

Randomized Cache Placement for Eliminating Conflicts
Nigel Topham
Department of Computer Science, University of Edinburgh

JCMB, Kings Buildings, Edinburgh (UK)
e-mai | : npt @Ics. ed. ac. uk

Antonio Gonzalez

Departament d’Arquitectura de Computadors
Universitat Politécnica de Catalunya
¢/ Jordi Girona 1-3, 08034 Barcelona (Spain)

e-mai | : ant oni o@c. upc. es

Abstract
Applications with regular patterns of memory access can experience high levels of cache conflic
misses. In SMP systems using SPMD programming models the levels of conflict misses can be ir
creased significantly by the data transpositions required for parallelization. Furthermore, technique
such as blocking which are introduced within a single thread to improve locality, can result in yet
more conflict misses. The tension between minimizing cache conflicts and the other transformation
needed for efficient parallelization leads to complex optimization problems for parallelizing compil-
ers.
This paper begins with a survey and quantitative evaluation of the existing proposals for conflict-
resistant cache architectures. We show that the introduction of a pseudo-random element into tt
cache index function provides significant performance benefits. In effect one can eliminate repetitive
conflict misses and produce a cache where miss ratio depends solely on working set behavior. W\
show empirically that one particular pseudo-random indexing function, when used in conjunction
with address prediction, yields the best overall performance.
In many systems the processor clock period is closely linked to the critical path through the first-leve
cache. In this paper we consider the impact of pseudo-random cache indexing on processor cyc
times and present practical solutions to some of the major implementation issues for this type ¢
cache.
We present results from detailed simulations of a superscalar out-of-order processor executing tr
Spec95 benchmarks, as well as from cache simulations of individual loop kernels to illustrate specif
ic effects. We present measurements of Instructions committed Per Cycle (IPC) when comparing th
performance of different cache architectures on whole-program benchmarks such as the Spec!
suite. In addition, miss ratio measurements are presented for some loop kernels to highlight the ext
conflicts introduced by loop transformations and the elimination of these misses by our proposec
cache.

1 Introduction

If the upward trend in processor dkoftequenciesluring the last ten years is extrapolated over the
next ten years, we will see clock frequencies Bgctor of twentyduring that periodi35]. However,

based on the current 7% per annum reductionRARI access timeflL7], memory latency can be
expected to reduce by only 50% in the next ten yd#iis.potential ten-fold increase in the distance

to main memory has serious implications for the design of future cache-based memory hierarchie

as well as for the architecture of memory devices themselves.

There are many options for an architect to consider in the battle against memory latency. Thes
can be partitioned into two broad categories - latency reduction and latency hiding. Latency
reduction techniquetypically rely on caches to exploit locality with the objective of reducing the
latency of each individual memory reference. Latency hiding techniques exploit parallelism to
overlap memory latency with other operations and thus “hide” it from a program’s critical path.
Increasing transistor densities also offer the possibility of large quantities of integrated DRAM, with
the potential to eliminate the costly off-chip processor-memory communication deBlys
However, regardless of the techniques developed to reduce cache miss penalties and incree
memory bandwidth, the fundamental effectiveness of the top-most level of cache will remain of

critical importance.

This paperexaminestie degree to which future cache architectures can isolate their processor
from the unpredictable miss ratios caused by cache conflicts. Our contribution is prefaced with ¢
discussion of the causes of cache conflicts, not only those inherent in an application but also thos

which are introduced by the processes of optimization and program transformation.

We discuss the theory, and evaluate the practice, of using alternative index functions aimed ¢
conflict avoidance. We demonstrate how such caches could be constructed and discuss somn

practical solutions to the problems associated with implementing unconventional indexing schemes

In section 2 we present an overview of the causes of conflict miBses, section 3 presents
guantitative data about the performance of previously proposed indexing schemes. The propose
pseudo-random indexing schemes are introduced in section 4 and their application to different cact
architectures is analysed in section 5. Section 6 evaluates the potential of such indexing schemes
avoid conflict missesnlsection7 we discuss a number of implementation issues, such as the effect
of using this novel indexing scheme on the processor cycle Tines, in section 8, wpresent an
experimental evaluation dfow the proposed indexing scheraiects IPC (instructions committed

per cycle).Finally, insection Qwe draw conclusions from this study.

2 The causes of cache conflicts

Each lbock of main memorgan be placed in exactly one set of blocks in Hehe The chosen set
isdetermined byheindexingfunction.Conventionataches typically extract a field af bits from

the address and use this to select one block from a g&t af/hilst simple, and easy to implement,
this indexing function is not robust. The principal weakness of this function is its susceptibility to
repetitive conflict misses. For examplecifis the number of cache sets ahds the block size, then
addresses, and A, map to the same cachetif |A,/B|_ = |A/B| .. If A| andA, collide on the

same cache set, then addressesk and A, +k also collide in cache, for any integer except

when
m, <B-|Kgsm, 0}
where
m, = min(‘Al 5 Az‘ B) (i)
and
m, = ma><(‘A1 5 Az‘ B) (iii)

There are two common cases when this happens:
» when accessing a stream of addregsgsA,, ..., A} if A collides withA, , , then there may
be up to (m-k) conflict misses in this stream.
» when accessing elements of two distinct armgysindb, , if b,[i] collides with b, [j] then

by[i +k] collides withb, [j + k] except under the conditions outlined above.
w-way set-associativity can help to alleviate such conflicts. However, if a working set contains

p>w conflicts on some cache set, then associativity can only eliminate aivnob#tose conflicts.

One of the best ways to control locality in dense matrix computations with large data structures
is to use atiled (or “blocked”) algorithm. This is effectively a re-ordering of the iteration space which
increases temporal locality. There is a plethora of literature on the subject of tiling, recently focusing
on the problem of “induced conflicts”. Consider the sequence of word addsaesesn figure 1,

from a squarerxT tile obtained from arNxN matrix:

a a+1l a+T-1
a+N a+N+1]... a+N+T-1
a+2N a+2N+2 .. a+2N+T-1
a+ (T-1)N ..a+T(N-1) + (N-1)

Figure 1. Conflicting addresses in a tiled 2D array

If, for example, the shaded addressesand a+2N+2 differ by an integer multiple of the
cache capacity they will collide in a conventional cache introducing a “self conflict”. Worse still, if
a and a+2N+2 collide thena+k and a+2N+2+k will also collide, for anyk satisfying the
inequalities in(i). Measurements by LarRothberg and Wolhidicate that such self-conflicts can be
a serious probleri22]. In practice, until now, this has meant that compilers that tile loop nests really
ought to compute the maximal conflict-free tile size for given values of and cache capacity.
Often this will be too small to make it worthwhile tiling a loop, or perhaps the valyewatl not
be known at compile timeGoshet al [15] present a framework for analyzing cache misses in
perfectly-nested loops with affine references. They develop a generic technique for determining
optimum tile sizes, and methods for determining array padding sizes to avoid conflicts. These
methods require solutions to sets of linear Diophantine equations and depend upon there beir

sufficient information at compile time to find such solutions.

There are two fundamental difficulties with software methods for conflict avoidance. Firstly,
when tiling one often finds that the maximal conflict-free tile size is too small to make tiling
beneficial. Secondly, there are many constraints on the types of loop that can be analyzed ar
modified statically by software. For example, the array dimensions or base addresses may not t
known at compile time. Perhaps the loops are not perfectly nested, or maybe they contain non-inline
subroutine calls which prevent analysis. Worse still, the array references may be nomafttineh
case none of the currently published techniques apply. In short, software methods can be extreme
effective when loop nests are analyzable, but there are many factors that can prevent their use

practice.

An analogous situation can occur during auto-parallelization. In such cases the application dat
set is typically partitioned acrogsprocessors, and as a result the working set in each processor may
include memory locations separated by integer multipl@s dfthe resulting inter-address distances
share common factors with, the working set will not exercise all cache lines with equal probability
and conflicts are likely. This places a heavy burden on the parallelization process in the form o
additional constraints to be satisfied during data partitioning. Practitioners in this field would have

their task simplified if the problem of induced cache conflicts couletirmved.

3 The performance of conventional indexing schemes

Before attempting to evaluate the benefits of randomized cache indexing one must first define th

systems against which one will compare results. In this section we present miss ratio measuremer

from the $ecSD benchmark suite for a variety of previously published (and some cases widely used)
cache architectures using conventional indexing schemes.

The programs were compiled with the maximum optimization level and instrumented with the
ATOM tool [34]. A data cachamilar to the first-level cache of the Alpha 21164 microprocessor has
been assumed: 8 Kilobytes capacity, 32 bytes per line, write-through and no write allocate. For eac
benchmark we have simulated the first billia°(load operations. Because of the no-write-allocate
feature, the performance metrics computed below refer only to load operations.

Table 1shows the miss ratio for the following cache organizations: direct-mapped, two-way
associativefour-way set-associativi2], hash-rehasi3], column-associativ§4], victim cache
with four victim lines[20], and two-way skewed-associati{a®], [31]. Of these schemes, only the
two-way skewed-associative cache uses an unconventional indexing scheme, as proposed by
author. For comparison, the miss ratio of a fully-associative cache is shown in the penultimate
column. The miss ratio difference between a direct-mapped cache and that of a fully-associativ
cache is shown in the right-most columnaifle 1 and represents the direct-mapped conflict miss
ratio[17]. In the case of 104.hydro2d and 141.apsi some organizations exhibit lower miss ratios thal
a fully-associative cache, due to sub-optimality of LRU replacement in a fully-associative cache for
these particular programs. Effectively the direct-mapped conflict miss ratio represents the targe
reduction in miss ratio that we hope to achieve through improved indexing schemes. The other typ
of misses, compulsory and capacity, will remain unchanged by the use of randomized indexing
schemes.

From the results itable 1 we can conclude that set associativity does reduce the miss ratio, as
expected, although the improvement of a two-way set-associative cache over a direct-mapped cac
is rather low. Comparing the direct-mapped and two-way set-associative cache with the fully-
associative cache suggests that several benchmarks (e.g. 101.tomcatv, 102.swim, 125.turb&
146.wave) show significant clustering in the mapping of memory lines to cache lines under a
conventional mapping scheme.

The hash-rehash cache has a miss ratio similar to that of a direct-mapped cache. Although bo
have similar access times, the hash-rehash scheme requires two cache probes for some hits. Her
the direct-mapped cache will be more effective. This poor behavior of the hash-rehash cache was al
observed by the originator of that schefp who subsequently proposed a refined scheme, the
column associative cache.

The column-associative cache provides a miss ratio similar to that of a two-way set-associativi

cache. Since the former has a lower access time but requires two cache probes to satisfy some h

direct | 2-way | 4-way rg?lség-h cg!susrgg victim szlggvv?gd zleuslg)-c. co%}qirz:ts

101.tomcatv 53.8 48.1 29.5 51.4 47.0 26.6 22.1 125 41.3
102.swim 56.2 59.1 57.1 57.6 53.7 33.7 15.1 7.9 48.3
103.su2cor 11.0 9.1 9.0 11.1 9.3 9.5 9.6 8.9 2.1
104.hydro2d 17.6 17.1 17.3 17.6 17.2 17.0 17.1 17.5 0.1
107.mgrid 3.8 3.6 3.5 6.1 4.2 3.7 4.1 3.5 0.3
110.applu 7.6 6.4 6.0 7.8 6.5 6.9 6.7 5.9 1.7
125.turb3d 7.5 6.5 5.3 7.7 6.4 7.0 5.4 2.8 4.7
141 .apsi 155 13.3 11.3 18.0 13.4 10.7 11.5 12.5 3.0
145 fpppp 85 2.7 2.1 5.9 2.7 75 2.2 1.7 6.8
146.wave 31.8 31.7 23.0 35.4 30.7 20.1 16.8 13.9 17.9
099.go 13.4 8.2 6.3 11.9 8.6 10.9 7.5 4.8 8.6
124.m88ksim 4.0 1.6 0.7 5.0 2.4 3.2 1.5 0.7 3.3
126.gcc 10.6 7.2 6.0 9.5 7.3 8.6 6.6 5.3 5.3
129.compess 17.1 15.8 15.5 17.6 16.3 16.2 14.3 13.0 4.1
130.li 8.6 5.4 4.3 7.9 55 7.2 4.9 3.8 4.8
132.ijpeg 41 33 3.1 5.2 3.1 23 1.9 1.2 2.9
134.perl 10.7 7.3 6.1 104 7.5 9.3 6.9 5.2 55
147 .vortex 5.3 2.7 15 7.3 2.7 3.8 1.8 14 3.9
Average fp 21.32 19.76 16.42 21.87 19.1 14.27 11.05 8.71 12.61
Average int 9.22 6.44 5.44 9.34 6.67 7.67 5.66 4.42 4.80
Average 15.95 13.84 11.54 16.30 13.58 11.34 8.66 6.80 9.14

Table 1: Miss ratios for the original schemes, with a fully-associative cache for comparison.

any choice between these two organizaisinould take into account implementation parameters
such as access time and miss penalty. The victim cache removes many conflict misses ar
outperforms a four-way set-associative cache. Finally, the two-way skewed-associative cache offel
the lowest miss ratio, which is significantly lower than that of a four-way set-associative cache. The
results for the skewed-associative cache are more positive than those obsi@@gavimere a miss

ratio similar to a four-way associative cache was claimiftpugh using a different workload.

4 Alternative indexing functions

The aim of this paper is to show how alternatteéehe organizationsan exhibit some degree of
conflict resistance. The task of finding an appropridtek placement mechanisra somewhat
analogous to the problem of finding a suitable hash function for a hashRablarge secondary or
tertiary caches it may be possible to use the virtual address mapping to adjust the location of pag
in cache, as suggested by Bershadl, thus avoiding conflicts dynamically, For small first-level

caches this effect can only behievedoy using an alternative indexing function.

Perhaps the most well-known alternative indexing scheme is the clagaigke XOR functions
proposed for the skewed associative c4d8b¢ This yields two or more indexing functions derived

by XORing twom-bit fields from an address to producerarbit cache index

In the field of interleaved memories it is well known that bank conflicts can be reduced by using

bank selection functions other than the simple modulo-power-of-two. Lawrie and Vora proposed ¢
scheme using prime-modulus functi¢®3], Harper and Jumi6], and Soh|33] proposed skewing
functions. The use of XOR functions in parallel memory systems was proposed by Feadb[g],
and other pseudo-random functions were proposed by Raghavan &[P@lyasd Ratet al [27],
[28]. These schemes each yield a more or less uniform distribution of requests to banks, with varyin
degrees of theoretical predictability and implementation cost. In principle each of these scheme
could be used to construct a conflict-resistant cache by using them as the indexing function
However, when considering conflict resistance in cache architectures two factors are critical. Firstly
the chosen indexing function must have a logically simple implementation, and secondly we woulc
like to be able to guarantee good behavior on all regular address patterns - even those that ¢
pathological under a conventional placement function.

In the commercial domain the IBM 30388] and the Amdahl 47(01] made use of XOR-
mapping functions in order to index the TLB. The first generation HP Precision Architecture
processor§l0] also used a similar technique. In that system, the 11-bit TLB index was obtained by
the exclusive OR of two 9-bit fields, one from the virtual page number and the other from the spac
ID, appended to two other bits from the space ID.

The use of XOR-mapping schemes in order to obtain a pseudo-random placement has bee
suggested by other authoFor example, Smitf82] compared a pseudo-random placement against
a set-associative placement. He concluded that random indexing had a small advantage in mc
cases, but that the advantages were not significant. In this paper we show that for certain workloac
and cache organizations, the advantage can be very large.

Hashing the process ID with the address bits in order to index the cache was evaluated in
multiprogrammed environment by Agarwal[R]. Results were provided for just one trace, which
showed that this scheme could reduce the miss ratio.

The use of multiple, distinct XOR-mapping functions was proposed by Seznec in the skewed-
associative cachi@0] [31]. A two-way skewed-associative cache consists of two banks of the same
size that are accessed simultaneously with two different hashing functions. Not only does the
associativity help to reduce conflicts but the skewed indexing functions help to prevent repetitive
conflicts from occurring.

In this paper we consider two types of XOR-based indexing functions; those choseax imcgn
way based on common intuitive notions of how such schemes behave, and a&yst#reme

proposed by Ra{28] which describes a method for constructing permutation functions based on

polynomial arithmetic. The former class of functions computes a cache index by performing a
bitwise XOR of two fields of an address. We refer to this type of schentsvase XOR mapping,
and describe gection 4.1The family of mapping functions proposed30] belong to this category.

We refer to Rau’s scheme simply@dynomial indexingand describe how it works gection 4.2

4.1 Bitwise XOR indexing

Following the notation introduced j80], a family of XOR indexing functions is defined as follows.
Assume that the cache memory consists 20f lines of 2° bytes. A memory address
A=Ta _,a _,..acomprising the fieldsA = (A, A, A, A)such thatA, = &,a,0

A=,y e A= By, gnay,, L and A, =& 4, ...,a,,, .0 Let [denote the

L=
bitwise exclusive OR, and let « denote the bitwise AND operationT L anyl —1 bit number (a
good choice fort would be 1010...10), and lat = 2 _1-T. The family of twin XOR-based
indexing functions can then be defined as:
£ {0..2"-1} - {0..2 7 _1

A= (Ay AALAY - ((AeT)OALA) W)
:40..2"-1 - {0..27 1y

A= (Ag Ay Ap Ay - EEAZ TBD Ap, Ao%

XOR-based index functiori®ehae in a vay similar toafull y-associatve cache, bt with some
restrictions. For instance, in the two-way skewed-associative cache, the set of all addresses that ¢
mapped into the same line of bank 0 are distributed over all the lines il bahis, it is similar to
having all the lines of bank 1 as alternative locations for a given line in bank 0. Hoeaokr,
particular memory addresan be placed in exactly two cache locations (one in bank 0, and the other

in bank 1).

4.2 Polynomial indexing

A polynomial mapping function is best described by first considering an unsigned integer address

in terms of its binary representation, as shown for example in eqgajion

n-1 n-2
A= an_12 +an_22 +.. o ta (V)

The binary representations afcan be interpreted as a polynomial defined over the field GF(2),
thus:

n-1 n-2 .
A(X) = a,_4X +a,_,X +...ta, (vi)

The binary representation of the cache indeg defined by the GF(2) polynomigkx) of order
less thanl suchthat (x) = V(x)P(x) + R(x) . EffectivelyR(x) isA(x) moduloP (x) , whereP (x)
is an irreducible polynomial of orderandpP (x) is such thak mod P(x) generates all polynomials
of order lower than. The polynomials that fulfil the previous requirements are caedly
polynomials. Rau shows how the computatiorR@f) can be accomplished by the vector-matrix
product of the address and ar1 matrix H of single-bit coefficient$28] derived frompP (x) . In
GF(2), this product is computed by a network of AND and XOR gates, and H tmatrix is
constant the AND gates can be omitted and the mapping then requiteX{@Rtgates with fan-in
from 2 ton.

In practice we may wish to reduce the number of input address bits to the polynomial mappinc
function by ignoring some of the upperdiit A. This does not seriously degrade the quality of the

mapping function and permits us to compute:

+...+ alx1 + aoxogmod P (x) (vii)

O v
Ay -1 X
for somev<n.

4.2.1 Characteristics of I-poly functions

I-poly polynomial functions have pseudo-random permutation properties similar to those of prime
integer modulus functions. But whereas a prime integer modulus function would be prohibitively
complex to implement, the I-poly polynomial function has very low complexity; suitable even for
computing a cache index.

These mapping functions have been studied previously in the context of stride-insensitive
interleaved memories (s¢27] and[28]), and have certain provable characteristics which are of
significant value in the context of cache indices. For example, all strides of theK¥quroduce
address sequences that are free from conflicts. This is a fundamental result for polynomial indexing
if the addresses of Z -strided sequence are partitioned intelong sub-sequences, wheveis the

number of cache blocks, we can guarantee that theme aeehe conflicts within each sub-sequence

Any conflicts between sub-sequences are due to capacity problersramdly be solved by larger
caches or tiling of the iteration space.

The stride-insensitivity of the I-Poly index function can be sedigure 2 which shows the
behavior of four cache configurations, identical except in their indexing functions. All have 8KB
capacity, 32 byte block size, and two-way associativity. They were each driven from an address trac

representing repeated accesses to a vector of 64 8-byte elements in which the elements we

[] a2-Hp-Sk

1000
- —8®—— a2-Hx-Sk
[&]
c
g 100 —— 32
g

10
1 B

01 02 03 04 05 06 07 08 09 1

Miss ratio range
Figure 2. Frequency distribution of miss ratios for conventional and pseudo-random

indexing schemes. Columns represent I-Poly indexing and lines represent conve

and skewed-associative indexing.
separated by stride. With no conflicts such a sequence would use at most half of the 128 sets in the
cache. The experiment was repeated for all strides in the targre4096 to determine how many
strides exhibited bad behavior for each indexing function. The experiment compares three differen
indexing schemes; conventional modulo power-of-2 (labelled a2), the XOR function proposed in
[30] for the skewed-associative cache (a2-Hx-Sk) and two I-Poly functions. The I-Poly scheme was

simulated both with and without skewed index functions (a2-Hp and a2-Hp-Sk respectively).

For all schemes the majority of strides yield low miss ratios. However, both the conventional anc
the skewed XOR functions display pathological behavior (miss ratio > 50%) on more than 6% of all
strides. The I-Poly scheme with skewing does not exhibit significant cache conflicts for any of the
strides in the range 1 to 4096, suggesting a higher degree of conflict resistance than one can obt:

through conventional set-associativity or other (non polynomial) XOR-based index functions.

5 Candidate cache architectures

5.1 Direct-mapped

The direct-mapped cache is the least conflict-resistant of all possible cache architectures and as st
serves as a useful baseline for determining an upper bound on cache conflicts in each application.
is also simple to implement and has the fastest hit time of all candidate architectures considered

this paper. The conflict-resistance of a direct-mapped cache can be enhanced by replacing tt

conventional indexing function with eithebawise XOR or an ipoly index function. However, this

10

does not increase the perceived associativity, so in general we can expect direct-mapped caches

retain higher miss ratios than some of the schemes presented below which do exhibit associativity

A bitwise XOR mapping function for a direct-mapped cache can be defined using the notation
presented isection 4.1hus:
f:00.2"-1} - {0..2' -1 i
A= (Ay Ay ALAY - (AOALAY
whereA is b-bit long andA; andA, arel-bit long.
Similarly, I-poly indexing can be implemented in a direct-mapped cache by constructing an I-
poly permutation based on an orddrreducible polynomiab (x) . An example of this is explained

in section 6.1

5.2 Hash-rehash and column-associative

The hash-rehash and column-associative caches are interesting from the viewpoint of conflic
avoidanceThey haveaccess-time characteristisgnilar to adirect-mapped cache but also a degree
of pseudo-associativity - each address can map to one of two locations in the cache, but initially onl
one is probed.

Thebitwise XOR functions proposed for the skewed-associative d@hean also be used for
a hash-rehash cache and a column associative cache. For these, as for the skewed-associative cg
we define two distinct mapping functioms andf,. The first probe useg, and, if required, the
second probe usel§. These functions are as defined section 4.1 with a binary value of

T = 1010101C

In [14] the averageache miss ratios are presented for a number of cache organizations, including
the hash-rehash and column associative cacheshisiige XOR functions. On average the XOR-
mapping functions worked well for the column-associative cagitevided some slight
modifications to the rules for swapping data between the columns are made, and when a pseudo-LF

replacement policy is used.

5.3 Victim cache

The victim cache uses a small fully-associative buffer to cache the lines recently evicted from the
first-level direct-mapped cache. One could envisage using a randomized indexing function with the

direct-mapped portion of the victim cache organization. Again, this was evalugt€d, iwhere it

11

was reported that thatwise XOR function makes the averagess ratio of the victim cache very

close to that of the two-way skewed-associative cache. The XOR mapping produced a slight increas
in miss ratio for those benchmarks with very few conflict misses. The same behavior was observe
for a direct-mapped cache and can be explained by the random, but infrequent, introduction of ne
conflict misses. Overall, the victim cache organization was unable to eliminate conflicts in programs

with pathological conflict behavior, and is consequently not considered further in this paper.

5.4 Two-way set-associativeache

It is to be expected that a two-way set-associative cache will be capable of eliminating many randor
conflicts. However, a conventionally-indexed set-associative cache will not be able to eliminate

pathological conflict behavior as it has limited associativity and a naive indexing function.

The performance of a two-way set-associative cache can be improved by simply replacing the
index function, whilst retaining all other characteristiéssuitable bitwise XOR replacement

functionwould beg:

g:{0..2"-1} - {0..2 7ty)

A= (Ay Ay ALAY) — (A, OALA)

whereA, containsb bits andA; andA, contain (1-1) bits.

The same mapping function is used to access both bankghasconventional set-associative
cache Conventional RU replacement is used, @ke indexing function has no impact on

replacement for this cache organization.

Applying a bitwise XOR mapping scheme to a two-way set-associative cedbees he
averagemiss ratio in the SPE@95 benchmarkfl4] by more than haleliminating the majority of
the conflict missesThe average nss ratio is just 1.1 times that of a fully-associative caatereas
the miss ratio of a conventionally-indexed two-way set-associative cache is 2.3 times that of a fully-
associative caché-or two programs the two-way XOR cache hdswer miss ratio than a fully-
associative cache. This is again due to the sub-optimality of LRU replacement in the fully-associative

cache, and is a common anomaly in programs with negligible conflict misses.

An I-poly indexing scheme can also be used in a two-way set-associative cache. As with the
direct-mapped cache a singlelynomial P (x) of orderl -1 must be chosen to construct the I-poly

function. The resulting miss ratio is slightly better than that observed Wittvise XOR function.

12

5.5 Two-way skewed-associative cache

The final candidate cache organization is the two-way skewed-associative cache proposed original
by Sezned30]. In its original form it used the twbitwise XOR indexing functionsf, and f,
defined in sectiod.l It is also possible to use I-poly indexing functions with a skewed-associative
cache, as proposed 4] and[36]. In this case two distinct ordér1 polynomials,P,(x) and

P, (x) must be chosen and used to construct two distinct indexing functions.

6 Miss ratio analysis

In this section we present simulation results for the various candidate cache organizations. Our ail
is three-fold. Firstly, to determine the most effective randomization function, secondly to assess thi
degree to which the candidate organizations are able to eliminate conflict misses in a typical suite ¢
scientific benchmarks, and thirdly to look specifically at the ability of the most promising cache

organizations to eliminate induced conflicts in tiled loop kernels.

6.1 Comparison of randomization functions

The performance dfitwise XOR and I-poly mapping has been evaluated for the column associative,
the two-way set-associative and the two-way skewed-associative organizations through simulatio
of the SPECfp95 benchmarks. This suite contains three programs which exhibit very high levels o
conflict miss ratios when cache capacities are beloW3#es, as well as other programs with
almostno conflict misses.

Table 2compares the total miss ratios resulting from the mapping function based on the bitwise
XOR of two bit strings XOR) with that obtained using polynomial mapping functidasly). In all
cases, an LRU replacement is assumed. The miss ratio of a fully-associative cache is also shown 1
comparison.

To perform a fair comparison we applied the randomization schemes using the same number (
bits of the original address as input to all the mapping functions; in all the cases this is 19 bits (1:
without considering the bits that indicate the displacement inside the cache line). For the I-poly
mapping functions, we chose the irreducible polynomials that require the fewest number of XOR
entries for its implementation. We refer to a polynomial by the value obtained after substibyting
2 (e.g., polynomial 19 is” + %+ 1). The four chosen polynomg&ébre: R=505, B=301, R=131,
P,=137. For the column-associative cache,aRd B define the mapping of the two indexing

functionsused by this organizatioi®; corresponds tthe single function utilized by the two-way

13

set-associative cache. Finally &d B define the two different mapping functions used by two-way
skewed-associative cache. Each mapping function requires 7 or 8 XOR gates with fan-in from 2 t

5 each.

column- 2-way set | 2-way skewed
miss ratio associative associative assoc.

XOR | Poly | XOR | Poly | XOR | Poly
101.tomcatv| 13.8 | 12.8 | 17.0 | 14.8 | 20.0 |12.6 | 125
102.swim | 8.3 7.7 7.9 7.9 12.3 7.5 7.9
103.su2cor| 9.1 9.1 9.6 9.9 9.1 9.4 8.9
104.hydro2d| 17.1 |17.2 |17.2 |17.1 | 171 |17.1 ||17.5
107.mgrid | 4.0 4.2 3.7 3.8 3.9 4.1 35
110.applu | 6.6 6.5 6.9 6.9 6.3 6.4 5.9
125.turb3d | 5.5 6.0 4.6 4.8 4.9 4.2 2.8
14l.apsi | 106 |11.2 | 114 |11.4 105 | 10.6 || 12.5
145.fpppp | 4.0 2.7 2.7 2.8 2.2 2.3 1.7
1l46.wave | 14.7 | 13.8 | 144 |14.2 | 16.3 |13.7 || 13.9
Average |9.36 |9.12 | 954 |9.37 |10.24 |8.78 | 8.71

fully-
assoc.

Table 2 Miss ratios for a column associative cache, a two-way associative cache and a
two-way skewed-associative cache for the two XOR-mapping schemes: bitwise XOR
(XOR) and polynomial mapping (Poly).

We can conclude frortable 2that the I-poly mapping provides a netible advantage over the
bitwise XOR scheme in cases where conflict miss ratios are high. For the other programs, thi
reduction in miss ratio achieved by any scheme is very senatle the miss ratio of the original
mapping was already very close to that of a fully-associative cache. Overall, the skewed-associativ
cache using polynomial mapping and a pure LRU replacement achieves a miss ratio practicall
identical to that of a fully-associative cache (it is just 0.8% higher). Given the advantage of an I-poly
function over aitwise XOR function, all subsequent simulations presented in this paper use the I-

poly indexing scheme.

6.2 Conflict avoidanceof I-poly indexing functions

Having demonstrated in the previous section that I-poly indexing functions yield the highest degre
of conflict avoidance of the two schemes considered, our subsequent experiments are confined

organizations using I-poly indexing functions.

The performancef both the integer and floating-point SPEC95 programs has been evaluated for
direct-mapped,column-associative, two-way set-associative and two-way skewed-associative

organizations using I-poly indexing functions. In all cases a single-level cache is assumed. The mis

14

ratios of these configurations are showntable § wherefor comparison the miss ratias

conventionally-indexedully-associativeand direct-mapped cacha® also shown

I-Poly indexed caches conventlé);éar!g;ndexed
column-associative 2-way skewed-assoc. fully- assoc.
2-wa direct-
pivgﬁgg- SWNa(:) + assot. psl_%ugo' LRU LRU | Rand. | mapped
LRU LRU
101.tomcatv 17.2 12.8 14.8 13.1 12.6 12.5 12.7 53.8
102.swim 7.7 7.7 7.9 7.8 7.5 7.9 7.8 56.2
103.su2cor 10.5 9.1 9.9 9.4 9.4 8.9 9.6 11.0
104.hydro2d 17.6 17.2 17.1 17.0 17.1 17.5 17.5 17.6
107.mgrid 5.1 4.2 3.8 4.5 4.1 3.5 5.0 3.8
110.applu 7.3 6.5 6.9 6.8 6.4 5.9 7.0 7.6
125.turb3d 8.1 6.0 4.8 45 4.2 2.8 4.9 7.5
141.apsi 12.2 11.2 11.4 11.0 10.6 12.5 11.2 15.5
145 fpppp 4.0 2.7 2.8 2.1 2.3 1.7 2.7 8.5
146.wave 14.6 13.8 14.2 13.9 13.7 13.9 13.7 31.8
099.go 9.6 6.6 8.6 7.5 6.7 4.8 7.0 134
124.m88ksim 2.6 1.2 1.9 1.0 0.8 0.7 0.8 4.0
126.gcc 8.2 6.3 7.2 6.7 6.1 53 6.7 10.6
129.compess 14.5 13.5 13.7 13.9 13.4 13.0 14.5 17.1
130.li 55 4.5 6.1 4.9 4.5 3.8 49 8.6
132.ijpeg 1.8 1.3 1.7 1.5 1.4 1.2 15 4.1
134.perl 8.5 6.7 8.8 7.1 6.4 5.2 6.9 10.7
147 .vortex 2.7 1.7 2.0 1.8 1.6 1.4 1.9 53
Average fp 10.43 9.12 9.37 9.01 8.78 8.71 9.22 21.32
Average int 6.68 5.22 6.26 5.55 5.09 4.42 5.52 9.22
Average 8.77 7.39 7.99 7.47 7.14 6.80 7.58 15.95

Table 3 Miss ratios of I-Poly indexing on SPEC95 benchmarks for a selection of Lijwations. For the
column-associative ganization, the fst column correspond to the case when swapping is implemented and

a 1-bit pseudo-LRU replacement is used, whereas the second column assumes no swapping and exact LRU.
For the skewed-associativeganization, the fst column corresponds to 1-bit pseudo-LRU whereas the

second assumes exact LREbr comparison the best and worst case conventionally-indexed caches are

shown in the three right-most columns.

The best result is obtained with a 2-wskgwed-associativeache withl-poly index functions.
In this case the conflict miss ratio is reduced from 4.8% to 0.67% for SPECint, and from 12.61% tc
0.07% for SPECfp. The I-Poly cache eliminates more conflicts than a fully-associative cache with

random replacement. This holds systematically for all benchmarks.

For the FP benchmarks, aliganizations using I-Poly indexingreinatethe majority of onflict
misses, yielding miss ratiagithin a few percent of &ully-associative cache. Notice also that the
performance improvement is dominated by three programs (101.tomcatv, 102.swim and 146.wave
The remaining seven do not contain a significant number of conflict misses, and as a consequen:

provide little scope for improvement. The conflict miss ratios for direct-mapped, conventional set-

15

associative, and skewedsociative-Poly cachesor those three “bad” programs are showiaiple
4.

conventional indexing Seznecs 2- I-Poly
direct 2-way 4-way | Wway skewed Sigvﬁgd
101.tomcatv 41.3 35.6 17.0 9.6 0.1
102.swim 48.3 51.2 49.2 7.2 -0.4
146.wave 17.9 17.8 9.1 2.9 -0.2
Average 35.8 34.9 25.1 6.57 -0.17

Table 4: Confict miss ratios for selected “bad” programs illustrating the ability of I-Poly indexing
to eliminate conftt misses. Negative values in the I-Poly column indicate a slightly advantageous
replacement policy in the 2-way I-Poly cache than the fully-associative cache.

These three “bad” programs exhibit pathological conflict miss ratios under conventional
indexing schemes. Studies by Olukottral have shown that the data cache miss ratio in tomcatv
wastes 56% and 40% of available IPC in 6-way and 2-way superscalar processors resftively
Whereas Seznec’s 2-way skewed-associative scheme yields a noticable reduction in miss ratio, a

way I-Poly cache with distinct index functioappears t@liminateall conflicts.

Table 5presents miss ratios at both L1 and L2 under conventional and I-Poly indexking
tomcatv,using a single (i.e. non-skewed) I-Poly index function at L1 and a conventional 2-way set-
associative cache at | for a selection of L1 capacitieso® levelsof cacheuse copy-back and
write-allocate policiesConventional cache miss ratios are similar to those in columntéblaf 1
and I-Poly miss ratios are similar to those in column talote 2 Differences are due to the slightly

different cache configuration in this experiment.

L1 capacity I-Poly L1 Conventional L1
(KBytes) L1 miss L2 miss L1 miss L2 miss
1 21.34 45,98 50.78 19.32
2 17.27 56.83 50.67 19.36
4 16.71 58.71 50.58 19.40
8 15.53 63.18 50.55 19.41
16 15.32 64.05 35.27 27.82
32 13.41 73.15 13.56 72.36
64 11.46 85.65 11.41 86.00

Table 5 Local miss ratios fotomcatv under conventional 2-way set-associative and 2-way
I-Poly indexing for various level-1 cache capacities. Level-2 cache capaettydfi 1
MByte.and conventional indexing. Global L2 miss ratio was constant at 9.8%

The use of I-Poly indexing virtually eliminates conflict misses, producing a clear advantage over
the normal mode of indexing for L1 capacities of 1 -KEs The average speed-up of individual

memory references due to I-Poly placement is 1.5 for KB 81 cache assuming 1-cycle L1 hit

16

time, 6-cycle L2 hit time and 20-cycle L2 miss tinf cache sizes above ¥B a negligible

difference in miss ratio is produced by I-Poly indexing.

6.3 Conflict reduction in tiled loops

We saw insection 2how tiling can introduce extra cache conflicts, and explained that eliminating
these conflicts through software is not always possible or desirable. Now that we have alternativ:
indexing functions that exhibit conflict avoidance properti@scan use these to avoid induced
conflicts in tiled loop nest3Ne evaluated the effectiveness of I-Poly placement on tiled loops by
simulating the cache behavior of a variety of tiled loop kernels. Here we present a small sample c
results to illustrate the general outcome. Condidere 3 which shows the miss ratio observed in
two tiled matrix multiplication kernalwhere the original matricegere gjuare and of dimensisn

171 and 256espectively Thetile size wasvaried from 2x2 up to 16x16 to show the effect of self
conflicts occurring in caches that are direct-mapped (al), 2-way set-associative (a2), fully-
associative (fa) and skewed 2-way I-Poly (Hp-Sk). filed working set divided by cache capacity
measures the fraction of the cache occupied by a single tile. In all cases L1 capacity is 8 KBytes, wit

32-byte lines.

For N = 171 the miss ratianitially falls for all caches as tile sizacreass. This is due to
increasing spatial locality, up to the point where self conflicts begin to occur conkentionally-
indexeddirect-mapped and two-waset-associativeaches. The fully-associative cache suffers no
self-conflicts and its miss ratio decreases monotonically to less than 1% at 50% loading. The
behavior of the skewed 2-way I-Poly cache tracks the fully-associative cache closely. The qualitative

difference between the I-Poly cache and a conventional two-way cache is clearly visible.

For N = 256 the product array and the multiplicand array are positioned in memory so that
cross-conflicts occur in addition to self-conflicts. Hence the direct-mapped and 2-way set associativ
caches experience little spatial locality. However, the I-Poly cache is able to eliminate cross-conflicts

as well as self-conflicts, and it again tracks the fully-associative cache.

Further proof of the ability of I-Poly caches to eliminate self conflicts can be seen by plotting
miss ratio alongside the maximal conflict-free tile size, as predictetthébyalgorithm ofLam,
Rothberg and Wolfdr computing tile sizef22]. This is shown irfigure 4 where the columns
represent tile size measurements and the connected points represent miss ratio measurements.
pale gray columns indicate the theoretical maximum conflict-free square tile size for the given array

dimension and cache capacity. The darker gray area behind highlights all array sizes where this val

17

al al o a2

Sk

Hp-Sk 14

12

(o2} ~
——————20
=0
O
O
]
o |
|
|
|
|
=y
]
O
O

< __10
S 5 S
o o
= S s
S 4 1]
= K 2 6
BN
2 Ox 4
S
\\\
1 T 2
0 0
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Working Set / Capacity Working Set / Capacity

Figure 3. Graphs showing miss ratio versus cache loading (working set / capacity) for tiled matrix multiply
kernel. Array dimensions areN = 171 (left-most) and N = 256 (right-most).

falls below the actual 16x16 tile size used in this experiment. Any array dimensions for which the
dark gray is visible should coincide with self-conflict misses in the simulations. We find that the
larger the dark gray column for a given array dimension, the larger the miss ratio in the conventione
caches. However, for each case measured we find that the two-way polynomial cache eliminates ¢

of the induced conflicts that would otherwise occur.

We see that in some cases a conventional two-way set-associative cache is also able to elimine
conflicts, but that there are other cases where a conventional two-way set-associative cache has
worsemiss ratio than a direct-mapped cache. This is a well-known anomaly, and is due to the les
than ideal behavior of LRU replacement for some access sequences. For comparison the miss ra
of a fully-associative cache is also shown. We see only small differences between the fully-
associative cache and the I-poly two-way skewed-associative cache - and this is true regardless
array dimension. This is a key result; it demonstrates that with an I-Poly cache the optimum tile siz¢

is independenbf array dimension, and can be determined solely by computing the working set of a
tiled loop kernel.

7 Implementation Issues

The logic of theGF(2)polynomial modulus operatigaresented isection 4.2Jefines a class of hash

functions which compute the cache placement of an address by combining subsets of the address k

18

I MaxT < MaxT —— — al
30 16 6

25

20

15

Tile dimensions
w
Miss ratio (%)

10

1000 1084 1168 1252 1336 1420 1504
Array Dimension

Figure 4. Miss ratios and corifit-free tile dimensions for matrix multiplication as a function of
array dimensiorAll simulations use a 16x16 tile.

using XOR gates. This means that, for example, bit 0 of the cache index may be computed as tf
exclusive-OR of bits 0, 11, 14, and 19 of the original address. The choice of polynomial determine:
which bits are included in each set. The implementation of such a function for a cache with an 8-bi

index would require just eight XOR gates with fan-in of 3 or 4.

Whilst this appears remarkably simple, there is more to consider than just the placement functior
Firstly, the function itself uses address bits beyond the normal limit imposed by typical minimum
page size restriction. Secondly, the use of pseudo-random placement in a multi-level memor
hierarchy has implications for the maintenance of Inclusion. Here we briefly examine these two
issues and show how the virtual-real two-level cache hierarchy proposed byetvahd37]
provides a clean solution to both problems. Finally, the impact of XOR gates on the critical path of
address computation is analyzed, and a scheme based on address prediction is proposed to overce

the penalties caused by extensions to the critical path.

7.1 Overcoming page size restrictions

Typical operating systems permit pages to be as smallkig/t¢s. In a conventional cache this
places a limit on the first-level cache size if address translation is to proceed in parallel with tac

lookup. Similarly, any novel cache indexing scheme which uses address bits beyond the minimur

19

page size boundary cannot use a virtually-indexed physically-tagged cache. From the alternativ

options available one might consider:
1.Performing address translation prior to tag lookup (i.e. use physical indices)
2.Enabling I-Poly indexing only when data pages are known to e &arough
3.Using a virtually-indexed virtually-tagged level-1 cache
4.Indexing conventionallybut use a polynomial rehash on a level-1 miss.

Option 1 is attractive if an existing processor pipeline performs address translation at least on
stage prior to tag lookup. This might be the case in a processor which is able to hide memory latenc
through dynamic execution or multi-threading, for example. However, in many systems, performing
address translation prior to tag lookup will either extend the critical path through a critical pipeline

stage or introduce an extra cycle of untolerated latency via an additional pipeline stage.

Option 2 could be attractive in high performance systems where large data sets and large physic
memories are the norm. In such circumstances processes may typically have data pages of 2
Kbytes or more. The O/S would need to track the page sizes of segments currently in use by a proce
(and its kernel) and enable polynomial cache indexing at the first-level cache if all segments’ pags
sizes were above a certain threshold. This would provide more unmapped bits to the hash functic
when possible, but revert to conventional indexing when this is not podsiblexample, if the
thresholdwas 56 Kbytes and the caclhweas 8Kbytes two-way associative, one could implement a
polynomial function combining 13 unmapped physical address bits to produce 7 cache index bits
This would be sufficient to produce good conflict-free behavior. Provided the lexaattie is
flushed when the indexing function is changed, there is no reason why the indexing function need

to remain constant.

The third option is not currently popular, primarily because of potential difficulties with aliases
in the virtual address space as well as the difficulty of shooting down a level-1 virtual cache line
when a physically-addressed invalidation operation is received from another processor. Howevel
the two-level virtual-real cache hierarchy proposed by Waray. in [37] provides an interesting
way of implementing a virtually-tagged L1 cache, thus exposing more address bits to the indexing
function without incurring address translation delays. We consider this to be the most promisinc
option for implementing an I-poly cache; it enables more address bits to be used in the index functio
and also provides a mechanism for maintaining Inclusion in the presence of holes (discussed i

section7.2).

20

The fourth option would be appropriate for a physically-tagged direct-mapped cache. It is similar
in principle to the hash-reha$B| and the column-associative caclés The idea is to make an
initial probe with a conventional integer-modulus indexing function, using only unmapped address
bits. If this probe does not hit we probe again, but at a different index. By the time the second prob
begins, the full physical address is available and can be used in a polynomial hashing function t

compute the index of the second probe.

Addresses which can be co-resident under a conventional index function will not collide on the
first probe. Conversely, sets of addresses which do collide under a conventional indexing functior
collide under the second probe with negligible probability", due to the pseudo-random
distribution of the polynomial hashing function. This provigesudo-full associativity in what is
effectively a direct-mapped cache. The hit time of such a cache on the first probe would be as goc
as any direct-mapped physically-indexed cache. However, the average hit time is lengthened slightl
due the occasional need for a second probe. We have investigated this style of cache and devise
scheme for swapping cache lines between their “conventional” modulo-indexed location and theil
“alternative” polynomially-indexed location. This leads to a typical probability of around 90% that
a hit is detected at the first probe. However, the slight increase in average hit time due to occasion
double probes means that a column-associative cache is only attractive when miss penalties a

comparatively large

7.2 Requirements for Inclusion

Coherent cache architectures normally require that the property of Inclusion is maintained betwee
all levels of the memory hierarchy. ThuslLif represents the set of data present in cache atdgvel

the property of Inclusion demands thatdL,, , for 1<i<M in an M-level memory hierarchy.

i+1
Whenever this property is maintained a snooping bus protocol need only compare addresses

global write operations with the tags of the lowest level of private cache.

The Ine atindex, inthe L2 cache is replaced when a line at inideir the L1 cache is replaced
with data at address if A is not already present in L2. If ling contains valid data we must be
sure that after replacement its data is not still present in L1. In a conventionally-indexed cache thi
is not an issue because it is relatively easy to guarantee that the data at Li2 inddways located
at L1 indexi , thus ensuring that L1 replacement will automatically preserve Inclusion. In a pseudo-
randomly indexed cache there is in general no way to make this guarantee. Instead, the cacl

replacement protocols must explicitly enforce Inclusion by invalidating data at L1 when required.

21

virtual L1 tags physical L2 tags

| f
|‘ Vl | | :
| |
IS o
_ |
| (i)—»hit
v, -
|
|
|

hashed 1
L1 index | :
I |
DTLB - .
| L1 index L2 tag
| V- Py
! V, - P,
Data TLB & Level-2 Cache

virtual

|

Level-1 Cache |

I

address I

Figure 5. Organization of a two-level I-Poly virtually-indexed cacfibe principal feature is the L1 index
within each L2 tagThis implements an L1 directory to support inclusion, coherency and anti-aliakang
L1indexin L2 preventy, andV, from co-existing in L1.

7.2.1 A common solution for Coherency and Inclusion

A processor with a physically-tagged second-level cache can have an inclusive, coherent, virtually

tagged level-1 cache provided two rules are obeyed.
1.There can be at most one virtual alias of a given physical address in the L1 cache at a time.
2.The L2 cache must be able to locate any virtual L1 copy of each physical location present in L2

Both rules can be implemented by appending a valid L1 index to each L2 tag as sfigune in
5. In this way it is possible to invalidate a virtual address in L1 when its alias is loaded from L2 into
L1. Similarly, the L1 index stored with the L2 tag can be used to finger a particular L1 line for
invalidation when an L2 line is invalidated either by an external coherency action or through the
process of L2 replacement. In terms of L2 tag space this would require, for example, nine extra bit

per L2 tag assuming drl cache with 256 tags.

If the L2 tag contains a valid ‘L1 index’ field, the L1 line at that index is invalidated whenever

the L2 tag is over-written or invalidated.

When an L1 line is replaced the L2 cache should be informed that the line previously held in L1
is now no longer there, and that the ‘L1 index’ field should be invalidated for the corresponding L2

tag. This minimises unnecessary L1 invalidation, but is not a correctness requirement.

In a COMA system there will be occasional global update operations. These invalidate lines a
L2, which in turn invalidates lines at L1 pointed to by the L1 index field. At no stage is there a

requirement for reverse address translation. Inclusion is guaranteed by this two-level virtual-rea

22

cache, but leads to the creation of holes at the upper level of the cache, in turn leading to th

possibility of additional cache misses.

7.3 Performance implication of holes

In a two-level virtual-real cache hierarchy there are three causes of holes at L1; these are:
1.Replacements at L2
2.Removal of virtual aliases at L1
3.Invalidations due to external coherency actions

It is probable that the frequency of item 2 occurring will be low; for this kind of hole to cause a
performance problem a process must issue interleaved accesses to two segments at distinct virti
addresses which map to the same physical address. We preserve a consistent copy of the data at tt
virtual addresses by ensuring that at most one such alias may be present in L1 at any instant. Tt
does not prevent the physical copy from residing undisturbed at L2; it simply increases the traffic

between L1 and L2 when accesses to virtual aliases are interleaved.

Invalidations from external coherency actions occur regardless of the cache architecture so w
do not consider them further in this analysis. The events that are of primary importance are
invalidations at L1 due to the maintenance of Inclusion between L1 and L2. It is important to quantify

their frequency and the effect they have on hit ratio at L1.

Recall that the index function at L2 is based on a physical address whereas the index function i
L1 uses a virtual address. Also, the number of bits included in the index function and the functior
itself will be different in both cases. As these functions are pseudo-random there will be no
correlation between the indices at L1 and L2 for each particular datum. For example, assumin
direct-mapped caches, when a line is replaced at L2 the data being replaced will also exist in L1 wit
probability P,

M m, —m
p =2 =™ ™)

r m2

2
wherem, andm, are the number of bits in the indices at L1 and L2 respectively.

If the data being replaced at L2 does exist in L1, it is possible that the L1 index is coincidentally
equal to the index of the data being brought into L1 (as the L2 replacement is actually caused by &
L1 replacement). If this occurs a hole will not be created after all. Thus the probability that the

elimination of a line at L1 to preserve inclusion will result in a hole is given,by

23

d m (xi)

The net probability that a miss at L2 will cause a hole to appear atA_1,igiven by the product

of P, andpP,, thus

P, = (xii)

When the size ratio between L1 and L2 is large the valug,ofs small. For example, an 8KB
L1 cache and a 256KB L2 cache with 32 byte lines yie|d= 0.031. Slightly more than 3% of L2

misses will result in the creation of a hole.

The expected increase in compulsory miss ratio at L1 can be modelled by the pragpctraf
the L2 miss ratio. When compared with simulated miss ratios we found that this approximation is
accurate for L2:L1 cache size ratios of 16 or above. For instance simulations of the whole Spec9
suite with an &B two-way skeweehssociativd-Poly L1 cache backed by a 1 Mb conventionally-
indexed two-way set-associative L2 cache showed that the effect of holes on L1 miss ratio i
negligible. The percentage of L2 misses that created a hole averaged less than 0.1% and was ne

greater than 1.2% for any program.

The two-level virtual-real cache described3i] implements a protocol between the L1 and L2
cache which effectively provides a mechanism for ensuring that inclusion is maintained, that
coherence can be maintained without reverse address translation, and in our case that holes can

created at level-1 when required by the inclusion property.

The use of pseudo-random index functions means that some holes will be created at L1, bt

simulations and simple probabilistic models both predict that their impact will be negligible.

7.4 Effect of polynomial mapping on critical path

A cache memory access in a conventional organization normally computes its effective address t
adding two registers or a register plus a displacement. I-poly indexing implies additional circuitry to
compute the index from the effective address. This circuitry consists of several XOR gates tha
operate in parallel and therefore the total delay is just the delay of one gate. Each XOR gate has
number of inputs that depend on the particular polynomial being used. For the experiments reporte
in this paper the number of inputs is never higher than 5. Therefore, the delay due to the XOR gate

will be low compared with the delay of a complete pipeline stage.

24

least-sig. bits

Q
=y |
©
2 :::
D
-
<

Memory access most-sig. bits
S 1
7]
s Memory access
W
=

—— critical path

Figure 6. A pipeline that overlaps part of the address
computation with the memory access.

Depending on the particular design, it may happen that this additional delay can be hidden. Fc
instance, if the memory access does not begin until the complete effective address has be¢
computed, the XOR delay can be hidden since the address is computed from right to left and the XO
gates use only the least-significant bits of the address (19 in the experiments reported in this pape
Notice that this is true even for carry look-ahead adders (CLA). A CLA with look-ahead blocks of
size b hits computes first theo least-significant bits, which are available after a delay of
approximately one look-ahead block. After a three-block delayb%hbaast-significant bits are
available. In general, thig least-significant bits have a delay of approximately1l blocks. For
instance, for 64-bit addresses and a binary CLA, the 19 bits required by the I-poly functions used i
the experiments of this paper have a delay of about 9 blocks whereas the whole address computati
requires 11 block-delays. Once the 19 least-significant bits have been computed, it is reasonable

assume that the XOR gate delay is shorter than the time required to compute the remaining bits.

However, since the cache access time usually determines the pipeline cycle, the fact that tF
least-significant bits are available early is sometimes exploited by designers in order to shorten th
latency of memory instructions by overlapping part of the cache access (which requires only the
least-significant bits) with the computation of the most significant address bits. This approach result:
in a pipeline with a structure similar to that shown in figairBlotice that this organization requires
a pipelined memory (in the example we have assumed a two-stage pipelined memory). In this cas
the polynomial mapping may cause some additional delay to the critical path. We will show later tha:
even if the additional delay induces a one cycle penalty in the cache access time, the polynomii

mapping provides a significant overall performance improvement. An additional delay in a load

25

instruction may have a negative impact on the performance of the processor because the issue
dependent instructions may be delayed accordingly. On the other hand, this delay has a negligib
effect, if any, on store instructions since these instructions are issued to memory when they ar
committed in order to have precise exceptions, and therefore the XOR functions can usually b
performed while the instruction is waiting in the store buffer. Besides, only load instructions may
depend on stores but these dependencies are resolved in current microprocessors (e.fL$A8000

by forwarding. This technique compares the effective address of load and store instructions in orde
to check a possible match but the cache index, which involves the use of the XOR gates, is nc

required by this operation.

Memory address predictioran be also used to avoid the penalty introduced by the XOR delay
when it lengthens the critical path. The effective address of memory references has been shown
be highly predictable. For instance [18] it has been shown that the addessd about 75% of the
dynamically executed memory instructions of the Spec95 suite can be predicted with a simple
scheme based on a table that keeps track of the last address seen by a given instruction and its
stride. We propose to use a similar scheme to predict early in the pipeline the line that is likely to b

accessed by a given load instruction. In particular, the scheme works as follows.

The processor incorporates a table indexed by the instruction address. Each entry stores the I
address and the predicted stride for some recently executed load instruction. In the fetch stage, tf
table is accessed with the program counter. In the decode stage, the predicted address is compu
and the XOR functions are performed to compute the predicted cache line. Notice that this can b
done in just one cycle since the XOR can be performed in parallel with the computation of the most
significant bits as discussed above, and the time to perform an integer addition is not higher than or
cycle in the vast majority of processors. When the instruction is subsequently issued to the memor
unit it uses the predicted line number to access the cache in parallel with the actual address and li
computation. If the predicted line turns out to be incorrect, the cache access is repeated again wi
the actual address. Otherwise, the data provided by the speculative access can be loaded into

destination register.

The scheme to predict the effective address early in the pipeline has been previously used fc
other purposes. I[11], a Load Target Buffer is presented, which predicts effective address adding a
stride to the previous address[B) and[6] a Fast Address Calculation is performed by computing
load addresses early in the pipeline without using history information. In those proposals the memor

access is overlapped with the non-speculative effective address calculation in order to reduce tf

26

cache access time, though none of them execute speculatively the subsequent instructions tt

depend on the predicted load.

A number of previous papers have proposed the use of a memory address prediction scheme
order to execute memory instructions speculatively, as well as instructions dependent upon ther
[12], [13] and[29]. In the case of a miss-speculation, a recovery mechanism similar to that used by

branch prediction schemes is utilized to squash the miss-speculated instructions.

8 Effect of I-Poly indexing on superscalar IPC

In order to verify the impact of polynomial mapping on a realistic microprocessor architecture we
have developed a parametric simulator of an out-of-order execution processor. A four-way
superscalar processor has been simuldtdde 7shows the different functional units and their
latency considered for this experiment. The size of the reorder buffer is 32 entries. There are tw
separate physical register files (FP and Integer), each one having 64 physical registers. The proces:
has a lockup-free data cadR4] that allows 8 outstanding misses to different cache lines. The cache
size is either &B or 16 KB and is 2-way set-associative with 32-byte line size. The cache is write-
through and no-write-allocate. The hit time of the cache is two cycles and the miss penalty is 2(
cycles. An infinite L2 cache is assumed and a 64-bit data bus between L1 and L2 is considered (i.€
a line transaction occupies the bus during four cycles). There are two memory ports anc
dependencies thorough memory are speculated using a mechanism similar to the ARB of th
Multiscalar[9] and PA800(19]. A branch history table with 2K entries and 2-bit saturating counters

is used for branch prediction.

Functional Unit Latency Repeat rate
1 Simple Integer 1 1
9 multiply 1
1 Complex Integer 67 divide 67
2 EffectiveAddress 1 1
1 Simple FP 4 1
1 FPMultiplication 4 1
. 16 divide 16
1 FPDivide and SQR 35 SOR 35

Table 6 Functional units and instruction latency

The memory address prediction scheme has been implemented by means of a direct-mapp:
table with 1K entries and without tags in order to reduce cost at the expense of more intsriference

the table. Each entry contains the last effective address of the last load instruction that used this ent

27

and the last observed stride. In addition, each entry contains a 2-bit saturating counter that assig
confidence to the prediction. Only when the most-significant bit of the counter is set is the prediction
considered to be correct. The address field is updated for each new reference regardless of t
prediction, whereas the stride field is only updated when the counter goes begl@w. Hiter two

consecutive mispredictions).

Table 7shows the IPC and the miss ratio for different configuratidime baseline configuration

Conventional indexing I-poly indexing
8KB
8KB -
16kb Xor no CP Xormer
with
IPC no pred. pred.
. with miss]

IPC miss no pred pred IPC miss IPC IPC
go 1.00 5.45 0.87 0.88 10.87 0.87 10.60 0.83 0.84
m88ksim 1.56 1.41 1.53 1.53 2.62 1.52 2.89 1.49 151
gce 1.16 5.63 1.04 1.05 10.01 1.03 10.77 0.98 0.99

compress 1.13 12.96 1.12 1.13 13.63 1.1 14.17 1.07 1.10
li 1.40 4.72 1.30 1.32 8.01 1.33 7.10 1.26 1.31

ijpeg 131 0.94 1.28 1.28 3.72 1.29 2.17 1.28 1.30
perl 1.45 4.52 1.26 1.27 9.47 1.24 10.26 1.19 121
vortex 1.39 4.97 1.27 1.28 8.37 1.30 7.87 1.25 1.27
tomcatv 1.18 35.14 1.03 1.04 54.45 1.33 19.67 1.30 1.36
swim 1.30 29.56 1.06 1.08 66.62 1.53 8.85 1.49 1.57
su2cor 1.28 13.74 1.24 1.26 14.69 1.24 14.66 1.21 1.25
hydro2d 1.14 15.40 1.13 1.15 17.23 1.13 17.22 in 1.15
applu 1.63 5.54 1.61 1.63 6.16 1.57 6.84 1.55 1.59
mgrid 151 4.91 1.50 1.53 5.05 1.50 531 1.46 1.52
turb3d 1.85 4.67 1.80 1.82 6.05 181 5.38 1.78 1.82
apsi 1.13 10.03 1.08 1.09 15.19 1.08 13.36 1.07 1.09
foppp 2.14 1.09 2.00 2.00 2.66 1.98 2.47 1.93 1.94
waves 1.37 27.72 1.26 1.28 42.76 151 14.67 1.48 154

Int average 1.29 5.07 1.19 1.20 8.34 1.20 8.23 1.15 1.17
Fp average 1.42 14.78 1.34 1.35 23.09 1.44 10.84 1.41 1.46

Combined
average 1.36

10.47 1.27 1.28 16.53 1.33 9.68 1.29 1.33

Table 71PC and load miss ratio for fi#frent cache coigfuration. Miss ratios are averaged with arithmetic
mean, and IPC rates are averaged with geometric means.

is an 8KB cache withconventionalmdexing and no address prediction (4th column). The average
IPC of this configuration is 1.27 and the average miss ratio (6th column) is'.18/68n I-poly
indexing is used the average miss ratio goes down to 9.68 (8th column). If the XOR gates are not i
the critical path this implies an increase in the IPC up to 1.33 (7th column). On the other hand, if the

XOR gates are in the critical path and we assume a one cycle penalty in the cache access time, |

1. For each benchmark we simulated 100M instructions after skipping the first 2000M.

28

resulting IPC is 1.29 (9th column). However, the use of the memory address prediction scheme whe
the XOR gates are in the critical path (10th column) provides the same overall performance as
cache with the XOR gates not in the critical path (7th column). Thus, the main conclusion of this
study is that the memory address prediction scheme can offset the penalty introduced by th
additional delay of the XOR gates when they are in the critical path. Finally,/tatse shows the
performance of a 1&B 2-way set-associative cache (2nd and 3rd columns). Notice that the addition
of I-poly indexing to an &B cache yields over 60% of the IPC increase that can be obtained by

doubling the cache size.

The absolute differences are low, but this is because the benefit of I-poly indexing is perceivec
by a small subset of the benchmark programs. In the Spec95 benchmark suite there are mai
benchmarks that exhibit a relatively low conflict miss ratio. In fact the Spec95 conflict miss ratio of
a 2-way associative cache is less than 4% for all programs except tomcatv, swim and wave5. If w
perform independent analyses on the benchmarks with high conflict miss ratios, versus those wit
low conflict miss ratios, we can observe the ability of polynomiapping to reduce the miss ratio
and significantly boost the performance of the problem cases. This is shdaileng which
contains the results for the three programs with high conflict miss ratios together with their average

and the averages of the remaining fifteen programs with lower conflict miss hatiois.breakdown

Conventional indexing I-poly indexing
8KB
8 KB -
16kb Yo o CP Xor in CP
with
IPC no pred. pred.
i miss
IPC | miss | nopred.| Wih PC | miss | IPC IPC
pred.

tomcatv 1.18 35.14 1.03 1.04 54.45 1.33 19.67 1.30 1.36
swim 1.30 29.56 1.06 1.06 66.62 1.53 8.85 1.49 1.57
waveb 1.37 27.72 1.26 1.28 42.76 151 14.67 1.48 1.54
Average-bad 1.28 30.80 111 1.13 54.61 1.46 14.40 1.42 1.49
Average-good 1.38 6.40 1.30 1.32 8.91 1.30 8.74 1.27 1.30

Table 81PC and load miss ratio for tfent cache coitfurations for the selected bad programs. Miss ratios
are averaged using an arithmetic mean, whereas IPC rates are averaged using a geometric mean. Final row
shows averages for the 15 programs with low adinfiiss ratios.

one can see that the polynomial mapping provides a significant improvement in performance for thu
bad programs even if the XOR gates are in the critical path and the memory address predictio
scheme is not used (27% increase in IPC). When memory address prediction is used the IPC is 3&

higher than that of a conventional cache of the same capacity and 16% higher than that of

29

conventional cache with twice the capacity. Notice that the polynomial mapping scheme with
prediction is even better than the organization with the XOR gates not in the critical path but without
prediction. This is due to the fact that the memory address prediction scheme reduces by one cyc
the effective cache hit time when the predictions are correct, since the address computation |
overlapped with the cache access (the computed address is used to verify that the prediction w
correct). However, the main benefits observed in t&loleme from the reduction in conflict misses.

To isolate the different effects we have also simulated an organization with the memory addres
prediction scheme and conventional indexing for &B&ache (column 5). If we compare this IPC

with that in column 4 of table 3, we see that the benefits of the memory address prediction schem
due to the reduction of the hit time are almost negligible. This confirms that the improvement
observed in the I-poly indexing scheme with address prediction derives from the reduction in conflict

misses.

The averages for the fifteen programs which exhibit low levels of conflict misses (labelled
“average-good”) show a small (1.7%) deterioration in average IPC when I-poly indexing is used anc
the XOR gates are in the critical path. This is due to a slight increase in the average hit time rathe
than an overall increase in miss ratio (which on average falls by 2%). For these programs th

reduction in aggregated miss penalty does not outweigh the slight extension in critical path length.

9 Conclusiors

In this papeme have discussed the problem of cache conflict misses and surveyed the options fo
reducing or eliminating those conflicts. Wave describegseudo-random indexing schesngased

on bitwise XOR functions and boolean polynomial modulus functions. We have shown the latter to
be obust enough tairtually eliminatetherepetitive cache conflictsaused by the “bad strides” that

are both inherent in some Spec95 benchmarks and also introduced into an application by the tilin

of loop nests.

We have discussed éhmajor mplementation issues that arise from the use of such novel
indexing schemes. For example, I-poly indexing uses more address bits than a conventional cache
compute the cache index. Also, the use of different indexing functions at L1 and L2 results in the
occasional creation of a hole at M/e have shown how Iio of these problems can be solved using
a two-level virtual-real cache hierarchy. Finally, we have proposed a memory address predictior
scheme to avoid the penalty due to the potential delay in the critical path introduceg$&guitie-

random ndexing function.

30

Detailed simulations of an 0-0-0 superscalar processor have demonstrated that programs wi
significant numbers of conflict misses in a conventionkB382-way set-associative cache perceive
IPC improvements of 33% (with address prediction) or 27% (without address prediction). This is up
to 16% higher than the IPC improvements obtained simply by doubling the cache capacity.
Furthermore, from the programs we analyzed, those that do not experience significant conflict misse
on average see only a 1.7% reduction in IPC when I-poly indexing appears on the critical path fo
computing the effective address, and address prediction is used. If the index function does not appe
on the critical path no deterioration in overall performance is experienced by those programs. Thi
small potential reduction in IPC for some programs may appear to detract from the benefit of using
I-poly indexing; one could argue that an expert programmer could restructure the application tc
avoid cache conflicts. This of course assumes the programmer is able to identify and locate th
source of conflictsand also represents a highly machine-specific optimization.

We believe the key contribution pseudo-randomndexing is the resulting predictability of
cache behavior. In our experiments we see that I-poly indexing reduces the standard deviation ¢
miss ratios across Spec95 from 18.49 to 5.16. The use of caches in real-time systems is ofte
problematic when it cannot be guaranteed that pathological miss ratios will not occur. If conflict
misses are eliminated, the miss ratio depends solely on compulsory and capacity misses, which
general are easier to predict and control. Systems which incorpgrs¢eido-randomache could
be particularly useful in the real-time domain. Conflict resistance could also be beneficial in cache-
based scientific computing where expert programmers and restructuring compilers use iteration

space tiling to manage data locality

References

[1] Amdahl Corp.470V/6 Machine Refence Manual1976

[2] A.Agarwal,Analysis of Cache Performance for Operating Systems and Mugjtgamming Kluwer Academic
Publishers, 1989, pp. 120-122.

[8] A.Agarwal, J. Hennessy and M. Horowitz, “Cache Performance of Operating SystMsltiprogramming’,
ACM Trans. on Computer Systems)]. 6, Nov 1988, pp. 393-431

[4] A.Agarwal and S.D. PudgaiColumn-Associative Cache&:Technique for Reducing the Miss Rate of Direct-
Mapped Caches”, iRroc. Int. Symp. on ComputArchitectue, 1993, pp. 179-190.

[5] T.M.Austin, D.N.Pnevmastikatos G.S. Sohi, “Streamlining Data Cacbess with Fagiddress Calculation”, in
Proc of the Int. Symp. on Compufachitectue, pp. 369-380, 1995.

[6] T.M.Austin, G.S. Sohi, “Zero-Cycle Loads: Microarchitecture Support for Reducing Load LatenBydcinof
Int. Symp. on Mi@architectue, pp 82-92, 1995.

31

[7] B.N.Bershad, D. Led,.H. Romer and J.B. Chen, ¥Aiding Cache Confit Misses Dynamically in Lge Direct-
Mapped Caches”, iRroc. ASPLOS V/lpp.158-170, 1994.

[8] J.M. FrailongW. Jalby and J. Lenfant, “XOR-Schem@as-lexible Data Qganization in Parallel Memories”, in
Proc. Int. Conf. on Parallel Ricessingpp. 276-283Aug. 1985.

[9] M. Franklin and G.S. Sohi, “ARBA Hardware Mechanism for Dynamic Reordering of Memory References”,
IEEE Transactions on Computerd5(6), pp. 552-571, May 1996.

[10] D.A. Fotlandet al, “Hardware Design of the First HRecisionArchitecture ComputersHewlet-Packaal
Journal,38(3), March 1987, pp. 4-17.

[11] M.Golden andr.N. Mudge, “Hardware Support for Hiding Cache Latendgghnical report # CSE-TR-152-93.
University of Michigan, 1993.

[12] J. Gonzéalez andl. Gonzalez, “MemonAddress Prediction for Data Speculation”Proc. of EURORR 97 pp.
1084-1091, 1997, also available as technical report # UPC-DAC-1996-50, http:devape.es, Oct. 1996.

[13] J. Gonzalez and. Gonzdlez, “Speculative Execution viddress Prediction and Data PrefetchingPioc of
11th.ACM Int. Conf. on SupeomputingVienna (Austria), pp. 196-203, 1997, also available as technical report #
UPC-DAC-1997-2, http://wwvec.upc.es, Jan. 1997.

[14] A. Gonzalez, Mate¥alero, NigelTopham and Joan M. Parcerisa, “Eliminating Cache @bMissesThrough
XOR-based Placement Functions”Hroc of 1Lth. ACM Int. Conf. on SupeomputingVienna (Austria)pp, 76-
83, July 1997

[15] S. Gosh, M. Martonosi and S. Malik, “Cache Miss EquatidnsAnalytic Representation of Cache Misses”, in
Proc. ICS ‘97 Vienna, pp, 317-324, July 1997.

[16] D.T. Harper lll and J.R. Jump, 8¢torAccess Performance in Parallel Memories Using a Skewed Storage
Scheme” JEEE Trans. Comp Vol. TC-36, No 12, pp. 1440-1449, Dec. 1987.

[17] J.L. Hennessy and D. Patters@omputerArchitectue: A QuantitativeApproach,Morgan Kaufmann Publish.,
1996

[18] .IBM, 3033 Pocessor Complex, Thgoof Operation/Diagrams Manual-Becessor Storage ComirFunction
vol. 4, IBM, Poughkeepsie, N.Y1978

[19] D. Hunt, “Advanced Performance Features of the 64/48800”, in Proc. of the CompCon’9%pp. 123-128,
1995.

[20] N. R Jouppi, “Improving Direct-Mapped Cache Performance byddition of a Small Fully-Associative Cache
and Prefetch Biérs”, in Proc. Int. Symp. on ComputArchitectue, 1990, pp. 364-373.

[21] D. Kroft, “Lockup-free instruction fetch/prefetch cachgamization”, inProc. 8th International Symposium on
ComputerArchitectue (1981) pp. 81-87

[22] M.S. Lam, E.E. Rothbgrand M.EWolf, “The Cache Performance and Optimization of Blockkgbrithms”, in
Proc. ASPLOS-IVApril 1991, pp. 63-74 (also SIGPLAN Notices 26).

[23] D.H. Lawrie and C.RVora, “The Prime Memory System farray Access” |IEEE Trans. Comp Vol. TC-31, No.
5, pp. 435-442, May 1982.

[24] K. Olukotun, B.A. Nayfeh, L. Hammond, KVilson, and K. Chang, “The Case for a Single-Chip
Multiprocessor”, inProc. ASPLOS-VI| October 1996.

[25] D. Pattersoret al, “A Case for Intelligent RAM"|EEE Micro, Mar/Apr. 1997, pp. 34-44.

32

[26] R. Raghavan and J.Rayes, “On Randomly Interleaved Memories"Pimc. Supezomputing ‘90 pp. 49-58.

[27] B.R. Rau, M.S. Schlansker and DIWen, “The Cydra 5 Stride-Insensitive Memory SystemRPiac Int. Conf.
on Parallel Pocessing1989, pp. 242-246.

[28] B.R. Rau, “Pseudo-Randomly Interleaved MemoriesRrioc. Int. Symp. on Computarchitectue, 1991, pp.
74-83.

[29] Y. Sazeides, S/assiliadis and J.E. Smith, “The Performance Potential of Data Dependence Speculation &
Collapsing”, inProc. of Int. Symp. on Mioarchitectue, pp. 238-257December 1996.

[30] A. Seznec, “ACase fofTwo-way Skewed-associative Caches”Proc. Int. Symp. on Computarchitectue,
1993, pp. 169-178.

[31] A. Seznec and.Bodin, “Skewed-associative Caches”Aroc. Int. Conf. on ParalleArchitectues and
Languages (RRLE),1993, pp. 305-316.

[32] A.J. Smith, “Cache MemoriesACM Computing Sweysyvol. 14, no. 4, Sept. 1982, pp. 473-530.

[33] G.S. Sohi, “Logical Data Skewing Schemes for Interleaved Memor€scitor Processors”, Computer Sciences
Technical Report #753, Wisconsin-Madison, Sept. 1988.

[34] A. Srivastava and. Eustace, “AOM: A System for Building Customized Progr&malysisTools”, in Proc.
SIGPLAN Conf. on Pgramming Language Design and Implementati®94.

[35] The National &chnology Roadmap for Semiconduct@smiconductor Industéssociation, San Jose, Calif.,
1994,

[36] N.P. TophamA. Gonzalez and J. Gonzalez, “The Design and Performance of &c€anfliding Cache”, ifProc.
30th Int. IEEE/ACM Symp. on Maarchitectue, pp. 71-80, Dec. 1997.

[37] W-H Wang, J-LBaer and H.M. Levy'Organization and Performance of&o-LevelVirtual-Real Cache
Hierarchy”, inProc. Int. Symp. on ComputArchitectue, 1989.

33

