α=1

g(β)
α (Xiα)

∣∣∣∣∣∣∣∣∣
≤ b−Aβ

∣∣∣∣ b!

(b− Aβ)!
− bAβ

∣∣∣∣ ·
∣∣∣∣∣∣
Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣ + b−Aβ
∣∣∣∣bAβ − b!

(b− Aβ)!

∣∣∣∣C, (2.8)

where

C = max
1≤i1,...,iAβ≤b
∃α,α′ s.t. iα=iα′

∣∣∣∣∣∣E
Aβ∏
α=1

g(β)
α (Xiα)

∣∣∣∣∣∣ .
Note that C is a constant with respect to b. Also, simple algebraic manipulation shows that

b!

(b− Aβ)!
= bAβ − κbAβ−1 +O(bAβ−2)

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 31

for some κ > 0. Thus, plugging into equation (2.8), we obtain the desired result:

∆β ≤ b−Aβ
∣∣κbAβ−1 +O(bAβ−2)

∣∣ ·
∣∣∣∣∣∣
Aβ∏
α=1

Eg(β)
α (X1)

∣∣∣∣∣∣+ b−Aβ
∣∣κbAβ−1 +O(bAβ−2)

∣∣C = O

(
1

b

)
.

We now provide full proofs of Theorem 2, Remark 1, and Theorem 3.

Proof of Theorem 2. Summing the expansion (2.3) over j, we have

s−1

s∑
j=1

ξ(Qn(P(j)
n,b)) = z + n−1/2s−1

s∑
j=1

p̂
(j)
1 + n−1s−1

s∑
j=1

p̂
(j)
2 + oP

(
1

n

)
.

Subtracting the corresponding expansion (2.2) for ξ(Qn(P)), we then obtain∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ ≤ n−1/2

∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
1 − p1

∣∣∣∣∣+n−1

∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
2 − p2

∣∣∣∣∣+oP
(

1

n

)
.

(2.9)
We now further analyze the first two terms on the right-hand side of the above expression;
for the remainder of this proof, we assume that k ∈ {1, 2}. Observe that, for fixed k, the

p̂
(j)
k are conditionally i.i.d. given X1, . . . , Xn for all j, and so

Var

(
s−1

s∑
j=1

(
[p̂

(j)
k − pk]− E[p̂

(1)
k − pk|Pn]

)∣∣∣∣∣Pn
)

=
Var(p̂

(1)
k − pk|Pn)

s
,

where we denote by E[p̂
(1)
k − pk|Pn] and Var(p̂

(1)
k − pk|Pn) the expectation and variance

of p̂
(1)
k − pk over realizations of P(1)

n,b conditionally on X1, . . . , Xn. Now, given that p̂
(j)
k is a

permutation-symmetric function of size b subsets of X1, . . . , Xn, E[p̂
(1)
k −pk|Pn] is a U-statistic

of order b. Hence, we can apply Corollary 3.2(i) in [70] in conjunction with Lemma 3 to find
that

Var
(
E[p̂

(1)
k − pk|Pn]− E[p̂

(1)
k − pk]

)
= Var

(
E[p̂

(1)
k − pk|Pn]

)
≤ b

n
Var(p̂

(1)
k − pk) = O

(
1

n

)
.

From the result of Lemma 4, we have

|E[p̂
(1)
k − pk]| = O

(
1

b

)
.

Combining the expressions in the previous three panels, we find that∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
k − pk

∣∣∣∣∣ = OP

√

Var(p̂
(1)
k − pk|Pn)
√
s

+OP

(
1√
n

)
+O

(
1

b

)
.

Finally, plugging into equation (2.9) with k = 1 and k = 2, we obtain the desired result.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 32

Proof of Remark 1. Observe that

Var(p̂
(1)
k − pk|Pn) ≤ E[(p̂

(1)
k − pk)

2|Pn] = E[(p̂
(1)
k − pk)

2|Pn]−E[(p̂
(1)
k − pk)

2] +E[(p̂
(1)
k − pk)

2].

Given that p̂
(1)
k is a polynomial in the moments of P(1)

n,b, q̂
(1)
k = (p̂

(1)
k −pk)2 is also a polynomial

in the moments of P(1)
n,b. Hence, Lemma 3 applies to q̂

(1)
k . Additionally, q̂

(1)
k is a permutation-

symmetric function of size b subsets of X1, . . . , Xn, and so E[q̂
(1)
k |Pn] is a U-statistic of order

b. Therefore, applying Corollary 3.2(i) in [70] in conjunction with Lemma 3, we find that

Var
(
E[(p̂

(1)
k − pk)

2|Pn]− E[(p̂
(1)
k − pk)

2]
)

= Var
(
E[q̂

(1)
k |Pn]

)
≤ b

n
Var(q̂

(1)
k) = O

(
1

n

)
.

Now,
E[(p̂

(1)
k − pk)

2] = Var(p̂
(1)
k − pk) + E[p̂

(1)
k − pk]

2.

By Lemmas 3 and 4, Var(p̂
(1)
k − pk) = O(1/b) and E[p̂

(1)
k − pk]2 = O(1/b2). Combining with

the expressions in the previous three panels, we obtain the desired result:

Var(p̂
(1)
k − pk|Pn) = OP

(
1√
n

)
+O

(
1

b

)
+O

(
1

b2

)
= OP

(
1√
n

)
+O

(
1

b

)
.

Proof of Theorem 3. As noted in the proof of Theorem 2,∣∣∣∣∣s−1

s∑
j=1

ξ(Qn(P(j)
n,b))− ξ(Qn(P))

∣∣∣∣∣ ≤ n−1/2

∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
1 − p1

∣∣∣∣∣+n−1

∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
2 − p2

∣∣∣∣∣+oP
(

1

n

)
.

(2.10)
Throughout this proof, we assume that k ∈ {1, 2}. Under the assumptions of this theorem,

the P(j)
n,b are based on disjoint subsets of the n observations and so are i.i.d.. Hence, for any

k, the p̂
(j)
k are i.i.d. for all j, and so using Lemma 3,

Var

([
s−1

s∑
j=1

p̂
(j)
k − pk

]
− E[p̂

(1)
k − pk]

)
=

Var(p̂
(1)
k − pk)
s

= O

(
1

bs

)
.

Additionally, from the result of Lemma 4, we have

|E[p̂
(1)
k − pk]| = O

(
1

b

)
.

Combining the expressions in the previous two panels, we find that∣∣∣∣∣s−1

s∑
j=1

p̂
(j)
k − pk

∣∣∣∣∣ = OP

(
1√
bs

)
+O

(
1

b

)
.

Finally, plugging into equation (2.10) with k = 1 and k = 2, we obtain the desired result.

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 33

2.B Appendix: Additional Real Data Results

0 50 100 150 200 250
0

1

2

3

4

5

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 50 100 150 200 250
0

1

2

3

4

5

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.7: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI ct-slice dataset (linear regression, d = 385, n = 53, 500). The left plot shows
results for BLB (using adaptive hyperparameter selection, with the output at convergence
marked by large squares) and the bootstrap (BOOT). The right plot shows results for the b
out of n bootstrap (BOFN).

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.8: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI magic dataset (logistic regression, d = 10, n = 19, 020). The left plot shows
results for BLB (using adaptive hyperparameter selection, with the output at convergence
marked by large squares) and the bootstrap (BOOT). The right plot shows results for the b
out of n bootstrap (BOFN).

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 34

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.9: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI millionsong dataset (linear regression, d = 90, n = 50, 000). The left
plot shows results for BLB (using adaptive hyperparameter selection, with the output at
convergence marked by large squares) and the bootstrap (BOOT). The right plot shows
results for the b out of n bootstrap (BOFN).

0 0.5 1 1.5
0

100

200

300

400

500

600

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 0.5 1 1.5
0

100

200

300

400

500

600

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.10: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI parkinsons dataset (linear regression, d = 16, n = 5, 875). The left plot
shows results for BLB (using adaptive hyperparameter selection, with the output at conver-
gence marked by large squares) and the bootstrap (BOOT). The right plot shows results for
the b out of n bootstrap (BOFN).

CHAPTER 2. A SCALABLE BOOTSTRAP FOR MASSIVE DATA 35

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.11: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI poker dataset (logistic regression, d = 10, n = 50, 000). The left plot shows
results for BLB (using adaptive hyperparameter selection, with the output at convergence
marked by large squares) and the bootstrap (BOOT). The right plot shows results for the b
out of n bootstrap (BOFN).

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BLB−0.6
BLB−0.7
BLB−0.8
BLB−0.9
BOOT

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

A
bs

ol
ut

e
C

I W
id

th

Time (sec)

BOFN−0.6
BOFN−0.7
BOFN−0.8
BOFN−0.9
BOOT

Figure 2.12: Average (across dimensions) absolute confidence interval width vs. processing
time on the UCI shuttle dataset (logistic regression, d = 9, n = 43, 500). The left plot shows
results for BLB (using adaptive hyperparameter selection, with the output at convergence
marked by large squares) and the bootstrap (BOOT). The right plot shows results for the b
out of n bootstrap (BOFN).

36

Chapter 3

A General Bootstrap Performance
Diagnostic

3.1 Introduction

Modern datasets are growing rapidly in size and are increasingly subjected to diverse, rapidly
evolving sets of complex and exploratory queries, often crafted by non-statisticians. These
developments render generic applicability and automation of data analysis methodology par-
ticularly desirable, both to allow the statistician to work more efficiently and to allow the
non-statistician to correctly and effectively utilize more sophisticated inferential techniques.
For example, the development of generic techniques for training classifiers and evaluating
their generalization ability has allowed this methodology to spread well beyond the bound-
aries of the machine learning and statistics research community, to great practical benefit.
More generally, estimation techniques for a variety of settings have been rendered generically
usable. However, except in some restricted settings, the fundamental inferential problem of
assessing the quality of estimates based upon finite data has eluded a highly automated
solution.

Assessment of an estimate’s quality—for example, its variability (e.g., in the form of
a confidence region), its bias, or its risk—is essential to both its interpretation and use.
Indeed, such quality assessments underlie a variety of core statistical tasks, such as calibrated
inference regarding parameter values, bias correction, and hypothesis testing. Beyond simply
enabling other statistical methodology, however, estimator quality assessments can also have
more direct utility, whether by improving human interpretation of inferential outputs or by
allowing more efficient management of data collection and processing resources. For instance,
we might seek to collect or process only as much data as is required to yield estimates of some
desired quality, thereby avoiding the cost (e.g., in time or money) of collecting or processing
more data than is necessary. Such an approach in fact constitutes an active line of work
in research on large database systems, which seeks to answer queries on massive datasets
quickly by only applying them to subsamples of the total available data [2, 52]. The result of

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 37

applying a query to only a subsample is in fact an estimate of the query’s output if applied
to the full dataset, and effective implementation of a system using this technique requires
an automatic ability to accurately assess the quality of such estimates for generic queries.

In recent decades, the bootstrap [30, 33] has emerged as a powerful and widely used
means of assessing estimator quality, with its popularity due in no small part to its relatively
generic applicability. Unlike classical methods—which have generally relied upon analytic
asymptotic approximations requiring deep analysis of specific classes of estimators in specific
settings [67]—the bootstrap can be straightforwardly applied, via a simple computational
mechanism, to a broad range of estimators. Since its inception, theoretical work has shown
that the bootstrap is broadly consistent [8, 36, 77] and can be higher-order correct [44].
As a result, the bootstrap (and its various relatives and extensions) provides perhaps the
most promising avenue for obtaining a generically applicable, automated estimator quality
assessment capability.

Unfortunately, however, while the bootstrap is relatively automatic in comparison to its
classical predecessors, it remains far from being truly automatically usable, as evaluating
and ensuring its accuracy is often a challenge even for experts in the methodology. Indeed,
like any inferential procedure, despite its excellent theoretical properties and frequently ex-
cellent empirical performance, the bootstrap is not infallible. For example, it may fail to
be consistent in particular settings (i.e., for particular pairs of estimators and data generat-
ing distributions) [69, 9]. While theoretical conditions yielding consistency are well known,
they can be non-trivial to verify analytically and provide little useful guidance in the ab-
sence of manual analysis. Furthermore, even if consistent, the bootstrap may exhibit poor
performance on finite samples.

Thus, it would be quite advantageous to have some means of diagnosing poor perfor-
mance or failure of the bootstrap in an automatic, data-driven fashion, without requiring
significant manual analysis. That is, we would like a diagnostic procedure which is analo-
gous to the manner in which we evaluate performance in the setting of supervised learning
(e.g., classification), in which we directly and empirically evaluate generalization error (e.g.,
via a held-out validation set or cross-validation). Unfortunately, prior work on bootstrap
diagnostics (see [19] for a comprehensive survey) does not provide a satisfactory solution, as
existing diagnostic methods target only specific bootstrap failure modes, are often brittle or
difficult to apply, and generally lack substantive empirical evaluations. For example, a the-
oretical result of Beran [6] regarding bootstrap asymptotics has been proposed as the basis
of a diagnostic for bootstrap inconsistency; however, it is unclear how to reliably construct
and interpret the diagnostic plots required by this proposal, and the limited existing empir-
ical evaluation reveals it to be of questionable practical utility [19]. Other work has sought
to diagnose bootstrap failure specifically due to incorrect standardization of the quantity
being bootstrapped (which could occur if an estimator’s convergence rate is unknown or
incorrectly determined), use of an incorrect resampling model (if, for example, the data has
a correlation structure that is not fully known a priori), or violation of an assumption of
pivotality of the quantity being bootstrapped [19]. Additionally, jackknife-after-bootstrap
and bootstrap-after-bootstrap calculations have been proposed as a means of evaluating the

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 38

stability of the bootstrap’s outputs [32, 19]; while such procedures can be useful data analysis
tools, their utility as the basis of a diagnostic remains limited, as, among other things, it is
unclear whether they will behave correctly in settings where the bootstrap is inconsistent.

In contrast to prior work, we present here a general bootstrap performance diagnos-
tic which does not target any particular bootstrap failure mode but rather directly and
automatically determines whether or not the bootstrap is performing satisfactorily (i.e., pro-
viding sufficiently accurate outputs) when applied to a given dataset and estimator. The
key difficulty in evaluating the accuracy of the bootstrap’s (or any estimator quality as-
sessment procedure’s) outputs is the lack of ready availability of even approximate com-
parisons to ground truth estimate quality. While comparisons to ground truth labels are
readily obtained in the case of supervised learning via use of a held-out validation set or
cross-validation, comparing to ground truth in the context of estimator quality assessment
requires access to the (unknown) sampling distribution of the estimator in question. We
surmount this difficulty by constructing a proxy to ground truth for various small sample
sizes (smaller than that of our full observed dataset) and comparing the bootstrap’s outputs
to this proxy, requiring that they converge to the ground truth proxy as the sample size
is increased. This approach is enabled by the increasing availability of large datasets and
more powerful computational resources. We show via an extensive empirical evaluation, on a
variety of estimators and simulated and real data, that the resulting diagnostic is effective in
determining—fully automatically—whether or not the bootstrap is performing satisfactorily
in a given setting.

In Section 3.2, we formalize our statistical setting and notation. We introduce our diag-
nostic in full detail in Section 3.3. Sections 3.4 and 3.5 present the results of our evaluations
on simulated and real data, respectively.

3.2 Setting and Notation

We assume that we observe n data points D = (X1, . . . , Xn) sampled i.i.d. from some un-
known distribution P ; let Pn = n−1

∑n
i=1 δXi be the empirical distribution of the observed

data. Based upon this dataset, we form an estimate θ̂(D) of some parameter θ(P) of P ;
note that, unlike θ(P), θ̂(D) is a random quantity due to its dependence on the data D. We
then seek to form an assessment ξ(P, n) of the quality of the estimate θ̂(D), which consists
of a summary of the distribution Qn of some quantity u(D, P). Our choice of summary and
form for u depends upon our inferential goals and our knowledge of the properties of θ̂. For
instance, ξ(P, n) might compute an interquantile range for u(D, P) = θ̂(D), the expectation
of u(D, P) = θ̂(D)− θ(P) (i.e., the bias), or a confidence interval based on the distribution
of u(D, P) = n1/2(θ̂(D)− θ(P)). Unfortunately, we cannot compute ξ(P, n) directly because
P and Qn are unknown, and so we must resort to estimating ξ(P, n) based upon a single
observed dataset D.

The bootstrap addresses this problem by estimating the unknown ξ(P, n) via the plug-in
approximation ξ(Pn, n). Although computing ξ(Pn, n) exactly is typically intractable, we

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 39

can obtain an accurate approximation using a simple Monte Carlo procedure: repeatedly
form simulated datasets D∗ of size n by sampling n points i.i.d. from Pn, compute u(D∗,Pn)
for each simulated dataset, form the empirical distribution Qn of the computed values of u,
and return the desired summary of this distribution. We overload notation somewhat by
referring to this final bootstrap output as ξ(Qn, n), allowing ξ to take as its first argument
either a data generating distribution or a distribution of u values.

For ease of exposition, we assume below that ξ is real-valued, though the proposed
methodology can be straightforwardly generalized (e.g., to contexts in which ξ produces
elements of a vector space).

3.3 The Diagnostic

We frame the task of evaluating whether or not the bootstrap is performing satisfactorily in a
given setting as a decision problem: for a given estimator, data generating distribution P , and
dataset size n, is the bootstrap’s output sufficiently likely to be sufficiently near the ground
truth value ξ(P, n)? This formulation avoids the difficulty of producing uniformly precise
quantifications of the bootstrap’s accuracy by requiring only that a decision be rendered
based upon some definition of “sufficiently likely” and “sufficiently near the ground truth.”
Nonetheless, in developing a diagnostic procedure to address this decision problem, we face
the key difficulties of determining the distribution of the bootstrap’s outputs on datasets of
size n and of obtaining even an approximation to the ground truth value against which to
evaluate this distribution.

Ideally, we might approximate ξ(P, n) for a given value of n by observing many indepen-
dent datasets, each of size n. For each dataset, we would compute the corresponding value
of u, and the resulting collection of u values would approximate the distribution Qn, which
would in turn yield a direct approximation of the ground truth value ξ(P, n). Furthermore,
we could approximate the distribution of bootstrap outputs by simply running the bootstrap
on each dataset of size n. Unfortunately, however, in practice we only observe a single set
of n data points, rendering this approach an unachievable ideal.

To surmount this difficulty, our diagnostic (Algorithm 3) executes this ideal procedure for
dataset sizes smaller than n. That is, for a given p ∈ N and b ≤ bn/pc, we randomly sample
p disjoint subsets of the observed dataset D, each of size b. For each subset, we compute
the value of u; the resulting collection of u values approximates the distribution Qb, in turn
yielding a direct approximation of ξ(P, b), the ground truth value for the smaller dataset size
b. Additionally, we run the bootstrap on each of the p subsets of size b, and comparing the
distribution of the resulting p bootstrap outputs to our ground truth approximation, we can
determine whether or not the bootstrap performs acceptably well at sample size b.

It then remains to use this ability to evaluate the bootstrap’s performance at smaller
sample sizes to determine whether or not it is performing satisfactorily at the full sample
size n. To that end, we evaluate the bootstrap’s performance at multiple smaller sample
sizes to determine whether or not the distribution of its outputs is in fact converging to the

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 40

Algorithm 3: Bootstrap Performance Diagnostic

Input: D = (X1, . . . , Xn): observed data
ξ: estimator quality assessment
u: quantity whose distribution is summarized by ξ
p: number of disjoint subsamples used to compute ground truth approxima-

tions (e.g., 100)
b1, . . . , bk: increasing sequence of subsample sizes for which ground truth ap-

proximations are computed, with bk ≤ bn/pc (e.g., bi = bn/(p2k−i)c
with k = 3)

c1 ≥ 0: tolerance for decreases in absolute relative deviation of mean bootstrap
output (e.g., 0.2)

c2 ≥ 0: tolerance for decreases in relative standard deviation of bootstrap out-
put (e.g., 0.2)

c3 ≥ 0, α ∈ [0, 1]: desired probability α that bootstrap output at sample size n
has absolute relative deviation from ground truth less than
or equal to c3 (e.g., c3 = 0.5, α = 0.95)

Output: true if bootstrap is deemed to be performing satisfactorily, false otherwise

Pn ← n−1
∑n

i=1 δXi
for i← 1 to k do
Di1, . . . ,Dip ← random disjoint subsets of D, each containing bi data points
for j ← 1 to p do

uij ← u(Dij,Pn)
ξ∗ij ← bootstrap(ξ, u, bi,Dij)

end
// Compute ground truth approximation for sample size bi
Qbi ←

∑p
j=1 δuij

ξ̃i ← ξ(Qbi , bi)
// Compute absolute relative deviation of mean of bootstrap outputs

// and relative standard deviation of bootstrap outputs for sample

// size bi

∆i ←
∣∣∣mean(ξ∗i1,...,ξ

∗
ip)−ξ̃i

ξ̃i

∣∣∣ σi ←
∣∣∣ stddev(ξ∗i1,...,ξ

∗
ip)

ξ̃i

∣∣∣
end
return true if all of the following hold, and false otherwise:

∆i+1 < ∆i OR ∆i+1 ≤ c1, ∀i = 1, . . . , k, (3.1)

σi+1 < σi OR σi+1 ≤ c2, ∀i = 1, . . . , k, (3.2)

#

{
j ∈ 1, . . . , p :

∣∣∣∣ ξ∗kj−ξ̃kξ̃k

∣∣∣∣ ≤ c3

}
p

≥ α (3.3)

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 41

ground truth as the sample size increases, thereby allowing us to generalize our conclusions
regarding performance from smaller to larger sample sizes. Indeed, determining whether
or not the bootstrap is performing satisfactorily for a single smaller sample size b alone is
inadequate for our purposes, as the bootstrap’s performance may degrade as sample size
increases, so that it fails at sample size n despite appearing to perform sufficiently well at
smaller sample size b. Conversely, the bootstrap may exhibit mediocre performance for small
sample sizes but improve as it is applied to more data.

Thus, our diagnostic compares the distribution of bootstrap outputs to the ground truth
approximation for an increasing sequence of sample sizes b1, . . . , bk, with bk ≤ bn/pc; subsam-
ples of each of these sizes are constructed and processed in the outer for loop of Algorithm 3.
In order to conclude that the bootstrap is performing satisfactorily at sample size n, the di-
agnostic requires that the distribution of its outputs converges monotonically to the ground
truth approximation for all of the smaller sample sizes b1, . . . , bk. Convergence is assessed
based on absolute relative deviation of the mean of the bootstrap outputs from the ground
truth approximation (which must decrease with increasing sample size), and size of the stan-
dard deviation of the bootstrap outputs relative to the ground truth approximation (which
must also decrease with increasing sample size). In Algorithm 3, this convergence assess-
ment is performed by conditions (3.1) and (3.2). As a practical matter, these conditions
do not require continuing decreases in the absolute relative mean deviation ∆i or relative
standard deviation σi when these quantities are below some threshold (given by c1 and c2,
respectively) due to inevitable stochastic error in their estimation: when these quantities
are sufficiently small, stochastic error due to the fact that we have only used p subsamples
prevents reliable determination of whether or not decreases are in fact occurring. We have
found that c1 = c2 = 0.2 is a reasonable choice of the relevant thresholds.

Progressive convergence of the bootstrap’s outputs to the ground truth is not alone suf-
ficient, however; although the bootstrap’s performance may be improving as sample size
increases, a particular value of n may not be sufficiently large to yield satisfactory per-
formance. Therefore, beyond the convergence assessment discussed above, we must also
determine whether or not the bootstrap is in fact performing sufficiently well for the user’s
purposes at sample size n. We define “sufficiently well” as meaning that with probability at
least α ∈ [0, 1], the output of the bootstrap when run on a dataset of size n will have abso-
lute relative deviation from ground truth of at most c3 (the absolute relative deviation of a
quantity γ from a quantity γo is defined as |γ−γo|/|γo|); the constants α and c3 are specified
by the user of the diagnostic procedure based on the user’s inferential goals. Because we can
only directly evaluate the bootstrap’s performance at smaller sample sizes (and not at the
full sample size n), we take a conservative approach, motivated by the assumption that a
false positive (incorrectly concluding that the bootstrap is performing satisfactorily) is sub-
stantially less desirable than a false negative. In particular, as embodied in condition (3.3)
of Algorithm 3, we require that the bootstrap is performing sufficiently well under the afore-
mentioned definition at the sample size bk. Satisfying this condition, in conjunction with
satisfying the preceding conditions indicating continuing convergence to the ground truth, is
taken to imply that the bootstrap will continue to perform satisfactorily when applied to the

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 42

full sample size n (in fact, the bootstrap’s performance at sample size n will likely exceed
that implied by α and c3 due to the diagnostic’s conservatism).

It is worth noting that this diagnostic procedure reposes on the availability in modern
data analysis of both substantial quantities of data and substantial computational resources.
For example, with p = 100 (an empirically effective choice), using bk = 1, 000 or bk =
10, 000 requires n ≥ 105 or n ≥ 106, respectively. Fortuitously, datasets of such sizes are
now commonplace. Regarding its computational requirements, our procedure benefits from
the modern shift toward parallel and distributed computing, as the vast majority of the
required computation occurs in the inner for loop of Algorithm 3, the iterations of which are
independent and individually process only small data subsets. Additionally, we have sought
to reduce the procedure’s computational costs by using an identical number of subsamples
p for each subsample size b1, . . . , bk; one could presumably improve statistical performance
by using larger numbers of subsamples for smaller subsample sizes.

The guidelines given in Algorithm 3 for setting the diagnostic procedure’s hyperparame-
ters are motivated by the procedure’s structure and have proven to be empirically effective.
We recommend exponential spacing of the b1, . . . , bk to help ensure that reliable comparisons
of bootstrap performance can be made across adjacent sample sizes bi and bi+1. However,
by construction, setting the b1, . . . , bk to be too close together should primarily cause an
increase in the false negative rate (the probability that the diagnostic incorrectly concludes
that the bootstrap is not performing satisfactorily), rather than a less desirable increase in
the false positive rate. Similarly, setting c1 or c2 to be too low should also primarily result
in an increase in the false negative rate. Regarding c3 and α, these hyperparameters should
be determined by the user’s bootstrap performance desiderata. We nonetheless expect that
fairly lenient settings of c3—such as c3 = 0.5, which corresponds to allowing the bootstrap to
deviate from ground truth by up to 50%—to be reasonable in many cases. This expectation
stems from the fact that the actual or targeted quality of estimators on fairly large datasets
is frequently high, leading to estimator quality assessments, such as interquantile ranges,
which are small in absolute value; in these cases, it follows that a seemingly large relative
error in bootstrap outputs (e.g., 50%) corresponds to a small absolute error.

As we demonstrate via an extensive empirical evaluation on both synthetic and real
data in the following two sections, our proposed bootstrap performance diagnostic is quite
effective, with false positive rates that are generally extremely low or zero and false negative
rates that generally approach zero as the subsample sizes b1, . . . , bk are increased. Of course,
like any inferential procedure, our procedure does have some unavoidable limitations, such as
in cases where the data generating distribution has very fine-grained adverse features which
cannot be reliably observed in datasets of size bk; we discuss these issues further below.

3.4 Simulation Study

We first evaluate the diagnostic’s effectiveness on data generated from a variety of different
synthetic distributions paired with a variety of different estimators. Using simulated data

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 43

here allows direct knowledge of the ground truth value ξ(P, n), and by selecting different
synthetic distributions, we can design settings that pose different challenges to the diagnostic
procedure. For each distribution-estimator pair and sample size n considered, we perform
multiple independent runs of the diagnostic on independently generated datasets of size n to
compute the Diagnostic True Rate (DTR), the probability that the diagnostic outputs true
in that setting. We then evaluate this DTR against the bootstrap’s actual performance on
datasets of size n; because the underlying data generating distributions here are known, we
can also compare to known theoretical expectations of bootstrap consistency.

More precisely, we consider the following data generating distributions: Normal(0,1), Uni-
form(0,10), StudentT(1.5), StudentT(3), Cauchy(0,1), 0.95Normal(0,1) + 0.05Cauchy(0,1),
and 0.99Normal(0,1) + 0.01Cauchy(104,1). In our plots, we denote these distributions using
the following abbreviations: Normal, Uniform, StuT(1.5), StuT(3), Cauchy, Mixture1, and
Mixture2. We also consider the following estimators θ̂ (abbreviations, if any, are given in
parentheses): mean, median (med), variance (var), standard deviation (std), sample max-
imum (max), and 95th percentile (perc). The estimator quality assessment ξ in all ex-
periments computes the interquantile range between the 0.025 and 0.975 quantiles of the
distribution of u(D, P) = θ̂(D). For all runs of the bootstrap, we use between 200 and 500
resamples, with the precise number of resamples determined by the adaptive hyperparameter
selection procedure given in Section 2.5 above. All runs of the diagnostic use the hyperpa-
rameter guidelines given in Algorithm 3: p = 100, k = 3, bi = bn/(p2k−i)c, c1 = 0.2, c2 =
0.2, c3 = 0.5, α = 0.95. We consider sample sizes n = 105 and n = 106.

For each distribution-estimator pair and sample size n, we first compute the ground truth
value ξ(P, n) as the interquantile range of the u values for 5,000 independently generated
datasets of size n. We also approximate the distribution of bootstrap outputs on datasets
of size n by running the bootstrap on 100 independently generated datasets of this size.
Whether or not this distribution of bootstrap outputs satisfies the performance criterion
defined by c3, α—that is, whether or not the α quantile of the absolute relative deviation
of bootstrap outputs from ξ(P, n) is less than or equal to c3—determines the ground truth
conclusion regarding whether or not the bootstrap is performing satisfactorily in a given set-
ting. To actually evaluate the diagnostic’s effectiveness, we then run it on 100 independently
generated datasets of size n and estimate the DTR as the fraction of these datasets for which
the diagnostic returns true. If the ground truth computations deemed the bootstrap to be
performing satisfactorily in a given setting, then the DTR would ideally be 1, and otherwise
it would ideally be 0.

Figure 3.1 presents our results for all distribution-estimator pairs and both sample sizes n
considered. In these plots, dark blue indicates cases in which the ground truth computations
on datasets of size n deemed the bootstrap to be performing satisfactorily and the bootstrap
is expected theoretically to be consistent (i.e., the DTR should ideally be 1); red indicates
cases in which neither of these statements is true (i.e., the DTR should ideally be 0); and light
purple indicates cases in which the ground truth computations on datasets of size n deemed
the bootstrap to be performing satisfactorily but the bootstrap is not expected theoretically
to be consistent (i.e., the DTR should ideally be 1).

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 44

0 0.5 1

Diagnostic True Rate

Mixture2−perc

Mixture2−med

Mixture1−perc

Mixture1−med

Cauchy−perc

Cauchy−med

StuT(3)−perc

StuT(3)−med
StuT(3)−mean

StuT(1.5)−perc

StuT(1.5)−med

Uniform−perc

Uniform−std
Uniform−var

Uniform−med
Uniform−mean

Normal−perc

Normal−std
Normal−var

Normal−med
Normal−mean

Mixture2−std
Mixture2−var

Mixture2−mean

Mixture2−max

Mixture1−max
Mixture1−std
Mixture1−var

Mixture1−mean

Cauchy−max
Cauchy−std
Cauchy−var

Cauchy−mean

StuT(3)−max
StuT(3)−std
StuT(3)−var

StuT(1.5)−max
StuT(1.5)−std
StuT(1.5)−var

StuT(1.5)−mean

Uniform−max

Normal−max

0 0.5 1

Diagnostic True Rate

Mixture2−perc

Mixture2−med

Mixture1−perc

Mixture1−med

Cauchy−perc

Cauchy−med

StuT(3)−perc

StuT(3)−med
StuT(3)−mean

StuT(1.5)−perc

StuT(1.5)−med

Uniform−perc

Uniform−std
Uniform−var

Uniform−med
Uniform−mean

Normal−perc

Normal−std
Normal−var

Normal−med
Normal−mean

Mixture2−mean

Mixture2−max
Mixture2−std
Mixture2−var

Mixture1−max
Mixture1−std
Mixture1−var

Mixture1−mean

Cauchy−max
Cauchy−std
Cauchy−var

Cauchy−mean

StuT(3)−max
StuT(3)−std
StuT(3)−var

StuT(1.5)−max
StuT(1.5)−std
StuT(1.5)−var

StuT(1.5)−mean

Uniform−max

Normal−max

0 50 100 150

95th Percentile ARD (%)

Mixture2−perc

Mixture2−med

Mixture1−perc

Mixture1−med

Cauchy−perc

Cauchy−med

StuT(3)−perc

StuT(3)−med
StuT(3)−mean

StuT(1.5)−perc

StuT(1.5)−med

Uniform−perc

Uniform−std
Uniform−var

Uniform−med
Uniform−mean

Normal−perc

Normal−std
Normal−var

Normal−med
Normal−mean

Mixture2−mean

Mixture2−max
Mixture2−std
Mixture2−var

Mixture1−max
Mixture1−std
Mixture1−var

Mixture1−mean

Cauchy−max
Cauchy−std
Cauchy−var

Cauchy−mean

StuT(3)−max
StuT(3)−std
StuT(3)−var

StuT(1.5)−max
StuT(1.5)−std
StuT(1.5)−var

StuT(1.5)−mean

Uniform−max

Normal−max

Figure 3.1: Diagnostic and bootstrap performance on simulated data. Dark blue indicates
cases where bootstrap is performing satisfactorily on datasets of size n (based on ground
truth computations) and is expected theoretically to be consistent; red indicates cases where
neither of these statements is true; light purple indicates cases where bootstrap is performing
satisfactorily on datasets of size n (based on ground truth computations) but is not expected
theoretically to be consistent. (left and middle) For each distribution-estimator pair,
fraction of 100 independent trials for which the diagnostic outputs true. For the left plot,
n = 105; for the middle plot, n = 106. (right) For each distribution-estimator pair, 95th
percentile of absolute relative deviation of bootstrap output from ground truth, over 100
independent trials on datasets of size n = 106.

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 45

As seen in the lefthand and middle plots (which show DTRs for n = 105 and n = 106,
respectively), our proposed diagnostic performs quite well across a range of data generat-
ing distributions and estimators, and its performance improves as it is provided with more
data. For the smaller sample size n = 105, in the dark blue and light purple cases, the
DTR is generally markedly greater than 0.5; furthermore, when the sample size is increased
to n = 106, the DTRs in all of the dark blue and light purple cases increase to become
uniformly near 1, indicating low false negative rates (i.e., the diagnostic nearly always deems
the bootstrap to be performing satisfactorily when it is indeed performing satisfactorily). In
the red cases, for both sample sizes, the DTR is nearly always zero, indicating that false
positive rates are nearly always zero (i.e., the diagnostic only rarely deems the bootstrap to
be performing satisfactorily when it is in fact not performing satisfactorily). Mixture2-var
and Mixture2-std with n = 106 provide the only exceptions to this result, which is unsurpris-
ing given that Mixture2 was specifically designed to include a small heavy-tailed component
which is problematic for the bootstrap but cannot be reliably detected at the smaller sample
sizes b1, . . . , bk; nonetheless, even in these cases, the righthand plot indicates that the ground
truth computations very nearly deemed the bootstrap to be performing satisfactorily. Inter-
estingly, the bootstrap’s finite sample performance for the settings considered nearly always
agrees with theoretical expectations regarding consistency; disagreement occurs only when
Mixture2 is paired with the estimators mean, var, or std, which is again unsurprising given
the properties of Mixture2.

3.5 Real Data

We also evaluate the diagnostic’s effectiveness on three real datasets obtained from Con-
viva, Inc. [23], which describe different attributes of large numbers of video streams viewed
by Internet users. These datasets are routinely subjected to a variety of different analyses
by practitioners and are the subject of ongoing efforts to improve the computational effi-
ciency of database systems by processing only data subsamples and quantifying the resulting
estimation error [2].

We designate the three (scalar-valued) datasets as follows, with their sizes (i.e., num-
bers of constituent data points) given in parentheses: Conviva1 (30,470,092), Conviva2
(1,111,798,565), and Conviva3 (2,952,651,449). Histograms of the three datasets are given
in Figure 3.2; note that the datasets are heavily skewed and also contain large numbers of
repeated values. Due to privacy considerations, we are unable to provide the precise val-
ues and corresponding frequencies represented in the data, but the histograms nonetheless
convey the shapes of the datasets’ empirical distributions.

To circumvent the fact that ground truth values for individual real datasets cannot be
obtained, we do not directly apply our diagnostic to these three datasets. Rather, we treat
the empirical distribution of each dataset as an underlying data generating distribution which
is used to generate the datasets used in our experiments. With this setup, our experiments on
the real datasets proceed identically to the experiments in Section 3.4 above, but now with

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 46

 Binned Conviva1

 l
og

(c
ou

nt
s)

 Binned Conviva2

 l
og

(c
ou

nt
s)

 Binned Conviva3

 l
og

(c
ou

nt
s)

Figure 3.2: Histograms for the real datasets Conviva1, Conviva2, and Conviva3. Note that
the y axes give frequencies on a log scale.

data sampled from the aforementioned empirical distributions rather than from synthetic
distributions.

Figure 3.3 presents the results of our experiments on the Conviva data. The color scheme
used in these plots is identical to that in Figure 3.1, with the addition of magenta, which
indicates cases in which the ground truth computations on datasets of size n deemed the
bootstrap to not be performing satisfactorily but the bootstrap is expected theoretically to be
consistent (i.e., the DTR should ideally be 0). Given that the data generating distributions
used in these experiments all have finite support, the bootstrap is expected theoretically to
be consistent for all estimators considered except the sample maximum. However, as seen in
the righthand plot of Figure 3.3, the bootstrap’s finite sample performance is often quite poor
even in cases where consistency is expected; in this regard (as well as in other ways), the real
data setting of this section differs substantially from the synthetic data setting considered
in Section 3.4 above.

The lefthand and middle plots of Figure 3.3 demonstrate that our diagnostic procedure
again performs quite well. Indeed, the DTR is again nearly always zero (or is quite small if
positive) in the red and magenta cases, indicating false positive rates that are nearly always
zero. The dark blue cases generally have DTRs markedly greater than 0.5 for n = 105

(lefthand plot), with DTRs in these cases generally increasing to become nearly 1 for n = 106,
indicating low false negative rates; no light purple cases occur for the real data. Beyond these
broad conclusions, it is worth noting that the Conviva2-max, Conviva2-perc, and Conviva3-
med settings exhibit rather surprising behavior relative to our other results, in that the
diagnostic’s performance seems to degrade when the sample size is increased. We believe
that this behavior is related to the particularly high redundancy (i.e., degree of repetition of
values) in Conviva2 and Conviva3, and it will be the subject of future work.

CHAPTER 3. A GENERAL BOOTSTRAP PERFORMANCE DIAGNOSTIC 47

0 0.5 1

Diagnostic True Rate

Conviva3−perc

Conviva3−med

Conviva2−std
Conviva2−var

Conviva2−med
Conviva2−mean

Conviva1−perc

Conviva1−med
Conviva1−mean

Conviva3−std
Conviva3−var

Conviva3−mean
Conviva2−perc

Conviva1−std
Conviva1−var

Conviva3−max

Conviva2−max

Conviva1−max

0 0.5 1

Diagnostic True Rate

Conviva3−perc

Conviva3−med

Conviva2−perc

Conviva2−std
Conviva2−var

Conviva2−med
Conviva2−mean

Conviva1−perc

Conviva1−med
Conviva1−mean

Conviva3−std
Conviva3−var

Conviva3−mean

Conviva1−std
Conviva1−var

Conviva3−max

Conviva2−max

Conviva1−max

0 100 200

95th Percentile ARD (%)

Conviva3−perc

Conviva3−med

Conviva2−perc

Conviva2−std
Conviva2−var

Conviva2−med
Conviva2−mean

Conviva1−perc

Conviva1−med
Conviva1−mean

Conviva3−std
Conviva3−var

Conviva3−mean

Conviva1−std
Conviva1−var

Conviva3−max

Conviva2−max

Conviva1−max

Figure 3.3: Diagnostic and bootstrap performance on real data. Color scheme is identical to
that in Figure 3.1, with the addition of magenta indicating cases where the bootstrap is not
performing satisfactorily on datasets of size n (based on ground truth computations) but is
expected theoretically to be consistent. (left and middle) For each distribution-estimator
pair, fraction of 100 independent trials for which the diagnostic outputs true. For the left
plot, n = 105; for the middle plot, n = 106. (right) For each distribution-estimator pair,
95th percentile of absolute relative deviation of bootstrap output from ground truth, over
100 independent trials on datasets of size n = 106.

48

Chapter 4

Random Conic Pursuit for
Semidefinite Programming

4.1 Introduction

Many difficult problems have been shown to admit elegant and tractably computable repre-
sentations via optimization over the set of positive semidefinite (PSD) matrices. As a result,
semidefinite programs (SDPs) have appeared as the basis for many procedures in machine
learning and statistics, such as sparse PCA [25], distance metric learning [80], nonlinear di-
mensionality reduction [78], multiple kernel learning [51], multitask learning [64], and matrix
completion [15].

While SDPs can be solved in polynomial time, they remain computationally challeng-
ing. General-purpose solvers, often based on interior point methods, do exist and readily
provide high-accuracy solutions. However, their memory requirements do not scale well
with problem size, and they typically do not allow a fine-grained tradeoff between opti-
mization accuracy and speed, which is often a desirable tradeoff in machine learning and
statistical problems that are based on random data. Furthermore, SDPs in machine learning
and statistics frequently arise as convex relaxations of problems that are originally com-
putationally intractable, in which case even an exact solution to the SDP yields only an
approximate solution to the original problem, and an approximate SDP solution can once
again be quite useful. Although some SDPs do admit tailored solvers which are fast and
scalable (e.g., [59, 17, 24]), deriving and implementing these methods is often challenging,
and an easily usable solver that alleviates these issues has been elusive. This is partly the
case because generic first-order methods do not apply readily to general SDPs.

In this work, we present Random Conic Pursuit, a randomized solver for general SDPs
that is simple, easily implemented, scalable, and of inherent interest due to its novel con-
struction. We consider general SDPs over Rd×d of the form

min
X�0

f(X) s.t. gj(X) ≤ 0, j = 1 . . . k, (4.1)

CHAPTER 4. RANDOM CONIC PURSUIT 49

where f and the gj are convex real-valued functions, and � denotes the ordering induced
by the PSD cone. Random Conic Pursuit minimizes the objective function iteratively, re-
peatedly randomly sampling a PSD matrix and optimizing over the random two-dimensional
subcone given by this matrix and the current iterate. This construction maintains feasibility
while avoiding the computational expense of deterministically finding feasible directions or
of projecting into the feasible set. Furthermore, each iteration is computationally inexpen-
sive, though in exchange we generally require a relatively large number of iterations. In
this regard, Random Conic Pursuit is similar in spirit to algorithms such as online gradient
descent and sequential minimal optimization [65] which have illustrated that in the machine
learning setting, algorithms that take a large number of simple, inexpensive steps can be
surprisingly successful.

The resulting algorithm, despite its simplicity and randomized nature, converges fairly
quickly to useful approximate solutions. Unlike interior point methods, Random Conic
Pursuit does not excel in producing highly exact solutions. However, it is more scalable
and provides the ability to trade off computation for more approximate solutions. In what
follows, we present our algorithm in full detail and demonstrate its empirical behavior and
efficacy on various SDPs that arise in machine learning; we also provide analytical results
that yield insight into its behavior and convergence properties.

4.2 Random Conic Pursuit

Random Conic Pursuit (Algorithm 4) solves SDPs of the general form (4.1) via a sequence of
simple two-variable optimizations (4.2). At each iteration, the algorithm considers the two-
dimensional cone spanned by the current iterate, Xt, and a random rank one PSD matrix,
Yt. It selects as its next iterate, Xt+1, the point in this cone that minimizes the objective f
subject to the constraints gj(Xt+1) ≤ 0 in (4.1). The distribution of the random matrices
is periodically updated based on the current iterate (e.g., to match the current iterate in
expectation); these updates yield random matrices that are better matched to the optimum
of the SDP at hand.

The two-variable optimization (4.2) can be solved quickly in general via a two-dimensional
bisection search. As a further speedup, for many of the problems that we considered, the two-
variable optimization can be altogether short-circuited with a simple check that determines
whether the solution Xt+1 =Xt, with β̂= 1 and α̂= 0, is optimal. Additionally, SDPs with
a trace constraint trX = 1 force α + β = 1 and therefore require only a one-dimensional
optimization.

Random Conic Pursuit can also readily benefit from the use of parallel and distributed
computational resources (though our experiments below are all performed in the serial single-
processor setting). In particular, during each iteration, we can use multiple processors to
simultaneously draw multiple different instantiations of Yt and select that which yields the
greatest decrease in the objective function; this approach can potentially yield substantial
benefits, particularly during later iterations in which finding feasible descent directions is

CHAPTER 4. RANDOM CONIC PURSUIT 50

Algorithm 4: Random Conic Pursuit
[brackets contain a particular, generally effective, sampling scheme]

Input: A problem of the form (4.1)
X0: a feasible initial iterate

n ∈ N: number of iterations
[κ ∈ (0, 1): numerical stability parameter]

Output: An approximate solution Xn to (4.1)

p← a distribution over Rd [p← N (0,Σ) with Σ = (1− κ)X0 + κId]
for t← 1 to n do

Sample xt from p and set Yt ← xtx
′
t

Set α̂, β̂ to the optimizer of

min
α,β∈R

f(αYt + βXt−1)

s.t. gj(αYt + βXt−1) ≤ 0, j = 1 . . . k

α, β ≥ 0

(4.2)

Set Xt ← α̂Yt + β̂Xt−1

if α̂ > 0 then Update p based on Xt [p← N (0,Σ) with Σ = (1− κ)Xt + κId]
end
return Xn

more difficult so that often α̂ = 0. Furthermore, optimization of (4.2), including the under-
lying basic matrix operations (which are usually simple operations such as matrix additions
or inner products rather than more complicated operations such as inversions), can often be
straightforwardly parallelized.

Two simple guarantees for Random Conic Pursuit are immediate. First, its iterates are
feasible for (4.1) because each iterate is a positive sum of two PSD matrices, and because
the constraints gj of (4.2) are also those of (4.1). Second, the objective values decrease
monotonically because β = 1, α = 0 is a feasible solution to (4.2). We must also note two
limitations of Random Conic Pursuit: it does not admit general equality constraints, and it
requires a feasible starting point. Nonetheless, for many of the SDPs that appear in machine
learning and statistics, feasible points are easy to identify, and equality constraints are either
absent or fortuitously pose no difficulty.

We can gain further intuition by observing that Random Conic Pursuit’s iterates, Xt,
are positive weighted sums of random rank one matrices and so lie in the random polyhedral
cones

Fxt :=

{
t∑
i=1

γixtx
′
t : γi ≥ 0

}
⊂ {X : X � 0}. (4.3)

Thus, Random Conic Pursuit optimizes the SDP (4.1) by greedily optimizing f with respect
to the gj constraints within an expanding sequence of random cones {Fxt }. These cones yield
successively better inner approximations of the PSD cone (a basis for which is the set of all

CHAPTER 4. RANDOM CONIC PURSUIT 51

rank one matrices) while allowing us to easily ensure that the iterates remain PSD.
In light of this discussion, one might consider approximating the original SDP by sam-

pling a random cone Fxn in one shot and replacing the constraint X � 0 in (4.1) with the
simpler linear constraints X ∈ Fxn . For sufficiently large n, Fxn would approximate the PSD
cone well (see Theorem 5 below), yielding an inner approximation that upper bounds the
original SDP; the resulting problem would be easier than the original (e.g., it would become
a linear program if the gj were linear). However, we have found empirically that a very
large n is required to obtain good approximations, thus negating any potential performance
improvements (e.g., over interior point methods). Random Conic Pursuit successfully re-
solves this issue by iteratively expanding the random cone Fxt . As a result, we are able to
much more efficiently access large values of n, though we compute a greedy solution within
Fxn rather than a global optimum over the entire cone. This tradeoff is ultimately quite
advantageous.

4.3 Applications and Experiments

We assess the practical convergence and scaling properties of Random Conic Pursuit by ap-
plying it to three different machine learning and statistical tasks that rely on SDPs: distance
metric learning, sparse PCA, and maximum variance unfolding. For each, we compare the
performance of Random Conic Pursuit (implemented in MATLAB) to that of a standard
and widely used interior point solver, SeDuMi [71] (via cvx [40]), and to the best available
solver which has been customized for each problem.

To evaluate convergence, we first compute a ground-truth solution X∗ for each problem
instance by running the interior point solver with extremely low tolerance. Then, for each
algorithm, we plot the normalized objective value errors [f(Xt) − f(X∗)]/|f(X∗)| of its
iteratesXt as a function of the amount of time required to generate each iterate. Additionally,
for each problem, we plot the value of an application-specific metric for each iterate. These
metrics provide a measure of the practical implications of obtaining SDP solutions which are
suboptimal to varying degrees. We evaluate scaling with problem dimensionality by running
the various solvers on problems of different dimensionalities and computing various metrics
on the solver runs as described below for each experiment. Unless otherwise noted, we use
the bracketed sampling scheme given in Algorithm 4 with κ = 10−4 for all runs of Random
Conic Pursuit.

4.3.1 Metric Learning

Given a set of datapoints in Rd and a pairwise similarity relation over them, metric learning
extracts a Mahalanobis distance dA(x, y) =

√
(x− y)′A(x− y) under which similar points

are nearby and dissimilar points are far apart [80]. Let S be the set of similar pairs of
datapoints, and let S̄ be its complement. The metric learning SDP, for A ∈ Rd×d and

CHAPTER 4. RANDOM CONIC PURSUIT 52

C =
∑

(i,j)∈S(xi − xj)(xi − xj)′, is

min
A�0

tr(CA) s.t.
∑

(i,j)∈S̄

dA(xi, xj) ≥ 1. (4.4)

To apply Random Conic Pursuit, X0 is set to a feasible scaled identity matrix. We solve
the two-variable optimization (4.2) via a double bisection search: at each iteration, α is
optimized out with a one-variable bisection search over α given fixed β, yielding a function
of β only. This resulting function is itself then optimized using a bisection search over β.

As the application-specific metric for this problem, we measure the extent to which the
metric learning goal has been achieved: similar datapoints should be near each other, and
dissimilar datapoints should be farther away. We adopt the following metric of quality of a
solution matrix X, where ζ =

∑
i |{j : (i, j) ∈ S}| · |{l : (i, l) ∈ S̄}| and 1[·] is the indicator

function: Q(X) = 1
ζ

∑
i

∑
j:(i,j)∈S

∑
l:(i,l)∈S̄ 1[dij(X) < dil(X)].

To examine convergence behavior, we first apply the metric learning SDP to the UCI
ionosphere dataset, which has d = 34 and 351 datapoints with two distinct labels (S contains
pairs with identical labels). We selected this dataset from among those used in [80] because
it is among the datasets which have the largest dimensionality and experience the greatest
impact from metric learning in that work’s clustering application. Because the interior point
solver scales prohibitively badly in the number of datapoints, we subsampled the dataset to
yield 4× 34 = 136 datapoints.

To evaluate scaling, we use synthetic data in order to allow variation of d. To generate
a d-dimensional data set, we first generate mixture centers by applying a random rotation
to the elements of C1 = {(−1, 1), (−1,−1)} and C2 = {(1, 1), (1,−1)}. We then sample
each datapoint xi ∈ Rd from N (0, Id) and assign it uniformly at random to one of two
clusters. Finally, we set the first two components of xi to a random element of Ck if xi was
assigned to cluster k ∈ {1, 2}; these two components are perturbed by adding a sample from
N (0, 0.25I2).

The best known customized solver for the metric learning SDP is a projected gradient
algorithm [80], for which we used code available from the author’s website.

Figure 4.1 shows the results of our experiments on an ionosphere data problem instance.
The two trajectory plots show that Random Conic Pursuit converges to a very high-quality
solution (with high Q and negligible objective value error) significantly faster than interior
point. Additionally, our performance is comparable to that of the projected gradient method
which has been customized for this task. Table 4.1 illustrates scaling for increasing d. In-
terior point scales badly in part because parsing the SDP becomes impracticably slow for d
significantly larger than 100. Nonetheless, Random Conic Pursuit scales well beyond that
point, continuing to return solutions with high Q in reasonable time. On this synthetic data,
projected gradient appears to reach high Q somewhat more quickly, though Random Conic
Pursuit consistently yields significantly better objective values, indicating better-quality so-
lutions.

CHAPTER 4. RANDOM CONIC PURSUIT 53

0 734 1468 2202 2936
0

0.02

0.04

0.06

0.08

0.1

time (sec)

n
o

rm
a

liz
e

d
 o

b
je

c
ti
v
e

 v
a

lu
e

 e
rr

o
r

Interior Point

Random Pursuit

Projected Gradient

0 734 1468 2202 2936
0.4

0.6

0.8

1

time (sec)

p
a

ir
w

is
e

 d
is

ta
n

c
e

 q
u

a
lit

y
 (

Q
)

Interior Point
Random Pursuit
Projected Gradient

Figure 4.1: Results for metric learning on UCI ionosphere data: trajectories of objective
value error (left) and Q (right).

d alg f after 2 hrs∗ time to Q > 0.99

100 IP 3.7e-9 636.3
100 RCP 2.8e-7, 3.0e-7 142.7, 148.4
100 PG 1.1e-5 42.3

200 RCP 5.1e-8, 6.1e-8 529.1, 714.8
200 PG 1.6e-5 207.7

300 RCP 5.4e-8, 6.5e-8 729.1, 1774.7
300 PG 2.0e-5 1095.8

400 RCP 7.2e-8, 1.0e-8 2128.4, 2227.2
400 PG 2.4e-5 1143.3

Table 4.1: Results for metric learning scaling experiments on synthetic data (IP = interior
point, RCP = Random Conic Pursuit, PG = projected gradient), with two trials per d for
Random Conic Pursuit and times in seconds. ∗For d = 100, third column shows f after 20
minutes.

4.3.2 Sparse PCA

Sparse PCA seeks to find a sparse unit length vector that maximizes x′Ax for a given data
covariance matrix A. This problem can be relaxed to the following SDP [25], for X,A ∈ Rd×d:

min
X�0

ρ1′|X|1− tr(AX) s.t. tr(X) = 1, (4.5)

where the scalar ρ > 0 controls the solution’s sparsity. A subsequent rounding step returns
the dominant eigenvector of the SDP’s solution, yielding a sparse principal component.

We use the colon cancer dataset [3] that has been used frequently in past studies of sparse
PCA and contains 2,000 microarray readings for 62 subjects. The goal is to identify a small
number of microarray cells that capture the greatest variance in the dataset. We vary d by

CHAPTER 4. RANDOM CONIC PURSUIT 54

subsampling the readings and use ρ = 0.2 (large enough to yield sparse solutions) for all
experiments.

To apply Random Conic Pursuit, we set X0 = A/ tr(A). The trace constraint (4.5)
implies that tr(Xt−1) = 1 and so tr(αYt + βXt−1) = α tr(Yt) + β = 1 in (4.2). Thus, we can
simplify the two-variable optimization (4.2) to a one-variable optimization, which we solve
by bisection search.

The fastest available customized solver for the sparse PCA SDP is an adaptation of
Nesterov’s smooth optimization procedure [25] (denoted by DSPCA), for which we used a
MATLAB implementation with heavy MEX optimizations that is downloadable from the
author’s web site.

We compute two application-specific metrics which capture the two goals of sparse PCA:
high captured variance and high sparsity. Given the top eigenvector u of a solution matrix X,
its captured variance is u′Au, and its sparsity is given by 1

d

∑
j 1[|uj| < τ]; we take τ = 10−3

based on qualitative inspection of the raw microarray data covariance matrix A.
The results of our experiments are shown in Figure 4.2 and Table 4.2. As seen in the plots,

on a problem instance with d = 100, Random Conic Pursuit quickly achieves an objective
value within 4% of optimal and thereafter continues to converge, albeit more slowly; we
also quickly achieve fairly high sparsity (compared to that of the exact SDP optimum). In
contrast, interior point is able to achieve lower objective value and even higher sparsity
within the timeframe shown, but, unlike Random Conic Pursuit, it does not provide the
option of spending less time to achieve a solution which is still relatively sparse. All of
the solvers quickly achieve very similar captured variances, which are not shown. DSPCA
is extremely efficient, requiring much less time than its counterparts to find nearly exact
solutions. However, that procedure is highly customized (via several pages of derivation
and an optimized implementation), whereas Random Conic Pursuit and interior point are
general-purpose.

Table 4.2 illustrates scaling by reporting achieved objecive values and sparsities after
the solvers have each run for 4 hours. Interior point fails due to memory requirements for
d > 130, whereas Random Conic Pursuit continues to function and provide useful solutions,
as seen from the achieved sparsity values, which are much larger than those of the raw data
covariance matrix. Again, DSPCA continues to be extremely efficient.

4.3.3 Maximum Variance Unfolding (MVU)

MVU searches for a kernel matrix that embeds high-dimensional input data into a lower-
dimensional manifold [78]. Given m data points and a neighborhood relation i∼ j between
them, it forms their centered and normalized Gram matrix G ∈ Rm×m and the squared
Euclidean distances d2

ij = Gii +Gjj − 2Gij. The desired kernel matrix is the solution of the
following SDP, where X ∈ Rm×m and the scalar ν > 0 controls the dimensionality of the

CHAPTER 4. RANDOM CONIC PURSUIT 55

0 1076 2152 3228 4304
0

0.02

0.04

0.06

0.08

0.1

time (sec)

n
o

rm
a

liz
e

d
 o

b
je

c
ti
v
e

 v
a

lu
e

 e
rr

o
r

Interior Point
Random Pursuit
DSPCA

1076 2152 3228 4304
0

0.13

0.26

0.39

0.52

time (sec)

to
p

 e
ig

e
n

v
e

c
to

r
s
p

a
rs

it
y

Interior Point

Random Pursuit

DSPCA

Figure 4.2: Results for sparse PCA: trajectories of objective value error (left) and sparsity
(right), for a problem with d = 100. All solvers quickly yield similar captured variance (not
shown here).

d alg f after 4 hrs sparsity after 4 hrs

120 IP -10.25 0.55
120 RCP -9.98, -10.02 0.47, 0.45
120 DSPCA -10.24 0.55

200 IP failed failed
200 RCP -10.30, -10.27 0.51, 0.50
200 DSPCA -11.07 0.64

300 IP failed failed
300 RCP -9.39, -9.29 0.51, 0.51
300 DSPCA -11.52 0.69

500 IP failed failed
500 RCP -6.95, -6.54 0.53, 0.50
500 DSPCA -11.61 0.78

Table 4.2: Results for sparse PCA scaling experiments (IP = interior point, RCP = Random
Conic Pursuit), with two trials per d for Random Conic Pursuit.

CHAPTER 4. RANDOM CONIC PURSUIT 56

resulting embedding:

max
X�0

tr(X)− ν
∑
i∼j

(Xii +Xjj − 2Xij − d2
ij)

2 s.t. 1′X1 = 0. (4.6)

To apply Random Conic Pursuit, we set X0 = G and use the general sampling formulation
in Algorithm 4 by setting p = N (0,Π(∇f(Xt))) in the initialization (i.e., t = 0) and update
steps, where Π truncates negative eigenvalues of its argument to zero. This scheme em-
pirically yields improved performance for the MVU problem as compared to the bracketed
sampling scheme in Algorithm 4. To handle the equality constraint, each Yt is first trans-
formed to Y̆t = (I − 11′/m)Yt(I − 11′/m), which preserves PSDness and ensures feasibility.
The two-variable optimization (4.2) proceeds as before on Y̆t and becomes a two-variable
quadratic program, which can be solved analytically.

MVU also admits a gradient descent algorithm, which serves as a straw-man large-scale
solver for the MVU SDP. At each iteration, the step size is picked by a line search, and the
spectrum of the iterate is truncated to maintain PSDness. We use G as the initial iterate.

To generate data, we randomly sample m points from the surface of a synthetic swiss
roll [78]; we set ν = 1. To quantify the amount of time required for a solver to converge, we
run it until its objective curve appears qualitatively flat and declare the convergence point
to be the earliest iterate whose objective value is within 1% of the best objective value seen
so far (which we denote by f̂).

Figure 4.3 and Table 4.3 illustrate that Random Conic Pursuit’s objective values converge
quickly, and on problems where the interior point solver achieves the optimum, Random
Conic Pursuit nearly achieves that optimum. The interior point solver runs out of memory
when m > 400 and also fails on smaller problems if its tolerance parameter is not tuned.
Random Conic Pursuit easily runs on larger problems for which interior point fails, and for
smaller problems its running time is within a small factor of that of the interior point solver.
The gradient descent solver is orders of magnitude slower than the other solvers and failed
to converge to a meaningful solution for m ≥ 400 even after 2000 iterations (which took 8
hours).

4.4 Analysis

Analysis of Random Conic Pursuit is complicated by the procedure’s use of randomness and
its handling of the constraints gj ≤ 0 explicitly in the sub-problem (4.2), rather than via
penalty functions or projections. Nonetheless, we are able to obtain useful insights by first
analyzing a simpler setting having only a PSD constraint. We thus obtain a bound on the
rate at which the objective values of Random Conic Pursuit’s iterates converge to the SDP’s
optimal value when the problem has no constraints of the form gj ≤ 0:

Theorem 4 (Convergence rate of Random Conic Pursuit when f is weakly convex and
k = 0). Let f : Rd×d → R be a convex differentiable function with L-Lipschitz gradients such

CHAPTER 4. RANDOM CONIC PURSUIT 57

0 10 20 30
1800

2000

2200

2400

2600

2800

3000

Time (sec)

O
b

je
c
ti
v
e

 v
a

lu
e

Interior Point
Random Pursuit

0 100 200 300 400
0

2

4

6

8
x 10

4

Time (sec)

O
b

je
c
ti
v
e

 v
a

lu
e

Random Pursuit

Figure 4.3: Results for MVU: trajectories of objective value for problems with m = 200 (left)
and m = 800 (right).

m alg f after convergence seconds to f >0.99f̂

40 IP 23.4 0.4
40 RCP 22.83 (0.03) 0.5 (0.03)
40 GD 23.2 5.4

200 IP 2972.6 12.4
200 RCP 2921.3 (1.4) 6.6 (0.8)
200 GD 2943.3 965.4

400 IP 12255.6 97.1
400 RCP 12207.96 (36.58) 26.3 (9.8)

800 IP failed failed
800 RCP 71231.1 (2185.7) 115.4 (29.2)

Table 4.3: Results for MVU scaling experiments showing convergence as a function of m
(IP = interior point, RCP = Random Conic Pursuit, GD = gradient descent). Standard
deviations over 10 runs of Random Conic Pursuit are shown in parentheses.

that the minimum of the following optimization problem is attained at some X∗:

min
X�0

f(X). (4.7)

Let X1 . . . Xt be the iterates of Algorithm 4 when applied to this problem starting at iterate
X0 (using the bracketed sampling scheme given in the algorithm specification), and suppose
that ‖Xt −X∗‖ is bounded. Then,

Ef(Xt)− f(X∗) ≤ 1

t
·max(ΓL, f(X0)− f(X∗)), (4.8)

for some constant Γ that does not depend on t.

CHAPTER 4. RANDOM CONIC PURSUIT 58

See the appendix for proof. Despite the extremely simple and randomized nature of
Random Conic Pursuit, the theorem guarantees that its objective values converge at the
rate O(1/t) on an important subclass of SDPs. We omit here some readily available exten-
sions: for example, the probability that a trajectory of iterates violates the above rate can
be bounded by noting that the iterates’ objective values behave as a finite difference sub-
martingale. Additionally, the theorem and proof could be generalized to hold for a broader
class of sampling schemes.

Directly characterizing the convergence of Random Conic Pursuit on problems with con-
straints appears to be significantly more difficult and seems to require introduction of new
quantities depending on the constraint set (e.g., condition number of the constraint set and
its overlap with the PSD cone) whose implications for the algorithm are difficult to explicitly
characterize with respect to d and the properties of the gj, X

∗, and the Yt sampling distri-
bution. Indeed, it would be useful to better understand the limitations of Random Conic
Pursuit. As noted above, the procedure cannot readily accommodate general equality con-
straints; furthermore, for some constraint sets, sampling only a rank one Yt at each iteration
could conceivably cause the iterates to become trapped at a sub-optimal boundary point
(this could be alleviated by sampling higher rank Yt). A more general analysis is the subject
of continuing work, though our experiments confirm empirically that we realize usefully fast
convergence of Random Conic Pursuit even when it is applied to a variety of constrained
SDPs.

We obtain a different analytical perspective by recalling that Random Conic Pursuit
computes a solution within the random polyhedral cone Fxn , defined in (4.3) above. The
distance between this cone and the optimal matrix X∗ is closely related to the quality of
solutions produced by Random Conic Pursuit. The following theorem characterizes the
distance between a sampled cone Fxn and any fixed X∗ in the PSD cone:

Theorem 5. Let X∗ � 0 be a fixed positive definite matrix, and let x1, . . . , xn ∈ Rd be drawn
i.i.d. from N (0,Σ) with Σ � X∗. Then, for any δ > 0, with probability at least 1− δ,

min
X∈Fxn

‖X −X∗‖ ≤
1 +
√

2 log 1
δ√

n
· 2

e

√∣∣ΣX∗−1
∣∣ ∥∥∥(X∗−1 − Σ−1

)−1
∥∥∥

2

See the appendix for proof. As expected, Fxn provides a progressively better approxima-
tion to the PSD cone (with high probability) as n grows. Furthermore, the rate at which
this occurs depends on X∗ and its relationship to Σ; as the latter becomes better matched
to the former, smaller values of n are required to achieve an approximation of given quality.

The constant Γ in Theorem 4 can hide a dependence on the dimensionality d of the
problem, though the proof of Theorem 5 helps to elucidate the dependence of Γ on d and
X∗ for the particular case when Σ does not vary over time (the constants in Theorem 5 arise
from bounding ‖γt(xt)xtx′t‖). A potential concern regarding both of the above theorems
is the possibility of extremely adverse dependence of their constants on the dimensionality
d and the properties (e.g., condition number) of X∗. However, our empirical results in
Section 4.3 show that Random Conic Pursuit does indeed decrease the objective function

CHAPTER 4. RANDOM CONIC PURSUIT 59

usefully quickly on real problems with relatively large d and solution matrices X∗ which are
rank one, a case predicted by the analysis to be among the most difficult.

4.5 Related Work

Random Conic Pursuit and the analyses above are related to a number of existing optimiza-
tion and sampling algorithms.

Our procedure is closely related to feasible direction methods [72], which move along
descent directions in the feasible set defined by the constraints at the current iterate. Cutting
plane methods [47], when applied to some SDPs, solve a linear program obtained by replacing
the PSD constraint with a polyhedral constraint. Random Conic Pursuit overcomes the
difficulty of finding feasible descent directions or cutting planes, respectively, by sampling
directions randomly and also allowing the current iterate to be rescaled.

Pursuit-based optimization methods [22, 49] return a solution within the convex hull of an
a priori-specified convenient set of pointsM. At each iteration, they refine their solution to
a point between the current iterate and a point inM. The main burden in these methods is
to select a near-optimal point inM at each iteration. For SDPs having only a trace equality
constraint and withM the set of rank one PSD matrices, Hazan [46] shows that such points
in M can be found via an eigenvalue computation, thereby obtaining a convergence rate of
O(1/t). In contrast, our method selects steps randomly and still obtains a rate of O(1/t) in
the unconstrained case.

The Hit-and-Run algorithm for sampling from convex bodies can be combined with simu-
lated annealing to solve SDPs [55]. In this configuration, similarly to Random Conic Pursuit,
it conducts a search along random directions whose distribution is adapted over time.

Finally, whereas Random Conic Pursuit utilizes a randomized polyhedral inner approx-
imation of the PSD cone, the work of Calafiore and Campi [18] yields a randomized outer
approximation to the PSD cone obtained by replacing the PSD constraint X � 0 with a set
of sampled linear inequality constraints. It can be shown that for linear SDPs, the dual of
the interior LP relaxation is identical to the exterior LP relaxation of the dual of the SDP.
Empirically, however, this outer relaxation requires impractically many sampled constraints
to ensure that the problem remains bounded and yields a good-quality solution.

4.A Appendix: Proofs

Proof of Theorem 4. We prove that equation (4.8) holds in general for any X∗, and thus for
the optimizer of f in particular. The convexity of f implies the following linear lower bound
on f(X) for any X and Y :

f(X) ≥ f(Y) + 〈∂f(Y), X − Y 〉. (4.9)

CHAPTER 4. RANDOM CONIC PURSUIT 60

The Lipschitz assumption on the gradient of f implies the following quadratic upper bound
on f(X) for any X and Y [60]:

f(X) ≤ f(Y) + 〈∂f(Y), X − Y 〉+ L
2
‖X − Y ‖2. (4.10)

Define the random variable Ỹt := γt(Yt)Yt with γt a positive function that ensures EỸt = X∗.
It suffices to set γt = q(Y)/p̆(Y), where p̆ is the distribution of Yt and q is any distribution
with mean X∗. In particular, the choice Ỹt := γt(xt)xtx

′
t with γt(x) = N (x|0, X∗)/N (x|0,Σt)

satisfies this.
At iteration t, Algorithm 4 produces αt and βt so that Xt+1 := αtYt + βtXt minimizes

f(Xt+1). We will bound the difference f(Xt+1) − f(X∗) at each iteration by sub-optimally
picking α̂t = 1/t, β̂t = 1− 1/t, and X̂t+1 = β̂tXt + α̂tγt(Yt)Yt = β̂tXt + α̂tỸt. Conditioned on
Xt, we have

Ef(Xt+1)− f(X∗) ≤ Ef(β̂tXt + α̂tỸt)− f(X∗) (4.11)

= Ef
(
Xt − 1

t
(Xt − Ỹt)

)
− f(X∗) (4.12)

≤ f(Xt)− f(X∗) + E
〈
∂f(Xt),

1
t
(Ỹt −Xt)

〉
+ L

2t2
E‖Xt − Ỹt‖2 (4.13)

= f(Xt)− f(X∗) + 1
t
〈∂f(Xt), X

∗ −Xt〉+ L
2t2
E‖Xt − Ỹt‖2 (4.14)

≤ f(Xt)− f(X∗) + 1
t

(f(X∗)− f(Xt)) + L
2t2
E‖Xt − Ỹt‖2 (4.15)

=
(
1− 1

t

) (
f(Xt)− f(X∗)

)
+ L

2t2
E‖Xt − Ỹt‖2. (4.16)

The first inequality follows by the suboptimality of α̂t and β̂t, the second by Equation (4.10),
and the third by (4.9).

Define et := Ef(Xt)−f(X∗). The term E‖Ỹt−Xt‖2 is bounded above by some absolute
constant Γ because E‖Ỹt −Xt‖2 = E‖Ỹt −X∗‖2 + ‖Xt −X∗‖2. The first term is bounded
because it is the variance of Ỹt, and the second term is bounded by assumption. Taking
expectation over Xt gives the bound et+1 ≤

(
1− 1

t

)
et + LΓ

2t2
, which is solved by et = 1

t
·

max(ΓL, f(X0)− f(X∗)) [58].

Proof of Theorem 5. We wish to bound the tails of the random variable

min
γ1...γn≥0

∥∥∥∥∥
n∑
i=1

γixix
′
i −X∗

∥∥∥∥∥ . (4.17)

We first simplify the problem by eliminating the minimization over γ. Define a function
γ(x;X∗) : Rd → R+ that satisfies

Ex∼N (0,Σ)γ(x)xx′ = X∗. (4.18)

The choice

γ(x) =
N (x|0, X∗)
N (x|0,Σ)

= |Σ|1/2
∣∣X∗∣∣−1/2

exp
(
−x′(X∗−1−Σ−1)x

2

)
(4.19)

CHAPTER 4. RANDOM CONIC PURSUIT 61

works, since Ex∼N (0,Σ)γ(x)xx′ = Ex∼N (0,X∗)xx
′ = X∗. Setting sub-optimally the coefficients

γi to γ(xi) gives

min
γ≥0

∥∥∥∥∥
n∑
i=1

γixix
′
i −X∗

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
n

n∑
i=1

γ(xi)xix
′
i − Eγ(x)xx′

∥∥∥∥∥ (4.20)

=

∥∥∥∥∥ 1
n

n∑
i=1

zi − Ez

∥∥∥∥∥ . (4.21)

Thus, it suffices to bound the tails of the deviation of an empirical average of i.i.d. random
variables zi := γ(xi)xix

′
i from its expectation, Ez = X∗. We proceed using McDiarmid’s

inequality.
The scalar random variables ‖zi‖ are bounded because for all x, we have:

‖z‖ = ‖γ(x)xx′‖ = ‖xx′‖|Σ|
1
2
∣∣X∗∣∣−1

2 exp
(
−x′(X∗−1−Σ−1)x

2

)
(4.22)

≤ |Σ|
1
2
∣∣X∗∣∣−1

2‖x‖2
2 exp

(
−λmin(X∗−1−Σ−1)‖x‖22

2

)
(4.23)

≤
2|Σ|

1
2
∣∣X∗∣∣−1

2

eλmin(X∗−1 − Σ−1)
(4.24)

=
2

e
|Σ|

1
2
∣∣X∗∣∣−1

2

∥∥∥(X∗−1 − Σ−1
)−1
∥∥∥

2
(4.25)

=: ∆. (4.26)

Equation (4.24) follows because the function f(y) = ye−αy is bounded above by 1
eα

.
The expectation of

∥∥ 1
n

∑n
i=1 zi − Ez

∥∥, whose tails we wish to bound, is the standard
deviation of 1

n

∑n
i=1 zi, and can be bounded in the standard way in a Hilbert space:(

E

∥∥∥∥∥ 1

n

n∑
i=1

zi − Ez

∥∥∥∥∥
)2

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

zi − Ez

∥∥∥∥∥
2

=
1

n

(
E‖z‖2 − ‖Ez‖2

)
, (4.27)

which yields

E

∥∥∥∥∥ 1
n

n∑
i=1

zi − Ez

∥∥∥∥∥ ≤ ∆√
n
. (4.28)

CHAPTER 4. RANDOM CONIC PURSUIT 62

Using Equations (4.21) and (4.28), and the fact that ‖zi‖ ≤ ∆, McDiarmid’s inequality gives

Pr

[
min
γ≥0

∥∥∥∥∥
n∑
i=1

γixix
′
i −X∗

∥∥∥∥∥ > ∆√
n

+ ε

]
(4.29)

≤ Pr

[∥∥∥∥∥ 1
n

n∑
i=1

zi − Ez

∥∥∥∥∥ > ∆√
n

+ ε

]
(4.30)

≤ Pr

[∥∥∥∥∥ 1
n

n∑
i=1

zi − Ez

∥∥∥∥∥ > E

∥∥∥∥∥ 1
n

n∑
i=1

zi − Ez

∥∥∥∥∥+ ε

]

≤ exp

(
− nε

2

2∆2

)
. (4.31)

In other words, for any δ > 0, with probability at least 1− δ,

min
γ≥0

∥∥∥∥∥
n∑
i=1

γixix
′
i −X∗

∥∥∥∥∥ < ∆√
n

(
1 +
√

2 log 1
δ

)
. (4.32)

63

Chapter 5

Conclusion

In the preceding chapters, we have proposed novel algorithms—the Bag of Little Bootstraps
(BLB), a general bootstrap performance diagnostic, and Random Conic Pursuit—which
advance the state of the art for two important classes of problems in machine learning and
statistics: estimator quality assessment and semidefinite programming.

BLB provides a powerful new alternative for automatic, accurate assessment of estimator
quality that is well suited to large-scale data and modern parallel and distributed computing
architectures. Our procedure shares the favorable statistical properties (i.e., consistency and
higher-order correctness) and generic applicability of the bootstrap, while typically having a
markedly better computational profile, as we have demonstrated via large-scale experiments
on a distributed computing platform. Additionally, BLB is consistently more robust than
the m out of n bootstrap and subsampling to the choice of subset size and does not require
the use of analytical corrections. To enhance our procedure’s computational efficiency and
render it more automatically usable, we have introduced a means of adaptively selecting
its hyperparameters. We have also applied BLB to several real datasets and presented an
extension to non-i.i.d. time series data.

A number of open questions and possible extensions remain for BLB. Though we have
constructed an adaptive hyperparameter selection method based on the properties of the
subsampling and resampling processes used in BLB, as well as empirically validated the
method, it would be useful to develop a more precise theoretical characterization of its
behavior. Additionally, as discussed in Section 2.5, it would be beneficial to develop a
computationally efficient means of adaptively selecting b. It may also be possible to further
reduce r by using methods that have been proposed for reducing the number of resamples
required by the bootstrap [31, 33].

Furthermore, it is worth noting that averaging the plugin approximations ξ(Qn(P(j)
n,b))

computed by BLB implicitly corresponds to minimizing the squared error of BLB’s output. It
would be possible to specifically optimize for other losses on estimator quality assessments—
thereby improving statistical performance with respect to such losses—by combining the
ξ(Qn(P(j)

n,b)) in other ways (e.g., by using medians rather than averages).
While BLB shares the statistical strengths of the bootstrap, we conversely do not expect

CHAPTER 5. CONCLUSION 64

our procedure to be applicable in cases in which the bootstrap fails [9]. Indeed, it was
such edge cases that originally motivated development of the m out of n bootstrap and
subsampling, which are consistent in various settings that are problematic for the bootstrap.
It would be interesting to investigate the performance of BLB in such settings and perhaps
use ideas from the m out of n bootstrap and subsampling to improve the applicability of
BLB in these edge cases while maintaining computational efficiency and robustness.

Although our development of BLB has focused on scalability as the number of available
data points increases, various modern data analysis problems exhibit simultaneous growth in
number of data points, data dimensionality, and number of parameters to be estimated. As a
result, various work in recent years has sought to characterize the statistical performance of
inferential procedures in this high-dimensional scaling regime. That research has particularly
focused on procedures for point estimation, such as the Lasso [74], and generally makes
assumptions (e.g., regarding sparsity of parameters) which allow effective estimation even as
the number of parameters to be estimated increases with the number of available data points.
Theoretical and empirical investigation of the performance of resampling-based methods for
estimator quality assessment (e.g., the bootstrap, BLB, and the m out of n bootstrap) in
the high-dimensional scaling regime, and determination of appropriate assumptions under
which these techniques are effective (perhaps with some modification) in this setting, would
be both interesting and useful.

In addition to addressing the issue of scalability in estimator quality assessment via BLB,
we have presented a general diagnostic procedure which permits automatic determination of
whether or not the bootstrap is performing satisfactorily when applied to a given dataset and
estimator; we have demonstrated the effectiveness of our procedure via an empirical evalua-
tion on a variety of estimators and simulated and real data. A number of avenues of potential
future work remain in this vein. Additional study of the influence of the diagnostic’s various
hyperparameters would be useful. It would also be interesting to evaluate the diagnostic’s
effectiveness on yet more data generating distributions, estimators, and estimator quality
assessments.

Furthermore, it would be interesting to apply our diagnostic procedure to other estimator
quality assessment methods such as BLB, the m out of n bootstrap [9], and subsampling [67].
It would also be fairly straightforward to devise extensions of the diagnostic which are
suitable for variants of the bootstrap designed to handle non-i.i.d. data [33, 45, 50, 54, 66].
For such bootstrap variants, the diagnostic might aid in selecting a resampling mechanism
which respects the dependency structure of the underlying data generating distribution (e.g.,
by helping to select an appropriate block size when resampling stationary time series).

It should also be possible to characterize theoretically the consistency of our diagnos-
tic procedure, showing that its false positive and false negative rates approach zero as
b1, . . . , bk, p → ∞ and c1, c2 → 0, under some assumptions (e.g., monotonicity of the boot-
strap’s convergence to ground truth in cases where it is performing satisfactorily). It would
be interesting to make such a result precise.

Finally, we have presented Random Conic Pursuit, a simple, easily implemented ran-
domized solver for general semidefinite programs (SDPs). Unlike interior point methods,

CHAPTER 5. CONCLUSION 65

our procedure does not excel at producing highly exact solutions. However, it is more scal-
able and provides useful approximate solutions fairly quickly, characteristics that are often
desirable in machine learning and statistical applications. This fact is illustrated by our ex-
periments on three different machine learning and statistical tasks based on SDPs; we have
also provided an analysis yielding further insight into Random Conic Pursuit.

In potential future work, it would be interesting to study the use of other matrix sampling
distributions (beyond those considered in our work) in Random Conic Pursuit. Addition-
ally, Random Conic Pursuit can readily benefit from the use of parallel and distributed
computational resources, and it would be interesting to empirically evaluate the resulting
performance gains. Finally, further analysis of Random Conic Pursuit, particularly in the
setting of SDPs with general constraints, would be of interest.

66

Bibliography

[1] D. Agarwal, R. Agrawal, R. Khanna, and N. Kota. Estimating rates of rare events with
multiple hierarchies through scalable log-linear models. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), 2010.

[2] S. Agarwal, A. Panda, B. Mozafari, S. Madden, and I. Stoica. BlinkDB: Queries with
bounded errors and bounded response times on very large data. Technical Report
1203.5485, ArXiv, June 2012.

[3] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine.
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences of the USA, 96:6745–6750, June 1999.

[4] A. Asuncion, P. Smyth, and M. Welling. Asynchronous distributed learning of topic
models. In Advances in Neural Information Processing Systems (NIPS), 2008.

[5] S. Baker, J. Berger, P. Brady, K. Borne, S. Glotzer, R. Hanisch, D. Johnson, A. Karr,
D. Keyes, B. Pate, and H. Prosper. Data-enabled science in the mathematical and
physical sciences, 2010. Workshop funded by the National Science Foundation.

[6] R. Beran. Diagnosing bootstrap success. Annals of the Institute of Statistical Mathe-
matics, 49(1):1–24, 1997.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., 1989.

[8] P. J. Bickel and D. A. Freedman. Some asymptotic theory for the bootstrap. Annals of
Statistics, 9(6):1196–1217, 1981.

[9] P. J. Bickel, F. Götze, and W. R. van Zwet. Resampling fewer than n observations:
Gains, losses, and remedies for losses. Statistica Sinica, 7:1–31, 1997.

[10] P. J. Bickel and A. Sakov. Extrapolation and the bootstrap. Sankhya: The Indian
Journal of Statistics, 64:640–652, 2002.

BIBLIOGRAPHY 67

[11] P. J. Bickel and A. Sakov. On the choice of m in the m out of n bootstrap and confidence
bounds for extrema. Statistica Sinica, 18:967–985, 2008.

[12] P. J. Bickel and J. A. Yahav. Richardson extrapolation and the bootstrap. Journal of
the American Statistical Association, 83(402):387–393, 1988.

[13] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

[14] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems (NIPS), 2007.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[16] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in
machine translation. In Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, 2007.

[17] S. Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidefinite
programming. Mathematical Programming, 103(3):427–444, 2005.

[18] G. Calafiore and M. C. Campi. Uncertain convex programs: Randomized solutions and
confidence levels. Mathematical Programming, 102(1):25–46, 2005.

[19] A. J. Canty, A. C. Davison, D. V. Hinkley, and V. Ventura. Bootstrap diagnostics and
remedies. The Canadian Journal of Statistics, 34(1):5–27, 2006.

[20] L. Chin, W. C. Hahn, G. Getz, and M. Meyerson. Making sense of cancer genomic data.
Genes and Development, 25:534–555, 2011.

[21] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce
for machine learning on multicore. In International Conference on Machine Learning
(ICML), 2006.

[22] K. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
In Symposium on Discrete Algorithms (SODA), 2008.

[23] Conviva, Inc. http://www.conviva.com, November 2012.

[24] A. d’Aspremont. Subsampling algorithms for semidefinite programming. Technical
Report 0803.1990, ArXiv, 2009.

[25] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formu-
lation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448,
2007.

BIBLIOGRAPHY 68

[26] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
In Symposium on Operating System Design and Implementation (OSDI), 2004.

[27] P. Diaconis and B. Efron. Computer-intensive methods in statistics. Scientific American,
248:96–108, 1983.

[28] F. Doshi-Velez, D. Knowles, S. Mohamed, and Z. Ghahramani. Large scale nonpara-
metric bayesian inference: Data parallelisation in the Indian buffet process. In Advances
in Neural Information Processing Systems (NIPS), 2009.

[29] J. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic Control,
57(3):592–606, March 2012.

[30] B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics,
7(1):1–26, 1979.

[31] B. Efron. More efficient bootstrap computations. Journal of the American Statistical
Association, 85(409):79–89, 1988.

[32] B. Efron. Jackknife-after-bootstrap standard errors and influence functions. Journal of
the Royal Statistical Society, Series B, 54(1):83–127, 1992.

[33] B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, 1993.

[34] A. Frank and A. Asuncion. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2010.

[35] M. H. Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Research,
21:734–740, 2011.

[36] E. Giné and J. Zinn. Bootstrapping general empirical measures. Annals of Probability,
18(2):851–869, 1990.

[37] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin. Parallel Gibbs sampling: From
colored fields to thin junction trees. In Artificial Intelligence and Statistics (AISTATS),
2011.

[38] J. Gonzalez, Y. Low, and C. Guestrin. Residual splash for optimally parallelizing belief
propagation. In Artificial Intelligence and Statistics (AISTATS), 2009.

[39] J. Gonzalez, Y. Low, C. Guestrin, and D. O’Hallaron. Distributed parallel inference on
large factor graphs. In Uncertainty in Artificial Intelligence (UAI), 2009.

[40] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 1.21. http://cvxr.com/cvx, May 2010.

BIBLIOGRAPHY 69

[41] Apache Hadoop. http://hadoop.apache.org, April 2012.

[42] J. Hahn. Bootstrapping quantile regression estimators. Econometric Theory, 11(1):105–
121, 1995.

[43] K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for distributed optimization.
In NIPS 2010 Workshop on Learning on Cores, Clusters and Clouds, 2010.

[44] P. Hall. The Bootstrap and Edgeworth Expansion. Springer-Verlag New York, Inc.,
1992.

[45] P. Hall and E. Mammen. On general resampling algorithms and their performance in
distribution estimation. Annals of Statistics, 22(4):2011–2030, 1994.

[46] E. Hazan. Sparse approximate solutions to semidefinite programs. In Latin American
Conference on Theoretical Informatics, pages 306–316, 2008.

[47] C. Helmberg. A cutting plane algorithm for large scale semidefinite relaxations. In Mar-
tin Grötschel, editor, The Sharpest Cut, chapter 15. MPS/SIAM Series on Optimization,
2001.

[48] M. Hoffman, D. Blei, and F. Bach. Online learning for latent Dirichlet allocation. In
Advances in Neural Information Processing Systems (NIPS), 2010.

[49] L. K. Jones. A simple lemma on greedy approximation in Hilbert space and convergence
rates for projection pursuit regression and neural network training. Annals of Statistics,
20(1):608–613, March 1992.

[50] H. R. Kunsch. The jackknife and the bootstrap for general stationary observations.
Annals of Statistics, 17(3):1217–1241, 1989.

[51] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learn-
ing the kernel matrix with semidefinite programming. Journal of Machine Learning
Research, 5:27–72, December 2004.

[52] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics on
MapReduce. In Proceedings of the VLDB Endowment, volume 5, pages 1028–1039, 2012.

[53] P. Liang and D. Klein. Online EM for unsupervised models. In North American Asso-
ciation for Computational Linguistics (NAACL), 2009.

[54] R. Y. Liu and K. Singh. Moving blocks jackknife and bootstrap capture weak depen-
dence. In R. LePage and L. Billard, editors, Exploring the Limits of the Bootstrap, pages
225–248. Wiley, 1992.

[55] L. Lovász and S. Vempala. Fast algorithms for logconcave functions: Sampling, round-
ing, integration and optimization. In Foundations of Computer Science (FOCS), 2006.

BIBLIOGRAPHY 70

[56] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
GraphLab: A new framework for parallel machine learning. In Uncertainty in Arti-
ficial Intelligence (UAI), 2010.

[57] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Dis-
tributed GraphLab: A framework for machine learning and data mining in the cloud.
In Proceedings of Very Large Data Bases (PVLDB), 2012.

[58] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609,
2009.

[59] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103(1):127–152, May 2005.

[60] Y. Nesterov. Smoothing technique and its applications in semidefinite optimization.
Mathematical Programming, 110(2):245–259, July 2007.

[61] D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed inference for latent
Dirichlet allocation. In Advances in Neural Information Processing Systems (NIPS),
2007.

[62] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural Information Processing Systems
(NIPS), 2011.

[63] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[64] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace
selection for multiple classification problems. Statistics and Computing, pages 1573–
1375, 2009.

[65] J. Platt. Using sparseness and analytic QP to speed training of Support Vector Ma-
chines. In Advances in Neural Information Processing Systems (NIPS), 1999.

[66] D. N. Politis and J. P. Romano. The stationary bootstrap. Journal of the American
Statistical Association, 89(428):1303–1313, 1994.

[67] D. N. Politis, J. P. Romano, and M. Wolf. Subsampling. Springer, 1999.

[68] A. Pollack. DNA sequencing caught in deluge of data. The New York Times, November
2011.

[69] H. Putter and W. R. van Zwet. Resampling: Consistency of substitution estimators.
Annals of Statistics, 24(6):2297–2318, 1996.

[70] J. Shao. Mathematical Statistics. Springer, second edition, 2003.

BIBLIOGRAPHY 71

[71] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625–653, 1999.

[72] W. Sun and Y. Yuan. Optimization Theory and Methods: Nonlinear Programming.
Springer, 2006.

[73] R. Tibshirani. How many bootstraps? Technical report, Department of Statistics,
Stanford University, Stanford, CA, 1985.

[74] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58(1):267–288, 1996.

[75] J. Uszkoreit, J. M. Ponte, A. C. Popat, and M. Dubiner. Large scale parallel docu-
ment mining for machine translation. In International Conference on Computational
Linguistics, 2010.

[76] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1998.

[77] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes.
Springer-Verlag New York, Inc., 1996.

[78] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul. Graph Laplacian regularization for
large-scale semidefinite programming. In Advances in Neural Information Processing
Systems (NIPS), 2006.

[79] J. Wolfe, A. Haghighi, and D. Klein. Fully distributed EM for very large datasets. In
International Conference on Machine Learning (ICML), 2008.

[80] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with
application to clustering with side-information. In Advances in Neural Information
Processing Systems (NIPS), 2002.

[81] F. Yan, N. Xu, and Y. Qi. Parallel inference for latent Dirichlet allocation on graphics
processing units. In Advances in Neural Information Processing Systems (NIPS), 2009.

[82] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In USENIX NSDI, 2012.

[83] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent.
In Advances in Neural Information Processing Systems (NIPS), 2010.

