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ANDRÁS A. BENCZÚR† AND DAVID R. KARGER‡

David Karger wishes to dedicate this work to the memory of Rajeev Motwani. His

compelling teaching and supportive advising inspired and enabled the line of

research [18, 25, 19, 22] that led to the results published here.

Abstract. We describe random sampling techniques for approximately solving problems that
involve cuts and flows in graphs. We give a near-linear-time randomized combinatorial construction
that transforms any graph on n vertices into an O(n logn)-edge graph on the same vertices whose
cuts have approximately the same value as the original graph’s. In this new graph, for example, we
can run the Õ(m3/2)-time maximum flow algorithm of Goldberg and Rao to find an s-t minimum
cut in Õ(n3/2) time. This corresponds to a (1 + ǫ)-times minimum s-t cut in the original graph. A
related approach leads to a randomized divide-and-conquer algorithm producing an approximately
maximum flow in Õ(m

√
n) time. Our algorithm can also be used to improve the running time of

sparsest cut approximation algorithms from Õ(mn) to Õ(n2), and to accelerate several other recent
cut and flow algorithms. Our algorithms are based on a general theorem analyzing the concentration
of random graphs’ cut values near their expectations. Our work draws only on elementary probability
and graph theory.
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1. Introduction. This article gives results on random sampling methods for re-
ducing the number of edges in any undirected graph while approximately preserving
the values of its cuts and consequently flows. It then demonstrates how these tech-
niques can be used in faster algorithms to approximate the values of minimum cuts
and maximum flows in such graphs. We give an Õ(m)-time1 compression algorithm
to reduce the number of edges in any n-vertex graph to O(n log n) with only a small
perturbation in cut values, and then use that compression method to find approximate
minimum cuts in Õ(n2) time and approximate maximum flows in Õ(m

√
n) time.

1.1. Background. Previous work [20, 19, 23] has shown that random sampling
is an effective tool for problems involving cuts in graphs. A cut is a partition of a
graph’s vertices into two groups; its value is the number, or in weighted graphs the
total weight, of edges with one endpoint on each side of the cut. Many problems
depend only on cut values. The maximum flow that can be routed from s to t is the
minimum value of any cut separating s and t [11]. A minimum bisection is the smallest
cut that splits the graph into two equal-sized pieces. The connectivity or minimum
cut of the graph, which we denote throughout by c, is equal to the minimum value of
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any cut.
Random sampling “preserves” the values of cuts in a graph. If we pick each

edge of a graph G with probability p, we get a new graph in which every cut has
expected value exactly p times its value in G. A theorem by Karger [19] shows that if
the graph has unit-weight edges and minimum cut c, then sampling with probability
Õ(1/ǫ2c) gives cuts that are all, with high probability, within 1± ǫ of their expected
values. In particular, the (global) minimum cut of the sampled graph corresponds to
a (1 + ǫ)-times minimum cut of the original graph. Similarly, an s-t minimum cut of
the sampled graph is a (1 + ǫ)-times minimum s-t cut of the original graph. Since
the sampled graph has fewer edges (by a factor of Õ(1/c) for any fixed ǫ), minimum
cuts can be found in it faster than in the original graph. Working through the details
shows that an approximately minimum cut can be found roughly c2 times faster than
an exact solution.

A variant of this approach finds approximate solutions to flow problems via ran-
domized divide-and-conquer. If we randomly partition the edges of a graph into
roughly ǫ2c subsets, each looks like the sample discussed in the previous paragraph
and so has approximately accurate cuts. In other words, random division is a good
approximation to evenly dividing up the capacities of all the cuts. By max-flow min-
cut duality [11], this means that the s-t max-flow of G is also approximately evenly
divided up. We can find a maximum flow in each of the subgraphs and add them
together to get a flow in G that is at least (1 − ǫ) times optimal. Again, detailed
analysis [19] shows that finding this approximate flow can be done c times faster than
finding the exact maximum flow.

Unfortunately, the requirement that p = Ω̃(1/c) (to keep the sample variance
small) limits the effectiveness of this scheme. For cut approximation, it means that
in a graph with m edges, we can only reduce the number of edges to m/c. Similarly
for flow approximation, it means we can only divide the edges into c groups. Thus,
when c is small, we gain little. Results can be even worse in weighted graphs, where
the ratio of total edge weight to minimum cut value is unbounded.

1.2. Results. In this article, we show how nonuniform sampling can be used to
remove graph sampling’s dependence on the minimum cut c. Our main results are
twofold: one for cut problems and one for flow problems. Both are based on a general
theorem describing a smoothness condition under which a graph with random edge
weights has all cut values concentrated near their expectations with high probability.

For cuts, we show that by sampling edges nonuniformly, paying greater attention
to edges crossing small cuts, we can produce accurate samples with far less than m/c
edges—rather, the resulting compressed graph has only Õ(n/ǫ2) edges, regardless of
the number of edges in the original graph. Our approach works for undirected graphs
with arbitrary weights (capacities).

Even ignoring the algorithmic aspects, the fact that any graph can be approxi-
mated by a sparse graph via random sampling is of independent combinatorial interest.

In addition to proving that such sampling works, we give fast algorithms for
determining the sampling importance of different edges and the correct sampling
probabilities for them. This involves an extension of the sparse certificate technique
of Nagamochi and Ibaraki [30].

Using these results, we demonstrate the following result.
Theorem 1.1. Given a graph G and an error parameter ǫ ≤ 1, there is a graph

G′ on the same vertices such that
• G′ has O(n log n /ǫ2) edges and
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• the value of every cut in G′ is within (1 ± ǫ) times the value of the corre-
sponding cut in G.

G′ can be constructed in O(m log2 n) time if G is unweighted or has polynomially
bounded weights, and in O(m log3 n) time for general weights.

It follows that, given any algorithm to (even approximately) solve a cut problem,
if we are willing to accept an approximate answer, we can substitute n log n for any
factor of m in the running time. At preliminary publication of this work [6], we gave
the following corollaries.

Corollary 1.2. In an undirected graph, given ǫ ≤ 1, a (1 + ǫ)-times minimum
s-t cut can be found in Õ(n2/ǫ2) or Õ(n3/2/ǫ3 +m) time.

Corollary 1.3. In an undirected integer-weighted graph, given ǫ ≤ 1, a (1+ ǫ)-
times minimum s-t cut of value v can be found in Õ(nv/ǫ2 +m) time.

Corollary 1.4. An O(log n)-approximation to the sparsest cut in an undirected
graph can be found in Õ(n2) time.

These corollaries followed by applying our sampling scheme to (respectively) the
then-fastest maximum flow algorithms of Goldberg and Tarjan [14] and Goldberg and
Rao [13], the classical augmenting-paths algorithm for maximum flow [11, 2], and the
Klein–Stein–Tardos algorithm for approximating the sparsest cut [26].

Since that time, improvements to these corollaries have been achieved, each based
on our sparsification approach. Arora, Hazan, and Kale [4] gave an algorithm for an
O(
√
log n)-approximation to sparsest cut that runs in Õ(mn) time and used our sparsi-

fication scheme to improve it to Õ(n2) time; Christiano et al. [8] gave an Õ(m4/3)-time
algorithm for approximate max-flow and used sparsification to improve its runtime to
Õ(n4/3) for approximate min-cut and constant ǫ.

A related approach [19] helps solve flow problems: we divide edges crossing small
cuts into several parallel pieces, so that no one edge forms a substantial fraction of
any cut it crosses. We can then apply a randomized divide-and-conquer scheme. If
we compute a maximum flow in each of the subgraphs of the random division using
the Goldberg–Rao algorithm, and then add the flows into a flow in G, we deduce the
following corollary.

Corollary 1.5. A (1 − ǫ)-times maximum flow can be found in Õ(m
√

n/ǫ)
time.

If we instead apply the recent approximate max-flow algorithm of Christiano et
al. [8], we achieve a runtime of Õ(mn1/3/ǫ4

2
3 ).

The work presented here combines work presented earlier by Benczúr and Karger [6]
and by Karger [21]. The presentation is significantly simplified, and details and slight
improvements are given.

A companion paper [24] applies related methods to give an Õ(nv)-time exact max-
flow algorithm (with no ǫ-dependence) based on augmenting randomly sampled paths.
That algorithm is incomparable to the approximation algorithms, outperforming them
for small flows but underperforming for large ones. It also offers slight improvements
in the time for approximate max-flow, from Õ(m

√
n/ǫ) to Õ(m

√

n/ǫ).

1.3. Method. We extend the approach of Karger [19]. That previous work
proved it “safe” to sample edges with probability p = Ω((log n)/c) from unweighted
graphs with minimum cut c. Because the expected size of each sampled cut is large,
a Chernoff bound can be used to show that all cuts are likely to have cut values close
to their expectations, which are just p times the original cut values. So cut values can
be approximated by computing them in the sparser sample.

This approach offers little benefit when the number of edges m is large but the
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minimum cut c is small, preventing a substantial reduction in the large number of
edges. However, we show that graphs with large numbers of edges necessarily contain
strong components—induced subgraphs with large connectivities.

So suppose a graph, with possibly small c, contains a subgraph K of higher
connectivity k. By the original reasoning, it is safe to sample edges inside K with
probability Ω̃(1/k), even if the rest of the graph can only be sampled with probability
Ω̃(1/c). Sampling at this lower rate would decrease the number of edges in the sample,
allowing improved running times.

Of course, if we sample different edges with different probabilities, then the ex-
pected number of edges crossing a cut is the sum of those probabilities, which is no
longer proportional to the number of crossing edges. This throws off our approxi-
mations. To correct them, the edges of K that we sample with probability 1/k are
given weight k. The expected weight of each edge is now 1, meaning that the expected
weight of edges crossing each cut is equal to the original number of edges crossing it.
At the same time, since we are only scaling the the sample from K by a factor of k,
the tight concentration of cut values around their (scaled) expectations is preserved.

It follows that sampling the edges inside K with probability p = Ω̃(1/k) (and
then reweighting each sampled edge by 1/p) does not significantly change cut values
(i.e., the new weighted cut value is probably close to the original value). At the same
time, sampling the edges outside K with probability Ω̃(1/c) (and reweighting) also
does not significantly change cut values.

More generally, we define the strength ke of edge e to be the maximum connectivity
of any vertex-induced subgraph that contains e. We show that sampling each edge
with probability pe = Ω̃(1/ke) and then giving it weight 1/pe if sampled yields a graph
whose expected cut weights are equal to the original and whose actual cut weights
are tightly concentrated around those expectations.

Conveniently, we show that as the number of edges in a graph increases, so does
the strength of edges, which means we can sample them with lower probability. These
effects cancel out, enabling us always to create a good sample with Õ(n/ǫ2) edges.

1.4. Outline. We conclude the introduction with relevant definitions. We then
use section 2 to introduce and motivate the main concepts of the paper through a
special case that is particularly easy to follow. In section 3 we provide background
from Karger’s earlier work [19] on uniform random sampling of graph edges. To
make this article self-contained, we give a (new, and cleaner) proof of that result.
In section 4 we define a strong connectivity measure of the best connectivity of a
subgraph containing each edge. We define smooth random graphs (section 5) to be
those where no edge weight is large compared to its own strong component, and
prove that any smooth graph has cuts near its expectations. In section 6, we apply
smoothness to show that a compression scheme that samples nonuniformly based on
the strong connectivity measure produces good cut approximations. Our application
to s-t min-cuts is immediate. In section 7 we introduce graph smoothing, a variation
on compression that can be used for flow approximation. Finally, in section 8, we
show how the strong connectivities needed to set sampling rates can be estimated
quickly.

1.5. Definitions. We consider undirected graphs with positive-valued weights
on the edges. We use the term “unweighted graph” to refer to a graph in which all
edges have weight 1. We will use G to mean a graph with n vertices and m edges;
parallel edges are allowed.

A cut C is a partition of the vertices into two subsets. The value of the cut in
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unweighted (resp., weighted) graph G is the total number (resp., weight) of edges
with endpoints in different subsets.

We simplify our presentation with a vector notation. The term xE denotes a
vector assigning some value xe to each e ∈ E. All operations on vectors in this paper
are coordinatewise. The interpretation of xE + yE is standard, as is the pointwise
product γxE for any constant γ. However, we let xE ◦ yE denote the (Hadamard)
product zE with ze = xeye. Similarly, let 1/xE denote the vector zE such that
ze = 1/xe (pointwise inverse), and let yE/xE be the vector zE with ze = ye/xe.

A weighted graph G can be thought of as the vector (indexed by edge set E) of
its edge weights. (An unweighted graph has value 1 in all coordinates.) Applying our
vector notation, when rE is a vector over the edge set, we let rE ◦G denote a graph
where edge e has weight multiplied by re. If r is a scalar, then rG simply multiplies
each weight by r. Similarly, if G and H are graphs on the same vertices, then G+H
denotes the graph whose edge weight vector is the sum of those graphs’.

We also introduce a sampling notation. As is traditional, we let G(p) denote a
graph in which each (possibly weighted) edge of G is incorporated with probability p.
Generalizing, we let G(pE) denote a random subgraph of G generated by including
each edge e of G (with its original weight) independently with probability pe. We
define the expected value graph E[G(pE)] = pE ◦ G, since the expected value of any
edge in G(pE) is equal to the value of that edge in pE ◦G. It follows that the expected
value of each cut in G(pE) is the value of the corresponding cut in the expected value
graph.

We say that an event occurs with high probability if its probability is 1−O(n−d)
for some constant d. The constant can generally be modified arbitrarily by changing
certain other constants hidden in the asymptotic notation.

2. Core ideas. We begin our presentation with an overview that aims to intro-
duce and motivate the main ideas of the paper free of the many details and equations
that are required to formalize them. We do so by working through a particular easy
case—a particular graph—where the “right” sampling approach and its analysis are
easy to see. This section can be skipped by those who prefer to dive right into the
details.

We begin with a previous result of Karger [19], given here as Basic Sampling
Theorem 3.1. The theorem shows that in a graph with minimum cut c, we can set a
parameter ρ = O(log n), sample each edge with probability p = ρ/c = Ω̃(1/c), and get
a graph where all cuts are near their expected value with high probability. The proof
of this theorem starts with the Chernoff bound, which is immediately applicable to
show that any particular cut is near its expectation with high probability (since that
expectation exceeds O(log n)). A union bound over all exponentially many cuts then
shows (somewhat surprisingly) that tight concentration near the expectation is likely
for all cuts simultaneously.

We can use this sampled graph to approximately solve cut problems. As a par-
ticular example, consider a graph that is a union of c (arbitrary) spanning trees. This
graph has (n − 1)c edges and minimum cut c, since at least one edge of each tree
crosses each cut. Sampling with probability ρ/c preserves approximate cut values but
reduces the number of edges to O(n log n)—a very good outcome.

Unfortunately, some graphs with minimum cut c may have far more edges. If so,
our rate-Õ(1/c) sample based on Basic Sampling Theorem 3.1 will similarly have far
more edges than we would like. The problem is that just one small cut in the graph
suffices to impose a significant limitation on our ability to apply Theorem 3.1, even if
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the rest of the graph has many edges.
But intuitively, a graph with many edges ought to have “dense” regions of high

connectivity. We will formalize this later, but for now consider a particular case. Take
our c-trees graph above. Choose a set K of r of the n vertices and remove all the
edges between them; replace those edges with a set of k ≫ c spanning trees on the r
vertices. The graph now has (n− r)c+(r−1)k edges. But it still has minimum cut c.
Now Basic Sampling Theorem 3.1 only lets us reduce the edge count to Õ(n+ rk/c),
which could be arbitrarily large for large k.

To address this, note that the graph induced by K has connectivity k ≫ c.
Applying Theorem 3.1 to K tells us that the edges of K can be sampled at rate ρ/k
while still preserving expectations. Doing so will reduce the (r − 1)k edges inside K
to Õ(r), a much better outcome.

If we sample only the edges insideK, we get tight concentration near expectations,
but those expectations are no longer useful for approximating cuts in G. Because a
cut of G, made up of some edges inside K and some outside, will have an expected
value dependent on the portion of edges in K, expected cut values in G will no longer
be proportional to their original values. We can correct for this, however, using
compression (formalized in section 6): when sampling edges of K with probability
ρ/k, we set the weight of each sampled edge to be k/ρ. Scaling all of graph K this
way is irrelevant to Theorem 3.1. But with this change, the expected sampled value
of every edge in K is 1, so the expected values of sampled cuts of G are equal to the
original values of those cuts. Thus, we can conclude that in this sample all cuts will
be near their original values in G.

This takes care of sparsifying the particularly dense component K. But we want
the rest of the graph to be sparse as well. To arrange that, we can sample the
remaining graph edges with probability ρ/c as we did originally (but set all edge
weights to c/ρ to preserve expectations). The edges inside K, having already been
sampled, can remain fixed instead of participating in the sampling process; this can
only reduce the variation caused by sampling. Thus, Theorem 3.1 applies here as well,
and we can again conclude that cuts remain near their expectations.

In summary, we sample edges inside K with probability ρ/k (while giving them
weight k/ρ) and sample edges outside K with probability ρ/c (while giving them
weight c/ρ). The expected number of edges that will remain is O((n − r)c(ρ/c) +
rk(ρ/k)) = O(nρ) = O(n log n), as desired.

A natural generalization is as follows: for each edge e in G find the best con-
nectivity ke of an induced subgraph K that contains e. We will formalize this with
the definition of strong connectivity in section 4. Intuitively, Theorem 3.1 suggests
that we can sample e with probability ρ/ke and correct for this sampling by setting
the weight be ke/ρ. We will prove later that if there are many edges (which will
require small sampling probabilities if we want to produce a sparse graph), then most
of those edges must be inside well-connected subgraphs where such small sampling
probabilities will be permitted.

The problem with applying Theorem 3.1 directly to the entire graph in this ex-
periment is that the reweighting of edges can produce some edges whose weights are
much larger than the expected minimum cut value in the sample. However, we have
arranged that each edge weight be small compared to its own strong component, so
that Theorem 3.1 can be applied to that component. We define graphs that meet this
condition to be smooth, and show that smooth graphs’ cuts stay near their expecta-
tions with high probability.
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One additional refinement will be important. In the analysis above, we applied
Theorem 3.1 twice in sequence. In each case, we can assert a deviation by an ǫ factor
for each cut. But since some cuts involve both types of edges, we arrive at a total
deviation factor of 2ǫ. If we start considering edges with many different sampling
rates, we may find many factors of ǫ piling up in our error bound. To avoid this we
arrange to sample “in parallel” instead of sequentially.

Continuing our example, we think of each weight-k/ρ edge of K as two edges:
one of weight c/ρ and one of weight (k − c)/ρ. The edges of weight (k − c)/ρ form
a scaled version of the graph in K. Separately, we combine the edges of weight c/ρ
in K with the weight c/ρ edges being sampled outside K to form a new graph. Note
that the weight of sampled edges, and thus the value of cuts, is divided among the
two graphs we have specified. In other words, the value of each cut in G is the sum
of the corresponding cut values in the two graphs. When we conduct our sampling
experiment on G, we can “project” it as a sampling experiment on each of the two
graphs. We will argue that each of the two graphs has sampled cut values within ǫ
of their expectations. Thus each cut of G, which is a sum of the corresponding cut
values in the two graphs, will have values within ǫ of expectations.

The first graph, of edges of K given weight (k − c)/ρ, is a scaled version of K.
So Theorem 3.1 immediately applies to show that samples from it are near their
expectations. For the second graph, we claim that the expected weight of any cut in
it is at least c, while each sampled edge weight is c/ρ. Thus, Theorem 3.1 (with all
edge weights scaled by a factor of c/ρ) applies to this graph as well. To show the
claim, first consider any cut that does not cross K. It therefore cuts the c-connected
underlying part of G, where we have already argued that the expected cut values are
equal to their original values which are at least c. If, on the other hand, the cut does
cut K, then the claim follows from the k-connectedness of the underlying graph K:
each cut in K has at least k edges, each being sampled with probability ρ/k and given
weight c/ρ, so the expected cut weight is at least k(ρ/k)(c/ρ) = c.

Note that we do not actually run two separate sampling experiments to create
these two graphs—instead, we use a thought experiment to consider what happens
to different parts of the graph G when we sample from it, and use these thought
experiments to understand the outcome in G. The sampling experiments in the two
graphs are not independent of each other, but we can still apply a union bound to
argue that both thought experiments play out as desired.

In summary, instead of applying Theorem 3.1 repetitively to the entire graph,
accumulating multiple ǫ error factors, we decompose the graph into two parts, each
carrying a portion of the value of each cut, and argue that each graph introduces an
ǫ error on its part of each cut, so that the overall error introduced is still bounded by
ǫ. This approach will allow us to bound the error even as we decompose the graph
into many parts to cope with many distinct connectivity values.

Intriguingly, although the Chernoff bound still holds for each individual cut in
our revised sampling approach, we show in section 5.2 that the union bound over cuts,
which worked to prove Theorem 3.1, cannot be used to prove that all cuts simultane-
ously remain near the expectations with high probability. Instead, our decomposition
approach is necessary.

3. Background: Uniform graph sampling. To make this article self-contained,
we provide background on sampling a graph’s edges uniformly. We re-prove the fol-
lowing theorem, which provides the basis for our new work.
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Theorem 3.1 (basic sampling [19]). Let G be a graph in which the edges have
mutually independent random weights, each distributed in the interval [0, 1]. If the
expected weight of every cut in G exceeds ρǫ = 3(d + 2)(lnn)/ǫ2 for some ǫ ≤ 1 and
d, then with probability 1 − O(n−d) every cut in G′ has value within (1 ± ǫ) of its
expectation.

Karger has published several different proofs of this theorem [19, 22], but here
we introduce a proof that takes a different approach, related to one developed by
Lomonosov and Polesskii [27], using a coupling argument.

We begin with the well-known Chernoff–Hoeffding bound.
Lemma 3.2 (see [7, 15]). Given any set of independent random variables Xi with

values distributed in the range [0, 1], let µ = E[
∑

Xi] and let ǫ < 1. Then

Pr
(

∑

Xi /∈ [(1− ǫ)µ, (1 + ǫ)µ]
)

≤ 2e−ǫ2µ/3.

The Chernoff–Hoeffding bound’s requirement that each Xi ≤ 1 is needed to pre-
vent any one random variable from “dominating” the outcome of the sampling ex-
periment. For example, if one variable takes on value S with probability 1/S and
0 otherwise, while all other variables are uniformly 0, then the (relatively rare, but
nonnegligible) outcome of taking on value S will take the sum far away from its
expectation of 1.

We apply this Chernoff bound to each cut in the random graph of Basic Sampling
Theorem 3.1. We wish to bound the probability that some cut deviates by more than
ǫ < 1 from its expectation. Given expected edge weights µe and a particular cut C
whose expected value is µC =

∑

e∈C µe, the Chernoff bound implies that the deviation

probability is at most pC = 2e−ǫ2µC/3. The hypothesis of Theorem 3.1 upper bounds
pC < 2n−(d+2). So each particular cut is close to its expectation with high probability.

However, we wish to bound the probability that any cut deviates. The most
obvious tool is the union bound. It seems fated to fail, as each cut has only an
inverse-polynomial likelihood of deviation, while there are exponentially many cuts
that may deviate. Surprisingly, it works anyway.

The union bound implies that the probability that any cut deviates by ǫ is at
most

∑

C pC . We bound this quantity by considering a different experiment. Write

pe = e−ǫ2µe/3 and conclude that pC = 2
∏

e∈C pe. Now consider our graph G but
suppose that edge e is deleted from G with probability pe. Then pC is precisely twice
the probability that every edge in C is deleted, i.e., that the graph is disconnected at
cut C. It follows that our union bound

∑

pC is twice the expected number of cuts that
are left empty by the edge deletions in this alternate experiment. It is this quantity
that we proceed to bound.

Consider the connected components induced by the edges that are not deleted.
The empty cuts are precisely those that partition the connected components into
two groups without cutting any component; thus, if there are R components, the
number of empty cuts is 2R−1 − 1 (we must place each component on one of the two
sides for 2R possibilities, divide by 2 because reversing the sides selects the same cut,
and subtract 1 to rule out placing all components on the same side). The expected
number of empty cuts is thus E[2R−1 − 1] = 1

2E[2R] − 1, where R is the random
variable denoting the number of components into which G is partitioned by deleting
each edge e with probability pe. We bound this quantity.

We start with a special case, where each pe = p and the graph has minimum cut
c, an even integer.

Lemma 3.3. Over all n-vertex graphs with min-cut c an even integer, and for
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any deletion probability p, the quantity E[2R] is maximized by a cycle on n vertices,
where each adjacent pair is connected by c/2 edges.

This lemma was first proven by Lomonosov and Polesskii [27]. It makes intuitive
sense, as the cycle has the fewest possible edges of any graph with minimum cut c
and is thus plausibly the “least reliable.’.

Proof. We use a coupling argument. Coupling [3, 16] is a powerful way to show
that E[A] ≥ E[B] for random variables A and B. We define a procedure for generating
a pair of samples a and b such that (i) a is (marginally) distributed according to A,
(ii) b is (marginally) distributed according to B, and (iii) a ≥ b in every sample pair.
Criterion (iii) means that our variables a and b are very much not independent, but
this does not affect their expectations. By criterion (i), E[A] is the expected value of
the first element of a sample pair, while by criterion (ii), E[B] is the expectation of
the second element. Since, by criterion (iii), the first element is never less than the
second, it follows that E[A] ≥ E[B].

Let Y be the cycle described in this lemma. Any n-vertex graph G with min-cut c
has minimum degree c. Thus its edge countm ≥ nc/2 is no less than the cycle’s, which
is exactly nc/2. Augment the cycle with m − nc/2 arbitrary self-loop edges (which
have no impact on the outcome number of components) so that the two graphs have
the same number of edges. We use a coupling argument to compare RY , the number
of components produced by deletions from the cycle, to RG, the number produced by
deletions from the graph G.

We determine the number of components R by contracting all edges that are
not deleted—that is, we unify their endpoints into a single vertex. Then R will be
the number of vertices in the contracted graph. One way to produce this contracted
graph is to generate a random variable representing the number k of edges that get
contracted and distributed as a binomial distribution with parameters 1 − p and m,
and then to choose k edges uniformly at random in sequence and contract each. Con-
tracting a self-loop leaves R unchanged, while contracting any other edge decrements
R.

We carry out this procedure on G and Y simultaneously in a coupled fashion.
Our coupling generates random contractions of G and Y simultaneously, each with
the correct distribution. But it also ensures (inductively) that Y never has fewer
contracted vertices than G. It follows that under every possible sampling outcome
RY ≥ RG, which in turn proves that E[2RY ] ≥ E[2RG ], as claimed.

The coupling is done as follows. First, we select the same number of edges k to
contract in both graphs, according to the binomial distribution B(m, 1 − p). This is
correct as both graphs have m edges. Then, for each contraction step, we create a
particular bijective pairing of the not-yet-contracted edges of G and Y . We choose a
uniformly random edge of G to contract, which fulfills the goal of contracting edges of
G in random order. At the same time, we contract its mate in Y . Since the pairing of
edges is bijective, it follows that the edges of Y are also being contracted in uniform
random order, as required. The order of contraction of Y is not independent of the
order of contraction of G, but this does not affect E[2RY ].

We define a new edge pairing at each step. We assume by induction that RY ≥
RG. If RY > RG, the pairing can be arbitrary—since one contraction decreases RY

(and RG) by at most one (or zero if the edge is a self-loop), we will still have RY ≥ RG

after the contraction, as required. Suppose, on the other hand, that RY = RG. Since
G’s min-cut is never decreased by contractions, G has min-cut and thus min-degree at
least c. Thus, any contraction of G will have at least cRG/2 edges that have not yet
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been contracted to self-loops, while the cycle Y (which remains a cycle throughout
the contractions) will have exactly cRY /2 such edges. Since RY = RG we can pair
every nonloop edge of Y with a nonloop edge of G, and pair the remaining edges
arbitrarily. It follows that if RY decreases because a nonloop edge was contracted,
then RG decreases as well. Thus, RY cannot become less than RG, and the invariant
RY ≥ RG is preserved.

In fact, we’ve shown the stronger result that Y stochastically dominates RG, so
the expectation inequality would hold for any mononotonic function of R.

Corollary 3.4. If pc = n−(d+2) for d ≥ 0, then E[2R−1 − 1] = O(n−d).
Proof. We have just shown that the n-vertex cycle maximizes E[2R]. On the

cycle, the number of components R is equal to the number of c/2-edge “bundles” (of
edges connecting the same endpoints) that are completely deleted, except that it is 1
if no bundle is deleted. A bundle is deleted with probability pc/2, so the number of
deleted bundles follows a binomial distribution with this parameter. It follows that

E[2R] = (1− pc/2)n · 21 +
n
∑

r=1

(

n

r

)

(pc/2)r(1− pc/2)n−r · 2r

= (1− pc/2)n + (1− pc/2)n +

n
∑

r=1

(

n

r

)

(2pc/2)r(1− pc/2)n−r

= (1− pc/2)n +

n
∑

r=0

(

n

r

)

(2pc/2)r(1− pc/2)n−r

= (1− pc/2)n + (2pc/2 + 1− pc/2)n

= (1− pc/2)n + (1 + pc/2)n

= 2 +O(n2pc) when n2pc ≤ 1.

Thus

E[2R−1 − 1] =
1

2
E[2R]− 1

= O(n2pc).

It remains to generalize from our special case pe = p to arbitrary probabilities.
We do so in the following “reliability lemma.”

Lemma 3.5 (reliability). In an n-vertex graph with edge parameters pe ≤ 1, Writ
pC =

∏

e∈C pe for each cut C. If maxC pC = δ ≤ 1, then
∑

pC = O(n2δ).
This corollary bounds the expected number of failed cuts and thus (by the union

bound) the probability that any cut fails.
Proof. Observe that an edge e with failure probability pe can be “simulated”

by a bundle of k = 2⌈ln pe/2 ln p⌉ parallel edges of failure probability p. That is,
the probability of the entire bundle failing is approximately pe (approaching pe from
below in the limit as p→ 1 with consequent k →∞). Thus each pC in the simulated
graph converges from below to its value in the graph being simulated. It follows that
∑

pC approaches the desired limit and that maxC pC ≤ 1. We have also ensured that
each k is even. Thus, we have replaced all edges the any graph with edges of uniform
failure probability, to which the previous results apply.

Basic Sampling Theorem 3.1 is an immediate corollary of Reliability Lemma 3.5,
as we recall that pe = e−ǫ2µe/3 so that pC becomes the Chernoff bound on the prob-
ability of cut C deviating by ǫ from its expectation.
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4. Strong connectivity. In this section, we formalize the notion of subgraphs
with large connectivities. As was discussed in section 2, if we identify a subgraph
with connectivity k ≫ c, then we might hope, given Basic Sampling Theorem 3.1, to
sample edges in this subgraph with probability ρ/k, producing a graph much sparser
than if we sample with probability ρ/c.

4.1. Definitions.

Definition 4.1. A graph G is k-connected if the value of each cut in G is at
least k.

Definition 4.2. A k-strong component of G is a maximal k-connected vertex-
induced subgraph of G.

Each individual vertex is trivially an ∞-strong component, but we will not count
these as k-strong components since no edges have their strength defined by them.

Definition 4.3. The strong connectivity or strength of an edge e, denoted ke,
is the maximum value of k such that a k-strong component contains (both endpoints
of) e. We say that e is k-strong if its strong connectivity is k or more, and k-weak
otherwise.

Note that the above definition of strong connectivity of an edge differs from the
standard definition of connectivity.

Definition 4.4. The (standard) connectivity of an edge e is the minimum value
of a cut separating its endpoints.

An edge’s strong connectivity is no greater than its connectivity, since any cut
that separates a k-strong edge’s endpoints must cut its k-strong component. However,
it may be much less. Consider the graph K(1, 1, n) with n vertices vi and two distinct
vertices s and t, unit-weight edges (s, vi) and (vi, t) for i = 1, . . . , n, and edge (s, t).
Edge (s, t) has (standard) connectivity n+ 1 but only has strong connectivity 2.

4.2. Structure. As was discussed in section 2, analysis of our sampling scheme is
based on a careful decomposition of the graph. In this section we begin to characterize
that decomposition.

Strong-connectivity exhibits two useful “consistency” properties.
Lemma 4.5. Deleting k-weak edges does not change the strength of any k-strong

edge.
Proof. Clearly deleting edges cannot increase strength, so we need to consider

only decreases.
Any k-strong edge e is inside a k-connected induced subgraph K; if edge f is

k-weak, then, by definition, it is not in K. So removing f does not reduce the
connectivity of K, which means that e remains k-strong.

Lemma 4.6. Contracting k-strong edges does not change the strength of any
k-weak edge.

Proof. Clearly, contraction cannot decrease strengths, so we need to consider only
increases.

We prove the stronger claim that contracting an entire k-strong component K
does not increase the strength of any k-weak edge e. Suppose that it did. This would
mean that e was inside an induced subgraph, K ′, which becomes k-connected when
K is contracted. We will show that the graph K ∪K ′ is k-connected in G, implying
e ∈ K ′ is k-strong before the contraction, a contradiction.

K ′ cannot be k-connected before the contraction—otherwise e would be k-strong
before the contraction. So K must intersect K ′—otherwise contracting K would not
change K ′ and so could not make K ′ k-connected. Consider any cut of the graph
induced by K∪K ′ in G. Because K and K ′ intersect, this cut must induce a cut in at
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least one of K and K ′. If it induces a cut in K, then its value is at least k since K is k-
connected. If not, meaning that all of K is on one side of the cut, then it corresponds
to a cut of K ′ with K contracted, which we posited has value at least k. In other
words, all cuts of K ∪ K ′ have value at least k, which means that e is k-strong in
G.

Lemma 4.5 gives us a way understand the structure of strong components.
Definition 4.7. A family of sets is laminar if, for any two sets that intersect,

one is contained in the other.
Lemma 4.8. The strong components of G form a laminar family.
Proof. Consider the following procedure that “unpacks” the strong components

of G. Take some connected component K of G that has min-cut k. Then all edges
of K have strength at least k, and the min-cut edges of K have strength exactly k.
It follows that K is a (clearly maximal) k-connected subgraph of G, i.e., a k-strong
component.

Removing all strength-k edges from K will split K into multiple components since
all edges of a min-cut are removed. By Lemma 4.5, all other (larger) edge strengths
and strong components are unchanged in K, so the connected components left over
inside K are additional strong components of G. We will refer to the new strong
components as children of parent K.

This procedure defines a tree structure (or forest if G is initially disconnected)
on the strong components of G such that each strong component is strictly contained
in its parent (because each parent has at least two children on the two sides of its
min-cut). By induction, each strong component is (strictly) contained in its ancestors,
(strictly) contains its descendants, and is disjoint from all other strong components.
Thus, the strong components form a laminar family.

Corollary 4.9. A graph G on n vertices has at most n − 1 distinct nontriv-
ial strong components (ignoring individual vertices), and thus n − 1 distinct edge
strengths.

Proof. We use induction on the rank r of G, defined as the number of edges in
a spanning forest of G and thus at most n − 1, to show that the number of strong
components is at most r. Consider the procedure of the previous lemma for identifying
the strong components. Note that one step of the procedure will remove edges of one
strength and destroy at least one strong component while decreasing the rank by at
least 1, and proceed by induction.

Remark 1. While Lemma 4.6 and Corollary 4.9 are true of standard connectivi-
ties as well as strong connectivities, Lemma 4.5 distinguishes strong connectivity from
standard connectivity and is critical in our sampling proofs, which is why we must
rely on strong rather than standard connectivity in proceeding. Consider the graph
K(1, 1, n) discussed above; edge (s, t) is the (unique) edge with standard connectivity
exceeding 2, but deleting all the lower connectivity edges yields the subgraph consisting
only of that one edge, which now only has standard connectivity 1.

4.3. Weighting. Recalling, from our motivating example in section 2, our in-
tention to sample edges with probability inversely proportional to their strong con-
nectivities, the following lemmas help us analyze the outcome.

Lemma 4.10. If connected graph G has edge strengths ke, then the graph 1/kE ◦G
has minimum cut exactly 1.

Proof. Consider any minimum cut in G, of value c. Each edge in the cut has
strength c, giving it weight 1/c in 1/kE ◦ G. Thus, the cut has value 1 in 1/kE ◦ G.
It follows that the minimum cut in 1/kE ◦G is at most 1.
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Now consider any cut, of value k in G. Each edge crossing the cut has strength at
most k, meaning it gets weight at least 1/k in 1/kE ◦G. Since k edges cross this cut,
it follows that the cut has weight at least k(1/k) ≥ 1. This shows that the minimum
cut in 1/kE ◦G is at least 1.

Lemma 4.11. In a weighted graph with edge weights ue and strengths ke,

∑

ue/ke ≤ n− 1.

Proof. Define the cost of edge e to be ue/ke. We show, by induction on the rank
of G, that the total edge cost is bounded by the rank, which is at most n−1 (achieving
this maximum for a connected graph).

If the rank is 0, then G has no edges, so the base case is trivial. Otherwise, let G
have rank r > 0. Let K be any connected component of G; by the previous lemma
it has a cut of cost exactly 1. By removing the cut edges we can break K in two,
producing a new graph G′, which has one more connected component than G, so its
rank is r − 1. By Lemma 4.5, strengths in G′ are no greater than those in G, which
means that costs in G′ are no less. By induction, the cost of edges in G′ is at most
r − 1; it follows that the same holds for the cost of those edges in G. Adding back
the unit-cost cut completes the induction.

5. Smooth graphs. Edge strength gives us the measure we need to formalize
section 2. Instead of comparing the capacity of each edge being sampled to the
minimum cut of the entire graph, we compare it to the minimum cut of the edge’s
strong component, which is larger and thus gives us more flexibility in sampling the
edge. We aim to sample different edges with different probabilities depending on their
strong components. In this section, we consider which such sampling probabilities will
preserve expected cut values.

Instead of limiting our analysis to the simple coin-flip sampling experiment of sec-
tion 2, we consider a general distribution of graph edge weights, as in Basic Sampling
Theorem 3.1, but compare each edge’s distribution to its own strength.

Definition 5.1. Let G be a random graph in which the weight Ue of edge e is
a random variable in the range [0,me] with expectation ue. Let ke be the strength of
edge e in the expected graph E[G], where each edge e gets weight ue = E[Ue]. We
say that G is c-smooth if, for every edge e, cme ≤ ke.

Note that we use E[G] to denote the expectation of G and not the edge set of G.
The random graph of Basic Sampling Theorem 3.1 with edge weights in [0, 1] and

minimum expected cut c has smoothness at least c. But the smoothness condition
asserts that each edge satisfies the relative-size conditions of Theorem 3.1 relative only
to its own strong component, which is a less stringent condition since some strengths
can greatly exceed c.

5.1. Concentration of smooth graph cuts.

Theorem 5.2 (concentration). If random graph G is c-smooth for c = 3(d +
3)(lnn)/ǫ2, then with probability 1− O(n−d) every cut in G has value within (1± ǫ)
times its expectation.

Note that c is almost identical to the ρ of Basic Sampling Theorem 3.1, but 2 has
been replaced by 3.

We devote the this section to proving Concentration Theorem 5.2. As was dis-
cussed in section 2, the basic approach is to apply Basic Sampling Theorem 3.1 sep-
arately to components of different connectivities in G—which we have now identified
as the k-strong components. However, in order to prevent the error terms in different
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components from accumulating excessively, we need to take care in decomposing the
graph for analysis.

Lemma 5.3 (decomposition). Any c-smooth graph on n vertices can be decom-
posed as a positive-weighted sum of at most n − 1 (dependent) random graphs, each
with maximum edge weight at most 1 and minimum expected cut at least c.

Proof. The building blocks of our decomposition are the r < n strong components
K1, . . . ,Kr of E[G], where component i has strength ki. Recall that these sets form
a tree-structured laminar family (Lemma 4.8). To simplify notation, we will define
a “metaroot” K0 with “strength” k0 = 0, and make it a parent of every root strong
component in the laminar family. Thus, the laminar family is guaranteed to be a tree,
and every actual strong component has a parent.

For each i > 1, let pi denote the index of the parent strong component of Ki in
the laminar family, so that Ki has parent Kpi

. Then we define the ith graph Fi in the
decomposition to be the one on the same edges as Ki, but with edge e given weight
cUe/ke. The coefficient for this component in the weighted sum is (ki − kpi

)/c. In
other words,

G =
∑

i≥1

(ki − kpi
)/c ◦ Fi =

∑

(ki − kpi
)/ke ◦Ki.

(Recall that 1/ke ◦Ki scales the weight of each edge e in Ki by 1/ke.) To see that this
sum is correct, note that edge e appears in its own strong component K and in those
on the path through ancestors of that strong component up to the metaroot K0; let
us write this chain of strong components as K = Ki1 ,Ki2 , . . . ,Kiℓ = K0. Thus the
total weight of coefficients assigned to graphs containing edge e is

∑

(kij−kij+1
)/ke =

(1/ke)
∑

(kij −kij+1
). This sum telescopes: after canceling inner terms, the first term

contributes ki1/ke = ke/ke = 1, while the last term subtracts k0/ke = 0. Thus the
overall sum of coefficients multiplying Ue is 1, as required.

It remains to show that each Fi meets the criteria of the decomposition. Because
Ki is a strong component of E[G], Lemma 4.5 tells us that the strengths of edges
in the subgraph induced by Ki in E[G] are the same ke as those edge’s strengths in
E[G]. It follows from Lemma 4.10 that the graph on Ki with edge e given weight
ue/ke has minimum cut exactly 1. But this graph is precisely E[Fi] since each edge
in Fi gets weight Ue/ke. In other words, the minimum expected cut value in Fi is 1.
At the same time, since edge e gets weight cUe/ke, the maximum value it takes on in
Fi is cme/ke ≤ 1 by the smoothness criterion. In other words, our graph satisfies the
decomposition criteria.

Given Decomposition Lemma 5.3, proving Concentration Theorem 5.2 is straight-
forward. We have given a weighted-sum decomposition of G as a sum of less than
n (random) graphs

∑

αiFi. It follows that E[G] =
∑

αiE[Fi]. Each Fi meets the
conditions of Basic Sampling Theorem 3.1. Thus, Fi has cuts within (1 ± ǫ)E[Fi]
with probability 1−O(n−(d+1)). (The exponent d+ 1 arises from our using d+ 3 in
the smoothness parameter instead of d + 2 as in Theorem 3.1.) The graphs are not
independent (each involving scaled versions of the random variables Ue), but we can
still apply a union bound: the probability that any one of the n graphs diverges from
its expectation is n · O(n−(d+1)) = O(n−d). If every graph is within (1 ± ǫ) of its
expectation, then the (positive) weighted sum of these graphs is within (1± ǫ) of the
weighted sum of their expectations, which is E[G].

Remark 2. Our decomposition proof demands our use of strong, rather than stan-
dard, connectivities. The natural analogue using standard connectivities would define
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components Fi as all edges of standard connectivity λi or greater, and could derive
an analogous telescoping set of coefficients. But consider the graph G = K(1, 1, n)
described earlier, where all edges get (deterministic) weight 1 except that edge (s, t)
gets weight ǫn with probability 1/ǫn and 0 otherwise. In E[G] all edges have expected
weight 1, so edge (s, t) has standard connectivity n + 1, while all other edges have
standard connectivity 2. This would make G “1/ǫ-smooth” (for ǫ < 1/2) according to
the definition above. The decomposition approach above would then place edge (s, t)
into its own connectivity-(n+1) “component.” But in this component, the maximum
achieved edge weight (ǫn) is far larger than the minimum expected cut (1).

Note, however, that despite our inability to decompose this particular random
graph the way we would like, it still exhibits tight concentration around its cut values.
Thus, tight concentrate might hold even with respect to standard connectivity; we just
cannot prove it using our approach.

5.2. Tightness. Basic Sampling Theorem 3.1 proved an inverse polynomial
bound on the expected number of divergent cuts, which yields the unlikelihood of
any cut diverging as a (weaker) corollary via the Markov inequality or union bound.
Concentration Theorem 5.2 proves only the weaker claim of a low deviation proba-
bility. This is unavoidable; the stronger claim is not true for smooth graphs, as the
following example demonstrates.

Consider a graph G on n vertices where the only edges are 96 lnn edges connecting
two particular vertices s and t; all other vertices are isolated. Each edge is present
with probability 1/2 and has weight 2 if present. The expected weight of every edge
is 1; thus the strength of every edge in E[G] is 96 lnn. It follows that graph G is
c-smooth for c = 48 lnn, which means that we can apply Concentration Theorem 5.2
with d = 1 to conclude that the probability of any cut deviating by ǫ = 1/2 from its
expectation is O(1/n).

At the same time, with probability 2−96 lnn = n−96 ln 2 none of the (s, t) edges
is present. In this case every (s, t)-cut becomes empty, i.e., a factor 1 less than its
expectation, violating the ǫ < 1 deviation requirement. There are 2n−2 such (s, t)
cuts, defined by placing every other vertex on one of the two sides. It follows that the
expected number of deviating cuts is n−96 ln 2 · 2n−2, which is exponential.

In summary, we have given an example where Concentration Theorem 5.2 shows
that the probability of cut deviation is polynomially small but where the expected
number of deviating cuts is exponential. This seems unavoidable since as soon as one
component deviates it produces a huge number of deviating cuts based on the varying
placement of other components. So we cannot hope to prove a polynomial bound
on the number of deviating cuts as we did in Basic Sampling Theorem 3.1. By the
same argument, Theorem 5.2 cannot be proven by a union bound over the deviation
probabilities of the individual cuts, as was Theorem 3.1, since this union bound can
diverge.

For simplicity we used a disconnected graph, but adding a complete graph of
infinitesimal-weight edges does not change that overall outcome, so the same argument
applies to connected graphs. The underlying problem is that deviation of a single cut
in a single component can be “amplified” into many deviating cuts of which it is a
part.

This example fits the special case of graph compression, discussed in the next sec-
tion, and thus serves to show the same limitation for graph compression (Compression
Theorem 6.2) as for smooth graphs: while the probability of cut deviation is small,
the expected number of deviating cuts may be huge.
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6. Approximating cuts by graph compression. We now specialize the re-
sults above to algorithms for approximating cuts. Concentration Theorem 5.2 consid-
ers a broad class of edge weight distributions. But, as was discussed in section 2, we
will use a particularly simple weight distribution in our cut approximation algorithms:
flipping an appropriately weighted coin to decide whether to keep each edge, while
scaling the weights of kept edges to compensate for the coin flips.

We will use a fixed compression factor ρǫ chosen to satisfy a target error bound
ǫ:

ρǫ = 3(d+ 3)(lnn)/ǫ2 .

When ǫ is clear from context we will simply write ρ.
Definition 6.1 (compression). Given a graph G with edge weights ue and com-

pression probabilities pe, the compressed graph G[pe] includes edge e with probability
pe and gives it weight ue/pe if included.

Note that each edge e has expected value ue, so E[G[pe]] = G. The expected
number of edges chosen in compression is

∑

pe, so we would like to minimize these pe
to get the sparsest possible graph while preserving cut values near their expectations.

Theorem 6.2 (compression). Let G be a graph with edge weights ue and strengths
ke. Given ǫ and a corresponding ρǫ, for each edge e, let pe = min{1, ρǫue/ke} and
consider G[pe] from Definition 6.1. Then with probability 1−O(n−d),

1. the graph G[pe] has O(nρǫ) edges, and
2. every cut in G[pe] has value between (1− ǫ) and (1 + ǫ) times its value in G.

This theorem is the detailed version of Theorem 1.1 from the introduction. In
particular, for any target constant ǫ, the necessary ρǫ will yield O(n log n) edges in
the compressed graph.

Proof. The bound on edge count is immediate from Lemma 4.11. The expected
number of edges is ρǫ

∑

ue/ke = O(ρǫn), and a Chernoff bound shows that the out-
come is close to this expectation with high probability.

For the bound on cut deviation, note that since E[G[pe]] = G, the edge strengths
in E[G[pe]] are the same ke as in G. The (maximum) weight for edge e when sampled
is me = ue/pe. If pe = ρue/ke, then me = ke/ρ, so the edge satisfies the ρ-smoothness
definition. If, on the other hand, pe is capped at 1, we might violate that condition.
But in this case the edge e is being taken deterministically (with weight ue), which can
only help us. Formally, we can imagine subdividing the edge into numerous parallel
edges of weight less than ke/ρ, each taken with probability 1, which now each satisfy
the smoothness condition. This does not change the outcome edge weight.

Since all edges meet the smoothness condition, the concentration of cut values
follows immediately from Concentration Theorem 5.2.

Remark 3. Compression Theorem 6.2 is the special case of Concentration The-
orem 5.2 that gives each weight the highest possible variance subject to the condition
that cme ≤ ke—namely, weight ke/c with probability pe and 0 otherwise. It is thus
analogous to the basic Chernoff bound that considers only {0, 1} random variables.
The more general Theorem 5.2 is analogous to the Chernoff–Hoeffding bound that al-
lows arbitrary [0, 1] distributions. As with the proof of the Chernoff–Hoeffding bound,
it might be possible to prove the special case (Theorem 6.2) and then use a convexity
argument to conclude that it upper bounds the general case.

6.1. Using approximate strengths. Our analysis above assumed that edge
strengths were known. While edge strengths can be computed exactly using max-flow,
we do not know how to do so fast enough for use in our cut and flow approximation
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algorithms. Examining the proofs above, however, shows that we do not need to work
with exact edge strengths.

Definition 6.3. Given a graph G with n vertices, edge weights ue, and edge
strengths ke, a set of edge values k̃e are tight strength bounds if

1. k̃e ≤ ke and
2.

∑

ue/k̃e = O(n).
Theorem 6.4. The compression theorem remains asymptotically correct even if

tight strength bounds are used in place of exact strength values.
Proof. The bound on the number of edges in the compressed graph follows directly

from the fact that
∑

ue/ke ≤ n; for tight strength bounds this summation remains
asymptotically correct.

For cut accuracy, note that using lower bounds on strengths can only increase
the pe used in compression, which can only decrease the weights of sampled edges
without changing expectations, which can only produce a larger (better) smoothness
parameter for the sample graph.

Tight strength bounds are much easier to compute than exact strengths.
Theorem 6.5. Given any m-edge, n-vertex graph, tight strength bounds can

be computed in O(m log2 n) time for unweighted graphs or graphs with polynomially
bounded integer weights and O(m log3 n) time for weighted graphs.

Proof. We prove this theorem in section 8.

6.2. Applications. We have shown that graphs can be compressed based on
edge strengths while preserving cut values. We will show in section 8 that we can
compute tight strength bounds in Õ(m) time. We can then generate the compressed
graph G[pE ] as described in the compression theorem. The graph will have O(ρn) =
O(n log n/ǫ2) edges. Cut problems can therefore be approximately solved by working
with the compressed graph as a surrogate for the original graph. We use this fact to
prove the application corollaries from the introduction.

6.2.1. Minimum s-t cuts. Fix a pair of vertices s and t. Without loss of
generality assume ǫ < 1/3. Let v̂ be the value of some minimum cut separating s
from t in the compressed graph G[pE ]. We show that the minimum s-t cut value v
in G is within (1 ± 3ǫ)v̂. By Compression Theorem 6.2, with high probability any
particular s-t cut of minimum value v in G has value at most (1+ ǫ)v in G[pE ]. Thus
v̂ ≤ (1+ ǫ)v. Furthermore, with high probability every cut of G with value exceeding
(1 + 3ǫ)v in G will have value at least (1 − ǫ)(1 + 3ǫ)v = (1 + 2ǫ − 3ǫ2)v ≥ (1 + ǫ)v
(assuming ǫ < 1/3) in G[pE ] and therefore will not be the minimum cut of G[pE ]. It
follows that the minimum cut in G[pE ] corresponds to a cut of value at most (1+3ǫ)v
in G.

We can find this cut by computing a maximum flow in the O(n log n /ǫ2)-edge
graph G[pE ]. The maximum flow algorithm of Goldberg and Tarjan [14] has a running
time of O(nm log(n2/m)), which leads to a running time of O(n2 log2 n /ǫ2) after
compression. Similarly, the Goldberg–Rao algorithm [13], which runs in Õ(m3/2)
time, leads to a running time of Õ(n3/2/ǫ3) after compression. The recent max-flow
approximation algorithm of Christiano et al. [8] runs in O(m4/3/ǫ3) time; applying
compression modifies this time to Õ(n4/3/ǫ17/3). It also increases the overall error
to 2ǫ, but this can be dealt with by halving the initial target ǫ without affecting the
asymptotic runtime. This analysis proves Corollary 1.2 (which includes an Õ(m) term,
which will dominate in dense graphs, to reflect the time to construct the compressed
graph).

In an integer-weighted graph with small flow value, we may wish to apply the
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classical augmenting path algorithm [11, 2] that finds a flow of value v in v augmen-
tations. As described, the graph-compression process can produce noninteger edge
weights ρ/ke, precluding the use of augmenting paths in the compressed graph. How-
ever, if we decrease each compression weight to the next lower integer (and increase
the sampling probability by a negligible amount to compensate) then compression
will produce an integer-weighted graph in which the augmenting paths algorithm can
be applied to find an s-t cut of value at most (1 + ǫ)v in time O(nv log n /ǫ2). This
proves Corollary 1.3.

6.2.2. Sparsest cuts. A sparsest cut of a graph G minimizes the ratio between
the cut value and the product of the numbers of vertices on the two sides. It is NP-
hard to find the value of a sparsest cut. To find an α-approximate value of a sparsest
cut, we use the approach of the previous subsection: we compute a β-approximate
sparsest cut in the compressed graph G[pE ] for β = α/(1 + ǫ). This cut is then an
α = (1 + ǫ)β-approximate sparsest cut of G.

An algorithm of Klein, Stein, and Tardos [26] finds an O(log n)-approximation to
a sparsest cut in O(m2 logm) time. By running their algorithm on G[pE ], we will find
anO(log n)-approximate sparsest cut inO(n2 log3 n /ǫ4) time. Our small cut-sampling
error is lost asymptotically in the larger error of the approximation algorithm. This
proves Corollary Corollary 1.4.

More recently, Arora, Hazan, and Kale [4] gave an Õ(mn)-time algorithm achiev-
ing an O(

√
log n) approximation for sparsest cut, and applied our compression method

to improve the runtime to Õ(n2). Our approach has been applied in a similar way to
improve the running time of a spectral partitioning algorithm [17].

7. Approximating flows by graph smoothing. Until now we have focused
on cut problems. Our compression scheme produces a graph with nearly the same
cut values as the original, so cut problems can be approximated in the compressed
graph. But consider a maximum flow problem. One could try to approximate this
maximum flow by finding a maximum flow in the compressed graph. By saturating
an approximately minimum s-t cut, this approach does indeed give an approximation
to the value of the maximum flow. But since edges in the compressed graph have
larger capacity than the original graph edges, a feasible flow in the compressed graph
may not be feasible for the original graph.

Previous work [19] tackled the flow approximation problem with a divide-and-
conquer approach. The edges of G are randomly divided into groups, producing
several random subgraphs of G. Basic Sampling Theorem 3.1 shows that each sub-
graph has cut, and thus flow, values near its expectation. By computing a flow in each
subgraph and adding the flows, we find a flow of value (1−ǫ) times the maximum flow
in G. Because we are dividing up capacity without increasing it, the flow is feasible
in G.

This approach suffered the same limitation as the uniform sampling approach
for cuts: the probability of each edge occurring in each subgraph must be Ω̃(1/c) to
preserve cut values. This translates into a restriction that we divide into Õ(c) groups,
which limits the power of the scheme on a graph with small minimum cuts. Graph
compression’s nonuniform sampling approach does not seem to provide an immediate
answer: clearly we cannot simultaneously divide each edge with strength ke among
ke distinct subgraphs. Instead we seek a consistent rule that divides all edges among
a fixed number of subgraphs. In this case, each subgraph must necessarily look like a
uniform sample from the original graph.

Unfortunately, uniform sampling can violate the smoothness condition that un-
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derlies Concentration Theorem 5.2 (and its special case, Compression Theorem 6.2).
Under graph compression, weak edges were given small weight (and sampled with
higher probability) so that their presence or absence would not significantly impact
the sampled cut weight. The need for uniform sampling rules this out. So instead, we
subdivide weak edges into numerous edges of smaller weight, achieving the same goal
of limiting the impact of individual edge outcomes on the cuts they are in.

Dividing all the graph edges is pointless: splitting all edges in half doubles the
minimum cut (allowing us to sample at half the original rate while preserving approx-
imate cut values), but since we double the number of edges, we end up with the same
number of sampled edges as before. But since only a small fraction of the graph’s edges
are weak, dividing only those weak edges does not add very many. Thus, algorithms
based on the uniform samples remain efficient.

7.1. Smooth graphs revisited. We extend the standard notation G(p) to
weighted graphs, to denote taking each capacitated edge with (uniform) probabil-
ity p, then prove that sampling works. As discussed above, the problem is that a
single capacitated edge might account for much of the capacity crossing a cut. The
presence or absence of this edge has a major impact on the value of this cut in the
sampled graph. However, edge strength gives us a useful bound on how much impact
a given edge can have. We have already defined c-smoothness for random graphs;
there is an obvious special case for nonrandom graphs.

Definition 7.1. A (nonrandom) graph G with edge capacities ue and edge
strengths ke is c-smooth if, for every edge, ke ≥ cue.

This fits the definition of random-graph smoothness, since for deterministic graphs
ue is both the expected value and maximum value for edge e. Note that a graph with
integer edge weights and minimum cut c has smoothness at most c but possibly much
less. We now consider smoothness as a criterion for applying uniform sampling to
weighted graphs.

Theorem 7.2 (smooth sampling). Let G be a c-smooth deterministic graph. Let
p = ρǫ/c, where ρǫ = O((log n)/ǫ2) as in Compression Theorem 6.2. Then with high
probability, every cut in G(p) has value in the range (1±ǫ) times its expectation (which
is p times its original value).

Proof. The graph G(p) is a random graph in which edge e has maximum possible
weight ue. Since E[G(p)] = p ·G, the strength of e in E[G(p)] is pke. It follows that
G(p) meets the definition of a pc-smooth random graph, so the proof is immediate
from Concentration Theorem 5.2.

7.2. Making graphs smooth. We have argued that good uniform sampling
will lead to good flow algorithms, and then shown that smooth deterministic graphs
can be sampled uniformly. We now give an algorithm for transforming any graph into
a smooth one.

Lemma 7.3. Given an m-edge graph, a smoothness parameter c, and the strengths
ke of all edges, we can transform the graph into an (m+ cn)-edge c-smooth graph in
O(m+ cn) time.

Proof. Divide edge e into ⌈cue/ke⌉ parallel edges, each of capacity ue/ ⌈cue/ke⌉ ≤
ke/c, so the total capacity is ue. These edges remain ke-strong but now satisfy the
smoothness criterion.

It remains to prove that this division creates at most cn new edges. The number
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of edges in our smoothed graph is
∑

e

⌈cue/ke⌉ ≤
∑

e

(1 + cue/ke)

≤ m+
∑

cue/ke

= m+ c
∑

ue/ke

≤ m+ cn,

where the last line follows from Lemma 4.11.
Corollary 7.4. Given edge strengths, in O(m) time we can transform any

m-edge capacitated graph into an O(m)-edge capacitated (m/n)-smooth graph.
The corollary follows by setting the smoothness parameter c = m/n. This is

in some sense optimal. Any smaller smoothness parameter leads to worse sampling
performance without decreasing the asymptotic number of edges (which is always
at least m). A larger smoothness parameter provides better sampling behavior but
linearly increases the number of edges such that the gains from sparser sampling are
canceled out.

7.3. Approximate max-flows. To approximate flows, we use graph smoothing.
As was argued in Theorem 6.4, graph smoothing works in an unchanged way even if
we use tight strength bounds, rather than exact strengths, in the computation.

After computing tight strength bounds in Õ(m) time (as will be described in
section 8), we can apply Smooth Sampling Theorem 7.2, which states that in any
c-smooth graph, sampling with probability p produces a graph in which with high
probability all cuts are within (1 ± ǫ) of their expected values. This fact is the
only one used in the uncapacitated graph flow algorithms of [19]. Therefore, those
results immediately generalize to the smooth graphs defined here—we simply replace
“minimum cut” with “smoothness” in all of those results. The generalization is as
follows.

Lemma 7.5. Let T (m,n, v, c) be the time to find a maximum flow in a graph with
m edges, n vertices, flow v, and smoothness c. Then for any ǫ, a flow of value (1−ǫ)v
on an m-edge, n-vertex, smoothness-c graph can be found in

Õ

(

1

p
T (pm, n, pv, pc)

)

time, where p = Θ((log n)/ǫ2c). In particular, setting c = m/n, we can achieve a
time of

Õ

(

ǫ2m

n
T

(

n

ǫ2
, n,

nv

ǫ2m
,
log n

ǫ2

))

.

Proof. Divide the graph edges into 1/p random groups. Each group defines an
edge-disjoint subgraph with pm edges. Since the minimum s-t cut of G is v, the min-
imum expected s-t cut in each subgraph is pv. By Smooth Sampling Theorem 7.2,
each subgraph has minimum s-t cut, and thus maximum s-t flow, at least (1 − ǫ)pv.
Since cut values are preserved, strengths are also near their expectations in the sam-
pled graph and thus scale by p. Find a flow in each subgraph and combine the results.
This total flow will be (1/p)(1− ǫ)pv = (1− ǫ)v.

Corollary 7.6. In any undirected graph, given edge strengths, a (1 − ǫ)-times
maximum flow can found in Õ(m

√
n/ǫ) time.
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The companion article [24] slightly improves this bound to Õ(m
√

n/ǫ) time.
Proof. Begin by converting the graph to an O(m)-edge (m/n)-smooth graph,

as discussed in Lemma 7.3. The Goldberg–Rao flow algorithm [13] gives T (m,n) =
Õ(m3/2) for the previous lemma. (Since we are already giving up a factor of ǫ,
we can scale and round all edge capacities to be polynomial, thus eliminating the
capacity scaling term in their algorithm.) Plugging this in gives a time bound of
Õ(m

√
n/ǫ).

If we instead use the new algorithm of Christiano et al. [8], the same analysis
yields a runtime of Õ(mn1/3) for constant ǫ.

Unlike our algorithm for minimum cuts, it is not possible to use the standard
augmenting paths algorithm to find a max-flow of value v in Õ(nv/ǫ2) time. The
graph smoothing process may subdivide unit-capacity edges, producing fractional-
capacity edges to which unit-capacity augmenting flows cannot be applied.

In previous work [21], Karger used the above smoothing technique to compute
exact flows more quickly than before; however, this work has been superseded by
better algorithms (also based on edge strength but not using smoothing) presented in
the companion article [24].

Graph smoothing actually offers an alternative approach to approximating min-
cuts as well: once a graph has been made (m/n)-smooth as above, choosing edges
with probability ρǫn/m will meet the conditions of Smooth Sampling Theorem 7.2
and yield a graph with (1±ǫ)-accurate cuts; the sampled graph will have O(ρǫn) edges
with high probability, just as in Compression Theorem 6.2, so it can be used the same
way to estimate min-cuts. Compression thus seems to be a generally weaker approach
than smoothing. However, for cuts it seems more elegant and skips the smoothing
step. This also means it preserves integrality, which is essential for the Õ(nv/ǫ2) time
bound.

8. Finding strong connectivities. To efficiently compress and smooth graphs
we would like to efficiently find the strong connectivities of edges. Unfortunately, it
is not clear how quickly this can be done (iteratively breaking up strong components
using n minimum-cut computations is one slow solution). But as discussed in Theo-
rem 6.4, we do not require the exact values ke. We now show that it is possible to find
tight strength bounds k̃e that satisfy the two key requirements of Definition 6.3: that
k̃e ≤ ke and

∑

1/k̃e = O(n). These suffice for the cut and flow algorithms described
above.

Our basic approach is to repeatedly find, label, and remove the weakest edges in
the graph; Lemma 4.5 tells us that this does not change the strengths of the other
edges, so we can iterate to find all strengths. We use a sparse certificate algorithm
of Nagamochi and Ibaraki [30] to find all edges crossing a small cut (and this weak).
While this does not find all weak edges, we show that it carves off many of the
strong components and thus makes significant progress, so that a few iterations do
find all weak edges. We also slightly tweak the algorithm to reduce the number of
false positives—edges marked by the certificate algorithm that are actually strong—
to avoid a wasted log n factor in the overall strength bounds. Because there are
potentially n distinct strengths, we batch together all edges with strength in the same
power of 2—which reduces the number of batches we need to find to O(log n). When
graphs are superpolynomially weighted, the number of batches may be large, so we
need to devise a few more tricks to keep the overall computation efficient.

We will focus most of our discussion on unweighted graphs, although the algo-
rithms work unchanged for graphs with polynomially bounded integer weights. We
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then show in section 8.6 how to generalize our algorithms to arbitrarily weighted
graphs.

8.1. Grouping weak edges. Our approach begins for unweighted graphs with
the following lemma.

Lemma 8.1. The total weight of a graph’s k-weak edges is at most k(n − 1).
In particular, any unweighted graph with total edge weight exceeding k(n − 1) has a
nontrivial k-strong component (which may be the entire graph).

Proof. Let S be the set of k-weak edges, and suppose that the total weight of
edges in S exceeds k(n− 1). Then

∑

ue/ke ≥
∑

e∈S

ue/ke

>
∑

e∈S

ue/k

> k(n− 1)/k

= n− 1,

which contradicts Lemma 4.11.
We apply this lemma first to unweighted graphs, for which Lemma 8.1 implies that

there are at most k(n− 1) edges that are k-weak. For each value k = 1, 2, 4, 8, . . . ,m,
we will find a set of k(n − 1) edges containing all the k-weak edges (note that every
edge is (m+1)-weak). We set k′e = k/2 for all edges that are in the k-weak set but not
the k/2-weak set, thus establishing lower bounds k′e ≤ ke for which the compression
theorem works. The strength-bound summation under this basic scheme would be

∑

ρ/k′e ≤
logm
∑

i=0

2i(n− 1)(ρ/2i−1) = O(ρn logm).

We will eventually describe a more sophisticated scheme that eliminates the factor of
logm. It will also handle weighted graphs efficiently.

8.2. Sparse certificates. A basic tool that we use is sparse certificates, defined
by Nagamochi and Ibaraki [30].

Definition 8.2. A sparse k-connectivity certificate, or simply a k-certificate,
for an n-vertex unweighted graph G is a subgraph H of G such that

1. H has k(n− 1) edges, and
2. H contains all edges crossing cuts of value k or less.

Note that any maximal set of k forests of G is a certificate, since it must contain
all edges of any cut of value k or less—otherwise, some forest has no edge crossing
the cut and can incorporate any unused one.

Nagamochi and Ibaraki gave an algorithm [30], which we call Certificate, that
constructs a sparse k-connectivity certificate in O(m) time on unweighted graphs,
independent of k.

8.3. Finding k-weak edges. Although a sparse k-certificate contains all edges
with standard connectivity less than k, it need not contain all edges with strong
connectivity less than k, since some such edges might not cross any cut of value less
than k. (For example, in a square with an added diagonal, the diagonal edge has
strength only 2 but crosses no cut of value 2.) We must therefore perform some extra
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Procedure WeakEdges(G, k).

do log2 n times

E′ ← Certificate(G, 4k)
output E′

G← G− E′

end do

Fig. 1. Procedure WeakEdges for identifying ke < k.

work. In Figure 1 we give an algorithm WeakEdges for identifying edges with ke < k.
It uses the Nagamochi–Ibaraki Certificate algorithm as a subroutine.

Theorem 8.3. WeakEdges outputs a set of O(kn log n) edges containing all the
k-weak edges of G.

Proof. First suppose that G has no k-strong components, i.e., that ke < k for all
edges. Then by Lemma 8.1 there are at most k(n−1) edges in G; hence at least half of
the vertices have at most 4k incident edges that define a cut of value at most 4k with
a single vertex on one side. In an iteration of the loop in WeakEdges, these vertices
become isolated after removing the sparse 4k-certificate edges. Thus in a single loop
iteration half of the nonisolated vertices of G become isolated. The remaining graph
still has no k-strong edges, so we can repeat the argument. Hence in log2 n rounds
we isolate all vertices of G, which can only be done by removing all the edges. Thus
all the edges of G are output by WeakEdges.

In the general case, let us obtain a new graph H by contracting each k-strong
component of G to a vertex. Note that this leaves all k-weak edges uncontracted and
k weak by Lemma 4.6. Any sparse 4k-certificate of G contains the edges of a sparse
4k-certificate of H as well. Thus by the previous paragraph, all edges of H are output
by WeakEdges. But these are all the k-weak edges of G.

8.4. Sparse partitions. Algorithm WeakEdges can be implemented via O(log n)
calls to Certificate. It follows that it runs in O(m log n) time on unweighted graphs
and outputs a set of at most 4k(n−1) log n edges.2 In this section, we eliminate a log n
factor in this approach by finding edge sets that are “sparser” than the Nagamochi–
Ibaraki certificate.

Observe that a given k-certificate E′ may contain edges that are inside a connected
component of G − E′. The edges in G − E′ do not cross any cut of value at most
k (by definition of a sparse certificate), so the same holds for any edge of E′ whose
endpoints are connected by a path in G − E′. We can therefore remove any such
edge from E′ and put it back into G without affecting the correctness of the proof of
Theorem 8.3.

We can find the remaining edge set by contracting all edges not in E′, yielding
a new graph G′. This contracts all (and only) edges connected by a path in G− E′.
But observe that any edge crossing a cut of value at most k in G also crosses such a
cut in G′ since we contract no edge that crosses such a small cut. Thus we can find

2It also follows that a (4k logn)-sparse certificate will contain all k-weak edges, so they can be
found with a single Certificate invocation. This gives a better running time than our algorithm.
Indeed, since the Nagamochi–Ibaraki algorithm “labels” each edge with the value k for which it
vanishes, we can use those labels (divided by logn) as strength lower-bounds, producing a complete
result in O(m + n logn) time. However, this approach produces an extra logn factor in the edge
bound (or worse in weighted graphs) that we have been unable to remove.
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all edges crossing a small cut via a certificate in G′. Since G′ has fewer vertices, the
certificate has fewer edges. We can iterate this procedure until all edges of G′ are in
the certificate or until G′ becomes a single vertex. In the latter case, the original graph
is k-connected, while in the former, if the current contracted graph has n′ vertices, it
has at most k(n′ − 1) edges. This motivates the following definition.

Definition 8.4. A sparse k-partition, or k-partition, of G is a set E′ of edges
of G such that

1. E′ contains all edges crossing cuts of value k or less in G, and
2. If G − E′ has r connected components, then E′ contains at most 2k(r − 1)

edges.
In fact, the construction just described yields a graph with at most kr edges, but

we have relaxed the definition to 2kr edges to allow for a more efficient construction.
Procedure Partition in Figure 2 outputs a sparse partition. It uses the Nagamochi–

Ibaraki Certificate algorithm and obtains a new graphG′ by contracting those edges
not in the certificate. It repeats this process until the graph is sufficiently sparse. It
bears some similarity to a minimum cut approximation algorithm invented by Matula
[28].

Procedure Partition(G, k).

input: An n-vertex m-edge graph G

if m ≤ 2k(n− 1) then
output the edges of G

else

E′ ← Certificate(G, k)
G′ ← contract all edges of G− E′

Partition(G′, k)

Fig. 2. Partition finds low-connectivity edges.

Lemma 8.5. Partition outputs a sparse k-partition partition in O(m+ n) time
on unweighted graphs.

Proof. Correctness is clear from Lemma 4.6 since no edge crossing a cut of value
less than k is ever contracted and at termination m ≤ 2k(n− 1); we need only bound
the running time.

The algorithm iterates only when m > 2k(n − 1). It finds a sparse connectivity
certificate with m′ ≤ k(n − 1) ≤ m/2 edges and then contracts all edges not in the
certificate, so at most half the edges remain. Also, if n′ − 1 > (n− 1)/2, then in the
following iteration we will have m′ ≤ k(n − 1) < 2k(n′ − 1) and the algorithm will
terminate. It follows that the number of vertices (minus one) also halves in every
recursive call except the last.

A single iteration invokes the O(m + n)-time sparse-certificate algorithm [30].
Thus, our algorithm satisfies the recurrence T (m,n) = m+n+T (m/2, n/2) = O(m+
n).

Lemma 8.6. If procedure Partition is used instead of Certificate in a call to
WeakEdges(G, k) (meaning we invoke Partition(G, 4k) instead of Certificate(G, 4k)),
then algorithm WeakEdges runs in O(m log n) time on unweighted graphs and returns
a partition of G into r components for some r. There are at most 8k(r − 1) cross-
partition edges, and they include all the k-weak edges of G.
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Note that the partition output by WeakEdges is itself almost a sparse k-partition;
it simply has twice as many edges as the definition allows. On the other hand, it
contains all k-weak edges, not just the ones crossing small cuts.

Proof. The running time follows from Lemma 8.5. To prove the edge bound,
consider a particular connected component H remaining in a particular iteration of
WeakEdges. A call to Partition(H, 2k) returns a set of 8k(s−1) edges whose removal
breaks that component into s subcomponents (the multiplier 8 arises from the fact
that we look for a 4k-partition). That is, it removes at most 8k(s−1) edges to increase
the number of connected components by s− 1. We can therefore charge 8k edges to
each of the new components that gets created. Accumulating these charges over all
the calls to Partition shows that if WeakEdges outputs 8k(r − 1) edges, then those
edges must split the graph into at least r components.

8.5. Assigning estimates. We now give algorithm Estimation in Figure 3 for
estimating strong connectivities. We use subroutine WeakEdges to find a small edge set
containing all edges e with ke < k, but replace the Nagamochi–Ibaraki Certificate
implementation with our algorithm Partition to reduce the number of output edges.

We assign values k̃e as follows. In the first step, we run WeakEdges on G with
k = 2; we set k̃e = 1 for the edges in the output edge set E0. Then we delete E0

from G; this breaks G into connected components G1, . . . , Gℓ. Note that each edge
in Gi has ke ≥ 2 in G, though possibly not in Gi. Then we recursively repeat this
procedure in each Gi, by setting k = 4 in WeakEdges and labeling all output edges
with k̃e = 2, then with k = 8, 16, . . . ,m. At the ith step, all as-yet unlabeled edges
have ke ≥ 2i; we separate all those with ke < 2i+1 and give them (valid lower bound)
label k̃e = 2i. Thus we find all k̃e-values in at most logm iterations since m is the
maximum strength of an edge in an unweighted graph.

Procedure Estimation(H, k).

input: subgraph H of G

E′ ← WeakEdges(H,2k)
for each e ∈ E′

ke ← k
for each nontrivial connected component H ′ ⊂ H − E′

Estimation(H ′,2k)

Fig. 3. Procedure Estimation for assigning k̃e-values.

Lemma 8.7. If H is any subgraph of G, then Estimation(H, k) assigns bounds
k̃e such that any edge e ∈ H with ke ≥ k in G receives k̃e ≤ ke.

Corollary 8.8. After a call to Estimation(G, 1), all the labels k̃e satisfy k̃e ≤
ke.

Proof. We prove the lemma by downward induction on k. The claim is vacuously
true for k = m + 1 since no ke > m. For the inductive step, consider a call to
Estimation(H, k). We consider two possibilities for edge e in H. If e is in the set E′

returned by WeakEdges(H, 2k), then it receives label k, which is a valid lower bound
for any edge with ke ≥ k. So the inductive step is proven for e ∈ E′. On the other
hand, if e /∈ E′, then e is in some H ′ upon which the algorithm is invoked recursively.
By the correctness of WeakEdges we know ke ≥ 2k (in H, and thus in G) in this case.
Thus, the inductive hypothesis applies to show that e receives a valid lower bound
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upon invocation of WeakEdges(H ′, 2k).
Lemma 8.9. Assume that in procedure WeakEdges, procedure Certificate is

replaced by Partition. Then the values k̃e output by Estimation(G, 1) are such that
∑

1/k̃e = O(n).
Proof. The proof is similar to the proof in Lemma 4.11 that

∑

ue/ke ≤ n. Define
the cost of edge e to be 1/k̃e. We prove that the total cost assigned to edges is O(n).
Consider a call to Estimation(H, k) on some connected subgraph H of G. It invokes
WeakEdges(H, k), which returns a set of 4k(r − 1) edges whose removal partitions H
into r connected components. (Note that possibly r = 1 if H is k-connected.) The
algorithm assigns values k̃e = k to the removed edges. It follows that the total cost
assigned to these edges is 4(r−1). In other words, at a cost of 4(r−1), the algorithm
has increased the number of connected components by r − 1. Ultimately, when all
vertices have been isolated by edge removals, there are n components; thus, the total
cost of the component creations is at most 4(n− 1).

In summary, our estimates k̃e satisfy the necessary “tight strength bounds” condi-
tions for Definition 6.3 used in our compression and smoothing applications: k̃e ≤ ke
and

∑

1/k̃e = O(n).
Lemma 8.10. Estimation runs in O(m log2 n) time on an unweighted graph.
Proof. Each level of recursion of Estimation calls subroutine WeakEdges on

graphs of total size m. An unweighted graph has maximum strong connectivity m
and therefore has O(logm) levels of recursion.

8.6. Weighted graphs. Until now, we have focused on the estimation of edge
strengths for unweighted graphs. Weighted graphs present complications. Real weights
can be rounded to nearby rationals while introducing negligible changes in connec-
tivity and strength. Rationals can be scaled up so that all capacities are integers,
integer edge weights thought of as parallel unweighted edges, and unweighted-graph
algorithms applied to the result. But the number of unweighted edges produced this
way can be unbounded, impacting the running times of our unweighted-graph algo-
rithms.

Nagamochi and Ibaraki give an O(m + n log n)-time weighted-graph implemen-
tation of their Certificate algorithm [29]. (In weighted graphs, the k-sparse sparse
certificate has an upper bound of k(n − 1) on the total weight of edges incorpo-
rated.) We can use the Nagamochi–Ibaraki weighted-graph algorithm to implement
Partition(G, k) in O(m log n) time for any value of k. Unlike the unweighted case,
the repeated calls to Certificate need not decrease the number of edges substan-
tially (though their total weight will decrease). However, the claimed halving in
vertices still happens. Thus algorithm Partition satisfies a recurrence T (m,n) =
O(m+ n log n) + T (m,n/2) = O(m log n). Since Partition runs in O(m log n) time,
we deduce that WeakEdges runs in O(m log2 n) time.

A bigger problem arises in the iterations of Estimation. In an integer-weighted
graph with maximum edge weight W , the ke values may be as large as mW , meaning
that Ω(logmW ) levels of recursion will apparently be required in Estimation. This
is a problem if W is superpolynomial.3 To deal with this problem, we show how
to localize our computation of strong connectivities to a small “window” of relevant
connectivity values.

We begin by computing a rough underestimate for the edge strengths. Construct

3Recall that, for a strongly polynomial bound, we are concerned with the number of arithmetic
operations. Thus, the problem is not that operations on large numbers are slow, but that large
numbers may force us to do more operations (proportional to logW in our case).
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a maximum spanning tree (MST) for G using the edge weights ue. Let de be the
minimum weight of an edge on the MST path between the endpoints of e. The
quantities de can be determined in O(m) time for all e using an MST sensitivity
analysis algorithm [10] (practical algorithms run in O(m log n) time and will not
dominate our running time). Since the MST path between the endpoints of e forms
a (nonmaximal) de-connected subgraph spanning e, we know that ke ≥ de. However,
if we remove all edges of weight de or greater, then we disconnect the endpoints of
e (this follows from MST properties [32]). There are at most

(

n
2

)

such edges, so the
weight removed is less than n2de. Therefore, ke ≤ n2de. This gives us an initial
factor-of-n2 estimate de ≤ ke < n2de.

Given the de, we compute the k̃e in a series of phases, each focusing on a set of
edges in a narrow range of de values. In particular, we will contract all edges with de
above some upper bound and delete all edges with de below some lower bound. Then
we will use Estimation to assign k̃e labels to the edges that remain.

We label our edges in a series of phases. In a phase, let D be the maximum de
on any unlabeled edge. Each phase will decrease D. Since ke < n2de, the maximum
strength of any unlabeled edge is less than n2D. Our goal in this phase is to (validly)
label all edges with de ≥ D/n. We begin by contracting all edges of weight at least n2D
(which will already have labels from previous phases since de ≥ ue). These edges all
trivially have strength at least n2D which, by Lemma 4.6, means that the contractions
do not affect strengths of edges with ke < n2D (which includes all unlabeled edges).
In the resulting graph, let us delete all edges with de < D/n (none of which we need
to label in this phase). The deletions may decrease certain strengths but not increase
them (Lemma 4.5). It follows that every unlabeled edge (all of which have ke < n2D)
has strength in the modified graph no greater than in G.

On each connected component H induced by the remaining edges, execute
Estimation(H,D/n). By Lemma 8.7, this assigns valid lower-bound labels to all
edges e with strength at least D/n in the modified graph. In particular, the labels
are valid for all e with de ≥ D/n (since any edge with de ≥ D/n is connected by a
path of edges of value at least D/n, none of which get deleted in the phase). These
labels are valid lower bounds for strengths in the modified graph and, as discussed in
the previous paragraph, all unlabeled edges have strengths in the subgraph no greater
than their strength in G. Thus, the computed labels can be used as valid labels for
all the unlabeled edges with de ≥ D/n.

The phase just described has computed labels for each unlabeled edge with de ≥
D/n. We have therefore reduced the maximum de on any unlabeled edge by a factor
of n. We iterate this process, repeatedly decreasing the maximum unlabeled de, until
all edges are labeled.

Summarizing our discussion above gives the algorithm WindowEstimation listed
in Figure 4. To make this procedure efficient, instead of repeatedly starting with G
and deleting edges with small de in each phase, we start with a large D and all edges
deleted, then repeatedly decrease D and “undelete” the edges that are needed in the
given phase.

Lemma 8.11. Procedure WindowEstimation can be implemented to run in only
O(m log3 n) time.

Proof. The contractions in WindowEstimation can be implemented using a stan-
dard union-find data structure [9]. Each time an edge is contracted, a union is called
on its endpoints. Each time an edge is added from L, find operations can identify its
endpoints. Therefore, the additions and contractions of edges do not affect the running
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Procedure WindowEstimation(G).

Sort the edges in decreasing order of de into a list L
Initialize G′ as an empty graph on the vertices of G
repeat

let D ← maximum de among unlabeled edges in L
contract every e ∈ G′ with de ≥ n2D
move every edge e ∈ L with de ≥ D/n to G′

call Estimation(G′, D/n) to get labels k̃e
for the new edges added from L in this phase

until no edges remain

Fig. 4. WindowEstimation for weighted graphs.

time. Instead, the running time is determined by the repeated calls to Estimation.
Consider a particular iteration of the loop with some D value. We initially con-

tract all edges with de ≥ n2D, so the total remaining weight and thus maximum
strength in the resulting graph is less than n4D. We invoke Estimation with a start-
ing strength argument of D/n, which means that it terminates in O(log n) iterations
(the number of Estimation argument doublings from D/n to n4D). As to the size of
the problem, recall that we contracted all edges with with de ≥ n2D and deleted all
edges with de < D/n. It follows that our running time is proportional to m′ log3 n,
where m′ is the number of edges with D/n ≤ de < D. (Note that we can gather all
relevant vertices by considering the extant edges, which lets us ignore isolated vertices
and ensures that the number of vertices we work with is O(m′).)

Now we can bound the running time over all phases. An edge e is present (neither
contracted nor deleted) if and only if D/n ≤ de < n2D. Since the threshold D
decreases by a factor of n each time, this means that edge e contributes to the size
of the evaluated subgraph in at most three iterations. In other words, the sum of m′

values over all iterations of our algorithm is 3m. It follows that the overall running
time of these iterations is O(

∑

m′ log3 n) = O(m log3 n).
Lemma 8.12. Procedure WindowEstimation assigns labels such that

∑

ue/k̃e =
O(n)

Proof. Recall the definition in Lemma 8.9 of the cost of edge e as ue/k̃e. Our
algorithm incorporates some of the labels computed by Estimation in each phase,
contributing their cost (in that phase) to the final total cost. We show that the total
cost of all labels computed over all the phases is O(n).

Recall that the rank of a graph is equal to the number of edges in a spanning
forest of the graph. Inspection of Partition shows that the total weight of edges
returned by Partition(G, k) is at most 4 times the rank of G. Similarly, inspection
of Estimation shows that on a rank-r graph its results satisfy

∑

ue/k̃e = O(r).
The phase at parameter D run with all edges of weight exceeding Dn2 contracted

and all edges of weight less than D/n not yet inserted. By the properties of MSTs,
the resulting graph is precisely spanned by the set of MST edges with weights in this
range. That is, the rank of this graph is equal to the number rD of such MST edges.
It follows that the total cost

∑

ue/k̃e of Estimation labels in this phase is O(rD).
Now note that each MST edge contributes to rD only when its weight is between D
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and Dn2, which happens in at most three phases since D decreases by n each phase.
Thus, each edge contributes to three values rD, so

∑

rD ≤ 3(n− 1). This bounds the
total cost by O(

∑

rD) = O(n), as desired.

9. Conclusion. We have given stronger applications of random sampling to
problems involving cuts in graphs. The natural open question is whether these ap-
proximation algorithms can be made exact. An initial step toward the answer [19]
only gave a useful speed-up for graphs with large minimum cuts. Later, sampling
led to an exact linear-time algorithm for minimum cuts [23]; however, the techniques
used there appear to be specialized to that particular problem. In the article imme-
diately following this one, Karger and Levine [24] give very fast algorithms for small
flows in unweighted graphs; the important remaining question is to develop fast exact
algorithms for weighted graphs.

Subsequent to the initial publication of this work [6], more powerful results on
graph compression have been attained. Spielman and Srivastava [31] gave a near-
linear-time randomized algorithm that compressed graphs to satisfy all quadratic
forms over the graph—a strict generalization of preserving cut values. Their algo-
rithm uses a similar approach, compressing each edge with some probability. Instead
of inverse to strong connectivities, their sampling probabilities are proportional to
the effective resistances of graph edges. Intriguingly, (inverse) strong connectivity
and effective resistance are incomparable, with each possibly smaller than the other
by a factor of n [12]. This suggests that neither measure is the true “smallest achiev-
able” sampling probability for cut sampling. It would be interesting to show that the
minimum of the two sampling probabilities was permissible. Along these lines, Fung
et al. [12] proved that it is valid to sample with probability inversely proportional to
the standard connectivity of an edge’s endpoints, which lower bounds both the above-
mentioned measures. However, the constant of proportionality must be increased by
an O(log n) factor, yielding a sampled graph with O(n log2 n) edges.

Our general approach of choosing edges independently at random seems unlikely
to yield compression to o(n log n) size. Even with just a single cut, the Chernoff
bound breaks down when the expected number of edges in the sample is o(log n)—
indeed, with expectation o(log n) there is a nonnegligible chance of sampling no edges
at all from a given cut! Nonetheless, Batson, Spielman, and Srivastava [5] showed
that graphs could be compressed deterministically to O(n) edges, improving on our
O(n log n) result, although the algorithm given for doing so takes time O(n3m), which
is significantly slower. The proof techniques are heavily algebraic. An interesting open
question is whether we can attain similar bounds using combinatorial arguments.
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