Randomized Parallel Proof-Number Search

Jahn-Takeshi Saito!, Mark H.M. Winands', and H. Jaap van den Herik?

! Department of Knowledge Engineering
Faculty of Humanities and Sciences, Maastricht University
{j.saito, m.winands}@maastrichtuniversity.nl
2 Tilburg centre for Creative Computing (TiCC)
Faculty of Humanities, Tilburg University
h.j.vdnherik@uvt.nl

Abstract. Proof-Number Search (PNS) is a powerful method for solv-
ing games and game positions. Over the years, the research on PNS has
steadily produced new insights and techniques. With multi-core proces-
sors becoming established in the recent past, the question of parallelizing
PNS has gained new urgency. This article presents a new technique called
Randomized Parallel Proof-Number Search (RP-PNS) for parallelizing
PNS on multi-core systems with shared memory. The parallelization is
based on randomizing the move selection of multiple threads, which oper-
ate on the same search tree. RP—PNS is tested on a set of complex Lines-
of-Action endgame positions. Experiments show that RP-PNS scales
well. Four directions for future research are given.

1 Introduction

Most computer programs for board games successfully employ «/f search. For
some games, however, a8 search displays a weakness in the endgame that can
currently neither be overcome by endgame databases nor by other o extensions.
To remedy the deficit, mate searches may be applied. One such alternative to
a3 search is Proof-Number Search (PNS). PNS enjoys popularity as a powerful
method for solving endgame positions and full games. Since its introduction
by Allis et al. [1] in 1994, PNS has developed into a whole family of search
algorithms (e.g., PN? [1] and df-pn [12]) with applications to many games, such
as Shogi [16], the one-eye problem in Go [9], Checkers [15], and Lines of Action
[19].

A variety of parallel a3 algorithms have been proposed in the past [3] but so
far not much research has been conducted on parallelizing PNS (cf. Section 3).
With multi-core processors becoming established as standard equipment par-
allelizing PNS has become an important topic. Pioneering research has been
conducted by Kishimoto [8] who parallelized the depth-first PNS variant PDS.
His algorithm is called ParaPDS and is designed for distributed memory systems.
In this article we address the problem of parallelizing PNS and PN? for shared
memory systems. The parallelization is based on randomizing the move selection
of multiple threads, which operate on the same search tree. This method is called

2 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

Randomized Parallel Proof-Number Search (RP-PNS). Its PN? version is called
RP-PN?.

The article is organized as follows. Section 2 describes the PNS algorithm
and two of its variants. Section 3 discusses the options for the parallelization
of PNS in general terms. Section 4 introduces the new parallel PNS, RP-PNS.
Section 5 shows and discusses the results of testing RP—PNS on a set of complex
Lines-of-Action endgame positions. Section 6 provides a conclusion and gives
four directions for future research.

2 Proof-Number Search

This section describes the sequential PNS algorithm (Subsect. 2.1) and two of
its variants, PDS and PN? (Subsect. 2.2).

2.1 Sequential PNS

PNS is a best-first search for AND/OR trees. The search aims at proving or
disproving a binary goal, i.e., a goal that can be reached by the first player or be
refuted by the second player under optimal play by both sides. Each node N in
the tree contains two numbers called the proof number (pn(N)) and the disproof
number (dn(N)), respectively.

PNS iterates the best-first search cycle consisting of three steps.

1. Selection: starting at the root, a path P consisting of successor nodes is
created until a leaf L is found; a heuristic guides the selection of successors;

2. Expansion: L is expanded and its children’s proof and disproof numbers are
set;

3. Back-up: the new values of the expanded node L are propagated back to the
root.

Informally, the algorithm runs as follows. The selection step finds a leaf L
of the tree. In PNS L, is called the most-proving node, i.e., the node that is
expected to reach a proof (or disproof) with the fewest additional expansions.
The most-proving node is found by heuristically descending a path P in the tree
starting at the root. At every node N, the best successor (bs(N)) is selected
and this bs(N) becomes the new N. This procedure is repeated until a leaf L
is reached. The best successor of N is determined differently in OR and AND
nodes. (1) In OR nodes (when player 1 moves), the bs(N) is the child that
requires the fewest number of additional expansions to prove the goal. pn(N)
represents this number. (2) In AND nodes (when player 2 moves), bs(N) is the
child that requires the fewest additional expansions to disprove the goal. dn(N)
represents this number.

More formally we describe the best successor and the successor number as fol-
lows. Given a non-terminal node N, its children are denoted by N;,i =1,...,|N|
where |N| is the number of children of N. If NV is an OR node, the N; are sorted
ascendingly by their proof number pn(N;). If N is an AND node, the N; are
sorted ascendingly by their disproof number dn(N;). The successor number of
N for a child N; is sn(N;) = pn(V;) if N is an OR node and sn(N;) = dn(N;) if

Randomized Parallel Proof-Number Search 3

Rules for AND nodes: Rules for OR nodes:
N) = S N) = i S
pn(N) > () pa(N) = min o pn(S)
Sesuccessor(N)
dn(N) = min dn(S) dn(N) = Z dn(S)
Sesuccessor(N) Sesuccessor(N)

Fig. 1. Rules for updating proof and disproof numbers for a node N.

N is an AND node. The best successor of N is the child Ny. The best successor
number bsn(N) is sn(Ny).

The expansion step of the cycle expands L and initializes its children’s proof
and disproof numbers. If a new child directly proves the goal, its proof number
is set to 0 and its disproof number is set to infinity. Correspondingly, if a new
child directly disproves the goal, its disproof number is set to 0 and its proof
number is set to infinity. If the child neither proves nor disproves, the number
of children of the leaf can be used to set these numbers.?

In the back-up step the newly assigned proof and disproof numbers are prop-
agated back to the root changing the proof and disproof number in each node
on the path P. The rules applied for updating proof and disproof numbers are
given in Fig. 1.

After the root has been reached and its values have been updated, the cycle
is complete. The cycle is repeated until the termination criterion is met. The
criterion is satisfied if either the root’s proof number is 0 and the disproof number
is infinity, or vice versa. In the first case, the goal is proved. In the second case
the goal is disproved.

Figure 2 (placed in Sect. 4 where it is also used for explanation) shows a
search tree with proof and disproof numbers. The proof and disproof numbers
of the interior nodes can be calculated from the children’s numbers by applying
the updating rules presented in Fig. 1.

2.2 PDS and PN?

A weakness of PNS is its memory consumption. This problem arises because the
whole tree is stored in memory. There are many variants of PNS that address
the memory problem; two of them are PDS and PNZ.

PDS by Nagai [13] solves the memory problem by transforming the best-
first search into a depth-first search. PDS applies multiple-iterative deepening
at every node. PDS can only function successfully by means of a transposition
table to speed up the re-searches.

Like PDS, PN? [1] reduces memory requirements of PNS by re-searching
parts of the tree. PN? consists of two levels of PNS. The first level PNS (PN;)
calls a PNS at the second level (PN3) for an evaluation of the most-proving
node of the PNj-search tree. This PN; search is bound by a maximum number

3 We remark that other methods for estimating the proof and disproof numbers of
newly expanded leafs have been proposed [2].

4 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

of nodes M to be stored in memory. Different ways have been proposed to set
this bound [1,2]. The PNy search is stopped when the number of nodes stored
in memory exceeds M or the subtree is (dis)proved. After completion of the
PN; search, the children of the root of the PNj-search tree are preserved, but
subtrees are removed from memory.

3 Parallelization of PNS

This section introduces some basic concepts for describing the behavior of par-
allel search algorithms (Subsect. 3.1), outlines ParaPDS, a parallelization of
PDS (Subsect. 3.2), and explains parallel randomized search (Subsect. 3.3).

3.1 Terminology

Parallelization aims at reducing the time that a sequential algorithm requires for
terminating successfully. The speedup is achieved by distributing computations
to multiple threads executed in parallel.

Parallelization gains from dividing computation by multiple resources but
simultaneously it may impose a computational cost. According to Brockington
and Schaeffer [4] three kinds of overhead may occur when parallelizing a search
algorithm: (1) search overhead, resulting from extra search not performed by the
sequential algorithm; (2) synchronization overhead, created at synchronization
points when one thread is idle waiting for another thread; (3) communication
overhead, created by exchanging information between threads.

Search overhead is straightforward and can be measured by the number of
additional nodes searched. Synchronization and communication overhead depend
on the kind of information sharing used. There are two kinds of information
sharing: (i) message passing and (ii) shared memory. Message passing simply
consists of passing information between memory units exclusively accessed by a
particular thread. Under shared memory all threads can access a common part
of memory. With the advent of multi-core CPUs memory sharing has become
common place.

An important property governing the behavior of parallel algorithms is scal-
ing. It describes the efficiency of parallelization with respect to the number of
threads as a fractional relation ¢/t between the time ¢; for terminating suc-
cessfully with one thread and the time tp for terminating successfully with T
threads.

3.2 ParaPDS and the Master-Servant Design

The only existing parallelization of PNS described in the literature has so far
been ParaPDS by Kishimoto and Kotani [8].* This pioneering work of paral-
lel PNS achieved a speedup of 3.6 on 16 processors on a distributed memory

4 Conceptually related to PNS is Conspiracy Number Search (CNS) by McAllester
[11]. Lorenz [10] proposes to parallelize a variant of CNS (PCCNS). PCCNS uses a
master-servant model (“Employer-Worker Relationship”, ibid.).

Randomized Parallel Proof-Number Search 5

machine. Therefore, processes are used instead of threads for parallelization.
ParaPDS relies on a master-servant design. One master process is coordinating
the work of several servant processes. The master manages a search tree up to
a fixed depth d. The master traverses through the tree in a depth-first manner
typical for PDS. On reaching depth d it assigns the work of searching further to
an idle servant. The search results of the servant process are backed up by the
master.

The overhead created by ParaPDS is mainly a search overhead. There are
two reasons for this overhead: (1) lack of a shared-memory transposition table,
and (2) the particular master-servant design. Regarding reason (1), ParaPDS is
asynchronous, i.e., no data is passed between the proccesses except at the ini-
tialization and the return of a servant process. ParaPDS thereby avoids message
passing. The algorithm is designed for distributed-memory machines common at
the time ParaPDS was invented (i.e., 1999). Transposition tables are important
to PDS, as this variation of PNS performs iterative deepening. An implication of
using distributed-memory machines is that ParaPDS cannot profit from a shared
transposition table and loses time on re-searching nodes. Regarding reason (2),
the master-servant design can lead to situations in which multiple servant pro-
cesses are idle because the master process is too busy updating the results of
another processes or finding the next candidate to pass to a servant process.

One may speculate that the lack of a shared-memory transposition table
in ParaPDS could nowadays be amended to a certain degree, at the expense
of a synchronization overhead, by the availability of shared-memory machines.
However, the second reason for the overhead of the master-servant design still
remains.

3.3 Randomized Parallelization

An alternative to the master-servant design of ParaPDS for parallelizing tree-
search is randomized parallelization. Shoham and Toledo [17] proposed the method
for parallelizing any kind of best-first search on AND/OR, trees. The method
relies on a heuristic which may seem counterintuitive at first: the selection in
any sequential best-first search is based on the heuristic evaluation of the chil-
dren. (In PNS, the selection heuristic is based on proof and disproof numbers, as
outlined in Sect. 2.) Instead of selecting the child with the best heuristic evalua-
tion, a probability distribution of the children determines which node is selected.
Shoham and Toledo call this a randomization of the move selection. Random-
ized Parallel Proof-Number Search (RP-PNS) as proposed in this contribution
adheres to the principle of randomized parallelization. The specific probability
distribution is obviously based on the selection heuristic.

The master-servant design of ParaPDS and randomized parallelization may
be compared as follows. ParaPDS maintains a privileged master thread; only
the master thread operates on the top level tree; the master thread selects the
subtree in which the servant threads search; it also coordinates the results of the
servant processes; each servant thread maintains a separate transposition table
in memory. In randomized parallelization there is no master thread; each thread
is guided by its own probabilities for selecting the branch to explore; there is

6 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

Fig. 2. Example of a PNS tree. Squares represent OR nodes; circles represent AND
nodes. Depicted next to each node are its proof number at the top and its disproof
number at the bottom.

no communication overhead but instead there is synchronization overhead; all
threads can operate on the same tree which is held in shared memory.

4 RP-PNS

This section introduces RP-PNS. Subsection 4.1 explains the basic functioning
of RP—PNS and describes how it differs from ParaPDS. Subsection 4.2 explains
details of an implementation of RP—PNS.

4.1 Detailed Description of Randomized Parallelization for PNS

There are two kinds of threads in RP—PNS: (1) principal-variation (PV) threads,
and (2) alternative threads. RP-PNS maintains one PV thread; all other threads
operating on the search tree are alternative threads.

The PV thread always applies the same selection strategy as sequential PNS.
It thereby operates on the PV, i.e., the path from root to leaf following the
heuristic for finding the most-proving node. We call this selection strategy PV
selection strategy and a child on the PV, a PV node.

The alternative threads select a node according to a modified selection strat-
egy. Instead of minimizing the successor number, there is a chance that a subop-
timal successor number is accepted. A probability distribution in the heuristic
creates the desired effect: the expanded nodes are always close to the PV since
nodes expanded in alternative threads would likely be on the PV at a later cy-
cle. The alternative threads anticipate a possible future PV. The probability of

Randomized Parallel Proof-Number Search 7

a suboptimal node to be selected for an alternative thread depends on the de-
gree by which it deviates from the PV. In the selection step, alternative threads
consider only a subset of all children. The considered children have a successor
number at most D larger than the best successor number. An alternative thread
selects one of these children by a certain probability.

To account for the move selection more formally, we first introduce further
notation. Similarly, for some positive natural number ¢, we can count the children
N; with successor number sn(N) smaller than or equal to some positive integer
c¢. This count is cnt(N, ¢) = |{N; : bsn(N;) < c¢,for i =1,...,|N|}.

Let T be the number of threads used. For each thread 0;,t = 1, ..., T and node
N there is a probability distribution Py, n that assigns a probability p(6:, N, N;)
to each child N; of N. This is the probability of node N; to be selected as
successor node. Equation 1 defines the probability for selecting NV; at N. 67 is
the PV thread.

0 :if t=1Asn(N;)>min(N)

0y, N;) = ent(N,min(N))~t : if t=1Asn(N;) = min(N)
P, e 0 :if t#1Asn(N;)>min(N)+D
ent(N,min(N) + D)1 if ¢#1Asn(N;) <min(N)+ D

The parameter D in Equation 1 regulates the degree to which the alterna-
tive threads differ from the PV. Setting D = 0 will result in the PV selection
strategy.® Setting D too high results in threads straying too far from the PV.

Figure 2 illustrates the consequences of varying the parameter D. In this
example, the PV is represented by the bold line and reaches leaf B. An alternative
selection with D = 1 is represented by the bold, dotted line. It will select one of
the leafs B, C, D, or E with equal probability. Setting D = 2 will result in also
selecting F. We note that the subtree at A is selected only for D > 8.

In addition to these probabilities, for all alternative threads we assign a
second probability of deviating from the PV. This is done by choosing with a
probability of 2/d randomly from N and N3 (determined by trial-and-error)
instead of choosing NV; if so far the thread has not deviated from the PV. This
choice is determined by the depth d of the last PV. The additional randomization
is necessary because it enables sufficient deviation from the PV in case that D
is not large enough to produce any effect.

We remark that RP-PNS differs from the original randomized paralleliza-
tion with respect to three points. (1) Shoham and Toledo do not distinguish
between PV and alternative threads. (2) The original randomized paralleliza-
tion selects children with a probability proportionate to their best-first value
while RP-PNS uses an equidistribution for the best candidates. (3) The original
randomized parallelization does not rely on a second probability. The differences
in point 2 and 3 are based on the desire to produce more deviations from the PV

® More precisely, this is true if there exists exactly one child N; with sp(N;) = bsn(N).
If multiple children have the same best successor number, the alternative threads
can deviate from the PV which we assume to be selected deterministically in PNS.

8 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

in order to avoid that too many threads congest the same subtree. The selection
in RP-PNS is similar to Buro’s selection of a move from an opening book [5].
In RP-PNS multiple threads operate on the same tree. To facilitate the
parallel access some complications in the implementation require our attention.
The next subsection gives details of the actual implementation of RP-PNS.

4.2 Implementation

As pointed out in the previous subsection, all threads in RP-PNS operate on
the same search tree held in shared memory. In order to prevent errors in the
search tree, RP-PNS has to synchronize the threads. This is achieved in the
implementation by a locking policy. Each tree node has a lock. It guarantees that
only one thread at a time operates on the same node while avoiding deadlocks.
The locking policy consists of two parts: (1) when a thread selects a node, it has
to lock it; (2) when a thread updates a node N it has to lock N and its parent.
The new values for N are computed. After N has been updated, it is released
and the updating continues with the parent.

Each node N maintains a set of flags, one for each thread, to facilitate the
deletion of subtrees. Each flag indicates whether the corresponding thread is in
the subtree below N. A thread can delete the subtree of N only if no other
thread has set its flag in V.

If a transposition table is used to store proof and disproof numbers, each
table entry needs an additional lock. The number of locks for the transposition
table could be reduced by sharing locks for multiple entries. Similar policies have
been used in parallel Monte-Carlo Tree Search [7] (to which the master-servant
design has also been applied [6]).

Synchronization imposes a cost on RP-PNS in terms of memory and time
consumption. The memory consumption increases due to the additional locks
(per node, 16 bytes for a spinlock and flags, cf. [7]) in each node.

The overhead is partially a synchronization overhead and partially a search
overhead. The synchronization overhead occurs whenever a thread has to wait
for another thread due to the locking policy or due to the transposition table
locking. The search overhead is created by any path that would not have been
selected by the sequential PNS and that at the same time does not contribute
to find the proof. The following section describes experiments that also test the
overhead of RP—PNS.

5 Experiment

This section presents experiments and results for RP-PNS. Subsection 5.1 out-
lines the experimental setup, Subsect. 5.2 shows the results obtained, and Sub-
sect. 5.3 discusses the findings.

5.1 Setup
We implemented RP-PNS as described in the previous section and tested it on
complex endgame positions of Lines of Action (LOA)S. We chose LOA because

5 The test set is available at http://www.personeel.unimaas.nl/m-winands/loa/,
“Set of 286 hard positions.”

Randomized Parallel Proof-Number Search 9

it is an established domain for applying PNS. The test set consisting of 286
problems has been applied before frequently [14, 18, 19].

The experiment tests two parallelization methods: RP-PNS and RP-PN? (an
adaptation of RP—PNS for PN2) for 1, 2, 4, and 8 threads. The combination of
an algorithm with a specific number of threads is called a configuration and
denoted by indexing the number of threads, e.g., RP-PNSg is RP-PNS using
cight threads. We remark that PNS = RP-PNS; and RP-PN? = RP-PN7.

The implementation of RP-PN? uses RP-PNS for PN; and PNS for PNs.
The size of PNy was limited to S€/T', where S is the size of the PN; tree, T
is the number of threads used, and e is a parameter. So, S¢ is the size V/S%.
This limit is a compromise between memory consumption and speed suitable
for the test set. The compromise is faster than using the full S as suggested by
Allis et al. [1]. Using S for the limit slows down RP-PN? disproportionally when
many threads are used because the PN tree grows faster in RP-PN? than in
the sequential PN2. Moreover, the size of PN grows rapidly resulting in slowing
down RP-PN?. An advantage of using the above limit compared to Breuker’s
method [2] is that the former is robust to varying problem sizes. The values for
the parameters of RP-PNS were set to D = 5 and € = 0.75 based on trial-and-
error.

The experiments were carried out on a Linux server with eight 2.66 GHz
Xeon cores and 8 GB of RAM. The program was implemented in C++.

5.2 Results

Two series of experiments were conducted. The first series tests the efficiency of
RP-PNS; the second tests the efficiency of RP-PN?.

For comparing the efficiency of different configurations, we selected a subset
of the 143 problems for which PNS was able to find a solution in less than 30
seconds. This selection enabled us to acquire the experimental results for the
series of experiments for RP-PN? in a reasonable time. We call the set of 143
problems the comparison set, S143. PNS required an average of 4.28 million
evaluated nodes for solving a problem of S143 with a standard deviation of 2.9
million nodes.

In the first series of experiments we tested the performance of RP-PNS for
solving the positions of S143. The results regarding time, nodes evaluated, and
nodes in memory for 1, 2, 4, and 8 threads are given in the upper part of Table
1. We observe that the scaling factor for 2, 4, and 8 threads is 1.6, 2.5, and
3.5, respectively. Based on the results we compute that the search overhead
expressed by the number of nodes evaluated is only ca. 33% for 8 threads. This
means that the synchronization overhead is responsible for the largest part of
the total overhead. Finally, we see that RP-PNSg uses 50% more memory than
PNS.

In the second series of experiments we tested the performance of RP-PN2.
The results regarding time, nodes evaluated, and nodes in memory for 1, 2, 4,
and 8 threads are given in the lower part of Table 1. We observe that the scal-
ing factor for 2, 4, and 8 threads is 1.9, 3.4, and 4.7, respectively. Compared to
RP-PNS the relative scaling factor of RP-PN? is better for all configurations.

10 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

Table 1. Experimental results for RP—PNS and PN? on S143. The total time is the time
required for solving all problems. “Nodes in memory” is the sum of all M;, where M;
is the maximum number of nodes in memory used for test problem i. Nodes evaluated
is the sum of all nodes evaluated all problems. For RP-PNS, this includes evaluations
in the PN, tree and possible double evaluations when trees are re-searched.

PNS RP-PNS, RP-PNS; RP-PNSg

Total Time (sec.) 1,679 1,072 682 478
Total scaling factor 1 1.6 2.5 3.5
Total nodes evaluated (million) 612 673 745 815
Total nodes in memory (million) 367 423 494 550

PN? RP-PN%Z RP-PN? RP-PN2

Total Time (sec.) 6,735 3,275 1,966 1,419
Total scaling factor PN? 1 1.9 3.4 4.7
Total scaling factor compared to PNS 0.25 0.52 0.85 1.18
Total nodes evaluated (million) 2,271 2,426 2,534 2,883
Total nodes in memory (million) 68 68 70 73

The search overhead of RP-PN3 is 27% which is comparable to the search over-
head of RP-PNSg (33%, cf. above). At the same time the total overhead of
RPfPNg is smaller. This means that the synchronization overhead is smaller for
RP-PN; than for RP-PNSg. The reason is that more time is spent in the PNy
trees. Therefore, the probability that two threads simultaneously try to lock the
same node of the PN tree is reduced. Finally, we remark that in absolute terms,
RPfPNg is slightly faster than PNS.

Despite the fact that RP-PN? has a better scaling factor than RP-PNS,
RP-PNS is still faster than RP-PN? when the same number of threads is used.
However, RP-PN? consumes less memory than RP-PNS.

5.3 Discussion

It would be interesting to compare the results of the experiments presented in
Subsect. 5.2 to the performance of ParaPDS. However, the direct comparison
between the results obtained for ParaPDS and RP-PNS is not feasible because
of at least three difficulties.

First, the games tested are different (ParaPDS was tested on Othello, whereas
RP-PNS is tested on LOA).

Second, the type of hardware is different. As described in Sect. 3, ParaPDS is
designed for distributed memory whereas and RP-PNS is designed for shared
memory.

Third, ParaPDS is a depth-first search variant of PNS whereas RP-PNS is
not. ParaPDS is slowed down because of the transposition tables in distributed
memory.

ParaPDS and RP-PN? both re-search in order to save memory. When com-
paring the experimental results for these two algorithms they appear to scale up

Randomized Parallel Proof-Number Search 11

in the same order of magnitude on a superfacial glance. On closer inspection, a
direct comparison of the numbers would be unfair. ParaPDS and RP-PN? par-
allelize different sequential algorithms. Furthermore, RP-PN? parallelizes trans-
position tables while our implementation of RP-PNS does not not. Moreover,
it can be expected that sequential PN? profits more from transposition tables
than RP-PN? because the parallel version would suffer from additional commu-
nication and synchronization overhead.

In RP-PN? the size of the PN, tree determines how much the algorithm
trades speed for memory. If the PNy is too large, the penalty for searching
an unimportant subtree will be too large as well. In our implementation, we
chose rather small PNy trees because the randomization is imprecise. More-
over, the PN, trees are bigger when less threads are used. This explains why
RP-PN? (with a scaling factor of 4.7) scales better than RP-PNS (with a scaling
factor of 3.5). A second factor contributing to the better scaling is the reduced
synchronization overhead compared to RP—PNS. This effect is produced by the
smaller relative number of waiting threads.

We may speculate that RP-PNS and RP-PN? could greatly profit from a
more precise criterion for branching from the PV. To that end, it is desirable
to find a quick algorithm for finding the k-best nodes in a proof-number tree.
Thereby, the true best variations could be investigated.

6 Conclusion and Future Research

In this paper, we introduced a new parallel Proof-Number Search for shared
memory, called RP-PNS. The parallelization is achieved by threads that se-
lect moves close to the principal variation based on a probability distribution.
Furthermore, we adapted RP-PNS for PN?, resulting in an algorithm we call
RP-PN.

The scaling factor for RP~PN? (4.7) is even better than that of RP-PNS (3.5)
but this is mainly because the size of the PNy tree depends on the number
of threads used. Based on these results we may conclude that RP-PNS and
RP-PN? are viable for parallelizing PNS and PN?, respectively. Strong compar-
ative conclusions cannot be made for ParaPDS and RP-PNS.

Future research will address the following four directions. (1) A combined
parallelization at PN; and PNy trees of RP-PN? will be tested on a shared-
memory system with more cores. (2) A better distribution for guiding the move
selection, possibly by including more information in the nodes, will be tested to
reduce the search overhead. For instance, the probability of selecting a child N;
could be set to 1—(bsn(N;)/>2;_1 _n bsn(NN;)). (3) The concept of the k-most
proving nodes of a proof-number tree and an algorithm for finding these nodes
efficiently on a parallelized tree will be investigated. (4) The speedup of reducing
the number of node locks by pooling will be investigated.

Acknowledgments. We thank the anonymous referees for their valuable ad-
vise. This work is financed by the Dutch Organisation for Scientific Research in
the framework of the project GO FOR GO, grant number 612.066.409.

12 J.-T. Saito, M.H.M. Winands and H.J. van den Herik

References

1. L.V. Allis, M. van der Meulen, and H.J. van den Herik. Proof-Number Search.
Artificial Intelligence, 66(1):91-124, 1994.

2. D.M. Breuker. Memory versus Search. PhD thesis, Universiteit Maastricht, 1998.

3. M. Brockington. A Taxonomy of parallel game-tree search algorithms. ICCA Jour-
nal, Vol. 19(3):162-174, 1996.

4. M. Brockington and J. Schaeffer. APHID Game-Tree Search. In H.J. van den
Herik and J.W.H.M. Uiterwijk, editors, Advances in Computer Chess 8, pages 69—
92. Universiteit Maastricht, 1997.

5. M. Buro, Toward opening book learning. IJCAI-97 Workshop on Using Games as
an Experimental Testbed for Al Research, pages 1-5, 1997.

6. T. Cazenave and N. Jouandeau. On the Parallelization of UCT. In H.J. van den
Herik, J.W.H.M. Uiterwijk, M.H.M. Winands, and M. Schadd, editors, Computer
Games Workshop 2007 (CGW 2007), MICC Technical Report Series 07-06, pages
93-101, 2007. Universiteit Maastricht, The Netherlands, 2007.

7. G.M.J.B. Chaslot, M.H.M. Winands, and H.J. van den Herik. Parallel Monte-Carlo
Tree Search. In Conference on Computers and Games 2008 (CG 2008), volume
5131 of LNCS, pages 60-71, 2008.

8. A. Kishimoto. Parallel AND/OR tree search based on proof and disproof numbers.
In 5th Games Programming Workshop, volume 99(14) of IPSJ Symposium Series,
pages 24-30, 1999.

9. A. Kishimoto and M. Miiller. DF-PN in Go: Application to the one-eye problem.
In H.J. van den Herik, H. lida, and E. A. Heinz, editors, Advances in Computer
Games Conference (ACG-10), pages 125-141. Kluwer Academic, 2003.

10. U. Lorenz. Parallel controlled conspiracy number search. In M. Monien and R. Feld-
mann, editors, Furo-Par, volume 2400 of LNCS, pages 420-430. Springer, 2001.
11. D.A. McAllester. Conspiracy numbers for Min-Max Search. Artificial Intelligence,

35(3):287-310, 1988.

12. A. Nagai. A new depth-first search algorithm for AND/OR trees. In Complex
Games Lab Workhshop, pages 40-45, ETL, Tsuruoka, Japan, 1998.

13. A. Nagai. Df-pn Algorithm for Searching AND/OR Trees and Its Applications.
PhD thesis, University of Tokio, 2002.

14. J. Pawlewicz and L. Lew. Improving depth-first pn-search: 14 ¢ trick. In H. J.
van den Herik, P. Ciancarini, and H.H.L.M. Donkers, editors, 5th International Con-
ference on Computers and Games, volume 4630 of LNCS, pages 160-170. Computers
and Games, Springer, Heidelberg, 2006.

15. J. Schaeffer, N. Burch, Y. Bjornsson, N. Burch, A. Kishimoto, M. Miiller, R. Lake,
P. Lu, and S. Sutphen. Checkers is solved. Science, 5844(317):1518-1552, 2007.
16. M. Seo, H. Iida, and J.W.H.M. Uiterwijk. The PN-Search algorithm: application

to tsume-shogi. Artificial Intelligence, 129(1-2):253-277, 2001.

17. Y. Shoham and S. Toledo. Parallel randomized best-first minimax search. Artificial
Intelligence, 137(1-2):165-196, 2002.

18. H.J. van den Herik and M.H.M. Winands. Proof-Number Search and its Variants.
In Oppositional Concepts in Computational Intelligence, pages 91-118. 2008.

19. M.H.M. Winands, J.W.H.M. Uiterwijk, and H.J. van den Herik. PDS-PN: A new
proof-number search algorithm: Application to Lines of Action. In J. Schaeffer,
M. Miiller, and Y. Bjornson, editors, Computers and Games 2002, volume 2883 of
LNCS, pages 170-185. Computers and Games, Springer, Heidelberg, 2003.

