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Abstract

We present a new technique for the design of approximation algorithms that can be
viewed as a generfllzation of randomized rounding. We derive new or improved approxima-
tion guaranteesfor a class of generalizedcongestion problems such as multicast congestion,
multipleTSP etc. Our main mathematicaltool is a structuraldecomposition theoremrelated
to the integraMy gap of a relaxation.

1 Introduction1

Randomized rounding has become a standard technique in the design of approximation algo-
rithms for NP-hard optimization problems, especially for packing and covering problems. These
are problems that can be stated as integer linear programs of the form m= m subject to Az < b
or tin cz subject to Az ~ b where each component of z is O-1 valued and the entries of A, b and
c are allnon-negative. Given say, a minimization problem (covering) of this for% the approa~
is to first solve the linear programming relaxation of the integer program, namely

ruin m

Ax>b

z~o

Let x* be the solution obtained by solving the lnehr progmn. The second step is to round
this solution to a O-1 solution as follows: for each miable ~e, set Z. to 1 with Probability Z;

and set it to zero with probability 1 – z:. The resulting integral setting is not necessarily a
solution to the 1P, but it has several nice properties. In particular, the expected cost is cx* and
it approximately satisfies the constraints with high probability.
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1.1 Path chngeskon. —

In many combinatorial situations though, it is absolutely necessary to satis~ some (or even
all) of the given constraints (e.g. a given subset of vertices must be connected in a solution, a
solution must be a tour etc.). In such cases the method is not generally usefbl. However there
are some lucky circumstances when randomized rounding can be applied to yield a true solution.
This is best illustrated, by the problem of routing with minimum congestion — we are given a
graph, G = (~ E), and pairs of vertices (si,ti) for i = 1,..., k. A solution to the problem is
a set of paths that connects the two vertices in each pair. The congestion of an edge is the
number of paths that use the edge, and the congestion of a solution is the maximum congestion
over all the edges. The goal is to find a solution with the minimum possible congestion. Given
an instance of the problem, one can write down an integer linear program that ensures that
there is a path between each pair Si, -ti, and minimizes the congestion. The linear programming
relaxation of this IP is a multicommodity flow problem that sets up a flow of value 1 between
each Si and tiand minimizes the fractional congestion, i.e. the maximum, over all the edges, of
the total flow through an edge. Any solution to this LP can be decomposed into a flow of value
1 between each pair s~,t~. These flows have a very useful property: the flow between Si and ti

can be decomposed into a set of paths, each with some factional flow, so that the sum of the
fractional flows is 1. Viewing the flow as a vector in R! El, and each path as a O-1 vector in Rl~l,
this property can be restated as

The flow between Si and ii can be expressed as a convex combination of paths between si and til
i.e.

Here fi is the flow vector for the i’th pair, and Xpj is the incidence vector of edges on the j’th
path F’j. Given such a path decomposition of the flow between si and tit randomized rounding
picks one path from the probability distribution given by the flow on the paths, i.e. the ~j’s.

Doing this for every ~il_tipair gives us a solution to the problem. It is easy to check that the
expected congestion of any edge is exactly its iiactional congestion. Further, since the choice of
the path for each si>tipair is made independently, a Chernoff bound implies that the congestion
of every edge is within a constant times the expected value plus O(log n) with high probability
[5].

1.2 Multicast congestion.

Now consider the problem of finding trees (instead of paths) that span speciiied subsets of vertices
(instead of only pairs) so as to minimize the net congestion. This is the multicast congestion
problem and we will use it throughout the paper to illustrate the new techniques. We are given
a graph G = (V, E) and subsets of vertices Sl,..., S’m’ ~ V, called multicast requests. The
goal is to find a set of m trees so that the i’th tree spans the vertices of the i’th subset and
the maximum number of trees that use any single edge is minimized. As in the case of paths,
one can write down an LP relaxation of the problem and obtain a fractional solution, but it is
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no longer obvious ho; to round this into a set of trees with low congestion. The LP solution
itself can be decomposed into fractional solutions for each multicast request. If the fractional
solution for each multicast could be written as a convex combination of trees, this would give
us a simple rounding algorithm For each multicast separately, (i) Find a convex combination
of trees that equals the fractional solution and (ii) Pick one tree with probability equal to its
convex multiplier. Then the expected congestion on an edge is exactly its fractional congestion.
Further, the process is independent for each multicast, and so the deviation from the expectation
can be bounded, and we get a solution that is within a constant times OPT plus O(log n). “

Of course, the proposed algorithm hinges on being able to express the fractional solution to a
single multicast as a convex combination of trees. Unfortunately, this is impossible. If we could
express any factional solution as a combination of trees, then we could use this to solve the
Steiner tree problem optimally. The solutions to a single multicast are Steiner trees spanning
the vertices of the multicast. So we could solve an LP relaxation that minimizes the total cost
of edges in the solution. Then we can write the solution obtained as a convex combination of
trees. The cost of one of the trees must be at most the average cost, which is the value of the
fractional solution. Thus we find one tree whose cost at most the optimal cost. But the Steiner
tree problem is NP-hard. Indeed any LP relaxation (that can be solved in polytime) must have
an integrality gap.

However, the LP relaxation of the Steiner tree problem is known to have an integrality gap
of at most 2. So while it is impossible to express any fractional solution as a convex combination
of integral solutions, it could be possible to express TWICE any fractional solution as a convex
combination of integral solutions. Indeed, a recent result of [2] says that if the integrality gap
of a relaxation is at most r, then for any fractional solution Z*, the vector TX* dominates (i.e.
is greater than or equal in every coordinate) a convex combination of integral solutions! If this
convex decomposition can be found in polytimej then we would have a polytime algorithm for
the multicast congestion problem that is guaranteed to find a solution within a constant times
OPTplus O(logn).

In this paper we present a polytime algorii+m for finding such a convex decomposition. It
is described in section 4 and is based on a careful application of the ellipsoid method. This
leads to an improved approximation for the multicast congestion problem (the previous best
approximation was a multiplicative O(log n) [6]). .
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1.3 Generalized congestion.

As the reader might have realized, the approach just described is applicable in a much more
general context, which we call generalized congestion. Suppose we are given a graph G = (V, -E)
and a set of requests, RI, ..., ~. To satisfy the i’th request & we need to pick a subset of
edges that satisfy some specified property Pi. Each request also comes with a cost function on
the edges. So, for instance the fist request might be for a Hamilton cycle, the second request
might be for a Steiner tree, the third for a 2-edge connected subgraph and so on. We assume
that for each i, the set of solutions to the i’th request can be modelled as an integer program
and its LP relaxation, F’i is given to us. We are also given a heuristic Ai which can be used to
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find a solution’within ~ times the optimum of Pi for any positive cost fimction on the edges. The
problem is to find a solution that satifies each request and has the minimum possible congestion.
The congestion of a solution is the maximum congestion among its edges; the congestion of an
edge is the sum of the costs of the edge used to satisfy the requests. The main results of this
paper can be stated as follows:

Theorem 1 There is a polytime algorithm that finds a solution to any instance of the generalized
congestion problem with congestion at most r times the optimum plus O(log n).

Th’eorem 2 Given an LP relaxation Pi, an r-approximation heuristic Ai2 and any solution X*
of Pi, there is a polytime algorithm that finds a set of integral solutions Z1,Z2,. . . of Pi such that

2 The generic algorithm

Let Aiz < bi, x ~ O be the LP relaxation for the i’th request. Let Cibe the cost function for the
i’th request.

1.

2.

3.

4.

5.

Formulate a single linear program ~ for the generalized congestion problem that minimizes
the overall congestion, using the linear programs for each request as shown below. A
different set of variables z: is used for each request i.

min ~~=1 zz
Aizi < bi Vial,..., m

me={c~z~} < Zi W=l,..., m

x, z ~o

Solve ~ to obtain a solution z*.

Separate the solution into a solution for each request, i.e. Zi* for i = 1,..., m.

For each request i, apply the convex decomposition algorithm of section 4 to xi” and obtain
a set of integral solutions and a convex combination of them that is dominated by the rzi*.

For each request, pick one integral solution with probability proportional to its convex
multiplier.
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2.1 Examples ‘ —

Our first example is the multicast congestion problem described in the introduction. In this
problem each request is for a Steiner tree. Let the set of vertices spectied by the i’th request
be S’i. Then the request can be modelled by the following LP relaxation:

E X. > 1 VSc Vs.t. SnS~#@, (V\ S) flSi#@ (1)
e@5(S)

Xe > 0 Vt, Ve~E (2)

There is a simple heuristic that shows that the integrality gap of this relaxation is at most 2.
Thus we have a 2-approximation heuristic for each request. There is an even stronger relaxation,
called the bidirected cut relaxation originally proposed by Edmonds, whose integrality gap is
somewhere between ~ and about 1.6.

In step 4 of the algorithm, for each request i, we find a convex combination of Steiner trees
that is dominated by 2Zi*. In step 5 we pick one Steiner tree from the combination for each
request. This gives us a solution to the multicast congestion problem.

As a second example consider a situation where the first request is for a 2-edge connected
spanning subgraph of the entire graph. The second request is for a path between two specified
vertices s and t and third is for a cycle cover of the graph (i.e. a set of cycles such that each
vertex is in some cycle). The we can write down LP relaxations for each request. The 2-edge
connected spanning subgraph problem has a relaxation whose integrality gap is known to be
less than ~ [1], while the path and cycle cover problems can be solved in polynomial-time, i.e.
they have LP relaxations with integrality gaps equal to 1. In this case, each request has a ~ or
better approximation heuristic.

Note that instead of just one request each of the three types described above, we could have
any number of requests of each type, an they could each have a different cost fimction.

For all these examples, Theorem 1 guarantees that the congestion of the solution obtained
is at most a constant times the OPT plus O(log n).

3 The performance guarantee

Let X: be the random variable indicating whether an edge e is selected for the it~ request.

Proof. The random variable X: is 1 if the edge e is present in an integral solution selected for
the i’th request and zero otherwise. The expected value of X: is at most the sum of selection

lTake the minimum spanning tree on the complete graph with vertex set Si and edge weights given by the
triangle inequalky closure on the original graph.
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probabilities of integr~ solutions that contain e. That is, —

E[x~] < ~ l%(z~ is selected for the i’th request)
$eczj

. ~Aj

j:e~zj

< rx~

The last inequality is due to the fact that mi” dominates the convex combination of zj’s and so
each m? is greater than or equal to the sum of the ~j ‘S Corresponding to -zj‘S that contain e- ❑

Ldmma 2 With high probability, the congestion of the solution found by the generic algorithm
is 0(7-“ oPz’+logn).

Proof. Fix an edge e. Let C(e) denote the total congestion on the edge e. By definition,
C(e) = xi c~X~. ~From Lemma 1, we can conclude that -E[C(e)] <~. m~i{c%$} <~. ~~T.
We will apply a Chernoff bound to show that it is unlikely that C(e) deviates significantly horn
its expectation. For each request i, the random variables X: are independent from random
variables for other requests. As a consequence, we can apply a Chernoff bound ([4]). Set
C 2 max{2eE[C(e)], 2. (a+ 2) . logn} with a >0 denoting an arbitrary constant. Then

Prob[C(e) 2 C7j < 2-c/2 < n-”-2 .

Summing this probability over all edges yields that the congestion does not exceed C = O(T.
OPT + logn), with probability 1 – n-a. ❑

The above lemma along with theorem 2 implies theorem 1.

4 The main tool: convex decomposition

The decomposition theorem we present in this section applies to a large class of problems which
have integer programming formulations. Let us first define the class of problems for which the
decomposition applies. For this we need a couple of definitions. .

Definition 1 A positive integer program is an integer program whose variables are constrained
to be non-negative.

Definition 2 A min-IP (max-IP) problem is a minimization (maximization) problem whose set
of feasible solutions can be described by a positive integer program.

The traveling salesman problem (TSP) is an example of a min-IP problem. The analysis that
follows can also be applied, with slight modifications, to max-IP problems, but we will assume
our problems are min-IP problems for now. Note that any min-IP (max-IP) problem has a linear
programming relaxation obtained by relaxing the integrality constraints of the integer program
defining the problem.
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Definition 3 ‘A polynomial-time algorithm A is an r-approximation heuristic to a_min-IP prob-
lem with linear programming relaxation P, if, for any positive objective function, A jinds a
solution whose cost is at most r times the cost of the optimal solution to P.

A problem in our class is specified as the LP relaxation P of a positive integer program IP along
with an r-approximation heuristic A and a feasible solution x* of the 7.

For a min-IP prpblem I, denote the integer polyhedron for the integer program by 2(1) or
just Z. Let P(1) or just P denote the linear programming relaxation of Z(1) (as well as to
the polyhedron corresponding to the linear programming relaxation). Also denote the set of ‘
extreme points for a polyhedron P by ezt(P).

If we have an r-approximation heuristic A to a min-IP problem I, then clearly the integrality
gap between P(1) and 2(1) is at most r. Theorem 1 of [2] says that if Z* is a feasible solution to
the linear program 7(1), then rz” dominates a convex combination of extreme ‘points of 2(1).
That is, we have

(3)
J

where ~j Aj = 1, ~j z O for all j, and each Z~ is an extreme point of 2(1). We now show how
to construct a set of zj’s satisfying (3) in polynomial-time.

4.1 Constructing a Convex Combination

Let Z* be feasible for P(I). List the elements of ezt(Z) as (zj Ij c J). Let E be the index set
for the variables in P(I).

Definition 4 For each non-negative objective function c, denote the solution returned by the
r-approximation A by xc.

In order to obtain (3), we wish to solve the following linear program.

As explained below, rz” dominates a convex combination of points in ezt(Z) if and only if the
optimal objective function value of (4) is 1. Moreover, the solution A“ of (4) provides an explicit
convex decomposition into points in ezt(Z). That is, with J’ := {j c J] ~j > 0}, one can see
that

(5)

The sum in (5) is a linear combination of {zj Ij c J’} c ezt(Z) which is dominated by rz”.
If ~j~J/ ~~ – ,– 1 then this linear combination is in fact our desired convex combination. Note,
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.
however, that (4) has an exponential number of variables. We will demonstrate how to solve (4)
in polynomial time by first solving its dual linear program by using an r-approximation A. The
dual linear program to (4) is as follows.

minimize 7Yc*“w + z
subject to

Xj.w+z ~ 1 Yj~J (6)

we ~o Ve~E

z ~o

Although (6) has an exponential number of constraints, we will be able to solve it in poly-
nomial time using the ellipsoid method.

Theorem 3 The linear program (6) has an optimal solution of 1.

Proofi Sincew“ = O,z* = 1 is feasible, the optimal solution to (6) is at most 1. Let w*, z* 20
be given such that (6)’s objective function

rx*. w*+z* <l.

We then have rz*. w* <1 – z*. Because the integrality gap between” P(1) and Z(1) is at most

r (where the objective function is w*), there exists a j ~ J such that z~ “w* <1 – z*. Hence,
w*, z* violates the inequality

Xj. w+z>l, ~

which makes this point infeasible for (6). •1

Theorem 4 Given an r-approximation heuristic A, the linear program (6) can be solved in
polynomial time using the ellipsoid method.

Proofi As in Theorem 3, let w*, z“ ~ O be given such that (6)’s objective function

rx*”w*+z* <l.

We will use the r-approximation A as a separation oracle for finding an inequality of (6) that is
violated by w*, z*. We have rx’ -w* <1 – z*. In fact, the integer solution ZW=produced by A

when the objective function is w* must satisfy ZW” “w* <1 – z* since the cost of d“- must be
within a factor of r of the cost of Z*. But, then w*, z* violates the inequality

Xw●.W+Z 217

which means we have our desired separation oracle. Hence, (6) can be solved in polynomial time
using the ellipsoid method.

Theorem 5 Given an r-approximation

•1

heuristic, we can solve (~) in polynomial time.
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. Proof: By Theorem’4, we can solve (6) in polynomial time. The violated inequ_tities

our separation oracle found correspond to dual variables Aj for all j G J’ C J in (4). There is
an optimal dual solution using only these variables, since the inequtilties our separation oracle
found are sufficient to determine that we have the optimal solution to (6). Furthermore, the
number IJ’ I of these dual variables is polynomial in magnitude since our separation oracle was
used only a polynomial number of times. Therefore, we can solve (4) by solving the smaller
I.inearprogram that has only the Aj variables for j ~ J’. Since this smaller linear program is
polynomial in size, it can be solved in polynomial time. •1

Theorem 6 Given an r-approximation algorithm, we can decompose rz+ into a convex combi-
nation as shown in (3) with a polynomial number of terms and in polynomial time.

Proofi Theorem 5 and its proof show that we can solve (4) in polynomial time by solving a
smaller polynomial size version of (4). If A; for j c J’ is the optimal solution to the smaller
version of (4), we have that rz* dominates the linear combination

of elements Zj in ezt(Z). As pointed out in the previous proof, ]J’1 is polynomial in magnitude,
so there are a polynomial number of terms in (7). Since the optimal objective function value of*
(4) is 1 by Theorem 3 and duality, we have that .

Hence, the linear combination (7) is our required convex combination, and can be found in
polynomial time. •1
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