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Abstract
Finding the singularity of a matrix is a basic problem in linear algebra. Chu and Schnitger [3]
first considered this problem in the communication complexity model, in which Alice holds the
first half of the matrix and Bob holds the other half. They proved that the deterministic com-
munication complexity is Ω(n2 log p) for an n×n matrix over the finite field Fp. Then, Clarkson
and Woodruff [4] introduced the singularity problem to the streaming model. They proposed
a randomized one pass streaming algorithm that uses O(k2 logn) space to decide if the rank
of a matrix is k, and proved an Ω(k2) lower bound for randomized one-way protocols in the
communication complexity model.

We prove that the randomized/quantum communication complexity of the singularity prob-
lem over Fp is Ω(n2 log p), which implies the same space lower bound for randomized streaming
algorithms, even for a constant number of passes. The proof uses the framework by Lee and
Shraibman [8], but we choose Fourier coefficients as the witness for the dual approximate norm
of the communication matrix. Moreover, we use Fourier analysis to show the same random-
ized/quantum lower bound when deciding if the determinant of a non-singular matrix is a or b
for non-zero a and b.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems; G.1.3 Numerical
Linear Algebra

Keywords and phrases communication complexity, streaming, matrix, singularity, determinant

1 Introduction

Communication complexity, introduced by Yao [16], is a powerful tool to solve a variety of
problems in areas as disparate as VLSI design, decision trees, data structures and circuit
complexity [7]. It is a game between two parties, Alice and Bob, with unlimited computing
power, that want to compute the value of a function f : X×Y 7→ {0, 1}, but Alice only knows
x ∈ X while Bob only knows y ∈ Y . The communication complexity is the minimal amount of
bits they transfer. We denote the randomized and quantum communication complexity which
succeeds with probability at least 1− ε by Rε(f) and Qε(f) (or Q∗ε (f)) respectively, where
Rε(f) is with private coin, Qε(f) is without entanglement and Q∗ε (f) is with entanglement.
The three functions have the following relationship: Q∗ε (f) ≤ Qε(f) ≤ O(Rε(f)) [6].
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In the streaming model, the input is presented as a sequence and can be examined by
the algorithm in only a few passes (typically just one). We are interested in the size of
memory the algorithm uses. It can be proved by a reduction that the size of memory times
the number of passes can be bounded by the communication complexity if Alice holds the
first part of the stream and Bob holds the remaining.

We focus on linear algebra problems, because they are fundamental problems in mathemat-
ics, and the matrix computation is used everywhere. Furthermore, the singularity problem
is the most basic problem, because it can be reduced to many linear algebra problems,
e.g. to determine whether linear equations have a solution, to compute the diagonal of the
LU decomposition or QR decomposition and to determine whether two subspaces intersect.
Formally speaking, for an n × n matrix x whose entries are in the the finite field Fp, the
singularity problem is to decide whether x is singular over Fp, and the determinant problem
is to compute the determinant of x over Fp for non-singular x. In the streaming model, the
input x comes row by row sequentially, while in the communication complexity model, Alice
holds the first n/2 rows, and Bob holds the remaining n/2 rows.

These problems have a trivial deterministic algorithm that uses O(n2 log p) spaces in one
pass or the same number of communications in one-way. Chu and Schnitger [3] proved an
Ω(n2 log p) communication complexity for deterministic protocols of the singularity problem.
Luo and Tsitsiklis [9] proved that a deterministic protocol must transfer Ω(n2) real numbers
for the matrix inversion problem. Clarkson and Woodruff [4] proposed a randomized one
pass streaming algorithm that uses O(k2 logn) space to decide if the rank of a matrix is k,
and proved an Ω(k2) lower bound for randomized one-way protocol in the communication
complexity model by reducing from the index function, which implies an Ω(n2) space lower
bound in the streaming model with one pass. Deciding the disjointness of two n/2 dimensional
subspaces is actually the singularity problem. Miltersen et al. [10] showed a tight lower bound
when deciding whether a vector is in a subspace of Fn2 in the one-sided error randomized
asymmetric communication complexity model, by using the Richness Lemma.

In the communication model, there is another way to distribute the input: Alice and Bob
each holds an n× n matrix x and y, respectively, and they want to compute the singularity
or determinant of x+ y. The two ways are equivalent up to a constant factor, because

det(x+ y) = det
(
x+ y 0n×n
y In×n

)
= det

(
x −In×n
y In×n

)
.

This way is more beautiful and symmetric. When p = 2, f(x + y) = f(x ⊕ y) is a
important block-composed function with good properties and attracted lots of attentions
recently [11, 18, 14, 17]. Here, we formally define the problems in this way.

I Problem 1 (Singularity). Alice and Bob hold two n × n matrices x and y over Fp,
separately. They want to determine whether x+ y is singular over Fp.

I Problem 2 (Deta,b). Alice and Bob hold two n× n matrices x and y over Fp, separately.
For a, b ∈ Fp \{0}, we promise that detp(x+y) is either a or b, where detp is the determinant
over Fp. They want to compute detp(x+ y).

1.1 Our Results
I Theorem 3. The randomized/quantum communication complexity of Singularity is
Ω(n2 log p).

We prove it using the duality of the approximate norm [8]. We compute all the Fourier
coefficients of the singularity function and use them as a witness in the Duality Theorem.
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This result implies the same lower bound when deciding if two subspaces of Fnp intersect.
Also, it implies that Ω(k2) communication is required to decide if the rank of x+ y is k, by
padding n2 − k2 zeros, which improves the determinant result in [4].

I Theorem 4. The randomized/quantum communication complexity of Deta,b is Ω(n2 log p),
for all non-zero a and b.

For this problem, we prove a small spectral norm of the matrix representing the problem,
by decomposing the matrix onto Fourier basis which has good properties.

All these results imply the same space lower bound for randomized streaming algorithms,
even if the algorithm reads the stream a constant number of passes.

1.2 Outline
In Section 2, we define the basic notations. We prove Theorem 3 in Section 3 and Theorem 4
in Section 4. Finally, we discuss the open problem in Section 5.

2 Preliminaries

For prime p, Fp is a finite field. For a function f : FNp 7→ R, the Fourier coefficient of f is

f̂(s) = 1
pN

∑
x∈FN

p

ω−〈s,x〉f(x),

where ω = e2πi/p. The inverse transform is

f(x) =
∑
s∈FN

p

ω〈s,x〉f̂(s).

The Kronecker delta, denoted by δi,j , is 1 if i = j and 0 otherwise.

I Fact 5. The number of n×n matrices of rank r over Fp is pr(r−1)/2(n
r

)
p

∏n
k=n−r+1(pk−1).

Especially, the number of non-singular n× n matrices over Fp is
∏n−1
k=0(pn − pk).

In this paper, we don’t distinguish vectors (matrices) from discrete unary (bivariate)
functions. For example, for vector v, v(x) means the x-th element of v, and for matrix A,
A(x, y) means the entry at x-th row and y-th column.

For a vector x, we define the `1-norm ‖x‖1 =
∑
i |xi|, and the `∞-norm ‖x‖∞ = maxi |xi|.

For a matrix A, we also define the `1-norm ‖A‖1 =
∑
i,j |xi,j |, and the `∞-norm ‖A‖∞ =

maxi,j |Ai,j |. Let σ = (σ1, · · · , σrank(A)) be the vector of nonzero singular values of A. The
trace norm of A is ‖A‖tr = ‖σ‖1. The spectral norm is ‖A‖ = ‖σ‖∞, which is also the square
root of the largest eigenvalue of the positive-semidefinite matrix A†A [5], where A† is the
conjugate transpose of A.

3 Lower Bound for Singularity Problem

We first introduce the approximate rank and norm. Then, for XOR composed function
g(x⊕ y), the trace norm is equal to the `1 norm of the Fourier coefficients. This property
still holds for approximate norm and for g(x+ y) in Fp. After that, we present the Duality
Theorem, which converts the definition of the approximate norm from min to max. Finally,
we compute Fourier coefficients of the singularity function, and choose it as the witness.
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3.1 Approximation Norms
The matrix rank and matrix norm can give a lower bound for deterministic communica-
tion complexity. Similarly, the approximate rank and norm can prove a lower bound for
randomized/quantum protocols.

For α ≥ 1 and a sign matrix A, we define the approximate trace norm by

‖A‖αtr = min
B:1≤Ai,jBi,j≤α

‖B‖tr,

and the approximate rank by

rankα(A) = min
B:1≤Ai,jBi,j≤α

rank(B).

For α ≥ 1 and a sign vector x, we define the approximate Fourier `1-norm by

‖x̂‖α1 = min
y:1≤xiyi≤α

‖ŷ‖1.

I Theorem 6. [2] Let A be a sign matrix and 0 < ε < 1/2, and α = 1/(1 − 2ε), then
Qε(A) ≥ 1

2 log rankα(A).

Because the approximate rank can be bounded by the approximate trace norm [8]:

rankα(A) ≥ (‖A‖αtr)2

α2 · size(A) ,

the approximate trace norm can give a lower bound for the communication complexity. This
result can also be found in [12].

I Lemma 7. Let g : FNp 7→ {−1, 1} be a sign function, and f = g◦+⊗N , i.e. f(x, y) = g(x+y).
Let A be the sign matrix representing f . Then, ‖A‖αtr ≥ ‖ĝ‖α1 · pN .

The p = 2 case of Lemma 7 can be found in [8, Theorem 85]. It can be easily generalized to
Fp with little changes. As a result, we omit this proof.

Combining them together, the randomized/quantum communication complexity can be
bounded by the ‖̂·‖α1 norm.

I Corollary 8. For g : FNp 7→ {−1, 1} and f = g ◦ +⊗N , Qε(f) ≥ log ‖ĝ‖α1 − 2α, where
α = 1/(1− 2ε).

3.2 Duality
The definition of the approximate Fourier `1 norm begins with miny. In such a definition,
we have to check every y if we want to prove a lower bound. However, the Duality Theorem
converts miny to maxy. As a result, a particular y, called the witness, is enough to prove a
lower bound.

I Definition 9. For a general norm ‖ · ‖ on RN , the dual norm on RN , denoted by ‖ · ‖∗, is
defined by

‖x‖∗ = max
y∈RN :‖y‖≤1

〈x, y〉.

I Theorem 10 (Duality Theorem). [8, Theorem 64] For a general norm ‖ · ‖ on RN ,

‖x‖α = max
y:‖y‖∗≤1

1 + α

2 〈x, y〉+ 1− α
2 ‖y‖1.
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3.3 Choosing Fourier Coefficients as Witness
It is difficult to find a useful witness. The first choice that comes to mind is to choose h = g,
which can be used to prove the inner product problem. The discrepancy method is the
special case of taking h = µ ◦ g for a distribution µ [8]. Here we propose a new choice: taking
h = ĝ. Now we calculate ĝ first.

We define a sign function g : Fn×np 7→ {−1, 1}, where g(x) = −1 if x is full rank over Fp
and g(x) = 1 otherwise. Then, we define f(x, y) = g(x+ y). In such a definition, f is the
function representing the Singularity problem.

We change the value of g from {−1, 1} to {0, 1}, by defining g01 = (1− g)/2. In other
words, g01(x) = 1 if x is full rank, and g01(x) = 0 otherwise.

ĝ01 has a good property that a same rank results in a same value.

I Lemma 11. For s, t ∈ Fn×np , ĝ01(s) = ĝ01(t) if rankp(s) = rankp(t), where rankp is the
matrix rank over Fp.

Proof. Because rankp(s) = rankp(t), there are full rank matrices u and v, such that s = vtu.
Since vT and uT are full rank, y = vTxuT is a bijection between matrices x and y.

ĝ01(s) =
∑
x ω
−tr(sTx)g01(x)
pn2 =

∑
x ω
−tr(tTvTxuT)g01(x)

pn2 =
∑
y ω
−tr(tTy)g01(y)
pn2 = ĝ01(t)

J

I Lemma 12. Let r = rankp(s), then

ĝ01(s) = (−1)rp−n(n+1)/2
n−r∏
k=1

(pk − 1).

Proof. By Lemma 11, we only need to choose one s for each rank to prove it. For rank r,
we choose s = diag(1, · · · , 1, 0, · · · , 0), which is a diagonal matrix with r 1’s in the diagonal.

We start from the most simple case of rankp(s) = 0, i.e. s is an all-zero matrix.

pn
2
· ĝ01(s) =

∑
x

ω−〈0,x〉g01(x) =
∑
x

g01(x) = # of full rank matrices =
n−1∏
k=0

(pn − pk)

Then, we consider rank-1 matrix s = diag(1, 0, 0, · · · , 0), which is a matrix with all zero
entries except for the top left one.

For k = 0, 1, · · · , n− 1, we denote the k-th row of matrix x by x(k, ·), and the submatrix
from the k-th row to the last row by x(k–, ·).

pn
2
· ĝ01(s) =

∑
x(0,·)

∑
x(1–,·)

ω−〈s,x〉g01(x) =
∑
x(0,·)

ω−x(0,0)
∑
x(1–,·)

g01(x)

∑
x(1–,·) g01(x) is the number of the full rank matrices given the first row. It is

∏n−1
k=1(pn−pk)

if the first row is non-zero, and 0 if the first row is zero. Except for the case that the first row
is zero, they are all canceled out because

∑
x(0,0) ω

−x(0,0) = 0. Thus, the remaining is the
minus value of the case that the first row is non-zero, i.e. pn2 · ĝ01(s) = −

∏n−1
k=1(pn − pk).

In general, for the rank-r matrix s = diag(1, · · · , 1, 0, · · · , 0) with r 1’s in the diagonal,

pn
2
· ĝ01(s) =

∑
x(0,·)

ω−x(0,0)
∑
x(1,·)

ω−x(1,1) · · ·
∑

x(r−1,·)

ω−x(r−1,r−1)
∑
x(r–,·)

g01(x).
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∑
x(r–,·) g01(x) is the number of full rank matrices given the first r rows. It is

∏n−1
k=r (pn − pk)

if the first r rows is linear independent, and 0 otherwise.
We define ζ as follows: ζ(x, k) = 0 if the first k rows of x are linear dependent and

ζ(x, k) = 1 otherwise. Now we have

pn
2
· ĝ01(s) =

∑
x(0,·)

ω−x(0,0)
∑
x(1,·)

ω−x(1,1) · · ·
∑

x(r−1,·)

ω−x(r−1,r−1)ζ(x, r)
n−1∏
k=r

(pn − pk)

Then we slightly change ζ to ζ̄: ζ̄(x, k) = 0 if the first k − 1 rows of x are linear independent
but the first k rows are linear dependent, and ζ̄(x, k) = 1 otherwise. It is clear that
ζ(x, r) =

∏r
k=1 ζ̄(x, k), which gives

pn
2
·ĝ01(s) =

∑
x(0,·)

ω−x(0,0)ζ̄(x, 1)
∑
x(1,·)

ω−x(1,1)ζ̄(x, 2) · · ·
∑

x(r−1,·)

ω−x(r−1,r−1)ζ̄(x, r)
n−1∏
k=r

(pn−pk).

Since
∑
x(k,·) ω

−x(k,k) = 0, we have∑
x(k,·)

ω−x(k,k)ζ̄(x, k + 1) =
∑

x(k,·):ζ̄(x,k+1)=1

ω−x(k,k) = −
∑

x(k,·):ζ̄(x,k+1)=0

ω−x(k,k).

x(k, ·) goes over the linear combinations of the first k rows. At the same time, x(k, k) goes over
the linear combinations of x(0, k), x(1, k), · · · , x(k − 1, k). If x(0, k), x(1, k), · · · , x(k − 1, k)
are not all zero, x(k, k) is balanced, so −

∑
ω−x(k,k) = 0. If x(0, k), x(1, k), · · · , x(k − 1, k)

are all zero, x(k, k) = 0, so −
∑
ω−x(k,k) = −pk.

Consequently, we have

pn
2
· ĝ01(s) = (−1)(−p)(−p2) · · · (−pr−1)

n−1∏
k=r

(pn − pk) = (−1)rp−n(n+1)/2
n−r∏
k=1

(pk − 1).

J

I Lemma 13. ‖ĝ(s)‖1 < 1 + 6 · p−n
∏n
k=1(pk − 1)

Proof.

‖ĝ(s)‖1 ≤ 1 + 2‖ĝ01(s)‖1

= 1 + 2
n∑
r=0

∑
s:rankp(s)=r

|ĝ01(s)|

= 1 + 2
n∑
r=0

pr(r−1)/2
(
n

r

)
p

n∏
k=n−r+1

(pk − 1) · p−n(n+1)/2
n−r∏
k=1

(pk − 1)

= 1 + 2p−n(n+1)/2
n∏
k=1

(pk − 1)
n∑
r=0

pr(r−1)/2
(
n

r

)
p

= 1 + 2p−n(n+1)/2
n∏
k=1

(pk − 1)
n−1∏
k=0

(1 + pk)

= 1 + 2p−n
n∏
k=1

(pk − 1)
n−1∏
k=0

1 + pk

pk

< 1 + 2p−n
n∏
k=1

(pk − 1) · 3

J
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Now we can prove that the approximate Fourier `1-norm of g is large.

I Lemma 14.
‖ĝ‖3/21 = pΩ(n2)

Proof. In the proof of Lemma 7, we know ‖ĥ‖∗1 = pn
2‖ĥ‖∞. We rewrite Theorem 10:

‖ĝ‖α1 = max
h:pn2‖ĥ‖∞≤1

1 + α

2 〈g, h〉+ 1− α
2 ‖h‖1.

We choose h = (−1)n+1ĝ01. So, ĥ = (−1)n+1g01/p
n2 , and ‖ĥ‖∞ = 1/pn2 .

〈g01, h〉 = 〈g01, (−1)n+1ĝ01〉
= (−1)n+1

∑
s

g01(s)ĝ01(s)

= (−1)n+1
∑

s:rankp(s)=n

ĝ01(s)

= (−1)n+1
n−1∏
k=0

(pn − pk) · (−1)np−n(n+1)/2

= −p−n
n∏
k=1

(pk − 1)

〈g, h〉 = −2〈g01, h〉+
∑
x

h(x) = −2 · −p−n
n∏
k=1

(pk − 1) + 0 = 2p−n
n∏
k=1

(pk − 1)

‖ĝ‖3/21 ≥ 1 + 3/2
2 〈g, h〉+ 1− 3/2

2 ‖h‖1

≥ 5
4 · 2p

−n
n∏
k=1

(pk − 1)− 1
4

(
6p−n

n∏
k=1

(pk − 1) + 1
)

= p−n
n∏
k=1

(pk − 1)− 1
4

≥ p−n
n∏
k=1

pk−1 − 1
4

= pn(n−3)/2 − 1
4

J

I Theorem 15 (Theorem 3 Restated). The randomized/quantum communication complexity
of the Singularity problem is Ω(n2 log p).

Proof. By Corollary 8, Q1/6(f) ≥ log ‖ĝ‖3/21 − 3 = Ω(n2 log p). R1/6(f) = Ω(Q1/6(f)). J

4 Lower Bound for Determinant of Non-singular Matrix

We use a small spectral norm of the matrix representing the Deta,b problem to prove the
communication complexity lower bound. To prove the lower bound of spectral norm, we
decompose the matrix onto Fourier basis, because the Fourier basis has good properties and
a small spectral norm.
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4.1 Spectral Norm Method
In the previous section, a large trace norm implies a large communication complexity lower
bound. However, here we use a small spectral norm to prove a large communication complexity
lower bound.

The spectral norm method is based on the discrepancy method, which can derive the com-
munication complexity lower bound by giving an upper bound for a value called discrepancy
defined below.

I Definition 16 (Discrepancy). Let f : FNp × FNp 7→ {0, 1} be a function, S × T be a
rectangle, and µ be a probability distribution on FNp × FNp . Denote discµ(S × T, f) =
|
∑

(x,y)∈S×T µ(x, y)(−1)f(x,y)|, and discµ(f) = maxS,T⊆FN
p

discµ(S × T, f).

The discrepancy is widely used in proving communication complexity lower bound [1, 15, 7],
with many applications. It was also used to prove the quantum lower bound [6, 13], and
could be phrased in the following theorem.

I Theorem 17. [6] For any function f and any distribution µ, we have

Q∗ε (f) = Ω
(

log 1− 2ε
discµ(f)

)
.

Furthermore, the discrepancy can be bounded by the spectral norm.

I Theorem 18. [7, Example 3.29] Let f : FNp ×FNp 7→ {0, 1,⊥} be a partial Boolean function.
We define the corresponding partial sign matrix F by its entries

F (x, y) =


1 if f(x, y) = 0,
−1 if f(x, y) = 1,
0 otherwise.

For the uniform distribution µ on the defined inputs of f , we have discµ(f) ≤ pN · ‖F‖/‖F‖1.

4.2 Fourier Basis Matrix
For the determinant problem, it is difficult to compute ‖F‖ directly. We will decompose F
into Fourier basis: F =

∑
k λkHk. The spectral norm of the Fourier basis Hk is easier to

compute. At last, we will use the triangle inequality to bound ‖F‖.

I Definition 19 (Discrete logarithm). F∗p = Fp \ {0} is a cyclic multiplicative group, in which
2 is a primitive element (the generator for the multiplicative group). For a ∈ F∗p, we say
k = log2 a if 2k = a.

Let η = e2πi/(p−1). For k = 0, 1, · · · , p− 2 and a ∈ Fp, we define a family of τ as below.

τk(a) =
{

0 if a = 0,
ηk log2 a otherwise.

I Lemma 20. For a, b ∈ Fp,
1. τk(a)τk(b) = τk(ab);
2.

∑p−1
a=0 τk(a) = 0, if k 6= 0;

3. τk(a)τk(a)∗τk(a) = τk(a).
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Proof. 1. If a = 0 or b = 0, both sides are 0. If a 6= 0 and b 6= 0, τk(a)τk(b) =
ηk log2 aηk log2 b = ηk log2(ab) = τk(ab).

2.
p−1∑
a=0

τk(a) =
p−1∑
a=1

τk(a) =
p−1∑
a=1

ηk log2 a =
p−2∑
l=0

ηkl = 0

3. If a = 0, both sides are 0. If a 6= 0, τk(a)∗τk(a) = |τk(a)|2 = 1. J

Then, we define a family of hk. For x ∈ Fn×np , we define hk(x) = τk(detp(x)).

I Lemma 21. For x, y ∈ Fn×np ,
1. hk(x)hk(y) = hk(xy);
2. hk(x)hk(x)∗hk(x) = hk(x).

Proof.
1. hk(x)hk(y) = τk(detp(x))τk(detp(y)) = τk(detp(x)detp(y)) = τk(detp(xy)) = hk(xy);
2. hk(x)hk(x)∗hk(x) = τk(detp(x))τk(detp(x))∗τk(detp(x)) = τk(detp(x)) = hk(x). J

I Lemma 22. For t ∈ Fn×np , ĥk(t) = 0 if the first row of t is all-zero and k 6= 0.

Proof.
ĥk(t) =

∑
x

h(x)ω〈x,t〉 =
∑
x(1–,·)

ω〈x(1–,·),t(1–,·)〉
∑
x(0,·)

h(x)

If x(1–, ·) is fixed and x(0, ·) goes over Fnp , detp(x) is balanced on all non-zero values. Thus,∑
x(0,·) h(x) = 0. J

I Lemma 23. For w, t ∈ Fn×np , if det(w) 6= 0, then ĥk(wt) = hk(w)∗ĥk(t).

Proof.

ĥk(wt) = hk(w)∗hk(w)ĥk(wt)

= hk(w)∗hk(w) 1
pn2

∑
x

hk(x)ω−〈x,wt〉

= hk(w)∗hk(wT) 1
pn2

∑
x

hk(x)ω−〈w
Tx,t〉

= hk(w)∗ 1
pn2

∑
x

hk(wTx)ω−〈w
Tx,t〉

= hk(w)∗ĥk(t)

J

I Lemma 24. For t ∈ Fn×np , if det(t) = 0 and k 6= 0, then ĥk(t) = 0.

Proof. Because t is singular, we can find an invertible matrix w such that the first row of
wt is all zero. By Lemma 22 and Lemma 23, ĥk(t) = ĥk(wt)/hk(w)∗ = 0/hk(w)∗ = 0. J

I Lemma 25. For k 6= 0 and t ∈ Fn×np , ĥk(t) = ĥk(I)hk(t)∗, where I is the identity matrix
of size n× n.

Proof. If det(t) = 0, ĥk(t) = 0 = ĥk(I) · 0 = ĥk(I)hk(t)∗.
If det(t) 6= 0, ĥk(t) = ĥk(t · I) = hk(t)∗ĥk(I). J

I Lemma 26. For k 6= 0, ĥk(I)∗ĥk(I) = p−n
2 .
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Proof.

〈ĥk, ĥk〉 =
∑
x

ĥk(x)∗ĥk(x)

=
∑
x

(
ĥk(I)hk(x)

)∗ (
ĥk(I)hk(x)

)
= ĥk(I)∗ĥk(I)

∑
x

hk(x)∗hk(x)

= ĥk(I)∗ĥk(I)〈hk, hk〉
= ĥk(I)∗ĥk(I) · pn

2
〈ĥk, ĥk〉

Therefore, ĥk(I)∗ĥk(I) = p−n
2 . J

At last, we define a family of matrix Hk. For x, y ∈ Fn×np , we define Hk(x, y) = hk(x+ y).

I Lemma 27. For k 6= 0, HkH
†
kHk = pn

2 ·Hk.

Proof. For w, x, y, z, r, s, t ∈ Fn×np ,

(HkH
†
kHk)(w, z)

=
∑
x

∑
y

Hk(w, x)Hk(y, x)∗Hk(y, z)

=
∑
x

∑
y

hk(w + x)hk(x+ y)∗hk(y + z)

=
∑
x

∑
y

(∑
r

ĥk(r)ω〈r,w+x〉

)(∑
s

ĥk(s)ω〈s,x+y〉

)∗(∑
t

ĥk(t)ω〈t,y+z〉

)

=
∑
r

∑
s

∑
t

ĥk(r)ĥk(s)∗ĥk(t)ω〈r,w〉
(∑

x

ω〈r−s,x〉

)(∑
y

ω〈−s+t,y〉

)
ω〈t,z〉

=
∑
r

∑
s

∑
t

ĥk(r)ĥk(s)∗ĥk(t)ω〈r,w〉
(
pn

2
δr,s

)(
pn

2
δs,t

)
ω〈t,z〉

= p2n2 ∑
r

ĥk(r)ĥk(r)∗ĥk(r)ω〈r,w〉ω〈r,z〉

= p2n2 ∑
r

(ĥk(I)hk(r)∗)(ĥk(I)∗hk(r))(ĥk(I)hk(r)∗)ω〈r,w+z〉

= p2n2 ∑
r

ĥk(I)ĥk(I)∗ĥk(I)hk(r)∗hk(r)hk(r)∗ω〈r,w+z〉

= p2n2 ∑
r

p−n
2
ĥk(I)hk(r)∗ω〈r,w+z〉

= pn
2 ∑

r

ĥk(r)ω〈r,w+z〉

= pn
2
hk(w + z)

= pn
2
Hk(w, z)

J

I Lemma 28. For k 6= 0,
‖Hk‖ = pn

2/2.
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Proof. We denote the largest eigenvalue of a semi-definite matrix A by max eval(A). Thus,
‖A‖ =

√
max eval(A†A).

‖HkH
†
kHk‖ =

√
max eval((HkH

†
kHk)† ·HkH

†
kHk)

=
√

max eval((H†kHk)3)

=
(√

max eval(H†kHk)
)3

= ‖Hk‖3

Comparing to Lemma 27, we have ‖Hk‖3 = pn
2‖Hk‖. Therefore, ‖Hk‖ = pn

2/2. J

4.3 Lower Bound for Det
For Deta,b, f(x, y) is 0 if detp(x+ y) = a, 1 if detp(x+ y) = b and undefined for other cases.
We define the corresponding partial sign matrix F as below.

F (x, y) =


1 if detp(x+ y) = a,

−1 if detp(x+ y) = b,

0 otherwise.

I Lemma 29. ‖F‖1 = Ω(p2n2−1).

Proof. In the uniform distribution, Prx∈Fn×n
p

[detp(x) 6= 0] =
∏n
k=1(1− p−k) > φ(p−1) > 0,

where φ is the Euler function. This means that the density of the non-singular matrix is greater
than a constant. Furthermore, the determinant is balanced on all non-zero values. Thus,
Prx∈Fn×n

p
[detp(x) = a or b] > 2

p−1φ(p−1). Finally, ‖F‖1 ≥ 2
p−1φ(p−1)·p2n2 = Ω(p2n2−1). J

I Lemma 30. ‖F‖ ≤ 2pn2/2.

Proof. It is easy to check that we can decompose F to the Fourier basis matrices:

F = 1
p
·
p−2∑
k=1

(
η−k log2 a − η−k log2 b

)
Hk

. Then, we use the triangle inequality of matrix norm to bound the norm of F :

‖F‖ ≤ 1
p
·
p−2∑
k=1

∣∣η−k log2 a − η−k log2 b
∣∣ ‖Hk‖ ≤

1
p
· (p− 2) · 2 · pn

2/2 < 2pn
2/2.

J

I Theorem 31 (Theorem 4 Restated). The randomized/quantum communication complexity
of Deta,b is Ω(n2 log p).

Proof.

discµ(f) ≤ pn
2 ‖F‖
‖F‖1

≤ pn
2
· 2pn2/2

Ω(p2n2−1)
= O(p−n

2/2+1)

R1/3(f) = Ω(Q∗1/3(f)), Q∗1/3(f) = Ω
(

log 1
discµ(f)

)
= Ω(n2 log p).

J
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5 Open Problems

One open problem is to distinguish between detp(x) = 0 and detp(x) = a. We guess it has an
Ω(n2 log p) lower bound even for quantum protocols. The proof could be similar to Section 3.

The other one is to compute the (i, j)-th element of the inverse of matrix x. We conjecture
the quantum communication Ω(n2 log p) as well. Actually, this problem is as hard as solving
linear equations.

We discuss all these problems over Fp, but we think they are still hard over integers.
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