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Abstract

Motivated by applications to sensor, peer-to-peer and ad hoc networks, we study distributed algo-
rithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily
connected network of nodes. The topology of such networks changes continuously as new nodes join and
old nodes leave the network. Algorithms for such networks need to be robust against changes in topology.
Additionally, nodes in sensor networks operate under limited computational, communication and energy
resources. These constraints have motivated the design of “gossip” algorithms: schemes which distribute
the computational burden and in which a node communicates with a randomly chosen neighbor.

We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and
find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly
stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to
minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved
in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient
method that solves the optimization problem over the network.

The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time
of a random walk with transition probabilities derived from the gossip algorithm. We use this connection
to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor
Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the so-called
Preferential Connectivity Model.

1 Introduction

The advent of sensor, wireless ad hoc and peer-to-peer networks has necessitated the design of distributed
and fault-tolerant computation and information exchange algorithms. This is mainly because such networks
are constrained by the following operational characteristics: (i) they may not have a centralized entity for
facilitating computation, communication and time-synchronization, (ii) the network topology may not be
completely known to the nodes of the network, (iii) nodes may join or leave the network (even expire), so
that the network topology itself may change, and (iv) in the case of sensor networks, the computational
power and energy resources may be very limited. These constraints motivate the design of simple decentral-
ized algorithms for computation where each node exchanges information with only a few of its immediate
neighbors in a time instance (or, a round). The goal in this setting is to design algorithms so that the desired
computation and communication is done as quickly and efficiently as possible.
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We study the problem of averaging as an instance of the distributed computation problem. 1 A toy
example to motivate the averaging problem is sensing the temperature of some small region of space using a
network of sensors. For example, in Figure 1, sensors are deployed to measure the temperature T of a source.
Sensor i, i = 1, . . . , 4 measures Ti = T + ηi, where the ηi are IID (independent, identically distributed), zero
mean Gaussian sensor noise variables. The unbiased, minimum mean squared error (MMSE) estimate is the

average T̂ =
P

i Ti

4 . Thus, to combat minor fluctuations in the ambient temperature and the noise in sensor

PSfrag replacements

T1 = T + η1

T2 = T + η2

T3 = T + η3

T4 = T + η4

Source

T

Figure 1: Sensor nodes deployed to measure ambient temperature.

readings, the nodes need to average their readings.

The problem of distributed averaging on a network comes up in many applications such as coordination of
autonomous agents, estimation and distributed data fusion on ad-hoc networks, and decentralized optimiza-
tion 2. For one of the earliest references on distributed averaging on a network, see [Tsi84]. Fast distributed
averaging algorithms are also important in other contexts; see Kempe et al [KDG03], for example. For an
extensive body of related work, see [KK02, KKD01, HHL88, GvRB01, KEW02, MFHH02, vR00, EGHK99,
IEGH02, KSSV00, SMK+01, RFH+01].

This paper undertakes an in-depth study of the design and analysis of gossip algorithms for averaging in
an arbitrarily connected network of nodes. (By a gossip algorithm, we mean specifically an algorithm in which
each node communicates with no more than one neighbor in each time slot.) Given a graph G, we determine
the averaging time, Tave, which is the time taken for the value at each node to be close to the average value
(a more precise definition is given later). We find that the averaging time depends on the second largest
eigenvalue of a doubly stochastic matrix characterizing the averaging algorithm: the smaller this eigenvalue,
the faster the averaging algorithm. The fastest averaging algorithm is obtained by minimizing this eigenvalue
over the set of allowed gossip algorithms on the graph. This minimization is shown to be a semi-definite
program, which is a convex problem, and therefore can be solved efficiently to obtain the global optimum.

The averaging time, Tave, is closely related to the mixing time, Tmix, of the random walk defined by the
matrix that characterizes the algorithm. This means we can also study averaging algorithms by studying the
mixing time of the corresponding random walk on the graph. The recent work of Boyd et al [BDX04] shows

1Preliminary versions of this paper appeared in [BGPS04],[BGPS05b] and [BGPS05a].
2The theoretical framework developed in this paper is not restricted merely to averaging algorithms. It easily extends to

the computation of other functions which can be computed via pair-wise operations; e.g., the maximum, minimum or product
functions. It can also be extended for analyzing information exchange algorithms, although this extension is not as direct. For
concreteness and for stating our results as precisely as possible, we shall consider averaging algorithms in the rest of the paper.
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that the ratio of the mixing times of the natural random walk to the fastest-mixing random walk can grow
without bound as the number of nodes increases; correspondingly, therefore, the optimal averaging algorithm
can perform arbitrarily better than the one based on the natural random walk. Thus, computing the optimal
averaging algorithm is important: however, this involves solving a semi-definite program, which requires a
knowledge of the complete network topology. Surprisingly, we find that we can exploit problem structure
to devise a distributed subgradient method to solve the semidefinite program and obtain a near-optimal
averaging algorithm, with only local communication.

Finally, we study the performance of gossip algorithms on two network graphs which are very important
in practice: Geometric Random Graphs which are used to model wireless sensor networks, and the Internet
graph under the Preferential Connectivity model. We find that for geometric random graphs, the averaging
time of the natural and the optimal averaging algorithms are of the same order. As remarked earlier, this
need not be the case in a general graph.

We shall state our main results after setting out some notation and definitions in the next section.

1.1 Problem formulation and definitions

Consider a connected graph G = (V, E), where the vertex set V contains n nodes and E is the edge
set. The ith component of the vector x(0) = [x1(0), ..., xn(0)]T represents the initial value at node i. Let
xave =

∑

i xi(0)/n be the average of the entries of x(0). Our goal is to compute xave in a distributed manner.

• Asynchronous time model: Each node has a clock which ticks at the times of a rate 1 Poisson
process. Thus, the inter-tick times at each node are rate 1 exponentials, independent across nodes
and over time. Equivalently, this corresponds to a single clock ticking according to a rate n Poisson
process at times Zk, k ≥ 1, where {Zk+1 − Zk} are IID exponentials of rate n. Let Ik ∈ {1, ..., n}
denote the node whose clock ticked at time Zk. Clearly, the Ik are IID variables distributed uniformly
over {1, . . . , n}. We discretize time according to clock ticks since these are the only times at which
the value of x(·) changes. Therefore, the interval [Zk, Zk+1) denotes the kth time-slot and, on average,
there are n clock ticks per unit of absolute time. Lemma 1 states a precise translation of clock ticks
into absolute time.

• Synchronous time model: In the synchronous time model, time is assumed to be slotted commonly
across nodes. In each time slot, each node contacts one of its neighbors independently and (not
necessarily uniformly) at random. Note that in this model all nodes communicate simultaneously, in
contrast to the asynchronous model where only one node communicates at a given time. On the other
hand, in both models each node contacts only one other node at a time.

Previous work, notably that of [KSSV00, KDG03], considers the synchronous time model. The qualita-
tive and quantitative conclusions are unaffected by the type of model; we start with the asynchronous
time model for convenience, and then analyze the synchronous model and show that the same kind of
results hold in this case as well.

• Algorithm A(P ): We consider a particular class of time-invariant gossip algorithms, denoted by A.
An algorithm in this class is characterized by an n × n matrix P = [Pij ] of non-negative entries with
the condition that Pij > 0 only if (i, j) ∈ E. For technical reasons, we assume that P is a stochastic
matrix with its largest eigenvalue equal to 1, and all remaining n− 1 eigenvalues strictly less than 1 in
magnitude. (Such a matrix can always be found if the underlying graph is connected and non-bipartite;
we will assume that the network graph G satisfies these conditions for the remainder of the paper.)
Depending on the time model, two types of algorithms arise: (1) asynchronous, and (2) synchronous.
Next, we describe the asynchronous algorithm associated with P to explain the role of matrix P in
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the algorithm. As we shall see, asynchronous algorithms are rather intuitive and easy to explain. We
defer the description of the synchronous algorithm to Subsection 3.3.

The asynchronous algorithm associated with P , denoted by A(P ), is described as follows: In the kth

time-slot, let node i’s clock tick and let it contact some neighboring node j with probability Pij . At
this time both nodes set their values equal to the average of their current values. Formally, let x(k)
denote the vector of values at the end of the time-slot k. Then,

x(k) = W (k)x(k − 1), (1)

where with probability 1
nPij (the probability that the ith node’s clock ticks is 1/n, and the probability

that it contacts node j is Pij) the random matrix W (k) is

Wij = I − (ei − ej)(ei − ej)
T

2
, (2)

where ei = [0 · · · 0 1 0 · · · 0]T is an n × 1 unit vector with the ith component equal to 1.

• Quantity of Interest: Our interest is in determining the (absolute) time it takes for x(t) to converge
to xave1, where 1 is the vector of all ones.

Definition 1 For any 0 < ε < 1, the ε−averaging time of an algorithm A(P ) is denoted by Tave(ε, P ),
and is defined as

sup
x(0)

inf

{

t : Pr

(‖x(t) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε

}

, (3)

where ‖v‖ denotes the l2 norm of the vector v.

Thus the ε-averaging time is the smallest time it takes for x(·) to get within ε of xave1 with high
probability, regardless of the initial value x(0).

The following lemma relates the number of clock ticks to absolute time. This relation allows us to use
clock ticks instead of absolute time when we deal with asynchronous algorithms.

Lemma 1 For any k ≥ 1, E[Zk] = k/n. Further, for any δ > 0,

Pr

(∣

∣

∣

∣

Zk − k

n

∣

∣

∣

∣

≥ δk

n

)

≤ 2 exp

(

−δ2k

2

)

. (4)

Proof. By definition, E[Zk] =
∑k

j=1 E[Zj − Zj−1] =
∑k

j=1 1/n = k/n. Equation (4) follows directly from
Cramer’s Theorem (see [DZ99], pp. 30 & 35).

As a consequence of Lemma 1, for k ≥ n,

Zk =
k

n

(

1 ±
√

2 logn

n

)

with high probability (i.e., probability at least 1− 1/n2). In this paper, all ε-averaging times are at least n.
Hence, dividing the quantities measured in terms of the number of clock ticks by n gives the corresponding
quantities when measured in absolute time (for an example, see Corollary 2).
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1.2 Previous results

A general lower bound for any graph G and any averaging algorithm was obtained in [KSSV00] in the
synchronous setting. Their result is:

Theorem 1 For any gossip algorithm on any graph G and for 0 < ε < 0.5, the ε-averaging time (in
synchronous steps) is lower bounded by Ω(log n).

The recent work [KDG03] studies the gossip-constrained averaging problem for the special case of the
complete graph. A randomized gossiping algorithm is proposed which is shown to converge to the vector
of averages on the complete graph. For a synchronous averaging algorithm, [KDG03] obtain the following
result.

Theorem 2 For a complete graph, there exists a gossip algorithm such that the 1/n-averaging time of the
algorithm is O(log n).

In Subsection 3.3, we obtain a synchronous averaging algorithm which is simpler than the one described in
[KDG03], with ε-averaging time Θ(log ε−1) for the complete graph (from Corollary 3).

The problem of fast distributed averaging without the gossip constraint on an arbitrary graph is studied
in [XB03]; here, the matrices W (t) are constant, i.e., W (t) = W for all t. It is shown that the problem
of finding the (constant) W that converges fastest to 11T /n (where 11T is the matrix of all ones) can be
written as a semidefinite program (under a symmetry constraint), and can therefore be solved numerically.

Distributed averaging has also been studied in the context of distributed load balancing ([RSW98]),
where nodes (processors) exchange tokens in order to uniformly distribute tokens over all the processors in
the network (the number of tokens is constrained to be integral, so exact averaging is not possible). An
analysis based on Markov chains is used to obtain bounds on the time required to achieve averaging up to
a certain accuracy. However, each iteration is governed either by a constant stochastic matrix, or a fixed
sequence of matchings is considered. This differs from our work (in addition to the integral constraint) in
that we consider an arbitrary sequence W (t) drawn IID from some distribution, and try to characterize the
properties the distribution must possess for convergence. Some other results on distributed averaging can
be found in [BS03, Mur03, LBF04, OSM04, JLM03].

An interesting result regarding products of random matrices is found in [EKN90]. The authors prove the
following result on a sequence of iterations x(t + 1) = W (t)x(t), where the W (t) belong to a finite set of
paracontracting matrices (i.e., W (t)x 6= x ⇔ ‖W (t)x‖ < ‖x‖). If I is the set of matrices Wi that appear
infinitely often in the sequence W (t), and for i ∈ I, H(Wi) denotes the eigenspace of Wi associated with
eigenvalue 1, then the sequence of vectors x(t) has a limit x? in ∩i∈IH(Wi). This result can be used to find
conditions for convergence of distributed averaging algorithms.

Not much is known about good randomized gossip algorithms for averaging on arbitrary graphs. The
algorithm of [KDG03] is quite dependent on the fact that the underlying graph is a complete graph, and the
general result of [KSSV00] is a non-constructive lower bound.

1.3 Our results

In this paper, we design and characterize the performance of averaging algorithms for arbitrary graphs for
both the asynchronous and synchronous time models. The following result characterizes the averaging time
of asynchronous algorithms.

Theorem 3 The averaging time, Tave(ε, P ), of the asynchronous algorithm A(P ) (in terms of number of
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clock ticks) is bounded as follows:

Tave(ε, P ) ≤ 3 log ε−1

log λ2(W )−1
, and (5)

Tave(ε, P ) ≥ 0.5 log ε−1

log λ2(W )−1
, (6)

where

W
4
= I − 1

2n
D +

P + P T

2n
, (7)

and D is the diagonal matrix with entries

Di =

n
∑

j=1

[Pij + Pji].

Theorem 3 is proved in Section 3, using results on convergence of moments that we derive in Section 2.

For synchronous algorithms, the averaging time is characterized by Theorems 4 and 5, which are stated
and proved in Subsection 3.3. As the reader may notice, the statements of Theorem 3 and Theorems 4-5 are
qualitatively the same.

The above tight characterization of the averaging time leads us to the formulation of the question of
the fastest averaging algorithm. In Section 4 we show that the problem of finding the fastest averaging
algorithm can be formulated as a semidefinite program (SDP). In general, it is not possible to solve a
semidefinite program in a distributed fashion. However, we exploit the structure of the problem to propose
a completely distributed algorithm, based on a subgradient method, that solves the optimization problem
on the network. The algorithm and proof of convergence are found in Section 4.1.

Section 5 relates the averaging time of an algorithm on a graph G with the mixing time of an associated
random walk on G. This is used in Section 6 to study applications of our results in the context of two
networks of practical interest: wireless networks, and the Internet. The result for wireless networks involves
bounding the mixing times of the natural and optimal random walks on the geometric random graph; these
results are derived in Section 6.1. Finally, we conclude in Section 7.

2 Convergence of moments

In this section, we will study the convergence of randomized gossip algorithms. We will not restrict ourselves
here to any particular algorithm; but rather consider convergence of the iteration governed by a product of
random matrices, each of which satisfies certain (gossip-based) constraints described below.

The vector of estimates is updated as

x(t + 1) = W (t)x(t),

where each W (t) must satisfy the following constraints imposed by the gossip criterion and the graph
topology.

If nodes i and j are not connected by an edge, then Wij(t) must be zero. Further, since every node can
communicate with only one of its neighbors per time slot, each column of W (t) can have only one non-zero
entry other than the diagonal entry.

The iteration intends to compute the average, and therefore must preserve sums: this means that
1T W (t) = 1T , where 1 denotes the vector of all ones. Also, the vector of averages must be a fixed point of
the iteration, i.e., W (t)1 = 1.
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We will consider matrices W (t) drawn IID from some distribution on the set of non-negative matrices
satisfying the above constraints, and investigate the behavior of the estimate x(t):

x(t) = W (t − 1)W (t − 2) · · ·W (0)x(0)

= φ(t − 1)x(0).

If x(t) must converge to the vector of averages 11T

n x(0) for every initial condition x(0), we must have

lim
t→∞

φ(t) =
11T

n
. (8)

2.1 Convergence in expectation

Let the mean of the (IID) matrices W (t) be denoted by W . We have

E(φ(t)) =

t
∏

i=0

E(W (i)) = W
t
, (9)

so φ(t) converges in expectation to 11T

n if W
t → 11T

n . The conditions on W for this to happen are stated in
[XB03]; they are

1T W = 1T , (10)

W1 = 1, (11)

ρ

(

W − 11T

n

)

< 1, (12)

where ρ(·) is the spectral radius of a matrix. The first two conditions will be automatically satisfied by W ,
since it is the expected value of matrices each of which satisfies this property. Therefore, if we pick any
distribution on the W (t) whose mean satisfies (12), the sequence of estimates will converge in expected value
to the vector of averages.

In fact, if W is invertible, by considering the martingale W
−t

φ(t)x(0), we can obtain almost sure con-
vergence of x(t) to x∞ = xave. However neither result tells us the rate at which x(t) converges to x∞.

2.2 Convergence of second moment

To obtain the rate of convergence of x(t) to x∞, we will investigate the rate at which the error y(t) = x(t)−x∞
converges to 0. Consider the evolution of y:

y(k + 1) = x(k + 1) − xave1

(a)
= W (k + 1)x(k) − xaveW (k)1

= W (k + 1) (x(k) − xave1)

= W (k + 1)y(k). (13)

Here (a) follows from the fact that 1 is an eigenvector for all W (k + 1). Thus y evolves according to the
same linear system as x. Therefore, we can write

E[y(t + 1)T y(t + 1)|y(t)] = y(t)T E[W (t)T W (t)]y(t). (14)

Since W (t) is doubly stochastic, so is W (t)T W (t), and therefore E[W (t)T W (t)] is doubly stochastic. Since
the matrices W are identically distributed we will shorten E[W (t)T W (t)] to E[W T W ].
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Since y(t) ⊥ 1, and 1 is the eigenvector corresponding to the largest eigenvalue 1 of E[W T W ],

y(t − 1)T E[W T W ]y(t − 1) ≤ λ2(E[W T W ])‖y(t − 1)‖2. (15)

Repeatedly conditioning and using (15), we finally obtain the bound

E[y(t)T y(t)] ≤ λ2t
2 (E[W T W ])‖y(0)‖2. (16)

From this, we see that the second moment of the error y(t) converges to 0 at a rate governed by
λ2

2(E[W T W ]). This means that any scheme of choosing the W (t) which corresponds to a E[W T W ] with
second largest eigenvalue strictly less than 1 (and, of course with ρ(E[W ] − 11T /n) less than 1) provably
converges in the second moment.

This condition is only a sufficient condition for the convergence of the second moment. We can, in fact,
obtain a necessary and sufficient condition by considering the evolution of E[yyT ] rather than E[yT y].

Since y(t + 1) = W (t)y(t), y(t + 1)y(t + 1)T = W (t)y(t)y(t)T W (t). Let Y (t) = y(t)y(t)T . Then,

Y (t + 1) = W (t)Y (t)W (t)T ,

i.e., Y (t) evolves according to a (random) linear system. Now,

Y (t + 1)ij = (W (t)y(t)y(t)T W (t)T )ij (17)

=
(

(W (t)y(t))(W (t)y(t))T
)

ij

= (W (t)y(t))i (W (t)y(t))j

=

n
∑

p,q=1

W (t)ipW (t)jqyp(t)yq(t). (18)

Collect the entries of the matrix Y into a vector Ỹ ∈ Rn2

, with entries drawn columnwise from Y . Then,
using (18), we see that

Ỹ (t + 1) = (W (t) ⊗ W (t))Ỹ (t)

⇒ E[Ỹ (t + 1)|Ỹ (t)] = E[W (t) ⊗ W (t)]Ỹ (t),

where ⊗ stands for Kronecker product. Conditioning repeatedly, we see that

E[Ỹ (t)] = E[W ⊗ W ]tỸ (0). (19)

Since each W (t) has λ1 = 1 with corresponding eigenvector v1 = 1, each W (t) ⊗ W (t) also has λ1 = 1,

with eigenvector ṽ1 = 1 ∈ Rn2

. Also, each Ỹ (t) is orthogonal to 1, since

n2

∑

i=1

Ỹ (t)i =
∑

i

(yi(t)
∑

j

yj(t)) =
∑

yi(t) · 0 = 0,

since y(t) ⊥ 1.

Therefore the convergence of Ỹ (t) is governed by ρ(E(W ⊗ W ) − 1
n2 11T ), where 1 ∈ Rn2

. If ρ(E(W ⊗
W ) − 1

n2 11T ) < 1, then Ỹ (t), and therefore E[yyT ] converges to zero.

Note that E[yyT ] converges to the zero matrix if and only if E[yT y] converges to 0. If E[yyT ] → 0, then
each E[y2

i ] → 0, which means that E[yT y] =
∑n

i=1 E[y2
i ] → 0 as well. Conversely, suppose E[yT y] → 0.

Then each y2
i → 0 as well. From the Cauchy-Schwartz inequality, E2[|yiyj |] ≤ E[y2

i ]E[y2
j ] → 0, so that each

entry in the matrix E[yyT ] converges to 0.

Thus, a necessary and sufficient condition for second moment convergence is that ρ(E(W⊗W )− 1
n2 11T ) <

1. However, despite having an exact criterion for convergence of the second moment, we will use λ2(E[W T W ])
in our analysis. This is because E[W T W ] is much easier to evaluate for a given algorithm than the expected
value of the Kronecker product E[W ⊗ W ].
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3 High probability bounds on averaging time

We prove an upper bound (5) and a lower bound (6) in Lemmas 2 and 3 on the discrete time (or equivalently,
number of clock ticks) required to get within ε of xave1 (analogous to (5) and (6)) for the asynchronous
averaging algorithm.

3.1 Upper bound

Lemma 2 For algorithm A(P ), for any initial vector x(0), for k ≥ K∗(ε),

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε,

where

K∗(ε)
4
=

3 log ε−1

log λ2(W )−1
. (20)

Proof. Recall that under algorithm A(P ),

x(k + 1) = W (k + 1)x(k), (21)

where with probability 1
nPij , the random matrix W (k) is

Wij = I − (ei − ej)(ei − ej)
T

2
. (22)

Note that W (k) are doubly stochastic matrices for all (i, j). That is, for all k ≥ 1,

x(k)T 1 = x(0)T 1 =

n
∑

i=1

xi(0). (23)

Given our assumptions on the matrix of transition probabilities P , we can conclude from the previous section
that x(k) → xave1. We want to find out how fast xk converges; in particular, we want to obtain probabilistic
bounds on y(k) = x(k)−xave1. For this, we will use the second moment of y(k) to apply Markov’s inequality
as below.

Computing W :

Let W denote the expected value of W (0) (which is the same as E[W (k)]):

W =
1

n

∑

i,j

PijWij . (24)

Then, the entries of W are as follows:

1. for i 6= j, Wij =
Pij+Pji

2n , and

2. Wii = 1 − [
Pn

j=1
(Pij+Pji)]−2Pii

2n .

This yields the W defined in (7), that is

W = I − 1

2n
D +

P + P T

2n
, (25)
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where D = diag([D1 · · ·Dn]) is the diagonal matrix with entries

Di =





n
∑

j=1

[Pij + Pji]



 .

Note that if P = P T , then P is doubly stochastic. This implies that Di = 2, which in turn means that
W = (1 − 1/n)I + (1/n)P .

Computing the second moment E[y(k)T y(k)]:

With probability
Pij

n , the edge (i, j) is chosen to average, that is, W (k) = Wij . Then,

W (k)T W (k) =

(

I − (ei − ej)(ei − ej)
T

2

)2

(26)

=

(

I − (ei − ej)(ei − ej)
T

2

)

(27)

= W (k). (28)

It is not an accident that W (k)T W (k) = W (k): each Wij is a projection matrix, which projects a vector x
onto the subspace xi = xj . The entries of x except the i and jth stay unchanged, and xi and xj average their
values. Since every projection matrix P satisfies P 2 = P , and Wij are symmetric, we have W T

ij Wij = Wij .

Since (28) holds for each instance of the random matrix W , we have

E[W (0)T W (0)] = E[W (0)]

= W. (29)

Note that this means that W is symmetric3 positive-semidefinite (since W = W T W ) and hence it has
non-negative real eigenvalues.

From (16) and (29),

E[y(k)T y(k)] ≤ λ2(W )ky(0)T y(0). (30)

Now,

y(0)T y(0) = x(0)T x(0) − nx2
ave

≤ x(0)T x(0). (31)

3The symmetry of W does not depend on P being symmetric.
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Application of Markov’s inequality:

From (30), (31) and an application of Markov’s inequality, we have

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

= Pr

(

y(k)T y(k)

x(0)T x(0)
≥ ε2

)

≤ ε−2 E[y(k)T y(k)]

x(0)T x(0)

= ε−2λ2(W )k. (32)

From (32), it follows that for k ≥ K(ε)
4
= 3 log ε−1

log λ2(W )−1 ,

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

≤ ε. (33)

This proves the lemma, and gives us an upper bound on the ε-averaging time.

3.2 A lower bound on the averaging time

Here, we will prove a lower bound for the ε-averaging time, which is only a factor of 6 away from the upper
bound in the previous section. We have the following result:

Lemma 3 For algorithm A(P ), there exists an initial vector x(0), such that for k < K∗(ε),

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

> ε,

where

K∗(ε)
4
=

0.5 log ε−1

log λ2(W )−1
. (34)

Proof.

Since y(k + 1) = W (k)y(k), we obtain from (29)

E[y(k)] = W ky(0). (35)

By definition, W is a symmetric positive-semidefinite doubly stochastic matrix with non-negative real eigen-
values

1 = λ1(W ) ≥ λ2(W ) ≥ . . . ≥ λn(W ) ≥ 0,

and corresponding orthonormal eigenvectors 1√
n
1, v2, v3, . . . , vn. Select

x(0) =
1√
2

(

1√
n
1 + v2

)

⇒ y(0) =
1√
2
v2.

For this choice of x(0), ‖x(0)‖ = 1. Now from (35),

E[y(k)] =
1√
2
λk

2(W )v2. (36)

For this particular choice of x(0), we will lower bound the ε−averaging time by lower bounding E[‖y(k)‖2],
and using Lemma 4 as stated below.
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By Jensen’s inequality and (36),

E[

n
∑

i=1

yi(k)2] ≥
n
∑

i=1

E[yi(k)]2

= E[y(k)]T E[y(k)]

=
1

2
λ2k

2 (W )vT
2 v2

=
1

2
λ2k

2 (W ). (37)

Lemma 4 Let X be a random variable such that 0 ≤ X ≤ B. Then, for any 0 < ε < B,

Pr(X ≥ ε) ≥ E[X ] − ε

B − ε
.

Proof.

E[X ] ≤ ε Pr(X < ε) + B Pr(X ≥ ε)

= Pr(X ≥ ε)(B − ε) + ε.

Rearranging terms gives us the lemma.

From (36), ‖y(k)‖2 ≤ ‖y(0)‖2 ≤ 1/2. Hence Lemma (4) and (37) imply that for k < K∗(ε)

Pr (‖y(k)‖ ≥ ε) > ε. (38)

This completes the proof of Lemma 3.

Combining the results in the previous two lemmas, we have the result of Theorem 3.

The following corollaries are immediate.

Corollary 1 For large n and symmetric P , Tave(ε, P ) is bounded as follows:

Tave(ε, P ) ≤ 3n log ε−1

(1 − λ2(P ))

4
= T ∗(ε, P ), and (39)

Tave(ε, P ) ≥ 0.5n log ε−1

(1 − λ2(P ))

4
= T∗(ε, P ). (40)

Proof. By definition, λ2(W ) =
(

1 − 1
n (1 − λ2(P ))

)

. For large n, 1
n (1 − λ2(P )) is small, and hence

log

(

1 − 1

n
(1 − λ2(P ))

)

≈ − 1

n
(1 − λ2(P )).

This along with Theorem 3 completes the proof.

Corollary 2 For a symmetric P , the absolute time, ZT ·(ε,P ), it takes for T ·(ε, P ) clock ticks to happen is
given by

ZT ·(ε,P ) =
T ·(ε, P )

n

(

1 ± 2√
n

)

, (41)

with probability at least 1 − 2ε.
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Proof. For δ =

√
2(1−λ2(P ))√

3n
and k = T ·(ε, P ) and using (39), the right hand side of the (4) evaluates to

2 exp

(

−2(1− λ2(P ))

3n
?

3n log ε−1

2(1 − λ2(P ))

)

= 2ε.

Since −1 < λ2(P ) < 1 for the nonnegative doubly stochastic symmetric matrix P , δ = 2√
n

is larger than

the above choice of δ. This completes the proof.

Note that the proof of Lemma 3 uses only two features of the algorithm A(P ):

• E[W (0)] = W is symmetric, which allows us to choose an orthonormal set of eigenvectors;

• W is positive semidefinite, which means that the convergence of y(k) to 0 is governed by λ2(W ).

Consider any randomized gossip algorithm with symmetric expectation matrix E[W ] (and, of course,
satisfying the gossip constraints stated in Section 2). For such an algorithm, the rate of convergence of y(k) to
0 is governed by λmax(E[W ]), the second largest eigenvalue in absolute value, rather than λ2(E[W ]). Exactly
the same proof can be used to derive a lower bound for this gossip algorithm, with the only difference being
that λ2(W ) is replaced by λmax(E[W ]). Thus we can state the following lower bound for the performance
of an arbitrary randomized gossip algorithm with symmetric E[W ]:

Lemma 5 For any randomized gossip algorithm with symmetric expectation E[W ], there exists an initial
vector x(0), such that for k < K∗(ε),

Pr

(‖x(k) − xave1‖
‖x(0)‖ ≥ ε

)

> ε,

where

K∗(ε)
4
=

0.5 log ε−1

log λmax(E[W ])−1
. (42)

The proof of the upper bound relies on more specific properties of the algorithm A, and thus cannot be
duplicated for an arbitrary algorithm. Note also that while the expressions for the lower bounds for our
algorithm A, and an arbitrary algorithm with symmetric expectation are very similar, this does not mean
that A has the same lower bound as any other randomized gossip algorithm with symmetric expectation:
the lower bound depends on the value of E[W ], and the set of matrices that can be E[W ] for some instance
of the algorithm A is a subset of the set of all doubly stochastic symmetric matrices.

3.3 Synchronous averaging algorithms

In this section, we consider the case of synchronous averaging algorithms. Unlike the asynchronous case,
in the synchronous setting, multiple node pairs communicate at exactly the same time. Gossip constraints
require that these simultaneously active node pairs are disjoint. That is, the edges of the network graph
corresponding to the pair-wise operations form a (not necessarily complete) matching. This makes the
synchronous case harder to deal with, as it requires the algorithm to form a matching in a distributed
manner.

We first present a centralized synchronous gossip algorithm that achieves the same performance as the
asynchronous algorithm. This algorithm requires a centralized entity to choose matchings of the node each
time. Then, we present a completely distributed synchronous gossip algorithm that finds matchings in a
distributed manner without any additional computational burden. We show that this algorithm performs
as well as the centralized gossip algorithm for any graph with bounded degree. We extend this result for
unbounded degree regular graphs, for example, the complete graph.
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3.3.1 Centralized synchronous algorithm

Let P be any n × n doubly-stochastic symmetric matrix corresponding to the probability matrix of the
algorithm, as before. By Birkhoff-Von Neumann’s theorem [HJ85], a non-negative doubly-stochastic matrix
P can be decomposed into permutation matrices (equivalently matchings) as

P =

n2

∑

m=1

αmΠm, αm ≥ 0,

n2

∑

m=1

αm = 1.

Define a (matrix) random variable Π with distribution Pr(Π = Πm) = αm, 1 ≤ m ≤ n2.

The centralized synchronous algorithm corresponding to P is as follows: in each time step, choose one
of the n2 permutations (matchings) in an IID fashion with distribution identical to Π. Note that the
permutation Π need not be symmetric. The update corresponding to a permutation Π is as follows: if
Πij = 1, then node i averages its current value with the value it receives from node j. Now, we state the
theorem that characterizes the averaging time of this algorithm.

Theorem 4 The averaging time of the centralized synchronous algorithm described above is given by

0.5 log ε−1

log λ−1
≤ Tave(ε) ≤ 3 log ε−1

log λ−1
,

where λ = 1
2 (1 + λ2(P )).

Proof. The proof of Theorem 4 is based on the proofs of Lemmas 2 and 3 presented in Section 3. Let
Π(k) denote the random permutation matrix chosen by the algorithm at time k ∈ Z+. The linear iteration
corresponding to this update is x(k + 1) = W (k)x(k), where W (k) is given by

W (k) =
1

2
(I + Π(k)) . (43)

Now,

W = E[W (0)]

=
1

2
(I + E[Π(0)])

=
1

2
(I + P ) . (44)

Now since W (0) = 1
2 (I + Π),

W (0)T W (0) =
1

4

(

2I + Π + ΠT
)

,

since ΠT Π = I (Π is a permutation matrix). Therefore,

E[W (0)T W (0)] =
1

2
E

[

I +
Π + ΠT

2

]

=
1

2
(I + P ) (45)

= W. (46)

Using the arguments of Lemmas 2 and 3, exactly as in the asynchronous case, it can be easily shown that
for any averaging algorithm,

0.5 log ε−1

log λ−1
max(E[W (0)])

≤ Tave(ε) ≤ 3 log ε−1

log λ−1
max(E[W (0)T W (0)])

. (47)
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From (44) and (46),
λmax(E[W (0)]) = λmax(E[W (0)T W (0)]) = λmax(W ).

Further, all eigenvalues of W = 1
2 (I + P ) are nonnegative. Hence,

λmax(W ) =
1

2
(1 + λ2(P ))

4
= λ. (48)

From (47) and (48), the statement of Theorem 4 follows.

3.3.2 Distributed synchronous algorithm

The centralized synchronous algorithm needs a centralized entity to select a permutation matrix (or match-
ing) at each time step, corresponding to the matrix P . Here we describe a way to obtain such a permutation
matrix in a distributed manner for bounded degree network graphs. Later we extend this result for un-
bounded degree regular graphs for a particular class of P (corresponding to the natural random walk).

Given a network graph G, let d∗ be the maximum node degree. We assume that all nodes know d∗

(a justification for this assumption is given at the end of the proof of Theorem 5). Now we describe the
algorithm based on P as follows.

In each time step, every node becomes active with probability 1/2 independently. Consider an active
node i. Let d(i) be its degree (i.e., the number of its neighbors). Active node i contacts at most one of its

neighbors to average, as follows. With probability 1− d(i)
d∗

, node i does nothing, i.e., it does not contact any
neighbor. With equal probabilities 1

d∗
, it chooses one of its d(i) neighbors to contact.

All active nodes ignore the nodes that contact them. An inactive node, say j, ignores the requests of
active nodes if contacted by more than one active node. If active node i contacts inactive node j but no
other active node contacts j, then i and j average their values with probability ΦjPij , where

Φj =

(

1 − 1

2d∗

)d∗−d(j)

.

We state the following result for this algorithm.

Theorem 5 The averaging time of the distributed synchronous algorithm described above is given by

0.5 log ε−1

log λ−1
≤ Tave(ε) ≤ 3 log ε−1

log λ−1
,

where λ = λ2(W ), with

W = I − d̄

8
D +

d̄

8

(

P + P T
)

,

d̄ = 1
d∗

(

1 − 1
2d∗

)d∗−1
, and D a diagonal matrix with Dii =

∑

j Pij + Pji.

Before we prove Theorem 5, note that for bounded d∗, d̄ is a constant away from 0. Hence,

λ2(W ) = 1 − d̄

8
λ2(D − P − P T ) = Θ

(

1 − λ2(D − P − P T )
)

.

Thus, the averaging time of the distributed synchronous algorithm is of the same order as that of the
centralized synchronous algorithm for any bounded degree graph.
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Proof. [Theorem 5] The proof follows using Theorem 4. We first note that the algorithm, as described above,
only allows pair-wise averaging for distinct node pairs. Let W (k) be the random matrix corresponding to
the algorithm at time k, that is

x(k) = W (k)x(k − 1).

Since W (k) averages values of distinct node pairs, it is a symmetric projection matrix, projecting onto the
intersection of the subspaces xi = xj where (i, j) is an averaging pair. Therefore, W (k)T W (k) = W (k) for
all k, and therefore E[W T W ] = E[W ]. Using this property, as argued in Theorem 4, the averaging time is
bounded as

0.5 log ε−1

log λ−1
max(E[W (0)])

≤ Tave(ε) ≤ 3 log ε−1

log λ−1
max(E[W (0)])

. (49)

Next, we evaluate W = E[W (0)]. First we compute the probability that node pair (i, j) average. Denote
this probability Qij . We claim that

Qij =
d̄

4
(Pij + Pji),

where d̄ = 1
d∗

(

1 − 1
2d∗

)d∗−1
. The reason is as follows: (i, j) average when (a) i is active, j is inactive, i

contacts j but no other node contacts j and they decide to average; (b) j is active, i is inactive, j contacts
i but no other node contacts i and they decide to average.

We compute the probability of (a): i is active and j is inactive with probability 1/4; i contacts j with

probability 1/d∗; no other node contacts j with probability
(

1 − 1
2d∗

)d(j)−1
; after which (i, j) average with

probability ΦjPij . Since all these events are independent, the probability of (a) turns out to be
d̄Pij

4 .

Similarly, the probability of event (b) is
d̄Pij

4 . Since events (a) and (b) are disjoint, the net probability of
(i, j) averaging is as claimed.

Now, it is easy to see that

W = I − d̄

8
D +

d̄

8

(

P + P T
)

, (50)

where D is the diagonal matrix defined in the statement of the theorem. From the argument preceding
(49), we have that E[W ] = E[W T W ], so that all eigenvalues of W are non-negative. Hence from (50), the
statement of Theorem 5 follows.

Note. The assumption of nodes knowing d∗ is not restrictive for the following reason: all nodes can
compute the maximum node degree via a gossip algorithm in which each node contacts its neighbors in a
round robin fashion, and informs them of its current estimate of the maximum degree (its initial estimate
is its own degree). Since the order of pair-wise comparisons to compute the maximum of many numbers is
not important, each node can compute the maximum of the received information from other nodes in any
order to update its own estimate. It is not hard to see that such an algorithm requires O(d∗D) time for all
nodes to know maximum degree, where D is the diameter of the graph. Now, consider a node pair (i, j)
such that the shortest path between them is D. Now consider x(0) such that xi(0) = 1 and xl = 0 for all
l 6= i. Then, under any averaging algorithm, for m < D/2, ‖x(m) − xave1‖ ≥

√
D/n. Hence, for ε = o(1/n)

the ε-averaging time is at least Ω(D). Since we are considering bounded degree graphs, O(d∗D) = O(D).
Hence, we can ignore the pre-processing time for ε = o(1/n) in order notation. For clean presentation of our
results, we ignore this pre-processing time in general.

Consider a d-regular graph, where each node degree is exactly d. Now, modify the above algorithm as
follows: when an active node i contacts an inactive node j and j is not contacted by any other node, then
(i, j) always average. The following result follows using arguments of Theorem 5.

Corollary 3 The averaging time of the algorithm described above for a d-regular graph is bounded as

0.5 log ε−1

log λ−1
2 (W )

≤ Tave(ε) ≤ 3 log ε−1

log λ−1
2 (W )

, (51)
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where

W =

(

1 − d̂

4

)

I +
d̂

4
P,

d̂ =
(

1 − 1
2d

)d−1
, and P is defined as

Pij =

{

1/d if i and j are neighbors,

0 otherwise.

Note that λ2(W ) = (1− d̂
4 (1−λ2(P ))). As a consequence, for the complete graph, λ2(W ) ≈ 1−0.25e−0.5 < 1.

Thus, the averaging time, Tave(ε) = Θ(log ε−1). For ε = 1/n, this implies the main results of [KSSV00] and
[KDG03].

4 Optimal averaging algorithm

We saw in Theorem 3 that the averaging time is a monotonically increasing function of the second largest
eigenvalue of W (P ) =

∑n
i,j=1

1
nPijWij . Thus, finding the fastest averaging algorithm corresponds to finding

P such that λ2(W ) is the smallest, while satisfying constraints on P . Thus, we have the optimization problem

minimize λ2(W )
subject to W =

∑n
i,j=1

1
nPijWij

Pij ≥ 0, Pij = 0 if {i, j} /∈ E,
∑

j Pij = 1, ∀i.

(52)

The objective function, which is the second largest eigenvalue of a doubly stochastic matrix, is a convex
function on the set of symmetric matrices. Therefore, (52) is a convex optimization problem. This problem
can be reformulated as the following semidefinite program (SDP):

minimize s
subject to W − 11T /n � sI,

W =
∑n

i,j=1
1
nPijWij

Pij ≥ 0, Pij = 0 if {i, j} /∈ E,
∑

j Pij = 1, ∀i,

(53)

where � denotes inequality with respect to the cone of symmetric positive semidefinite matrices. For general
background on SDPs, eigenvalue optimization, and associated interior-point methods for solving these prob-
lems, see, for example, [BV04, WSV00, LO96, Ove92], and references therein. Interior point methods can be
used to solve problems with a thousand edges or so; subgradient methods can be used to solve the problem
for larger graphs that have up to a hundred thousand edges. The disadvantage of a subgradient method
compared to a primal-dual interior point method is that the algorithm is relatively slow (in terms of number
of iterations), and has no simple stopping criterion that can guarantee a certain level of suboptimality.

In summary, given a graph topology, we can solve the semidefinite program (53) to find the P ∗ for the
fastest averaging algorithm.

4.1 Distributed optimization

We have seen that finding the fastest averaging algorithm is a convex optimization problem, and can therefore
be solved efficiently to obtain the optimal distribution P ∗. Unfortunately, a P ∗ computed in a centralized
fashion is not useful in our setting. It is natural to ask if in this setting, the optimization (like the averaging

17



itself), can also be performed in a decentralized fashion. That is, is it possible for the nodes on the graph,
possessing only local information, and with only local communication, to compute the probabilities Pij that
lead to the fastest averaging algorithm?

In this section, we describe a completely distributed algorithm S based on an approximate subgradient
method which converges to a neighborhood of the optimal; alternately put, each iteration of the algorithm
moves P closer to the globally optimal P ∗, as stated in this theorem:

Theorem 6 Let m be the number of edges in G. Let the subgradient at iteration k in S lie within the
εk-subdifferential, and define ε = lim inf εk. Then, the sequence of iterates in S converges to a distribution
P for which λ2(W (P )) is within 8mε/n2 of the globally optimal value λ2(W (P ∗)).

The required background and notation will be provided as necessary during the proof, which comprises
the remainder of this section.

Notation: It will be easier to analyze the subgradient method if we collect the entries of the matrix Pij

into a vector, which we will call p. Since there is no symmetry requirement on the matrix P , the vector p
will need to have entries corresponding to Pij as well as Pji (this corresponds to replacing each edge in the
undirected graph G by two directed edges, one in each direction).

The vector p corresponds to the matrix P as follows. Let the total number of (non self-loop) edges in G
be m. Assign numbers to the undirected edges from 1 through m: if edge (i, j), i < j, is assigned number l,
we denote this as l ∼ (i, j). If l ∼ (i, j), then define the variable pl = Pij , and p−l = Pji.

We will also introduce the notation pi corresponding to the non-zero entries in the ith row of P (we do
this to make concise the constraint that the sum of elements in each row should be 1). That is, we define
for 1 ≤ i ≤ n,

pi = [Pij ; (i, j) ∈ E ]. (54)

Define also the matrices El, l ∼ (i, j), with entries Elij = Elji = +1, Elii = Eljj = −1, and zeros
everywhere else. Then,

El = 2(Wij − I).

Finally, denote the degree of node i by mi.

4.1.1 Subgradient method

We will describe the subgradient method for the optimization problem restated in terms of the variable p.
We can state (53) in terms of the variables p = [p−m, . . . p−1, p1, . . . pm] as follows:

minimize λ2(I + 1
2n

∑m
l=1 plEl + p−lE−l)

subject to 1T pi ≤ 1, ∀i
pl ≥ 0, 1 ≤ |l| ≤ m,

(55)

where pi is as defined in (54).

We will use the subgradient method to obtain a distributed solution to this problem. The use of the
subgradient method to solve eigenvalue problems is well-known; see for example [BDX04, OW93, Lew96,
Lew99] for material on non-smooth analysis of spectral functions, and [Cla90, HUL93, BL00] for more general
background on non-smooth optimization.

Recall that a subgradient of λ2 at W is a symmetric matrix G that satisfies the inequality

λ2(W̃ ) ≥ λ2(W ) + 〈G, W̃ − W 〉
= λ2(W ) + TrG(W̃ − W )
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for any feasible, i.e., symmetric stochastic matrix W̃ (here 〈·, ·〉 denotes the matrix inner product, and Tr
denotes the trace of a matrix). Let u be a unit eigenvector associated with λ2(W ), then the matrix G = uuT

is a subgradient of λ2(W ) (see, for example, [BDX04]). For completeness, we include the proof here. First
note that uT 1 = 0. By the variational characterization of the second eigenvalue of W and W̃ , we have

λ2(W ) = uT Wu,

λ2(W̃ ) ≥ uT W̃u.

Subtracting the two sides of the above equality from that of the inequality, we have

λ2(W̃ ) ≥ λ2(W ) + uT (W̃ − W )u

= λ2(W ) + Tr uuT (W̃ − W ).

So uuT is a subgradient.

Using

W (p) = I +
1

2n

(

m
∑

l=1

plEl + p−lE−l

)

= I +
1

2n





m
∑

|l|=1

plEl



 ,

in terms of the probability vector p, we obtain

λ2(W (p̃)) ≥ λ2(W (p)) +

m
∑

|l|=1

(

vT

(

1

2n
El

)

v

)

(p̃l − pl), (56)

so that the subgradient g(p) is given by

g(p) =
1

2n

(

uT E−mu, . . . , uT Emu
)

, (57)

with components

gl(p) =
1

2n
uT Elu = − 1

2n
(ui − uj)

2, l ∼ (i, j),

where |l| = 1, . . . , m. Observe that if each node i knows its own component ui of the unit eigenvector, then
this subgradient can be computed locally, using only local information.

The following is the projected subgradient method for (55):

• Initialization: Initialize p to some feasible vector, for example, p corresponding to the natural random
walk. Set k := 1.

• Repeat for k ≥ 1,

– Subgradient step. Compute a subgradient g(k) at p, and set

p := p − νkg(k)

– Projection onto feasible set. At each node i, project pi obtained from the subgradient step
onto 1T q ≤ 1, q � 0. This is achieved as follows:

1. If
∑mi

j=1 max{0,pij} ≤ 1, then set pi = max{0,pi}, stop.

2. If not, then use bisection to find x ≥ 0 such that
∑mi

j=1 max{0,pij − x} = 1; set pi =
max{0,pij − x}, stop.
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In this algorithm, Step 1 moves p in the direction of the subgradient with stepsize νk. Step 2 projects the
vector p onto the feasible set. Since the constraints at each node are separable, the variables pi corresponding
to nodes i are projected onto the feasible set separately.

The projection method is derived from the optimality conditions of the projection problem

minimize
∑mi

j=1(qj − pij)
2

subject to 1T q ≤ 1, q � 0
(58)

as shown.

Introduce Lagrange multipliers λ ∈ Rm
i for the inequality q � 0, and ν for 1T q − 1 ≤ 0. The Karush-

Kuhn-Tucker (KKT) conditions for optimal primal and dual variables q∗, λ∗, ν∗ are

q∗ � 0, 1T q∗ ≤ 1

λ∗ � 0, ν∗ ≥ 0

ν∗(1T q∗ − 1) = 0, λ∗
j q

∗
j = 0, j = 1, . . . , mi,

2(q∗j − pij) + ν∗ − λ∗
j = 0, j = 1, . . . , mi.

Eliminating the slack variables λj , we get the equivalent optimality conditions

q∗ � 0, 1T q∗ ≤ 1, (59)

ν∗ ≥ 0, ν∗(1T q∗ − 1) = 0, (60)

q∗j (2(q∗j − pij) + ν∗) = 0, j = 1, . . . , mi, (61)

2(q∗j − pij) + ν∗ ≥ 0, j = 1, . . . , mi. (62)

If ν∗ < 2pij , then from the last condition, necessarily q∗i > 0. From (61), this gives us q∗j = pij − ν∗/2.
If on the other hand ν∗ ≥ 2pij , then ν∗ ≥ 2pij − 2q∗j as well since q∗j ≥ 0, and so to satisfy (61), we must
have q∗j = 0. Combining these gives us that

q∗j = max

{

0,pij −
ν∗

2

}

. (63)

The q∗j must satisfy 1T q∗ ≤ 1, i.e.,
∑

max{0, qj − ν∗/2} ≤ 1. However, we must also satisfy the comple-

mentary slackness condition ν∗(1T q∗ − 1) = 0. These two conditions combined together lead to a unique
solution for ν∗, obtained either at ν∗ = 0, or at the solution of

∑

max{0, qj − ν∗/2} = 1; from ν∗ the q∗j can
be found from (63).

4.1.2 Decentralization

Now consider the issue of decentralization. Observe that in the above algorithm, g can be computed locally
at each node if u, the unit eigenvector corresponding to λ2(W ), is known; more precisely, if each node i is
aware of its own component of u and that of its immediate neighbors. The projection step can be carried out
exactly at each node using local information alone. The rest of the section proceeds as follows: first we will
discuss approximate distributed computation of the eigenvector u of W , and then show that the subgradient
method converges to a certain neighborhood of the optimal value in spite of the error incurred during the
distributed computation of u at each iteration.

The problem of distributed computation of the top-k eigenvectors of a matrix on a graph is discussed in
[KM04]. By distributed computation of an eigenvector u of a matrix W , we mean that each node i is aware
of the ith row of W , and can only communicate with its immediate neighbors. Given these constraints, the
distributed computation must ensure that each node holds its value ui in the unit eigenvector u. In [KM04],
the authors present a distributed implementation of orthogonal iterations, referred to as DecentralOI (for
decentralized orthogonal iterations), along with an error analysis.
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Since the matrix W is symmetric and stochastic (it is a convex combination of symmetric stochastic
matrices), we know that the first eigenvector is 1. Therefore orthogonal iterations takes a particularly
simple form (in particular, we do not need any Cholesky factorization type of computations at the nodes).
We describe orthogonal iterations for this problem below:

• DecentralOI: Initialize the process with some randomly chosen vector v0; for k ≥ 1, repeat

– Set vk = Wvk−1

– (Orthogonalize) vk = vk − (
∑n

i=1
1
nvki)1

– (Scale to unit norm) vk = vk/‖vk‖

Here, the multiplication by W is distributed, since W respects the graph structure, i.e., Wij 6= 0 only if
(i, j) is an edge. So entry i of vk can be found using only values of vk−1 corresponding to neighbors of node
i, i.e., the computation is distributed. The orthogonalize and scale steps can be carried out in a distributed
fashion using the gossip algorithm outlined in this paper, or just by distributed averaging as described in
[XB03] and used in [KM04]. Observe that the very matrix W can be used for the distributed averaging step,
since it is also a probability matrix. We state the following result (applied to our special case) from [KM04],
which basically states that it is possible to compute the eigenvector up to an arbitrary accuracy:

Lemma 6 If DecentralOI is run for Ω (tτmix log(16/ε)) iterations, producing orthogonal vector u, then

‖u− ur‖ ≤ O

(

(

λ3

λ2

)t

n

)

+ 3ε4t, (64)

where ‖u − ur‖ is the L2 distance between u and the eigenspace of λ2; ur is the vector in the eigenspace
achieving this distance, and τmix is the mixing time of the doubly stochastic matrix used in the averaging
step in DecentralOI.

For the algorithm to be completely decentralized, a decentralized criterion for stopping when the eigen-
vector has been computed up to an accuracy ε is necessary. This is discussed in detail in [KM04]; we merely
use the fact that it is possible for the nodes to compute the eigenvector, in a distributed fashion, up to a
desired accuracy. Note also that the very matrix W being optimized is a doubly stochastic matrix, and can
be used in the averaging step in DecentralOI. If this is done, as the iterations proceed, the averaging step
becomes faster.

From the above discussion, it is clear we have a distributed algorithm that computes an approximate
eigenvector, and therefore an approximate subgradient.

4.1.3 Convergence analysis

It now remains to show that the subgradient method converges despite approximation errors in computation
of the eigenvector, which spill over into computation of the subgradient. To show this, we will use a result
from [Kiw04] on the convergence of approximate subgradient methods.

Given an optimization problem with objective function f and feasible set S, the approximate subgradient
method generates a sequence {xk}∞k=1 ⊂ S such that

xk+1 = PS(xk − νkgk), gk ∈ ∂εk
fS(xk), (65)

where PS is a projection onto the feasible set, νk > 0 is a stepsize, and

∂εk
fS(xk) = {g : fS(x) ≥ fS(xk) + 〈g, x − xk〉 − εk ∀x} (66)

is the εk-subdifferential of the objective function fS at xk.

Let γk = (1/2)|gk|2νk, and δk = γk + εk. Then we have the following theorem from [Kiw04],
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Lemma 7 If
∑

νk = ∞, then
lim inf

k
f(xk) ≤ f∗ + δ,

where δ = lim sup δk, and f∗ is the optimal value of the objective function.

Consider the k-th iteration of the subgradient method, with current iterate p(k), and let
√

ε be the error
in the (approximate) eigenvector u corresponding to λ2(W (p(k))). (By error in the eigenvector, we mean
the L2 distance between u and the (actual) eigenspace corresponding to λ2). Again, denote by ur the vector
in the eigenspace minimizing the distance to u, and denote the exact subgradient computed from ur by gr.

We have ‖u− ur‖2 ≤ ε. First we find εk in terms of ε as follows:

λ2(W (p)) ≥ λ2(W (p(k))) + 〈gr, p − p(k)〉
= λ2(W (p(k))) + 〈g, p − p(k)〉

− 〈g − gr, p − p(k)〉.

Therefore

εk = sup
p
〈g − gr, p − p(k)〉

= c‖g − gr‖2,

where c is a scaling constant.

Next, we will find ‖g − gr‖2 in terms of ε as follows:

‖u − ur‖2 ≤ ε ⇒
n
∑

i=1

(ui − uri)
2 ≤ ε

⇒ (ui − uri)
2 ≤ ε, 1 ≤ i ≤ n.

The lth component of g − gr is

(g − gr)l =
1

2n

(

(ui − uj)
2 − (uri − urj )

2
)

=
1

2n
((ui − uri) − (uj − urj ))((ui − uj)

+ (uri − urj )).

Combining the facts that
|ui − uri | ≤

√
ε, ∀i;

and (since ‖u‖ = 1)

|ui − uj | ≤
√

2, ∀i, j

we get

(g − gr)
2
l ≤ 1

4n2
(2
√

ε)2(2
√

2)2 = 8ε/n2.

Summing over all m edges gives us ‖g − gr‖2 ≤ 8mε/n2, i.e., εk ≤ 8mε/n2.

Now choose νk = 1/k. From (57), it can be seen that ‖gk‖2 is bounded above by
√

m/n, and so γk in
Theorem 7 converges to 0. Therefore if in each iteration i, the eigenvector is computed to within an error of
εi, and ε = lim inf εi, we have the claimed result.

Remark: The fact that each constraint in (55) is local is crucial to the existence of a distributed
algorithm using the subgradient method. The proof of convergence of the subgradient method relies on the
fact that the distance to the optimal set decreases at each iteration. This means that an exact projection
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needs to be computed at each step: if only an approximate projection can be computed, this crucial property
of decreasing the distance to the optimal set cannot be verified.

Thus, for example, if the algorithm were formulated in terms of picking one of all possible edges at
random at each step, the constraint would be

∑

(i,j)∈E Pij = 1, which is not a local constraint. Although
this algorithm has a larger feasible set than the optimization problem for the algorithm A, it does not allow for
a distributed computation of the optimal algorithm: though the projection can be computed approximately
by distributed averaging, an exact projection cannot be computed, and the convergence of the subgradient
method is not guaranteed.

5 Averaging time and mixing time

In this section we explore the relation between the averaging time of an algorithm A(P ) with a symmetric
probability matrix P , and the mixing time of the Markov chain with transition matrix P . Since we assume
that P is symmetric, the Markov chain with transition matrix P has a uniform equilibrium distribution.

Definition 2 (Mixing time) For a Markov chain with transition matrix P , let ∆i(t) = 1
2

∑n
j=1 |P t

ij − 1
n |.

Then, the ε-mixing time is defined as

Tmix(ε) = sup
i

inf{t : ∆i(t
′) ≤ ε, ∀ t′ ≥ t}. (67)

Recall also the following well known bounds on the ε-mixing time for a Markov chain (see for example,
the survey [Gur00]).

Lemma 8 The ε-mixing time of a Markov chain with doubly stochastic transition matrix P is bounded as:

λmax(P ) log(2ε)−1

2(1 − λmax(P ))
≤ Tmix(ε) ≤

log n + log ε−1

1 − λmax(P )
. (68)

For ε = o(1/n), (68) becomes

Ω

(

λmax(P ) log n

2(1 − λmax(P ))

)

≤ Tmix(ε) ≤ O

(

log n

1 − λmax(P )

)

. (69)

In the rest of the paper, if we do not specify ε, we mean ε = o(1/n); the corresponding mixing time Tmix(ε)
is denoted simply as Tmix.

We use Lemma 8 and Theorem 3 to prove the following Theorem:

Theorem 7 The averaging time of the gossip algorithm A(P ) in absolute time is related to the mixing time
of the Markov chain with transition matrix P̃ = 1

2 (I + P ) as

Tave(ε) = Θ(log n + Tmix(ε, P̃ )).

Proof. Let ε = 1/nδ. It is shown in [KSSV00] that Tave(ε) = Ω(log n) for ε < 1/2. Since P is symmetric,
we can use the result in Corollary 1, so that in absolute time, for ε = 1/nδ, Tave(ε) = Θ( log n

1−λ2(P ) ).

We will first show that Tave(ε) = Ω(log n + Tmix(ε, P̃ )). We already have using the result of [KSSV00]
and Corollary 1 that

Tave(ε) = Ω

(

log n +
log n

1 − λ2(P )

)

. (70)

Note that the eigenvalues of P̃ are all positive, so that λmax(P̃ ) = λ2(P ). There are two cases to consider:
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• λ2(P̃ ) ≤ 1/4:4 In this case, by Lemma 8, Tmix(ε, P̃ ) = O(log n). Further, log n
1−λ2(P ) = O(log n). It

follows that Tave(ε) = Ω(log n + Tmix(ε)).

• λ2(P̃ ) > 1/4: From Lemma 8, we get

Tmix(ε, P̃ ) = Θ

(

log n

1 − λ2(P̃ )

)

(71)

= Θ

(

log n
1
2 (1 − λ2(P ))

)

. (72)

Combining this with (70), we see that Tave(ε) = Ω(log n + Tmix(ε, P̃ )).

Now we will show that Tave(ε) = O(log n + Tmix(ε, P̃ )), which will give us our result. Again we consider
the same two cases.

• If λ2(P̃ ) < 1/4, then by (1) and Lemma 8,

Tave(ε) ≤ 3δ log n

1 − λ2(P )
(73)

≤ 3δ

(

log n +
λ2(P ) log n

1 − λ2(P )

)

(74)

= Θ

(

log n +
λ2(P̃ ) log n

1 − λ2(P )

)

(75)

= O(log n + Tmix(ε, P̃ )). (76)

• If λ2(P̃ ) > 1/4, then using Lemma 8, and λ2(P̃ ) = 1
2 (1 + λ2(P ),

Tmix(ε, P̃ ) = Θ

(

log n

1 − λ2(P )

)

, (77)

so that

Tave(ε) ≤ 3δ log n

1 − λ2(P )

= O(log n + Tmix(ε, P̃ )).

Combining the two results gives us the theorem.

Figure 2 is a pictorial description of Theorem 7. The x-axis denotes mixing time and the y-axis denotes
averaging time. The scale on the axis is in order notation. As shown in the figure, for P such that
Tmix(P̃ ) = o(log n), Tave

(

1
n , P

)

= Θ(log n); for P such that Tmix(P̃ ) = Ω(log n), Tave

(

1
n , P

)

= Θ(Tmix).
Thus, the mixing time of the random walk essentially characterizes the averaging time of the corresponding
averaging algorithm on the graph.

6 Applications

In this section, we briefly discuss applications of our results in the context of wireless ad-hoc networks and
the Internet.

4The specific value 1

4
is not crucial; we could have chosen any a > 0 instead.
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Figure 2: Graphical interpretation of Theorem 7.

6.1 Wireless networks

The Geometric Random Graph, introduced by Gupta and Kumar [GK00], has been used successfully to
model ad-hoc wireless networks. A d-dimensional Geometric Random Graph on n nodes, denoted Gd(n, r),
models a wireless ad-hoc network of n nodes with wireless transmission radius r. It is obtained as follows:
place n nodes on a d dimensional unit cube uniformly at random and connect any two nodes that are within
distance r of each other. An example of a two dimensional graph, G2(n, r) is shown in Figure3. The following
is a well-known result about the connectivity of Gd(n, r) (for a proof, see [GK00], [GMPS04], [Pen03]):

Lemma 9 For nrd ≥ 2 logn, the G(n, r) is connected with probability at least 1 − 1/n2.

We have the following results for averaging algorithms on a wireless sensor network, which are stated at
the end of this section as Theorem 9. (We will prove these by evaluating the mixing times for the natural
and optimal random walks on geometric random graphs, and then using Theorem 7, which relates averaging
times and mixing times.)

• On the Geometric Random Graph, Gd(n, r), the absolute 1/nα-averaging time, α > 0, of the optimal

averaging algorithm is Θ
(

log n
r2

)

.

Thus, in wireless sensor networks with a small radius of communication, distributed computing is nec-
essarily slow, since the fastest averaging algorithm is itself slow. However, consider the natural averaging
algorithm, based on the natural random walk, which can be described as follows: each node, when it becomes
active, chooses one of its neighbors uniformly at random and averages its value with the chosen neighbor.

We have noted before that in general, the performance of such an algorithm can be far worse than the
optimal algorithm. Interestingly, in the case of Gd(n, r), the performances of the natural averaging algorithm
and the optimal averaging algorithm are comparable (i.e. they have averaging times of the same order). We
will show the following result for the natural averaging algorithm on geometric random graphs:
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• In the Geometric Random Graph, Gd(n, r), the absolute 1/nα-averaging time, α > 0, of the natural

averaging algorithm is of the same order as the optimal averaging algorithm, i.e., Θ
(

log n
r2

)

.

We now prove the following theorem about the mixing times of the optimal and natural random walks
on Gd(n, r):

Theorem 8 For Gd(n, r) with r = ω(rc(d)), with high probability,

(a) the mixing time of the optimal reversible random walk with uniform stationary distribution is Θ
(

r−2 log n
)

,
and

(b) the mixing time of the modified natural random walk, where a node jumps to any of its neighbors (other
than itself) with equal probability, and has a self loop of probability 1/2, is also Θ

(

r−2 log n
)

.

The outline of the proof is as follows. To prove (a), we will start by showing that with high probability,
the geometric random graph is a regular graph. We bound the mixing rate of the optimal random walk
on the corresponding regular graph, and then relate the mixing times of the optimal random walks on this
regular graph and the Gd(n, r) graph. The proof of (b) uses a modification of the path counting argument
of Diaconis and Stroock to upper-bound the second largest eigenvalue of the natural random walk on the
Gd(n, r) graph.

We start with evaluating the mixing time of the optimal random walk on Gd(n, r).

6.1.1 Regularity of Gd(n, r)

In this section, we prove a regularity property of Gd(n, r), which allows a simpler analysis of the mixing time
of random walks.

Lemma 10 For Gd(n, r) with r = ω(rc(d)), the degree of every node is αdnrd(1+o(1)) with high probability,

where αd = πd/2

Γ(1+d/2) .

Proof. Let nodes be numbered i = 1, . . . , n. Consider a particular node, say 1. Let random variable Xj

be 1 if node j is within distance r of node 1 and 0 otherwise. The Xjs are IID Bernoulli with probability
pd = αdr

d of success (the volume of a d−dimensional sphere with radius r is αdr
d). The degree of node 1 is

d1 =

n
∑

j=2

Xj . (78)

By application of the Chernoff bound we obtain

P (|
∑n

j=2 Xj − (n − 1)pd| ≥ δ(n − 1)pd) ≤ 2 exp
(

− δ2(n−1)pd

2

)

. (79)

If we choose δ =
√

2c log n√
pd(n−1)

, then the right-hand side in (79) becomes 2 exp(−c log n) = 2/nc. So, for

pd = ω(log n/n), node 1 has degree

d1 = (n − 1)pd ±
√

2c(n − 1)pd log n ' npd(1 ± o(1)), w.p. ≥ 1 − 2
nc . (80)

Using the union bound, we see that

P (any node has degree 6= npd(1 ± o(1))) ≤ n 2
nc = 2

nc−1 . (81)

So for large n, w.h.p., all nodes in the d-dimensional G(n, r) have degree npd(1 ± o(1)).
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6.1.2 Proof of Theorem 8(a): Optimal random walk on Gd(n, r)

In this section, we characterize the scaling of the optimal random walk on Gd(n, r). We first consider the
case of d = 1, i.e. G1(n, r). This is much easier than the higher dimensional Gd(n, r) with d ≥ 2. We
completely characterize G1(n, r) with the help of one-dimensional regular graphs. For Gd(n, r) with d ≥ 2,
we obtain a lower bound on the fastest-mixing reversible random walk. Note that since we are interested
in reversible random walks with uniform stationary distribution, the transition matrix corresponding to the
random walk must be symmetric. (An upper bound of the same order is implied by the natural random
walk as in Theorem 8(b).) The remainder of the section is a proof of Theorem 8(a).

Optimal random walk on G1(n, r)

Let Gk denote the regular graph on n nodes with every node of degree 2k; it is constructed by placing
the n nodes on the circumference of a circle, and connecting every node to k neighbors on the left, and k on
the right. From the regularity lemma, we have that w.h.p., every node in G(n, r) has degree 2nr(1 ± o(1)).
Also, observe that the same technique can be used to show that w.h.p. the number of neighbors to the right
(ditto left) is nr(1 ± o(1)).

In this one-dimensional case, it is clear that w.h.p., the G(n, r) is a subgraph of Gk for k = 4nr, since for
any mapping of the nodes of G(n, r) to Gk, an edge between nodes i and j in G(n, r) is also present in Gk.
Similarly, G(n, r) also contains Gl, for l = (1/2)nr. Given this, we can now study the problem of finding the
optimal random walk on Gk with uniform stationary distribution. We have the following lemma:

Lemma 11 For k, n such that k ≤ n/4, the mixing rate of the fastest-mixing symmetric random walk on
Gk cannot be smaller than cos(2πk/n).

Proof. It can be shown using symmetry arguments [PXBD03] that the fastest mixing Markov chain on Gk

with uniform stationary distribution will have a symmetric and circulant transition matrix. (For this simple
graph, this can be easily seen using convexity of the second eigenvalue). So we can restrict our attention to
the (circulant symmetric) transition matrices

P =

















p0 p1 . . . pk 0 0 . . . 0 pk . . . p2 p1

p1 p0 p1 . . . pk 0 . . . 0 0 pk . . . p2

...
...

...
...

p1 . . . pk 0 0 . . . 0 pk . . . p2 p1 p0

















(82)

The eigenvalues of this matrix are

µm =

k
∑

j=0

pje
−2πijm/n +

k
∑

j=1

pje
−2πi(n−j)m/n)

= p0 + 2

k
∑

j=1

pj cos(2πjm/n), m = 0, . . . , n − 1.

For m = 0, µm = 1, which is the largest eigenvalue. Let p = (p0, p1, . . . , pk, pk, . . . , p1). We are interested in
the smallest possible second largest eigenvalue in absolute value, i.e., in

minimizep maxm={1,...,n−1} |µm|
subject to 1T p = 1,

p � 0.
(83)
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We can obtain a lower bound for the optimal value of (83). Now,

µ2 ≤ maxm={1,...,n−1} |(µm)|
⇒ minp µ2 ≤ minp maxm={1,...,n−1} |(µm)|. (84)

The right hand side is the solution of the following linear program with a single total sum constraint:

minimizep p0 + 2
∑k

j=1 pj cos(2πj/n)

subject to 1T p = 1
p � 0.

(85)

For k such that each of the coefficients cos(2πj/n) is positive, i.e., for k ≤ n/4, the smallest coefficient is
cos(2πk/n), and so for all such k and n, the minimum value is cos(2πk/n), obtained at pk = 1/2, pj = 0
for all other j. 5 So the fastest mixing random walk on this graph cannot have a mixing rate smaller than
cos(2πk/n).

The above result was proved for all k ≤ n/4; however, we will be interested only in those cases where
k = o(n), i.e., the graph is not too well connected. For such k, the following lemma allows us to find a
’nearly optimal’ transition matrix:

Lemma 12 For k = o(n), there is a random walk on Gk for which the mixing rate is λmax = cos(2πk/n) +
Θ(k4/n4).

Proof. For simplicity let us assume that 2k divides n; it is not difficult to obtain the same results when this
is not the case.

Consider the Markov chain with transition probabilities p0 = 0, pi = δ, i = 1, . . . , k−1, pk = 1/2−(k−1)δ.
We will show that for a certain δ, small enough, µ1 is indeed λmax, and is away from cos(2πk/n) by Θ(k4/n4).

For the transition matrix P ∗ corresponding to these probabilities, the eigenvalues are, for m = 0, . . . , n−1,

µm = 2
∑k−1

i=1 δ cos( 2πim
n ) + 2( 1

2 − (k − 1)δ) cos( 2πkm
n )

= cos( 2πkm
n ) + 2δ

∑k−1
i=1 (cos( 2πim

n ) − cos( 2πkm
n ))

(86)

We want to find the smallest positive δ such that µ1 is λmax (this is not true, for example, for δ = 0).

However, we need δ to be small enough so that the residual term, 2δ
∑k−1

i=1 (cos(2πi/n) − cos(2πk/n)), is
small compared to cos(2πk/n).

Since k = o(n) and we hope that δ is small (o(1)), we see that the values of m for which |µm| is comparable
to µ1 are those values of m for which | cos(2πkm/n)| = 1. This happens for m = n

2k , n
k , 3n

2k , . . . , n
2 . (We only

need consider values of m until n/2, since λi = λn−i.) At all odd multiples of n/2k, cos(2πkm/n) = −1, and
for the even multiples, cos(2πkm/n) = 1. For δ to satisfy |µm| ≤ µ1, we must have for m an even multiple
of n/2k,

1 + 2δ
∑k−1

i=1 (cos( 2πim
n ) − 1) ≤ cos( 2πk

n ) + 2δ
∑k−1

i=1 (cos 2πi
n − cos 2πk

n ); (87)

and for m an odd multiple of n/2k

| − 1 + 2δ

k−1
∑

i=1

(cos(
2πim

n
) + 1)| ≤ cos(

2πk

n
) + 2δ

k−1
∑

i=1

(cos
2πi

n
− cos

2πk

n
),

that is,

1 − 2δ

k−1
∑

i=1

(cos(
2πim

n
) + 1) ≤ cos(

2πk

n
) + 2δ

k−1
∑

i=1

(cos
2πi

n
− cos

2πk

n
). (88)

5Note that this is only a lower bound: for this p, if k divides n, the second largest eigenvalue is also 1, attained at m = n/k.
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From (87), we see that δ must satisfy

δ ≥
1
2 (1 − cos( 2πk

n )

(k − 1)(1 − cos( 2πk
n )) +

∑k−1
i=1 cos( 2πi

n ) + cos( 2πim
n )

(89)

for m an odd multiple of n/2k, and from (88),

δ ≥
1
2 (1 − cos( 2πk

n )

(k − 1)(1 − cos( 2πk
n )) +

∑k−1
i=1 cos( 2πi

n ) − cos( 2πim
n ))

(90)

for m a multiple of n/k. So δ can be only as small as the maximum over the specified m of all of these
right-hand sides.

Note that the only term dependent on m in each of these expressions is
∑k−1

i=1 cos(2πim/n). For m =
pn/2k, p odd,

k−1
∑

i=1

cos(2πim/n) =

k−1
∑

i=1

cos(πip/k) = 0, (91)

since cos(πip/k) = − cos(π(k − i)p/k) for odd p, and if k is even, cos(πkp/2k) = 0 also. For m = qn/k,

k−1
∑

i=1

cos(2πim/n) =

k
∑

i=1

cos(2πiq/k) − 1 = −1 (92)

since
∑k

i=1 cos(2πiq/k) = 0 (sum of real parts of the kth roots of unity).

So δ = Θ(k/n2), and returning to (86), we see that the residual term in µ1 is of order (k/n2)(k3/n2),
i.e., k4/n4, while cos(2πk/n) ≈ 1 − 2π2k2/n2. So the difference between λmax and cos(2πk/n) is Θ(k4/n4).

Optimal walk on G2(n, r)

We present the lower bound on the fastest-mixing reversible random walk on G2(n, r) in this section. The
same method can be easily extended to d ≥ 3. First we characterize the fastest-mixing reversible random
walk on a two-dimensional regular graph, Gkk , defined as follows: form a lattice on the unit torus, where
lattice points are located at (i/

√
n, j/

√
n), −√

n/2 ≤ i, j ≤ +
√

n/2, and place the n nodes at these points.
An edge between two vertices exists if the L∞ distance between them is at most k/

√
n. For such Gkk the

fastest-mixing time scales as follows:

Lemma 13 The mixing rate of the optimal reversible random walk on Gkk is no smaller than cos2(2πk/
√

n).

Proof.

As in the one-dimensional case, by symmetry, the optimal transition probability between nodes i and
j will depend only on the distance between these nodes. Using this, we can write the transition matrix
corresponding to such a symmetric random walk on Gkk as the Kronecker (or tensor) product Pk ⊗ Pk,
where Pk ∈ Rn×n is as in (82). This is not difficult to visualize: for i, j = 0, . . . , n − 1, a, b = 1, . . . , n,

(P ⊗ P )ni+a,nj+b = Pi+1,j+1Pab. (93)

Now the eigenvalues of A ⊗ B are all products of eigenvalues of A and B, so that for 0 ≤ i, j ≤ n − 1,

λij(P ⊗ P ) = λi(P )λj(P )

= (p0 + 2

k
∑

m=1

pm cos(2π
im√

n
) · (p0 + 2

k
∑

m=1

pm cos(2π
jm√

n
).
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The eigenvalue 1 is obtained by setting i = j = 0; all other eigenvalues will have absolute value less equal 1.
We want to find a lower bound for the second largest eigenvalue in absolute value, call it λ?

max.

As before, choose i = j = 1. Then

λ11 ≤ max
i,j 6=0

|λij |

⇒ min
p

λ11 ≤ min
p

max
i,j 6=0

|λij |,

so that minp λ11 is a lower bound for λ?
max. Making the assumption again that k ≤ √

n/4, the minimizing
p is the one with pk = 1/2 and pi = 0, i 6= k (which corresponds to transition probabilities of 1/4 for each of
the 4 farthest diagonal nodes, and 0 everywhere else). The value of λ11 corresponding to this distribution is

cos2(2π k√
n
). This is of order 1 − Θ( k2

n ), since cos2(2π k√
n
) = 1

2 + 1
2 cos(2 2πk√

n
) = 1 − Θ(k2

n ). 6

The Gkk graph was constructed using the L∞ distance between vertices. Therefore, the graph formed by
placing edges between vertices based on distance measured in any Lp norm (for the same k) is a subgraph
of Gkk , and has a mixing time lower bounded by the mixing time of Gkk . Thus our bounds will be valid for
the G(n, r) graph constructed according to any Lp norm.

Now we will use the bound on the fastest mixing walk on G11 to obtain a bound for G2(n, r). First we
create a new graph G̃2(n, r) as follows: place a square grid with squares of side r on the unit torus. By
Lemma 10, each square of area r2 contains nr2(1 + o(1)) nodes. For each such square, connect every node
in this square to all the nodes in the neighboring squares, as well as the nodes in the same square. Thus,
each node is connected to 9nr2(1 + o(1)) nodes in G̃2(n, r). By definition, all edges in G2(n, r) are present
in G̃2(n, r) and therefore, the fastest-mixing random walk on G̃2(n, r) is at least as fast as that of G2(n, r).
Thus, lower-bounding the mixing time of the fastest-mixing random walk on G̃2(n, r) is sufficient.

Construct a graph G of r−2 nodes as follows: corresponding to each square in the square grid used in
G̃2(n, r), create a node in G. Thus, G has r−2 nodes. Two nodes are connected in G if the corresponding
squares in the grid are adjacent. Thus, each node is connected to 8 other nodes. Thus, G is a regular graph
G11 with r−2 nodes. In order to use this bound as a lower bound on G̃2(n, r), we need to show that the
fastest-mixing symmetric random walk on G̃2(n, r) induces a time-homogeneous reversible random walk on
G. This will be implied by the following Lemma.

Lemma 14 There exists a fastest-mixing symmetric random walk on G̃2(n, r), whose transition matrix P
has the following property: for any two nodes i and j belonging to the same square, Pik = Pjk for k 6= i, j,
and Pii = Pjj .

Proof. We prove this by contradiction. Suppose the claimed statement is not true, i.e., there is no transition
matrix achieving the smallest λmax with the above property. Since the optimal value of λmax must be attained
([BDX04]), consider such an optimizing P1, and let i and j be two nodes in the same square for which the
above property is not true.

Let A be the permutation matrix with Aij = Aji = 1, Aii = Ajj = 0, and all other diagonal entries
1 and all other non-diagonal entries 0. Note that A is a symmetric permutation matrix, and therefore
A−1 = AT = A. Consider the matrix P2 = AP1A; since A = A−1, P1 and P2 are similar, and so have
the same eigenvalues. Note that since i and j belong to the same square in G̃, they have exactly the same
neighbors, and therefore P2 also respects the graph structure (i.e., P2ij 6= 0 only if i and j have an edge
between them).

Now, λmax(P ) is a convex function of P for symmetric stochastic P ([BDX04]), so

λmax(
P1 + P2

2
) ≤ 1

2
λmax(P1) +

1

2
λmax(P2) = λmax(P1). (94)

6It is easy to see that a result similar to Lemma 12 can be obtained for d ≥ 2 using the same method.
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But P = (P2 + P1)/2 has the property claimed in the lemma for nodes i and j: Pik = Pjk for all k 6= i, j,
Pii = Pjj = (P1ii + P1jj )/2, and λmax(P ) ≤ λmax(P1). We can apply the above procedure recursively (even
for multiple rows) to construct a matrix P ∗ with smallest λmax and the property claimed in the Lemma.
This contradicts our assumption and completes the proof.

From Lemma 14, we see that under the fastest mixing random walk, the probability of transiting from
a node in a square, say A, to some neighboring square, say B, is the same for all nodes in A and B. Thus,
essentially we can view the random walk as evolving over squares. That is, the fastest random walk on
G̃2(n, r) induces a random walk on the graph G. By definition of mixing time, the mixing time for this
induced random walk on G (with the induced equilibrium distribution) certainly lower bounds the mixing
time for the random walk on G̃2(n, r). Further, the induced random walk is reversible as the random walk
was symmetric on G̃2(n, r). Therefore, we see that the lower bound on mixing time for the fastest-mixing
random walk on G implies a lower bound on the mixing time for the fastest-mixing random walk on G̃2(n, r).
From Lemma 13 we have a lower bound of Ω(r−2 log n) on the mixing time of the fastest-mixing symmetric
random walk (i.e. with uniform stationary distribution). From Lemma 15 given below, this in turn implies
a lower bound of Ω(r−2 log n) on the mixing time of the fastest mixing reversible random walk on G2(n, r).
This completes the proof of 2(a) for G2(n, r). It is easy to see that the arguments presented above can
readily be extended to the case of d ≥ 3.

Lemma 15 Consider a connected graph G = ({1, . . . , n}, E) with diameter Ω(log n). Let T ∗
mix(π) be the mix-

ing time of the fastest mixing reversible random walk on G with stationary distribution π = [π(1) . . . π(n)]T .

Let β(π) = maxi,j
π(i)
π(j) ≤ C, where C is a constant. Then,

T ∗
mix(π) = Ω

(

T ∗
mix

(

1

n
1

))

, (95)

i.e., the fastest mixing time for π is no faster than that of the uniform distribution.

Proof. Consider a reversible random walk with stationary distribution π on G and let its transition matrix
be R. We will prove the following claim, which in turn implies the statement of the Lemma.

Claim I. There exists a symmetric random walk on graph G with transition matrix S such that

Tmix(S) = O(Tmix(R)).

Proof of Claim I. For a reversible matrix R, by definition,

π(i)R(i, j) = π(j)R(j, i), ∀ i, j.

Define matrix P = [P (i, j)], where for i 6= j,

P (i, j) =

{

R(i, j) if π(i) ≥ π(j)

π(i)R(j, i)/π(j) if π(i) < π(j),

and P (i, i) = 1 −
∑

j 6=i P (i, j).

By definition and reversibility of R, P is a symmetric doubly stochastic matrix. Further, for i 6= j,
P (i, j) > 0 if and only if R(i, j) > 0. Hence, P can be viewed as a transition matrix of a symmetric random
walk on G, whose stationary distribution is uniform.

Define QR = [QR(i, j)], where

QR(i, j) = π(i)R(i, j) = π(j)R(j, i).
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Similarly, define QP = 1
nP . Let φ : {1, . . . , n} → R be a non-constant function. Define two quadratic forms,

ER and EP , of φ, as

ER(φ, φ) =
1

2

∑

i,j

(φ(i) − φ(j))2QR(i, j);

EP (φ, φ) =
1

2

∑

i,j

(φ(i) − φ(j))2QP (i, j).

Let the variance of φ with respect to these two random walks be

V R(φ) =
1

2

∑

i,j

(φ(i) − φ(j))2π(i)π(j);

V P (φ) =
1

2

∑

i,j

(φ(i) − φ(j))2
1

n2
.

Let λ2(P ) and λ2(R) denote the second largest eigenvalue of matrices P and R respectively. The minimax
characterization of eigenvalues ([HJ85], page 176), gives a bound on the second largest eigenvalue of a
reversible matrix X(= P, R) as

(1 − λ2(X)) = inf

{EX(φ, φ)

V X(φ)
| φ a non-constant

}

. (96)

For any π,
∑

i π(i) = 1, hence maxi π(i) ≥ 1/n and minj π(j) ≤ 1/n. Further, by the property of π,

maxi,j
π(i)
π(j) = maxi π(i)

minj π(j) < C. Hence, for any k,

π(k) ≥ min
i

π(i) ≥ maxi π(i)

C
≥ 1

nC
, and

π(k) ≤ max
i

π(i) ≤ C min
j

π(j) ≤ C

n
.

Thus, for any k,
π(k)

1/n
∈
(

1

C
, C

)

.

This implies that
ER(φ)

EP (φ)
∈
(

1

C2
, C2

)

;
V R(φ)

V P (φ)
∈
(

1

C2
, C2

)

.

Hence, from (96) we obtain
(1 − λ2(P )) = Θ(1 − λ2(R)).

Since the diameter of G is Ω(log n), it is easy to see that the mixing time of all random walks on G is
lower bounded by Ω(log n). Hence, from Lemma 8,

Tmix(R) = Θ

(

log n

1− λmax(R)

)

.

By definition, (1 − λmax(R)) ≤ (1 − λ2(R)). Hence,

Tmix(R) = Ω

(

log n

1 − λ2(R)

)

.

It is easy to see that the random walk on G with symmetric transition matrix S = (I + P )/2 has mixing
time given by

Tmix(S) = Θ

(

log n

1 − λ2(P )

)

.
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Thus, Tmix(S) = O(Tmix(R)). This completes the proof of Claim I and the proof of Lemma 15.

Remark: In fact, a stronger result can be proved, which is

T ∗
mix(π) = Θ

(

T ∗
mix

(

1

n
1

))

.

One part of this has already been proved in the Lemma. The reverse direction is obtained similarly, as follows.
Consider any symmetric random walk with transition matrix P , and suppose a stationary distribution π is

specified, satisfying β(π) = maxi,j
π(i)
π(j) ≤ C, where C is some constant. Then there is a reversible random

walk R̄ with stationary distribution π, such that Tmix(R̄) = O(Tmix(P )). R̄ is obtained as follows. Construct
a matrix R from P as:

R(i, j) =

{

R(i, j) if π(i) ≥ π(j)

π(i)P (i, j)/π(j) if π(i) < π(j),

for i 6= j, and Rii = 1 −∑j 6=i Rij . R is a stochastic reversible matrix, with stationary distribution π, since
π(i)R(i, j) = π(j)R(j, i). Following the same steps as above, we can conclude that

1 − λ2(R) = Θ(1− λ2(P )).

The matrix R̄ = (I + R)/2 has the same eigenvectors as R, and therefore the same stationary distribution
π. The eigenvalues are (1 + λ2(R))/2. Therefore, since the diameter of the graph is Ω(log n),

Tmix(R̄) = Θ

(

log n

1 − λ2(R)

)

.

As before,

Tmix(P ) = Θ

(

log n

1− λmax(P )

)

= Ω

(

log n

1 − λ2(P )

)

.

Therefore, Tmix(R̄) = O(Tmix(P )), and we have the stronger result claimed in the Remark.

6.1.3 Proof of Theorem 8(b): Natural random walk on Gd(n, r)

In this section, we study the mixing properties of the natural random walk on Gd(n, r). Recall that under
the natural random walk, the next node is equally likely to be any of the neighboring nodes. It is well known
that under the stationary distribution, the probability of the walk being at node i is proportional to the
degree of node i. By Lemma 10, all nodes have almost equal degree. Hence the stationary distribution is
almost uniform (it is uniform asymptotically). The rest of this section is the proof of Theorem 8(b).

We use a modification of a method developed by Diaconis-Stroock [DS91] to obtain bounds on the second
largest eigenvalue using the geometry of the Gd(n, r).

Note that for d = 1, the proof is rather straightforward. The difficulty arises in the case of d ≥ 2. For
ease of exposition in the rest of the section, we consider d = 2. Exactly the same argument can be used for
d > 2. We begin with some initial setup and notation.

Square Grid: Divide the unit torus into a square grid where each square is of area r2/16, i.e. of side length
r/4. Consider a node in a square. By definition of G(n, r), this node is connected to all nodes in the same
square and all neighboring squares.

Paths and Distribution: A path between two nodes i and j, denoted by γij , is a sequence of nodes
(i, v1, . . . , vl−1, j), l ≥ 1, such that (i, v1), . . . , (vl−1, j) are edges in G2(n, r). Let γ = (γij)1≤i6=j≤n denote a
collection of paths for all

(

n
2

)

node pairs. Let Γ be the collection of all possible γ. Consider the probability
distribution induced on Γ by selecting paths between all node-pairs as described below.
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• Paths are chosen independently for different node pairs.

• Consider a particular node pair (i, j). Let i belong to square C0 and j belong to square Cl.

– If C0 = Cl or i and j are in neighboring cells then the path between i and j is (i, j).

– Else let C1, . . . , Cl−1, l ≥ 2 be other squares lying on the straight line joining i and j. Select a node
vk ∈ Ck, k = 1, . . . , l−1 uniformly at random. Then the path between i and j is (i, v1, . . . , vl−1, j).

Under the above setup, we claim the following lemma:

Lemma 16 Under the probability distribution on Γ as described above, the average number of paths passing
through an edge is O(1/r3) w.h.p., where r = ω(rc(d)).

Proof. We will compute the average load in order notation. Similar to the arguments of Lemma 10, it can

be shown that each of the 16/r2 squares contains nr2(1+o(1))
16 nodes and each node has degree nr2(1 + o(1))

w.h.p. We restrict our consideration to such instances of G2(n, r).

Now the total number of paths are Θ(n2) since there are
(

n
2

)

node pairs. Each path contains O(1/r) edges,
as O(1/r) squares can be lying on a straight line joining two nodes. The total number of squares is Θ(1/r2).
Hence, by symmetry and regularity, the number of paths passing through each square is Θ(n2r). Consider
a particular square C. For C, at least 1 − Θ(r2)(≈ 1) fraction of paths passing through it have endpoints
lying in squares other than C. That is, most of the paths passing through C have C as an intermediate
square, and not an originating square. Such paths are equally likely to select any of the nodes in C. Hence
the average number of paths containing a node, say 1, in C, is Θ(n2r/nr2) = Θ(n/r). The number of edges
between 1 and neighboring squares is Θ(nr2). By symmetry, the average load on an edge incident on 1 will
be Θ(1/r3). This is true for all nodes. Hence, the average load on an edge is at most O(1/r3).

Next we will use this setup and Lemma 16 to obtain a bound on the second largest eigenvalue using a
modified version of Poincare’s inequality stated below.

Lemma 17 Consider the natural random walk on a graph G = ({1, . . . , n}, E) with Γ the set of all possible
paths on all node pairs. Let γ∗ be the maximum path length (among all paths and over all node pairs), d∗ be
the maximum node degree, and |E| be total number of edges. Let, according to some probability distribution
on Γ, the maximum average load on any of the edges be b, i.e. on average no edge belongs to more than b
paths. Then, the second largest eigenvalue, λ2, is bounded above as

λ2 ≤ 1 −
(

2|E|
d2
∗γ∗b

)

. (97)

Proof. The proof follows from a modification of Poincare’s inequality (Proposition 1 [DS91]). Before
proceeding to the proof, we introduce some notation.

Let φ : {1, . . . , n} → R be a real valued function on the n nodes. Let π = (π(i)){1≤i≤n} denote the
equilibrium distribution of the random walk. Let di be the degree of node i, then it is well known that
π(i) = di

2|E| ≤
d∗

2|E| . For node pair (i, j), let

Q(i, j) = π(i)Pij = π(j)Pji = 1/2|E|.

Define the quadratic form of φ as

E(φ, φ) =
1

2

∑

i,j

(φ(i) − φ(j))2Q(i, j).
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Let the variance of φ with respect to π be

V (φ) =
1

2

∑

i,j

(φ(i) − φ(j))2π(i)π(j).

For a directed edge e from i → j, define φ(e) = φ(i)−φ(j) and Q(e) = Q(i, j). First, consider one collection
of paths γ = (γij). Define

|γij |Q =
∑

e∈γij

Q(e)−1.

Then, under the natural random walk,

|γij |Q = |γij |(2|E|), (98)

where |γij | is the length of the path γij .

V (φ) =
1

2

∑

i,j

(φ(i) − φ(j))2π(i)π(j)

(a)
=

1

2

∑

i,j





∑

e∈γij

(

Q(e)

Q(e)

)1/2

φ(e)





2

π(i)π(j)

(b)

≤ 1

2

∑

i,j

|γij |Qπ(i)π(j)
∑

e∈γij

Q(e)φ(e)2

≤
(

d∗
2|E|

)2
1

2

∑

e

Q(e)φ(e)2
∑

γij3e

|γij |Q

(c)
=

(

d2
∗

2|E|

)

1

2

∑

e

Q(e)φ(e)2
∑

γij3e

|γij |

(d)

≤
(

d2
∗

2|E|

)

γ∗
1

2

∑

e

Q(e)φ(e)2b(γ, e), (99)

where b(γ, e) denotes the number of paths passing through edge e under γ = (γij). (a) follows by using
π(i) ≈ 1/n for all i, and adding and subtracting values of φ on nodes of the path γij for all node pairs (i, j)
for a given path-set γ = (γij). (b) follows from the Cauchy-Schwartz inequality. (c) follows from (98), and
(d) follows from the fact that all path length are smaller than γ∗.

Note that in (99), b(γ, e) is the only path dependent term. So under a probability distribution on Γ (the
set of all paths) in (99), b(γ, e) can be replaced by b(e) where

b(e) =
∑

γ∈Γ

Pr(γ)b(γ, e).

Let b = maxe b(e). Then,

V (φ) ≤
(

d2
∗

2|E|

)

γ∗
1

2

∑

e

Q(e)φ(e)2b, (100)

=

(

d2
∗γ∗b

2|E|

)

E(φ, φ). (101)

The minimax characterization of eigenvalues [HJ85, p176] gives a bound on the second largest eigenvalue as

λ2 = sup

{

1 − E(φ, φ)

V (φ)
| φ a non-constant

}

. (102)
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From (101) and (102), the statement of the Lemma follows.

From Lemmas 10, 16 and 17, and the fact that all paths are of length at most Θ(1/r), we obtain that
the second largest eigenvalue corresponding to the natural random walk on G2(n, r) is bounded above as:

λ2 ≤ 1 − Θ

(

n2r2

n2r4r−4

)

= 1 − Θ(r2) (103)

We would like to note that, for mixing time, we need to show that the smallest eigenvalue (which can be
negative), is also Θ(r2) away from −1. One well-known way to avoid this difficulty is the following: modify
transition probabilities as Q = 1

2 (I + P ). Q and P have the same stationary distribution. By definition,
Q has all non-negative eigenvalues, and λ2(Q) = 1

2 (1 + λ2(P )). Thus, the mixing time of the random walk
corresponding to Q is governed by λ2(P ), and is therefore Θ(r−2 log n). This random walk Q is the modified
natural random walk in Theorem 8(b).

Thus, from Lemma 8 and (103), the proof of Theorem 8(b) for G2(n, r) follows. In general, the above
argument can be carried out similarly for d > 2 completing the proof of Theorem 8(b).

6.1.4 Averaging in Gd(n, r)

The natural averaging algorithm, based on the natural random walk, can be described as follows: when a
node becomes active, it chooses one of its neighbors uniformly at random and averages with this neighbor. As
noted before, in general, the performance of such an algorithm can be far worse than the optimal algorithm.
Interestingly, in the case of Gd(n, r), the performances of the natural averaging algorithm and the optimal
averaging algorithm are comparable (i.e. they have averaging time of the same order). We state the following
Theorem:

Theorem 9 On the Geometric Random Graph, Gd(n, r), the absolute 1/nα-averaging time, α > 0, of the

natural averaging algorithm as well as of the optimal averaging algorithm is of order Θ
(

log n
r2

)

.

Proof. We showed in Theorem 8 that for ε = 1/nα, α > 0, the ε-mixing times for the fastest-mixing random
walk and the natural random walk on Gd(n, r) are of order Θ( log n

r2 ). Using this in Theorem 7, we have our
result.

Implication. In a wireless sensor network, Theorem 9 suggests that for a small radius of transmission, even
the fastest averaging algorithm converges slowly, i.e., computing in a distributed fashion is slow. However,
the good news is that the natural averaging algorithm, based only on local information, scales just as well
as the fastest averaging algorithm. Thus, at least in the order sense, it is not necessary to optimize for the
fastest averaging algorithm in a wireless sensor network.

6.2 Expander Graphs

An expander graph can be characterized as follows: let the transition matrix corresponding to the natural
random walk on the graph be P . Then, there exists δ > 0 such that

δ ≤ (1 − λmax(P )) ≤ 1, (104)

where λmax(P ) is the second largest eigenvalue of P in magnitude, i.e., the spectral gap is bounded away
from zero by a constant.
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Let P ∗ be the transition matrix corresponding to the fastest mixing random walk on an expander. The
random walk corresponding to P ∗ must mix at least as fast as the natural one, and therefore,

δ ≤ (1 − λmax(P
∗)) ≤ 1. (105)

It is easy to argue that there exists an optimal P ∗ that is symmetric: given any optimal P0, the matrix
1/2(P0 + P T

0 ) is symmetric, and leads to the same E[W ] as P0, since

E[W ] =
∑

i,j

1

n
PijWij (106)

and the Wij are symmetric matrices.

Therefore, we are able to use the result relating the mixing time for P and the averaging time for A(P ) for
a symmetric P . From (104), (105), Theorem 3 and Corollary 2, we see that the optimal averaging algorithm
on any expander graph has ε-averaging time Tave(ε) = Θ

(

log ε−1
)

.

The Preferential Connectivity (PC) model [MPS03] is one of the popular models for the Internet. In
[MPS03], it is shown that the Internet is an expander under the preferential connectivity model. Using the
conclusion above, we obtain the following result for averaging on the Internet:

Theorem 10 Under the PC model, the optimal averaging algorithm on the Internet has an absolute ε-
averaging time Tave(ε) = Θ

(

log ε−1
)

.

Implication. The absolute time for distributed computation on any expander graph is independent of the
size of the network, and depends only on the desired accuracy of the computation. Assuming that the PC
model is a good model for Internet, then this immediately suggests that the absolute computation time
depends only on the desired accuracy7. One implication is that exchanging information on the Internet via
peer-to-peer network built on top of it is extremely fast!

Remark: Let dmax be the maximum node degree of the graph G. For any family of graphs of bounded
degree, the averaging time of the maximum-degree random walk (Pij = 1/dmax if (i, j) ∈ E, i 6= j), and the
fastest mixing random walk are of the same order.8 This follows from an observation in [BDX04], which says
that the spectral gap for the fastest mixing Markov chain on a graph can be at most a factor dmax smaller
than the maximum-degree chain. Thus, if P ∗ is the optimal transition matrix, i.e., the one with the smallest
possible λ2(P ), and Pmd is the transition matrix for the maximum-degree chain, then

1 − λ2(P
∗) ≤ dmax(1 − λ2(Pmd)). (107)

Thus the averaging times for both random walks are of the same order, and differ by a factor of atmost dmax.

For example, the social network [Kle00] is a regular graph with dmax = 5, which is the degree of each node
in the graph. For the social network, therefore, the natural random walk (which is the same as the maximum
degree chain) leads to an averaging time of the same order as the optimal; and in fact, the averaging times
differ by a factor of at most 5.

6.3 Information exchange

Define Tinfex(ε) to be the smallest time at which each node has information from all the other nodes with a
probability greater than or equal to 1− ε. The averaging time provides an upper bound for the information
exchange time, as made precise in the theorem below.

7Although that the asymmetry of the P matrix for the natural random walk on the Internet prevents us from exactly
quantifying the averaging time, we believe that averaging will be fast even under the natural random walk, since the spectral
gap for this random walk is bounded away from 1 by a constant.

8The reason for using the maximum degree chain rather than the natural random walk is because the natural random walk
need not be symmetric for an arbitrary graph. (Note that for a regular graph the maximum degree chain and the natural random
walk are exactly the same.) An alternative symmetric random walk with locally computable weights is the Metropolis-Hastings
random walk with Pmhij

= min{1/di , 1/dj} for (i, j) ∈ E, i 6= j, for which a similar result holds.
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Figure 3: An example of a Geometric Random Graph in two-dimensions. A node is connected to all other
nodes that are within the distance r of itself.

Theorem 11 For a gossip algorithm specified by a matrix P , and ε = O( 1
n ),

Tinfex(ε, P ) ≤ Tave

( ε

n
, P
)

.

Proof. Consider first a single node i, and set xi(0) = 1, and xj(0) = 0 for all j 6= i. By the definition of
averaging time, for all t > Tave(

ε
n , P ), the probability that xi(j) > 0 is greater than or equal to 1− ε

n , since
by the definition of Tave, for all t ≥ Tave(

ε
n , P ),

Pr

(‖x(t) − 1
n1‖2

‖x(0)‖2
≤ ε

n

)

≥ 1 − ε

n
. (108)

Note that ‖x(0)‖2 = 1, and ‖x(t) − 1
n1‖2 =

∑n
i=1(xi(t) − 1

n )2. If any xi = 0, (each xi must be positive),
then that term contributes 1

n2 to the sum, and thus the sum cannot be less that ε
n for ε = O( 1

n ).

Thus for all ε = O( 1
n ), the probability that all of the xi > 0 is greater equal 1 − ε

n . But this is exactly
the probability that all nodes receive the message from node i. Using the union bound and summing for
n nodes, we conclude that the probability of all nodes receiving information from all other nodes is greater
equal 1 − n ε

n , and so Tinfex(ε, P ) ≤ Tave(
ε
n , P ).

7 Conclusion

We presented a framework for the design and analysis of a randomized distributed averaging algorithm on
an arbitrary connected network. We characterized the performance of the algorithm precisely in the terms
of second largest eigenvalue of an appropriate doubly stochastic matrix. This allowed us to find the fastest
averaging algorithm of this class of algorithms, by establishing the corresponding optimization problem to
be convex. We established a tight relation between the averaging time of the algorithm and the mixing
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time of an associated random walk, and utilized this connection to design fast averaging algorithms for two
popular and well-studied networks: Wireless Sensor Networks (modeled as Geometric Random Graphs), and
the Internet graph (under the so-called Preferential Connectivity Model).

In general, solving semidefinite programs in a distributed manner is not possible. However, we utilized
the structure of the problem in order to solve the semidefinite program (corresponding to determining the
optimal averaging algorithm) in a distributed fashion using the subgradient method. This allows for self-
tuning weights: that is, the network can start out with some arbitrary averaging matrix, say, one derived
from the natural random walk, and then locally, without any central coordination, converge to the optimal
weights corresponding to the fastest averaging algorithm.

The framework developed in this paper is general and can be utilized for the purpose of design and
analysis of distributed algorithms in many other settings.
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