
Randomized Path Planning for Redundant

Manipulators without Inverse Kinematics

Mike Vande Weghe

Institute for Complex Engineered Systems

Carnegie Mellon University

Pittsburgh, PA 15213

vandeweg@cmu.edu

Dave Ferguson, Siddhartha S. Srinivasa

Intel Research Pittsburgh

4720 Forbes Avenue

Pittsburgh, PA 15213

{dave.ferguson, siddhartha.srinivasa}@intel.com

Abstract— We present a sampling-based path planning al-
gorithm capable of efficiently generating solutions for high-
dimensional manipulation problems involving challenging inverse
kinematics and complex obstacles. Our algorithm extends the
Rapidly-exploring Random Tree (RRT) algorithm to cope with
goals that are specified in a subspace of the manipulator
configuration space through which the search tree is being grown.
Underspecified goals occur naturally in arm planning, where the
final end effector position is crucial but the configuration of the
rest of the arm is not. To achieve this, the algorithm bootstraps an
optimal local controller based on the transpose of the Jacobian to
a global RRT search. The resulting approach, known as Jacobian
Transpose-directed Rapidly Exploring Random Trees (JT-RRTs),
is able to combine the configuration space exploration of RRTs
with a workspace goal bias to produce direct paths through
complex environments extremely efficiently, without the need for
any inverse kinematics. We compare our algorithm to a recently-
developed competing approach and provide results from both
simulation and a 7 degree-of-freedom robotic arm.

I. INTRODUCTION

Path planning for robotic systems operating in real envi-

ronments is hard. Not only must such systems deal with the

standard planning challenges of potentially high-dimensional

and complex search spaces, but they must also cope with im-

perfect information regarding their surroundings and perhaps

their tasks, dynamic environments, and limited deliberation

time. As such, planning algorithms used by these systems

must be extremely efficient to generate solutions that can be

executed quickly while they are still applicable.

In response to these demands, researchers have developed

sampling-based algorithms that rapidly generate solutions in

very high-dimensional search spaces. One of the most widely-

used of these algorithms is the Rapidly-exploring Random

Tree (RRT) algorithm [1]. This algorithm grows a search tree

out from an initial position in the search space (the initial

configuration) and uses random sampling of the search space

to bias the growth of this tree towards unexplored regions.

Consequently, it explores the space extremely efficiently. Be-

cause randomization is used to grow the tree, the algorithm

copes well with both very high-dimensional search spaces and

very large branching factors. Furthermore, the RRT algorithm

can bias its search towards a particular goal configuration,

which significantly improves its efficiency in generating a

solution to a given planning problem.

Fig. 1. The Barrett Whole Arm Manipulator (WAM) used for manipulation
in populated indoor environments.

Because of their ability to solve very complex, high-

dimensional planning problems and their relative ease of im-

plementation, RRTs have been used in a huge range of motion

planning scenarios [1], [2], [3], [4], [5]. In particular, they

have been used for high-dimensional manipulation planning

[6], which is our current focus. In this scenario, the aim is to

generate a trajectory for a manipulator to take it from some

initial configuration to a desired goal. However, in contrast to

many of the other domains in which RRTs have been used,

in manipulator planning the goal is usually not specified as a

single desired joint configuration, but rather a desired location

in workspace of the end effector of the arm. For example, if we

are trying to solve a grasping problem in which we want our

robotic arm to pick up a cup for us from the sink, we are trying

to figure out how it can plan to have its hand (end effector)



(a) (b) (c)
Fig. 2. Redundant Manipulators can have an infinite number of configurations corresponding to the same end-effector pose in space. Figures (a) through (c)
show three different configurations of our WAM that result in the same hand pose.

make particular contact with the cup. Unfortunately, if we are

dealing with a redundant manipulator, then this end effector

workspace goal corresponds to a potentially infinite number

of configuration space goals for the manipulator. Furthermore,

no closed-form solution exists for solving the mapping from

workspace goal to configuration space goal(s) for complex

manipulators.

As a result, the standard RRT algorithm does not perform

exceptionally well in this problem domain. Instead, other

approaches have been developed that attempt to directly ad-

dress this inverse kinematics challenge. However, all of these

approaches have limitations, as we discuss in the following

section.

In this paper, we present an extension to the RRT algorithm

that is able to overcome the problem of inverse kinematics by

exploiting the nature of the Jacobian as a transformation from

configuration space to workspace. The resulting algorithm is

able to harness the power of the RRT algorithm for exploring

very high-dimensional spaces while also being able to focus

its search towards a desired goal in workspace.

II. REDUNDANT MANIPULATOR PLANNING

The standard path planning problem can be formulated as

a search for a path from some initial configuration qstart

of a system to some desired goal configuration qgoal. The

configuration space through which this path is searched for

represents the set of all possible states or permutations of

the system. In robotic manipulation, where we have a robotic

system comprised of several links connected to each other

through various joints (see Figure 1 for an example such

robot), the configuration space corresponds to all the different

shapes the arm can make in space. Each of these shapes is

formed by a unique set of joint angles (and/or joint offsets

for robots with prismatic joints), and the configuration space

is thus exponential in the number of joints contained in the

manipulator. In such cases, a configuration of the system is

the set of joint angles for a particular shape.

Because the configuration space for a manipulator with

several joints can be extremely vast and high-dimensional,

classical planning techniques based on discretizing the con-

figuration space and then deterministically searching through

this space (e.g. Dijkstra’s search [7] or A* [8]) are usually far

too memory and computation intensive to generate solutions to

manipulator path planning problems. Instead, sampling-based

planning techniques have shown themselves to be very well

suited to this class of planning problem. Perhaps the most

popular sampling-based algorithm in robotics is the Rapidly-

exploring Random Tree (RRT) algorithm [1].

RRTs search for paths through configuration space by

growing a search tree from the initial configuration qstart and

trying to connect this tree to the goal configuration qgoal. To

do this, they randomly sample points in the full configuration

space and then attempt to extend the search tree out towards

these points. As a result, the growth of the tree is biased

towards previously unvisited regions of the configuration space

and exploration occurs very quickly.

As mentioned earlier, they can also be made far more effi-

cient by focusing their growth more directly towards the goal.

To do this, rather than randomly sampling points to extend

towards at every iteration of the algorithm, they occasionally

(with some probability pg) select the goal configuration as the

point to extend the tree towards. This has the effect of pulling

the tree in the direction of the goal and usually produces

solutions for significantly less computation. This goal bias is

a very important feature of the RRT algorithm as it improves

the chances of reaching within a desired tolerance of the goal

without needing to explore the entire configuration space to

that tolerance.

For most robotic path planning problems, constructing this

desired goal configuration qgoal is straightforward: we know

where we would like the robotic system to end up, and we can

figure out where that location corresponds to in the robot’s

configuration space. However, when dealing with redundant

manipulators, such as our 7 link robotic arm, solving for

this mapping from workspace to joint space known as the

manipulator’s inverse kinematics is extremely challenging.

In fact, for manipulators with more than six links there is

no closed-form solution to this problem [9], and even for

manipulators with six or fewer links there may be an infinite

number of configuration space states that result in the same

workspace state.

Researchers have investigated various ways of getting



Fig. 3. The Jacobian transpose provides a mapping from joint space to workspace that enables the manipulator to approximately traverse a workspace path.
This mapping can be used to extend our configuration space search tree towards a goal specified in workspace.

around this problem. Classically, the most common approaches

use numerical approximation to compute a solution to the

inverse kinematics (IK) problem [10]. However, as described

in [6], these approaches can fail to converge to a valid solution

and are usually limited to finding only one of the potentially

infinite number of solutions. This can be particularly disadvan-

tageous for manipulator planning in environments containing

obstacles because it is likely that the single configuration space

goal returned may be unreachable. Even if no obstacles are

present, this goal still may not be feasible given the limitations

of the mechanism.

To overcome the limitations of these numerical

approximation-based techniques, Bertram et al. [6] developed

an extension to the RRT algorithm that removes the need

for an inverse kinematics solution and can handle a goal

specified in the workspace of the manipulator end effector.

In their approach, rather than selecting the goal configuration

as the sample point to extend the tree towards (with some

probability pg), they select the configuration in the search

tree that is closest to the workspace goal using a workspace

distance metric and then extend out from this configuration

in a random direction. This algorithm has a number of nice

properties relative to the numerical IK approximations and

standard RRT approach. First, no explicit inverse kinematics

is required for planning. Secondly, all configurations reached

during the search are valid, so there is no problem of planning

to invalid goal configurations based on inaccurate inverse

kinematics. Finally, because the workspace goal is used to

influence the growth of the tree, convergence is typically

much faster than with the standard RRT algorithm.

The algorithm we present in the following sections shares

the same motivation as that of Bertram et al.’s, namely, it

attempts to remove the need for explicit solutions to the

inverse kinematics problem without sacrificing the efficiency

of the resulting planning process. However, our approach

tries to exploit the workspace goal even further to improve

convergence. Rather than randomly extending the search tree

out from the node closest to the workspace goal, it computes

the best extension from this node towards the goal. In the

following section we describe how this extension can be

calculated.

III. EXPLOITING THE JACOBIAN

Given a robot arm configuration q ∈ Q and a desired

end-effector goal xg ∈ X , where X is the space of end-

effector positions R
3 (or poses SE(3)), we are interested

in computing an extension in configuration space from q

towards xg . Unfortunately, the mapping from Q to X is

usually nonlinear and very expensive to compute. However,

its derivative, called the Jacobian, is a linear map from the

tangent space of Q to that of X , is expressed as Jq̇ = ẋ, where

x ∈ X is the end-effector position (or pose) corresponding to

q, and can be computed quickly.

Ideally, to drive the end-effector to a desired configuration

xg , we could compute the error e = (xg − x) and run a

controller of the form q̇ = kJ−1e, where k is a positive gain.

In the absence of any obstacles, internal collisions, or joint

limits, this simple controller is guaranteed to reach the goal.

Unfortunately, in the absence of a closed form solution, the

computation of the inverse of the Jacobian must be done nu-

merically at each time step. There have been several numerical

methods suggested for computing the inverse, ranging from

efficient coordinate descent techniques[11], [12], [13], [14],

to function approximators which learn an approximation of

the inverse mapping[15], [16]. These techniques are, however,

orders of magnitude slower than just computing the Jacobian.

An alternate approach, first presented in [17], is to use the

transpose of the Jacobian instead of the inverse. This results in

a control law of the form q̇ = kJT e. The controller eliminates

the large overhead of computing the inverse by using the

easy-to-compute Jacobian instead. It is easy to show that,

under the same obstacle-free requirements as the Jacobian

inverse controller, the Jacobian transpose (JT) controller is

also guaranteed to reach the goal. A rigorous proof is given

in [17], but the intuition is as follows. The instantaneous

motion of the end effector is given by ẋ = Jq̇ = J(kJT e).
The inner product of this instantaneous motion with the error

vector is given by eT ẋ = keT JJT e ≥ 0. Since this is always

positive, under our assumptions about obstacles, the controller

is guaranteed to make forward progress towards the goal.

The JT controller makes the crucial assumption that any

commanded joint velocity direction is achievable. This as-

sumption is broken in the presence of configuration space



Fig. 4. The WAM hitting 6 of the 7 joint limits reaching for a mug. The
joint limits cause the Jacobian Transpose controller to get stuck in a local
minimum.

obstacles1. These obstacles can be in the form of workspace

obstacles, self-collisions, or joint limits. Figure 4 provides an

example where the Jacobian transpose is trying to direct a

manipulator towards a goal and the arm is unable to follow

this direction because of its joint limits. These constraints

reduce the effectiveness of the approach as a standalone

solution for generating trajectories for redundant manipulators.

However, the JT control loop is very fast to compute and will

provide a direct action for leading the end effector towards its

goal. These properties make it an ideal candidate for a local

extension operation within a planning algorithm such as RRTs.

IV. EXPLORING IN CONFIGURATION SPACE AND

FOCUSING IN WORKSPACE

We can use the Jacobian transpose controller to provide a

powerful goal directed action within a sampling-based planner

such as RRTs. The idea is to replace the configuration space

goal bias used in the original RRT algorithm with the Jacobian

transpose-based workspace goal bias. To do this, instead of

selecting with probability pg the node closest in configuration

space to the configuration space goal ggoal and then extending

from this node towards qgoal using configuration space met-

rics, we select the node closest in workspace to the workspace

goal xgoal and then extend from this node towards xgoal using

the Jacobian transpose construction.

This allows us to bias the search towards the desired

workspace goal while also exploring efficiently through con-

figuration space. The resulting approach shares all of the ad-

vantages of Bertram et al.’s approach over previous techniques.

Namely, no explicit inverse kinematics is required for planning

(nor is the approach limited by a restricted sample set of

the IK solutions), all solutions computed are feasible, and its

workspace goal bias results in much faster convergence than

with standard sampling-based algorithms. However, its ability

to use the Jacobian transpose to compute extensions that lead

1Non-integrable velocity constraints (nonholonomic constraints) will also
break the assumption, but they are less frequently encountered in robot arms.

GrowRRT()

2 Qnew = {qstart};

3 while (DistanceToGoal(Qnew) > distanceThreshold)

4 p = RandomReal([0.0, 1.0]);

5 if (p < pg)

6 Qnew = ExtendTowardsGoal();

7 else

8 Qnew = ExtendRandomly();

9 if (Qnew 6= ∅)

10 AddNodes(Qnew)

ExtendTowardsGoal()

11 qold =ClosestNodeToGoal();

12 repeat

13 JT =JacobianTranspose(qold);

14 δx =WorkspaceDelta(qold, xgoal);

15 δq = JT · δx;

16 qnew = qold + δq ;

17 if (CollisionFree(qold, qnew))

18 Qnew = Qnew ∪ qnew ;

19 else

20 return Qnew ;

21 qold = qnew ;

22 while (DistanceToGoal(qnew) > distanceTrheshold)

23 return Qnew ;

Fig. 5. The JT-RRT Algorithm.

directly towards the goal results in much more efficient goal

biasing than the algorithm of Bertram et al., which computes

random extensions from the closest nodes. This important

difference provides a significant improvement in performance,

as shown in the following section.

The Jacobian-transpose directed RRT algorithm is provided

in Figure 5. In this pseudocode, the RRT is grown until one

of the new nodes added to the tree (i.e. in the set Qnew)

is within the desired distance threshold of the goal. During

the extension stage of the algorithm, with probability pg the

tree is grown towards the goal and with probability 1 − pg

it is grown randomly in configuration space (exactly as in

the goal-directed RRT algorithm). When growing towards the

goal (the ExtendTowardsGoal function), the node qold in the

tree with the shortest workspace distance to the goal xgoal is

selected and the Jacobian transpose is computed for this node.

The workspace vector from the end effector position at qold

to xgoal is used to calculate a workspace delta δx that the

Jacobian transpose is multiplied by. Because this gives (only)

the instantaneous direction of movement towards the goal it is

important that only a small step is taken along this direction

before the Jacobian transpose is re-evaluated. The resulting

configuration space delta δq is added to qold to compute a

new configuration qnew that resides towards the goal xgoal in

workspace. If this configuration is reachable from qold without

colliding with any configuration space obstacles or violating

joint constraints, it is put in the set of nodes Qnew to be added

to the tree. Although left out of the pseudocode for clarity, a

number of extensions can be made to this basic version of the



Fig. 6. The example planning problems used in our results. In each case, the manipulator was tasked with planning a path to get its end effector to a
desired (x, y, z) location in space. The leftmost image shows the initial arm configuration, the other images show sample arm configurations that satisfied
each respective scenario.

Approach Scenario Successful Time (s) Nodes Random Extensions Goal Extensions Collision Checks Joint Limits

Bertram et al. 1 50/50 1.542 8583 138 138 22560 N/A
JT-RRTs 1 50/50 0.450 861 28 26 5731 116

Bertram et al. 2 50/50 0.981 5663 90 89 14254 N/A
JT-RRTs 2 50/50 1.761 3189 130 131 23768 532

Bertram et al. 3 31/50 10.926 53074 991 990 140566 N/A
JT-RRTs 3 50/50 0.866 2800 118 120 8671 290

Bertram et al. 4 1/50 5.396 27198 421 416 75753 N/A
JT-RRTs 4 50/50 2.304 6856 322 324 23851 1497

Bertram et al. 5 50/50 1.810 9853 160 157 26133 N/A
JT-RRTs 5 47/50 1.840 7282 72 74 12979 5559

Bertram et al. 6 6/50 16.011 56313 2858 2832 129833 N/A
JT-RRTs 6 50/50 4.152 16854 989 979 36756 1912

TABLE I

RESULTS FROM 7 DOF MANIPULATOR PLANNING

algorithm for improved performance. In particular, because

the Jacobian transpose can cause the manipulator to come up

against its joint limits, when computing the new configuration

qnew it is usually much more efficient to bound the value of

each joint by its respective limits (line 16). If all the joints

are at their limits then we terminate the extension operation

(since we can get no further using the Jacobian transpose).

Additionally, when choosing nodes for goal extension (line 11)

we avoid nodes that have already been used in an extension

step (since the Jacobian transpose will produce the same

extension, resulting in duplicate nodes).

V. RESULTS

We compared the performance of the JT-RRT algorithm

against Bertram et al.’s RRT extension over a range of different

planning scenarios involving our 7 DOF manipulator. In each

scenario, the task was to reach a different end-effector (x, y, z)
position in space, while avoiding obstacles in the environment.

Figure 6 shows the initial configuration of the arm and a

sample goal configuration for each scenario. Because one of

the motivations of our current research is coordination between

a manipulator arm and a mobile robotic Segway, we included

a Segway as one of the environmental obstacles, along with

cups placed on top of it. The walls, floor, and base of the

manipulator are also included in the environment for collision-

checking purposes.

Both approaches were implemented in C++ using the Open-

RAVE simulator, originally developed at Carnegie Mellon Uni-

versity, and the runtime results are for a Centrino Core2Duo

2.3 GHz processor. For each scenario we ran 50 different

planning runs and recorded the number of successful runs

(Successful), the total time taken (Time (s)), the number of

nodes added to the tree (Nodes), the number of attempted

random extensions (Random Extensions), the number of at-

tempted extensions towards the goal (Goal Extensions), the

number of collision checks (Collision Checks), and the number

of times any of the joint limits were hit during the Jacobian

transpose extension operation (Joint Limits). All values are

with respect to the successful runs. Averages for all these

values are included in Table I. For both approaches we used a

goal bias pg of 0.5 which was shown to be most effective

for Bertram et al.’s approach [6]. We did not further tune

this value for the JT-RRT approach. Each end-effector goal

position needed to be reached within 0.15 meters for the goal

threshold to be satisfied.

A sample trajectory from the third results scenario is shown

in Figure 7, both in simulation and during execution on our

physical manipulator arm.

From the results the JT-RRT algorithm typically requires

much less computation and adds many fewer nodes to the

search tree, particularly in the more challenging of the sce-

narios. It is also able to successfully generate solutions for

almost every run2. For the single scenario where it was not

able to produce solutions 100% of the time, it appears that

the Jacobian transpose extension operation was coming into

conflict with the joint limits of the manipulator (the number

of times a joint limit was reached during extension was 5559).

This is a side effect of using the Jacobian transpose: as noted

earlier, it is oblivious to configuration space obstacles and joint

limits. A simple extension to improve this would be to make

sure each new node generated during the goal extension step

brings the end-effector a non-trivial distance closer to the goal,

2Each approach was limited to adding 100000 nodes to the search tree.



Fig. 7. The JT-RRT algorithm used for manipulation planning for a 7 DOF robotic arm, shown executed on our robotic platform. This trajectory corresponded
to the sixth problem from our set of results.

to make sure the joint limits are not restricting the movement

to be along useless directions. An even more promising

improvement would be to use the Jacobian transpose as a guide

for a more informed local search during goal extension so that

these constraints can be taken into account and overcome.

However, in general the performance of the JT-RRT algo-

rithm is very good in terms of both computation time and

memory required. The reason that it is typically much more

efficient than Bertram et al.’s approach is because it is better

able to compute an extension operation that leads towards the

desired goal. Rather than selecting the closest node to the goal

and then just extending in a random direction, it is able to

select this node and then extend directly towards the goal.

This greatly improves the goal-directed portion of its search

and enables it to satisfy very precise goal thresholds that would

otherwise be untenable given random extensions.

VI. CONCLUSION

We have presented an extension to the RRT algorithm that

is able to overcome the problem of inverse kinematics by

exploiting the nature of the Jacobian as a transformation from

configuration space to workspace. The resulting algorithm is

able to harness the power of the RRT algorithm for exploring

very high-dimensional configuration spaces while also being

able to focus its search towards a desired goal in workspace.

We have found it to be very effective for redundant manip-

ulator path planning and have presented results from both

simulation and a 7 DOF robotic arm.

We are presently working on a number of extensions to

our current framework. Firstly, we are investigating using

the Jacobian transpose as a guide for a more informed local

search during goal extension operations. We are also looking

at using heuristics to create better/faster solutions (as used in

the Anytime RRT algorithm [5]) as the quality of standard

RRT solutions can vary substantially. Finally, we are combin-

ing our arm-level planning with a grasp planner to perform

complete manipulation and grasping tasks involving known

and unknown objects.

VII. ACKNOWLEDGEMENTS

The authors would like to express their gratitude to James

Kuffner, Ross Diankov, and Dmitry Berenson, for valuable

discussions and the development of the openRAVE simulator.

Mike Vande Weghe is partially supported by the National

Science Foundation under grant EEC-0540865.

REFERENCES

[1] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” In-

ternational Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[2] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in Proceedings of the International

Symposium on Robotics Research (ISRR), 2003.
[3] J. Kim and J. Ostrowski, “Motion planning of aerial robots using

Rapidly-exploring Random Trees with dynamic constraints,” in Proceed-

ings of the IEEE International Conference on Robotics and Automation

(ICRA), 2003.
[4] G. Oriolo, M. Vendittelli, L. Freda, and G. Troso, “The SRT Method:

Randomized strategies for exploration,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2004.
[5] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proceedings of the IEEE

International Conference on Intelligent Robots and Systems (IROS),
2006.

[6] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant ma-
nipulators,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2006.
[7] E. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, pp. 269–271, 1959.
[8] N. Nilsson, Principles of Artificial Intelligence. Tioga Publishing

Company, 1980.
[9] J. Craig, Introduction to Robotics: Mechanics and Control. Addison-

Wesley, 1989.
[10] C. Klein and C. Huang, “Review on pseudoinverse control for use with

kinematically redundant manipulators,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 13, no. 3, pp. 245–250, 1983.
[11] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with

singularity robustness for robot manipulator control,” Journal of Systems,

Measurement, and Control, vol. 108, pp. 163–171, 1986.
[12] C. W. Wampler, “Manipulator inverse solutions based on vector formula-

tions and damped least-square methods,” IEEE Transactions on Systems,

Man and Cybernetics, vol. 16, pp. 93–101, 1986.
[13] A. S. Deo and I. D. Walker, “Adaptive nonlinear least-squares for inverse

kinematics,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 1992.
[14] J. Zhao and N. I. Badler, “Inverse kinematics positioning using nonlinear

programming for highly articulated figures,” ACM Transactions on

Graphics, vol. 13, pp. 313–336, 1994.
[15] M. I. Jordan and D. E. Rumelhart, “Forward models - supervised

learning with a distal teacher,” Cognitive science, vol. 16, pp. 307–354,
1992.

[16] A. D’Souza, S. Vijaykumar, and S. Schall, “Learning inverse kinemat-
ics,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2001.
[17] W. A. Wolovich and H. Elliott, “A computational technique for inverse

kinematics,” in IEEE Conference on Decision and Control, vol. 23, 1984,
pp. 1359–1363.


