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Abstract

Various randomized consensus algorithms have been proposed in the literature. In some case
randomness is due to the choice of a randomized network communication protocol. In other cases,
randomness is simply caused by the potential unpredictability of the environment in which the
distributed consensus algorithm is implemented. Conditions ensuring the convergence of these
algorithms have already been proposed in the literature. As far as the rate of convergence of
such algorithms, two approaches can be proposed. One is based on a mean square analysis, while
a second is based on the concept of Lyapunov exponent. In this paper, by some concentration
results, we prove that the mean square convergence analysis is the right approach when the number
of agents is large.

Differently from the existing literature, in this paper we do not stick to average preserving
algorithms. Instead, we allow to reach consensus at a point which may differ from the average
of the initial states. The advantage of such algorithms is that they do not require bidirectional
communication among agents and thus they apply to more general contexts. Moreover, in many
important contexts it is possible to prove that the displacement from the initial average tends to
zero, when the number of agents goes to infinity.

1 Introduction

Suppose we have a (directed) graph G with set of nodes V = {1, . . . , N} and a real quantity xi for every
node i ∈ V . The average consensus problem consists of computing the average xA = N−1

∑
i xi in

an iterative and distributed way, exchanging information among nodes exclusively along the available
edges in G. This problem appears in a number of different contexts since the early 80’s (decentralized
computation [27], load balancing [8, 21, 9]) and, more recently, has attracted much attention for
possible applications to sensor networks (data fusion problems [16, 14, 28, 17, 10], clock synchronization
[18]) and to coordinated control of mobile autonomous agents [15, 19, 23, 20, 24, 26, 22]. Other places
where consensus algorithms have been studied are [13, 3, 5, 4, 6, 11].

Different algorithms for average consensus have been proposed in the literature. They can be
distinguished on the basis of the amount of communication and computation they require, of their
scalability properties with respect to the number of nodes, of their adaptability to time-varying graphs,
and, finally, on the basis of their deterministic or randomized operating protocol.

We now briefly review two of the possible applications of average consensus, to better understand
the relevant features of this problem. In load balancing the nodes are processors or computers, and the
edges are physical connections between the nodes. The corresponding communication graph presents
in general some nice symmetry (e.g. a line, a ring, a torus, a hypercube, etc) and also a symmetry
with respect to communication exchange (if i and j are connected by an edge, it means that i can send
data to j and viceversa). In many situations the communication graph is fixed. The measurement xi

at each node is in this case the number of tasks which the processor i has to accomplish. The idea is
that, in order to speed up the whole computation, processors should exchange tasks along the available
edges in order to balance as much as possible the number of tasks among the various processors. The
natural goal is to assign to each processor the same number of tasks to work on, namely a number
of tasks close to the average xA. There are two different approaches to this problem. In the first
approach each processor evaluates the average xA by means of an iterative consensus algorithm and,
afterwards, there is a transfer of tasks among the processors. In the second approach, instead, the
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transfer of tasks occurs together with the evolution of the averaging algorithm. This procedure forces
the algorithm to be inherently symmetric with respect to any pair of communicating processors.

In the context of sensor networks, nodes are sensors which are deployed (often randomly) in some
geographical area. They typically communicate in a wireless fashion and, according to the most
commonly adopted model, they are allowed to communicate with the sensors located within a certain
distance. A good model for the communication graph is in this case the so called ”random geometric
graph”. The quantities xi that the nodes aim to average can be, in this case, some measurements
taken by the sensors (e.g. temperature) and the averaging is done in order to increase precision, by
filtering out the noise. In other cases, they need to average an internal state (e.g. cell charge) to
obtain aggregate information on the whole net.

One of the key points in these applications is that, both computation and transmission are time
and energy consuming tasks, and so their number has to be minimized. Also, it should be pointed
out that in many practical applications a node can not simultaneously receive data from two different
neighbor nodes (for instance collision can delete messages in wireless communication) and in some
applications it cannot simultaneously transmit to more than one node (this happens for instance for
processors nets). This fact makes the use of randomized algorithms quite appealing as it turns out
that they allow to achieve better performance than deterministic ones with comparable complexity.

In the context of mobile autonomous agents, instead, the consensus problem often takes the form of
the so called rendez-vous problem. Here xi represents the position of node i and the goal is to drive the
agents toward their centroid xA. Mathematically, it appears as a similar problem. While the agents
increase their precision in the evaluation of xA, they also move towards it. However, the analogy is
here a bit misleading. If we assume that each agent can only communicate within a given distance, we
obtain a ’geometric’ graph as for the sensor networks. However, in this case, the graph may change as
agents move and this makes the analysis of the dynamics much more difficult. The research direction
which inspired the present paper is related to the application context of static sensors and computer
networks and not to the mobile agents scenario.

Deterministic (time-invariant and time-varying) consensus algorithms have been studied in many
papers. Starting from the pioneering work [27], many variations can be found in the above cited
literature. Most of the papers study the same algorithm. Every node runs a first order linear dynamical
system to update its estimation and the systems are coupled through the available communication
edges. Different schemes (higher order, with memory) however have shown up in the literature,
see [9, 21, 6]. The problems typically considered in the literature concern necessary and sufficient
conditions for convergence, speed of convergence and optimization issues. On the other hand, random
linear schemes have been studied for instance in [16, 4, 10] under the name of gossip algorithms. In this
case the evolution matrix of the algorithm changes randomly at every clock step. Convergence is now
considered in a probabilistic sense and performance is studied in the mean square sense or in terms of
a sort of contraction time. The algorithms studied in the literature assume symmetric communication
graphs and lead in general to symmetric evolution matrices which preserve the global average over
time. Symmetry is fundamental in certain applications as, for instance, the second approach to load
balancing discussed above. However, in other situations, symmetry may not be so important and
actually an undesirable constraint in situations where communication is asymmetric (this happens for
instance in sensor networks). Also, the related property of achieving exactly the average can be a bit
relaxed. Indeed, in some situations it may be sufficient to converge to some value sufficiently close to
the average. In the literature also algorithms not converging to a consensus have been considered: see
[6].

In this paper we will focus on random first order linear consensus algorithms as in [4]. However,
differently from [4] we will not focus exclusively on average consensus. We will consider more general
algorithms which do not necessarily converge to the average, but, under certain circumstances, to some
good approximation of it. Our theory encompasses a number of examples which will be discussed
in detail: asymmetric gossip and broadcasting random algorithms, classic deterministic consensus
algorithms in the presence of random edge or node failures. For randomly time-varying algorithms,
two different approaches have been proposed in the literature for the convergence analysis. One is
based on the the concept of Lyapunov exponent, the second is based on a mean square analysis. The
main theoretical contribution of this paper is to show, through a probabilistic concentration result,
that, when the number of nodes is large with respect to time, the convergence rate of these algorithms
is better described by the mean square analysis, while, when instead the number of nodes is small with
respect to time, it is the Lyapunov exponent analysis which provides the right convergence description.
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Therefore for large scale networks, namely for networks with a very large number of nodes, it is the
mean square analysis to provide the most meaningful approach to the performance optimization.

We now briefly outline the content of the various sections. In Section 2 we formally describe the
consensus problem in a random setting and we present an example which highlights that the Lyapunov
exponent analysis may be not right tool for the proposed scopes. In Section 3 we propose a simple
sufficient condition for a random algorithm to reach consensus. The mathematical core is a result by
Cogburn [7]. We then describe various examples showing how this sufficient condition can be applied.
Section 4 is devoted to the mean square analysis. For some specific examples, part of this has already
appeared in the literature [4, 5, 11], but never in such a generality. We believe that this is one of
the most important tool for the analysis and design of these algorithms. The proposed results are of
potential application in the various examples presented in the paper. However, concrete application
to such examples would require extra computational effort which is not done in this paper. Section
5 contains the most original theoretical results. Using Azuma’s inequality for martingales we prove
some concentration results on the algorithm performance. These results show that, for a number
of important examples, if the time range for which we run our algorithms is sufficiently small with
respect to the number of nodes, then the evolution tends to concentrate around their mean. This gives
a strong motivation for pursuing the mean square analysis. An appendix devoted to the Lyapunov
exponent analysis completes the paper.

Notation We introduce now some notation on linear algebra which will be used in the sequel. The
symbols RN and RM×N will denote the vector space of N dimensional column vectors and of M ×N
matrices with real entries. If M is a real valued matrix, M∗ will denote the transpose of M . The
symbol 1 will denote the column vector in RN having all entries equal to 1 will ei, i = 1, . . . , N denotes
the column vector in RN having all entries equal to 0 except a 1 in position i. The symbol I denotes
the identity matrix whose dimension is typically deducible from the context. Since in the sequel we
will make frequent use of the N×N matrix I−N−111∗, we will denote such a matrix with the symbol
Ω. A matrix P ∈ RN×N is called a stochastic matrix if it has nonnegative entries and if P (t)1 = 1. A
stochastic matrix P is called doubly stochastic if 1∗P = 1∗. The symbol || · || will denote the 2-norm
on RN , and the induced 2-norm in RN×N . The symbol sr(·) means the spectral radius of a linear
map, namely the maximum absolute value of its eigenvalues. Given a matrix P ∈ RN×N , diag(P )
will denote the diagonal part of P namely a diagonal matrix with the same diagonal entries of P .
Moreover we define out(P ) = P − diag(P ). A (directed) graph G is defined as a pair (V, E) where
V = {1, . . . , N} and E ⊆ V × V . The set V is called the set of vertices and the set E is called the set
of edges. If E if such that (i, j) ∈ E implies (i, j) ∈ E, then the associated graph is called undirected.

2 Problem formulation

2.1 Linear consensus algorithms

The iterative consensus algorithms considered in this paper consist of N coupled linear dynamical
systems

xi(t + 1) =
N∑

j=1

Pij(t)xj(t) i = 1, . . . , N

where xi(t) ∈ R is the state of the i-th system at time t and Pij(t) ∈ R coefficients which vary with
the time t.

More compactly we can write
x(t + 1) = P (t)x(t) , (1)

where x(t) ∈ RN and P (t) ∈ RN×N . The sequence P (t) is said to achieve the consensus if the following
conditions are satisfied

(a) If x(0) = α1, where α ∈ R, then x(t) = x(0) for every t ∈ N.

(b) For any x(0) ∈ RN , there exists α ∈ R such that

lim
t→∞

x(t) = α1 (2)
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Moreover, if α = N−11∗x(0), we say that average consensus is achieved.
In this paper we will assume to have statistical information on the matrices P (t) and we will adopt

a probabilistic approach to the problem instead of a worst case analysis considered in [27, 15, 20, 24, 3].
More precisely, in this paper we will assume that P (t) is a sequence of i.i.d. matrix valued random
variables and x(t) is the stochastic process which is the solution of the equation (1). We say that the
sequence P (t) achieves the probabilistic consensus if condition (a) above holds while (b) is replaced by

(b’) For any x(0) ∈ RN , there exists a scalar random variable α such that

lim
t→∞

x(t) = α1 almost surely. (3)

If α = N−11∗x(0) almost surely, we talk about probabilistic average consensus.
In this paper we will restrict to cases in which P (t) are stochastic matrices. Notice that condition

(a) is then clearly automatically satisfied. If, moreover, P (t) is doubly stochastic, then the average
is invariant, namely N−11∗x(t) = N−11∗x(0) for every t and hence in this case, consensus implies
average consensus.

Let
Q(t) = P (t− 1) · · ·P (0) , (4)

so that we can write x(t) = Q(t)x(0). The random variable α in (3) is a linear function of the initial
condition x(0) so that we can write α = ρ∗x(0) for some random variable ρ taking values in RN and
such that 1∗ρ = 1. Therefore probabilistic consensus can be equivalently expressed by saying that
there exists a random variable ρ taking values in RN such that

lim
t→∞

Q(t) = 1ρ∗ (5)

almost surely. Notice that 1ρ∗ is a matrix whose rows are all equal to ρ∗. Notice that x(∞) = ρ∗x(0).
We have probabilistic average consensus exactly when ρ = N−11 almost surely.

2.2 Constraints on the algorithm: the communication graph

Given a matrix P of dimension N × N , we can consider the directed graph GP = (V,E) where
V = {1, . . . , N} and E ⊆ V × V is defined by

(j, i) ∈ E ⇔ Pij 6= 0

GP is called the directed graph associated with P . The graph Gout(P ) associated with out(P ) is simply
GP without all possible self-loops.

Suppose we use a consensus algorithm P (t). At time t this algorithms needs to use communications
among all the edges of Gout(P (t)). The amount of non zero elements in out(P (t)) is thus a measure of
the number of communications that simultaneously have to take place in our network to implement
such a scheme.

In many circumstances there is an a priori fixed communication skeleton, namely a fixed underlying
directed graph G = (V,E), establishing which are the feasible communications among agents. We will
say that the scheme P (t) is adapted to G if Gout(P (t)) is a subgraph of G for every instant t.

For future use, we define some basic notation for graphs. Consider a directed graph G = (V, E)
where V = {1, . . . , N} and E ⊆ V × V . For every i ∈ V we put

N+
i = {j ∈ V \ {i} | (i, j) ∈ E} , N−

i = {j ∈ V \ {i} | (j, i) ∈ E}

Elements in N+
i (resp. in N−

i ) are called out-neighbors (resp. in-neighbors) of i. Moreover we put
ν+

i = |N+
i |, ν−i = |N−

i | which are called, respectively, the out-degree and the in-degree of the node i.
Let ei be the i-th element of the canonical basis of RN . The adjacency matrix of G is defined as

AG =
∑

i∈V

∑

j∈N+
i

eie
∗
j =

∑

i∈V

∑

j∈N−
i

eje
∗
i (6)
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namely (AG)ij = 1 if (i, j) ∈ E, otherwise it is zero. Notice that possible self loops have not been
considered. This will make notation simpler further on. Notice moreover that




ν+
1
...

ν+
N


 = AG1 and

[
ν−1 · · · ν−N

]
= 1∗AG

The out-degree and in-degree matrices are defined, respectively as

DG+ =
∑

i

ν+
i eie

∗
i DG− =

∑

i

ν−i eie
∗
i (7)

namely DG+ and DG− are diagonal matrices with diagonal entries equal to ν+
i and ν−i , respectively.

If the graph undirected, then DG+ = DG−. In this case we will drop the superscript ± in the above
notations.

A graph G = (V, E) is said to be strongly connected if for any two vertices v1, v2 ∈ V there always
exist a walk in G connecting v1 to v2.

We conclude this paragraph by introducing a first example of a random consensus algorithm. More
examples will be presented in Section 3.
Example 2.1: We start from a undirected graph G = (V,E) and we assume that at every time instant
t a node i is chosen randomly among the N possible nodes with probability 1/N . This node then
chooses randomly a node j among its νi neighbors with probability 1/νi, it establishes a bidirectional
link with it. Finally i and j average their states xi(t) and xj(t). More precisely, let, for every (i, j) ∈ E,

Rij := I − 1
2
(ei − ej)(ei − ej)∗

Then, P (t) is concentrated on these matrices and

P[P (t) = Rij ] = P[P (t) = Rji] =
1
N

[
1
νi

+
1
νj

]

We will see in Section 3 that, if G is strongly connected, then this algorithm always leads to probabilistic
average consensus.

2.3 The measure of performance

In this section we assume that we have a fixed random algorithm P (t) achieving probabilistic consensus
so that (5) is satisfied with a suitable ρ.

In this paper, we will measure the performance of the algorithm P (t) by considering two figures.
The first figure we consider is a normalized version of the distance from the consensus

d(t) =
1
N
||x(t)− 1xA(t)||2 =

1
N

N∑

i=1

|xi(t)− xA(t)|2

where xA(t) = N−11∗x(t) is the average of the components of x(t). The second one is the average
displacement from its initial value

β(t) = |xA(t)− xA(0)|2
Of course in those situations where P (t) is always doubly stochastic, we have that β(t) = 0 for every
t. Notice moreover that

1
N
||x(t)− 1xA(0)||2 = d(t) + β(t)

which shows that the evolution of d(t) and β(t) determines the evolution of 1
N ||x(t)−1xA(0)||2. This

coincides with the average distance from xi(t) to xA(0) and so it is the most important error parameter
that typically one has to minimize.

We know that d(t) converges to 0 almost surely. The main point is to evaluate the speed of this
convergence. It turns out that convergence is always of exponential type, hence the interest is in
evaluating the exponential rate of convergence for t → +∞. The reader could wonder why we did not
consider, instead of d(t), the apparently more natural N−1||x(t)− x(∞)||. The reason is that d(t) is
simpler to be analyzed while they are strictly linked to each other. This is shown in the next result
which will useful later on.
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Lemma 2.2. The following inequalities hold, for any x(0) ∈ RN and for any t

d(t) ≤ 1
N
||x(t)− x(∞)||2 ≤ (1 +

√
N)2d(t) (8)

Proof. Inequality on the left immediately follows from the identity

x(t)− 1xA(t) = Ωx(t) = Ω(x(t)− 1ρ∗x(0))

and the fact that ||Ω|| = 1. To prove the right inequality, we start from

Q(t) = ΩQ(t) + N−111∗Q(t) (9)

and
Q(s + t) = P (s + t− 1) · · ·P (t)ΩQ(t) + N−111∗Q(t) (10)

From (9) and (10) we finally obtain that

||(Q(t)−Q(s + t))x(0)|| = ||(I − P (s + t− 1) · · ·P (t))ΩQ(t)x(0)||
≤ (1 +

√
N)||x(t)− 1xA(t)||

where the last inequality follows from the fact that the 2-norm of an N×N stochastic matrix is always
≤ √

N . By letting s →∞ we obtain the inequality on the right. ¥
This result in particular implies that the exponential rate of convergence (formally defined below)

of ||x(t)− 1xA(t)|| and of ||x(t)− x(∞)|| coincide.
Since,

d(t) =
1
N
||Q(t)Ωx(0)||2 ,

it is quite intuitive that the rate of convergence of d(t) should be related to the second Lyapunov
exponent of the sequence of random matrices P (t) [25, 2] (the first Lyapunov exponent is clearly
equal to one). In the appendix we will prove rigorously this fact, showing in particular that the rate
of convergence of d(t) is a constant, as formally described the the following theorem.

Theorem 2.3. For almost every initial condition x(0) (with respect to the standard N -dimensional
Lebesgue measure), we have that

lim
t→+∞

d(t)1/t = λ2 , almost surely , (11)

where λ is a constant.

This result seems to suggest that the performance analysis of our models could simply rely on
the classical theory of linear randomly switching systems [2] and to the computation of Lyapunov
exponents. It is well known that computing Lyapunov exponents is a very difficult task in general,
even though in particular situations it can be done. However, there is another much more important
reason why the Lyapunov exponents analysis is not the right approach to the performance optimization
problem. This is well illustrated in the following example.
Example 2.4: Consider the algorithm introduced in Example 2.1 in the special case when G is the
complete graph and N = 2r, for some r ∈ N. In this case we have that

lim
t→+∞

d(t)1/t = 0 , almost surely

To prove this fact first observe that, for every r, there exists a family of edges (i1, j1), · · · , (is, js) ∈ E
such that

Ri1,j1 · · ·Ris,js = N−111∗ ∈ RN×N (12)

Indeed, reasoning by induction on r, this fact is clearly true for r = 1. We divide the set of nodes N
of G into two parts N ′ = {1, . . . , N/2} and N ′′ = {N/2+1, . . . , N}. By induction we know that there
exists (i′1, j

′
1), · · · , (i′s, j

′
s) ∈ N ′ ×N ′ and (i′′1 , j′′1 ), · · · , (i′′s , j′′s ) ∈ N ′′ ×N ′′ such that

Ri′1,j′1 · · ·Ri′s,j′s =
(

(N/2)−111∗ 0
0 I

)
Ri′′1 ,j′′1 · · ·Ri′′s ,j′′s =

(
I 0
0 (N/2)−111∗

)
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Figure 1: This figure shows the graphs of log2 d(t) as a function of time t in 7 different simulations of
the consensus algorithm presented in Example 2.4 in case N = 16.

Observe now that

R1,N/2+1R2,N/2+2 · · ·RN/2,N =
1
2

(
I I
I I

)

and so we can argue that

R1,N/2+1R2,N/2+2 · · ·RN/2,NRi′1,j′1 · · ·Ri′s,j′sRi′′1 ,j′′1 · · ·Ri′′s ,j′′s = N−111∗

From the previous reasoning it follows that the consensus is achieved in finite time whenever the
finite sequence of matrices Ri1,j1 , . . . , Ris,js appearing in (12) shows up in some point of the sequence
P (t). In all these cases d(t)1/t → 0. Since the probability of appearance of such event is small but
strictly greater than 0, it follows from Theorem 11 that in this case λ = 0. Notice that, if we denote by
Tr the number of matrices contained in the sequence in (12), it follows from the iterative construction
above that Tr = 2Tr−1 + 2r−1 so Tr = r2r−1.

A numerical simulation for the d(t) in this case yields the behavior showed in Figure 1. The long
time behavior is determined by the exponent λ = 0. Indeed, consensus is achieved in finite time with
probability one. It is however evident from the graphs that, before achieving consensus, there is a
transient behavior which is indeed exponential with rate ' 0.93. Clearly this will have an important
role in the overall performance, since the time range in which this behavior exists is quite large. It
can be seen that this time range increases with N . If we are interested in analyzing the behavior of
the algorithm when N is big with respect to time, this behavior becomes the most significant. More
quantitative conclusions will follow from the results in the rest of the paper.

3 Random algorithms achieving consensus

In this section we will first give some conditions which ensures the probabilistic consensus. Then we
will present some examples of randomized consensus algorithms and we will prove that in all these
cases the probabilistic consensus occurs.
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3.1 Conditions for the probabilistic consensus

The conditions ensuring consensus in the deterministic case, namely when P (t) = P for all t, are
quite well-known [5] and are essentially related to the Perron Frobenius theorem applied to stochastic
matrices. A simple sufficient condition is that GP is strongly connected and its edge set contains
all the self-loops (namely all the diagonal entries of P are positive). In this case P is a so-called
aperiodic stochastic matrix and 1 is a simple eigenvalue and the remaining eigenvalues have norms
strictly smaller than 1.

If we start from any strongly connected directed graph G, a possible stochastic matrix P yielding
GP = G is given by

P = qI + (1− q)D−1
G−A∗G ,

where q ∈ (0, 1) is an arbitrarily chosen parameter and where we used the notation introduced in (6)
and (7). A slightly more complicated construction [5] actually allows to obtain a doubly stochastic
matrix P such that average consensus is indeed achieved. In the simpler case when G is strongly
connected and undirected, however, we can construct a symmetric stochastic matrix P by taking

0 < Pij = Pji < min{ν−1
i , ν−1

j } ∀(i, j) ∈ E

Pij = 0 ∀(i, j) 6∈ E

Pii = 1−
∑

j

Pij

It is well-known [23] that for all stochastic matrices P yielding consensus, the rate of convergence to
the consensus is given by the essential spectral radius of P which is defined as follows

esr(P ) = max{|λ| : λ eigenvalue of P different from 1} (13)

More precisely we have that
lim

t→∞
d(t)1/t = esr(P )2

Probabilistic consensus turns out to be an easily checkable property, namely as easily checkable as
the deterministic consensus in the time-invariant case. The following result appears in [7].

Theorem 3.1. The algorithm P (t) achieves probabilistic consensus if and only if for every i, j ∈ V
we have that

P[Eij ] = 1

where
Eij = {∃k , ∃t |Qik(t)Qjk(t) > 0}

To obtain a more handy condition, we need to impose a hypothesis which is however always satisfied
in all the cases which are commonly considered in the literature. In the following result we will assume
that all the diagonal elements of P (t) are nonzero with probability 1. This simple condition ensuring
probabilistic consensus is based on the expected value of P (t) which will be denoted as P = E[P (t)].
We have the following result.

Corollary 3.2. Assume that for any i ∈ V we have that P (t)ii > 0 almost surely. If GP is strongly
connected, then P (t) achieves probabilistic consensus.

Proof. Let i, j ∈ V . Since GP is strongly connected, then there exists t such that P
t

ij > 0. Consider
the event

Aij(t) = {Qij(t) > 0}
Since P

t

ij > 0, then P[Aij(t)] > 0. Moreover, since

Qjj(t) ≥ Pjj(t− 1) · · ·Pjj(1)Pjj(0)

then the fact that P (t)jj > 0 almost surely ensures that P[Ajj(t)] = 1. Observe now that Aij(t) ∩
Ajj(t) ⊆ Eij , which implies that P[Eij ] > 0. On the other hand, it is immediate to check that Eij is a
tail event. Hence, for the Kolmogorov 0− 1 law, we must have P[Eij ] = 1. By Theorem 3.1, the thesis
follows. ¥
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Remark 3.3. Notice that there is a sort of weak converse to previous result. Indeed, assume P (t)
achieves probabilistic consensus. From the almost sure convergence Q(t) −→ 1ρ∗ and Lebesgue
dominated convergence theorem it follows that E[Q(t)] −→ 1E[ρ]∗ and so P

t −→ 1E[ρ]∗. In other
words, P achieves consensus. It can very well happen that Eρ = 1 even if ρ is not equal to 1 almost
surely. In other terms, even if P achieves average consensus, not necessarily P (t) will also achieve
average probabilistic consensus. This will appear in the examples we will propose.

3.2 Examples of random consensus algorithms

We now present a number of examples of randomized consensus algorithms.
Example 3.4: The symmetric gossip model This algorithm generalizes Example 2.1. In a slightly
more general way it can be introduced as follows. Fix a real number q ∈ (0, 1), an undirected graph
G = (V,E) and a symmetric N × N matrix W with nonnegative entries adapted to G such that
1∗W1 = 1. At every time instant t the edge (j, i) is activated with probability Wij and nodes i and
j exchange their states and produce a new states according to the equations

xi(t + 1) = (1− q)xi(t) + qxj(t)
xj(t + 1) = qxi(t) + (1− q)xj(t)

The other states remains unchanged. More formally for every (i, j) ∈ E, we let

Rij = I − q(ei − ej)(ei − ej)∗ ,

Then, P (t) is concentrated on these matrices and

P[P (t) = Rij ] = Wij

We have that
P =

∑

(i,j)∈E

WijR
ij

Notice that, out(P ) = 2qout(W ). Since P is stochastic, this condition completely determines P . Both
W and q can be considered in principle as design parameters respect to which one can optimize the
performance. Notice that, if GW is strongly connected, then GP is automatically strongly connected.
Moreover in this case all the diagonal elements of P (t) are nonzero with probability 1. Applying
Corollary 3.2 we can conclude that this algorithm yields the probabilistic consensus. Moreover, since
the P (t) are all symmetric we can conclude that in this case probabilistic average consensus is achieved.
Notice finally that the case considered in Example 2.1 can be recovered by taking

Wij =
1

2N

(
1
νi

+
1
νj

)
, i 6= j , q =

1
2

Example 3.5: The asymmetric-gossip model In this case we start from a real number q ∈ (0, 1),
a fixed directed graph G = (V,E) and an N × N matrix W with nonnegative entries adapted to G
such that 1∗W1 = 1. At every time instant t the edge (j, i) is activated with probability Wij and
node j sends its state to i and i produces a new state according to the equation

xi(t + 1) = (1− q)xi(t) + qxj(t)

Formally, define, for every (i, j) ∈ E, Rij = I − qei(ei − ej)∗ and let

P[P (t) = Rij ] = Wij

Notice that in this case out(P ) = qout(W ). Arguing as in previous example, we can apply Corollary
3.2 and conclude that this algorithm yields the probabilistic consensus. Since the matrices P (t) are
not doubly stochastic, average probabilistic consensus is not achieved in this case. However, P is
doubly stochastic if W has been chosen such that W ∗1 = W1.
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From the point of view of the practical implementation of this type of algorithms, an important
issue is the possibility to parallelize a number of the atomic gossip averaging steps in order to fully use
the power of the large scale network. This issue has been already investigated in [4] for the symmetric
gossip case. The idea is to activate simultaneously a maximal number M of disconnected edges in the
graph (’almost matching’) and to perform the gossip symmetric algorithm simultaneously on all these
edges. Since the corresponding matrices Rij in this case commute, the final effect is equivalent to the
effect of M consecutive application of the asymmetric gossip algorithm. What can change is only the
statistics due to the way the ’almost matching’ is selected.

This idea also works for the asymmetric gossip case. In this last case, however, there is another
appealing possibility: at every time instant, each agent chooses a neighbor from which to get data and
average with its own. Since in this case the matrices Rij do not commute, this model is not equivalent
to any possible serialized version of the asymmetric gossip algorithm, and we thus consider it as an
autonomous example (see [5] for further details).
Example 3.6: The synchronous asymmetric gossip model We start from a real number q ∈
(0, 1), a directed graph G = (V,E) and an N ×N stochastic matrix W adapted to G. At every time
instant t the N edges (i, ji) ∈ E for i = 1, 2, . . . , N are activated each with probability Wi,ji

. The
node ji sends its state to i and each i produces a new state according to the equation

xi(t + 1) = (1− q)xi(t) + qxji(t)

More formally fix for every j = (j1, . . . , jN ) ∈ V N the matrix Rj = (1− q)I + q
∑

i eie
∗
ji

and let

P[P (t) = Rj] =
N∏

i=1

Wi,ji

In this case we obtain

P =
∑

j

N∏

i=1

Wi,jiR
j = (1− q)I + qW

As in previous examples, if GW is strongly connected, we can apply Corollary 3.2 and conclude
that this algorithm yields the probabilistic consensus. As in previous example the matrices P (t) are
in general not doubly stochastic and so the average probabilistic consensus is not achieved. Notice
moreover that P is doubly stochastic if and only if W is doubly stochastic.

We now present a further example of a different nature.
Example 3.7: The broadcasting model We start from any directed graph G = (V,E) and we fix
a vector w = (w1, . . . , wN )∗ with wi ≥ 0 and

∑
wi = 1. We assume that at every time instant node

i is chosen with probability wi. This node i then broadcasts its state to all its out-neighbors which
then average of their states with the received state. In this case P (t) concentrated on the N matrices

Ri = I − q
∑

j∈N+
i

(eje
∗
j − eje

∗
i )

and we let P[P (t) = Ri] = wi. Hence

P = I − q
∑

i

wi

∑

j∈N+
i

(eje
∗
j − eje

∗
i ) = I − q[D −A∗GW ]

where W is a diagonal matrix such that Wii = wi for every i and D is a diagonal matrix such that
Dii =

∑
j∈N−

i
wj . If G is strongly connected and each wi > 0, automatically GP is strongly connected

Moreover, all the diagonal elements of P (t) are nonzero with probability 1. Applying Corollary 3.2
we can conclude that this algorithm yields the probabilistic consensus. The matrices P (t) are never
doubly stochastic. Notice that P is doubly stochastic if and only if

w∗(AG −DG+) = 0

In the special case when wi = N−1 for every i we obtain

P = I − q

N
[DG− −A∗G ]

In this case P is doubly stochastic if and only if DG− = DG+.
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3.3 Deterministic algorithms in a random media

As already mentioned, randomness can also be due environmental effects. In this section we describe
some possible models for such situations.
Example 3.8: The packet drop model We start from a fixed stochastic matrix P such that Pii > 0
for all i and such that the graph G = GP is strongly connected. Then we know that the algorithm

x(t + 1) = Px(t) (14)

yields consensus. In some situations there might be data loss in the communication between nodes.
Here we model this by assuming that the data transmission over an edge (j, i) of G from the node j
to the node i can occur with some probability p. More precisely, consider the family of independent
binary random variables Lij(t), t ∈ N, i, j = 1, . . . , N , i 6= j, such that

P[Lij(t) = 1] = p and P[Lij(t) = 0] = 1− p if i 6= j

We emphasize the fact that independence is assumed among all Lij(t) as i, j and t vary. Consider
the random matrix Ã(t) defined by Ãij(t) = (AG)ijLij(t). Clearly, Ã(t) is the adjacency matrix of a
random graph G̃(t) obtained from G by deleting the edge (i, j) when Lij(t) = 0. In general our initial
matrix P is not going to be compatible with the graph Ḡ(t) and, as a consequence, the consensus
algorithm has to be modified to consider this fact.

There are several ways to adapt P in order to take into account the missing data. We here describe
one possibility and we refer to [12] for more considerations on this issue. We consider the following
updating equation

xi(t + 1) =


Pii +

N∑
j=1
j 6=i

Pij(1− Lij(t))


xi(t) +

N∑
j=1
j 6=i

PijLij(t)xj(t)

Roughly speaking, according to this method the weights Pij are kept constant if i 6= j while they
are varied if i = j in order to keep the stochasticity of P (t). It is clear from the construction that,
since P has nonzero diagonal elements, then P (t) has nonzero diagonal elements with probability one.
Observe moreover that, if i 6= j, then P ij = pPij and so out(P ) = pout(P ). This fact ensures that
since GP is strongly connected, then GP is strongly connected as well. Applying Corollary 3.2 we can
conclude that this algorithm yields the probabilistic consensus. Notice finally that, if P is doubly
stochastic, then also P is doubly stochastic.

Example 3.9: The node failure model We start from the same model (14), but we now assume
that at each time instant t there is some probability 1 − p that the node i fails and is unable to
transmit. Formally, let Lj(t), t ∈ N, j = 1, . . . , N be a family of independent binary random variables
such that P[Lj(t) = 1] = p. The event {Lj(t) = 1} corresponds to have the node j active at time t.
In this case, one possibility to adapt P to the graph constituted by the active nodes, similar to the
choice in Example 3.8, is

xi(t + 1) =


Pii +

N∑
j=1
j 6=i

Pij(1− Lj(t))


xi(t) +

N∑
j=1
j 6=i

PijLj(t)xj(t)

This model has the same properties of the model proposed before. In particular, since P (t) has nonzero
diagonal elements with probability one, and out(P ) = pout(P ), this algorithm yields the probabilistic
consensus. Notice finally that, if P is doubly stochastic, then also P is doubly stochastic.

4 The mean square performance

In this section we will analyze the expectations of the two variables d(t) and β(t).
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4.1 The distance from the consensus

We are interested in studying E[d(t)] and, in particular, its exponential rate of convergence

R = sup
x(0)

lim sup
t→+∞

E[d(t)]1/t (15)

A straightforward application of Jensen inequality yields R ≥ λ2 where λ2 was defined in (11).
In the sequel, we characterize R as the spectral radius of a N2-dimensional linear stochastic

operator and we establish some useful bounds for it.
Notice that, using the fact that Ω2 = Ω, we can argue that

E[d(t)] =
1
N
E[x∗(t)Ωx(t)] =

1
N

x∗(0)∆(t)x(0)

where
∆(t) := E[P (0)∗P (1)∗ · · ·P (t− 1)∗ΩP (t− 1) · · ·P (1)P (0)]

if t ≥ 1 and where ∆(0) := Ω. A simple recursive argument shows that

∆(t + 1) = E[P (0)∗∆(t)P (0)]

This shows that ∆(t) is the evolution of a linear dynamical system which can be written in the form

∆(t + 1) = L(∆(t))

where L : RN×N → RN×N is given by

L(M) = E[P (0)∗MP (0)]

If now we consider the reachable subspace R of the pair (L,Ω), namely the smallest L-invariant
subspace of RN×N containing Ω, then we have that

R = sr(L|R)

where sr(·) means the spectral radius. It will be useful in the sequel to characterize the eigenspace of
L relatively to the eigenvalue 1. We have the following result.

Proposition 4.1. Assume that P (t) achieves probabilistic consensus and let ρ be the random vector
such that (5) holds. Then, the eigenspace of L with eigenvalue 1 is one-dimensional and E[ρρ∗] is the
only eigenvector satisfying 1∗E[ρρ∗]1 = 1.

Proof. Notice that, since Lt(M) = E[Q(t)∗MQ(t)] and since Q(t) → 1ρ∗ almost surely and all ele-
ments are bounded in t, it follows, by a straightforward application of Lebesgue convergence theorem,
that

lim
t→∞

Lt(M) = (1∗M1)E[ρρ∗] (16)

This proves the result. ¥
Clearly the reachability subspace R will be contained in the subspace generated by the remaining

eigenvectors; one could hope that the maximal eigenvalue on R coincides with the second dominant
eigenvalue of L. While we will not be able to prove such a result, we will be able to prove something
similar. Notice that we can restrict the operator L to the subspace Sym(N) of symmetric N × N
matrices. Consider now

S = {M ∈ Sym(N) | M1 = 0}
We have the following result.

Proposition 4.2.
R = sr(L|S)
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Proof. Clearly R ⊆ S so that we only have to prove ≥.
First take a matric M ∈ S positive semidefinite. Then there exists W with W1 = 0 such that

M = W ∗W . Now observe that

x(0)∗Lt(M)x(0) = E[||Wx(t)||2] = E[||WΩx(t)||2]
≤ ||W ||2E[||Ωx(t)||2] = ||M ||x(0)∗Lt(Ω)x(0)

This yields
||Lt(M)|| ≤ ||M || ||Lt(Ω)||

Consider now any symmetric matrix M ∈ S. Working with the orthonormal basis of eigenvectors of
M , we can decompose it as M = M+ −M−, where M+,M− ∈ S are positive semidefinite such that
||M+|| ≤ ||M || and ||M−|| ≤ ||M ||. Using the previous result we obtain

||Lt(M)|| ≤ ||Lt(M2
+)||+ ||Lt(M2

−)|| ≤ [||M+||+ ||M−||]||Lt(Ω)|| ≤ 2||M || ||Lt(Ω)||
This implies that

||Lt
|S || := max

M∈S
||Lt(M)||
||M || ≤ 2||Lt(Ω)|| ≤ 2||Lt

|R||

and hence
sr(L|S) = lim

t→∞
||Lt

|S ||1/t ≤ lim
t→∞

21/t||Lt
|R||1/t = sr(L|R)

¥
For computing R it is useful to introduce a matrix representation of the linear operator L. Given a

matrix A ∈ RN×N we define vect(A) to be the N2 column vector having Ai,j in position (i− 1)N + j.
Notice that vect(ABC) = (C∗ ⊗ A)vect(B), where ⊗ is the Kronecker product of matrices. Using
these facts and the properties of the Kronecker product we can argue that the linear operator L is
represented by the matrix

L := E[P (0)∗ ⊗ P (0)∗] = E[P (0)⊗ P (0)]∗

Using this notation we have that the rate of convergence R coincides with the absolute value of the
dominant reachable eigenvalue of the pair (L, vect(Ω)).

Notice that L has nonnegative elements and moreover

L∗(1⊗ 1) = E[P (0)⊗ P (0)](1⊗ 1) = E[(P (0)⊗ P (0))(1⊗ 1)] = E[(P (0)1)⊗ (P (0)1)] = 1⊗ 1
therefore L∗ is stochastic. The following proposition allows to obtain more information on the spectral
properties on L.

Proposition 4.3. Assume that P (0) has nonzero diagonal with probability one. If GP is strongly
connected then GL associated with L is strongly connected and aperiodic.

Proof. First observe that

L(i,j),(h,k) := L(i−1)N+j,(h−1)N+k = E[Phi(0)Pkj(0)]

Since Pii(0) > 0 with probability one, then L(i,j),(i,j) = E[Pii(0)Pjj(0)] > 0 and so GL contains
all the self-loops. Notice moreover that, for the same reason, L(i,j),(i,k) = E[Pii(0)Pkj(0)] > 0 iff
P kj > 0 and L(i,j),(h,j) = E[Phi(0)Pjj(0)] iff Phi > 0. Therefore, if we take (i, j) and (h, k) arbitrarily,
since GP is strongly connected, we can find a sequence j = ν0, ν1, . . . , νs = k and another sequence
i = µ0, µ1, . . . , µr = h such that P νl−1,νl

> 0 and Pµl−1,µl
> 0. This implies that the sequence

(i, j) = (i, ν0), (i, νi), . . . , (i, νs) = (i, k) = (µ0, k), (µ1, k), . . . , (µs, k) = (h, k)

corresponds to an admissible path in GL. ¥
The previous proposition implies that, under mild hypotheses, L∗ is an irreducible aperiodic

stochastic matrix row and therefore the eigenvalue 1 has algebraic multiplicity 1.

The evaluation of the parameter R (defined in (15)) can be in general a quite heavy computational
task because of the fact that L operates in a space of dimension N2. It is thus useful the following
result which furnish bounds to T in terms of the spectral structure of N -dimensional operators.
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Proposition 4.4. The following holds

esr(P )2 ≤ R ≤ sr(L(Ω))

where esr(P ) is the essential spectral radius of the stochastic matrix P as defined in (13).

Proof. We start with the first inequality. Notice that

E[x∗(t)Ωx(t)] = E[||Ωx(t)||2] = E[||ΩQ(t)x(0)||2]

Now using the Jensen inequality we have that

E[||ΩQ(t)x(0)||2] ≥ ||E[ΩQ(t)x(0)]||2 = ||ΩP
t
x(0)||2

which proves the result.
For the second inequality first observe that for all x ∈ RN we have that

x∗E[P ∗(0)ΩP (0)]x = E[x∗ΩP ∗(0)ΩP (0)Ωx] ≤ ||E[P ∗(0)ΩP (0)]||x∗Ωx

where we used the fact that, if M is a symmetric matrix, then x∗Mx ≤ ||M ||x∗x. This shows that
||L(Ω)||Ω ≥ L(Ω)1. Observe moreover that M1 ≥ M2 implies that L(M1) ≥ L(M2). From these facts
it follows that

Lt(Ω) = Lt−1(L(Ω)) ≤ Lt−1(||L(Ω)||Ω) = ||L(Ω)||Lt−1(Ω)

Iterating this inequality we find that

Lt(Ω) ≤ ||L(Ω)||tΩ

which implies the thesis. ¥
Remark In the case of the symmetric gossip algorithm, the second inequality can be elaborated
further. Indeed, in that case we have that all the values which P (t) can assume are symmetric
stochastic matrices. For this reason

L(Ω) = E[P ∗(t)ΩP (t)] = E[P 2(t)]− 1
N
11∗

Moreover, if we choose q = 1/2, then we have that P 2(t) = P (t) with and so we can argue that in
this case sr(L(Ω)) = sr(P −N−111∗) = esr(P ). This is exactly the bound proposed in [4].

We reconsider now some of the randomized consensus algorithms introduced above assuming that
the supporting graph is the complete graph. In this case the mean square analysis is quite simple
because the linear operator L keeps invariant the subspace generated by I and N−111∗. Therefore,
since ∆(0) belongs to this subspace, the dynamics of ∆(t) is determined by a 2× 2 matrix.
Example 4.5: We reconsider the case presented in Example 2.4. As shown in [12, Proposition V.2]
we have that ∆(t) = α(t)I + β(t)N−111∗ and α(t) and β(t) evolve according to the following linear
dynamics 


α(t + 1)

β(t + 1)


 =




1− 1
N−1 0

1
N−1 1







α(t)

β(t)




Therefore ∆(t) converges to N−111∗ and the speed of convergence is given by the second eigenvalue

R = 1− 1
N − 1

In the specific case considered in the simulations in which N = 16 we have that R = 14/15 ' 0.93. This
value coincides with the rate of convergence estimated from the graphs obtained in the simulations.
This seems to suggest that R is the right parameter describing the convergence in the initial time
range.

1In the proof of this proposition when we write A ≥ B, where A, B are square matrices having the same dimension,
we mean that A−B is positive semidefinite, namely that x∗(A−B)x ≥ 0 for all the column vectors x.
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Observe moreover that
P =

N − 1
N

I +
1

N2
11∗

and so esr(P ) = 1−N−1. Notice that (1−N−1)2 ≤ 1− (N − 1)−1 when N > 2 in accordance with
Proposition 4.4. Finally we have that

L(Ω) =
(

1− 1
N − 1

)
I +

(
1

N − 1
− 1

)
N−111∗

and so sr(L(Ω)) = 1− (N − 1)−1 = R, namely in this case the upper bound suggested by Proposition
4.4 is attained.

Example 4.6: We reconsider the case presented in Example 3.6 with the complete graph and q = 1/2.
As shown in [5] we have that ∆(t) = α(t)I + β(t)N−111∗ and α(t) and β(t) evolve according to the
following linear dynamics 


α(t + 1)

β(t + 1)


 =




1
2

1
4N

1
2 1− 1

4N







α(t)

β(t)




The eigenvalues are 1, with eigenvector (1/4N 1/2)∗, and 1
2 − 1

4N with eigenvector (1 − 1)∗. The first
eigenvector corresponds to the matrix Λ := 1

4N I + 1
2N 11

∗, while the second eigenvalue corresponds to
Ω. Therefore ∆(t) converges to zero and the speed of convergence is given by the second eigenvalue

R =
1
2
− 1

4N

Example 4.7: We reconsider the case presented in Example 3.8. We assume that P = N−111∗.
The mean square analysis of this example has been done in [11]. It can be seen that also in this case
∆(t) = α(t)I + β(t)N−111∗ and that α(t) and β(t) evolve according to the following linear dynamics




α(t + 1)

β(t + 1)


 =




(1− p)
(
1− p− 2p

N

) 2p(1−p)
N2

1− (1− p)
(
1− p− 2p

N

)
1− 2p(1−p)

N2







α(t)

β(t)




The eigenvalues are 1 and (1− p)
(
1− p + 2pN−1

N2

)
. The eigenvector relative to 1 is




2p(1−p)
N2

1− (1− p)
(
1− p− 2p

N

)




and corresponds to the matrix

Λ :=
2p(1− p)

N2
I +

[
1− (1− p)

(
1− p− 2p

N

)]
1
N
11∗

while the eigenvector relative to the second eigenvalue is (1 − 1)∗ which corresponds to the matrix Ω.
Therefore, ∆(t) converges to zero and the speed of convergence is given by the second eigenvalue

R = (1− p)
(

1− p + 2p
N − 1
N2

)

4.2 The average displacement

In the mean square analysis of the average displacement, first observe that, since β(t) converges almost
surely to β(∞) = |(ρ∗ −N−11∗)x(0)|2, then

lim
t→∞

E[β(t)] = E[β(∞)]

Observe moreover that
E[β(∞)] = x(0)∗Bx(0)
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where
B = E[ρρ∗]− 2N−1E[ρ]1∗ + N−211∗

Notice that B is expressed in terms of E[ρ] and E[ρρ∗] which are the eigenvectors relative to the
eigenvalue 1 of the operators P and L, respectively. When P is doubly stochastic, we obtain in
particular

B = E[ρρ∗]−N−211∗ (17)

Notice moreover that, by (16), we can argue that

E[ρρ∗] =
1
N

lim
t→∞

Lt(I)

The importance of the positive semidefinite matrix B consists in the fact that through it we can
also estimate E[β(t)] for all t. Indeed, we have that

E[β(t)]1/2 =
{
E[|xA(t)− xA(0)|2]}1/2 ≤ {

E[|xA(t)− xA(∞)|2}1/2
+

{
E[|xA(∞)− xA(0)|2]}1/2

≤ (1 +
√

N) {E[d(t)]]}1/2 + {x(0)∗Bx(0)}1/2

where in the last inequality we used Lemma 2.2 and the Schwartz inequality.
Example 4.8: We reconsider the case studied in Example 4.6. As observed above we have that

B =
1
N

(
lim

t→∞
Lt(I)−N−111∗

)

By decomposing I along the two eigenvectors Λ and Ω of L one obtains

I =
4N

1 + 2N
Λ +

2N

1 + 2N
Ω

and so
lim

t→∞
Lt(I) =

4N

1 + 2N
Λ

From this we can argue that

B =
1

N(1 + 2N)
Ω

and so
E[β(∞)] =

1
1 + 2N

1
N
||Ωx(0)||2

If we consider initial conditions with bounded components xi(0), in such a way that N−1||x(0)||2 is
bounded with respect to N , we have that E[β(∞)] tends to zero as N tends to infinity. This means
that, although the asymmetric gossip strategy does not yield average consensus, the error between the
consensus point xi(∞) and the initial average xA(0) becomes negligeable when N is sufficiently big.

Example 4.9: We reconsider the case studied in Example 4.7. By decomposing I along the two
eigenvectors Λ and Ω of L one obtains that

I =
N2

p[(2− p)N2 + (2− 2p)N + (2− 2p)]
Λ +

N [(2− p)N + (2− 2p)]
(2− p)N2 + (2− 2p)N + (2− 2p)

Ω

and so

lim
t→∞

Lt(I) =
N2

p[(2− p)N2 + (2− 2p)N + (2− 2p)]
Λ

From this we can argue that

B =
1
N

2− 2p

(2− p)N2 + (2− 2p)N + (2− 2p)
Ω

and so
E[β(∞)] =

2− 2p

(2− p)N2 + (2− 2p)N + (2− 2p)
1
N
||Ωx(0)||2

If we consider initial conditions with bounded components xi(0), in such a way that N−1||x(0)||2 is
bounded with respect to N , also in this case we have that E[β(∞)] tends to zero as N tends to infinity.
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5 Concentration results

In this chapter we discuss some concentration results concerning the random variables d(t) and β(t)
for large values of N . We will need to use in this section some basic results on martingales. We first
recall some basic notation and concepts (see [1] for further details).

5.1 Martingales and Azuma’s inequality

Consider a fixed probability space (Ω,F ,P) and a filtration Ft (t = 0, 1, . . . ) of sub σ-fields of F ,
namely,

F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · ·
Let Xt : Ω → R be a sequence of random variables adapted to the filtration, namely such that Xt is
Ft-measurable. The sequence of random variables Xt is said to be a martingale (with respect to the
given filtration) if it happens that

E[Xt|Ft−1] = Xt−1 , ∀t ≥ 1

If we start from any random variable X defined on (Ω,F ,P), it is a straightforward fact that the
stochastic process Xt := E[X|Ft] is a martingale. The concept of martingale can also be defined
in situations where the index t is restricted to an interval of positive integers. The basic result on
martingales that we will need is the so called Azuma’s inequality recalled below [1].

Theorem 5.1. Azuma’s inequality Let Xt be a martingale w.r. to some given filtration. Assume
that |Xt −Xt−1| ≤ c for every t. Then, for every δ > 0 we have that

P[|Xt −X0| ≥ δ] ≤ exp
(
− δ2

2c2t

)

In our setting the natural filtration to consider is the one induced by the sequence of random
matrices P (t). More precisely we let Ft to be the σ-field generated by the family of random variables
P (0), . . . , P (t− 1). We assume moreover that F0 is the trivial σ-field.

The basic idea is to use Azuma’s inequality applied to the martingales constructed, for any fixed
t, by considering Xs = E[d(t)|Fs], for s = 0, . . . , t. By proving a suitable bound on differences
|Xs+1 −Xs| and noticing that

X0 = E[d(t)] , Xt = d(t) ,

we would in principle obtain a concentration result for our random variable d(t) around its average.
For some of the examples presented before (the gossip cases and the broadcasting model) this approach
would work. However, in order to be able to obtain a result which can be applied to all the examples
we have introduced so far, we will need to introduce a refinement of the above filtration.

Assume that the random stochastic matrices P (t) are generated in the following way. Assume
that there exist independent random variables T1(t), . . . , Tm(t) taking values in a finite set T and a
function Γ : T m → RN×N such that

P (t) = Γ(T1(t), . . . , Tm(t)) (18)

Roughly speaking, the random variables T1(t), . . . , Tm(t) generate all the randomness of P (t). The
function Γ(T1, . . . , Tm) is said to be a-sensitive if, when we vary just one of its variables Tk keeping
fixed all the others, only at most a rows may vary.

Of course, this representation is generally not unique since one can always assemble some of the
Tk(t) into one random variable and decrease in such a way the index m. However, this will determine
an increase in the sensitivity a. We will see that, because of the different roles that m and a will
have in the concentration inequality we will propose, the sharpest results are obtained when a2m is
as small as possible. Typically this will be obtained when choosing representations with m as large
as possible.

It is easy to see that the matrices P (t) in our examples can always be generated as specified above.
Specifically, in the following we list the representations in the various examples introduced in the
previous section.
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(1) Symmetric gossip: In this case m = 1 and T = E. The variable T1(t) codifies the (undirected)
edge which is activated and so a = 2.

(2) Asymmetric gossip: In this case m = 1 and T = E. The variable T1(t) codifies the edge which
is activated and so a = 1.

(3) Synchronous gossip: In this case m = N and T = {1, . . . , N}. The variable Tk(t) codifies the
neighbor node chosen by node k and so a = 1.

(4) Broadcasting: In this case m = 1 and T = {1, . . . , N}. The variable T1(t) codifies the activated
node and so a = maxk{ν+

k }.
(5) Packet drop: In this case m = N and T = {0, 1}N . The variable Tk(t) codifies which of the

incoming edges to agent k are active at time t and so a = 1.

(6) Agent failure: In this case m = N and T = {0, 1}. The variable Tk(t) codifies the state of
activity of agent k at time t and so a = maxk{ν+

k }.
Once we have fixed a representation like (18), we can consider the following refinement of the

filtration introduced above. For any t ∈ N and k = 1, . . . , m, we let Ftm+k be the σ-field generated by
the random matrices P (0), . . . , P (t−1) and the random variables {T1(t), . . . , Tk(t)}. Assume moreover
that F0 is the trivial σ-field.

5.2 Application of Azuma’s inequality

We first want apply Azuma’s inequality to the distance from the consensus d(t). To this aim, any
fixed t, consider the family of random variables Xs = E[d(t)|Fs], for s = 0, . . . , tm. Notice that

X0 = E[d(t)] , Xtm = d(t) ,

The following result is obtained by applying Azuma’s inequality to the martingale Xs, s = 0, . . . , tm.
In the proof of the following results we will need to use an elementary inequality which we will highlight
now.

Let x, y, z be independent random variables and let Fx and Fx,y be σ-fields generated by x
and by x, y, respectively. Observe that E[f(x, y, z)|Fx] = E[f(x, y, z)|x] and E[f(x, y, z)|Fx,y] =
E[f(x, y, z)|x, y], where f(·) is any function. Notice now that

∣∣∣E(f(x, y, z)|x, y)− E(f(x, y, z)|x)
∣∣∣ =

∣∣∣E
[
f(x, y, z)− E(f(x, y, z)|x, z)

∣∣∣x, y
]∣∣∣

≤ E
[
|f(x, y, z)− E(f(x, y, z)|x, z)|

∣∣∣x, y
]

Since we have that
∣∣∣f(x, y, z)− E(f(x, y, z)|x, z)

∣∣∣ ≤ sup
y′,y′′

∣∣∣f(x, y′, z)− f(x, y′′, z)
∣∣∣

we can argue that
∣∣∣E

[
f(x, y, z)|x, y]− E[f(x, y, z)|x]

∣∣∣ ≤ E
[

sup
y′,y′′

|f(x, y′, z)− f(x, y′′, z)|
∣∣∣x

]
(19)

Proposition 5.2. Assume that the random stochastic matrices P (t) can be generated through an a-
sensitive map Γ and discrete random variable T1(t), . . . , Tm(t) as above. Assume, moreover, that P is
doubly stochastic. Then,

P[|d(t)− Ed(t)| ≥ δ] ≤ exp
(
− δ2N2

128a2mt||x(0)||4∞

)

Proof. Notice that, as a random variable d(t) is function of the P (s) for s = 0, . . . , t−1 and, ultimately,
of the Tj(τ), τ = 0, . . . , t − 1, j = 1, . . . , m. Consider l ∈ {1, 2, . . . , tm}. Our aim is to determine a
bound of |Xl−Xl−1|. Observe that, if l = sm + k, then the σ-field Fl−1 will be generated by some of
the random variables Tj(τ). We will collect these random variables in a random vector called x. The
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σ-field Fl will be generated by x and by the random variable Tk(s) which we will call y. Finally we
collect the remaining random variables determining d(t) in a random vector called z. In evaluating
|Xl −Xl−1| we can apply inequality (19). To do so we need to evaluate

sup
Tk(s)′,Tk(s)′′

∣∣∣ ||ΩP (t− 1) · · ·P (s + 1)Γ(T1(s), . . . , Tk(s)′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)||2 −

− ||ΩP (t− 1) · · ·P (s + 1)Γ(T1(s), . . . , Tk(s)′′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)||2
∣∣∣

If we define the two vectors

w := Γ(T1(s), . . . , Tk(s)′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)

w′ := Γ(T1(s), . . . , Tk(s)′′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)
(20)

we have that
||w||∞ ≤ ||x(0)||∞, ||w′||∞ ≤ ||x(0)||∞ (21)

and moreover there exist indices j1, . . . , ja such that

w′ − w =
a∑

l=1

rlejl
, |rl| ≤ 2||x(0)||∞ (22)

From (21) and (22) we obtain
∣∣ ||ΩP (t− 1) · · ·P (s + 1)w||2 − ||ΩP (t− 1) · · ·P (s + 1)w′||2

∣∣

= |(w + w′)∗(P (t− 1) · · ·P (s + 1))∗ΩP (t− 1) · · ·P (s + 1)(w − w′)|

≤ ||ΩP (t− 1) · · ·P (s + 1)(w + w′)||∞||P (t− 1) · · ·P (s + 1)(w − w′)||1

(23)

Notice that

||ΩP (t− 1) · · ·P (s + 1)(w + w′)||∞ ≤ ||Ω||∞||P (t− 1) · · ·P (s + 1)||∞||(w + w′)||∞ ≤ 4||x(0)||∞
while

||P (t− 1) · · ·P (s + 1)(w − w′)||1 ≤ 2||x(0)||∞1∗P (t− 1) · · ·P (s + 1)
a∑

l=1

ejl

Now inserting inequality (23) inside (19), we finally obtain

|Xl −Xl−1| ≤ 1
N
E

[
8||x(0)||2∞1∗P (t− 1) · · ·P (s + 1)

a∑

l=1

ejl

∣∣∣Fl−1

]

=
8||x(0)||2∞

N
1∗P

t−s
a∑

l=1

ejl
=

8a||x(0)||2∞
N

(24)

The result now follows from Azuma’s inequality. ¥
Similar concentration results can be obtained also for the average displacement β(t). To prove this

fact, we introduce now the family of random variables Xs = E[xA(t)|Fs], for s = 0, . . . , tm, where the
Fs are the σ-fields introduced above. Notice that

X0 = E[xA(t)] = xA(0) , Xtm = xA(t) ,

The following result is obtained by applying Azuma’s inequality to the martingale Xs, s = 0, . . . , tm.

Proposition 5.3. Assume that the random stochastic matrices P (t) can be generated through an a-
sensitive map Γ and discrete random variables T1(t), . . . , Tm(t) as above. Assume, moreover, that P
is doubly stochastic. Then,

P[β(t) ≥ δ] ≤ exp
[
− δN2

8||x(0)||2∞a2mt

]

19



Proof. The proof is very similar to the proof of the previous result. First notice that P[β(t) ≥ δ] =
P[|xA(t)− xA(0)| ≥ δ1/2]. Since xA(t) = N−11∗P (t− 1) · · ·P (0)x(0), in this case we need to evaluate

sup
Tk(s)′,Tk(s)′′

∣∣∣1∗P (t− 1) · · ·P (s + 1)Γ(T1(s), . . . , Tk(s)′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)−

−1∗P (t− 1) · · ·P (s + 1)Γ(T1(s), . . . , Tk(s)′′, . . . , Tm(s))P (s− 1) · · ·P (0)x(0)
∣∣∣

If we define the two vectors w, w′ as in (20), from (21) and (22) we obtain

|1∗P (t− 1) · · ·P (s + 1)w − 1∗P (t− 1) · · ·P (s + 1)w′| ≤ 2||x(0)||∞1∗P (t−1) · · ·P (s+1)
a∑

l=1

ejl
(25)

Inserting inequality (25) inside (19), we finally obtain

|Xl −Xl−1| ≤ 1
N
E

[
2||x(0)||∞1∗P (t− 1) · · ·P (s + 1)

a∑

l=1

ejl

∣∣∣Fl−1

]
=

2a||x(0)||∞
N

(26)

The result now follows from Azuma’s inequality. ¥

5.3 The behavior for large N

In order to fully appreciate the previous results, it is convenient to consider sequences of consensus
algorithms P (t) of increasing dimension N . We assume from now on that all these algorithms satisfy
the assumptions of Propositions 5.2 and 5.3, namely, that the random stochastic matrices P (t) are
generated through an a-sensitive map Γ and discrete random variable T1(t), . . . , Tm(t) as in (18) and
that P is doubly stochastic.

In this section we will use a notation which makes explicit the dependence on N . Namely, x(t,N)
will denote the state of the consensus algorithm, d(t,N) the distance from the consensus, β(t,N) the
average displacement, R(N) the exponential rate of convergence of E[d(t)], and, finally, m(N), a(N)
come from the parametrization given in (18). We also need to say something on the way we choose
the sequence of initial conditions x(0, N). In this section we will assume that there exists L such that
||x(0, N)||∞ ≤ L for every N .

We now present a result showing how the typical behavior concentrate around the average behavior
for large N .

Corollary 5.4. Let TN be a sequence such that

TN = O

(
N2−ε

a(N)2m(N)

)
(27)

for some ε > 0, (e.g. TN

(
N2−ε

a(N)2m(N)

)−1

is bounded as N →∞). Then, almost surely,

lim sup
N→+∞

sup
t≤TN

|d(t,N)− E[d(t,N)]| = 0

lim sup
N→+∞

sup
t≤TN

β(t,N) = 0 .

Proof. It is a straightforward application of estimations in Propositions 5.2 and 5.3 and of the Borel-
Cantelli lemma. ¥

The above corollary says that, when the time is sufficiently small with respect to the dimension N ,
the typical behavior of the consensus distance d(t,N) is quite well approximated by its mean E[d(t,N)]
for large N . This provides a strong motivation for considering the rate of convergence of E[d(t,N)] for
analysis and optimization purposes. A similar result holds true for the average displacement β(t,N).

An important aspect to investigate now is related to the parameter TN . We first notice that for
all the models considered we can choose a sequence TN which grows in N and tends to infinity as
N →∞. The only exception in the examples we considered is given by the agent failure model when
the maximal out degree is linear in N . Apart from this particular case, this means that the time
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range in which the mean analysis is meaningful grows in N . Notice however that, typically, the rate
of convergence R(N) tends to one as N →∞. The effect of this is that it might happen that the time
range TN is not big enough to provide a sufficient convergence. In order to understand this fact, it is
helpful to consider the so called the α-averaging time

T (α, N) = sup
x(0,N)

inf{t ∈ N | P[||x(t,N)− x(∞, N)||2 ≥ α||x(0, N)||2] ≤ α}

Roughly speaking the α-averaging time is the time needed to shrink the distance to average consensus
of a factor α. This is the main performance index studied in the context of load balancing and also it
is the one considered in [4].

In most of the applications it is necessary to run the algorithm till time T (α, N) for a given α < 1.
It is therefore of interest to understand if our concentration results can be applied over this time
range. In other words, one can wonder whether T (α,N) satisfies condition (27). For the symmetric
gossip model there are several situations in which we can estimate the α-averaging time and thus give
an answer to the above question. Indeed, as shown in [4], we have that

T (α, N) ³
(

ln
1

R(N)

)−1

ln
1
α

(N →∞ α → 0) (28)

(where ³ means that the ratio between the two functions tends to a finite non-zero limit). In Example
4.5 in which the graph is complete we have seen that R(N) = 1 − (N − 1)−1 and so in this case
T (α, N) ³ N ln 1

α . We can argue that we can take TN = T (α, N). Some more general graphs can
be treated by observing that, by Proposition 4.4 and the following Remark, equation (28) implies the
following

T (α, N) ³
(

ln
1

esr(P )

)−1

ln
1
α

(N →∞ α → 0) (29)

The estimation of the essential spectral radius of a stochastic matrix as P is a classical problem which
has been widely studied in the literature on Markov chains. There are cases in which this estimation is
particularly simple. For instance, (see [4, 5]) for the hypercube graph we have that 1− esr(P ) ³ N−1,
while for the n-dimensional torus graph we have that 1 − esr(P ) ³ N− 2+n

n . Using these estimations
in (29) we thus obtain that T (α, N) ³ N ln 1

α for the hypercube graph and T (α, N) ³ N
2+n

n ln 1
α for

the n-dimensional torus. The conclusion is that we can choose TN = T (α,N) in Corollary 5.4 for the
complete graph, for the hypercube graph and for the n-dimensional torus in case n ≥ 3.

For the asymmetric gossip model, quite similar results can be obtained: they are however techni-
cally more complicated and will be presented elsewhere. Concerning the synchronous gossip model,
at the moment we have a result for the special case when G is complete and W = N−111∗ considered
in Example 4.6. Since in this case we showed that R(N) is bounded away from 0, it follows that that
T (α, N) is asymptotically independent of N . Since m(N) = N and a(N) = 1, also in this case we can
choose TN = T (α,N) in Corollary 5.4.

We are currently investigating the application of Corollary 5.4 to other graphs and to the other
models discussed in this paper. We are also studying the application to random geometric graphs,
using the the ideas suggested in [4].

Finally, we want to make some comments on the concentration result regarding β(t,N) in Corollary
5.4. It clearly leaves open the analysis of β(t,N) when t is large with respect to N . In this respect, the
analysis of the asymptotic displacement in Section 4.2 is in some sense complementary with respect to
the results in Corollary 5.4. In principle, it should be possible to combine the two analysis in order to
prove a general convergence result on β(t,N) valid for all time range. This will be discussed elsewhere.

6 Conclusions and future research

In this paper we presented, under a unified theory, a number of random consensus algorithms and
of deterministic ones but embedded in a random environment. Some of these models had already
appeared in the literature. Some are completely new. Scope of the work was to present a number of
general results which can be applied to study the behavior of these different algorithms. We presented
some general results concerning the mean square performance of these algorithms and proven some
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concentration results which validate such analysis when the time range is sufficiently small with respect
to the number of nodes. In many applications this is the most important range to be considered and
we have shown with an example that the performance in such a range can differ considerably from
performance studied through classical Lyapunov exponent theory. Many important questions remain
open.

• The proposed mean square analysis needs to be concretely applied in many of the examples
proposed. Detailed computation for the analysis and optimization of these algorithms will be
carried on in an upcoming paper. We believe that quite rich and complete results can be obtained
for a number of graphs possessing sufficient symmetries as for instance Cayley graphs. Another
interesting family of graphs to work on would be the random geometrical graphs.

• Simulations seem to show quite stronger and wider range concentration results than those the-
oretically proven and we are currently investigating the possibility to improve them.

• The algorithms proposed in this paper are, by no means, the only one for consensus. In the
literature there are also algorithms with memory, algorithms not based on stochastic matrices
(see for instance [6]), algorithms with quantization structures. It is surely worth to investigate
the possibility to extend our results to these broader class of examples.

7 Appendix

7.1 The proof of Theorem 2.3

We first recall some fundamental facts from ergodic theory (see [25, 2] for further details). Our basic
tool is Kingman’s subadditive ergodic theorem recalled below.

Theorem 7.1. Let (Ω,F ,P) be a probability space equipped with a measurable map σ : Ω → Ω such
that σP = P. Let ft : Ω → R ∪ {−∞} be a sequence of measurable maps such that

(a) f+
1 ∈ L1(Ω,F ,P), where f+

1 is defined by letting f+
1 (x) := max{f1(x), 0} for all x.

(b) fk+t(x) ≤ fk(x) + ft(σkx), for every k, t ∈ N and x ∈ Ω.

Then, there exists f : Ω → R ∪ {−∞} which is measurable and σ-invariant such that

lim
t→∞

1
t
ft = f P-almost surely

To apply this result to our setting we suppose we have fixed a consensus algorithm P (t) (of
dimension N) achieving probabilistic consensus. The probability space on which all the random
matrices P (t) are defined, can be concretely constructed in the standard way using infinite sequence
space as follows. We first consider the base probability space (S,B(S), µ) where S is the compact space
of all stochastic N ×N matrices, B(S) is the corresponding Borel σ-algebra, and µ is the probability
law of the random matrix P (t) for any t. Consider now the infinite sequence space (SN,B(S)⊗N, µ⊗N)
equipped with the product probability measure µ⊗N. On SN we define the backward shift operator
σ : SN → SN: (σω)t = ωt+1 for every ω ∈ SN and t ∈ N. It is immediate to check that σµN = µN. We
can think of the random matrices P (t) as random variables defined on (SN,B(S)⊗N, µ⊗N). Using the
notation P (t, ω) where ω ∈ SN, we simply put P (t, ω) = ωt. It holds P (t, ω) = P (0, σtω). Also the
matrices Q(t) are now random variables on the same space and we have that

Q(t, ω) = P (0, σtω)P (0, σt−1ω) · · ·P (0, ω)

It is immediate to verify the following relation

Q(t + s, ω) = Q(t, σsω)Q(s, ω) , ∀ω ∈ SN , ∀s, t ∈ N (30)

Every sequence of random variable matrices satisfying (30) is said to be a cocycle. From the fact that
Q(t, ω) → 1ρ∗(ω) for almost every ω together with the cocycle condition it immediately follows that

ρ∗(σsω)Q(s, ω) = ρ∗(ω) (31)

for every ω ∈ SN and s ∈ N.
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Lemma 7.2. Q(t, ω)− 1ρ∗(ω) is a cocycle.

Proof.

(Q(t, σsω)− 1ρ∗(σsω))(Q(s, ω)− 1ρ∗(ω)) = Q(t, σsω)Q(s, ω)−Q(t, σsω)1ρ∗(ω)
− 1ρ∗(σsω)Q(s, ω) + 1ρ∗(σsω)1ρ∗(ω)
= Q(t + s, ω)− 1ρ∗(ω)− 1ρ∗(ω) + 1ρ∗(ω)
= Q(t + s, ω)− 1ρ∗(ω)

¥
We have the following result encompassing Theorem 2.3.

Theorem 7.3. There exists a non-negative constant λ such that

lim
t→+∞

||Q(t, ω)− 1ρ∗(ω)||1/t = λ , for almost every ω (32)

Moreover, we have that

lim
t→+∞

||x(t)− 1xA(t)||1/t = lim
t→+∞

||x(t)− x(∞)||1/t = λ (33)

for almost every pair (ω, x(0)) with respect to the product measure µN⊗Leb, where Leb is the Lebesgue
measure on x(0).

Proof. Consider
ft(ω) = ln ||Q(t, ω)− 1ρ∗(ω)||

Because of Lemma 7.2, it follows that

ft+s(ω) = ln ||Q(t + s, ω)− 1ρ∗(ω)||
= ln ||(Q(t, σsω)− 1ρ∗(σsω))(Q(s, ω)− 1ρ∗(ω))||
≤ ln ||(Q(t, σsω)− 1ρ∗(σsω))||+ ln ||(Q(s, ω)− 1ρ∗(ω))||
= ft(σsω) + fs(ω)

Applying Kingman’s subadditive ergodic theorem together with the fact that measurable σ-invariant
maps on SN are constant almost surely, we obtain that there exists a constant θ (possibly equal to
−∞) such that t−1ft → θ almost surely. This yields (32) with λ = exp(θ) ≥ 0.

To complete the result, we now prove that

lim
t→+∞

log (||(Q(t, ω)− 1ρ(ω)∗)x(0)||)
t

= θ (34)

for almost every pair (ω, x(0)). From this, taking exponentials and using the inequalities (8) the result
will follow.

Consider the random subspace V (ω) which is the orthogonal to ρ(ω). Clearly, for every x(0) ∈ V (ω)
we have that

(Q(t, ω)− 1ρ∗(ω))x(0) = Q(t, ω)x(0)

In particular we have that Q(t, ω)x(0) → 0 for almost every ω and for every x(0) ∈ V (ω). Since
Q(t, ω)1 = 1, it follows that on V (ω) the rate of convergence to 0 is imposed by the second Lyapunov
exponent [2] of Q(t, ω) (the first one being 1). More precisely, there exists a constant θ̄ and a proper
subspace Ṽ (ω) ⊆ V (ω) such that for almost every ω and for every x(0) ∈ V (ω) \ Ṽ (ω), it holds

lim
t→+∞

log(||(Q(t,ω)−1ρ(ω)∗)x(0)||)
t = lim

t→+∞
log(||(Q(t,ω)x(0)||)

t = θ̄ , ∀x(0) ∈ V (ω) \ Ṽ (ω)

lim
t→+∞

log(||(Q(t,ω)−1ρ(ω)∗)x(0)||)
t = lim

t→+∞
log(||(Q(t,ω)x(0)||)

t < θ̄ , ∀x(0) ∈ Ṽ (ω)

Let U(ω) be the subspace generated by 1 and Ṽ (ω). If x(0) ∈ Rn \U(ω), we can write x(0) = α1+ v
where v ∈ V (ω) \ Ṽ (ω). Hence, for almost every ω, we also have that

lim
t→+∞

log (||(Q(t, ω)− 1ρ(ω)∗)x(0)||)
t

= lim
t→+∞

log (||(Q(t, ω)− 1ρ(ω)∗)v||)
t

= θ̄ (35)
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On the other hand, if instead x(0) ∈ U(ω), for almost every ω we have that

lim
t→+∞

log (||(Q(t, ω)− 1ρ(ω)∗)x(0)||)
t

< θ̄ (36)

It is clear that θ̄ ≤ θ. To prove that they are equal we proceed as follows. Let xω,t ∈ RN be such that
for every ω and t,

||xω,t|| = 1 , ||(Q(t, ω)− 1ρ∗(ω))xω,t|| = ||Q(t, ω)− 1ρ∗(ω)||

For every ω, pick a sequence tn → +∞ such that xω,tn
→ xω. We can estimate

||(Q(tn, ω)− 1ρ∗(ω))xω|| ≥ ||Q(tn, ω)− 1ρ∗(ω)|| − ||(Q(tn, ω)− 1ρ∗(ω))(xω,tn − xω)||

≥ ||Q(tn, ω)− 1ρ∗(ω)|| (1− ||(xω,tn − xω)||)
Hence, for n sufficiently large we have that

||(Q(tn, ω)− 1ρ∗(ω))xω|| ≥ 1
2
||Q(tn, ω)− 1ρ∗(ω)|| (37)

Combining (37) with (35) and (36), we immediately get that θ̄ ≥ θ. This completes our result. ¥
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