
 Open access Journal Article DOI:10.1177/027836402320556421

Randomized Kinodynamic Motion Planning with Moving Obstacles — Source link

David Hsu, Robert Kindel, Jean-Claude Latombe, Stephen M. Rock

Institutions: Stanford University

Published on: 01 Mar 2002 - The International Journal of Robotics Research (SAGE Publications)

Topics: Probabilistic roadmap, Kinodynamic planning and Motion planning

Related papers:

 Probabilistic roadmaps for path planning in high-dimensional configuration spaces

 Randomized kinodynamic planning

 Planning Algorithms

 Robot Motion Planning

 Motion Planning in Dynamic Environments Using Velocity Obstacles

Share this paper:

View more about this paper here: https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-
u6o55k62ct

https://typeset.io/
https://www.doi.org/10.1177/027836402320556421
https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct
https://typeset.io/authors/david-hsu-3spqbrbvg3
https://typeset.io/authors/robert-kindel-3h03gj6x6e
https://typeset.io/authors/jean-claude-latombe-3segqvijfe
https://typeset.io/authors/stephen-m-rock-14yshj38hr
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/journals/the-international-journal-of-robotics-research-3rqyvl4i
https://typeset.io/topics/probabilistic-roadmap-2w3j9q6t
https://typeset.io/topics/kinodynamic-planning-1e6howg4
https://typeset.io/topics/motion-planning-3av3bdsk
https://typeset.io/papers/probabilistic-roadmaps-for-path-planning-in-high-dimensional-45s4l7x8cl
https://typeset.io/papers/randomized-kinodynamic-planning-469yixx6m1
https://typeset.io/papers/planning-algorithms-47dbotm549
https://typeset.io/papers/robot-motion-planning-3qlt7dqyo0
https://typeset.io/papers/motion-planning-in-dynamic-environments-using-velocity-3gr2c4trr5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct
https://twitter.com/intent/tweet?text=Randomized%20Kinodynamic%20Motion%20Planning%20with%20Moving%20Obstacles&url=https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct
https://typeset.io/papers/randomized-kinodynamic-motion-planning-with-moving-obstacles-u6o55k62ct

Randomized Kinodynamic Motion Planning

with Moving Obstacles

David Hsu
�

Robert Kindel ✁ Jean-Claude Latombe
�

Stephen Rock ✁
✂
Department of Computer Science ✄ Department of Aeronautics & Astronautics

Stanford University

Stanford, CA 94305, U.S.A.

Abstract

This paper presents a novel randomized motion planner for robots that must achieve a

specified goal under kinematic and/or dynamic motion constraints while avoiding collision

with moving obstacles with known trajectories. The planner encodes the motion constraints

on the robot with a control system and samples the robot’s state ☎ time space by picking control

inputs at random and integrating its equations of motion. The result is a probabilistic roadmap

of sampled state ☎ time points, called milestones, connected by short admissible trajectories.

The planner does not precompute the roadmap; instead, for each planning query, it generates a

new roadmap to connect an initial and a goal state ☎ time point. The paper presents a detailed

analysis of the planner’s convergence rate. It shows that, if the state ☎ time space satisfies a

geometric property called expansiveness, then a slightly idealized version of our implemented

planner is guaranteed to find a trajectory when one exists, with probability quickly converging

to 1, as the number of of milestones increases. Our planner was tested extensively not only in

simulated environments, but also on a real robot. In the latter case, a vision module estimates

obstacle motions just before planning starts. The planner is then allocated a small, fixed amount

of time to compute a trajectory. If a change in the expected motion of the obstacles is detected

while the robot executes the planned trajectory, the planner recomputes a trajectory on the fly.

Experiments on the real robot led to several extensions of the planner in order to deal with time

delays and uncertainties that are inherent to an integrated robotic system interacting with the

physical world.

1 Introduction

In its simplest form, motion planning is a purely geometric problem: given the geometry of a robot

and static obstacles, compute a collision-free path of the robot between two given configurations.

This formulation ignores several key aspects of the physical world. In particular, robot motions

are often subject to kinematic and dynamic constraints (kinodynamic constraints [DXCR93]) that

cannot be ignored. Unlike obstruction by obstacles, such constraints cannot be represented as

forbidden regions in the configuration space. Moreover, the environment may contain moving ob-

stacles, requiring that computed paths be parametrized by time to indicate when the robot is to

1

Figure 1: Robot testbed consisting of an air-cushioned robot among moving obstacles.

achieve a particular state. In this paper, we consider motion planning problems with both kin-

odynamic constraints and moving obstacles, and propose an efficient algorithm for this class of

problems. In practice, we also need to consider numerous other issues (e.g., uncertainty about the

environment), some of which will be examined here.

Our work extends the probabilistic roadmap (PRM) framework originally developed for plan-

ning collision-free geometric paths [Kav94, KŠLO96, Šve97]. A PRM planner samples the robot’s

configuration space at random and retains the collision-free samples as milestones. It then tries

to connect pairs of milestones with paths of predefined shape (typically straight-line segments in

configuration space) and retains the collision-free connections as local paths. The result is an undi-

rected graph, called a probabilistic roadmap, whose nodes are the milestones and the edges are the

local paths. Multi-query PRM planners precompute the roadmap (e.g., [KŠLO96]), while single-

query planners compute a new roadmap for each query (e.g., [HLM97]). It has been proven that,

under reasonable assumptions about the geometry of the robot’s configuration space, a relatively

small number of milestones picked uniformly at random are sufficient to capture the connectivity

of the configuration space with high probability [HLM97, KLMR95].

The planner proposed in this paper represents kinodynamic constraints by a control system,

which is a set of differential equations that describes all the possible local motions of a robot. For

each query, the planner builds a new roadmap in the collision-free subset of the robot’s state ✆ time

space, where a state typically encodes both the configuration and the velocity of the robot. To sam-

ple a new milestone, it first selects a control input at random in the set of admissible controls and

then integrates the control system with this input over a short duration of time, from a previously

generated milestone. By construction, the local trajectory thus obtained automatically satisfies the

kinodynamic constraints. If this trajectory does not collide with the obstacles, its endpoint is added

to the roadmap as a new milestone. This iterative incremental procedure produces a tree-shaped

roadmap rooted at the initial state ✆ time point and oriented along the time axis. It terminates when

a milestone falls in an “endgame” region from which it is known how to reach the goal. This

endgame region may be specifically defined for a given robot. It may also be generated by the

planner by constructing a second tree of milestones rooted at the goal and integrating the equations

of motion backwards in time.

2

Our planner exploits the synergy of previously proposed ideas (see Section 2). It makes two

key contributions, one theoretical and one experimental:

✝ We provide an in-depth analysis of the planner’s convergence rate. It shows that, if the

state ✆ time space satisfies a geometric property called expansiveness, then under suitable as-

sumptions, the probability that the planner fails to find a trajectory, when one exists, quickly

goes to 0, as the number of milestones increases. The expansiveness property defined here

generalizes a similar notion introduced in [HLM97] for holonomic robots in static environ-

ments. The proof of convergence, however, is different from the one in [HLM97]. The earlier

proof assumes that local motions of the robot are totally unconstrained. It also critically uses

the symmetry of the connectivity relationship in configuration space—if a point ✞ is reach-

able from a point ✟ , then ✟ is also reachable from ✞ . This symmetric relationship no longer

holds when the robot has an asymmetric control system (e.g., a car-like robot that can only

move forward) or when obstacles are moving. Currently we do not know how to estimate a

priori the degree of expansiveness for a given state ✆ time space. Hence, our analysis is only

one step toward understanding the convergence of randomized motion planners. However,

we believe that expansiveness is a very useful concept for characterizing the spaces in which

randomized planners are likely to work well (or not so well). It may also help in designing

better sampling strategies.

✝ We also describes our experiences in integrating the planner into a hardware robot testbed

(Figure 1). In this integrated system, a vision module estimates obstacle motions just before

planning starts. The planner is then allocated a small, fixed amount of time (a fraction of

a second) to compute a trajectory. If a change in the expected motion of the obstacles is

detected while the robot executes the planned trajectory, the planner recomputes a trajectory

on the fly. Experiments on the real robot led to several extensions of the planner to deal with

time delays and uncertainties that are inherent to an integrated robotic system interacting

with the physical world. This is particularly important because kinodynamic constraints are

notoriously difficult to model accurately. Even more difficult is to build an accurate model for

predicting future obstacle motion. Our experimental work demonstrates that a fast planner

can reliably handle dynamic environments, even with uncertainty in the future motions of

the obstacles.

The rest of the paper is organized as follows. Section 2 reviews previous work. Section 3 describes

the planning algorithm. Section 4 develops the theoretical analysis of the planner’s convergence.

Sections 5 through 7 describe our experiments with the planner on a nonholonomic robot and

on a dynamically-constrained robot developed to investigate space robotics tasks. In simulation

(Sections 5 and 6), we verified that the planner can reliably solve tricky problems. In the hard-

ware robot testbed (Section 7), we verified that the planner can operate effectively despite various

uncontrollable uncertainties and time delays.

This paper combines and extends the results previously reported in [HKLR00, KHLR00]. For

more details, see [Hsu00, Kin01].

3

2 Previous Work

2.1 Motion planning by random sampling

Sampling-based motion planning is a classic concept in motion planning (e.g., see [Don87]). Orig-

inally, the approach was proposed to both avoid difficulties encountered in implementing complete

planners (e.g., floating-point approximations) and facilitate the incorporation of search heuristics

(e.g., potential fields). Samples are organized into regular grids or hierarchical ones (e.g., quadtrees

in 2-D configuration spaces). These grids provide an explicit representation of the robot’s free

space and help the search algorithm to remember the points already visited. Their size, however,

grows exponentially with the dimensionality of the configuration space, i.e., the number of degrees

of freedom (dofs) of the robot. Moreover, explicitly computing the geometry of the free subset of a

configuration space with dimension greater than four or five turns out to have a prohibitively high

cost.

Random sampling—more specifically, PRM methods—was introduced to solve (geometric)

path planning problems for robots with many dofs [ABD ✠ 98, BK00, BKL ✠ 97, BL91, BOvdS99,

HLM99, HST94, Hsu00, Kav94, KŠLO96, Kuf99, LH00, SLL01, Šve97]. The costly computation of

an explicit representation of the free space is replaced by a collision test on every randomly

picked sample and connection between samples. This, of course, can be done with regular and

hierarchical grids, too. More interestingly, random sampling provides an incremental planning

scheme which does not artificially depend on the dimensionality of the configuration space. The

analysis of the convergence rate of several PRM algorithms reveals the true value of random

sampling [Hsu00, HLM97, KKL98, KLMR95, Šve97]: each new milestone added to a probabilis-

tic roadmap ✡ refines the the connectivity relationship captured in ✡ and reduces the probability

that the planner fails to find a solution path, when one exists (see Section 2.3).

Various applications of randomized planners are reviewed in [Lat99], including robotics, de-

sign for manufacturing and servicing, graphic animation of digital actors, surgical planning, and

prediction of molecular motion.

Other planning approaches (e.g., [Ahu94, HXCW98]) attempt to capture the global connectivity

of a robot’s free space by combining exploration and search in a manner similar to graph search in

artificial intelligence.

2.2 Sampling strategies

Proposed PRM techniques differ in their sampling strategies. An important distinction exists be-

tween multi-query strategies (e.g., [KŠLO96]) and single-query ones (e.g., [HLM97]). A multi-query

planner precomputes a roadmap for a given robot and workspace and then uses this roadmap to

process multiple queries. In general, the query configurations are not known in advance. So the

sampling strategy must distribute the milestones over the entire free space. In contrast, a single-

query planner computes a new roadmap for each query. Here the goal is to find a collision-free

path between the two query configurations by exploring as little space as possible. Multi-query

strategies are appropriate when the cost of precomputing a roadmap can be amortized over a large

number of queries. Single-query ones are appropriate when the number of queries in a given space

is small. Intermediate strategies, which precompute partial roadmaps and complete them to pro-

4

cess specific queries, have also been proposed [BK00, SMA01]. The planner proposed in this paper

follows the single-query sampling paradigm.

Single-query strategies often build a new roadmap for each query by growing trees of sampled

milestones rooted at the initial and/or goal configurations [AG99, HLM97, Hsu00, Kuf99, LK99],

but they differ in the way they sample the milestones that form the nodes of the trees. Similar to

the planner in [HLM97], our algorithm selects a milestone ☛ in a tree to expand at random, with

probability inverse proportional to the current density of milestones around ☛ (see Section 3.2).

A new milestone is then picked by sampling the neighborhood of ☛ at random. This guarantees

that the roadmap eventually diffuses through the component(s) of the free space reachable from

the query configurations and that the milestone distribution over these components converges to a

uniform one. This condition is needed for the analysis of the planner’s convergence developed in

Section 4. An alternative is to first pick a configuration ✟ in the configuration space at random,

select ☛ to be the milestone in the tree closest to ✟ , and then pick a new milestone along the line

connecting ☛ to ✟ [LK99]. This technique is slightly simpler to implement than ours and works

well when the query admits a solution that does not require long detours. However, this sampling

strategy biases the distribution of milestones toward those regions in the configuration space with

large obstacles. This may be undesirable and severely slow down the rate of convergence of the

planner. Another possibility is to grow the search tree by picking each new milestone as far away as

possible from the current milestones [AG99]. Other techniques or refinements of these techniques

are clearly possible. Our experience is that, although one may improve the performance of a PRM

planner on some examples by biaising the distribution of milestones, a sampling strategy that yields

a uniform distribution of milestones over the reachable free space avoids pathological cases and

gives the best results on the average.

2.3 Probabilistic completeness

A complete motion planner is one that returns a solution whenever one exists and indicates that

no such path exists otherwise. However, as was shown in [Rei79], path planning is PSPACE-hard,

which is strong indication that any complete planner is likely to be exponential in the number

of dofs of a robot. Adding kinodynamic constraints and moving obstacles further increases the

complexity of the problem [DXCR93, RS85].

A planner based on random sampling cannot be complete. However, a weaker notion of com-

pleteness, called probabilistic completeness, was introduced in [BL91]: a planner is probabilis-

tically complete if the probability that it returns a correct answer goes to 1 as the running time

increases. Suppose that a randomized planner returns a solution path as soon as it finds one, and

indicates that no such path exists if it cannot found one after a given amount of time. If the planner

returns a path, the answer must be correct. If it reports that no path exists, the answer may be some-

times wrong. It has been shown that the probability that the randomized potential field planner fails

to find a solution path when one exists goes to 0 as the running time increases, hence proving that

the planner is probabilistically (resolution) complete [BL91]. Several other randomized planners

have also been proven to be probabilistically complete [AG99, LK01, LL96, Šve97].

Probabilistic completeness, however, is a weak concept, as it says nothing about a planner’s

rate of convergence. In order to understand why PRM planners work well in practice and identify

the cases where they may not work well, we need to show that they have a fast convergence rate.

5

This requires us to develop a characterization of the complexity of the input geometry that is

suitable for random sampling. This characterization should not depend on the dimensionality of

the configuration space in an artificial way. After all, is it really more difficult to sample an empty☞ -dimensional hypercube than to sample an empty square? Along these lines, it has been shown

that, under suitable assumptions, certain idealized versions of multi-query PRM path planners have

a convergence rate exponential in the number of sampled milestones [HLM97, HLMK99, KKL98,

KLMR95, Šve97, ŠO98].

More specifically, the notion of ✌ -goodness was introduced to characterize the complexity of

a robot’s configuration space [KLMR95, BKL ✠ 97]. If a space is ✌ -good, then with some limited

help from a complete planner, a multi-query PRM planner that samples milestones uniformly at

random from the configuration space converges at an exponential rate with respect to the number

of sampled milestones. The proof of this result relates PRM methods to the issue of visibility

sets studied in computational geometry, in particular, the art-gallery problem [O’R97]: each mile-

stone is regarded as a guard that sees a subset of the robot’s free space, the milestone’s visibility

region [KLMR95]. This insight was recently exploited to generate smaller roadmaps [SLL01].

To remove the need for a complete planner in the proof presented in [BKL ✠ 97], expansiveness

was introduced as a more refined characterization of the robot’s free space. While the computa-

tional complexity of a complete planner is usually expressed as a function of the number of dofs

and the number and the degree of polynomials describing the boundary surface of a robot and

obstacles, the rate of convergence of a PRM planner is expressed as a function of parameters mea-

suring the degree to which a robot’s free space is expansive. Importantly, the expansiveness of a

free space captures the “narrow passage” issue studied in [HKL ✠ 98]. It reveals the true narrow-

ness of a passage and is a better measure than the width of the passage to capture the difficulty of

sampling in a multi-dimensional narrow passage [HLM99].

In this paper, we further generalize the notion of expansiveness and extend it to state ✆ time

space. We prove that if the state ✆ time space is expansive, then under suitable assumptions, our new

randomized planner for kinodynamic planning with moving obstacles is probabilistically complete

with a convergence rate exponential in the number of sampled milestones.

2.4 Geometric complexity

One tenet of the PRM approach to motion planning is that a fast algorithm exists to check sampled

configurations and connections between them for collision. When both the robot and the obstacles

have simple geometric shapes, which is the case of most examples in this paper, this assumption is

clearly satisfied. However, does this remain true when the robot and the obstacles are complex 3D

objects described by 100,000 triangles or more?

During the past decade, a number of efficient collision checking and distance computation

algorithms have been developed. The most popular ones are hierarchical decomposition algo-

rithms, which precompute a multi-level bounding approximation of every object in an environ-

ment, using primitive volumes such as spheres, axis-aligned bounding boxes, or oriented bounding

boxes [CLMP95, GLM96, Hub96, KHM ✠ 98, KPLM98, Qui94]. Experiments reported in [SA01] indi-

cate that the PQP package [GLM96] tests two objects, described by 500,000 triangles each, in times

ranging between 0.0001 and 0.0025 seconds (on an Intel Pentium III 1GHz processor), depending

on the actual distance between the two objects.

6

The use of efficient collision checkers in PRM planners has been reported in [BK00, CL95,

HLM97, SA01, SLL01]. These planners are capable of efficiently and reliably processing planning

queries with geometric models containing hundreds of thousands of triangles.

2.5 Moving obstacles

When obstacles are moving, the planner must compute a trajectory parametrized by time, instead

of simply a geometric path. This problem has been proven to be computationally difficult even for

robots with few dofs [RS85].

A number of heuristic algorithms (e.g., [FS96, Fuj95, KZ86]) have been proposed. The technique

in [KZ86] is a two-stage approach: in the first stage, it ignores the moving obstacles and computes

a collision-free path of the robot among the static obstacles; in the second stage, it tunes the robot’s

velocity along this path to avoid colliding with moving obstacles. The resulting planner is clearly

incomplete, but it often gives good results when the number of moving obstacles is small and/or

the workspace is not too cluttered. The planner in [Fuj95] tries to reduce the incompleteness by

generating a network of paths. The planner in [FS96] introduces the notion of a velocity obstacle,

defined as the set of velocities that will cause the robot to collide with an obstacle at a future time.

Velocity obstacles are used to generate an initial feasible trajectories for the robot, which is later

optimized. The planner can handle actuator constraints such as bounded acceleration.

The notion of a configuration ✆ time space was introduced in [ELP87] to coordinate the motion

of multiple robots. It was later extended in [Fra93] to that of a state ✆ time space, where a state

encodes a robot’s configuration and velocity, to plan robot motions with both moving obstacles

and kinodynamic constraints.

2.6 Kinematic and dynamic constraints

Kinodynamic motion planning refers to problems in which the robot’s motion must satisfy non-

holonomic and/or dynamic constraints.

Planning for nonholonomic robots has attracted considerable interest (e.g., [BL89, Lau86, LCH89,

LJTM94, LM96, ŠO94, SŠLO97]). One approach [Lau86, LJTM94] is to first generate a collision-

free path, ignoring the nonholonomic constraints, and then break this path into small pieces and

replace them by admissible canonical paths (e.g., Reeds and Shepp curves [RS90]). An exten-

sion is to perform successive path transformations of various types [Fer98, SL98]. A related ap-

proach [SŠLO97, ŠO94] uses a multi-query PRM algorithm that connects milestones by canonical

path segments such as Reeds and Shepp curves. All these methods require the robots to be locally

controllable [BL93, HK77, LCH89, LM96]. An alternative approach, introduced in [BL89, BL93], is

to generate a tree of sampled configurations rooted at the initial configuration. At each iteration, a

sample is selected from the tree and expanded to produce new samples, by integrating the robot’s

equations of motion over a short duration of time with deterministically picked controls. A space

partitioning scheme regulates the density of samples in any region of the configuration space. This

approach works well for car-like robots and tractor-trailor robots with two to four dofs and is ap-

plicable to robots that are not locally controllable. Our new planner takes a similar approach, but

picks controls at random. Neither the planner nor the analysis of its convergence rate requires the

robot to be locally controllable. Compared to the planner in [BL93] and the planner presented in

7

this paper, the two-step approach of [Lau86, LJTM94] has the advantage that it can reach the goal

configuration exactly, which eliminates the need to define an endgame region, but it is applicable

only to locally controllable robots.

Algorithms for dealing with dynamic constraints are comparable to those developed for non-

holonomic constraints. In [BDG85, SD91], a collision-free path is first computed, ignoring the

dynamic constraints; a variational technique then deforms this path into a trajectory that both con-

forms to the dynamic constraints and optimizes a criterion such as minimal execution time. These

methods work well on many practical examples; however, no formal guarantee of performance has

been established for them. In fact, it is not always possible to transform the path generated in the

first phase into an admissible trajectory, due to limits on the actuator forces or torques. The ap-

proach in [DXCR93] places a regular grid over the robot’s state space and directly searches the grid

for an admissible trajectory using dynamic programming. It offers provable performance guaran-

tees (resolution completeness and an asymptotic bound on the computation time), but it is only

applicable to robots with few dofs (typically, two or three), as the size of the grid grows exponen-

tially with the number of dofs. The planner in [Fra93] uses a similar approach in the state ✆ time

space of the robot and deals with moving obstacles as well. Both our planner and the one in

[Kuf99, LK99, LK01] have many similarities with the approach taken in [BL93, DXCR93, Fra93].

Our planner discretizes the state ✆ time space via random sampling, instead of placing a regular

grid over it. This makes it possible to deal with robots with many more dofs. On the other hand,

our planner does not achieve resolution completeness as the one in [DXCR93]. Instead, under

suitable assumptions, it achieves probabilistic completeness with an exponential convergence rate

(Section 4).

The representation and the algorithm used in our planner build upon several existing ideas,

in particular: single-query random sampling of configuration space [HLM97], state ✆ time space

formulation [BL93, DXCR93, ELP86, Fra93], and representation of kinodynamic constraints with a

control system [BL93, DXCR93, Fra93]. The most salient contributions of this work are the general-

ization of expansiveness to state ✆ time space, the theoretical analysis of the planner’s convergence

rate, and the integration and experiments of the planner on a real robot.

3 Planning framework

Our algorithm builds a probabilistic roadmap in the collision-free subset ✍ of the state ✆ time space

of the robot. The roadmap is computed in the connected component of ✍ that contains the robot’s

initial state ✆ time point.

3.1 State-space formulation

Motion constraints We consider a robot whose motion is governed by an equation of the form

✎✏✒✑✔✓✖✕✗✏✙✘✛✚✢✜✣✘ (1)

where ✏✥✤✧✦ is the robot’s state,
✎✏ is its derivative relative to time, and ✚✧✤✩★ is the control input.

The sets ✦ and ★ are the robot’s state space and control space, respectively. We assume that ✦ and

8

✪

✫

✬

✭

✮

✯

✰

Figure 2: A simple model of a car-like robot.

★ are bounded manifolds of dimensions ☞ and ☛ with ☛✲✱ ☞ . By defining appropriate charts, we

can treat ✦ and ★ as subsets of R ✳ and R ✴ .

Eq. (1) can represent both nonholonomic and dynamic constraints. The motion of a non-

holonomic robot is constrained by ✵ independent, non-integrable scalar equations of the form✶✸✷ ✕ ✟ ✘ ✎✟ ✜✹✑✻✺ , ✼ ✑ ✽✾✘✣✿❀✘❂❁❃❁❂❁❄✘ ✵ , where ✟ and
✎✟ denote the robot’s configuration and velocity, re-

spectively. Define the robot’s state to be ✏✩✑ ✟ . It is shown in [BL93] that, under appropriate

conditions, the constraints
✶✖✷ ✕❅✏✾✘ ✎✏❆✜❇✑❈✺❉✘ ✼ ✑❊✽✾✘✣✿❀✘❃❁❂❁❂❁❋✘ ✵ are equivalent to Eq. (1) in which ✚ is a

vector in R ✴ ✑ R ✳❍●❏■ . In particular, Eq. (1) can be rewritten as ✵ ✑✔☞▲❑ ☛ independent equations

of the form
✶✸✷ ✕✗✏✾✘ ✎✏▼✜✥✑◆✺ . Dynamic constraints are closely related to nonholonomic constraints.

In Lagrangian mechanics, dynamics equations are of the form ✡ ✷ ✕ ✟ ✘ ✎✟ ✘❉❖✟ ✜P✑✲✺ , where ✟ , ✎✟ , and❖✟ are the robot’s configuration, velocity, and acceleration, respectively. Defining the robot’s state

as ✏▲✑◗✕ ✟ ✘ ✎✟ ✜ , we can rewrite the dynamics equations in the form
✶❘✷ ✕✗✏✾✘ ✎✏❆✜❙✑❚✺ , which, as in the

nonholonomic case, is equivalent to Eq. (1).

Robot motions may also be constrained by inequalities of the forms
✶❯✷ ✕ ✟ ✘ ✎✟ ✜ ✱ ✺ and ✡ ✷ ✕ ✟ ✘ ✎✟ ✘❀❖✟ ✜ ✱✺ . These-constraints restrict the sets of admissible states and controls to subsets of R ✳ and R ✴ .

Examples These notions are illustrated below with two examples that will also be useful later in

the paper:

Nonholonomic car navigation. Consider the car example in Figure 2. Let ✕❲❱❳✘✛❨❩✜ be the position of

the midpoint ❬ between the rear wheels of the robot and ❭ be the orientation of the rear wheels

with respect to the ❱ -axis. Define the car’s state to be ✕❲❱❳✘❪❨❫✘ ❭ ✜❯✤ R ❴ . The nonholonomic constraint❵❜❛❍❝ ❭ ✑ ✎❨❉❞ ✎❱ is equivalent to the system

✎❱ ✑ ❡❣❢❃❤✾✐ ❭✎❨ ✑ ❡❣✐✛❥ ❝ ❭✎❭ ✑ ✕❲❡❀❞❧❦♠✜ ❵❜❛❧❝♦♥ ❁
This reformulation corresponds to defining the car’s state to be its configuration ✕❲❱❳✘✛❨♣✘ ❭ ✜ and choos-

ing the control input to be the vector ✕q❡r✘ ♥ ✜ , where ❡ and
♥

are the car’s speed and steering angle.

9

Bounds on ✕s❱❳✘❪❨❫✘ ❭ ✜ and ✕q❡r✘ ♥ ✜ can be used to restrict ✦ and ★ to subsets of R ❴ and R t , respectively.

For instance, if the maximum speed of the car is 1, then we have ✉ ❡ ✉✈✱ ✽ .
Point-mass robot with dynamics. For a point-mass robot ✇ moving on a horizontal plane, we

typically want to control the forces applied to ✇ . This leads us to define the state of ✇ as ✏①✑✕❲❱❳✘✛❨♣✘❪❡▼②✾✘✛❡④③❃✜ , where ✕s❱❳✘❪❨❉✜ and ✕q❡▼②✙✘❪❡▼③❃✜ are the position and the velocity of ✇ . The control inputs

are chosen to be the forces applied to ✇ in the ❱ - and ❨ -direction. Hence the equations of motion

are ✎❱ ✑ ❡▼② ✎❡▼② ✑ ✚r②❆❞ ☛✎❨ ✑ ❡▼③ ✎❡④③ ✑ ✚r③❃❞ ☛ ✘ (2)

where ☛ is the mass of ✇ and ✕❲✚❫②✾✘✛✚r③❃✜ is the applied force. The velocity ✕q❡❧②✾✘❪❡④③❂✜ and force ✕q✚⑤②❧✘❪✚⑤③❃✜
are restricted to subsets of R t due to limits on the maximum velocity and force.

Planning query Let ✦❯⑥ denote the state ✆ time space ✦ ✆⑧⑦ ✺❀✘✣⑨❶⑩❷✜ . Obstacles in the robot’s

workspace are mapped into this space as forbidden regions. The free space ✍✲❸ ✦❹⑥ is the set of

all collision-free points ✕✗✏✾✘✛❺❻✜ . A collision-free trajectory ❼❾❽ ❺❿✤ ⑦ ❺❃➀❋✘✛❺ t
➁➃➂➄ ❼ ✕❲❺❻✜♦✑❈✕✗✏❏✕s❺❻✜❋✘✛❺❻✜➅✤ ✍ is

admissible if it is induced by a function ✚ ❽▼⑦ ❺❂➀✣✘❜➆ t
➁♣➄ ★ through Eq. (1).

A planning query is specified by an initial state ✆ time ✕❅✏✾➇❪✘✛❺➈➇➉✜ and a goal state ✆ time ✕✗✏▼➊▼✘❻❺➋➊❄✜ .
A solution to the query is either a function ✚ ❽▼⑦ ❺✣➇✛✘✛❺➋➊ ➁➌➄ ★ that induces a collision-free trajectory

❼❾❽ ❺▲✤ ⑦ ❺➈➇❪✘✛❺➋➊ ➁➅➂➄ ❼ ✕s❺❻✜➍✑➎✕❅✏✈✕❲❺❻✜✣✘✛❺❻✜➏✤ ✍ , such that ✏❏✕s❺➉➇➈✜➐✑◗✏❂➇ , ✏✈✕❲❺➋➊❄✜➐✑◗✏❃➊ , or an indication that

no admissible trajectory exists between ✕❅✏❍➇❪✘✛❺➈➇➉✜ and ✕❅✏❃➊▼✘✛❺➋➊❄✜ . This formulation can be extended to

allow ❺➈➊ to be any instant in some given time interval, or to be the earliest possible arrival time.

In the following, we consider piecewise-constant functions ✚➃✕❲❺❻✜ only.

3.2 The planning algorithm

Our planning algorithm is an extension of the algorithm presented in [HLM97]. It iteratively builds

a tree-shaped roadmap ➑ rooted at ☛ ➇▲✑ ✕✗✏❂➇❜✘✛❺➈➇➈✜ . At each iteration, it first picks at random a

milestone ✕❅✏✾✘✛❺❻✜ from ➑ , a time ❺✛➒ with ❺➈➒ ✱ ❺➋➊ , and a control function ✚ ❽❆⑦ ❺✣✘✛❺➉➒ ➁➓➄ ★ . It then

computes the trajectory induced by ✚ by integrating Eq. (1) from ✕❅✏✾✘✛❺❻✜ . If this trajectory lies in

✍ , its endpoint ✕❅✏▼➒➔✘✛❺➋➒→✜ is added to ➑ as a new milestone; a directed edge is created from ✕❅✏✾✘✛❺❻✜ to✕❅✏ ➒ ✘✛❺ ➒ ✜ , and ✚ is stored with this edge. The kinodynamic constraints are thus naturally enforced

in all trajectories represented in ➑ . The planner exits with success when the newly generated

milestone falls in an “endgame” region that contains ✕❅✏❍➊▼✘✛❺➋➊❄✜ .
Milestone selection The planner assigns a weight ➣ ✕ ☛ ✜ to each milestone ☛ in ➑ . The weight

of ☛ is the number of other milestones lying in the neighborhood of ☛ . So ➣ ✕ ☛ ✜ indicates how

densely the neighborhood of ☛ has already been sampled. At each iteration, the planner picks

an existing milestone ☛ in ➑ at random with probability ↔➃↕ ✕ ☛ ✜ inversely proportional to ➣ ✕ ☛ ✜ .
Hence, a milestone lying in a sparsely sampled region has a greater chance of being selected than

a milestone lying in an already densely sampled region. This technique avoids oversampling any

particular region of ✍ .

Control selection Let ➙➜➛ be the set of all piecewise-constant control functions with at most ➝
constant pieces. So every ✚➞✤ ➙✖➛ admits a finite partition ❺✛➟➡➠◆❺❪➀➢➠➤❁❂❁❃❁➅➠❊❺ ➛ such that ✚➜✕s❺❻✜
is a constant ➥ ✷ ✤➦★ over the time interval ✕❲❺ ✷ ● ➀✣✘✛❺

✷ ✜ , for ✼ ✑ ✽✾✘✣✿❀✘❃❁❂❁❂❁❋✘ ➝ . We also require ❺ ✷ ❑

10

❺ ✷ ● ➀ ✱➤➧✣➨❳➩❅➫ , where ➧✣➨❳➩❅➫ is a constant. Our algorithm picks a control ✚➭✤ ➙❯➛ , for some pre-

specified ➝ and ➧❋➨❳➩❅➫ , by sampling each constant piece of ✚ independently. For each piece, ➥ ✷ and

➧ ✷ ✑➯❺ ✷ ❑➲❺ ✷ ● ➀ are selected uniformly at random from ★ and ⑦ ✺❉✘ ➧❃➨❳➩❅➫ ➁ , respectively. The specific

choices of the parameters ➝ and ➧❋➨❳➩❅➫ will be discussed in Section 4.5. In the actual implementation

of the algorithm, however, one may chose ➝ ✑➳✽ , because any trajectory passing through several

consecutive milestones in the tree ➑ is obtained by applying a sequence of constant controls.

Endgame connection Unlike some other planning techniques (e.g., [Lau86, LJTM94]), the above

“control-driven” sampling technique does not allow us to reach the goal ✕✗✏✾➊▼✘✛❺➋➊❄✜ exactly. We need

to “expand” the goal into an endgame region that the sampling algorithm will eventually attain

with high probability. There are several ways of creating such a region:

✝ In [BL93], the endgame region is defined to be a ball of small radius centered at the goal. Any

point in this ball is considered to be a sufficiently good approximation of the specified goal.

This technique is practical only in spaces of small dimensionality, as the relative volume

of a ball of small fixed radius goes toward 0 as the dimensionality increases. We could

nevertheless adapt this technique by setting the parameter ➧▼➨❳➩❅➫ proportional to the distance

between the milestone picked from ➑ and the goal, allowing the density of milestones to

increase in the goal’s vicinity, and terminating with success when the planner samples a new

milestone close enough to the goal.

✝ For some robots, it is possible to analytically compute one or several canonical control func-

tions that exactly connect two given points while obeying the kinodynamic constraints. An

example is the Reeds and Shepp curves [RS90] developed for nonholonomic car-like robots.

If such control functions are available, one can test if a milestone ☛ belongs to the engame

region by checking whether a canonical control function generates a collision-free trajectory

from ☛ to ✕❅✏❂➊▼✘✛❺➋➊❄✜ .
✝ A more general method is to build a secondary tree ➑ ➒ of milestones from the goal in the

same way as that for the primary tree ➑ , except that Eq. (1) is integrated backwards in time.

Let ✕✗✏❂➒➔✘✛❺➋➒➵✜ be a new milestone obtained by integrating backwards from an existing milestone✕✗✏✙✘❻❺❻✜ in ➑ ➒ . By construction, if the time goes forward, the control function drives the robot

from state ✏ ➒ at time ❺ ➒ to state ✏ at time ❺ (Figure 3). Thus there is a known trajectory from

every milestone in ➑ ➒ to the goal. The sampling process terminates with success when a

milestone ☛ ✤ ➑ is in the neighborhood of a milestone ☛ ➒ ✤ ➑ ➒ . In this case, the endgame

region is the union of the neighborhoods of milestones in ➑ ➒ . To generate the final trajectory,

we simply follow the appropriate edges of ➑ and ➑ ➒ ; however, there is a small gap between

☛ and ☛ ➒ . The gap can often be dealt with in practice. For example, beyond ☛ , one can use

a PD controller to track the trajectory extracted from ➑ ➒ . Constructing endgame regions by

backward integration is a very general technique and can be applied to any system described

by (1).

In Sections 5–7, we will present implementations of the planner, using the last two techniques

described above.

Endgame region can also be used when the goal does not have a unique configuration. For

example, in [AG99], the goal region is defined to be the subset of configurations of a redundant

robot such that the end-effector achieves a given posture.

11

➸

➸✙➺ ➻➽➼✛➻➉➾✛➚❻➪✗➶ ➹❂➘➪✗➶➷➴❳➻➜➬❜➹❃➶➷➘✛➬➌➮➱➹❋✃❒❐⑤❮❪✃Ï❰Ð❋Ñ ❮❋➘❋➘✣➶➷➘✛➬➪✗➶➷➴❳➻✸➬✣➹❃➶➷➘✛➬❹Ò❪❮❪➾✛Ó➈❐❩❮❜✃Ï❰

Ô
Ô ➺

Figure 3: Building a secondary tree of milestones by integrating backwards in time.

Algorithm in pseudo-code The planning algorithm is summarized in the following pseudo-code.

Algorithm 1 Control-driven randomized expansion.

1. Insert ☛ ➇ into ➑ ; ✼➃Õ ✽ .
2. repeat

3. Pick a milestone ☛ from ➑ with probability ↔Ö↕ ✕ ☛ ✜ .
4. Pick a control function ✚ from ➙➌➛ uniformly at random.

5. ☛ ➒ Õ PROPAGATE
✕ ☛ ✘❪✚♣✜ .

6. if ☛ ➒➜×✑ÙØ⑤ÚsÛ then

7. Add ☛ ➒ to ➑ ; ✼➃Õ ✼ ⑨Ü✽ .
8. Create an edge Ý from ☛ to ☛ ➒ ; store ✚ with Ý .
9. if ☛ ➒❫✤

ENDGAME then exit with SUCCESS.

10. if ✼ ✑ßÞ then exit with FAILURE.

In line 5, PROPAGATE
✕ ☛ ✘❪✚♣✜ integrates the equations of motion from ☛ with control ✚ . It returns a

new milestone ☛ ➒ if the computed trajectory is admissible; otherwise it returns nil. If there exists

no admissible trajectory from ☛ ➇♦✑➳✕❅✏❂➇❪✘✛❺➈➇➋✜ to ✕✗✏❂➊▼✘✛❺➋➊❄✜ , the algorithm cannot detect it. Therefore,

in line 10, we bound the maximum number of milestones to be sampled by a constant Þ . The

outcome FAILURE may be interpreted as “there exists no solution trajectory”, but this answer may

be incorrect.

The above algorithm can potentially benefit from more sophisticated sampling strategies, but

these strategies considerably complicate the following formal analysis. Moreover, the sampling

strategy in Algorithm 1 gave very satisfactory experimental results (see Sections 5–7).

12

à➋á à❅â

Figure 4: A free space with a narrow passage

4 Analysis of the Planner

The experiments to be described in Sections 5–7 demonstrate that Algorithm 1 provides an effi-

cient solution for difficult kinodynamic motion planning problems. Nevertheless some important

questions cannot be answered by experiments alone. What is the probability ã that the planner

fails to find a trajectory when one exists? Does ã converge to ✺ as the number of milestones in-

creases? If so, how fast? In this section, we generalize the notion of expansiveness, originally

proposed in [HLM97] for (geometric) path planning. We show that in an expansive space, the fail-

ure probability ã decreases exponentially with the number of sampled milestones. Hence, with

high probability, a relatively small number of milestones are sufficient to capture the connectivity

of the free space and answer the query correctly.

4.1 Expansive state ä time space

Expansiveness tries to characterize how difficult it is to capture the connectivity of the free space

by random sampling. To be concrete, consider the simple example shown in Figure 4. Assume that

there are no kinodynamic constraints and a point robot can move freely in the space shown. Let us

say that two points in the free space ✍ see each other—equivalently, are mutually visible—if the

straight line segment between them lies entirely in ✍ . The free space ✍ in Figure 4 consists of two

subsets å ➀ and å t connected by a narrow passage. Few points in å ➀ see a large fraction of å t .
Recall that a classic PRM planner samples ✍ uniformly at random and tries to connect pairs

of milestones that see each other. Let the lookout of å ➀ be the subset of all points in å ➀ that sees

a large fraction of å t . If the lookout of å ➀ were large, it would be easy for the planner to sample

a milestone in å ➀ and another in å t that see each other. However, in our example, å ➀ has a small

lookout due to the narrow passage between å ➀ and å t : few points in å ➀ see a large fraction of

å t . Thus it is difficult for the planner to generate a connection between å ➀ and å t . This example

suggests that we can characterize the complexity of a free space for random sampling by the size

of lookout sets. In [HLM97], a free space ✍ is said to be expansive if every subset å⑧❸æ✍ has a

large lookout. It has been shown that in an expansive space, a classic PRM planner with uniform

random sampling converges at an exponential rate as the number of sampled milestones increases.

When kinodynamic constraints are present, the basic issues remain the same, but the notion of

visibility (connecting milestones with straight-line paths) is inadequate. Algorithm 1 generates a

different kind of roadmaps, in which trajectories between milestones may be neither straight, nor

13

ç❿è→é❉ê
ë

ç❣ì❅è ë ê

é

Figure 5: The lookout of a set å .

reversible. This leads us to generalize the notion of visibility to that of reachability.

Given two points ✕✗✏✾✘✛❺❻✜ and ✕❅✏▼➒í✘❻❺➋➒→✜ in ✍✲❸ ✦❯⑥ , ✕❅✏❂➒➔✘✛❺➋➒➵✜ is reachable from ✕✗✏✙✘❻❺❻✜ if there exists a

control function ✚ ❽❆⑦ ❺✣✘✛❺ ➒ ➁Ö➄ ★ that induces an admissible trajectory from ✕❅✏✾✘✛❺❻✜ to ✕✗✏ ➒ ✘✛❺ ➒ ✜ . If ✕❅✏ ➒ ✘✛❺ ➒ ✜
remains reachable from ✕✗✏✾✘✛❺❻✜ by using ✚î✤ ➙➌➛ , a piecewise-constant control with at most ➝ constant

pieces as defined in Section 3.2, then we say that ✕✗✏ ➒ ✘✛❺ ➒ ✜ is locally reachable, or ➝ -reachable, from✕❅✏✾✘✛❺❻✜ . Let ï ✕ ✞ ✜ and ï➐➛ ✕ ✞ ✜ denote the set of points reachable and ➝ -reachable from some point ✞ ,

respectively; we call them the reachability and the ➝ -reachability set of ✞ . For any subset åÜ❸ð✍ ,

the reachability (➝ -reachability) set of å is the union of the reachability (➝ -reachability) sets of all

the points in å :

ï ✕ å ✜➌✑òñ
ó❂ô❂õ ï

✕ ✞ ✜ ❛❧❝❩ö ïP➛ ✕ å ✜❘✑÷ñ
ó❂ô❆õ ïP➛

✕ ✞ ✜❋❁

We define the lookout of a set åø❸❷✍ as the subset of all points in å whose ➝ -reachability sets

overlap significantly with the reachability set of å that is outside å (Figure 5):

Definition 1 Let ù be a constant in ✕q✺❉✘❂✽ ➁ . The ù -lookout of a set åú❸➲✍ is

ù -LOOKOUT
✕ å ✜➌✑⑧û ✞ ✤ åÜ✉▼ü ✕ ï✹➛ ✕ ✞ ✜❾ý å ✜❹þ ùÿü ✕ ï ✕ å ✜Öý å ✜✁�✈✘

where ü ✕✄✂ ✜
denote the volume of a set

✂ ❸➲✍ .

The free space ✍ is expansive if for every point ✞ ✤ ✍ , every subset å ✤ ï ✕ ✞ ✜ has a large lookout:

Definition 2 Let ☎ and ù be two constants in ✕q✺❉✘❂✽ ➁ . For any ✞ ✤ ✍ , the set ï ✕ ✞ ✜ is ✕ ☎ ✘ ù ✜ -
expansive if for every connected subset å ❸➲ï ✕ ✞ ✜ ,

ü ✕ ù -LOOKOUT
✕ å ✜✛✜❯þ ☎❙ü ✕ å ✜✣❁

The free space ✍ is ✕ ☎ ✘ ù ✜ -expansive if for every ✞ ✤ ✍ , ï ✕ ✞ ✜ is ✕ ☎ ✘ ù ✜ -expansive.

To better grasp these definitions, think of ✞ in Definition 2 as the initial milestone ☛ ✑➤✕❅✏❀➇❪✘✛❺➈➇➋✜
and å as the ➝ -reachability set of a set of milestones sampled by Algorithm 1. If ☎ and ù are

14

both reasonably large, then Algorithm 1 has a good chance to sample a new milestone whose ➝ -
reachability set adds significantly to the size of å . In fact, we show below that with high probability,

the ➝ -reachability set of the sampled milestones expands quickly to cover most of ï ✕ ☛ ➇➉✜ ; hence,

if the goal ✕❅✏❂➊▼✘✛❺➋➊❄✜ lies in ï ✕ ☛ ➇➉✜ , then the planner will quickly find an admissible trajectory with

high probability.

4.2 Ideal sampling

To simplify our presentation and focus on the most important aspects of our planner, let us assume

for now that we have an ideal sampler IDEAL-SAMPLE that picks a point uniformly at random

from the ➝ -reachability set of existing milestones. If it is successful, IDEAL-SAMPLE returns a

new milestone ☛ ➒ and a trajectory from an existing milestone ☛ to ☛ ➒ . With ideal sampling, the

planning algorithm can be restated as follows:

Algorithm 2 Randomized expansion with IDEAL-SAMPLE.

1. Insert ☛ ➟❹✑ ☛ ➇ into a tree ➑ ; ❬ ➟ ÕòïP➛ ✕ ☛ ➟✣✜ .
2. repeat

3. Invoke IDEAL-SAMPLE
✕ ❬ ✷ ✜ , which samples a new milestone ☛ ➒ and returns a trajectory from

an existing milestone ☛ to ☛ ➒ if the trajectory is admissible.

4. if ☛ ➒ ×✑ nil then

5. Insert ☛ ➒ into ➑ .

6. Create a directed edge Ý from ☛ to ☛ ➒ , and store the trajectory with Ý .
7. ❬ ✷ ✠ ➀ Õ ❬ ✷✝✆ ïP➛ ✕ ✞ ➒➵✜ ; ✼➜Õ➎✼ ⑨ß✽ .
8. if ☛ ➒❫✤ ENDGAME then exit with SUCCESS.

This algorithm is the same as Algorithm 1, except that the use of IDEAL-SAMPLE replaces lines

3–5 in Algorithm 1. We will discuss how to approximate IDEAL-SAMPLE in Section 4.4.

4.3 Bounding the number of milestones

Let ✞ ✑ ï ✕ ☛ ➇➉✜ be the set of all points reachable from ☛ ➇ under piecewise-constant controls.

Algorithm 1 determines whether the goal lies in ✞ by sampling a set of milestones; it terminates

as soon as a milestone falls in the endgame region. The running time of the planner is thus propor-

tional to the number of sampled milestones. In this subsection, we give a bound on the number of

milestones needed in order to guarantee a milestone in the endgame region with high probability,

assuming the intersection of the endgame region and ✞ is non-empty.

Let ✟ ✑ ✕ ☛ ➟❆✘ ☛ ➀❋✘ ☛ t ✘❂❁❂❁❂❁ ✜ be a sequence of milestones generated by Algorithm 2, and let✟ ✷
denote the first ✼ milestones in ✟ . A milestone ☛ ✷ is called a lookout point if it lies in the

ù -lookout of ï➍➛ ✕ ✟ ✷
● ➀❻✜ . Lemma 1 below states that the ➝ -reachability set of ✟ spans a large

volume if it contains enough lookout points, and Lemma 2 gives an estimate of the probability of

this happening. Together they imply that with high probability, the ➝ -reachability set of a relatively

small number of milestones spans a large volume in ✞ .

The following results assume that ✞ is (☎ ✘ ù)-expansive. For convenience, let us scale up all

the volumes so that ü ✕ ✞ ✜❘✑Ù✽ .
15

✠☛✡✠☛✡✌☞✎✍✠☛✡✑✏✓✒✠☛✡✑✏✓✒✔☞✕✍ ✠☛✡✗✖✘✍
Figure 6: A sequence of sampled milestones.

Lemma 1 If a sequence of milestones ✟ contains ✵ lookout points, then ü ✕ ï①➛ ✕ ✟ ✜❻✜ þ ✽ ❑ Ý ●✔✙❃■ .
Proof. Let ✕ ☛ ✷✛✚ ✘ ☛ ✷✢✜ ✘ ☛ ✷✛✣ ✘❂❁❂❁❂❁❄✘ ☛ ✷✥✤ ✜ be the subsequence of lookout points in ✟ , where ✼ ➟❆✘ ✼ ➀✣✘ ✼ t ✘❂❁❂❁❂❁
give the indices of the lookout points in the sequence ✟ ✑æ✕ ☛ ➟❂✘ ☛ ➀❋✘ ☛ t ✘❃❁❂❁❂❁ ✜ . For any ✼ ✑Ù✽✾✘✣✿❀✘❂❁❃❁❂❁ ,
we have

ü ✕ ïP➛ ✕ ✟ ✷ ✜❻✜♠✑ ü ✕ ï ➛ ✕ ✟ ✷ ● ➀✛✜✛✜Ö⑨ ü ✕ ïP➛ ✕ ☛ ✷ ✜Öý ïP➛ ✕ ✟ ✷
● ➀➉✜✛✜❋❁ (3)

Thus ü ✕ ï➐➛ ✕ ✟ ✷ ✜❻✜❯þ ü ✕ ïP➛ ✕ ✟✧✦ ✜✛✜ for all ✼ þ✩★ , in particular,

ü ✕ ïP➛ ✕ ✟ ✜✛✜❹þ ü ✕ ïP➛ ✕ ✟ ✷ ✤ ✜❻✜❋✘ (4)

where ✟ ✷✥✤ ✑ ✕ ☛ ➟❆✘ ☛ ➀✣✘ ☛ t ✘❂❁❂❁❂❁❄✘ ☛
✷✥✤ ✜ . Using (3) with ✼ ✑ ✼ ■ in combination with the fact that ☛ ✷✛✤

is a lookout point, we get

ü ✕ ïP➛ ✕ ✟ ✷✥✤ ✜✛✜❹þ ü ✕ ïP➛ ✕ ✟ ✷✥✤
● ➀✛✜❻✜Ö⑨ ùÿü ✕ ✞ ý ïP➛ ✕ ✟ ✷✥✤ ● ➀❻✜❻✜❋❁

Let ❡ ✷ ✑ ü ✕ ïP➛ ✕ ✟ ✷ ✜❻✜ . Since ü ✕ ✞ ý ïP➛ ✕ ✟ ✷ ✤
● ➀❻✜✛✜ ✑ ü ✕ ✞ ✜♠❑ ü ✕ ïP➛ ✕ ✟ ✷ ✤

● ➀❻✜❻✜✒✑❈✽➅❑ ❡ ✷ ✤ ● ➀ , we have❡ ✷ ✤ þ❷❡ ✷ ✤ ● ➀❾⑨ ù ✕➉✽ ❑ ❡ ✷ ✤ ● ➀❻✜ , which can be rewritten as

❡ ✷ ✤ þ❷❡ ✷ ✤✫✪ ✜ ⑨ ù ✕➉✽ ❑ ❡ ✷ ✤✫✪ ✜ ✜Ö⑨✔✕➈✽ ❑ ù ✜❄✕q❡ ✷ ✤ ● ➀➃❑ ❡ ✷ ✤✫✪ ✜ ✜❋❁ (5)

Note ✼ ■ ❑➲✽❇þ ✼ ■❄● ➀ (Figure 6) and thus ❡ ✷ ✤ ● ➀➃❑ ❡ ✷ ✤✫✪ ✜ þÜ✺ . It follows from (5) that

❡ ✷ ✤ þ❷❡ ✷ ✤✫✪ ✜ ⑨ ù ✕➉✽ ❑ ❡ ✷ ✤✫✪ ✜ ✜❋❁
Setting ➣ ■ ✑ð❡ ✷✛✤ leads to the recurrence ➣ ■ þ ➣ ■❋● ➀Ö⑨ ù ✕➈✽ ❑ ➣ ■❄● ➀➉✜ , with the solution

➣ ■ þÙ✕➉✽ ❑ ù ✜ ■ ➣ ➟➃⑨ ù ■❋●
➀✬✦✮✭ ➟ ✕➉✽ ❑ ù ✜ ✦ ✑ ✽ ❑ß✕➉✽ ❑ ù ✜ ■ ✕➉✽ ❑ ➣ ➟✣✜✣❁

Since ✯ ➟✱✰✳✲
and ✴✶✵✸✷✺✹✼✻ ●✔✙ , we get ✯ ■ ✰ ✴✶✵✺✻ ●✔✙❂■ . Combined with (4), it yields

ü ✕ ï ➛ ✕ ✟ ✜✛✜❹þ ✽ ❑ Ý ●✔✙❂■ ❁ ✽
Lemma 2 A sequence of ✾ milestones contains ✵ lookout points with probability at least ✽ ❑
✵❉Ý ●❀✿❂❁❄❃➽■ .
Proof. Let ✟ be a sequence of ✾ milestones, and ❦ be the event that ✟ contains ✵ lookout points.

We divide M into ✵ subsequences of ✾ ❞ ✵ consecutive milestones each. Denote by ❦ ✷ the event

that the ith subsequence contains at least one lookout point. Since the probability of ✟ having

16

✵ lookout points is greater than the probability of every subsequence having at least one lookout

point, we have

Pr ✕✗❦♠✜❹þ Pr ✕✗❦♠➀❆❅➏❦ t ❁❂❁❂❁❇❅î❦ ■ ✜✣✘
which implies

Pr ✕ ❦❣✜ ✱ Pr ✕ ❦❣➀ ✆ ❦ t ❁❂❁❂❁ ✆ ❦ ■ ✜ ✱ ■✬ ✷ ✭ ➟ Pr ✕ ❦ ✷ ✜✣❁

Since each milestone picked by IDEAL-SAMPLE has probability ☎ of being a lookout point, the

probability Pr ✕ ❦ ✷ ✜ of having no lookout point in the ith subsequence is at most ✕➈✽ ❑ ☎ ✜ ❁❄❃➽■ . Hence

Pr ✕✗❦♠✜➌✑ ✽ ❑ Pr ✕ ❦❣✜❹þ ✽ ❑ ✵ ✕➈✽ ❑ ☎ ✜ ❁❄❃➽■ ❁
Note that ✕➈✽ ❑ ☎ ✜ ❁❄❃➽■ ✱ßÝ ●❀✿❂❁❄❃➽■ . So we have Pr ✕✗❦♠✜❹þ ✽ ❑ ✵❉Ý ●❀✿❂❁❈❃➽■ . ✽

The main result, stated in the theorem below, establishes a bound on the number of milestones

needed in order to guarantee a milestone in the endgame region with high probability.

Theorem 1 Let ❉❋❊ ✺ be the volume of the endgame region ● in ✞ and ã be a constant in✕✗✺❀✘❂✽ ➁ . A sequence ✟ of ✾ milestones contains a milestone in ● with probability at least ✽✒❑ ã , if✾ þ ✕ ✵ ❞ ☎ ✜✝❍ ❝ ✕✗✿ ✵ ❞ ã ✜❾⑨ð✕❅✿✾❞ ❉ ✜✝❍ ❝ ✕✗✿✾❞ ã ✜ , where ✵ ✑æ✕➉✽❆❞ ù ✜✝❍ ❝ ✕❅✿✾❞ ❉ ✜ .
Proof. Let us divide ✟ ✑➦✕ ☛ ➟❂✘ ☛ ➀❋✘ ☛ t ✘❃❁❂❁❂❁❃✘ ☛ ❁ ✜ into two subsequences ✟ ➒ and ✟ ➒ ➒ such that ✟ ➒
contains the first ✾ ➒ milestones and ✟ ➒ ➒ contains the next ✾ ➒ ➒❉✑ ✾ ❑ ✾ ➒ milestones.

By Lemma 2, ✟ ➒ contains ✵ lookout points with probability at least ✽♦❑ ✵ ✕➈✽ ❑ ☎ ✜ ❁❏■❑❃➽■ . If there

are ✵ lookout points in ✟ ➒ , then by Lemma 1, ï➍➛ ✕ ✟ ➒→✜ has volume at least ✽♦❑ ❉ ❞❧✿ , provided that

✵ þ ✽▼❞ ù ❍ ❝ ✕❅✿✾❞ ❉ ✜✣❁
As a result, ïP➛ ✕ ✟ ➒ ✜ has a non-empty intersection ▲ with the endgame region of volume at least❉ ❞✾✿ , and so does ï➐➛ ✕ ✟ ✷ ✜ , for ✼ þ ✾ ➒ .

The procedure IDEAL-SAMPLE picks a milestone uniformly at random from the ➝ -reachability

set of the existing milestones, and therefore every milestone ☛ ✷ in ✟ ➒ ➒ falls in ▲ with probability✕ ❉ ❞✾✿❧✜✛❞ ü ✕ ïP➛ ✕ ✟ ✷ ● ➀➉✜✛✜ . Since ü ✕ ïP➛ ✕ ✟ ✷ ● ➀❻✜✛✜ ✱ ✽ for all ✼ , and the milestones are sampled indepen-

dently, ✟ ➒ ➒ contains a milestone in ▲ with probability at least ✽ ❑Ü✕➉✽ ❑ ❉ ❞✾✿✾✜ ❁ ■ ■ þ ✽ ❑ Ý ●✔❁ ■ ■ ➊ ❃ t .
If ✟ fails to contain a milestone in the endgame region ● , then either the ➝ -reachability set

of ✟ ➒
does not have a large enough intersection with ● (event ▼), or no milestone of ✟ ➒ ➒

lands

in the intersection (event ◆). From the preceding discussion, We know that Pr ✕ ▼ ✜ ✱ ã ❞✾✿ if✾ ➒❘þ❚✕ ✵ ❞ ☎ ✜✝❍ ❝ ✕✗✿ ✵ ❞ ã ✜ and Pr ✕ ◆ ✜ ✱ ã ❞✾✿ if ✾ ➒ ➒❘þ ✕✗✿✾❞ ❉ ✜✝❍ ❝ ✕❅✿❧❞ ã ✜ . Choosing ✾ þ❚✕ ✵ ❞ ☎ ✜✝❍ ❝ ✕✗✿ ✵ ❞ ã ✜➃⑨✕❅✿❧❞ ❉ ✜✝❍ ❝ ✕❅✿✾❞ ã ✜ guarantees that Pr ✕ ▼ ✆ ◆ ✜ ✱ Pr ✕ ▼ ✜✸⑨ Pr ✕ ◆ ✜ ✱✔ã . Substituting ✵ ✑➭✕➉✽▼❞ ù ✜✝❍ ❝ ✕✗✿✾❞ ❉ ✜
into the inequality bounding ✾ , we get the final result

✾ þ ❍ ❝ ✕❅✿✾❞ ❉ ✜☎➃ù ❍ ❝ ✿❖❍ ❝ ✕❅✿✾❞ ❉ ✜
ù❳ã

⑨ ✿
❉ ❍ ❝ ✿

ã
❁

✽
If the planner returns FAILURE, either the query admits no solution, i.e., ✕❅✏✙➊▼✘✛❺➋➊❄✜ ×✤ ✞ , or the

algorithm has failed to find one. The latter event, which corresponds to returning an incorrect

17

answer to the query, has probability less than ã . Since the bound in Theorem 1 contains only

logarithmic terms of ã , the probability of an incorrect answer converges to 0 exponentially in the

number of milestones.

The bound given by Theorem 1 also depends on the expansiveness parameters ☎ , ù and the

volume ❉ of the endgame region. The greater ☎ , ù , and ❉ , the smaller the bound. In practice, it is

often possible to establish a lower bound for ❉ . However, ☎ and ù are difficult to estimate, except

for every simple cases. This prevents us from determining the parameter Þ , the maximal number

of milestones needed for Algorithm 1 a priori. Nevertheless these results are important. First,

they tell us that the failure probability of our planner decreases exponentially with the number of

milestones sampled. Second, the number of milestones needed increases only moderately when ☎
and ù decrease, i.e., when the space becomes less expansive.

4.4 Approximating IDEAL-SAMPLE

The above analysis assumes the use of IDEAL-SAMPLE, which picks a new milestone uniformly at

random from the ➝ -reachability set of the existing milestones. One way to implement IDEAL-SAMPLE

would be rejection sampling [KW86], which throws away a fraction of samples in regions that are

more densely sampled than others. However, rejection sampling is not efficient: many potential

candidates are thrown away in order to achieve the uniform distribution.

So instead, our implemented planners try to approximate the ideal sampler. The approximation

is much faster to compute, but generates a slightly less uniform distribution. Recall that to sample

a new milestone ✞ ➒ , we first choose a milestone ✞ from the existing milestones and then sample in

the neighborhood of ✞ . Every new milestone ✞ ➒ thus created tends to be relatively close to ✞ . If we

selected uniformly among the existing milestones, the resulting distribution would be very uneven;

with high probability, we would pick a milestone in an already densely sampled region and obtain

a new milestone in that same region. Therefore the distribution of milestones tends to cluster

around the initial state ✆ time point. To avoid this problem, we associate with every milestone ✞ a

weight ➣ ✕ ✞ ✜ , which is the number of milestones in a small neighborhood of ✞ , and pick an existing

milestone to expand with probability inversely proportional to ➣ ✕ ✞ ✜ . So it is more likely to sample

a region containing a smaller number of milestones. The distribution ↔➜↕ ✕ ✞ ✜◗P ✽▼❞ ➣ ✕ ✞ ✜ contributes

to the diffusion of milestones over the free space and avoids oversampling any particular region.

In general, maintaining the weights ➣ ✕ ☛ ✜ as the roadmap is being built incurs a much smaller

computational cost than performing rejection sampling.

There is also a slightly greater chance of generating a new milestone in an area where the

➝ -reachability sets of several existing milestones overlap. However, milestones with overlapping

➝ -reachability sets are more likely to be close to one another than milestones with no such overlap-

ping. Thus it is reasonable to expect that using ↔❳↕ Pæ✽▼❞ ➣ ✕s❺❻✜ keeps the problem from worsening as

the number of milestones grows.

If there are no kinodynamic constraints on the robot’s motion, then other than the two issues

mentioned above, Theorem 1 gives an asymptotic bound that closely characterizes the amount

of work that the planner must do in order to guarantee finding a trajectory with high probability

whenever one exists. In particular, the result applies to (geometric) path planning problems.

There is, however, one more issue to consider when kinodynamic constraints are present. Al-

though line 4 of Algorithm 1 selects ✚ uniformly at random from ➙ ➛ , the distribution of ☛ ➒ in

18

ïP➛ ✕ ☛ ✜ is not uniform in general, because the mapping from ➙❯➛ to ïP➛ ✕ ☛ ✜ may not be linear. In

some cases, one may precompute a distribution ↔❙❘ such that picking ✚ from ➙➌➛ with probability

↔❚❘ ✕q✚♣✜ yields a uniform distribution of ☛ ➒ in ïP➛ ✕ ☛ ✜ . In other cases, rejection sampling can be used

locally. First pick several control functions ✚ ✷ ✘ ✼ ✑÷✽❧✘✣✿❀✘❂❁❂❁❃❁ and compute the corresponding ☛ ➒✷ ,
the endpoint of the trajectory induced by ✚ ✷ . Then throw away some of them to achieve a uniform

distribution among the remaining ☛ ➒✷ ’s, and pick a remaining ☛ ➒✷ at random.

4.5 Choosing suitable control functions

To sample new milestones, Algorithm 1 picks at random a piecewise-constant control function ✚
from ➙✖➛ . Every ✚ ✤ ➙➜➛ has at most ➝ constant pieces, each of which lasts for a time duration less

than ➧❋➨❳➩❅➫ . The parameters ➝ and ➧❋➨❳➩❅➫ are chosen according to specific properties of each robot.

In theory, ➝ must be large enough so that for any ✞ ✤ ï ✕ ☛ ➇➉✜ , ïP➛ ✕ ✞ ✜ has the same dimension

as ï ✕ ☛ ➇❻✜ . Otherwise, ï➐➛ ✕ ✞ ✜ has zero volume relative to ï ✕ ☛ ➇➉✜ , and ï ✕ ☛ ➇➉✜ cannot be expansive

even for arbitrarily small values of ☎ and ù . This can only happen when some dimensions of

ï ✕ ☛ ➇➉✜ are not spanned directly by basis vectors in the control space ★ , but these dimensions can

then be generated by combining several controls in ★ using Lie-brackets [BL93]. The mathematical

definition of a Lie bracket can be interpreted as an infinitesimal “maneuver” involving two controls.

Spanning all the dimensions of ï ✕ ☛ ➇➉✜ may require combining more than two controls of ➙ by

imbricating multiple Lie brackets. At most ☞ ❑P✿ Lie brackets are needed, where ☞ is the dimension

of the state space. Hence it is sufficient to choose ➝ ✑Ü☞▲❑ú✿ .
In general, the larger ➝ is, the greater ☎ and ù tend to be. So according to our analysis, fewer

milestones are needed; on the other hand, the cost of integration and collision checking during the

generation of a new milestone becomes more expensive. The choice of ➧❆➨❳➩❅➫ is somewhat related. A

larger ➧ ✴❱❯ ② may result in greater ☎ and ù , but also lead the planner to integrate longer trajectories

that are more likely to be inadmissible. Experiments show that ➝ and ➧❧➨❳➩❅➫ can be selected in

relatively wide intervals without significant impact on the performance of the planner. However, if

the values for ➝ and ➧❋➨❳➩❅➫ are too large, the approximation to IDEAL-SAMPLE becomes very poor.

5 Nonholonomic robots

We implemented Algorithm 1 for two different robot systems. One consists of two nonholo-

nomic carts connected by a telescopic link and moving among static obstacles. The other is an

air-cushioned robot that is actuated by air thrusters and operates among moving obstacles on a flat

table. The air-cushioned robot is subject to strict dynamic constraints. In this section, we discuss

the implementation of Algorithm 1 for the nonholonomic carts. In the next two sections, we will

do the same for the air-cushioned robot.

5.1 Robot description

Wheeled mobile robots are a classical example for nonholonomic motion planning. The robot

considered here is a new variation on this theme. It consists of two independently-actuated carts

moving on a flat surface (Figure 7). Each cart obeys a nonholonomic constraint and has non-

zero minimum turning radius. In addition, the two carts are connected by a telescopic link whose

19

✕✑❲❏✜ ✕✗➆❋✜
Figure 7: Two-cart nonholonomic robots. ✕❳❲❏✜ Cooperative mobile manipulators. ✕✗➆❋✜ Two wheeled

nonholonomic robots that maintain a direct line of sight and a distance range.

length is lower and upper bounded. This system is inspired by two scenarios. One is the mobile

manipulation project at the University of Pennsylvania’s GRASP Laboratory [DK99]; the two

carts are each mounted with a manipulator arm and must remain within a certain distance range

so that the two arms can cooperatively manipulate an object (Figure 7 ❲). The manipulation area

between the two carts must be free of obstacles. In the other scenario, two carts patrolling an

indoor environment must maintain a direct line of sight and stay within a certain distance range, in

order to allow visual contact or simple directional wireless communication (Figure 7 ➆).
We project the geometry of the carts and the obstacles onto the horizontal plane. For ✼ ✑➦✽✾✘✣✿ ,

let ❬ ✷ be the midpoint between the rear wheels of the ✼ th cart,
✶✖✷

be the midpoint between the

front wheels, and ❦ ✷ be the distance between ❬ ✷ and
✶✸✷

. We define the state of the system by✏❙✑➯✕❲❱❾➀❋✘❪❨✈➀✣✘ ❭ ➀✣✘❻❱ t ✘❪❨ t ✘ ❭ t ✜ , where ✕❲❱ ✷ ✘❪❨ ✷ ✜ are the coordinates of ❬ ✷ , and ❭ ✷ is the orientation of the

rear wheels of ✼ th cart relative to the ❱ -axis (Figure 2). To maintain a distance range between the

two cart, we require ❨✾➨❬❩❪❭❿✱❴❫ ✕s❱❾➀✖❑➡❱ t ✜ t ⑨ð✕q❨✈➀➜❑ ❨ t ✜ t ✱❵❨✾➨❳➩❅➫ for some constants ❨✈➨❬❩❪❭ and ❨✾➨❳➩❅➫ .
Each cart has two scalar controls, ✚ ✷ and

♥ ✷
, where ✚ ✷ is the speed of ❬ ✷ , and

♥ ✷
is the steering

angle. The equations of motion for the system are

✎❱❾➀◗✑ ✚❾➀❏❢❃❤✾✐ ❭ ➀ ✎❱ t ✑ ✚ t ❢❃❤❧✐ ❭ t✎❨❏➀ ✑ ✚❾➀❏✐✛❥ ❝ ❭ ➀ ✎❨ t ✑ ✚ t ✐✛❥
❝ ❭ t✎❭ ➀◗✑ ✕q✚❾➀❻❞❍❦❹➀➉✜ ❵❜❛❧❝♦♥ ➀ ✎❭ t ✑ ✕❲✚ t ❞❧❦ t ✜

❵❜❛❧❝♦♥
t ❁

(6)

The control space is restricted by ✉ ✚ ✷ ✉❾✱ ✚ ➨❳➩❅➫ and ✉ ♥ ✉❾✱ ♥ ➨❳➩❅➫ , which bound the carts’ velocities

and steering angles.

5.2 Implementation details

We assume that all obstacles are stationary. So the planner builds a roadmap ➑ in the robot’s 6-D

state space (without the time dimension).

Computing the weights To compute the weight ➣ ✕ ☛ ✜ of a milestone ☛ , we define the neighbor-

hood of ☛ to be a small ball of fixed radius centered at ☛ . The current implementation uses a

20

✕✑❲❏✜ ✕✗➆❋✜ ✕ ➥ ✜
Figure 8: Computed examples for nonholonomic carl-like robots.

naive method that checks every new milestone ☛ ➒ against all the milestones currently in ➑ . Thus,

for every new milestone, updating ➣ takes linear time in the number of milestones in ➑ . More

efficient range search techniques [Aga97] would certainly improve the planner’s running time for

problems requiring very large roadmaps.

Implementing PROPAGATE Given a milestone ☛ and a control function ✚ , PROPAGATE uses the

Euler method with a fixed step size to integrate (6) from ☛ and computes a trajectory ❛ of the

system under the control ✚ . More sophisticated integration methods, e.g., fourth-order Runge-

Kutta or extrapolation method [PTVP92], can improve the accuracy of integration, but at a higher

computational cost.

We then discretize ❛ into a sequence of states and returns nil if any of these states is in collision.

For each cart, we precompute a 3-D bitmap that represents the collision-free configurations of the

cart prior to planning. It then takes constant time to check whether a given configuration is in

collision. A well-known disadvantage of this method is that if the resolution of the bitmap is

not fine enough, we may get wrong answers. In the experiments reported below, we used an✽▼✿❝❜ ✆ ✽❆✿❝❜ ✆❡❞❝❢ bitmap, which was adequate for our test cases.

Endgame region We obtain the endgame region by generating a secondary tree ➑ ➒ of milestones

from the goal ✏❆➊ .

5.3 Experimental results

We experimented with the planner in many workspaces. Each one is a 10 m ✆ 10 m square region

with static obstacles. The two carts are identical, each represented by a polygon contained in a

circle with diameter 0.8 m, and ❦ ➀♦✑æ❦ t ✑æ✺❉❁❤❣ m. The speed of the carts ranges from ❑❥✐ m/s to✐ m/s, and its steering angle
♥

varies between ❑❥✐✾✺✗❦ and ✐✾✺❧❦ . The allowable distance between ❬ ➀
and ❬ t ranges from ✽✾❁ ❢ m to ✐❉❁❤✐ m.

Figure 8 shows three computed examples. Environment ✕❳❲❏✜ is a maze; the robot carts must

navigate from one side of it to the other. Environment ✕✗➆❋✜ contains two large obstacles separated

by a narrow passage. The two carts, which are initially parallel to one another, change formation

21

Scene Time (sec.) ♠♦♥q♣ rqs✉t ♠✶✈✌✇ ♣ ♠✶①②t✥③
mean std mean std④⑥⑤❇⑦
1.39 0.91 62402 27001 2473 21316

0.74 0.65 43564 23640 1630 15315

0.54 0.41 35960 18410 1318 12815

0.55 0.44 38384 20772 1310 14066④☛⑧❄⑦
4.45 3.92 126126 61836 4473 45690④☛⑨✫⑦

14.09 7.42 287828 86987 9123 107393

0.92 0.51 56367 20825 1894 20250

Table 1: Performance statistics of the planner on the nonholonomic robot.

and proceed in a single file through the passage, before becoming parallel again. Environment ✕ ➥ ✜
consists of two rooms cluttered with obstacles and connected by a hallway. The carts need to move

from the room at the bottom to the one at the top. The maximum steering angles and the size of

the circular obstacles conspire to increase the number of required maneuvers.

We ran the planner for several different queries in each workspace shown in Figure 8. For

every query, we ran the planner 30 times independently with different random seeds. The results

are shown in Table 1. Our planner was written in C++, and the running times reported were

obtained on an SGI Indigo2 workstation with a 195 Mhz R10000 processor.

Every row of the table corresponds to a particular query. Columns 2–5 list the average running

time, the average number of collision checks, and their standard deviations. Columns 6–7 give the

total number of milestones sampled and the number of calls to PROPAGATE. The running times

range from less than a second to a few seconds. The first query in environment ✕ ➥ ✜ takes longer

because the carts must perform several maneuvers in the hallway before reaching the goal (see the

example in Figure 8 ➥).
The standard deviations in Table 1 are larger than what we would like. In Figure 9, we show

a histogram of more than 100 independent runs for a particular query. In most runs, the running

time is well under the mean or slightly above. This indicates that our planner performs well most

of the time. The large deviation is caused by a few runs that take as long as four times the mean.

The long and thin tail of the distribution is typical of the tests that we have performed.

6 Air-cushioned robots

6.1 Robot description

Our algorithm has also been implemented and evaluated on a second system, which was developed

at the Stanford Aerospace Robotics Laboratory for testing space robotics technology. This air-

cushioned robot (Figure 1) moves frictionlessly on a flat granite table among moving obstacles.

Eight air thrusters provides omni-directional motion capability, but the thrust available is small

compared to the robot’s mass, resulting in tight acceleration constraints.

We define the state of the robot to be ✕s❱❳✘❪❨♣✘ ✎❱❳✘ ✎❨❀✜ , where ✕❲❱❳✘❪❨❉✜ are the coordinates of the robot’s

22

0 1 2 3 4 5
0

5

10

15

20

25

30

35

running time (seconds)

Figure 9: Histogram of planning times for more than 100 runs on a particular query. The average

time is 1.4 sec, and the four quartiles are 0.6, 1.1, 1.9, and 4.9 seconds.

center, and ✕ ✎❱❳✘ ✎❨❀✜ is the velocity. The equations of motion are

❖❱➏✑ ✽
☛
✚ ❢❃❤✾✐ ❭ ❛❧❝❩ö ❖❨➓✑ ✽

☛
✚✒✐❻❥ ❝ ❭ ✘

where ☛ is the robot’s mass, and ✚ and ❭ are the magnitude and direction of the force generated

by the thrusters. We have ✺ ✱ ✚♣❞ ☛❊✱ ✺❀❁❒✺✙✿❝❣ m/s t and ✺❧❦ ✱Ü❭✥✱ ✐ ❞ ✺❧❦ . The maximum speed of the

robot is 0.18 m/s.

For planning purposes, the workspace is represented by a 3 m ✆ 4 m rectangle, the robot

by a disc of radius 0.25 m, and the obstacles by discs of radii between 0.1 and 0.15 m. The

planner assumes that the obstacle moves along a straight-line path at constant speed between ✺ and✺❉❁❒✿ m/s (more complex trajectories will be considered in Section 7.4). When an obstacle reaches

the workspace’s boundary, it leaves the workspace and is no longer considered a threat to the robot.

6.2 Implementation details

The planner builds a roadmap ➑ in the robot’s 5-D state ✆ time space, It is given an initial state ✆ time✕❅✏❂➇❪✘❪✺✙✜ and a goal state ✆ time ✕✗✏▼➊▼✘❻❺➋➊❄✜ , where ❺➋➊ is any time less than a given ❺ ➨❳➩❅➫ . In addition, the

planner is given the obstacle trajectories. Unlike the experiments with the real robot in the next

section, planning time is not limited here. This is equivalent to assuming that the world is frozen

until the planner returns a trajectory.

Computing the weights The 3-D configuration ✆ time space of the robot is partitioned into an

8 ✆ 11 ✆ 10 array of identically sized rectangular boxes called bins. When a milestone is inserted

in ➑ , the planner adds it to the list of milestones associated with the bin in which it falls. To

implement line 3 of Algorithm 1, the planner first picks at random a bin containing at least one

milestone and then a milestone from within this bin. Both choices are made uniformly at random.

This corresponds to picking a milestone with probability approximately proportional to the inverse

of the density of samples in the robot’s configuration ✆ time space (rather than its 5-D state ✆ time

space). We did some experiments with bins in state ✆ time space, but the results did not differ

significantly.

23

Scene Time (sec) ♠♦✈✌✇ ♣
mean std mean std④⑥⑤❇⑦
0.249 0.264 2008 2229④☛⑧❄⑦
0.270 0.285 1946 2134④⑥⑨✫⑦
0.002 0.005 22 25

Table 2: Performance statistics of the planner on the air-cushioned robot.

Implementing PROPAGATE The simplicity of the equations of motion makes it possible to com-

pute trajectories analytically. The trajectories are then discretized, and at each discretized state ✆ time

point, the robot is checked for collision against every obstacle. This naive technique works rea-

sonably well when the number of obstacles is small, but can be easily improved to handle a large

number of obstacles.

Endgame region The endgame region is generated with specialized curves, specifically, third-

order splines. Whenever a new milestone ☛ is added to ➑ , it is checked for connection with ✵ goal

points ✕✗✏❆➊▼✘✛❺➋➊❄✜ , for some pre-defined constant ✵ . Each of the ✵ values of ❺➈➊ is chosen uniformly at

random from the interval ⑦ ❺ ➨❬❩❪❭ ✘✛❺ ➨❳➩❅➫ ➁ , where ❺ ➨❬❩❪❭ is an estimate of the earliest time when the robot

may reach ✏❃➊ , given its maximum velocity. For each value of ❺❪➊ , the planner computes the third-

order spline between ☛ and ✕❅✏❂➊▼✘✛❺➋➊❄✜ . It then verifies that the spline is collision free and satisfies the

velocity and acceleration bounds. If all the tests succeed, then ☛ lies in the endgame region. In all

the experiments reported below, ✵ is set to 10.

6.3 Experimental results

We performed experiments in more than one hundred simulated environments. To simplify the

simulation, collisions among obstacles are ignored. So two obstacles may overlap temporarily

without changing courses. In a small number of queries, the planner failed to return a trajectory,

but in none of these cases were we able to determine whether an admissible trajectory actually

existed. On the other hand, the planner successfully solved several queries for which we initially

thought there was no solution.

Three examples computed by the planner are shown in Figure 10. For each example, we

display five snapshots labeled by time. The large gray disc indicates the robot; the smaller black

discs indicate the obstacles. The solid and dotted lines mark the trajectories of the robot and the

obstacles, respectively. For each of the three queries, we ran the planner 100 times independently

with different random seeds. The planner successfully returned a trajectory in all runs. Table 2 lists

the means and standard deviations of the planning times and the number of sampled milestones

for each query. The reported times were obtained from a planner written in C and running on a

Pentium-III PC with a 550 Mhz processor and 128 MB of memory.

In the first two examples, the moving obstacles create narrow passages through which the

robot must pass in order to reach the goal. Yet planning time remains much under one second. The

fact that the planner never failed in 100 runs testifies to its reliability. To point out the difficulty

of these queries, we show in Figure 11 the configuration ✆ time space for example ✕✗➆❋✜ . In the

configuration ✆ time space, the robot maps to a point ✕s❱❳✘❪❨❫✘✛❺❻✜ . Since the obstacles are assumed

24

T = 0.0 secs T = 11.2 secs T = 22.4 secs T = 33.7 secs T = 44.9 secs

✕✑❲❏✜
T = 0.0 secs T = 9.0 secs T = 20.0 secs T = 30.0 secs T = 39.2 secs

✕✗➆❋✜

T = 0.0 secs T = 8.0 secs T = 16.1 secs T = 24.1 secs T = 32.1 secs

✕ ➥ ✜
Figure 10: Computed examples for the air-cushioned robot.

to move with constant linear velocity, they map into cylinders. The velocity and acceleration

constraints require every solution trajectory to pass through a small gap between the cylinders.

Example ✕ ➥ ✜ is much simpler. There are two stationary obstacles obstructing the middle of the

workspace and three moving obstacles. Planning time is well below 0.01 second, with an average

of 0.002 second. The number of milestones is also small, confirming the result of Theorem 1 that

when the space is expansive, Algorithm 1 is very efficient. As in the experiments on nonholonomic

robot carts, the running time distribution of the planner tends to have a long and thin tail due to

long execution time in a small number of runs, but overall the planner is very fast.

25

⑩
❶❀❷ ❶❧❸

Figure 11: Configuration ✆ space for the example in Figure 10 ➆ .

7 Experiments with the real robot

To further test the performance of the planner, we connected the planner described in the previous

section to the air-cushioned robot in Figure 1. In these tests, we examined the behavior of Al-

gorithm 1 running in real-time mode on a system integrating control and sensing modules over a

distributed architecture and operating in a physical environment with uncertainties and time delays.

7.1 Testbed description

The robot shown in Figure 1 is untethered and moves frictionlessly on an air bearing on a 3 m ✆ 4 m

table. Gas tanks provide compressed air for both the air-bearing and thrusters. An onboard Mo-

torola ppc2604 computer performs motion control at 60 Hz. Obstacles are also on air-bearings,

but have no thrusters. They are initially propelled by hand from various locations and then move

frictionlessly on the table at roughly constant speed until they reach the boundary of the table,

where they stop due to the lack of air bearing.

An overhead vision system estimates the positions of the robot and the obstacles at 60 Hz by

detecting LEDs placed on the moving objects. The measurement is accurate to 5 mm. Velocity

estimates are derived from position data.

Our planner runs offboard on a 333 Mhz Sun Sparc 10. The planner, the robot, and the vision

module communicate over the radio Ethernet.

7.2 System integration

Implementing the planner on the hardware testbed raises several new challenges.

Time delays Various computations and data exchanges occurring at different parts of the system

lead to delays between the instant when the vision module measures the motion of the robot and

the obstacles and the instant when the robot starts executing the planned trajectory. These delays,

26

if ignored, would cause the robot to begin executing the planned trajectory behind the start time

assumed by the planner. The robot may not then be able to catch up with the planned trajectory

before a collision occurs. To deal with this issue, the planner computes a trajectory assuming that

the robot will start executing it 0.4 second into the future. It also assumes that the obstacles move at

constant velocities, as measured by the vision module, and extrapolates their positions accordingly.

The 0.4 second includes all the delays in the system, in particular, the time needed for planning.

This time could be further reduced by implementing the planner more carefully and running it on

a machine faster than the relatively slow Sun Sparc 10 currently being used.

Sensing errors Although the planner assumes that the obstacles move along straight lines at con-

stant velocities measured by the vision module, the actual trajectories are slightly different due

to asymmetry in air-bearings and inaccuracy in the measurements. The planner deals with these

errors by growing the obstacles. As time elapses, the radius of each moving obstacle is increased

by ❹✔❺ ❺ , where ❹ is a fixed constant, ❺ is the measured velocity of the obstacle, and ❺ is the time.

So the planner can avoid erroneously asserting that a state ✆ time point is collision-free when it is

actually not.

Trajectory tracking The robot receives from the planner a trajectory that specifies the position,

velocity, and acceleration of the robot at all times. A PD-controller with feedforward is used to

track this trajectory. The maximum tracking errors for the position and velocity are 0.05 m and

0.02 m/s, respectively. As a result, we increase the size of the disc modeling the robot by 0.05 m

during the planning to guarantee that the computed trajectory is collision-free.

Trajectory optimization Since the planner is very efficient in general, the 0.4 second allocated

is often more than what is needed for finding a first solution. So the planner exploits the extra

time to generate additional milestones and keeps track of the best trajectory found so far. The cost

function for comparing trajectories is ❻▲■✷ ✭ ➀ ✕q✚ ✷ ⑨ð➆❋✜ ➧ ✷ , where ✵ is the number of segments in the

trajectory, ✚ ✷ is the magnitude of the force exerted by the thrusters along the ✼ th segment, ➆ is a

fixed constant, and ➧ ✷ is the duration of the ✼ th segment. The cost function takes into account both

fuel consumption and execution time. A larger ➆ yields faster motion, while a smaller ➆ yields less

fuel consumption. In our experiments, the cost of trajectories was reduced, on the average, by 14%

with this simple improvement.

Safe-mode planning If the planner fails to find a trajectory to the goal within the allocated time, we

found it useful to compute an escape trajectory. The endgame region ●❽❼✄❾✢❿ for the escape trajectory

consists of all the reachable, collision-free states ✕❅✏➁➀❋✘✛❺❄➀✛✜ with ❺✫➀➍þ ➑➂❼✄❾☛❿ for some time ➑➃❼✄❾✢❿ . An

escape trajectory corresponds to any acceleration-bounded, collision-free motion in the workspace

for a small duration of time. In general, ●➄❼✄❾☛❿ is very large, and so generating an escape trajectory

often takes little time. To ensure collision-free motion beyond ➑❙❼✄❾☛❿ , a new escape trajectory must be

computed long before the end of the current escape trajectory so that the robot can escape collision

despite the acceleration constraints. We modified the planner to compute simultaneously a normal

and an escape trajectory. The modification increased the running time of the planner by about 2%

in our experiments, but it leads to a system that is much more useful practically.

27

Figure 12: Snapshots of the robot executing a trajectory.

7.3 Experimental results

The planner successfully produced complex maneuvers of the robot among static and moving ob-

stacles in various situations, including obstacles moving directly toward the robot or perpendicular

to the line connecting its initial and goal positions. The tests also demonstrated the ability of the

system to wait for an opening to occur when confronted with moving obstacles in the robot’s de-

sired direction of movement and to pass through openings that are less than 10 cm larger than

the robot. In almost all the trials, a trajectory was computed within the allocated time. Figure 12

shows snapshots of the robot during one of the trials, in which the robot maneuvers among three

incoming obstacles to reach the goal at the front corner of the table.

Several problems limited the complexity of the planning problems which we could try in this

testbed. Two are related to the testbed itself. First the accelerations provided by the robot’s air

thrusters are quite limited. Second the size of the table is small relative that of the robot and the

obstacles, which limits the available space for the robot to maneuver. The third problem results

from the design of our system. The planner assumes that obstacles move at constant linear veloci-

ties and do not collide with one other, an assumption which is likely to fail in practice. To address

this last and important issue, we introduce on-the-fly replanning.

7.4 On-the-fly replanning

An obstacle may deviate from its predicted trajectory, because either the error in the measurements

is larger than expected, or the obstacle’s direction of motion has suddenly changed due to a col-

lision with other obstacles. Whenever the vision module detects this, it alerts the planner. The

planner then recomputes a trajectory on the fly within the same allocated time limit, by projecting

the state of the world 0.4 second into the future. On-the-fly replanning allows much more complex

28

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 2.1 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 14.6 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 19.8 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 33.2 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 50.2 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

T = 75.0 secs

x
1
 [meters]

x
2
 [
m

e
te

rs
]

Figure 13: A computed example with replanning in a simulated environment.

experiments to be performed. We show two examples below, one in simulation and one on the real

robot.

In the example shows in Figure 13, eight replanning operations occurred over the entire course

(75 seconds) of the experiment. Initially the robot moves to the left to reach the goal at the bottom

middle (snapshot 1). Then the upper-left obstacle changes its motion and blocks the robot’s way,

resulting in a replan (snapshot 2). Soon after, the motion of the upper-right obstacle also changes,

forcing the robot to reverse the direction and approach the goal from the other side of the workspace

(snapshot 3). In the remaining time, new changes in obstacle motion cause the robot to pause (see

the sharp turn in snapshot 5) until a direct approach to the goal is possible (snapshot 6).

The efficacy of the replanning procedure on the real robot is demonstrated by the example

in Figure 14. The robot’s goal is to move from the back left of the table to the front middle.

Initially the obstacle in the middle is stationary, and the other two obstacles are moving toward

the robot (snapshot 1). The robot dodges the faster-moving obstacle from the left and proceeds

toward the goal (snapshot 2). The obstacle is then redirected twice (in snapshots 3 and 5) to block

the trajectory of the robot, causing it to slow down and stay behind the obstacle to avoid collision

(snapshots 3–6). Right before snapshot 7, the rightmost obstacle is directed back toward the robot.

The robot waits for the obstacle to pass (snapshot 8) and finally attains the goal (snapshot 9). The

entire motion lasts about 40 seconds. Throughout this experiment, other replanning operations (not

shown) occurred as a result of errors in the measurement of the obstacle motions. However, none

resulted in a major redirection of the robot.

29

Figure 14: An example with the real robot using on-the-fly replanning.

8 Conclusion

We have presented a simple, efficient randomized planner for kinodynamic motion planning in the

presence of moving obstacles. Our algorithm represents the motion constraints by an equation of

the form
✎✏❙✑➦✓✖✕❅✏✾✘❪✚♣✜ and constructs a roadmap of sampled milestones in the state ✆ time space of

a robot. It samples new milestones by first picking at random a point in the space of admissible

control functions and then mapping the point into the state space by integrating the equations of

motion. Thus the motion constraints are naturally enforced during the construction of the roadmap.

The algorithm is general and can be applied to a wide class of systems, including ones that are not

locally controllable. The performance of the algorithm has been evaluated through both theoretical

analysis and extensive experiments.

We have generalized the notion of expansiveness, originally proposed in [HLM97] for (geo-

metric) path planning. The main purpose of the generalization is to address the complications

introduced by kinematic and dynamic constraints. Using the expansiveness to characterize the

complexity of the state ✆ space, we have proven that, under suitable assumptions, the failure prob-

30

ability of the planner converge to 0 at an exponential rate, when a solution exists. This result also

holds for robots that are not locally controllable.

Experimentally the planner has demonstrated its effectiveness both in simulation and on a

real robot. The experiments on the real robot indicates that the planner works well despite many

adversarial conditions, including (i) severe dynamic constraints on the motion of the robot, (ii)

moving obstacles, and (iii) various time delays and uncertainties inherent to an integrated system

operating in a physical environment. In particular, they demonstrate that the efficiency of the

planner enables it to be used in real time when obstacles trajectories are not known in advance.

In the future, we plan to apply the planner to environments with more complex geometry and

robots with higher dofs. Geometrical complexity increases the cost of collision checking, but as

discussed in Section 2.4, hierarchical algorithms can deal with this issue effectively. In fact, a

similar, but simpler planner has been used successfully to compute geometric disassembly paths

with CAD models having up to 200,000 triangles [HLM99].

We are also interested in reducing the standard deviation of running times for our randomized

planner. Quite possibly, the thin and long tail of the running time distribution shown in Figure 9

is typical of all PRM planners developed so far. However, it is more important to reduce it for

single-query planners, because they are intended to be used interactively or in real time. Large

standard deviations in these settings are clearly undesirable.

More importantly, we need to further develop tools to analyze the efficiency of randomized

motion planners. The notion of expansiveness is a step forward in that direction. However, the pa-

rameters characterizing an expansive space cannot be easily determined, and so we cannot decide,

in advance, the number of milestones needed for a given query. It is important to continue looking

for new analysis tools; if we cannot measure the performance of these algorithms quantitatively,

we will not be able to compare, improve, and thus advance our understanding of them.

Acknowledgments: This work was supported by ARO MURI grant DAAH04-96-1-007, NASA TRIWG

Coop-Agreement NCC2-333, Real-Time Innovations, and the NIST ATP program. David Hsu has also been

the recipient of a Microsoft Graduate Fellowship, and Robert Kindel, the recipient of an NSF Graduate

Fellowship.

References

[ABD ✠ 98] N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo. OBPRM: An

obstacle-based PRM for 3D workspaces. In P.K. Agarwal et al., editors, Robotics: The

Algorithmic Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics,

pages 155–168. A. K. Peters, Wellesley, MA, 1998.

[AG99] J.M. Ahuactzin and K.K. Gupta. The kinematic roadmap: A motion planning based

global approach for inverse kinematics of redundant robots. IEEE Transactions on

Robotics and Automation, 15(4):653–669, 1999.

[Aga97] P.K. Agawal. Range searching. In J.E. Goodman and J. O’Rourke, editors, Handbook

of discrete and computational geometry, pages 575–598. CRC Press, Boca Raton, FL,

1997.

31

[Ahu94] J.M. Ahuactzin. Le Fil d’Ariane. Une méthode de planification général. Applica-

tion à la planfification des trajectoires. PhD thesis, National Polytechnic Institute of

Grenoble, France, 1994.

[BDG85] J. E. Bobrow, S. Dubowsky, and J.S. Gibson. Time-optimal control of robotic manip-

ulators along specified paths. International Journal of Robotics Research, 4(3):3–17,

1985.

[BK00] R. Bohlin and L.E. Kavraki. Path planning using lazy PRM. In Proc. IEEE Int. Conf.

on Robotics and Automation, 2000.

[BKL ✠ 97] J. Barraquand, L. Kavraki, J.C. Latombe, T.-Y. Li, R. Motwani, and P. Raghavan.

A random sampling scheme for path planning. International Journal of Robotics

Research, 16(6):759–774, 1997.

[BL89] J. Barraquand and J.C. Latombe. On nonholonomic robots and optimal maneuvering.

Revue d’Intelligence Artificielle, 3(2):77–103, 1989.

[BL91] J. Barraquand and J.C. Latombe. Robot motion planning: A distributed representation

approach. International Journal of Robotics Research, 10(6):628–649, 1991.

[BL93] J. Barraquand and J.C. Latombe. Nonholonomic multibody mobile robots: Control-

lability and motion planning in the presence of obstacles. Algorithmica, 10(2-4):121–

155, 1993.

[BOvdS99] V. Boor, M.H. Overmars, and F. van der Stappen. The gaussian sampling strategy for

probabilistic roadmap planners. In Proc. IEEE Int. Conf. on Robotics and Automation,

pages 1018–1023, 1999.

[CL95] H. Chang and T.-Y. Li. Assembly maintainability study with motion planning. In

Proc. IEEE Int. Conf. on Robotics and Automation, pages 1012–1019, 1995.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-Collide: An interactive and exact

collision detection system for large scale environments. In Proc. ACM Interactive 3D

Graphics Conf., pages 189–196, 1995.

[DK99] J.P. Desai and V. Kumar. Motion planning for cooperating mobile manipulators. Jour-

nal of Robotic Systems, 16(10):557–579, 1999.

[Don87] B.R. Donald. A search algorithm for motion planning with six degrees of freedom.

Artificial Intelligence, 31(3):295–353, 1987.

[DXCR93] B.R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal

of the ACM, 40(5):1048–1066, 1993.

[ELP86] M. Erdmann and T. Lozano-Pérez. On multiple moving objects. In Proc. IEEE Int.

Conf. on Robotics and Automation, pages 1419–1424, 1986.

32

[ELP87] M. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algorithmica,

2(4):477–521, 1987.

[Fer98] P. Ferbach. A method of progressive constraints for nonholonomic motion planning.

IEEE Transactions on Robotics and Automation, 14(1):172–179, 1998.

[Fra93] T. Fraichard. Dynamic trajectory planning with dynamic constraints: A “state-time

space” approach. In Proc. IEEE/RSJ International Conference on Intelligent Robots

and Systems, volume 2, pages 1394–1400, 1993.

[FS96] P. Fiorini and Z. Shiller. Time optimal trajectory planning in dynamic environments.

In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1553–1558, 1996.

[Fuj95] K. Fujimura. Time-minimum routes in time-dependent networks. IEEE Transactions

on Robotics and Automation, 11(3):343–351, 1995.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchical structure for rapid

interference detection. In SIGGRAPH 96 Conference Proceedings, pages 171–180,

1996.

[HK77] R. Hermann and A.J. Krener. Nonlinear controllability and observability. IEEE Trans-

actions on Automatic Control, 22(5):728–740, 1977.

[HKL ✠ 98] D. Hsu, L. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On finding nar-

row passages with probabilistic roadmap planners. In P.K. Agarwal et al., editors,

Robotics: The Algorithmic Perspective: 1998 Workshop on the Algorithmic Founda-

tions of Robotics, pages 141–154. A. K. Peters, Wellesley, MA, 1998.

[HKLR00] D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized kinodynamic motion

planning with moving obstacles. In B.R. Donald et al., editors, Algorithmic and

Computational Robotics: New Directions: The Fourth International Workshop on the

Algorithmic Foundations of Robotics, pages 247–264. A. K. Peters, Wellesley, MA,

2000.

[HLM97] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration

spaces. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 2719–2726,

1997.

[HLM99] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration

spaces. International Journal of Computational Geometry & Applications, 9(4 &

5):495–512, 1999.

[HLMK99] D. Hsu, J.C. Latombe, R. Motwani, and L.E. Kavraki. Capturing the connectivity of

high-dimensional geometric spaces by parallelizable random sampling techniques. In

P.M. Pardalos and S. Rajasekaran, editors, Advances in randomized parallel comput-

ing, pages 159–182. Kluwer Academic Publishers, Boston, MA, 1999.

33

[HST94] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom

— random reflections at C-Space obstacles. In Proc. IEEE Int. Conf. on Robotics and

Automation, pages 3318–3323, 1994.

[Hsu00] D. Hsu. Randomized Single-query Motion Planning in Expansive Spaces. PhD thesis,

Dept. of Computer Science, Stanford University, Stanford, CA, May 2000.

[Hub96] P.M. Hubbard. Approximating polyhedra with spheres for time-critical collision de-

tection. ACM Transactions on Graphics, 15(3):179–210, 1996.

[HXCW98] Y.K. Hwang, P.G. Xavier, P.C. Chen, and P.A. Watterberg. Motion planning with

SANDROS and the configuration space toolkit. In K.K. Gupta and A.P. del Pobil,

editors, Practical Motion Planning in Robotics, pages 55–77. John Wiley & Sons,

1998.

[Kav94] L.E. Kavraki. Random Networks in Configuration Space for Fast Path Planning.

PhD thesis, Dept. of Computer Science, Stanford Univerity, Stanford, CA, December

1994.

[KHLR00] R. Kindel, D. Hsu, J.C. Latombe, and S. Rock. Kinodynamic motion planning amidst

moving obstacles. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 537–

543, 2000.

[KHM ✠ 98] J. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan. Efficient colli-

sion detection using bounding volume hierarchies of k-dops. IEEE Transactions on

Visualization and Computer Graphics, 4(1):21–37, 1998.

[Kin01] R. Kindel. Motion Planning for Free-Flying Robots in Dynamic and Uncertain En-

vironments. PhD thesis, Dept. of Aeronautics & Astronautics, Stanford University,

Stanford, CA, October 2001.

[KKL98] L. Kavraki, M.N. Kolountzakis, and J.C. Latombe. Analysis of probabilistic

roadmaps for path planning. IEEE Transactions on Robotics and Automation,

14(1):166–171, 1998.

[KLMR95] L. Kavraki, J.C. Latombe, R. Motwani, and P. Raghavan. Randomized query process-

ing in robot path planning. In Proc. ACM Symposium on Theory of Computing, pages

353–362, 1995.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical shell: A higher order

bounding volume for fast proximity queries. In Robotics: The Algorithmic Perspec-

tive: 1998 Workshop on the Algorithmic Foundations of Robotics, pages 177–190,

1998.

[KŠLO96] L. Kavraki, P. Švestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration space. IEEE Transactions on

Robotics and Automation, 12(4):566–580, 1996.

34

[Kuf99] J.J. Kuffner. Autonomous Agents for Real-Time Animation. PhD thesis, Dept. of

Computer Science, Stanford University, Stanford, CA, December 1999.

[KW86] M.H. Kalos and P.A. Whitlock. Monte Carlo Methods, volume 1. John Wiley & Son,

New York, 1986.

[KZ86] K. Kant and S.W. Zucker. Toward efficient trajectory planning: The path-velocity

decomposition. International Journal of Robotics Research, 5(3):72–89, 1986.

[Lat99] J.C. Latombe. Motion planning: A journey of robots, molecules, digital actors, and

other artifacts. International Journal of Robotics Research, 18(11):1119–1128, 1999.

[Lau86] J.-P. Laumond. Feasible trajectories for mobile robots with kinematic and environ-

mental constraints. In Proc. Int. Conf. on Intelligent Autonomous Systems, pages

346–354, 1986.

[LCH89] Z. Li, J.F. Canny, and G. Heinzinger. Robot motion planning with nonholonomic

constraints. In H. Miura et al., editors, Robotics Research: The Fifth International

Symposium, pages 309–316. MIT Press, Cambridge, MA, 1989.

[LH00] P. Leven and S. Hutchinson. Toward real-time path planning in changing environ-

ments. In B.R. Donald et al., editors, Algorithmic and Computational Robotics: New

Directions: The Fourth International Workshop on the Algorithmic Foundations of

Robotics, pages 363–376. A. K. Peters, Wellesley, MA, 2000.

[LJTM94] J.-P. Laumond, P.E. Jacobs., M. Taı̈x., and R.M. Murray. A motion planner for

nonholonomic mobile robots. IEEE Transactions on Robotics and Automation,

10(5):577–593, 1994.

[LK99] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. In Proc. IEEE

Int. Conf. on Robotics and Automation, pages 473–479, 1999.

[LK01] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning. International

Journal of Robotics Research, 20(5):278–400, May 2001.

[LL96] F. Lamiraux and J.-P. Laumond. On the expected complexity of random path plan-

ning. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 3014–3019, 1996.

[LM96] K.M. Lynch and M.T. Mason. Stable pushing: Mechanics, controllability, and plan-

ning. International Journal of Robotics Research, 15(6):533–556, 1996.

[O’R97] J. O’Rourke. Visibility. In J.E. Goodman and J. O’Rourke, editors, Handbook of

discrete and computational geometry, pages 467–479. CRC Press, Boca Raton, FL,

1997.

[PTVP92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Plannery. Numerical Recipes

in C. Cambridge University Press, 2nd edition, 1992.

35

[Qui94] S. Quinlan. Efficient distance computation between non-convex objects. In Proc.

IEEE Int. Conf. on Robotics and Automation, pages 3324–3329, 1994.

[Rei79] J.H. Reif. Complexity of the mover’s problem and generalizations. In Proc. IEEE

Symposium on Foundations of Computer Science, pages 421–427, 1979.

[RS85] J.H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In

Proc. IEEE Symposium on Foundations of Computer Science, pages 144–154, 1985.

[RS90] J.A. Reeds and L.A. Shepp. Optimal paths for a car that goes forwards and backwards.

Pacific Journal of Mathematics, 145(2):367–393, 1990.

[SA01] G. Sánchez-Ante. Single-Query Bi-Directional Motion Planning with Lazy Collision

Checking. PhD thesis, ITESM, Campus Cuernavaca, Mexico, 2001.

[SD91] Z. Shiller and S. Dubowsky. On computing the global time-optimal motions of robotic

manipulators in the presence of obstacles. IEEE Transactions on Robotics and Au-

tomation, 7(6):785–797, 1991.

[SL98] S. Sekhavat and J.-P. Laumond. Topological property for collision-free nonholonomic

motion planning: The case of sinusoidal inputs for chained form systems. IEEE

Transactions on Robotics and Automation, 14(5):671–680, 1998.

[SLL01] T. Siméon, J.P. Laumond, and F. Lamiraux. Move3D: A generic platform for motion

planning. In Proc. IEEE International Symposium on Assembly and Task Planning,

2001.

[SMA01] G. Song, S. Miller, and N. Amato. Customizing PRM roadmaps at query time. In

Proc. IEEE Int. Conf. on Robotics and Automation, 2001.

[ŠO94] P. Švestka and M.H. Overmars. Motion planning for car-like robots using a prob-

abilistic learning approach. Technical Report RUU-CS-94-33, Dept. of Computer

Science, Utrecht University, Utrecht, The Netherlands, 1994.

[ŠO98] P. Švestka and M.H. Overmars. Probabilistic path planning: Robot motion planning

and control. In Lecture Notes in Control and Information Sciences, volume 229, pages

225–304. Springer-Verlag, 1998.

[SŠLO97] S. Sekhavat, P. Švestka, J.-P. Laumond, and M.H. Overmars. Multi-level path plan-

ning for nonholonomic robots using semi-holonomic subsystems. In J.-P. Laumond

et al., editors, Algorithms for Robotic Motion and Manipulation: 1996 Workshop on

the Algorithmic Foundations of Robotics, pages 79–96. A. K. Peters, Wellesley, MA,

1997.

[Šve97] P. Švestka. Robot Motion Planning Using Probabilistic Roadmaps. PhD thesis, Dept.

of Computer Science, Utrecht University, The Netherland, 1997.

36

