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RANDOMIZED ALLOCATION WITH NONPARAMETRIC
ESTIMATION FOR A MULTI-ARMED BANDIT PROBLEM

WITH COVARIATES

BY YUHONG YANG1 AND DAN ZHU2

Iowa State University

We study a multi-armed bandit problem in a setting where covariates
are available. We take a nonparametric approach to estimate the functional
relationship between the response (reward) and the covariates. The estimated
relationships and appropriate randomization are used to select a good arm to
play for a greater expected reward. Randomization helps balance the tendency
to trust the currently most promising arm with further exploration of other
arms. It is shown that, with some familiar nonparametric methods (e.g.,
histogram), the proposed strategy is strongly consistent in the sense that the
accumulated reward is asymptotically equivalent to that based on the best arm
(which depends on the covariates) almost surely.

1. Introduction. Multi-armed bandit problems have been extensively studied
in probability and statistics in the past few decades and still receive considerable
interest in these and related fields. Readers are referred to Berry and Fristedt
(1985) and Gittins (1989) and the references cited therein for the history, many
elegant results and applications in clinical trials, scheduling and other industrial
problems. Some recent developments have been reported in, for example, Lai
and Yakowitz (1995) who considered the situation in which observations are
dependent, Berry, Chen, Zame, Heath and Shepp (1997) who considered infinitely
many arms and Auer, Cesa-Bianchi, Freund and Schapire (1995) who considered
worst-case performances.

In classic bandit problems, each arm sequentially generates rewards based on
a distribution with some unknown parameters, and one needs to sequentially
select one arm to play for the maximum expected reward. In a majority of
the earlier work, no auxiliary information beyond the observed rewards was
considered when selecting an arm to play. Exceptions include Woodroofe (1979),
Sarkar (1991) and Clayton (1989) who considered one-armed bandit problems
with covariates. The first two papers studied Bayesian sequential allocation in
non-Bernoulli bandit models with parametric frameworks and showed that the
myopic rule is asymptotically optimal. The third studied Bernoulli bandit problems
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with covariates using a link function to relate the probability of success with
the covariate. As covariates are often available in many potential applications,
incorporating such information in decision making is desirable for a better
performance. In this work, we consider continuous rewards with covariates
available and propose a method for arm selection (allocation) with a proven
asymptotic property. Our approach employs nonparametric regression procedures
for estimating the dependence of the rewards on the covariates for the arms
and uses a randomized allocation scheme to control the trade-off between the
tendency to use the currently most promising arm and further exploration to find
the arm that is truly the best (which depends on covariates in general). The use of
nonparametric approaches has the advantage of more flexibility with a wider range
of applications.

The rest of the paper is organized as follows. In Section 2, we set up the bandit
problem to be studied. We propose our strategy in Section 3. Section 4 gives
some examples of regression procedures that can be applied to the bandit problem.
Consistency of the proposed strategy is established in Section 5. Sections 6 and 7
show the consistency with histogram and nearest neighbor methods, respectively.
Conclusions are in Section 8. Some supporting technical results and proofs are
given in the Appendix.

2. Problem setup. Assume that there are I, I ≥ 2, arms available for playing.
After pulling an arm, a random reward is generated. Each time before deciding
which arm to pull, a d-dimensional characteristic or covariate (concomitant
variable) x ∈ Rd is observed. The goal is to maximize the total reward after
a number of plays. We assume that characteristics (or covariates) are continuous
variables and take values in a hypercube taken as [0,1]d without loss of generality.
By pulling the ith arm, the mean reward with the given covariate x is denoted
as fi(x),1 ≤ i ≤ I. The actual reward with covariate x of pulling the ith arm is
modeled as

fi(x)+ ε,

where ε denotes random error with mean 0 and a finite variance.
The functions fi,1 ≤ i ≤ I, are assumed to be unknown and not necessarily of

a known parametric form. Ideally, if the fi’s (but not the errors) were known,
with the observed covariate x, one would pull the arm with the largest mean
reward at x; that is, one would choose arm i∗ with fi∗(x) ≥ fi(x) for any other
i �= i∗. Note that, in general, for different x, the best arm is different. For the
purpose of pursuing the highest possible reward, finding the arm with the best
overall performance is not sufficient and the information in the covariates should
be incorporated when choosing an arm to pull. Let i∗(x) denote this optimal choice
of arm. (The optimal choice may not be unique and one may break ties, if any, with
any reasonable rule.) The corresponding mean reward, f ∗(x) = max1≤i≤Ifi(x),
is the ideal mean reward with given covariate x.
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Let X1, . . . ,Xn, . . . be a sequence of covariates independently generated from
a population supported in [0,1]d . Let PX denote the underlying probability
distribution, which is also assumed unknown in this work. At each time j ≥ 1,
when the covariate Xj is observed, we need to select an arm to pull based on Xj
and the previous data. We assume that, as is typically the case in bandit problems,
only one arm can be pulled at a time and therefore we will not observe the rewards
from other arms. In addition to efficiency considerations, this is also a realistic
setting for many applications where it is impossible or impractical to pull multiple
arms simultaneously (e.g., applying medical procedures or testing quality of a
product in a destructive way). Let Yi,j denote the reward of pulling the ith arm
when the covariate Xj is presented. As mentioned previoulsy, for each j , only
one Yi,j will be observed. Let εij denote the error (deviation from the mean) that
occurs when arm i is pulled. In this work, we assume that errors associated with
different realizations of the covariates and/or different arms are independent and
are all independent of the Xi ’s.

Let δ be a sequential allocation rule. Let I1, I2, . . . , In, . . . be the chosen
arm at time 1,2, . . . based only on X1, on X2 = (X1,X2), I1 and YI1,1, . . . on
Xn = (X1, . . . ,Xn), I1, . . . , In−1 and (YI1,1, . . . , YIn−1,n−1), . . . respectively. With
the allocation rule, given the previous observations and Xj , the mean reward
(averaging out the present error) at the given Xj is fIj (Xj ) for j ≥ 1. The total
of this mean reward up to time n is

∑n
j=1 fIj (Xj ). Clearly, without knowing the

random errors, the ideal performance occurs when the choices I1, . . . , In match
i∗(X1), . . . , i

∗(Xn), yielding the optimal total (conditional) reward
∑n
j=1 f

∗(Xj ).
It is thus of interest to study the quantity

Rn(δ)=
∑n
j=1 fIj (Xj )∑n
j=1 f

∗(Xj )
.

Obviously, Rn is a random variable no bigger than 1. It measures the performance
of the allocation rule relative to the ideal one with the optimal arm known for
each x.

DEFINITION. An allocation rule δ is said to be strongly consistent if Rn(δ)→
1 with probability 1.

REMARK 1. It is also reasonable to study the ratio∑n
j=1 YIj ,j∑n

j=1 Yi∗(Xj ),j

as a measure of performance for allocation. As can be easily seen (see the
Appendix), the two measures are basically the same.
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REMARK 2. If 1
n

∑n
j=1 f

∗(Xj ) is eventually bounded above and away from 0

with probability 1, then Rn(δ) → 1 a.s. is equivalent to 1
n

∑n
j=1(fIj (Xj )−

f ∗(Xj ))→ 0 a.s.

REMARK 3. In some contexts such as problem-solving in machine learning
[e.g., Gratch, DeJong and Yang (1994)], one naturally wants to minimize (rather
than maximize) the response (e.g., time used to solve a problem). The preceding
definition and the subsequent results to be presented are also suitable for such cases
with some straightforward modifications.

Clearly, consistency is a desirable property. Allocation rules will be constructed
and will be shown to be strongly consistent.

Not surprisingly, efficient allocation requires that the individual functions fi be
estimated to some extent. We will apply nonparametric techniques to estimate the
mean reward functions and then base the selection of an arm on a consideration that
involves a comparison of the estimates of fi ’s. To achieve efficiency, one needs to
appropriately balance the tendency to use the currently most promising arm with
the desire to try other arms. We use a randomization technique to automatically
balance the two competing tendencies.

Our work is very different from previous results on bandit problems with
covariates by Woodroofe (1979), Clayton (1989) and Sarkar (1991). The main
differences are as follows: (1) we consider multi-arm problems while previous
work considered one-arm problems; (2) modeling of the dependence of Y on
the covariates is different—we use a nonparametric regression framework and
previous work assumed parametric relationships; (3) no discounting is considered
in our performance measure; (4) unlike previous work, our result is not in a
Bayesian framework and we study a strong consistency property of allocation; and
(5) we use a randomized allocation rule and the previous work used deterministic
rules. Our approach seems quite realistic for many applications.

3. Proposed strategy. There are two main ingredients in our approach on
selecting an arm: (1) nonparametric estimation of the individual functions fi and
(2) a proper allocation scheme to control the trade-off between the two competing
tendencies mentioned previously.

For estimating the fi’s, consider a nonparametric regression procedure, for
example, histogram, nearest neighbor, kernel or local polynomial regression. At
each time n≥ 1, let Zn,i denote the set of observations (Xj ,YIj ,j ), 1 ≤ j ≤ n, to

which the ith arm is pulled (i.e., Ij = i). Let f̂i,n denote the regression estimator
of fi based on the data Zn,i .

The following is our proposed strategy of allocation. Let {πj , j ≥ 1} be a
sequence of positive numbers decreasing to 0.

STEP 1. Initialize. Give each arm a small number of applications. We here
take I1 = 1, I2 = 2, . . . , II = I (i.e., give each arm a try).
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STEP 2. Estimate the individual functions fi . For n = I + 1, based on the
current data Zn,i , estimate fi by f̂i,n for 1 ≤ i ≤ I using the chosen regression
procedure.

STEP 3. Estimate the best arm. For the next covariate Xn+1, let ı̂n+1(Xn+1)

be the maximizer of f̂i,n(Xn+1) over 1 ≤ i ≤ I (if there is a tie, any tie-breaking
rule can be used).

STEP 4. Select and pull. Randomly select an arm, with probability 1 − (I −
1)πn+1 for i = ı̂n+1 (the currently most promising choice) and with probability
πn+1 for each of the remaining arms. [Here it is assumed that (I − 1)πn+1 < 1.]
Let In+1 denote the selected arm. Pull the arm In+1 to receive the reward.

STEP 5. Update the estimates. After the new observationXn+1, In+1, YIn+1,n+1,
update the function estimate of fi for i = In+1.

STEP 6. Repeat Steps 3–5 when the next covariate Xn+2 surfaces and so on.

Note that in Step 4 a randomized selection is used. With high probability, we
select the currently projectedly “best” arm (based on the estimates of the fi’s), but
still give other arms some chance. Since πn decreases to 0, with more and more
data, the chance gets smaller and smaller. When the variances of the errors are large
with n being small or moderate, the estimates of the fi ’s are not very accurate, and
therefore ı̂n+1 is not very reliable. In such cases, it is better to choose a πn that is
not too small so as to reach a sound comparison among the arms more rapidly. The
same argument applies when the individual functions are not very smooth and can
change rapidly. In some sense, the speed at which πn → 0 reflects our confidence
in the accuracy of the estimates of the functions fi . Like the bandwidth in kernel
regression, the choice of πn affects the final performance of our proposed strategy.
In this work, we will not pursue the issue of finding an automated choice of πn.

The proposed allocation rule will be denoted δπ .

4. Examples of regression procedures. Various regression procedures can
be used to estimate the individual mean reward function fi ’s. We mention a few
below. We do not address design issues here and assume that the covariate values
are given.

Consider the regression model

Yj = f (xj )+ εj , 1 ≤ j ≤ n,
where x1, . . . , xn ∈ [0,1]d are given design points and the εj ’s are independent
errors with mean 0 and finite variance. One needs to estimate the regression
function f .
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4.1. Histogram method. Partition [0,1]d intoM = (1/h)d (hyper-)cubes with
side width h (assuming h is chosen such that 1/h is an integer). For each x, let
J (x) = {j : 1 ≤ j ≤ n, xj and x belong to the same cube} indicate the design
points that fall in the same cube as x. Let N(x) denote the size of J (x). Then
define f̂ (x) = 1

N(x)

∑
j∈J (x) Yj to be the average of the Y values in the cube

[if N(x) = 0, define f̂ (x) as any chosen positive constant]. For the estimator to
behave well, a proper choice of h= hn is necessary. For convergence results, see,
for example, Stone (1977), Devroye and Györfi (1985) and Nobel (1996) and the
references therein. When applying the histogram method to our problem, one may
use different widths hi,n for estimating the function fi ’s.

4.2. Nearest neighbor method. Consider the use of the Nn nearest neighbor
method for estimating the function f . Let d be a distance on [0,1]d . A natural

choice is the Euclidean distance d(x, y) = ‖x − y‖ =
√∑d

j=1(xj − yj )2. For a

chosen integer N = Nn and x ∈ [0,1]d , let J (x;N) = {j : 1 ≤ j ≤ n and xj
is among the N closest points to x} indicate observations with xj being the N
closest to x in distance d . Then let f̂ (x) = 1

N

∑
j∈J (x;N) Yj be the average of

the Y values of the N nearest neighboring points to x. As is well known, roughly
speaking, when N is large, the variance of f̂ is small but the bias of f̂ can be
large; conversely, when N is small, the variance of f̂ is large but the bias of f̂ is
small. An appropriate choice ofN is needed to reach an overall good performance.
In general, N = Nn should be chosen to increase in n for the estimation risk to
converge to 0. See, for example, Devroye, Györfi, Krzyżak and Lugosi (1994) and
the references cited therein for convergence results on nearest neighbor methods.

4.3. Kernel method. When the underlying regression function f is very smooth,
estimates that are smoother than the histogram or nearest neighbor estimate may
improve performance. Kernel and local polynomial regression techniques have
been widely studied [see, e.g., Fan and Gijbels (1996)].

One can also consider other estimation methods such as polynomial or
trigonometric expansion, spline methods and neural nets (for high-dimensional
settings).

5. Consistency of the proposed strategy.

ASSUMPTION A. The regression procedure is strongly consistent in L∞ norm
for all individual mean functions fi under the proposed allocation scheme, that is,
‖f̂i,n − fi‖∞ → 0 a.s. for each 1 ≤ i ≤ I as n→ ∞.

ASSUMPTION B. The mean functions satisfy fi(x) ≥ 0, A =
sup1≤i≤I supx∈[0,1]d (f ∗(x)− fi(x)) <∞ and E(f ∗(X1)) > 0.
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The first assumption requires the estimators of the individual mean functions fi
to become more and more accurate as n→ ∞ and the conditions in the second
assumption are natural in our setup of the problem or mild.

THEOREM 1. Under Assumptions A and B, the allocation rule δπ given in
Section 3 is strongly consistent.

PROOF. Since the ratio Rn(δπ ) is always upper bounded by 1, we only need
to work on the lower bound direction. Corresponding to Step 1, define Îj = Ij = j

for 1 ≤ j ≤ I. Note that

Rn(δπ )=
∑n
j=1 fı̂j (Xj )∑n
j=1 f

∗(Xj )
+
∑n
j=1(fIj (Xj )− fı̂j (Xj ))∑n

j=1 f
∗(Xj )

≥
∑n
j=1 fı̂j (Xj )∑n
j=1 f

∗(Xj )
−

1
n

∑n
j=1AI{Ij �=ı̂j }

1
n

∑n
j=1 f

∗(Xj )
,

where the inequality follows from Assumption B. [Note that, sinceE(f ∗(X1)) > 0,
the denominator

∑n
j=1 f

∗(Xj ) is eventually positive with probability 1.] Let

Uj = I{Ij �=ı̂j }. Since 1
n

∑n
j=1 f

∗(Xj ) converges a.s. to Ef ∗(X) > 0, the second

term in the above inequality converges to 0 almost surely if 1
n

∑n
j=1Uj → 0 a.s.

Note that, for j ≥ I+1, the Uj ’s are independent Bernoulli random variables with
success probability (I − 1)πj . Since

∞∑
j=I+1

Var
(
Uj

j

)
=

∞∑
j=I+1

(
I − 1)πj (1 − (I − 1)πj

)
j2

<∞,

we have
∑∞
j=I+1((Uj − (I − 1)πj )/j) converging almost surely. It then follows

by Kronecker’s lemma that 1
n

∑n
j=1(Uj − (I − 1)πj ) → 0 a.s. Observing that

1
n

∑n
j=1(I − 1)πj → 0 since πj → 0 as j → ∞, we thus know 1

n

∑n
j=1Uj → 0

a.s.
From above, to show Rn(δπ ) → 1 a.s., it remains to show

∑n
j=1 fı̂j (Xj )/∑n

j=1 f
∗(Xj )→ 1 a.s. or, equivalently,

∑n
j=1(fı̂j (Xj )− f ∗(Xj ))/

∑n
j=1 f

∗(Xj )
→ 0 a.s. By the definition of ı̂j , for j ≥ I + 1, we have f̂ı̂j ,j−1(Xj ) ≥
f̂i∗(Xj ),j−1(Xj ) and thus

fı̂j (Xj )− f ∗(Xj )

= fı̂j (Xj )− f̂ı̂j ,j−1(Xj )+ f̂ı̂j ,j−1(Xj )− f̂i∗(Xj ),j−1(Xj )

+ f̂i∗(Xj ),j−1(Xj )− fi∗(Xj )(Xj )

≥ fı̂j (Xj )− f̂ı̂j ,j−1(Xj )+ f̂i∗(Xj ),j−1(Xj )− fi∗(Xj )(Xj )

≥ −2 sup
1≤i≤I

‖f̂i,j−1 − fi‖∞.



A BANDIT PROBLEM WITH COVARIATES 107

For 1 ≤ j ≤ I, we have fı̂j (Xj ) − f ∗(Xj ) ≥ −A. Based on Assumption A,

‖f̂i,j−1 − fi‖∞ → 0 a.s. as j → ∞ for each i, and thus sup1≤i≤I ‖f̂i,j−1 − fi‖∞
→ 0 a.s. It follows that for, n > I,∑n

j=1(fı̂j (Xj )− f ∗(Xj ))∑n
j=1 f

∗(Xj )

≥ −AI/n− (2/n)
∑n
j=I+1 sup1≤i≤I ‖f̂i,j−1 − fi‖∞

(1/n)
∑n
j=1 f

∗(Xj )
.

Clearly the right-hand side converges to 0 almost surely. By the definition of f ∗,
the left-hand side is upper bounded by 0. The conclusion follows. This completes
the proof of Theorem 1. �

Although Assumption A for Theorem 1 seems quite natural, it is somewhat
heavy since it imposes a condition in terms of both the estimation procedure
and the allocation scheme. It may be difficult to check in general. In the next
two sections, we verify it for two cases, namely, histogram and nearest neighbor
procedures.

6. Allocation with histogram estimates. In this section, we show that the
histogram regression procedure described in Section 4 together with the allocation
scheme in Section 3 leads to strong consistency under some reasonable conditions
on the random errors, design distribution and the individual mean functions fi .

ASSUMPTION 1. The functions fi are nonnegative and continuous on [0,1]d
and Ef ∗(X1) > 0.

ASSUMPTION 2. The design distribution PX is dominated by the Lebesgue
measure with a density p(x) uniformly bounded above and away from 0 on [0,1]d ;
that is, p(x) satisfies c≤ p(x)≤ c for some positive constants c < c.

ASSUMPTION 3. The errors satisfy a moment condition that there exist
positive constants v and c such that, for all m≥ 2,

E|εij |m ≤ m!
2
v2cm−2.(1)

Note that the condition does not require identical distribution of errors. The
condition is often called the (refined) Bernstein condition [see, e.g., van der Vaart
and Wellner (1996), Lemma 2.2.11, and Birgé and Massart (1998), Lemma 8].

For simplicity, for each n, the same side width hn is used for histogram
estimations of the different functions fi, 1 ≤ i ≤ I, based on the data prior to
the next covariate Xn+1.
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THEOREM 2. Suppose Assumptions 1–3 are satisfied. If h = hn and πn are
chosen to satisfy

nhdπ2
n

logn
→ ∞,

then the allocation rule δπ is strongly consistent.

REMARK. If there are no available covariates or the available covariates are
irrelevant, then fi(x) ≡ ci for some positive constants ci for 1 ≤ i ≤ I. In this
case, the best arm i∗(X) does not depend on X. By Theorem 2, the allocation
rule asymptotically does as well as the arm i∗. Consistency (in expectation instead
of a.s.) for a two-armed bandit problem without covariates was first obtained by
Robbins (1952). Lai and Robbins (1985) moved a step forward by constructing
asymptotically efficient allocation rules.

Note that, for estimating the individual functions fi , the observations so far are
divided into I subsamples according to the arms pulled. Intuitively, if the covariate
values in each subsample are eventually dense in [0,1]d, the histogram estimators
should become more and more accurate. Technically speaking, however, it is quite
nontrivial to verify Assumption A. Strong consistency of histogram estimators
(under L∞ norm) in a regular regression setting does not readily imply the
satisfaction of Assumption A. A major difficulty in the analysis arises from the
fact that the Y ’s in each subsample are no longer independent since the allocation
rule ties them together.

PROOF OF THEOREM 2. By Theorem 1, since Assumption B is clearly
satisfied, we only need to verify Assumption A, that is, show that the histogram
method is strongly consistent in L∞ norm for estimating fi ’s under the allocation
scheme given in Section 3.

The histogram technique partitions the unit cube into M = (1/h)n small cubes.
Under Assumption 2, from Section A.5, for each small cube Cl , 1 ≤ l ≤M , in the
partition, the number of observations Xj , 1 ≤ j ≤ n, that fall in the cube, denoted
by Nl , is unlikely to be very small relative to nhd as shown in the inequality:

P

(
Nl ≤ cnhd

2

)
≤ exp

(
−3cnhd

28

)
.

It follows that

P

(
min

1≤l≤MNl ≤
cnhd

2

)
≤M exp

(
−3cnhd

28

)
.(2)

Now condition on a realization of the design variables X1 = x1, . . . ,Xn = xn.
Consider the estimation of fi(x) for a fixed i in {1, . . . ,I}. Let W1, . . . ,Wn be
Bernoulli random variables indicating whether the ith arm is selected (Wj = 1)
for the characteristic Xj ,1 ≤ j ≤ n, or not (Wj = 0). Note that, conditional on the
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previous observations and Xj , the probability of Wj = 1 is almost surely lower
bounded by πj ≥ πn for 1 ≤ j ≤ n (since πj is nonincreasing). Let ω(h;fi) be
the modulus of continuity, as defined in (5) in Section A.2, of the function fi .
Under the continuity assumption on fi , we have ω(h;fi)→ 0 as h→ 0. Thus,
for any ε > 0, when h is small enough, ε − ω(h;fi) ≥ ε/2. From Lemma 1 in
Section A.2, we have that, given the design points, for any ε > 0, when h= hn is
small enough,

Pxn
(‖f̂i,n − fi‖∞ ≥ ε)≤M exp

(
−3πnmin1≤l≤M Nl

28

)
+2M exp

(
−min1≤l≤M Nlπ2

n

(
ε −ω(h;fi))2

8
(
v2 + c(πn/2)

(
ε −ω(h;fi)))

)
.

(3)

Here for applying Lemma 1, we used the observation that, for each j ≥ 1, Wj

is independent of the εi,l’s for all l ≥ j since Wj depends only on the previous
observations and Xj . From (3), we have

Pxn

(
‖f̂i,n − fi‖∞ ≥ ε, min

1≤l≤MNl ≥
cnhd

2

)

≤


M exp

(
−3cnhdπn

56

)
+ 2M exp

(
− cnhdπ2

n

(
ε −ω(h;fi))2

16
(
v2 + c(πn/2)

(
ε −ω(h;fi)))

)
,

when min1≤l≤M Nl ≥ cnhd

2
,

0, otherwise.

Together with (2), we have

P
(‖f̂i,n − fi‖∞ ≥ ε)

= P

(
‖f̂i,n − fi‖∞ ≥ ε, min

1≤l≤MNl <
cnhd

2

)

+ P

(
‖f̂i,n − fi‖∞ ≥ ε, min

1≤l≤MNl ≥
cnhd

2

)

≤ P
(

min
1≤l≤MNl <

cnhd

2

)
+EPXn

(
‖f̂i,n − fi‖∞ ≥ ε, min

1≤l≤MNl ≥
cnhd

2

)

≤M exp
(
−3cnhd

28

)
+M exp

(
−3cnhdπn

56

)

+ 2M exp

(
− cnhdπ2

n

(
ε −ω(h;fi))2

16
(
v2 + c(πn/2)

(
ε −ω(h;fi)))

)
.



110 Y. YANG AND D. ZHU

It is straightforward to show that, under the condition nhdπ2
n/logn → ∞, the

above upper bound is summable in n and thus
∞∑
n=1

P
(‖f̂i,n − fi‖∞ ≥ ε)<∞.

Since ε is arbitrary, by the Borel–Cantelli lemma, ‖f̂i,n − fi‖∞ → 0. This
completes the proof of Theorem 2. �

7. Allocation with nearest neighbor estimates. Like the histogram ap-
proach, nearest neighbor estimators can be used to achieve strong consistency.

For estimating the functions fi based on the information accumulated before the
next covariateXn+1, choose an integer N =Nn. For x ∈ [0,1]d, let J (x;N)= {j :
1 ≤ j ≤ n and Xj is among the N closest points to x}. For 1 ≤ i ≤ I, let Ji(x;N)
be the subset of J (x;N) that corresponds to pulling the ith arm. Let Ni(x) denote
the size of Ji(x;N). Then, for 1 ≤ i ≤ I, let

f̂i,n(x)= 1

Ni(x)

∑
j∈Ji(x;N)

Yi,j

be the estimator of fi(x). [If Ni(x) = 0, define f̂i,n(x) to be any chosen positive
constant.]

THEOREM 3. Suppose Assumptions 1–3 are satisfied. With the Nn nearest
neighbor estimators defined previously, if Nn and πn are chosen to satisfy

Nnπ
2
n

logn
→ ∞,

Nn

n
→ 0,

then the allocation rule δπ is strongly consistent.

PROOF. Again, by Theorem 1, since Assumption B is satisfied, we only need
to show that the nearest neighbor method is strongly consistent in L∞ norm for
estimating fi ’s under the allocation scheme given in Section 3.

Fix 1 ≤ i ≤ I. For x = (x1, . . . , xd) ∈ [0,1]d and Xj = (Xj,1, . . . ,Xj,d), define
r(x)= sup

j∈J (x;Nn)
sup

1≤l≤d
|xl −Xj,l|.

Let ω(h;fi) denote the modulus of continuity of fi . For ε > 0, let ηε =
sup{t : ω(t;fi)≤ ε}. From Lemma 3 in Section A.6, we have

P
(‖f̂i,n − fi‖∞ ≥ ε)

≤ P
(
sup
x
r(x)≥ ηε/4

)

+ (
nd+2 + 1

)(
exp

(
−3Nnπn

28

)
+ exp

(
− Nnπ

2
nε

2

16(v2 + cπnε/4)

))
.
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For an analysis of the first term in the preceding upper bound, consider
partitioning the unit cube into smaller cubes of side length h as in the histogram
estimation. There are M = (1/h)d many such cubes. Fix a small cube. If there
are at least Nn points in the cube, then ri(x) ≤ h for x in the small cube. Thus,
the set {(X1, . . . ,Xn) : supx r(x)≥ ηε/4} is contained in the set where there exists
at least one small cube of side length h < ηε/4 with the number of observations
corresponding to the ith arm less than Nn. It follows that

P
(
sup
x
r(x)≥ ηε/4

)
≤Mp,

where p is the probability that there are less than Nn observations in a given small
cube. For h such that cnhd/2 ≥Nn, by Section A.5, we have

p ≤ exp
(
−3cnhd

28

)
≤ exp

(
−3Nn

14

)
.

From all the above, with h < ηε/4 and Nn ≤ cnhd/2,

P
(‖f̂i,n − fi‖∞ ≥ ε)

≤M exp
(
−3Nn

14

)
+ (
nd+2 + 1

)(
exp

(
−3Nnπn

28

)
+ exp

(
− Nnπ

2
nε

2

16(v2 + cπnε/4)

))
.

(4)

Under the continuity assumption, we have ω(h;fi)→ 0 as h→ 0. Thus, for any
ε > 0, ηε > 0. Then, if we take hn → 0, eventually we have hn ≤ ηε/4. For Nn
such that Nnπ2

n/ logn → ∞ and Nn = o(n), we can choose hn → 0 satisfying
hn ≥ (2Nn/(cn))1/d as needed for (4). As a consequence, for each ε > 0, the upper
bound in (4) is summable in n and thus

∞∑
n=1

P
(‖f̂i,n − fi‖∞ ≥ ε)<∞.

By the Borel–Cantelli lemma, since ε is arbitrary, ‖f̂i,n − fi‖∞ → 0 with
probability 1. This completes the proof of Theorem 3. �

8. Conclusions. Multi-armed bandit problems have applications in various
practical settings, including clinical trials, scheduling and automated problem
solving in machine learning. In most of these situations, some covariates or
concomitant variables are available, that, when utilized appropriately, can be
helpful in selecting a good arm and thus obtaining a high reward. However, in
the vast majority of previous work, such auxiliary information was not considered.

In this work, we model the relationship between the reward generated by an
arm and the covariate in a nonparametric regression framework. With the covariate
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observed, the best arm (with the highest mean reward) depends on its value and, of
course, is unknown. An allocation rule is said to be strongly consistent if the total
reward it receives up to time n is almost surely asymptotically equivalent to that
obtained by always pulling the best arm. Nonparametric regression techniques can
be used to estimate the functional relationship (the mean reward function) between
the reward and the covariate for each arm based on the past observations. At the
next observed covariate value, based on the estimated mean reward functions of
the arms, one arm is projected to give the highest reward. Due to uncertainty
in the estimators of the mean reward functions, one faces the challenge of
two conflicting tendencies: on one hand, one tends to pull the projected best
arm for high reward based on the currently available information; on the other
hand, one wants to try other arms to accumulate more information so that a
comparison based on the estimated mean reward functions becomes more reliable.
We propose a randomization method to automatically balance the two competing
tendencies. The allocation rule is shown to be strongly consistent when the
regression procedure used to estimate the mean reward functions satisfies certain
conditions, which are shown to hold for familiar histogram and nearest neighbor
methods.

Our approach and results on bandit problems with covariates differ significantly
from earlier work reported in the literature. Unlike earlier results, no discounting
of later rewards is considered in our work. In contrast to earlier parametric ap-
proaches, we use a more flexible nonparametric framework to model relationships
between the rewards and covariates. In addition, the allocation rule in our work is
randomized instead of deterministic.

There are several directions for future work. The property of strong consistency
does not address the issue of how quickly the total reward based on the allocation
rule approaches the ideal one. It is important to study the optimal rate of
convergence (e.g., in terms of the smoothness of the mean reward functions) and
find allocation rules that achieve the optimal rate. A more challenging task is to
construct an adaptive allocation rule that automatically achieves the optimal rate
of convergence without the knowledge of, for example, smoothness of the mean
reward functions. It is also of interest to incorporate discounting (e.g., geometric
discounting) in the definition of consistency in our framework and investigate
the corresponding properties. Another interesting and important issue is design of
covariates. In this work, covariates are assumed to be independent and identically
distributed. In some practical settings such as in clinical trials, one needs to choose
a sampling scheme of the covariates as well. For better performance, nonuniform
and adaptive schemes should be considered. For instance, in a region of covariates
where the mean reward functions barely change, one should sample less frequently.
A difficulty here is that a good sampling scheme requires some knowledge of the
unknown mean reward functions. Work in these directions will find more realistic
applications.
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APPENDIX

A.1. A slightly different measure of performance. The definition of consis-
tency given in Section 2 involves the mean reward averaged over random errors. It
is essentially the same as the following defined in terms of the observed rewards.

DEFINITION. An allocation rule is said to be strongly consistent if∑n
j=1 YIj ,j∑n

j=1 Yi∗(Xj ),j
→ 1 with probability 1.

Note that ∑n
j=1 YIj ,j∑n

j=1 Yi∗(Xj ),j
=

1
n

∑n
j=1 fIj (Xj )+ 1

n

∑n
j=1 εIj ,j

1
n

∑n
j=1 fi∗(Xj )(Xj )+ 1

n

∑n
j=1 εi∗(Xj ),j

.

By the strong law of large numbers, 1
n

∑n
j=1 εIj ,j → 0 and 1

n

∑n
j=1 εi∗(Xj ),j → 0

almost surely. Thus, the two measures are essentially the same.

One may consider a more ambitious goal, to asymptotically achieve the
performance obtainable only when one knows the realization of rewards in
advance. That is, one wants to have an allocation rule such that∑n

j=1 YIj ,j∑n
j=1 Y j

→ 1 a.s.,

where Y j = max{Yi,j : 1 ≤ i ≤ I}. It is not hard to show that this is impossible to
achieve in general.

A.2. A probability bound on the performance of the histogram method.
Consider the regression model

Yj = f (xj )+ εj , 1 ≤ j ≤ n,
where x1, . . . , xn ∈ [0,1]d are given design points and the εj ’s are indepen-
dent errors satisfying the moment condition in Assumption 3 in Section 6.
Let W1, . . . ,Wn be Bernoulli random variables with success probability lower
bounded by πj , 1 ≤ j ≤ n, that decide if Yj is observed (Wj = 1) or not (Wj = 0).
Assume, for each 1 ≤ j ≤ n, Wj is independent of {εk :k ≥ j}. Let f̂n be the his-
togram estimator of f as defined in Section 4. Let ω(h;f ) denote a modulus of
continuity defined by

ω(h;f )= sup
{|f (x1)− f (x2)| : |x1i − x2i| ≤ h for all 1 ≤ i ≤ d}.(5)
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LEMMA 1. Let ε>0be given.Suppose thath is small enough so thatω(h;f )<ε .
Then the histogram estimator f̂n satisfies

Pxn
(‖f̂n − f ‖∞ ≥ ε)≤M exp

(
−3πnmin1≤l≤M Nl

28

)

+ 2M exp

(
−min1≤l≤M Nlπ2

n

(
ε −ω(h;f ))2

8
(
v2 + c(πn/2)

(
ε −ω(h;f )))

)
.

Here the probability (denoted by Pxn) is conditioned on the design points.

PROOF. Note that the preceding inequality trivially holds if min1≤l≤M Nl = 0.
Thus, we assume that min1≤l≤M Nl > 0. Let N(x) denote the number of xi’s that
fall in the same cube as x and let J (x) denote the set of indices 1 ≤ j ≤ n of such
design points. Let J (x) denote the subset of J (x), where Wj takes value 1, and let
N(x) denote the size of the set. Note

f̂n(x)= 1

N(x)

∑
j∈J(x)

Yj

= f (x)+ 1

N(x)

∑
j∈J(x)

(
f (xj )− f (x)

)+ 1

N(x)

∑
j∈J(x)

εj .

It follows that

|f̂n(x)− f (x)| ≤ ω(h;f )+
∣∣∣∣ 1

N(x)

∑
j∈J(x)

εj

∣∣∣∣.
Consequently, for any ε > ω(h;f ), with the given design points,

P
(‖f̂n − f ‖∞ ≥ ε)≤ P(sup

x

∣∣∣∣ 1

N(x)

∑
j∈J(x)

εj

∣∣∣∣≥ ε −ω(h;f )
)
.

Note that N(x),N(x), J (x) and J (x) are the same for x in the same small cube
C, respectively. Let x0 be a fixed point in C. Then

P

(
sup
x∈C

∣∣∣∣ 1

N(x)

∑
j∈J(x)

εj

∣∣∣∣≥ ε −ω(h;f )
)

= P

(∣∣∣∣ ∑
j∈J(x0)

εj

∣∣∣∣≥N(x0)
(
ε −ω(h;f )))

= P

(∣∣∣∣ ∑
j∈J (x0)

Wjεj

∣∣∣∣≥N(x0)
N(x0)

N(x0)

(
ε −ω(h;f )))
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= P

(∣∣∣∣ ∑
j∈J (x0)

Wjεj

∣∣∣∣≥N(x0)
N(x0)

N(x0)

(
ε −ω(h;f )), N(x0)

N(x0)
≤ πn

2

)

+ P

(∣∣∣∣ ∑
j∈J (x0)

Wjεj

∣∣∣∣≥N(x0)
N(x0)

N(x0)

(
ε −ω(h;f )), N(x0)

N(x0)
>
πn

2

)

≤ P
(
N(x0)

N(x0)
≤ πn

2

)
+ P

(∣∣∣∣ 1

N(x0)

∑
j∈J (x0)

Wjεj

∣∣∣∣≥ πn

2

(
ε −ω(h;f )))

≤ exp
(
−3N(x0)πn

28

)
+ 2 exp

(
− N(x0)(πn/2)2

(
ε −ω(h;f ))2

2
(
v2 + c(πn/2)

(
ε −ω(h;f )))

)
,

where the last inequality follows from inequality (8) in Section A.4 and Lemma 2
in Section A.3. Therefore, we have

Pxn
(‖f̂n − f ‖∞ ≥ ε)≤M exp

(
−3πnmin1≤l≤M Nl

28

)

+ 2M exp

(
−min1≤l≤M Nl(πn/2)2

(
ε −ω(h;f ))2

2
(
v2 + c(πn/2)

(
ε −ω(h;f )))

)
.

The conclusion follows. This completes the proof of Lemma 1. �

A.3. A probability inequality for sums of certain random variables. Let
ε1, ε2, . . . be independent random variables satisfying the refined Bernstein
condition (1) in Assumption 3. Let I1, I2, . . . be Bernoulli random variables such
that Ij is independent of {εl : l ≥ j} for all j ≥ 1.

LEMMA 2. For any ε > 0,

P

(
n∑
j=1

Ijεj ≥ nε
)

≤ exp
(
− nε2/2

v2 + cε

)
.

Particularly, by taking I1 = I2 = · · · = In with probability 1, we have

P

(
n∑
j=1

εj ≥ nε
)

≤ exp
(
− nε2/2

v2 + cε

)
.(6)

REMARK. The second inequality in (6) above is called the (refined) Bernstein
inequality [see, e.g., van der Vaart and Wellner (1996), Lemma 2.2.11, and Birgé
and Massart (1998), Lemma 8].
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PROOF OF LEMMA 2. Following a standard argument, we have, for any t > 0,

P

(
n∑
j=1

Ijεj ≥ nε
)

≤ e−ntεE exp

(
t

n∑
j=1

Ijεj

)

= e−ntεE
(
E exp

(
t

n∑
j=1

Ijεj

)∣∣∣ε1, . . . , εn−1, I1, . . . , In−1

)

= e−ntεE
[

exp

(
t

n−1∑
j=1

Ij εj

)
E
(
etInεn |ε1, . . . , εn−1, I1, . . . , In−1

)]
.

Since εn is independent of ε1, . . . , εn−1, I1, . . . , In−1 and In, we have

E
(
etInεn |ε1, . . . , εn−1, I1, . . . , In−1

)
= E

(
etεn

)
P
(
In = 1|ε1, . . . , εn−1, I1, . . . , In−1

)
+ 1 − P

(
In = 1|ε1, . . . , εn−1, I1, . . . , In−1

)
.

Under the Bernstein condition on the errors,

E
(
etεn

)≤ exp
(

v2t2

2(1 − tc)

)
for t < 1/c. Since exp(v2t2/(2(1 − tc))) > 1 when t < 1/c,

E
(
etInεn |ε1, . . . , εn−1, I1, . . . , In−1

)≤ exp
(

v2t2

2(1 − tc)

)
.

By induction, we have, for t < 1/c,

E exp

(
t

n∑
j=1

Ijεj

)
≤ exp

(
nv2t2

2(1 − tc)

)

and, consequently,

P

(
n∑
j=1

Ijεj ≥ nε
)

≤ exp
(
−ntε + nv2t2

2(1 − tc)

)
.

Minimizing the exponent of the upper bound over t [as in Birgé and Massart
(1998), Lemma 8] gives the claimed inequality. �
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A.4. An inequality for Bernoulli trials. For 1 ≤ j ≤ n, let Wj be indepen-
dent Bernoulli random variables with success probability βi. Applying Bernstein’s
inequality [see, e.g., Pollard (1984), page 193], we have

P

(
n∑
j=1

Wj ≤
(

n∑
j=1

βj

)/
2

)
≤ exp

(
−3

∑n
j=1 βj

28

)
.(7)

In a somewhat more complicated setting, for 1 ≤ j ≤ n, let W̃j be Bernoulli
random variables, which are not necessarily independent. Assume that the
conditional probability of success for W̃j given the previous observations is lower
bounded by βj , that is,

P
(
W̃j = 1|W̃i,1 ≤ i ≤ j − 1

)≥ βj a.s.,

for all 1 ≤ j ≤ n. Then it can be easily shown that
∑n
j=1 W̃j is stochastically no

smaller than
∑n
j=1Wj with the Wj ’s defined earlier in this section. Therefore, it

follows that

P

(
n∑
j=1

W̃j ≤
(

n∑
j=1

βj

)/
2

)
≤ exp

(
−3

∑n
j=1 βj

28

)
.(8)

A.5. Number of observations in a small cube for histogram estimation.
Let X1, . . . ,Xn be i.i.d. random variables in [0,1]d . Assume that the design
distribution PX has a density p(x) with respect to Lebesgue measure and p(x)
satisfies c ≤ p(x) ≤ c for some positive constants c ≤ c. Let N be the number of
observations falling in a fixed cube of side width h. It is easily seen that N has a
binomial distribution with success probability β ≥ chd . From the inequality (7),
we have

P

(
N ≤ cnhd

2

)
≤ exp

(
−3cnhd

28

)
.

A.6. A probability bound on the performance of the nearest neighbor
method. Consider the nearest neighbor estimators of the functions fi as defined
in Section 7. Now fix i in {1, . . . ,I}. Let W1, . . . ,Wn be the Bernoulli random
variables that decide if the ith arm is pulled for Xj (Wj = 1) or not (Wj = 0)
for 1 ≤ j ≤ n. From the description of the allocation scheme in Section 3, it is
clear that, for each 1 ≤ j ≤ n, Wj is independent of {εi,k :k ≥ j}. Note also that,
conditional on the previous observations and Xj , the probability of Wj = 1 is
almost surely lower bounded by πj ≥ πn for 1 ≤ j ≤ n.

Let J (x)= J (x;N) and Ji(x)= Ji(x;N) be defined as in Section 7.
For x = (x1, . . . , xd) ∈ [0,1]d and Xj = (Xj,1, . . . ,Xj,d), define r(x) =

supj∈J (x) sup1≤l≤d |xl−Xj,l|. Letω(h;fi) denote the modulus of continuity of fi .
For ε > 0, let ηε = sup{t :ω(t;fi)≤ ε}.
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LEMMA 3. Suppose that Assumptions 1–3 are satisfied. Then the Nn nearest
neighbor estimator f̂i,n satisfies

P
(‖f̂i,n − fi‖∞ ≥ ε)

≤ P
(
sup
x
r(x)≥ ηε/4

)

+ (
nd+2 + 1

)(
exp

(
−3Nnπn

28

)
+ exp

(
− Nnπ

2
nε

2

16(v2 + cπnε/4)

))
.

PROOF. Note that

f̂i,n(x)= 1

Ni(x)

∑
j∈Ji(x)

Yi,j

= f (x)+ 1

Ni(x)

∑
j∈Ji(x)

(
fi(Xj )− fi(x)

)+ 1

Ni(x)

∑
j∈Ji(x)

εi,j .

It follows that

|f̂i,n(x)− fi(x)| ≤ ω(r(x);fi)+ ∣∣∣∣ 1

Ni(x)

∑
j∈Ji(x)

εi,j

∣∣∣∣.
Consequently, for any ε > 0,

P
(‖f̂n − f ‖∞ ≥ ε)≤ P

(
sup
x
ω
(
r(x);fi)≥ ε

2

)

+ P

(
sup
x

∣∣∣∣ 1

Ni(x)

∑
j∈Ji(x)

εi,j

∣∣∣∣≥ ε

2

)

≤ P
(
sup
x
r(x)≥ ηε/4

)
+ P

(
sup
x

∣∣∣∣ 1

Ni(x)

∑
j∈Ji(x)

Wjεi,j

∣∣∣∣≥ ε

2

)
,

where, for the second inequality, we used the fact that ω(·;fi) is nondecreasing
[since if r(x) < ηε/4 then ω(r(x);fi)≤ ε/4]. We handle below the second term of
the aforementioned second inequality.

Now condition on the design points. Note that, for different x, J (x) may be the
same. LetL be the total number of choices that J (x) can take for x ∈ [0,1]d and let
t1, . . . , tL be any chosen representatives for these distinct values. Observing that L
depends only on the design points, we have that, conditional onX1=x1, . . . ,Xn=xn,

Pxn

(
sup
x

∣∣∣∣ 1

Ni(x)

∑
j∈J (x)

Wjεi,j

∣∣∣∣≥ ε

2

)
≤

L∑
l=1

Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥Ni(tl)ε2
)
.
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Applying Lemma 2 in Section A.3, we have that, for any δ > 0,

Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥Nnδ
)

≤ exp
(
−Nnδ

2/2

v2 + cδ

)
.

By (8), we have

Pxn

(
Ni(tl)≤ Nnπn

2

)
≤ exp

(
−3Nnπn

28

)
.

It follows then

Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥ Ni(tl)ε

2

)

= Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥ Ni(tl)ε

2
,Ni(tl)≤ Nnπn

2

)

+ Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥ Ni(tl)ε

2
,Ni(tl) >

Nnπn

2

)

≤ Pxn
(
Ni(tl)≤ Nnπn

2

)

+ Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥ Nnπnε

4
,Ni(tl) >

Nnπn

2

)

≤ Pxn
(
Ni(tl)≤ Nnπn

2

)
+ Pxn

(∣∣∣∣ ∑
j∈J (tl)

Wjεi,j

∣∣∣∣≥ Nnπnε

4

)

≤ exp
(
−3Nnπn

28

)
+ exp

(
− Nnπ

2
nε

2

16(v2 + cπnε/4)

)
.

Now we upper-bound the constant L. Let D(x) be the collection of xj , 1 ≤ j ≤ n,
with j ∈ J (x). Note that, with probability 1 (since the design distribution has a
Lebesgue density), D(x) is of the form D(x) = {xj :‖xj − x‖ ≤ rx} for some
rx > 0, where ‖ · ‖ denotes the Euclidean norm on Rd . Thus, L is upper bounded
(with probability 1) by the size of the collection of xj ’s that are in any balls. This
is then bounded above by a quantity involving the VC dimension of the set of all
balls. Let vB be the VC dimension of the set of balls in Rd . From Devroye, Györfi
and Lugosi [(1996), Corollary 13.2], vB ≤ d + 2. It follows from the VC lemma
[see, e.g., Devroye, Györfi and Lugosi (1996), Theorem 13.2] that

L≤ nd+2 + 1.
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From all the above,

Pxn

(
sup
x

∣∣∣∣ 1

Ni(x)

∑
j∈J (x)

Wjεi,j

∣∣∣∣≥ ε

2

)

≤ (
nd+2 + 1

)(
exp

(
−3Nnπn

28

)
+ exp

(
− Nnπ

2
nε

2

16(v2 + cπnε/4)

))
.

Since the upper bound does not depend on xn, it also upper-bounds the
unconditional probability

P

(
sup
x

∣∣∣∣ 1

Ni(x)

∑
j∈J (x)

Wjεi,j

∣∣∣∣≥ ε

2

)
.

The conclusion of Lemma 3 follows. This completes the proof of Lemma 3. �
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