
Randomized Hybrid Linear Modeling by Local Best-fit Flats∗

Teng Zhang♮ Arthur Szlam♭ Yi Wang♮ Gilad Lerman♮

♮ School of Mathematics ♭ Courant Institute of Mathematical Sciences

University of Minnesota New York University

{zhang620,wangx857,lerman}@umn.edu aszlam@courant.nyu.edu

Abstract

The hybrid linear modeling problem is to identify a set

of d-dimensional affine sets in R
D. It arises, for example,

in object tracking and structure from motion. The hybrid

linear model can be considered as the second simplest (be-

hind linear) manifold model of data. In this paper we will

present a very simple geometric method for hybrid linear

modeling based on selecting a set of local best fit flats that

minimize a global ℓ1 error measure. The size of the local

neighborhoods is determined automatically by the Jones’

β2 numbers; it is proven under certain geometric condi-

tions that good local neighborhoods exist and are found by

our method. We also demonstrate how to use this algorithm

for fast determination of the number of affine subspaces.

We give extensive experimental evidence demonstrating the

state of the art accuracy and speed of the algorithm on syn-

thetic and real hybrid linear data.

Supp. webpage: http://www.math.umn.edu/∼lerman/lbf/

1. Introduction

Many data sets can be modeled as unions of affine sub-

spaces. This Hybrid Linear Modeling (HLM) finds diverse

applications in many areas, such as motion segmentation

in computer vision, hybrid linear representation of images,

classification of face images, and temporal segmentation of

video sequences (see e.g., [1, 2]).

Several algorithms have been suggested for solving

this problem, for example the K-flats (KF) algorithm

or any of its variants [3, 4, 5, 6, 7], Subspace Separa-

tion [8, 9, 10], Generalized Principal Component Analysis

(GPCA) [1], Local Subspace Affinity (LSA) [11], Agglom-

erative Lossy Compression and Spectral Curvature Cluster-

ing (SCC) [12]. Some algorithms for modeling data by a

∗This work was supported by NSF grants DMS-0612608, DMS-

0811203 and DMS-0915064. Thanks to Peter Jones, Mauro Maggioni and

Amit Singer for some brief discussions that motivated our exploration for

a multiscale SVD-based HLM algorithm and to the IMA for a stimulating

multi-manifold modeling workshop.

mixture of more general surfaces have been successfully ap-

plied to HLM [13, 14].

In this paper, inspired by [15, 16, 17] and [18, 19],

we will describe an extremely straightforward geometric

method for hybrid linear modeling that can either be used

in a stand alone manner or as an initialization of any of the

above methods. The basic idea is that for a data set sam-

pled from a hybrid linear model and a random point of it

x: the principal components of a neighborhood of appro-

priate size of x often give a good approximation to its near-

est subspace. An appropriate neighborhood size needs to

be larger than the noise, so that the affine cluster is rec-

ognized. However, not too large so that the neighborhood

intersects multiple clusters. Such neighborhoods (in which

a subspace is clearly distinguished) always exist for points

far enough from the intersection of subspaces (i.e., most of

points), as long as the following two assumptions are satis-

fied: Samples are sufficiently dense along local regions of

the subspaces and data points sufficiently far from the inter-

section of subspaces are mostly surrounded by neighbors of

the same subspace (this is true when the affine Grassman-

nian distance between subspaces is sufficiently large and the

noise level is sufficiently small).

The contributions of this work are as follows: we make

precise the local fit heuristic, using the ℓ2 version of Jones’

β numbers [15, 16, 17], and state a theorem that tells us un-

der certain geometric conditions how to calculate the size

of the optimal local neighborhood. Using this, we intro-

duce a new algorithm for affine clustering based on the

above heuristic. At each of a randomly chosen subset of the

data, we build a candidate flat by calculating the principal

components of a large neighborhood which still lies in only

one affine cluster. The algorithm then selects among the

best fit flats of each of the neighborhoods to build a global

model using an ℓ1 error energy. We show experimentally

that this algorithm obtains state of the art accuracies on real

and synthetic HLM problems while running extremely fast

(often on the order of ten times faster than most of the pre-

viously mentioned methods). Note that the two parts of the

algorithm are independent and can be used with other al-

978-1-4244-6983-3/10/$26.00 ©2010 IEEE

gorithms. In particular, we can use the local fit heuristic to

initialize other HLM algorithms. We will give experimental

evidence to show that the K-flats algorithm [7] is improved

by such initialization. We also show how to use this fast

algorithm to quickly determine the number of affine sub-

spaces.

The rest of this paper is organized as follows. In Sec-

tion 2 we describe in greater depth the two parts of the

above algorithm, and state a theorem giving conditions that

guarantee that good neighborhoods can be found. Section 3

carefully tests the algorithm on both artificial data of syn-

thetic hybrid linear models and real data of motion segmen-

tation in video sequences. It also demonstrates how to de-

termine the number of clusters by applying the fast algo-

rithm of this paper together with the straightforward elbow

method. Section 4 concludes with a brief discussion and

mentions possibilities for future work.

2. Randomized local best fit flats

The algorithm partitions a data set X =
{x1,x2, · · · ,xN} ⊆ R

D into K clusters X1, . . .,
XK , with each cluster approximated by a d-dimensional

affine subspace, which we refer to as d-flats or flats. We

sketch it as follows, while suppressing details that appear

later in Algorithms 3 and 2.

Algorithm 1 HLM by randomized local best fit flats

Input: X = {x1,x2, · · · ,xn} ⊆ R
D: data, d: dimension

of subspaces, C: number of candidate planes, K: number

of output flats/clusters (K < C), other parameters used

by Algorithms 3 and 2

Output: A partition of X into K disjoint clusters {Xi}
K
i=1,

each approximated by a single flat.

Steps:

• Pick C random points in X

• For each of the C points find appropriate local neigh-

borhoods using Algorithm 3

• Generate C flats (by PCA) for the C neighborhoods

of the previous step

• Choose K flats from the C flats above using Algo-

rithm 2

• Partition X by sending points to nearest K flats above

The proposed algorithm breaks into two main parts. The

first part finds a set of candidate flats. It takes as input the

dimension of the flats to be found and the number of can-

didates to search for. It starts by randomly selecting one

point for each candidate flat. The algorithm chooses a scale

(that is, a number of neighbors) around each of the seed

points. The best fit flats (in L2 sense) for each of the cho-

sen neighborhoods are collected as candidates. The method

Algorithm 2 Greedy ℓ1 candidate selection for HLM by

randomized local best fit flats

Input: X = {x1,x2, · · · ,xn} ⊆ R
D: data, K: number

of flats, L1, ..., LC : candidate flats, and p: number of

passes.

Output: A set of K “active” flats L ⊂ {L1, ..., LC} .

Steps:

Initialize L by randomly choosing K “active” flats

LA1
, ..., LAK

for pass = 1 to p do

Pick a random flat LAl
⊂ L (1 ≤ l ≤ K)

for j = 1 to C − K do

• Pick one of the “inactive” flats Lj and form the

collection of flats L̃j = Lj

⋃

L \ LAl

• Set sj =
∑N

i=1 minL∈L̃j
||xi − PLxi||

end for

If minj sj <
∑N

i=1 minL∈{LA1
,...,LAK

} ||xi − PLxi||,
set LAl

:= Largmin sj

end for

for choosing the best scale is described in Section 2.1 and

sketched in Algorithm 3.

The second part of the algorithm searches for a good set

of flats from the candidates in a greedy fashion. A number

K of desired flats and a measure of goodness of a K tuple

of flats G = GX(L1, ...LK) is chosen; here, it will be the

average ℓ1 distance of each point to its nearest flat. After

randomly initializing K flats from the list of candidates, p
passes are made through the data points. One of the current

choices of flats is removed, and all the other candidates are

tried in its place. If G decreases, we replace the current flat

with the one which gives the lowest value for G. We then

move to the next pass, picking a random flat, etc.

The simplest choice of G is the sum of the squared dis-

tances of each point in X to its nearest flat. In our exper-

iments, we will use an ℓ1 energy, i.e., summing the dis-

tance of every point to its chosen flat. We have experi-

mentally found that this energy is more robust to outliers

than least squares error (see also [20] for a similar conclu-

sion with a different implementation of ℓ1 subspace mini-

mization and [21] for partial theoretical justification). One

can also imagine using spectral distances that measure the

smoothness of the clusters with respect to some kernel, or

many other global energy functionals of a partition. The

nice thing about this method is that it allows for energy

functionals which may be hard to minimize; since we are

only testing the energy of our candidate configurations, as

long as we can compute the energy of a partition quickly,

we can run the greedy descent.

2.1. Choosing the optimal neighborhood

Choosing the correct neighborhood is crucial for the suc-

Algorithm 3 Neighborhood size selection for HLM by ran-

domized local best fit flats

Input: X = {x1,x2, · · · ,xn} ⊆ R
D: data, x: a point in

X, S: start size, T : step size, ℓ,m (optional): mean shifts

parameters.

Output: N (x): a neighborhood of x.

Steps:

• (Optional) Update the point x as the center of its ℓ-

nearest neighborhood in X, while repeating m times

• k = −1
repeat

• k:=k+1

• Set Nk to be the S + kT nearest points in X to x

• Set L̃k to be the best fit flat to Nk

• Compute β2(k) := β2(Nk) according to (1)

until k > 1 and β2(k − 1) < min{β2(k − 2), β2(k)}
• Output N (x) := Nk−1

cess of the method. If the neighborhood is too small, even

if the point is in a good affine cluster, then a small amount

of noise in the data will result in a flat which does not match

most of the points in the affine cluster. If the neighborhood

is too large, it will contain points from more than one affine

cluster, and the resulting best fit flat will again not match

any of the actual data points. While it is possible to take

a guess at the correct scale as a parameter, we have found

that it is possible to choose the correct scale reasonably well

automatically.

What we will do is start at the smallest scale (say d + 1)

and look at larger and larger neighborhoods of a given point

x0. At the smallest scale, any noise causes the local neigh-

borhood to look D dimensional. As we add points to the

neighborhood, it becomes better and better approximated

in an average sense by its best fit flat, until points belong-

ing to other flats enter the neighborhood. We thus take the

neighborhood which is the first local minimum of the scaled

least squares error for d-flat approximation. In practice, for

a neighborhood N of x0 the scaled least squares error for

d-flat approximation, β2(N), is computed by the formula:

β2(N) =

(

min
d-flats L

∑

y∈N ||y − PLy||2

|N |(maxx∈N ||x − x0||)2

)
1

2

, (1)

where PL denotes the projection onto the flat L. This no-

tion of scaled error introduced and utilized in [15, 16, 17],

and considered recently in [18, 19] for dimension estima-

tion. The procedure we have just described is summarized

in Algorithm 3.

The following theorem tries to justify our strategy of fit-

ting the correct scale around each point. We work with a

“geometric” set of assumptions in the continuous setting,

where our data set will be presumed to be a collection of

tubes around flats. This corresponds roughly to a proba-

bilistic setting of sampling according to mixtures of uniform

distributions around subsets of d-flats. For convenience we

assume infinite tubes but restrict to local scales.

The analog of the discrete β2 introduced earlier when

having an underlying continuous set Ω (here it is the union

of tubes) in a ball of center x and radius r is defined as

follows:

β2
2(x, r) = min

L

∫

Ω∩B(x,r)

(

dist(x, L)

2r

)2
dx

vol(Ω ∩ B(x, r))

where the minimum is over all d-flats L (see also [17]).

Theorem 2.1. Let K ≥ 2, d < D , Li, i = 1, . . . , K, be

K d-flats in R
D, and Ωi := T (Li, wi) be K tubes in R

D

around these flats of comparable widths {wi}
K
i=1.

For fixed 1 ≤ i∗ ≤ K and fixed x ∈ Li∗ , let

y = y(x) = argmin
y∈Ω\Ωi∗

dist(y,x) (2)

and

r0 := dist(y,x). (3)

Assume that r0 > wi∗ . Then the function β2(x, r) is con-

stant for r in [0, wi∗], comparable to a function which is

decreasing for a sufficiently large subinterval of [wi∗ , r0],
and satisfies the inequality

β2((1 + ε) · r0) ' β2(r0) (4)

for sufficiently small ε, i.e., it has an “approximate” local

minimum in the interval [r0, (1 + ε) · r0]. If d ≤ 4, then

ε ≈ wi∗/r0, and if d > 4 then ε ≈ (wi∗/r0)
4/d

. As

wi∗/r0 approaches zero, all comparability constants men-

tioned above approach one.

We remark that by imposing an upper bound on the

widths of the tubes in the theorem above and a lower bound

on the dihedral angles between the flats, then the local

condition r0 > wi∗ (required by the theorem) is satis-

fied at any point x which has distance larger than order of

max1≤i≤K wi from the intersection of all flats.

2.2. Some technical notes about the proposed algo-
rithm

Note that the first minimum in the Theorem excludes the

left endpoint. In our experiments, we noticed that on data

without too much noise, it is useful to allow the first scale

to count as a local minimum. In the experiments below, we

will show the results of the algorithm with both notions of

”first” local minimum.

The second technical detail concerns the choice of the

random points used for candidate generation. We use the

mean shift technique: given a point x, update x as the cen-

ter of its neighborhood several times. The method shifts the

point to a denser region, resulting in a more accurate estima-

tion of the flats. In the experiments below, we will show the

results with and without mean shift biased seed selection.

3. Experimental results

In this section, we conduct experiments on artificial and

real data sets to verify the effectiveness of the proposed al-

gorithm in comparison to other hybrid linear modeling al-

gorithms.

We measure the accuracy of those algorithms by the rate

of misclassified points with outliers excluded, that is

error% =
of misclassified inliers

of total inliers
× 100% . (5)

In all the experiments below, the number C in Algo-

rithm 1 is 70 times the number of subspaces, the number

p in Algorithm 2 is 3 times the number of subspaces, and

the number T in Algorithm 3 is 2. We run experiments

with and without mean shifts; the experiments using mean

shifts use 10-nearest neighbors and 5 shifts. According to

our experience the LBF algorithm is very robust to changes

in parameters, but unsurprisingly, there is a general trade off

between accuracy (higher C, higher p, smaller T), and run

time (lower C, lower p, larger T). We have chosen these

parameters for a balance between run time and accuracy.

3.1. Simulated data

We compare our algorithm with the following al-

gorithms: Mixtures of PPCA (MoPPCA) [4], K-flats

(KF) [7], Local Subspace Analysis (LSA) [11], Spec-

tral Curvature Clustering (SCC) [12], Random Sam-

ple Consensus (RANSAC) [22] and GPCA with vot-

ing (GPCA) [2]. We use the Matlab codes of the

GPCA, MoPPCA and KF algorithm from http://percep

tion.csl.uiuc.edu/gpca, the SCC algorithm from http://www

.math.umn.edu/∼lerman/scc and the LSA, RANSAC algo-

rithms from http://www.vision.jhu.edu/db.

The MoPPCA algorithm is always initialized with a ran-

dom guess of the membership of the data points. The

LSCC algorithm is initialized by randomly picking 100×K
(d + 1)-tuples (following [12]), and KF are initialized with

random guess. Since algorithms like KF tend to converge to

1The RANSAC code we use (and most standard versions of RANSAC)

depend on a user supplied inlier threshold. The first part of our algorithm

can in some sense be considered to be the automatic detection of this in-

lier threshold; and if this is provided by the user, the initialization we have

described is no longer useful, as we would simply pick the largest neigh-

borhood so that the distance from any point to its projection is smaller than

the user supplied bound. The experiments in the table use the oracle choice

of inlier bound (given by the true noise variance), and so here RANSAC

has an advantage over the other algorithms listed.

local minimum, we use 10 restarts for MoPPCA, 30 restarts

for KF, and recorded the misclassification rate of the one

with the smallest ℓ2 error for MoPPCA as well as KF. The

number of restarts was restricted by the running time and

accuracy. RANSAC uses the oracle inlier bound given by

the model’s noise variance.

The simulated data represents various instances of K
linear subspaces in R

D. If their dimensions are fixed and

equal d, we follow [12] and refer to the setting as dK ∈
R

D. If they are mixed, then we follow [2] and refer to

the setting as (d1, . . . , dK) ∈ R
D. Fixing K and d (or

d1, . . . , dK), we randomly generate 100 different instances

of corresponding hybrid linear models according to the code

in http://perception.csl.uiuc.edu/gpca. More precisely, for

each of the 100 experiments, K linear subspaces of the

corresponding dimensions in R
D are randomly generated.

Within each subspace, the underlying sampling distribution

is the sum of a uniform distribution in a d-dimensional ball

of radius 1 of that subspace (centered at the origin for the

case of linear subspaces) and a D-dimensional multivari-

ate normal distribution with mean 0 and covariance matrix

0.052 · ID×D. Then, for each subspace 250 samples are

generated according to the distribution just described. Next,

the data is further corrupted with 5% or 30% uniformly dis-

tributed outliers in a cube of sidelength determined by the

maximal distance of the former 250 samples to the origin

(using the same code).

Since most algorithms (including ours) do not support

mixed dimensions natively, we assume each subspace has

the maximum dimension in the experiment.

The mean (over 100 instances) misclassification rate of

the various algorithms is recorded in Table 1. The mean

running time is shown in Table 2. In each of the Tables,

our algorithm is labeled LBF (Local Best-fit Flats); our al-

gorithm with mean shifts and using the modified choice

of good neighborhood described in section 2.2 is labeled

LBFMS.

3.2. Motion segmentation data

We test the proposed algorithm on the Hopkins 155

database of motion segmentation, which is available at

http://www.vision.jhu.edu/data/hopkins155. This data con-

tains 155 video sequences along with the coordinates of cer-

tain features extracted and tracked for each sequence in all

its frames. The main task is to cluster the feature vectors

(across all frames) according to the different moving ob-

jects and background in each video.

More formally, for a given video sequence, we denote the

number of frames by F . In each sequence, we have either

one or two independently moving objects, and the back-

ground can also move due to the motion of the camera. We

let K be the number of moving objects plus the background,

so that K is 2 or 3 (and distinguish accordingly between

Table 1. Mean percentage of misclassified points in simulation for linear-subspace cases or affine-subspace case. The proposed algorithm

as in Section 2.2 is in the row labeled LBFMS, and the “vanilla” version is in the row labeled by LBF
(4, 5, 6)Linear 22 ∈ R

4 42 ∈ R
6 24 ∈ R

4 102 ∈ R
15

∈ R
10

Outl. % 5 30 5 30 5 30 5 30 5 30

LSCC 3.0 6.9 2.3 2.6 7.7 22.4 0.5 3.8 1.8 28.2

LSA 18.7 19.6 10.9 12.7 44.3 21.0 7.6 9.9 6.1 6.6

KF 3.0 15.8 2.5 18.4 9.4 34.3 0.8 33.8 0.8 30.6

MoPPCA 3.1 14.2 2.5 17.7 8.4 34.2 0.9 38.8 1.4 34.7

GPCA 19.7 30.9 11.7 35.9 29.2 43.9 10.2 42.6 10.1 45.4

LBF 2.7 3.0 2.7 2.6 7.0 11.1 1.5 2.1 1.4 1.9

LBFMS 3.1 3.0 2.7 2.8 7.0 11.3 4.3 5.5 2.1 1.9

RANSAC1 3.3 2.6 2.3 2.2 8.6 9.8 0.9 6.7 1.8 1.4

(4, 5, 6)Affine 22 ∈ R
4 42 ∈ R

6 24 ∈ R
4 102 ∈ R

15

∈ R
10

Outl. % 5 30 5 30 5 30 5 30 5 30

SCC 0.0 0.6 0.0 0.0 0.2 0.5 0.0 0.7 0.0 5.8

LSA 11.8 11.0 5.3 4.7 45.0 41.7 0.0 0.0 1.0 1.1

KF 7.3 15.1 9.9 26.0 19.7 37.1 11.1 24.9 7.3 23.5

MoPPCA 25.6 23.7 27.8 38.3 45.5 39.8 37.1 45.2 42.9 46.8

GPCA 13.8 14.4 22.6 22.1 33.6 32.4 36.0 29.6 26.7 29.1

LBF 0.2 2.1 0.1 1.8 0.5 3.7 0.0 0.5 0.0 0.0

LBFMS 0.4 2.0 0.1 2.6 0.7 6.0 0.0 0.3 0.0 0.0

RANSAC1 13.2 12.2 11.5 11.2 31.5 28.4 2.6 9.2 1.1 2.2

Table 2. Mean running time for linear-subspaces cases and affine-subspaces cases. The proposed algorithm as in Section 2.2 is in the row

labeled LBFMS, and the “vanilla” version is in the row labeled by LBF.
(4, 5, 6)Linear 22 ∈ R

4 42 ∈ R
6 24 ∈ R

4 102 ∈ R
15

∈ R
10

Outl. % 5 30 5 30 5 30 5 30 5 30

LSCC 0.7 0.8 16.0 1.8 2.1 2.0 13.3 5.7 5.1 8.4

LSA 8.8 16.0 11.1 20.8 28.3 54.4 31.3 31.5 38.2 54.4

KF 0.5 0.6 0.5 0.8 1.4 1.8 1.9 1.0 1.1 2.8

MoPPCA 0.2 0.5 0.3 0.7 1.2 2.0 1.7 1.1 1.0 3.3

GPCA 3.5 7.6 9.8 19.0 20.9 29.7 30.3 31.6 39.1 57.8

LBF 0.3 0.3 0.3 0.3 0.9 1.1 0.6 0.6 0.6 0.8

LBFMS 0.3 0.3 0.3 0.3 1.1 1.4 0.4 0.5 0.7 0.9

RANSAC1 0.01 0.01 0.02 0.06 0.03 0.06 3.5 3.8 0.9 3.4

(4, 5, 6)Affine 22 ∈ R
4 42 ∈ R

6 24 ∈ R
4 102 ∈ R

15

∈ R
10

Outl. % 5 30 5 30 5 30 5 30 5 30

SCC 0.9 1.0 1.7 2.0 5.1 2.5 6.1 13.7 5.6 6.0

LSA 8.7 16.1 11.1 20.8 28.6 54.0 21.1 32.2 38.3 54.0

KF 0.5 0.6 0.6 0.7 2.4 1.4 0.6 1.7 1 1.4

MoPPCA 0.5 0.5 0.7 0.6 2.9 1.4 1.3 1.9 1.9 2.0

GPCA 2.4 6.9 5.1 9.8 11.2 26.1 20.2 31.9 38.4 49.9

LBF 0.3 0.3 0.3 0.3 1.1 1.3 0.5 0.6 0.7 0.9

LBFMS 0.3 0.3 0.3 0.3 1.1 1.5 0.4 0.5 0.7 0.9

RANSAC1 0.02 0.1 0.2 0.6 0.2 0.3 3.2 3.7 2.0 3.5

two-motions and three-motions). For each sequence, there

are also N feature points y1,y2, · · · ,yN ∈ R
3 that are de-

tected on the objects and the background. Let zij ∈ R
2

be the coordinates of the feature point yj in the ith im-

age frame for every 1 ≤ i ≤ F and 1 ≤ j ≤ N . Then

zj = [z1j , z2j , · · · , zFj] ∈ R
2F is the trajectory of the

jth feature point across the F frames. The actual task of

motion segmentation is to separate these trajectory vectors

z1, z2, · · · , zN into K clusters representing the K underly-

ing motions.

It has been shown [8] that under affine camera models

and with some mild conditions, the trajectory vectors cor-

responding to different moving objects and the background

across the F image frames live in distinct affine subspaces

of dimension at most three in R
2F . Following this theory,

we implement our algorithm with d = 3, and use affine

flats.

We compare our algorithm with the following: im-

proved GPCA for motion segmentation (GPCA) [23], K-

flats (KF) [7] (implemented for linear subspaces), Local

Linear Manifold Clustering (LLMC) [13], Local Subspace

Analysis (LSA) [11], Multi Stage Learning (MSL) [24],

Spectral Curvature Clustering (SCC) [12], Sparse Subspace

Clustering (SSC) [14], and Random Sample Consensus

(RANSAC) [22, 25, 26]. As before, our algorithm is la-

beled LBF (Local Best-fit Flats); our algorithm with mean

shifts and using the modified choice of good neighborhood

described in section 2.2 is labeled LBFMS.

For these algorithms, we copy the results from

http://www.vision.jhu.edu/data/hopkins155 (they are based

on experiments reported in [26] and [13]) and [27], and we

just record the mean misclassification rate and the median

Table 3. The mean and median percentage of misclassified points for two-motions and three-motions in Hopkins 155 database. The

proposed algorithm as in Section 2.2 is in the row labeled LBFMS, and the “vanilla” version is in the row labeled by LBF

Checker Traffic Articulated All2-motion
Mean Median Mean Median Mean Median Mean Median

GPCA 6.09 1.03 1.41 0.00 2.88 0.00 4.59 0.38

LLMC 5 4.37 0.00 0.84 0.00 6.16 1.37 3.62 0.00

LSA 4K 2.57 0.27 5.43 1.48 4.10 1.22 3.45 0.59

LBF(4K,3) 3.31 0.00 3.29 0.00 4.31 0.12 3.40 0.00

LBFMS(4K,3) 3.05 0.00 0.78 0.00 1.73 0.03 2.34 0.00

MSL 4.46 0.00 2.23 0.00 7.23 0.00 4.14 0.00

RANSAC 6.52 1.75 2.55 0.21 7.25 2.64 5.56 1.18

SCC(4K,4) 1.30 0.04 1.07 0.44 3.68 0.44 1.46 0.16

SSC-N 1.12 0.00 0.02 0.00 0.62 0.00 0.82 0.00

Checker Traffic Articulated All3-motion
Mean Median Mean Median Mean Median Mean Median

GPCA 31.95 32.93 19.83 19.55 16.85 28.66 28.66 28.26

LLMC 4K 12.01 9.22 7.79 5.47 9.38 9.38 11.02 6.81

LLMC 5 10.70 9.21 2.91 0.00 5.60 5.60 8.85 3.19

LSA 4K 5.80 1.77 25.07 23.79 7.25 7.25 9.73 2.33

LSA 5 30.37 31.98 27.02 34.01 23.11 23.11 29.28 31.63

LBF(4K,3) 8.42 1.29 14.80 9.21 20.45 20.45 10.38 1.63

LBFMS(4K,3) 6.87 1.47 1.40 0.00 24.10 24.10 6.76 0.89

MSL 10.38 4.61 1.80 0.00 2.71 2.71 8.23 1.76

RANSAC 25.78 26.01 12.83 11.45 21.38 21.38 22.94 22.03

SCC(4K,4) 5.68 2.96 2.35 2.07 10.94 10.94 5.31 2.40

SSC-N 2.97 0.27 0.58 0.00 1.42 0.00 2.45 0.20

0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2. Using our neighborhood choice to improve initialization of k-flats: the vertical axis is accuracy, and the horizontal axis is fixed

neighborhood size in geometric farthest insertion for initialization of K flats. The red line is the result of using adapted neighborhoods.

The data sets are #1,#2, and #3 as described in Section 3.4. Random initialization leads to errors of .4 or greater for all three data sets.

misclassification rate for each algorithm for any fixed K
(two or three-motions) and for the different type of motions

(“checker”, “traffic” and “articulated”).

3.3. Discussion of Results

From Table 1 we can see that our algorithm performs

well in various artificial instances of hybrid linear modeling

(with both linear subspace and affine subspace), and its ad-

vantage is especially obvious with many outliers and affine

subspaces. The robustness to outliers is a result of our use

of the ℓ1 error as loss function, and because of the random

sampling. Also unlike many other methods, the proposed

method natively supports affine subspace models.

Table 2 shows that the running time of the proposed algo-

rithm is less than the running time of most other algorithms,

especially GPCA, LSA and LSCC. The difference is large

enough that we can also use the proposed algorithm as an

initialization for the others. The algorithm is slower than a

single run of K-flats, but it usually takes many restarts of

K-flats to get a decent result. Notice that the choice of C
and p in our algorithm function in a similar manner to the

number of restarts in KF.

From Table 3 we can see that the local best-fit flat algo-

rithm works well for the data set. Of all the methods tested,

only SCC and SSC had better accuracy. However LBF ran

4 times faster than SCC and more than 100 times faster than

SSC. In many of the cases where SSC performed better than

LBF, the ℓ1 energy (as well as the ℓ2 energy) was lower for

the labels obtained by LBF than the labels obtained by SSC.

We thus suspect that good clustering of the Hopkins data re-

quires additional type of clustering (e.g., bottleneck cluster-

ing) to be combined with subspace clustering (i.e., hybrid

linear modeling).

Table 4. The percentage of incorrectness (e%) and the average computation time t of the three methods SOD (LBF), ALC and GPCA.
no minimum angle minimum angle = π/8

16 ∈ R
524 ∈ R

533 ∈ R
5102 ∈ R

1516 ∈ R
324 ∈ R

333 ∈ R
416 ∈ R

324 ∈ R
333 ∈ R

4102 ∈ R
15

e% 17 3 2 0 55 29 19 3 5 5 0
SOD (LBF)

t 3.51 4.07 3.37 7.31 3.13 3.77 3.85 3.09 3.45 3.32 6.78

ALC e% 1 0 0 16 34 31 1 0 10 1 13

ǫ = 0.05 t 23.74 43.44 59.14 1370.92 20.49 37.49 53.59 20.22 37.41 54.11 1354.11

e% 88 100 100 100 27 100 100 13 100 100 100
GPCA

t 0.03 0.09 0.12 1.30 0.06 0.09 0.12 0.04 0.09 0.12 1.30

−1

−0.5

0

0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

20

40

60

80

100

120

140

160

Figure 1. Data set #3 from Section 3.4. The color value repre-

sents the number of neighbors chosen at that point. Note that the

algorithm chooses smaller neighborhoods for points closer to the

intersection of the planes.

3.4. Initializing K-flats with good neighborhoods

Here we demonstrate that our choice of neighborhoods

can be used to get a more robust initialization of K-flats.

We work with geometric farthest insertion. For fixed neigh-

borhood sizes, say of m neighbors, this goes as follows: we

pick a random point x0 and then find the best fit flat F0 for

the m point neighborhood of x0. Then we find the point x1

in our data farthest from F0, find the best fit flat F1 of the m
neighborhood of x1, and then choose the point x2 farthest

from F0 and F1 to continue. We stop when we have K flats;

we use these as an initialization for K-flats.

We work on three data sets. Data set #1 consists of 1500
points on three parallel 2-planes in R

3. 500 points are drawn

from the unit square in x, y plane, and then 500 more from

the x, y, z+.2 plane, and then 500 more from the x, y, z+.4
plane. This data set is designed to favor the use of small

neighborhoods. The next data set is three random affine

sets with 15% Gaussian noise and 5% outliers, generated

using the Matlab code from GPCA, as in Section 3.1. This

data set is designed to favor large neighborhood choices. Fi-

nally, we work on a data set with 1500 points sampled from

3 planes in R
2 as in Figure 1. The error rates of K-flats with

farthest insertion initialization with fixed neighborhoods of

size 10, 20, ..., 160 are plotted against the error rate for far-

thest insertion with adapted neighborhoods (searched over

the same range), averaged over 400 runs in Figure 2. Al-

though our method did not always beat the best fixed neigh-

borhood, it was quite close; and it always significantly bet-

ter than the wrong fixed neighborhood size. Both methods

did significantly better than a random initialization.

In Figure 1 we plot the number of neighbors picked by

our algorithm for each point of a realization of data set #3.

3.5. Automatic determination of the number of
affine sets

In this section we show experimentally that using the el-

bow method on the least squares errors of the outputs of the

randomized best fit flat method can accurately determine the

number of affine clusters.

Let Wk be the total mean squared distance of a data set

to the flats returned by our algorithm with k affine clus-

ters specified; as k increases, Wk decreases. A classical

method for determining the correct number k is to find the

“elbow”, or the k past which adding more clusters does not

significantly decrease the error. We use the Second Order

Difference (SOD) formulation of this heuristic [28]:

SOD(lnWk) = lnWk−1 + ln Wk+1 − 2 ln Wk, (6)

Then the optimal k is found by:

kopt = arg max
k

SOD(lnWk). (7)

We compare SOD (LBF), i.e., SOD applying LBF, with

ALC [29] and GPCA [2] on a number of artificial data

sets. Similarly to Section 3.1, data sets were generated

by the Matlab code borrowed from the GPCA package in

http://perception.csl.uiuc.edu/gpca with 100d samples from

each subspace and 0.05 Gaussian noise. For the last four

experiments, we restrict the angle between subspaces to be

at least π/8 for separation. All algorithms are given the di-

mension d and we choose kmax = 10 in SOD (LBF). For

ALC, we use the oracle choice of the parameter ǫ, setting it

equal the true noise level. For GPCA, we embed the data to

a d+1 subspace by PCA and let the tolerance of rank detec-

tion be 0.05 [1, 2]. There is no automatic way to choose this

tolerance, so we tried different values and picked the one

which matched the ground truth the best. Each experiment

is repeated 100 times and the error (e%) and the average

computation time t (in seconds) are recorded in Table 4.

4. Conclusions and future work

We presented a very simple geometric method for hy-

brid linear modeling based on selecting a set of local best

fit flats that minimize a global ℓ1 error measure. The size of

the local neighborhoods is determined automatically using

the ℓ2 β numbers; it is proven under certain geometric con-

ditions that good local neighborhoods exist and are found

by this method. We give extensive experimental evidence

demonstrating the state of the art accuracy and speed of the

algorithm on synthetic and real hybrid linear data.

We believe that the next step is to adapt the method for

multi-manifold clustering. As it is, our method, while quite

good at unions of affine sets, cannot successfully handle

unions of curved manifolds. We believe that by gluing to-

gether groups of local best fit flats related by some smooth-

ness conditions, we will be able to approach the problem of

clustering data which lies on unions of smooth manifolds.

References

[1] R. Vidal, Y. Ma, and S. Sastry. Generalized principal com-

ponent analysis (GPCA). IEEE TPAMI, 27(12), 2005.

[2] Y. Ma, A. Y. Yang, H. Derksen, and R. Fossum. Estimation

of subspace arrangements with applications in modeling and

segmenting mixed data. SIAM Review, 50(3):413–458, 2008.

[3] A. Kambhatla and T. K. Leen. Fast non-linear dimension

reduction. In 6th NIPS, pages 152–159, 1994.

[4] M. Tipping and C. Bishop. Mixtures of probabilistic princi-

pal component analysers. Neural Computation, 11(2):443–

482, 1999.

[5] P. Bradley and O. Mangasarian. k-plane clustering. J. Global

optim., 16(1):23–32, 2000.

[6] P. Tseng. Nearest q-flat to m points. Journal of Optimization

Theory and Applications, 105(1):249–252, April 2000.

[7] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman.

Clustering appearances of objects under varying illumination

conditions. In CVPR 03, volume 1, pages 11–18, 2003.

[8] J. Costeira and T. Kanade. A multibody factorization method

for independently moving objects. IJCV, 29(3):159–179,

1998.

[9] K. Kanatani. Motion segmentation by subspace separation

and model selection. In Proc. of 8th ICCV, volume 3, pages

586–591, 2001.

[10] K. Kanatani. Evaluation and selection of models for motion

segmentation. In 7th ECCV, volume 3, pages 335–349, May

2002.

[11] J. Yan and M. Pollefeys. A general framework for motion

segmentation: Independent, articulated, rigid, non-rigid, de-

generate and nondegenerate. In ECCV 06, volume 4, pages

94–106, 2006.

[12] G. Chen and G. Lerman. Spectral curvature clustering

(SCC). IJCV, 81(3):317–330, 2009.

[13] A. Goh and R. Vidal. Segmenting motions of different types

by unsupervised manifold clustering. In CVPR 07, 2007.

[14] E. Elhamifar and R. Vidal. Sparse subspace clustering. In

CVPR 09, pages 2790 – 2797, 2009.

[15] P. Jones. Rectifiable sets and the traveling salesman problem.

Invent Math, 102(1):1–15, 1990.

[16] G. David and S. Semmes. Singular integrals and rectifiable

sets in R
n: au-delà des graphes Lipschitziens. Astérisque,

193:1–145, 1991.

[17] G. Lerman. Quantifying curvelike structures of measures

by using L2 Jones quantities. Comm. Pure Appl. Math.,

56(9):1294–1365, 2003.

[18] A. V. Little, J. Lee, Y.-M. Jung, and M. Maggioni. Estima-

tion of intrinsic dimensionality of samples from noisy low-

dimensional manifolds in high dimensions with multiscale

svd. In SSP 09, pages 85–88, 2009.

[19] A. V. Little, Y.-M. Jung, and M. Maggioni. Multiscale esti-

mation of intrinsic dimensionality of data sets. In Manifold

learning and its applications : papers from the AAAI Fall

Symposium, pages 26–33, 2009.

[20] T. Zhang, A. Szlam, and G. Lerman. Median K-flats for

hybrid linear modeling with many outliers. 2nd international

workshop on subspace methods at ICCV 2009.

[21] G. Lerman and T. Zhang. Probabilistic recovery of multi-

ple subspaces in point clouds by geometric ℓp minimization.

Available at http://arxiv.org/abs/1002.1994.

[22] M. Fischler and R. Bolles. Random sample consensus:

A paradigm for model fitting with applications to image

analysis and automated cartography. Comm. of the ACM,

24(6):381–395, June 1981.

[23] R. Vidal, R. Tron, and R. Hartley. Multiframe motion seg-

mentation with missing data using powerfactorization and

gpca. IJCV, 79(1):85–105, 2008.

[24] Y. Sugaya and K. Kanatani. Multi-stage unsupervised learn-

ing for multi-body motion segmentation. IEICE Trans-

actions on Information and Systems, E87-D(7):1935–1942,

2004.

[25] P. H. S. Torr. Geometric motion segmentation and model

selection. Phil. Trans. Royal Society of London A, 356:1321–

1340, 1998.

[26] R. Tron and R. Vidal. A benchmark for the comparison of

3-d motion segmentation algorithms. In CVPR, 2007.

[27] G. Chen and G. Lerman. Motion segmentation for hopkins

155 database by SCC. 4th IEEE international workshop on

dynamical vision at ICCV 2009.

[28] X. Wang S. Yue and M. Wei. Application of two-order dif-

ference to gap statistic. Trans. Tianjin Univ., 14(3):217–221,

2008.

[29] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation

of multivariate mixed data via lossy coding and compression.

IEEE TPAMI, 29(9):1546–1562, September 2007.

