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1 IntroductionThe Consensus problem lies at the heart of a lot of agreement problems (e.g., Atomic Broadcast,Atomic Multicast, Weak Atomic commitment, etc.). This means that a solution to any of thoseproblems can be expressed as a protocol that uses a solution to the consensus problem as an un-derlying building block [3, 8, 10, 19]. Actually, the consensus problem can be seen as the greatestcommon sub-problem of a family of agreement problems. This encourages the following systemarchitecture advocated in [11]: �rst design a layer providing an e�cient consensus protocol, and,on top of it, design protocols solving particular agreement problems.The consensus problem can be informally stated as follows. Each process proposes a value andhas to decide a value (termination property) such that (1) there is a single decided value and (2)the decided value is one of the proposed values (safety properties). This apparently simple problemis actually impossible to solve in a deterministic way in asynchronous distributed systems whereprocesses may crash (even only one process). This is known as the Fischer-Lynch-Paterson (FLP)impossibility result [7]. Intuitively, this is due to the combination of asynchrony and process crashesthat, in the worst case, can prevent the processes to get a consistent global state of the execution[13].To circumvent this impossibility result two main approaches have been investigated. One liesin the unreliable Failure Detector concept proposed and investigated by Chandra, Hadzilacos andToueg [3, 4]. In that case, each process has access to a FD-oracle (Failure Detector oracle) thatprovides it with a list of processes that it suspects of having crashed. According to the properties(completeness and accuracy) a failure detector is assumed to satisfy, several classes of FD-oracleshave been de�ned [3]. It has been proved that the class denoted 3S is the weakest that allows tosolve consensus with the help of a failure detector [4]. This class is de�ned by the following twoproperties: any process that crashes is eventually suspected (completeness), and there is a timeafter which there is a correct process that is no longer suspected (eventual weak accuracy). Several3S-based consensus protocols have been designed in the recent past years [3, 14, 15, 21].Another approach (which actually has been the �rst to be investigated) consists in abandoningthe determinism requirement of the protocol, and allowing processes to query an oracle (R-oracle)providing them with random values [2, 5, 6, 17, 18]. The price that has to be paid by this approachis that the termination of the randomized protocol is only probabilistic. Its main advantage lies inthe robustness of the resulting protocol: its behavior does not depend on how the system actuallybehaves.This paper focuses on the consensus problem in asynchronous distributed systems equippedwith R-oracles. To our knowledge, the randomized consensus protocols studied so far consider thatthe values proposed by the processes are binary. Hence, they solve the Binary Consensus problem.This paper proposes a randomized protocol that allows processes to propose values from an arbi-trary set. It is interesting to note that the approach proposed in this paper could be combined withthe failure detector-based approach to give rise to Hybrid Multivalued Consensus protocols [1, 9, 16].The paper is composed of six sections. Section 2 presents the system model. Then, Section 3describes the protocol. Section 4 proves it solves the consensus problem. Then, Section 5 discussessome features of the protocol. Finally, Section 6 concludes the paper.
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2 Distributed Systems, Random Oracles and Consensus Problem2.1 Asynchronous Distributed Systems with Process Crash FailuresThe computation model follows the one described in [3, 7]. We consider a system consisting of a�nite set � of n > 1 processes, namely, � = fp1; : : : ; png. A process can fail by crashing, i.e.,by prematurely halting. It behaves correctly (i.e., according to its speci�cation) until it (possibly)crashes. By de�nition, a correct process is a process that does not crash. A faulty process is onethat is not correct. Let f denote the maximum number of processes that may crash. We assumef < n=2, i.e., a majority of processes is correct. (This requirement is necessary and su�cientfor randomized consensus protocols [2].) Processes communicate and synchronize by sending andreceiving messages through channels. Every pair of processes is connected by a channel. Channelsare not required to be fifo, but are assumed to be reliable: they do not create, duplicate, alteror lose messages. There is no assumption about the relative speed of processes nor on messagetransfer delays (i.e., the system is asynchronous).2.2 Random OraclesA random oracle consists of a set of R-oracle modules, each attached to a process. The R-oraclemodule attached to pi provides it with a value x 2 f1; : : : ; ng each time pi invokes the primitiverandom. A uniform distribution is assumed; this means that each value x (1 � x � n) hasprobability 1=n to be returned when pi invokes random.2.3 The Consensus ProblemIn the Consensus problem, every correct process pi proposes a value vi and all correct processeshave to decide on the same value v, that has to be one of the proposed values. More precisely, inan asynchronous distributed system equipped with R-oracles, the Consensus problem is de�ned bytwo safety properties (Validity and Uniform Agreement) and a probabilistic Termination Property.These properties are:� Validity: If a process decides v, then v was proposed by some process.� Uniform Agreement: No two processes decide di�erently.� Termination: With probability 1, every correct process eventually decides some value.Let V be the set of values that can be proposed by the processes to an instance of the consensusproblem. A consensus is binary when the set V consists of only two values [2, 18]. It is multivaluedwhen the set V can be arbitrarily large.3 A Randomized Multivalued Consensus Protocol3.1 Preliminary: Reliable BroadcastThe proposed randomized protocol uses the Reliable Broadcast communication primitives [12],namely, R Broadcast(m) and R Deliver(m). When a process issues R Broadcast(m), we say thatit \R broadcasts" m. Similarly, when a process issues R Deliver(m), we say that it \R delivers" m.Reliable Broadcast is de�ned by the following set of properties [12]:2



� Termination: If a correct process R broadcasts m, then any correct process R delivers m (nomessage from a correct process is lost).� Uniform Agreement: If a process R delivers m, then any correct process R delivers m (nomessage R delivered by a -correct or not- process is missed by a correct process).� Validity: If a process R delivers m, then m has been R broadcast by some process (no spuriousmessage).� Integrity: A process R delivers a message m at most once (no duplication).Implementations of Uniform Reliable Multicast can easily be designed for asynchronous systems.A very simple (but ine�cient) one, that works in fully connected networks, is the following : whena process receives a message m for the �rst time, it �rst forwards m to all the other processes, andonly then considers the delivery of m [12]. According to the underlying network topology, moree�cient implementations can be designed [20].3.2 Underlying PrinciplesThe underlying principle of the protocol (Figure 1) is the combination of reliable broadcasts todisseminate the values proposed by processes, with the use of random numbers to ensure that theagreement will be \eventual".Each process �rst reliably broadcasts the value vi it proposes. This is done at lines 2 and 3. Thearray vali[1 : n] allows pi to keep the proposed values it receives. Then, the processes proceed byexecuting asynchronous consecutive rounds [2, 3]. The local variable ri denotes the round numberpi is currently involved in. The local variable esti keeps pi's current estimate of the decision value;initially, esti is set to vi, the value proposed by pi. The protocol strives for the processes to havethe same estimate value when they start a round. When this occurs, the processes converge duringthat round and this single estimate becomes the decided value. The use of random numbers allowsthis \best e�ort strategy" to provide the Termination property with probability 1.A round is made up of two communication phases. During the �rst phase of a round r (lines7-9), the processes exchange their current estimates. If a process pi discovers that there is amajority of estimates that have the same value v, it updates esti to v; otherwise, it updates estito ?. Consequently, at the end of the �rst phase, we have the following property: (esti = v 6=?) ^ (estj = w 6= ?) =) (v = w) ^ (v was a majority value among the set of estimates at thebeginning of the round).Then, the processes enter the second phase of the round during which they again exchange thenew content of their esti variables: the communication pattern of this phase (lines 10-11) is similarto the one of the �rst phase. If a process pi receives the same value v such that v 6= ? (hence it isa proposed value) from a majority of processes it decides on it (line 13). Otherwise there are twocases.� (1) If it received a value v di�erent from ? (line 14-15), it adopts it as its new estimate value.Let us note that, in this case, this value v was a majority value among the estimates at thebeginning of the round.� (2) If pi received only ? during the second phase, it adopts an estimate value by selectingrandomly a value from its array vali. (Let k be the randomly selected entry. Note that the3



value of vali[k] is either the value proposed by pk, or ?). The proof will show that, if processesdo not decide, they will eventually select the same entry and this entry will necessarily bedi�erent from ?.Then, the processes that have not decided during r, start r + 1. Let us remark that if a processdecides during r, the other processes decide during the same round, or at the latest during r + 1.3.3 The ProtocolThe protocol is described in Figure 1. Each process pi starts a randomized multivalued consensusby invoking the function RM Consensus(vi) which returns the decided value. The decided valuev is returned when the process invokes return at line 4 or 13. The execution of this invocationterminates the participation of pi to the consensus protocol.To prevent a process from blocking forever (i.e., waiting for a value from a process that hasalready decided), a process that decides, uses again a reliable broadcast (lines 4 and 13) to dissem-inate the decision value1.Function RM Consensus(vi)(1) vali  (?; : : : ;?);(2) R Broadcast val(vi); activate task fT1; T2g|||||||||||||||||||||||||||||||||||||||||{task T1:(3) when val(v) is R Delivered from pj : do vali[j] v enddo(4) when dec(v) is R Delivered from pj : do return(v) enddo|||||||||||||||||||||||||||||||||||||||||{Task T2:(5) ri  0; esti  vi;(6) while true do ri  ri + 1; % round ri = r %|||||||| Phase 1 of round r |||||||||||||||||||||-(7) broadcast phase1(ri; esti);(8) wait until (phase1(ri; est) messages have been received from a majority of processes);(9) if (all those messages carry the same value v) then esti  v else esti  ? endif;|||||||| Phase 2 of round r |||||||||||||||||||||{(10) broadcast phase2(ri; esti);(11) wait until (phase2(ri; est) messages have been received from a majority of processes);(12) if (all those messages carry the same value v 6= ?)(13) then esti  v; R Broadcast dec(esti); return (esti)(14) else if (at least one message carries a value v 6= ?)(15) then esti  v(16) else esti  vali[random](17) endif endif(18) endwhileFigure 1: A Randomized Multivalued Consensus Protocol (f < n=2)1A similar dissemination of a decided value is done in all the failure detector-based consensus protocols that weknow [3, 14, 15, 21].
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4 ProofThe proof assumes f < n=2 (which has been shown to be a necessary requirement for randomizedconsensus protocols [1, 2, 18]). Let us note that at least (n � f) processes are correct. Moreoverany set of (n� f) processes is a majority set.The proof of the Validity property is left to the reader (hint: note that a decided value isdi�erent from ?, and any estimate variable esti can only contain a proposed value or ?).4.1 Preliminary LemmasLemma 1 If no process decides during r0 � r, then all correct processes will start the round r+1.Proof The proof is by contradiction. Let r be the �rst round during which a correct process blocksforever. It does it at line 8 or 11 (wait statement). As there is a majority of correct processes andas (due to the de�nition of r) no correct process is blocked forever during (r � 1), they all senda phase1(r;�) message. Due to the \reliable channels" assumption, each correct process receivesa majority of phase1(r;�) messages, and does not block forever at line 8. The same argumentapplies for the wait statement of line 11. It follows that no correct process can blocks foreverduring a round. 2Lemma 1Lemma 2 If all the processes that start a round r do it with their estimates equal to the samevalue v 6= ?, then their estimates remain equal to that value v.Proof As, due to the lemma assumption, all the processes that start executing r have theirestimates equal to the same value v, they can only exchange that value at line 7. Hence a processpi that updates its estimate esti at line 9, updates it to v. It follows that only v can be exchangedby the processes at line 10. Hence, as due to the lemma asumption v 6= ?, according to the testsof lines 12 and 14, a process pi can only execute line 13 or line 15. In both cases, it again updatesesti to v. 2Lemma 2Lemma 3 If no process decides during r0 < r, and all the processes that start r have the sameestimate value v 6= ? when they start r, then each of them decides during r unless it crashes.Proof First of all, due to the Lemma 1, all correct processes start r. Consequently, they sendphase1 and phase2 messages. So, no process can block forever during any round r0 � r. Thelemma follows from this observation and Lemma 2. As all the processes that execute the secondphase of round r have the same estimate value (v) after line 9, they receive the same value v fromall the processes that sent a phase2(r;�) message. According to the test of line 12, it follows thatthey execute line 13 and decide. 2Lemma 3Lemma 4 After the �rst phase of any round r (i.e., after line 9), an esti variable is equal to ?,or to an estimate value v that was a majority value among the estimates at the beginning of r (notethat such a majority value can be ?).Proof This lemma follows directly from the wait condition of line 8, the test of line 9, and thefact that any phase1(r;�) message carries a value that an estimate had at the beginning of r.2Lemma 45



4.2 Uniform AgreementTheorem 1 No two processes decide distinct values.Proof Let us �rst observe that a process that decides at line 4, decides a value that has beendecided by another process at line 13. Hence, we only consider the values that are decided at line13. Let r be the �rst round during which processes decide (at line 13). We consider two cases.� Let pi and pj be two processes that decide during r. They decide v and w respectively(note that, due to the test of line 12, v and w are di�erent from ?). Due to the lines 11-13we conclude that pi received the same message phase2(r; v) from a majority of processes.Similarly, pj received the same message phase2(r; w) from a majority of processes. As aprocess sends a single phase2 message during a round, it follows that there is a process pkthat sent the same phase2(r; v0) to pi and pj. Consequently, v0 = v = w.� Let us now consider the case where pi decides v during r, while pj decides during a laterround r0 > r (note that v 6= ?). We claim that, from r + 1, the only estimate value presentin the system is v. Hence, no other value can be decided.Proof of the claim. As pi decides v 6= ? during r, it received a phase2(r; v) message froma majority of processes. Let us consider any process pj that does not decide during r andprogresses to r + 1. As, while executing r, pj received at line 11 phase2 messages froma majority of processes, it received at least one phase2(r; v) message. From Lemma 4 weconclude that v 6= ? was a majority estimate value at the beginning of r. It follows fromthis lemma that it is not possible to have a phase2(r; w) message with w 6= v or w 6= ?.Hence, pj can receive only v or ? in a phase2 message. As there is a majority of phase2(r; v)messages, pj received at least one phase2(r; v) message. Hence, according to the test of line14, pj updates estj to v at line 15. End of the proof of the claim. 2Theorem 14.3 TerminationTheorem 2 Every correct process eventually decides with probability 1.Proof Let us remark that if a process decides then all correct processes decide: this is due to theReliable Broadcast primitive used to disseminate a decided value (lines 13 and 4). The proof is bycontradiction. Let us assume that no process decides. There is a time t after which:- (H1) There are only correct processes executing the protocol, and- (H2) The val arrays of the correct processes are equal. This is due to the fact these arrays are�lled in with values that are disseminated with a Reliable Broadcast primitive. If pi and pj areboth correct, then if the value vk is R delivered by pi, it is also R delivered by pj. Hence after t,vali[k] = vk implies valj [k] = vk.Let us �rst note that, as no process decides, no correct process blocks forever in a round (Lemma1). Moreover, no process executes line 13. Hence, at each round r after t, a process executes line15 or line 16. There are three cases.� All the processes that execute r, execute line 15.Due to Lemma 4, all the processes set their estimates to the same value v 6= ?. Hence, theyall have the same estimate value when they start r + 1. Due to Lemma 3 they decide.6



� During r at least one process executes line 15.Due to Lemma 4, all the processes that execute line 15 set their estimates to the same valuev 6= ?. This value v is equal to vk, the initial value of some process pk. The other processesexecute the line 16. Let us consider one of them, say pj. There is a probability (equal to 1=n)that the invocation of random by pj returns k, and that consequently, pj updates estj to vk(due to H2).� During r, no process executes line 15.In that case, all processes execute line 16. There a probability (strictly greater than 0) thatthey all get the same random value k, and that the corresponding entry of the val arrays bedi�erent from ? (and hence equal to vk).So, during any round after t, there is a probability p > 0 that all estimates are di�erent from ?and equal to a same proposed value. Hence, there is a probability P (�) = p+p(1�p)+p(1�p)2+� � �+ p(1� p)��1 = 1� (1� p)� that all processes have the same estimate after at most � rounds.As lim�!1 P (�) = 1, it follows that, with probability 1, all processes will start a round with thesame estimate. Then, according to Lemma 3, they will decide. 2Theorem 25 Discussion5.1 Cost of the ProtocolThe cost of the protocol is the cost of the reliable broadcasts, plus the cost of the task T2. Toanalyze the protocol, we consider that each message takes one time unit to be communicated andprocessed (by its destination process).In such a context, the most favorable scenario for processes to converge occurs when all processespropose the same value2. It is interesting to notice that this most favorable scenario does not requirethe Reliable Broadcasts! In that scenario, the decision is obtained during the �rst round which ismade up of two communication steps. Moreover, the number of broadcasts per round is equal to2n.5.2 An ImprovementWhen it executes line 16, a process pi can get the ? value, and consequently start a new round withesti = ?. This can prevent a value di�erent from ? to be a majority value among the estimates atthe beginning of the next round, thereby delaying the decision.A way to prevent this \bad" situation is to force any process pi to have an estimate value estidi�erent from ? when it starts a new round. This can be obtained by replacing line 16 (namely,esti  vali[random]) with the following sequence of statements:k  random;if vali[k] = ? thenfor ` = k + 1; : : : ; n; 1; : : : ; k � 1:if vali[`] 6= ? then exit for loop endifendfor;2This scenario occurs frequently in practice with agreement problems such as Atomic Commitment [10]. In thisproblem, a process can propose commit or abort and, most of the time, all processes propose commit [10, 19].7



k  `;endif;esti  vali[k]These statements force a process to always start a round with an estimate value (esti) di�erentfrom ?.Furthermore, let us note that the use of Reliable Broadcasts to disseminate proposed valuesguarantees that there is a time t after which all the vali arrays will eventually be equal. Letus consider the case where no process has decided before t. If the processes a priori agree on asequence of random numbers [18]3, after t they will eventually enter a sequence of rounds such thatall the processes will select the same array entry. If no decision has been obtained before t, thiswill expedite the decision after t.5.3 The Case of Binary ConsensusLet us consider the case where only the values 0 and 1 can be proposed by the processes. Then, allthe processes a priori know (1) the set of the values that can be proposed, and (2) the fact that thisset has only two values. This common knowledge allows to simplify the protocol in the followingway.� The lines 1, 2 and 3 are suppressed. This means the reliable broadcasts are no longer necessaryto disseminate the proposed values.� The line 16 is replaced by esti  random01 (where random01 provides 0 or 1, each withprobability 1=2). This means that the R-oracle is used to select an estimate value, while itwas used to select a process identity in the general protocol. Let us remark that random01 isalways invoked by a process pi in a context where pi knows both values have been proposed.Interestingly, the protocol that is obtained from these modi�cations is the binary consensus protocolproposed by Ben-Or [2]. This shows that the general protocol we have presented includes [2] as aparticular case, and hence can be seen as a generalization of it.6 ConclusionThis paper has presented a new randomized consensus protocol that allows processes to proposevalues from an arbitrary set. The protocol combines the use of random number generators withreliable broadcasts. The reliable broadcasts are used to disseminate the values initially proposedby processes. The random numbers are used to entail the protocol termination with probability 1.It has been shown that in the most favorable scenario, the decision can be obtained in two commu-nication steps. Interestingly and contrarily to previous randomized binary consensus protocols, therandom number generators are independent of the set of values that can be proposed (they onlydepend on the number of processes).References[1] Aguilera M.K. and Toueg S., Failure Detection and Randomization: a Hybrid Approach to SolveConsensus. SIAM Journal of Computing, 28(3):890-903, 1998.3This means that there is an \a priori agreement" on the sequence of random values. Hence, during a round, allprocesses that call random get the same result. 8
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