
Algorithmica manuscript No.
(will be inserted by the editor)

Randomized partition trees for nearest neighbor search

Sanjoy Dasgupta · Kaushik Sinha

the date of receipt and acceptance should be inserted later

Abstract The k-d tree was one of the first spatial data structures proposed for nearest

neighbor search. Its efficacy is diminished in high-dimensional spaces, but several

variants, with randomization and overlapping cells, have proved to be successful in

practice. We analyze three such schemes. We show that the probability that they fail

to find the nearest neighbor, for any data set and any query point, is directly related to

a simple potential function that captures the difficulty of the point configuration. We

then bound this potential function in several situations of interest: when the data are

drawn from a doubling measure; when the data and query distributions are identical

and are supported on a set of bounded doubling dimension; and when the data are

documents from a topic model.

1 Introduction

The problem of nearest neighbor search has engendered a vast body of algorithmic

work. In the most basic formulation, there is a set S of n points, typically in an Eu-

clidean space R
d , and any subsequent query point must be answered by its nearest

neighbor (NN) in S. A simple solution is to store S as a list, and to address queries

using a linear-time scan of the list. The challenge is to achieve a substantially smaller

query time than this.

We will consider a prototypical modern application in which the number of points

n and the dimension d are both large. The primary resource constraints are the size

A preliminary abstract of this work appeared in [11].

S. Dasgupta

University of California, San Diego

E-mail: dasgupta@cs.ucsd.edu

K. Sinha

Wichita State University

E-mail: kaushik.sinha@wichita.edu

2 Sanjoy Dasgupta, Kaushik Sinha

of the data structure used to store S and the amount of time taken to answer queries.

For practical purposes, the former must be O(n), or maybe a little more, and the latter

must be o(n). Secondary constraints include the time to build the data structure and,

sometimes, the time to add new points to S or to remove existing points from S.

A major finding of the past two decades has been that these resource bounds

can be met if it is enough to merely return a c-approximate nearest neighbor, whose

distance from the query is at most c times that of the true nearest neighbor. One

such method that has been successful in practice is locality sensitive hashing (LSH),

which has space requirement n1+ρ and query time O(nρ), for ρ ≈ 1/c2 [2]. It makes

use of random projection, which is also the basis of some other approximate NN

methods [1,14]. A rather different approach is the balanced box decomposition tree,

which takes O(n) space and answers queries with an approximation factor c = 1+ ε
in O((6/ε)d logn) time [3].

In the latter result, an exponential dependence on dimension is evident, and indeed

this is a familiar blot on the nearest neighbor landscape. One way to mitigate the curse

of dimensionality is to consider situations in which data have low intrinsic dimension

do, even if they happen to lie in R
d for d ≫ do or in a general metric space.

A common assumption is that the data are drawn from a doubling measure of

dimension do (or equivalently, have expansion rate 2do); this is defined in Section 4.1

below. Under this condition, there is a scheme [13] that gives exact answers to nearest

neighbor queries in time O(23do logn), using a data structure of size O(23don). The

more recent cover tree algorithm [6], which has been used quite widely, creates a data

structure in space O(n) and answers queries in time O(2do logn). There is also work

that combines intrinsic dimension and approximate search. The navigating net [15],

given data from a metric space of doubling dimension do, has size O(2O(do)n) and

gives a (1+ ε)-approximate answer to queries in time O(2O(do) logn+(1/ε)O(do));
the crucial advantage here is that doubling dimension, defined in Section 4.2 below, is

a more general and robust notion than doubling measure. Finally, there are results for

exact NN search in spaces of doubling dimension do, provided the queries come from

the same distribution as the data [8,9]. These are similar to the bounds for doubling

measures, except that there is also a dependence on the aspect ratio of the data: the

ratio between the largest and smallest interpoint distances.

Despite these and many other results, there are two significant deficiencies in

the nearest neighbor literature that have motivated the present paper. First, existing

analyses have succeeded at identifying, for a given data structure, highly specific

families of data for which efficient exact NN search is possible—for instance, data

from doubling measures—but have failed to provide a more general characterization.

Second, there remains a class of nearest neighbor data structures that are popular and

successful in practice, but that have not been analyzed thoroughly. These structures

combine classical k-d tree partitioning with randomization and overlapping cells, and

are the subject of this paper.

Randomized partition trees for nearest neighbor search 3

function MakeTree(S)

If |S|< no: return (Leaf)

Rule = ChooseRule(S)
LeftTree = MakeTree({x ∈ S : Rule(x) = true})
RightTree = MakeTree({x ∈ S : Rule(x) = false})
return (Rule, LeftTree, RightTree)

function ChooseRule(S)

Choose a coordinate direction i

Rule(x) = (xi ≤ median({zi : z ∈ S}))
return (Rule)

Fig. 1 The k-d tree: example and pseudocode.

1.1 Three randomized tree structures for exact NN search

The k-d tree is a partition of Rd into hyper-rectangular cells, based on a set of data

points [5]. The root of the tree is a single cell corresponding to the entire space. A

coordinate direction is chosen, and the cell is split at the median of the data along

this direction (Figure 1). The process is then recursed on the two newly created cells,

and continues until all leaf cells contain at most some predetermined number no of

points. When there are n data points, the depth of the tree is at most about log(n/no).

Given a k-d tree built from data points S, there are several ways to answer a

nearest neighbor query q. The quickest and dirtiest of these is to move q down the

tree to its appropriate leaf cell, and then return the nearest neighbor in that cell. This

defeatist search takes time just O(no + log(n/no)), which is O(logn) for constant no.

The problem is that q’s nearest neighbor may well lie in a different cell, for instance

when the data happen to be concentrated near cell boundaries. Consequently, the

failure probability of this scheme can be unacceptably high.

Over the years, some simple tricks have emerged, from various sources, for re-

ducing the failure probability. These are nicely laid out by the authors of [16], who

show experimentally that the resulting algorithms are effective in practice.

The first trick is to introduce randomness into the tree. Drawing inspiration from

locality-sensitive hashing, [16] suggests preprocessing the data set S by randomly

rotating it, and then applying a k-d tree (or related tree structure). This is rather like

splitting cells along random directions as opposed to coordinate axes. In this paper,

we consider a data structure that uses random split directions as well as a second type

of randomization: instead of putting the split point exactly at the median, it is placed

at a fractile chosen uniformly at random from the range [1/4,3/4]. The resulting

structure (Figure 2) is almost exactly the random projection tree (or RP tree) of [10].

That earlier work showed that in RP trees, the diameters of the cells decrease (down

the tree) at a rate depending only on the intrinsic dimension of the data. It is a curious

result, but is not helpful in analyzing nearest neighbor search, and in this paper we

develop a different line of reasoning.

4 Sanjoy Dasgupta, Kaushik Sinha

function ChooseRule(S)

Pick U uniformly at random from the unit sphere

Pick β uniformly at random from [1/4,3/4]
Let v = β -fractile point of the projection of S on U

Rule(x) = (x ·U ≤ v)

return (Rule)

Fig. 2 The random projection tree (RP tree)

A second trick suggested by [16] for reducing failure probability is to allow over-

lap between cells. This was also proposed in earlier work [17]. Once again, each

cell C is split along a direction U(C) chosen at random from the unit sphere. But

now, three split points are noted: the median m(C) of the data along direction U , the

(1/2)−α fractile value l(C), and the (1/2)+α fractile value r(C). Here α is a small

constant, like 0.05 or 0.1. The idea is to simultaneously entertain a median split

left = {x : x ·U < m(C)} right = {x : x ·U ≥ m(C)}

and an overlapping split (with the middle 2α fraction of the data falling on both sides)

left = {x : x ·U < r(C)} right = {x : x ·U ≥ l(C)}.

In the spill tree [16], each data point in S is stored in multiple leaves, by following the

overlapping splits. A query is then answered defeatist-style, by routing it to a single

leaf using median splits.

Both the RP tree and the spill tree have query times of O(no + log(n/no)), but the

latter can be expected to have a lower failure probability, and we will see this in the

bounds we obtain. On the other hand, the RP tree requires just linear space, while the

size of the spill tree is O(n1/(1−lg(1+2α))). When α = 0.05, for instance, the size is

O(n1.159).
In view of these tradeoffs, we consider a further variant, which we call the virtual

spill tree. It stores each data point in a single leaf, following median splits, and hence

has linear size. However, each query is routed to multiple leaves, using overlapping

splits, and the return value is its nearest neighbor in the union of these leaves.

The various splits are summarized in Figure 3, and the three trees use them as

follows:

Routing data Routing queries

RP tree Perturbed split Perturbed split

Spill tree Overlapping split Median split

Virtual spill tree Median split Overlapping split

Randomized partition trees for nearest neighbor search 5

1

2

median split

1

2

overlapping splitperturbed split

β 1− β
1

2
+ α

1

2
+ α

Fig. 3 Three types of split. The fractions refer to probability mass. α is some constant, while β is chosen

uniformly at random from [1/4,3/4].

One small technicality: if, for instance, there are duplicates among the data points,

it might not be possible to achieve a median split, or a split at a desired fractile. We

will ignore these discretization problems.

1.2 Analysis of failure probability

Our three schemes for nearest neighbor search—the RP tree and the two spill trees—

can be analyzed in a simple and unified framework. Pick any data set x1, . . . ,xn ∈ R
d

and any query q ∈ R
d . The probability of not finding the nearest neighbor, assessed

over the randomness in the data structure, can be shown to be directly related to the

quantity

Φ(q,{x1, . . . ,xn}) =
1

n

n

∑
i=2

‖q− x(1)‖
‖q− x(i)‖

,

where x(1),x(2), . . . denotes an ordering of the xi by increasing distance from q. For

RP trees, the failure probability is proportional to Φ log(1/Φ) (Theorem 4); for the

two spill trees, it is proportional to Φ (Theorem 3). The results extend easily to the

problem of searching for the k nearest neighbors. Moreover, these bounds are roughly

tight: a failure probability proportional to Φ is inevitable unless there is a significant

amount of collinearity within the data (Corollary 1).

Let’s take a closer look at this potential function. If Φ is close to 1, then all the

points are roughly the same distance from q, and so we can expect that the NN query

is not easy to answer. On the other hand, if Φ is close to zero, then most of the

points are much further away than the nearest neighbor, so the latter should be easy

to identify. Thus the potential function is an intuitively reasonable measure of the

difficulty of NN search.

This general characterization of data configurations amenable to efficient exact

NN search, by the three data structures, is our main result. To illustrate our theorem,

we bound Φ for three commonly-studied data types.

– When x1, . . . ,xn are drawn i.i.d. from a doubling measure (Section 4.1). As we

discussed earlier, this is the assumption under which many other results for exact

NN search have been obtained.

– When the query q is exchangeable with the data x1, . . . ,xn—that is, q is a random

draw from {x1, . . . ,xn,q}—and they together form a set of bounded doubling di-

mension (Section 4.2).

6 Sanjoy Dasgupta, Kaushik Sinha

– When x1, . . . ,xn are documents drawn from a topic model (Section 4.3).

In the first case, when data are from a doubling measure of dimension do, we show

that the spill tree is able to answer arbitrary exact nearest neighbor queries in time

O(do)
do +O(logn), with a probability of error that is an arbitrarily small constant,

while the RP tree is slower by only a logarithmic factor (Theorem 7). These are close

to the best results that have been obtained using other data structures. (The failure

probability is over the randomization in the tree structure, and can be further reduced

by building multiple trees.) Similar results hold for the second case (Theorem 8), with

do now denoting the doubling dimension and with an additional dependence on the

aspect ratio of the data, as in prior work [8,9]. Finally, we chose the topic model as

an example of a significantly harder case: its data distribution is more concentrated

than that of a doubling measure, in the sense that there are a lot of data points that

are only slightly further away than the nearest neighbor. The resulting savings are far

more modest though non-negligible: for large n, the time to answer a query is roughly

n ·2−O(
√

L), where L is the expected document length.

In some situations, the time to construct the data structure, and the ability to later

add or remove data points, are significant factors. It is readily seen that the construc-

tion time for the spill tree is proportional to its size, while that of the RP tree and

the virtual spill is O(n logn). Adding and removing points is also easy: all guarantees

hold if these are performed locally, while rebuilding the entire data structure after

every O(n) such operations.

2 A potential function for point configurations

To motivate the potential function Φ , we start by considering what happens when

there are just two data points and one query point.

2.1 How random projection affects the relative placement of three points

Consider any three points q,x,y ∈ R
d , such that x is closer to q than is y; that is,

‖q− x‖ ≤ ‖q− y‖.

Now suppose that a direction U is chosen uniformly at random from the unit

sphere Sd−1, and that the points are projected onto this direction. What is the prob-

ability that y falls between q and x on this line? The following lemma answers this

question exactly. An approximate solution, with different proof method, was given

earlier in [14].

Lemma 1 Pick any q,x,y ∈R
d with ‖q−x‖ ≤ ‖q−y‖. Pick a direction U uniformly

at random from the unit sphere. The probability, over the choice of U, that y ·U falls

strictly between q ·U and x ·U is

1

π
arcsin





‖q− x‖
‖q− y‖

√

1−
(

(q− x) · (y− x)

‖q− x‖‖y− x‖

)2



 .

Randomized partition trees for nearest neighbor search 7

Proof We may assume that U is drawn from N(0, Id), the d-dimensional Gaussian

with mean zero and unit covariance. This gives exactly the right distribution if we

scale U to unit length, but we can skip this last step since it has no effect on the

question we are considering.

We can also assume, without loss of generality, that q lies at the origin and that x

lies along the (positive) x1-axis: that is, q = 0 and x = ‖x‖e1. It will then be helpful

to split the direction U into two pieces, its component U1 in the x1-direction, and the

remaining d − 1 coordinates UR. Likewise, we will write y = (y1,yR).
If yR = 0 then x, y, and q are collinear, and the projection of y cannot possibly fall

between those of x and q. In what follows, we assume yR 6= 0.

Let E denote the event of interest:

E ≡ y ·U falls between q ·U (that is, 0) and x ·U (that is, ‖x‖U1)

≡ yR ·UR falls between −y1U1 and (‖x‖− y1)U1

The interval of interest is either (−y1|U1|,(‖x‖− y1)|U1|), if U1 ≥ 0, or (−(‖x‖−
y1)|U1|,y1|U1|), if U1 < 0. To simplify things, yR ·UR is independent of U1 and is

distributed as N(0,‖yR‖2), which is symmetric and thus assigns the same probability

mass to the two intervals. We can therefore write

PrU(E) = PrU1
PrUR

(−y1|U1|< yR ·UR < (‖x‖− y1)|U1|).
Let Z and Z′ be independent standard normals N(0,1). Since U1 is distributed as Z

and yR ·UR is distributed as ‖yR‖Z′,

PrU(E) = Pr(−y1|Z|< ‖yR‖Z′< (‖x‖−y1)|Z|) = Pr

(

Z′

|Z| ∈
(

− y1

‖yR‖
,
‖x‖− y1

‖yR‖

))

.

Now Z′/|Z| is the ratio of two standard normals, which has a standard Cauchy

distribution. Using the formula for a Cauchy density,

Pr(E) =

∫ (‖x‖−y1)/‖yR‖

−y1/‖yR‖

dw

π(1+w2)

=
1

π

(

arctan

(‖x‖− y1

‖yR‖

)

− arctan

(−y1

‖yR‖

))

=
1

π
arctan

‖x‖‖yR‖
‖y‖2 − y1‖x‖

=
1

π
arcsin





‖x‖
‖y‖ ·

√

‖y‖2 − y2
1

‖y‖2 + ‖x‖2− 2y1‖x‖



 ,

which is exactly the expression in the lemma statement once we invoke y1 = (y ·
x)/‖x‖ and factor in our assumption that q = 0.

To simplify the expression, define an index of the collinearity of q,x,y to be

coll(q,x,y) =
|(q− x) · (y− x)|
‖q− x‖‖y− x‖ .

This value, in the range [0,1], is 1 when the points are collinear, and 0 when q− x is

orthogonal to x− y.

8 Sanjoy Dasgupta, Kaushik Sinha

Corollary 1 Under the conditions of Lemma 1,

1

π

‖q− x‖
‖q− y‖

√

1− coll(q,x,y)2 ≤ PrU(y ·U falls between q ·U and x ·U) ≤ 1

2

‖q− x‖
‖q− y‖ .

Proof Apply the inequality θ ≥ sin θ ≥ 2θ/π for all 0 ≤ θ ≤ π/2.

The upper and lower bounds of Corollary 1 are within a constant factor of each

other unless the points are approximately collinear.

2.2 By how much does random projection separate nearest neighbors?

For a query q and data points x1, . . . ,xn, let x(1),x(2), . . . denote a re-ordering of the

points by increasing distance from q. Consider the potential function

Φ(q,{x1, . . . ,xn}) =
1

n

n

∑
i=2

‖q− x(1)‖
‖q− x(i)‖

.

Theorem 1 Pick any points q,x1, . . . ,xn ∈ R
d . If these points are projected to a di-

rection U chosen at random from the unit sphere, then

EU(fraction of the projected xi that fall between q and x(1)) ≤ 1

2
Φ(q,{x1, . . . ,xn}).

Proof Let Zi be the event that x(i) falls between q and x(1) in the projection. By

Corollary 1,

PrU(Zi) ≤ 1

2

‖q− x(1)‖
‖q− x(i)‖

The lemma now follows by linearity of expectation.

The upper bound of Theorem 1 is fairly tight, as can be seen from Corollary 1,

unless there is a high degree of collinearity between the points.

In the tree data structures we analyze, most cells contain only a subset of the data

{x1, . . . ,xn}. For a cell that contains m of these points, the appropriate variant of Φ is

Φm(q,{x1, . . . ,xn}) =
1

m

m

∑
i=2

‖q− x(1)‖
‖q− x(i)‖

.

Corollary 2 Pick any points q,x1, . . . ,xn and let S denote any subset of the xi that

includes x(1). Project q and the points in S onto a direction U chosen at random from

the unit sphere. Then for any 0 < α < 1,

PrU (at least an α fraction of S falls between q and x(1) when projected)

≤ 1

2α
Φ|S|(q,{x1, . . . ,xn}).

Proof This follows immediately by applying Theorem 1 to S, noting that the corre-

sponding value of Φ is maximized when S consists of the points closest to q, and then

applying Markov’s inequality.

Randomized partition trees for nearest neighbor search 9

2.3 Extension to k nearest neighbors

If we are interested in finding the k nearest neighbors, a suitable generalization of Φm

is

Φk,m(q,{x1, . . . ,xn}) =
1

m

m

∑
i=k+1

(‖q− x(1)‖+ · · ·+ ‖q− x(k)‖)/k

‖q− x(i)‖
.

Theorem 2 Pick any points q,x1, . . . ,xn and let S denote any subset of the xi that

includes x(1), . . . ,x(k). Suppose q and the points in S are projected to a direction U

chosen at random from the unit sphere. Then, for any 0 < α < 1,

PrU(∃1 ≤ j ≤ k such that ≥ α|S| points fall between q and x(j) when projected)

≤ k

2(α − (k− 1)/|S|)Φk,|S|(q,{x1, . . . ,xn}).

provided k < α|S|+ 1.

Proof Set m = |S|. As in Corollary 2, the probability of the bad event is maximized

when S = {x(1), . . . ,x(m)}, so we will assume as much.

For any 1≤ j ≤ k, let N j denote the number of points in {x(k+1), . . . ,x(m)} that fall

(strictly) between q and x(j) in the projection. Reasoning as in Theorem 1, we have

PrU (N j ≥ αm− (k− 1)) ≤ EU N j

αm− (k− 1)
≤ 1

2(αm− (k− 1))

m

∑
i=k+1

‖q− x(j)‖
‖q− x(i)‖

.

Taking a union bound over all 1 ≤ j ≤ k,

PrU(∃1 ≤ j ≤ k : N j ≥ αm− (k− 1))

≤ 1

2(αm− (k− 1))

m

∑
i=k+1

‖q− x(1)‖+ · · ·+ ‖q− x(k)‖
‖q− x(i)‖

=
k

2(α − (k− 1)/m)
Φk,m(q,{x1, . . . ,xn}),

as claimed.

3 Randomized partition trees

We’ll now see that the failure probability of the random projection tree is proportional

to Φ ln(1/Φ), while that of the two spill trees is proportional to Φ . We start with the

second result, since it is the more straightforward of the two.

10 Sanjoy Dasgupta, Kaushik Sinha

3.1 Randomized spill trees

In a randomized spill tree, each cell is split along a direction chosen uniformly at

random from the unit sphere. Two kinds of splits are simultaneously considered: (1)

a split at the median (along the random direction), and (2) an overlapping split with

one part containing the bottom 1/2+α fraction of the cell’s points, and the other part

containing the top 1/2+α fraction, where 0 < α < 1/2 (recall Figure 3).

We consider two data structures that use these splits in different ways. The spill

tree stores each data point in (possibly) multiple leaves, using overlapping splits.

The tree is grown until each leaf contains at most no points. A query is answered by

routing it to a single leaf, using median splits, and returning the NN in that leaf.

The time to answer a query is just O(no + log(n/no)), but the space requirement

of this data structure is super-linear. Its depth is ℓ = log1/β n/no levels, where β =
(1/2)+α , and thus the total size is

no2ℓ = no

(

n

no

)log1/β 2

.

We will take no to be a constant independent of n, so this size is O(nlog1/β 2). When

α = 0.05, for instance, the size is O(n1.159). When α = 0.1, it is O(n1.357).
A virtual spill tree stores each data point in a single leaf, using median splits,

once again growing the tree until each leaf has no or fewer points. Thus the total size

is just O(n) and the depth is log2(n/no). However, a query is answered by routing it

to multiple leaves using overlapping splits, and then returning the NN in the union of

these leaves.

Theorem 3 Suppose a randomized spill tree is built using data points {x1, . . . ,xn}, to

depth ℓ = ⌈log1/β (n/no)⌉, where β = (1/2)+α for regular spill trees and β = 1/2

for virtual spill trees. Assume for convenience that the β in are integers for all 0 ≤ i ≤
ℓ. If this tree is used to answer a query q, then the probability (over randomization in

the construction of the tree) that it fails to return x(1) is at most

1

2α

ℓ

∑
i=0

Φβ in(q,{x1, . . . ,xn}).

The probability that it fails to return the k > 1 nearest neighbors x(1), . . . ,x(k) is at

most

k

α

ℓ

∑
i=0

Φk,β in(q,{x1, . . . ,xn}),

provided k ≤ αno/2.

Proof Let’s start with the regular spill tree. Consider the internal node at depth i on

the root-to-leaf path of query q; this node contains β in data points, for β = (1/2)+α .

What is the probability that q gets separated from x(1) when the node is split? This

bad event can only happen if q and x(1) lie on opposite sides of the median and if x(1)
is transmitted only to one side of the split, that is, if at least α fraction of the points

Randomized partition trees for nearest neighbor search 11

lie between x(1) and the median. This means that at least an α fraction of the cell’s

projected points must fall between q and x(1), which occurs with probability at most

(1/2α)Φβ in(q,{x1, . . . ,xn}) by Corollary 2. The lemma follows by summing over all

levels i.

The argument for the virtual spill tree is identical, except that we use β = 1/2 and

we swap the roles of q and x(1); for instance, we consider the root-to-leaf path of x(1).

The generalization to k nearest neighbors is immediate for spill trees. The proba-

bility of something going wrong at level i of the tree is, by Theorem 2, at most

k

2(α − (k− 1)/no)
Φk,β in ≤ k

α
Φk,β in.

Virtual spill trees require a slightly more careful argument. If the root-to-leaf path

of each x(j), for 1 ≤ j ≤ k, is considered separately, it can be shown that the total

probability of failure at level i is again bounded by the same expression.

We will encounter two functional forms of Φm: either 1/m1/do, where do captures

the intrinsic dimension of the data, or a small constant 1/
√

L, where L is the expected

document size under a topic model. In the former case, the failure probability of the

spill tree is roughly 1/(αn
1/do
o), and in the latter case it is (1/(α

√
L)) log(n/no).

Further details are in Sections 4.1–4.3.

3.2 Random projection trees

In an RP tree, a cell is split by choosing a direction uniformly at random from the unit

sphere Sd−1, projecting the points in the cell onto that direction, and then splitting at

the β fractile, for β chosen uniformly at random from [1/4,3/4]. As in a k-d tree,

each point is mapped to a single leaf. Likewise, a query point is routed to a particular

leaf, and its nearest neighbor within that leaf is returned.

In many of the statements below, we will drop the arguments (q,{x1, . . . ,xn}) of

Φ in the interest of readability.

Theorem 4 Suppose an RP tree is built using points {x1, . . . ,xn} and is then used to

answer a query q. The probability (over the randomization in tree construction) that

it fails to return the nearest neighbor of q is at most

ℓ

∑
i=0

Φβ in ln
2e

Φβ in

,

where β = 3/4 and ℓ = ⌈log1/β (n/no)⌉, and we are assuming for convenience that

the β in are integers for all 0≤ i≤ ℓ. The probability that it fails to return the k nearest

neighbors of q is at most

(

2k
ℓ

∑
i=0

Φk,β in ln
2e

kΦk,β in

)

+
16(k− 1)

no

.

12 Sanjoy Dasgupta, Kaushik Sinha

Proof Consider any internal node of the tree that contains q as well as m of the data

points, including x(1). What is the probability that the split at that node separates q

from x(1)? To analyze this, let F ∈ {0/m,1/m, . . . ,(m− 1)/m} denote the fraction of

the m points that fall between q and x(1) along the randomly-chosen split direction.

Since the split point is chosen at random from an interval of mass 1/2, the probability

that it separates q from x(1) is at most F/(1/2). Summing out F , we get

Pr(q is separated from x(1)) ≤
m−1

∑
i=0

Pr(F = i/m)
i/m

1/2

=
2

m

m−1

∑
i=1

Pr(F ≥ i/m)

≤ 2

m

m−1

∑
i=1

min

(

1,
Φm

2i/m

)

=
2

m

⌊mΦm/2⌋
∑
i=1

1 +
2

m

m−1

∑
i=⌊mΦm/2⌋+1

Φm

2i/m

=
2

m

⌊

mΦm

2

⌋

+Φm

m−1

∑
i=⌊mΦm/2⌋+1

1

i
≤ Φm ln

2e

Φm

,

where the second inequality uses Corollary 2.

The lemma follows by taking a union bound over the path that conveys q from

root to leaf, in which the number of data points per level shrinks geometrically, by a

factor of 3/4 or better.

The same reasoning generalizes to k nearest neighbors. This time, F is defined

to be the fraction of the m points that lie between q and the furthest of x(1), . . . ,x(k)
along the random splitting direction. Then q is separated from one of these neighbors

only if the split point lies in an interval of mass F on either side of q, an event that

Randomized partition trees for nearest neighbor search 13

occurs with probability at most 2F/(1/2). Using Theorem 2,

Pr(q is separated from some x(j), 1 ≤ j ≤ k)

≤
m−1

∑
i=0

Pr(F = i/m)
2i/m

1/2

=
4

m

m−1

∑
i=1

Pr(F ≥ i/m)

≤ 4

m

m−1

∑
i=1

min

(

1,
kΦk,m

2(i− (k− 1))+/m

)

=
4

m

⌊kmΦk,m/2⌋+k−1

∑
i=1

1 +
4

m

m−1

∑
i=⌊kmΦk,m/2⌋+k

kΦk,m

2(i− (k− 1))/m)

=
4

m

(⌊

kmΦk,m

2

⌋

+ k− 1

)

+ 2kΦk,m

m−k

∑
i=⌊kmΦk,m/2⌋+1

1

i

≤ 2kΦk,m ln
2e

kΦk,m
+

4(k− 1)

m
,

and as before, we sum this over a root-to-leaf path in the tree.

3.3 Could coordinate directions be used?

The tree data structures we have studied make crucial use of random projection for

splitting cells. It would not suffice to use coordinate directions, as in k-d trees.

To see this, consider a simple example. Let q, the query point, be the origin, and

suppose the data points x1, . . . ,xn ∈ R
d are chosen as follows:

– x1 is the all-ones vector.

– Each xi, i > 1, is chosen by picking a coordinate at random, setting its value to

M, and then setting all remaining coordinates to uniform-random numbers in the

range (0,1). Here M is some very large constant.

For large enough M, the nearest neighbor of q is x1. By letting M grow further, we can

push Φ(q,{x1, . . . ,xn}) arbitrarily close to zero, which means that our random pro-

jection methods will work admirably. However, any coordinate projection will create

a disastrously large separation between q and x1: on average, a (1− 1/d) fraction of

the data points will fall between them.

4 Bounding Φ

The exact nearest neighbor schemes we analyze have error probabilities related to Φ ,

which lies in the range [0,1]. The worst case is when all points are equidistant, in

which case Φ is exactly 1, but this is a pathological situation. Is it possible to bound

Φ under simple assumptions on the data?

In this section we study three such scenarios.

14 Sanjoy Dasgupta, Kaushik Sinha

4.1 Data drawn from a doubling measure

Suppose the data points are drawn from a distribution µ on R
d which is a doubling

measure: that is, there exist a constant C > 0 and a subset X ⊆ R
d such that

µ(B(x,2r)) ≤ C ·µ(B(x,r)) for all x ∈ X and all r > 0.

Here B(x,r) is the closed Euclidean ball of radius r centered at x. To understand

this condition, it is helpful to also look at an alternative formulation that is essentially

equivalent: there exist a constant do > 0 and a subset X ⊂R
d such that for all x∈X ,

all r > 0, and all α ≥ 1,

µ(B(x,αr)) ≤ αdo ·µ(B(x,r)).

In other words, the probability mass of a ball grows polynomially in the radius. Com-

paring this to the standard formula for the volume of a ball, we see that the degree

of this polynomial, do (which is log2 C), can reasonably be thought of as the “dimen-

sion” of the measure µ .

Theorem 5 Suppose µ is continuous on R
d and is a doubling measure with dimen-

sion do ≥ 2. Pick any q ∈ X and draw x1, . . . ,xn independently at random from µ .

Pick any 0 < δ < 1/2. Then with probability at least 1−3δ over the choice of the xi,

for all 2 ≤ m ≤ n,

Φm(q,{x1, . . . ,xn}) ≤ 6

(

2

m
ln

1

δ

)1/do

.

Proof We will consider a collection of balls Bo,B1,B2, . . . centered at q, with geo-

metrically increasing radii ro,r1,r2, . . ., respectively. For i ≥ 1, we will take ri = 2iro.

Thus by the doubling condition, µ(Bi)≤Ciµ(Bo), where C = 2do ≥ 4.

Define ro to be the radius for which µ(B(q,ro)) = (1/n) ln(1/δ). This choice im-

plies that x(1) is likely to fall in Bo: when points X = {x1, . . . ,xn} are drawn randomly

from µ ,

Pr(no point falls in Bo) = (1− µ(Bo))
n ≤ δ .

Next, for i ≥ 1, the expected number of points falling in ball Bi is at most nCiµ(Bo) =
Ci ln(1/δ), and by a multiplicative Chernoff bound,

Pr(|X ∩Bi| ≥ 2nCiµ(Bo)) ≤ exp(−(nCiµ(Bo)/3)) = δCi/3 ≤ δ iC/3.

Summing over all i, we get

Pr(∃i ≥ 1 : |X ∩Bi| ≥ 2nCiµ(Bo)) ≤ 2δC/3 ≤ 2δ .

We will henceforth assume that x(1) lies in Bo and that each Bi has at most 2nµ(Bo)C
i =

2Ci ln(1/δ) points.

Randomized partition trees for nearest neighbor search 15

Pick any 2 ≤ m ≤ n, and recall the expression for Φ:

Φm(q,{x1, . . . ,xn}) =
1

m

m

∑
i=2

‖q− x(1)‖
‖q− x(i)‖

.

Once x(1) is fixed, moving other points closer to q can only increase Φ . Therefore, the

maximizing configuration has ⌊2nµ(Bo)C⌋ points in B1, followed by ⌊2nµ(Bo)C
2⌋

points in B2, and then ⌊2nµ(Bo)C
3⌋ points in B3, and so on. Each point in B j \B j−1

contributes at most 1/2 j−1 to the Φ summation.

Under the worst-case configuration, points x(1), . . . ,x(m) lie within Bℓ, for ℓ such

that

2nµ(Bo)C
ℓ−1 < m ≤ 2nµ(Bo)C

ℓ. (*)

We then have

Φm ≤ 1

m

(

|X ∩B1|+
(

ℓ−1

∑
j=2

|X ∩ (B j \B j−1)| ·
1

2 j−1

)

+(m−|X ∩Bℓ−1|) ·
1

2ℓ−1

)

=
1

m

(

|X ∩B1|+
ℓ−1

∑
j=2

(|X ∩B j|
2 j−1

− |X ∩B j−1|
2 j−1

)

+(m−|X ∩Bℓ−1|) ·
1

2ℓ−1

)

=
1

m

(

m

2ℓ−1
+

ℓ−1

∑
j=1

|X ∩B j|
2 j

)

≤ 1

m

(

m

2ℓ−1
+ 2nµ(Bo)

ℓ−1

∑
j=1

(

C

2

) j
)

≤ 1

m

(

m

2ℓ−1
+ 4nµ(Bo)

(

C

2

)ℓ−1
)

≤ 1

m

(

m

2ℓ−1
+

2m

2ℓ−1

)

=
6

2ℓ
,

where the last inequality comes from (*). To lower-bound 2ℓ, we again use (*) to get

Cℓ ≥ m/(2nµ(Bo)), whereupon

2ℓ ≥
(

m

2nµ(Bo)

)1/ log2 C

=

(

m

2ln(1/δ)

)1/ log2 C

and we’re done.

This extends easily to the potential function for k nearest neighbors.

Theorem 6 Under the same conditions as Theorem 5, for any k ≥ 1, we have

Φk,m(q,{x1, . . . ,xn}) ≤ 6

(

8

m
max

(

k, ln
1

δ

))1/do

.

16 Sanjoy Dasgupta, Kaushik Sinha

Proof The only big change is in the definition of ro; it is now the radius for which

µ(Bo) =
4

n
max

(

k, ln
1

δ

)

.

Thus, when x1, . . . ,xn are drawn independently at random from µ , the expected num-

ber of them that fall in Bo is at least 4k, and by a multiplicative Chernoff bound is at

least k with probability ≥ 1− δ .

The balls B1,B2, . . . are defined as before, and once again, we can conclude that

with probability ≥ 1− 2δ , each Bi contains at most 2nCiµ(Bo) of the data points.

Any point x(i) 6∈ Bo lies in some annulus B j \ B j−1, and its contribution to the

summation in Φk,m is

(‖q− x(1)‖+ · · ·+ ‖q− x(k)‖)/k

‖q− x(i)‖
≤ 1

2 j−1
.

The relationship (*) and the remainder of the argument are exactly as before.

We can now give bounds on the failure probabilities of the three tree data struc-

tures.

Theorem 7 There is an absolute constant co for which the following holds. Suppose

µ is a doubling measure on R
d of intrinsic dimension do ≥ 2. Pick any query q ∈ X

and draw x1, . . . ,xn independently from µ . Then with probability at least 1−3δ over

the choice of data:

(a) For either variant of the spill tree, if k ≤ αno/2,

Pr(fails to return k nearest neighbors) ≤ codok

α

(

8max(k, ln 1/δ)

no

)1/do

.

(b) For the RP tree with no ≥ co(3k)do max(k, ln1/δ),

Pr(fails to return k nearest neighbors)≤ cok(do+ lnno)

(

8max(k, ln 1/δ)

no

)1/do

.

These probabilities are over the randomness in tree construction.

Proof These bounds follow immediately from Theorems 3, 4, and 6, using Lemma 6

from the appendix to bound the summation.

In order to make the failure probability an arbitrarily small constant, it is sufficient

to take no =O(dok)do max(k, ln 1/δ) for spill trees and O(dok ln(dok))do max(k, ln1/δ)
for RP trees.

Randomized partition trees for nearest neighbor search 17

4.2 Data of low doubling dimension

The notion of doubling measure is quite brittle: it rules out, for instance, the pos-

sibility of an isolated point mass. A more robust and widely-applicable quantity is

the doubling dimension, a variant of the Assouad dimension [4] introduced in [12].

It applies to any metric space; here, of course, we are interested only in subsets of

Euclidean space.

A set S ⊂R
d has doubling dimension do if for any (Euclidean, closed) ball B, the

subset S∩B can be covered by 2do balls of half the radius. For instance, a line in R
d

has doubling dimension 1. Here are some further examples: see [10] for details.

1. A k-dimensional affine subspace of Rd has doubling dimension ≤ cok, for some

absolute constant co.

2. A set S ⊂ R
d in which each element has at most k nonzero coordinates (that is, a

sparse set) has doubling dimension at most cok+ k logd.

3. A k-dimensional Riemannian submanifold M ⊂ R
d with condition number 1/τ

has the property that every neighborhood of M of radius τ has doubling dimension

O(k).

In short, the doubling dimension appears to capture some common types of low in-

trinsic dimension.

We will show, roughly, that if a data set x1, . . . ,xn has doubling dimension do

and if a query point q has the same distribution, then Φ(q,{x1, . . . ,xn}) is small. The

final bound closely resembles the one for doubling measures, except that there is also

a dependence on the aspect ratio of the data set: the ratio of the largest interpoint

distance to the smallest interpoint distance. More precisely, for finite S ⊂ R
d ,

∆(S) =
maxx,y∈S ‖x− y‖

minx,y∈S,x6=y ‖x− y‖ .

Our result is similar to that obtained by Clarkson [8,9] for a different data struc-

ture. We use much the same formulation and the same key lemma. Specifically, fix

any points S = {x1, . . . ,xn} ⊂R
d . Pick a query q at random from this set and treat the

remainder of S as the data points from which the nearest neighbor to q is sought. We

bound the expected value of Φ over the n possible choices of query q.

Theorem 8 Let S = {x1, . . . ,xn} ⊂ R
d be a set of doubling dimension do ≥ 2 and

aspect ratio ∆(S). Suppose q is chosen uniformly at random from S. Then for any

2d0+1 ≤ m < n and any k ≥ 1,

EΦk,m(q,S−{q}) ≤ 6 ·8do · log∆(S) ·
(

k

m

)1/do

,

where the logarithm is base two and the expectation is over the choice of q.

Proof For any point z, any set A, and any integer ℓ ≥ 1, let NNℓ(z,A) denote the

ℓth nearest neighbor of z in A, breaking ties arbitrarily. For integers ℓ1, ℓ2 ≥ 1, let

18 Sanjoy Dasgupta, Kaushik Sinha

NNℓ1:ℓ2
(z,A) be the set {NNℓ(z,A) : ℓ1 ≤ ℓ ≤ ℓ2}. We will also need to work with

approximate nearest neighbors. For γ ≥ 1, we say x ∈ A is an (ℓ,γ)-NN of z in A if

‖x− z‖ ≤ γ‖z−NNℓ(z,A)‖;

in words, x is at most γ times further away than z’s ℓth nearest neighbor.

We make use of a key fact from [9, Lemma 5.1]. For the convenience of the

reader, and to resolve minor discrepancies between our notation and Clarkson’s, the

brief proof of this fact is reproduced in the appendix (Lemma 7).

If S has doubling dimension do, then any s ∈ S can be an (ℓ,γ)-NN nearest

neighbor of at most (8γ)doℓ log∆(S) other points of S.

We will henceforth write this as Cℓγdo , where C = 8do log∆(S). Now, for q chosen

uniformly at random from S,

EΦk,m(q,S−{q})

=
1

n

n

∑
i=1

Φk,m(xi,S−{xi})

≤ 1

nm

n

∑
i, j=1

‖xi −NNk(xi,S−{xi})‖
‖xi − x j‖

·1(x j ∈ NNk+1:m(xi,S−{xi}))

≤ 1

m
max

1≤ j≤n

n

∑
i=1

‖xi −NNk(xi,S−{xi})‖
‖xi − x j‖

·1(x j ∈ NNk+1:m(xi,S−{xi})).

Fix any x j. By applying Clarkson’s lemma to (m,1)-nearest neighbors, we see that x j

is an m-NN of at most Cm points in S, and thus the summation has at most Cm nonzero

terms. By applying it to (k,2ℓ)-nearest neighbors, x j is a (k,2ℓ)-NN of at most 2ℓdokC

points xi ∈ S. For all other xi, we have ‖xi −NNk(xi,S−{xi})‖/‖xi − x j‖ ≤ 1/2ℓ.

Thus, for any p such that 2pdok ≤ m,

n

∑
i=1

‖xi −NNk(xi,S−{xi})‖
‖xi − x j‖

·1(x j ∈ NNk+1:m(xi,S−{xi}))

≤ 1 ·2dokC+
1

2
· (4dokC− 2dokC)+

1

4
· (8dokC− 4dokC)+ · · ·

+
1

2p−1
· (2pdokC− 2(p−1)dokC)+

1

2p
· (Cm− 2pdokC)

=

(

2do

2
+

4do

4
+ · · ·+ 2pdo

2p

)

kC+
mC

2p

≤
(

2k ·2p(do−1)+
m

2p

)

C ≤ 3Cm

2p
≤ 6Cm

(

k

m

)1/do

,

if we choose p = ⌊(log2(m/k))/do⌋. The theorem now follows immediately from the

earlier characterization of EΦk,m.

This expression has the same functional form, (k/m)1/do , as that of Theorem 6

and thus leads to similar bounds on query failure probabilities to those of Theorem 7,

except that they hold only in expectation over the choice of query. The additional in-

gredients in the argument are linearity of expectation and (for RP trees) the inequality

E(Φ ln(1/Φ))≤ (EΦ) ln(1/EΦ).

Randomized partition trees for nearest neighbor search 19

4.3 A document model

In a bag-of-words model, a document is represented as a binary vector in {0,1}N,

where N is the size of the vocabulary and the ith coordinate is 1 if the document

happens to contain the corresponding word. This is a sparse representation in which

the number of nonzero positions is typically much smaller than N.

Pick any query document q ∈ {0,1}N, and suppose that x1, . . . ,xn are generated

i.i.d. from a topic model µ . We will consider a simple such model with t topics, each

of which follows a product distribution. The distribution µ is parametrized by the

mixing weights over topics, w1, . . . ,wt , which sum to one, and the word probabilities

(p
(j)
1 , . . . , p

(j)
N) for each topic 1≤ j ≤ t. Here is the generative process for a document

x:

– Pick a topic 1 ≤ j ≤ t, where the probability of picking j is w j.

– Set the coordinates of x ∈ {0,1}N independently; the ith coordinate is 1 with

probability p
(j)
i .

The overall distribution is thus a mixture µ = w1µ1 + · · ·+wt µt whose jth compo-

nent is a Bernoulli product distribution µ j = B(p
(j)
1)× ·· ·×B(p

(j)
N). Here B(p) is a

shorthand for the distribution on {0,1} with expected value p. It will simplify things

to assume that 0 < p
(j)
i < 1/2; this is not a huge assumption if, say, stopwords have

been removed.

For the purposes of bounding Φ , we are interested in the distribution of dH(q,X),
where X is chosen from µ and dH denotes Hamming distance. This is a sum of small

independent quantities, and it is customary to approximate such sums by a Poisson

distribution. In the current context, however, this approximation is rather poor, and we

instead use counting arguments to directly bound how rapidly the distribution grows.

The results stand in stark contrast to those we obtained for doubling measures, and

reveal this to be a substantially more difficult setting for nearest neighbor search.

For a doubling measure, the probability mass of a ball B(q,r) doubles whenever r is

multiplied by a constant. In our present setting, it doubles whenever r is increased by

an additive constant. Specifically, it turns out (Lemma 3) that

Pr(dH(q,X) = ℓ+ 1)

Pr(dH(q,X) = ℓ)
≥ 4.

for ℓ ≤ L/8. Here L = min(L1, . . . ,Lt), where L j = p
(j)
1 + · · ·+ p

(j)
N is the expected

number of words in a document drawn from µ j.

We start with the case of a single topic.

4.3.1 Growth rate for one topic

Let q ∈ {0,1}N be any fixed query and let X be drawn from a Bernoulli product

distribution B(p1)×·· ·×B(pN). Then the Hamming distance dH(q,X) is distributed

as a sum of Bernoullis,

dH(q,X)∼ B(a1)+ · · ·+B(aN),

20 Sanjoy Dasgupta, Kaushik Sinha

where

ai =

{

pi if qi = 0

1− pi if qi = 1

To understand this distribution, we start with a general result about sums of

Bernoulli random variables. Notice that the result is exactly correct in the situation

where all pi = 1/2.

Lemma 2 Suppose Z1, . . . ,ZN are independent, where Zi ∈ {0,1} is a Bernoulli ran-

dom variable with mean 0 < ai < 1, and a1 ≥ a2 ≥ ·· · ≥ aN . Let Z = Z1 + · · ·+ZN .

Then for any integer 0 ≤ ℓ < N,

Pr(Z = ℓ+ 1)

Pr(Z = ℓ)
≥ 1

ℓ+ 1

N

∑
i=ℓ+1

ai

1− ai

.

Proof Define ri = ai/(1− ai) ∈ (0,∞); then r1 ≥ r2 ≥ ·· · ≥ rN . Now, for any ℓ≥ 0,

Pr(Z = ℓ) = ∑
{i1 , . . . , iℓ} ⊂ [N]

ai1ai2 · · ·aiℓ ∏
j 6∈{i1,...,iℓ}

(1− a j)

=
N

∏
i=1

(1− ai) ∑
{i1, . . . , iℓ} ⊂ [N]

ai1

1− ai1

ai2

1− ai2

· · · aiℓ

1− aiℓ

=
N

∏
i=1

(1− ai) ∑
{i1, . . . , iℓ} ⊂ [N]

ri1 ri2 · · ·riℓ

where the summations are over subsets {i1, . . . , iℓ} of ℓ distinct elements of [N]. In

the final line, the product of the (1− ai) does not depend upon ℓ and can be ignored.

Let’s focus on the summation; call it Sℓ. We would like to compare it to Sℓ+1.

Sℓ+1 is the sum of
(

N
ℓ+1

)

distinct terms, each the product of ℓ+ 1 ri’s. These

terms also appear in the quantity Sℓ(r1 + · · ·+ rN); in fact, each term of Sℓ+1 appears

multiple times, ℓ+ 1 times to be precise. The remaining terms in Sℓ(r1 + · · ·+ rN)
each contain ℓ− 1 unique elements and one duplicated element. By accounting in

this way, we get

Sℓ(r1 + · · ·+ rN) = (ℓ+ 1)Sℓ+1+ ∑
{i1, . . . , iℓ} ⊂ [N]

ri1 ri2 · · · riℓ(ri1 + · · ·+ riℓ)

≤ (ℓ+ 1)Sℓ+1+ Sℓ(r1 + · · ·+ rℓ)

since the ri’s are arranged in decreasing order. Hence

Pr(Z = ℓ+ 1)

Pr(Z = ℓ)
=

Sℓ+1

Sℓ
≥ 1

ℓ+ 1
(rℓ+1 + · · ·+ rN),

as claimed.

We now apply this result directly to the sum of Bernoulli variables Z = dH(q,X).

Randomized partition trees for nearest neighbor search 21

Lemma 3 Suppose that p1, . . . , pN ∈ (0,1/2). Pick any query q ∈ {0,1}N, and draw

X from distribution µ = B(p1)×·· ·×B(pN). Then for any ℓ≥ 0,

Pr(dH(q,X) = ℓ+ 1)

Pr(dH(q,X) = ℓ)
≥ L− ℓ/2

ℓ+ 1
,

where L = ∑i pi is the expected number of words in X.

Proof Suppose q contains ko nonzero entries. Without loss of generality, these are

q1, . . . ,qko
.

As we have seen, dH(q,X) is distributed as the Bernoulli sum B(1− p1)+ · · ·+
B(1− pko

)+B(pko+1)+ · · ·+B(pN). Define

ri =

{

(1− pi)/pi if i ≤ ko

pi/(1− pi) if i > ko

Notice that ri > 1 for i ≤ ko, and ≤ 1 for i > ko; and that ri > pi always.

By Lemma 2, we have that for any ℓ≥ 0,

Pr(dH(q,X) = ℓ+ 1)

Pr(dH(q,X) = ℓ)
≥ 1

ℓ+ 1
∑
i>ℓ

r(i),

where r(1) ≥ ·· · ≥ r(N) denotes the reordering of r1, . . . ,rN into descending order.

Since each ri > pi, and each pi is at most 1/2,

∑
i>ℓ

r(i) ≥ (sum of N − ℓ smallest pi’s) ≥ (∑
i

pi)− ℓ/2 = L− ℓ/2.

4.3.2 Growth rate for multiple topics

Now let’s return to the original model, in which X is chosen from a mixture of t topics

µ = w1µ1 + · · ·+wt µt , with µ j = B(p
(j)
1)×·· ·×B(p

(j)
N). Then for any ℓ,

Pr(dH(q,X) = ℓ | X ∼ µ) =
t

∑
j=1

w jPr(dH(q,X) = ℓ | X ∼ µ j).

Combining this relation with Lemma 3, we immediately get the following.

Corollary 3 Suppose that all p
(j)
i ∈ (0,1/2). Let L j = ∑i p

(j)
i denote the expected

number of words in a document from topic j, and let L = min(L1, . . . ,Lt). Pick any

query q ∈ {0,1}N , and draw X ∼ µ . For any ℓ≥ 0,

Pr(dH(q,X) = ℓ+ 1)

Pr(dH(q,X) = ℓ)
≥ L− ℓ/2

ℓ+ 1
.

22 Sanjoy Dasgupta, Kaushik Sinha

4.3.3 Bounding Φ

Fix a particular query q ∈ {0,1}N , and draw x1, . . . ,xn from distribution µ . Let the

random variable Sℓ denote the points at Hamming distance exactly ℓ from q, so

that E|Sℓ| = nPrX∼µ(dH(q,X) = ℓ). The next lemma captures some empirical con-

sequences of Corollary 3, obtained by Chernoff bounds.

Lemma 4 There is an absolute constant co for which the following holds. Pick any

0 < δ < 1/2 and any integer k ≥ 1, and let v denote the smallest integer for which

PrX∼µ(dH(q,X)≤ v)≥ (8/n)max(k, ln 1/δ). With probability at least 1− 3δ ,

(a) |S0|+ · · ·+ |Sv| ≥ 4k.

(b) If v ≤ coL then |S0|+ · · ·+ |Sv−1| ≤ |Sv|.
(c) For all v ≤ ℓ≤ coL− 1, we have |Sℓ+1|/|Sℓ| ≥ 2.

Proof Let S≤ℓ be a shorthand for S0 ∪S1 ∪·· ·∪Sℓ. Then |Sℓ| and |S≤ℓ| are each sums

of n i.i.d. 0–1 random variables. Since E|S≤v| ≥ 8ln(1/δ), it follows by a multiplica-

tive Chernoff bound that

Pr(|S≤v| ≤ (1/2)E|S≤v|)≤ exp(−(E|S≤v|)/8)≤ δ . (1)

This yields part (a) since E|S≤v| ≥ 8k.

For (b) and (c), pick the constant co so that

E|Sℓ+1| ≥ 16E|Sℓ| for all 0 ≤ ℓ≤ coL− 1. (2)

By Corollary 3, it is enough to take co ≤ 2/33.

Assume v ≤ coL. Then E|S<v| ≤ (1/16)E|S≤v| and by another Chernoff bound,

Pr(|S<v| ≥ (1/4)E|S≤v|)≤ exp(−(5/32)E|S≤v|)≤ δ . (3)

If neither of the bad events in (1) and (3) holds, then |S≤v| > (1/2)E|S≤v| > 2|S<v|
and hence |Sv|> |S<v|, giving statement (b).

By (2), we have E|Sv| ≥ (1/2)E|S≤v| ≥ 4ln(1/δ), and E|Sv+i| ≥ 16i · 4ln(1/δ)
for all 0≤ i≤ coL−v. We again invoke Chernoff bounds to show that with probability

at least 1−δ , for all v≤ ℓ≤ coL−1, we have |Sℓ+1| ≥ (1/2)E|Sℓ+1| and |Sℓ| ≤ 4E|Sℓ|,
whereupon |Sℓ+1| ≥ 2|Sℓ|.

The fast growth rate of |Sℓ| implies that most points lie at distance≈ coL or greater

from q. If the nearest neighbor is much closer than this, then Φ is easily bounded.

Lemma 5 Let δ , k, v, and co be defined as in Lemma 4. If statements (a, b, c) of that

lemma hold, then for any m ≤ n,

Φk,m(q,{x1, . . . ,xn}) ≤ 6

√

v

coL− log2(n/m)− 2
.

Randomized partition trees for nearest neighbor search 23

Proof Suppose that for some i > k, point x(i) is at Hamming distance ℓ from q, that

is, x(i) ∈ Sℓ. Then

(‖q− x(1)‖+ · · ·+ ‖q− x(k)‖)/k

‖q− x(i)‖
≤
√

v

ℓ

since Euclidean distance is the square root of Hamming distance. In bounding Φk,m,

we need to gauge the range of Hamming distances spanned by x(k+1), . . . ,x(m).

Let u = dH(q,x(m)). To obtain a lower bound on u, observe that if u ≤ coL, then

by (b,c) of the previous lemma,

|S≤u|= |Su|+ |Su−1|+ · · ·+ |Sv|+ |S<v|

≤ |Su|
(

1+
1

2
+

1

4
+ · · ·+ 1

2u−v
+

1

2u−v

)

= 2|Su|.

Similarly, |Su| ≤ |S⌊coL⌋|/2⌊coL⌋−u ≤ n/2coL−u−1. Stringing together the inequalities,

m ≤ |S≤u| ≤ 2|Su| ≤ 2n/2coL−u−1, whereupon u ≥ coL− log2(n/m)− 2.

Assume v ≥ 1 and take u′ = min(u,⌊coL⌋). For v ≤ ℓ < u′, we have |Sℓ|/m ≤
|Sℓ|/|Su′−1| ≤ 1/2u′−ℓ−1. Thus

Φk,m(q,{x1, . . . ,xn}) =
1

m
∑
i>k

(‖q− x(1)‖+ · · ·+ ‖q− x(k)‖)/k

‖q− x(i)‖

≤ 1

m

(

|S<v|+
u′−1

∑
ℓ=v

|Sℓ|
√

v

ℓ
+(m−|S<u′|)

√

v

u′

)

≤ |Sv|
m

+
u′−1

∑
ℓ=v

|Sℓ|
m

√

v

ℓ
+

√

v

u′

≤
√

v

u′

(

1

2u′−v−1

√

u′

v
+

u′−1

∑
ℓ=v

1

2u′−ℓ−1

√

u′

ℓ
+ 1

)

≤
√

v

u′

(

1+
(

21/2 + 20 + 2−1/2+ 2−1+ · · ·
))

≤ 6

√

v

coL− log2(n/m)− 2
,

where the second-last inequality uses u′/ℓ≤ 2u′−ℓ.

The implication of this lemma is that for any of the three tree data structures, the

failure probability at a single level is roughly
√

v/L. This means that the tree can

only be grown to depth O(
√

L/v), and thus the query time is dominated by no =

n ·2−O(
√

L/v).

When n is large, we expect v to be small, and thus the query time improves over

exhaustive search by a factor of roughly 2−
√

L.

24 Sanjoy Dasgupta, Kaushik Sinha

5 Open problems

It is possible that the same data structures have substantially lower failure probability

for approximate nearest neighbor queries. Suppose, for instance, that it suffices to

find any one of the k nearest neighbors, for some small constant k, rather than the

very closest neighbor. Denote by pk the probability of failing this condition, for a

specific data set and query. Is it the case that pk ≪ p1 for some interesting and widely-

occurring types of data, for instance pk ∝ pk
1?

The trees we have described here make heavy use of randomness to avoid being

tripped up by pathological data configurations like those of Section 3.3. Nevertheless

it is likely possible to do much better with data structures that are more adaptive to

the distribution of data and queries. One modest such adaptation is to set each cell’s

split direction to the principal eigenvector of the covariance matrix of data falling in

that cell. Some promising experimental results for this scheme, called the PCA spill

tree, have been obtained in [18]. A general framework for adaptivity, with discussion

of generalization issues, can be found in [7].

Finally, it is increasingly common to work with non-Euclidean distances in appli-

cations of nearest neighbor search. It is therefore of interest to develop data structures

that provide similar guarantees for general metric spaces or for Bregman spaces.

Acknowledgements

The authors are grateful to the National Science Foundation for support under grant

IIS-1162581, and to the anonymous reviewers for their detailed feedback.

References

1. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors.

SIAM Journal on Computing 39, 302–322 (2009)
2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions. Communications of the ACM 51(1), 117–122 (2008)

3. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate

nearest neighbor searching. Journal of the ACM 45, 891–923 (1998)

4. Assouad, P.: Plongements lipschitziens dans Rn. Bull. Soc. Math. France 111(4), 429–448 (1983)

5. Bentley, J.: Multidimensional binary search trees used for associative searching. Communications of

the ACM 18(9), 509–517 (1975)

6. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the

23rd International Conference on Machine Learning (2006)

7. Cayton, L., Dasgupta, S.: A learning framework for nearest-neighbor search. In: Advances in Neural

Information Processing Systems (2007)

8. Clarkson, K.: Nearest neighbor queries in metric spaces. Discrete and Computational Geometry 22,

63–93 (1999)

9. Clarkson, K.: Nearest-neighbor searching and metric space dimensions. In: Nearest-Neighbor Meth-

ods for Learning and Vision: Theory and Practice. MIT Press (2005)

10. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds. In: ACM Sympo-

sium on Theory of Computing, pp. 537–546 (2008)
11. Dasgupta, S., Sinha, K.: Randomized partition trees for exact nearest neighbor search. In: 26th Annual

Conference on Learning Theory (2013)

12. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings.

In: 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 534–543 (2003)

Randomized partition trees for nearest neighbor search 25

13. Karger, D., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: ACM Symposium

on Theory of Computing, pp. 741–750 (2002)

14. Kleinberg, J.: Two algorithms for nearest-neighbor search in high dimensions. In: 29th ACM Sympo-

sium on Theory of Computing (1997)

15. Krauthgamer, R., Lee, J.: Navigating nets: simple algorithms for proximity search. In: ACM-SIAM

Symposium on Discrete Algorithms (2004)

16. Liu, T., Moore, A., Gray, A., Yang, K.: An investigation of practical approximate nearest neighbor

algorithms. In: Advances in Neural Information Processing Systems (2004)

17. Maneewongvatana, S., Mount, D.: The analysis of a probabilistic approach to nearest neighbor search-

ing. In: Seventh International Worshop on Algorithms and Data Structures, pp. 276–286 (2001)

18. McFee, B., Lanckriet, G.: Large-scale music similarity search with spatial trees. In: 12th Conference

of the International Society for Music Retrieval (2011)

19. Stone, C.: Consistent nonparametric regression. Annals of Statistics 5, 595–645 (1977)

A A summation lemma

Lemma 6 Suppose that for some constants A,B > 0 and do ≥ 1,

F(m) ≤ A

(

B

m

)1/do

for all integers m ≥ no. Pick any 0 < β < 1 and define ℓ= log1/β (n/no). Assume for convenience that ℓ is

an integer. Then:
ℓ

∑
i=0

F(β in) ≤ Ado

1−β

(

B

no

)1/do

and, if no ≥ B(A/2)do ,

ℓ

∑
i=0

F(β in) ln
2e

F(β in)
≤ Ado

1−β

(

B

no

)1/do
(

1

1−β
ln

1

β
+ ln

2e

A
+

1

do
ln

no

B

)

.

Proof Writing the first series in reverse,

ℓ

∑
i=0

F(β in) =
ℓ

∑
i=0

F

(

no

β i

)

≤
ℓ

∑
i=0

A

(

Bβ i

no

)1/do

= A

(

B

no

)1/do ℓ

∑
i=0

β i/do

≤ A

1−β 1/do

(

B

no

)1/do

≤ Ado

1−β

(

B

no

)1/do

.

The last inequality is obtained by using

(1− x)p ≥ 1− px for 0 < x < 1, p ≥ 1

to get (1− (1−β)/do)
do ≥ β and thus 1−β 1/do ≥ (1−β)/do .

Now we move on to the second bound. The lower bound on no implies that A(B/m)1/do ≤ 2 for all

m ≥ no. Since x ln(2e/x) is increasing when x ≤ 2, we have

ℓ

∑
i=0

F(β in) ln
2e

F(β in)
≤

ℓ

∑
i=0

A

(

B

β in

)1/do

ln
2e

A(B/(β in))1/do
.

The lemma now follows from algebraic manipulations that invoke the first bound as well as the inequality

ℓ

∑
i=0

iA

(

Bβ i

no

)1/do

≤ Ad2
o

(1−β)2

(

B

no

)1/do

,

26 Sanjoy Dasgupta, Kaushik Sinha

which in turn follows from

ℓ

∑
i=0

iβ i/do ≤
∞

∑
i=1

iβ i/do =
∞

∑
i=1

∞

∑
j=i

β j/do =
∞

∑
i=1

β i/do

1−β 1/do
=

β 1/do

(1−β 1/do)2
≤ d2

o

(1−β)2
.

B Clarkson’s lemma

Suppose we are given a finite set of points S ⊂ R
d . How many of these points can have a specific x ∈ S

as one of their ℓ nearest neighbors? Stone [19] showed that the answer is ≤ ℓγd , where γd is a constant

exponential in d but independent of |S| and ℓ. This was a key step towards establishing the universal

consistency of nearest neighbor classification in Euclidean spaces.

Clarkson [9] extended this result to metric spaces of bounded doubling dimension and to approximate

nearest neighbors. Before stating his result, we introduce some notation. For any point z ∈ R
d , any set

A ⊂ R
d , and any integer ℓ ≥ 1, let NNℓ(z,A) denote the ℓth nearest neighbor of z in A, breaking ties

arbitrarily. For γ ≥ 1, we say x ∈ A is an (ℓ,γ)-NN of z in A if

‖x− z‖ ≤ γ‖z−NNℓ(z,A)‖,

that is, x is at most γ times further away than z’s ℓth nearest neighbor.

Recall also that we define the aspect ratio of a finite set S ⊂ R
d to be

∆ (S) =
maxx,y∈S ‖x− y‖

minx,y∈S,x6=y ‖x− y‖ .

The following is shown in [9, Lemma 5.1].

Lemma 7 Pick any integer ℓ ≥ 1 and any γ ≥ 1. If a finite set S ⊂ R
d has doubling dimension do, then

any s ∈ S can be an (ℓ,γ)-NN nearest neighbor of at most (8γ)doℓ log2 ∆ (S) other points of S.

Proof Pick any s ∈ S and any r > 0. Consider the annulus Ar = {x ∈ S : r < ‖x− s‖ ≤ 2r}. By Lemma 8,

Ar can be covered by ≤ (8γ)do balls of radius r/(2γ). Consider any such ball B: if B∩Ar contains ≥ ℓ+1

points, then each of these points has ℓ neighbors within distance r/γ , and thus does not have s as an

(ℓ,γ)-NN. Therefore, there are at most ℓ(8γ)do points in Ar that have s as an (ℓ,γ)-NN.

We finish by noticing that by the definition of aspect ratio, S can be covered by log2 ∆ (S) annuli Ar ,

with successively doubling radii.

Lemma 8 Suppose S ⊂ R
d has doubling dimension do. Pick any r ≥ ε > 0. If B is a ball of radius r, then

S∩B can covered by (2r/ε)do balls of radius ε .

Proof By the definition of doubling dimension, S∩B can be covered by 2do balls of radius r/2, and thus

22do balls of radius r/4, and so on. More generally, S∩B can be covered by 2ℓdo balls of radius r/2ℓ for

any integer ℓ≥ 0. Now take ℓ= ⌈log2(r/ε)⌉ ≤ log2(2r/ε).

