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Abstract

A proof-labeling scheme, introduced by Korman, Kutten and Peleg [PODC 2005], is a mechanism enabling

to certify the legality of a network configuration with respect to a boolean predicate. Such a mechanism finds

applications in many frameworks, including the design of fault-tolerant distributed algorithms. In a proof-

labeling scheme, the verification phase consists of exchanging labels between neighbors. The size of these

labels depends on the network predicate to be checked. There are predicates requiring large labels, of poly-

logarithmic size (e.g., MST), or even polynomial size (e.g., Symmetry). In this paper, we introduce the notion

of randomized proof-labeling schemes. By reduction from deterministic schemes, we show that randomization

enables the amount of communication to be exponentially reduced. As a consequence, we show that checking

any network predicate can be done with probability of correctness as close to one as desired by exchanging just

a logarithmic number of bits between neighbors. Moreover, we design a novel space lower bound technique

that applies to both deterministic and randomized proof-labeling schemes. Using this technique, we establish

several tight bounds on the verification complexity of classical distributed computing problems, such as MST

construction, and of classical predicates such as acyclicity, connectivity, and cycle length.
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1 Introduction

Context and Objective. Deciding the validity of a predicate over a distributed system (e.g., whether the nodes

are properly colored, or whether the nodes have reached consensus), in a decentralized fashion, is a topic that

has recently gained interest for its applications to various domains, including checking the results obtained from

the execution of a distributed program [8, 16, 31], designing time lower bounds on the hardness of distributed

approximation [11], estimating the complexity of logics required for distributed run-time verification [17], and

setting up a complexity theory for distributed computing [15]. In the context of local computing in networks, a

distributed decision is typically performed by having each node inspecting its close neighborhood, i.e., inspecting

its data, as well as the data of its neighbors in the network, and returning either TRUE or FALSE depending on

whether this collection of data is consistent with a legal (global) state of the network. The decision is correct if all

nodes return TRUE on legal states, and at least one node returns FALSE on every illegal state. (A node returning

FALSE could, e.g., launch a recovery procedure). For instance, deciding the correctness of the predicate stating

that the nodes are properly colored is straightforward: every node collects the colors of its neighbors, and returns

TRUE if and only if each of these colors is different from its own color.

Not all distributed network predicates can be decided locally. One typical example of such a predicate is “being

a spanning tree”, since nodes cannot even locally distinguish between a path and a cycle [15]. Nevertheless, in

several contexts, it is legitimate to enhance the network with additional information in order to allow nodes to

decide locally the correctness of a distributed predicate. This is typically the case of checking the correctness

of the output of a distributed program, where, in addition to its own individual output, every node can compute

a certificate allowing them to verify the correctness of the global output formed by the collection of individual

outputs. For instance, in an algorithm computing a spanning tree (i.e., every node is computing the identity p(v)
of its parent in the tree), it is sufficient that every node v additionally computes its distance d(v) to the root r in

the tree, as well as the identity id(r) of this root. Indeed, as observed long ago (see, e.g., [7, 23]), verifying in a

decentralized fashion whether the set of pointers {p(v), v ∈ V } forms a spanning tree of a network G = (V,E) is

easy once every node v is provided with the certificate (id(r), d(v)), as follows. Every node v just needs to check

that it agrees with its neighbors on id(r), and that d(p(v)) = d(v)− 1. (The root r has p(r) = ⊥, and just checks

d(r) = 0). If these tests are passed, node v returns TRUE, otherwise it returns FALSE. This verification procedure

satisfies that all nodes return TRUE on a spanning tree with nodes provided with the correct certificates, and at least

one node returns FALSE on every 1-factor {p(v), v ∈ V } distinct from a spanning tree, whatever the certificates.

That is, the procedure cannot be fooled by “fake” certificates on an illegal instance.

The notion of distributed verification such as presented above is well abstracted by the concept of proof-

labeling scheme, introduced in [31]. A proof-labeling scheme for a predicate P consists of a pair prover-verifier.

The prover is an oracle which, for every legal state of the network, assigns a label ℓ(v) to every node v. The verifier

is a distributed algorithm which takes as input for node v the local state of v, its label ℓ(v), as well as the label

ℓ(w) of each of its neighbors w, and returns a boolean value. The proof-labeling scheme is correct for predicate P
if the following two conditions are satisfied: (1) For every legal state, the prover assigns labels to the nodes such

that the verifier returns TRUE at every node; (2) For every illegal state, and for every label assignment to the nodes,

the verifier returns FALSE in at least one node.

The complexity measure considered for evaluating the quality of a proof-labeling scheme is the label size.

Indeed, this measure captures the amount of information every node has to transmit to its neighbors for performing

the verification. Some predicates can be verified using labels whose sizes are of the same order of magnitude as

the size of a node ID, like, e.g., O(log n)-bit labels for spanning tree in n-node networks. However, some other

predicates require labels whose sizes are significantly larger than the size of an ID, like, e.g., Ω(log2 n) bits for

minimum-weight spanning tree (MST) [29], and even Ω(n2) bits for Symmetry (i.e., the existence of a non-trivial

automorphism) [21]. For MST, the communication complexity for performing the verification is high, which may

be problematic in networks with limited bandwidth. For Symmetry, it is so high that it prevents us from verifying

that predicate efficiently under any reasonable model of communication.
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The main objective of the paper is to measure by how much communication complexity of verification can

be decreased by using randomization. For this purpose, we present and investigate randomized proof-labeling

schemes. In such a scheme, every node v has access to private random coins. Given its label ℓ(v) and its random

coins, node v computes a randomized certificate for each of its neighbors. The verifier is a Monte-Carlo algorithm

which may err with small probability. More precisely, the verifier at node v takes as input the local state of v,

its label ℓ(v) and all certificates received from its neighbors. It returns a boolean at each node v according to the

following specification, for some arbitrarily small constant ǫ ∈ (0, 12) fixed a priori: (1) For every legal state, the

prover assigns labels to the nodes such that the probability that the verifier returns TRUE at all nodes is at least 1−ǫ;
(2) For every illegal state, and for every label assignment to the nodes, the probability that the verifier returns FALSE

in at least one node is at least 1 − ǫ. We also consider the stronger 1-sided error scenario, in which the scheme is

not allowed to err on legal instances, that is: for every legal state, the prover assigns labels to the nodes such that

the probability that the verifier returns TRUE at all nodes is 1. On illegal instances, the specifications are identical

in the two scenarios with 1-sided or 2-sided error.

Intuitively, in the framework of checking the validity of outputs produced by an algorithm that is not completely

trustworthy, or whose outputs may be corrupted somehow, a randomized proof-labeling scheme can be used to

make sure that if the output is incorrect, then nodes will collectively be able to detect it. For that purpose, in

addition to its outputs which are required to be so that some predicate is satisfied (e.g., the constructed distributed

data structure must form a MST), the algorithms must also produce a label at each node, from which certificates

are generated randomly. By exchanging the certificates between each pair of neighbors, the randomized proof-

labeling scheme guarantees probabilistically to return TRUE everywhere if and only if the outputs are correct w.r.t.

the predicate. This guarantee holds even in the face of adversarial labels in the following sense: if the outputs are

incorrect, then there is no label assignment that guarantees (probabilistically) that the certificates will be accepted

everywhere, while if the outputs are correct, and the labels are according to the specification, then with good

probability, all individual verification procedures will accept. In case some node v returns FALSE, which occurs

with small probability on a legal instance (or even with probability zero in the 1-sided error case), but with high

probability on an illegal instance, then v may launch a recovery procedure or another execution of the algorithm.

Let us make a few remarks before summarizing the main outcome of the paper. First, observe that a randomized

proof-labeling scheme does not exchange the labels between the nodes, but only the randomized certificates. It is

thus expected that the communication complexity of randomized proof-labeling schemes be significantly reduced

compared to the communication complexity of deterministic ones. Second, the choice for ǫ governing the success

probability 1 − ǫ has typically very small impact on the ability to design a randomized proof-labeling scheme for

a given boolean predicate specifying the legal states of the system. In particular, all the schemes that we design in

this paper are oblivious to ǫ, in the sense that ǫ can be chosen as close to 0 as desired by straightforward tunings of

the parameters governing our schemes. In term of complexity, the dependency in ǫ only appears in the constants

hidden in the big-O and big-Ω notations, for all the schemes presented in the paper. Therefore, for the sake of

concreteness, we present our schemes with success guarantee at least 2
3 (i.e., for ǫ = 1

3 ).

Our Results. We introduce and formalize the concept of randomized proof-labeling schemes in the next sec-

tion. We establish the existence of a 2-sided error generic randomized proof-labeling scheme with certificates on

O(log n + log k) bits in n-node networks, where k = k(n) is the number of bits used to encode the state of a

node (including its identity, its potential input, etc.). Hence, even if the states of the nodes require poly(n) bits,

our scheme insures that, by exchanging only O(log n) bits, every (sequentially decidable) property can be prob-

abilistically verified with success probability at least 2
3 . (In contrast, there are natural properties that require to

exchange Ω(polylog(n)) bits, or even Ω(poly(n)) bits to be verified deterministically). We show that our logarith-

mic bound is tight, by exhibiting a property for which any randomized proof-labeling scheme requires certificates

on Ω(log n + log k) bits to be verified. In fact, we also prove that, for any property, randomization provides an

exponential improvement over deterministic schemes. Indeed, we prove that for any property that can be certi-

2



fied with a deterministic proof-labeling scheme exchanging κ-bit messages, there is a randomized proof-labeling

scheme exchanging messages on just O(log κ) bits. An important corollary of this latter result is that there exists

a randomized proof-labeling scheme for MST using certificates on just O(log log n) bits.

In addition to the above, we provide a general lower bound technique for the certificate size of a proof-labeling

scheme. This techniques is based on the novel notion called graph crosses. It applies to both deterministic and

probabilistic schemes, and generalizes previous specific lower bounds of the literature for deterministic proof-

labeling schemes. The probabilistic version applies to any 1-sided error randomized prof-labeling schemes. It also

applies to 2-sided error schemes, under some additional constraints regarding the way the certificates are randomly

generated by the nodes. Under these assumptions, the upper bound O(log log n) bits on the certificate size for

MST is tight.

Finally, we consider a set of natural problems and properties (cycle freeness, MST, biconnectivity, etc), and

provide randomized proof-labeling schemes for them, with optimal or close-to-optimal certificate sizes. In partic-

ular we consider two versions of the longest-cycle-in-graphs problem. We show an upper bound of O(log log n)
bits, and a lower bound Ω(log log c) bits for the certificate size of a randomized proof-labeling scheme for the

predicate cycle-at-least-c. Unless NP = co-NP, there are no proof-labeling schemes for cycle-at-most-c involving

O(poly(n)) computation time at each node. In term of communication complexity, we prove lower bounds of

Ω(log n
c
) and of Ω(log log n

c
) bits for the messages involved in proof-labeling schemes and randomized proof-

labeling schemes for cycle-at-most-c, respectively.

Related Work. There have been a lot of work on labeling schemes in the past, which can be decomposed into

two main streams: informative labeling schemes, and proof-labeling schemes. In the framework of informative

labeling schemes, one is given a function f on pairs (or sets) of nodes, and (M,D) is an f -labeling scheme for a

graph family F if M, the marker, is an algorithm that, given a graph G = (V,E) in F , assigns a label ℓ(v) to every

v ∈ V , and D, the decoder, is an algorithm that satisfies D(ℓ(u), ℓ(v)) = f(u, v) for every pair of nodes in G.

The main performance criterium is the size of the labels, which should be as small as possible. Since the seminal

work of Kannan, Naor, and Rudich [24] on adjacency-labeling, there have been quite a lot of investigations, for

a large set of functions f , including the following: adjacency [4, 24], distance [2, 10, 19, 18, 20, 25, 27, 35, 38],

connectivity and flow [26, 28], nearest common ancestor [3, 36], etc. In particular, the notion of universal f -

matrices for several functions f was introduced in [32], and used to construct upper and lower bounds on the sizes

of the corresponding f -labeling schemes. Most investigations related to the design of compact routing tables can

also be placed in the framework of informative labeling. This includes, e.g., the papers [12, 13, 39] on routing in

trees.

Proof-labeling schemes are not dealing with computing a function, but with verifying a proof that the given

instance satisfies some given boolean predicate. This proof is distributed among the nodes under the form of labels

assigned to the node by a prover which assigns a label to every node. The verifier is a distributed algorithm in

charge of verifying the distributed proof. As for informative labeling scheme, the main performance criterium is the

size of the labels. This concept was introduced by Korman, Kutten, and Peleg in [31]. Among the results that were

presented in this paper, it is worth mentioning the Θ(log n) bit bound on the verification complexity of acyclicity

and the upper bound O(log2 n+ log n logW ) bits for MST, where W is the maximal possible weight of an edge.

This bound was improved to O(log n logW ) bits in [29], where a matching lower bound of Ω(log n logW ) bits is

established for W > log n. It is worth noticing that proof-labeling schemes are closely related to self stabilizing

algorithms, that is, algorithms which have to periodically verify the correctness of the system state. See, e.g., [1]

where the notion of local detection was introduced and used for designing a self stabilizing protocol constructing

a spanning tree, and [30] for another example of using distributed local verification of proofs for the design of self

stabilizing algorithms. The reader interested in the tight connections between proof-labeling schemes and self-

stabilization is referred to the recent paper [9]. Proof-labeling schemes, where nodes may communicate at distance

greater than 1, i.e., may take their individual decision based on the labels of the nodes in their vicinity at distance
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t > 1, was recently studied in [21]. Finally, distributed decision and verification processes in which the global

interpretation of the collection of individual outputs is not restricted to be the logical conjunction of these outputs

has been studied in [5, 6].

To our knowledge, there are very few papers dealing with randomization in the framework of informative

labeling schemes, or proof-labeling schemes. Randomized informative schemes for trees, including randomized

schemes for adjacency and ancestry, were presented in [14]. More recently, [15] provided a framework that could

be used for setting up a complexity theory for local distributed computing. This framework includes several

complexity classes, including NLD (for non-deterministic local decision) and BPNLD (for bounded probability

NLD). The former is a generalization of proof-labeling schemes (with slight differences, including the fact that

certificates should be independent of the IDs), and the latter is a randomized version of the former. Nevertheless,

in both cases, the emphasis was put on the existence of a proof, and not on its size. In fact, it is proved that all

(decidable) languages are in BPNLD, but the proof of this result involves labels as large as poly(n) bits. In contrast,

the randomized proof-labeling schemes described in this paper involve labels of poly-logarithmic size.

2 Model and Definitions

2.1 Computational Framework

A network is modeled as a connected graph G = (V,E), without self-loops or multiple edges. Recall that two

graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a bijection σ : V1 → V2 such that:

{u, v} ∈ E1 ⇐⇒ {σ(u), σ(v)} ∈ E2. We assume that the edges incident to a node v are numbered in sequence

1, . . . , deg(v), where deg(v) is the degree of v. The number of e at v is the port number of e at v. An edge may

have different port numbers on its two endpoints.

In a configuration Gs, we are given a graph G = (V,E), a state space S, and a state assignment function

s : V → S. The state of a node v, denoted s(v), includes all local input to v. In particular, the state may include

the node identity Id(v) (if the network is not anonymous) and weights of its incidents edges (for edge-weighted

networks). The state of v may also include other data like, e.g., the result of an algorithm.

Mechanisms such as proof-labeling scheme involve very simple distributed algorithms, acting in one syn-

chronous round of communication and computation, during which every node sends a value to each of its neigh-

bors, and, upon reception of the values from all its neighbors, every node computes an output. In the context of

proof-labeling scheme, this output is a boolean, i.e., either TRUE or FALSE.

Unless specified otherwise, we always assume non-anonymous networks, i.e., every node v is provided with an

identity Id(v), that is part of the state of v. All identities in the same network are pairwise distinct. Nevertheless,

the definition of proof-labeling scheme does not need the presence of identities.

2.2 Deterministic and Randomized Proof-Labeling Schemes

We first recall the definition of deterministic proof-labeling schemes (abbreviated PLS henceforth), as introduced

in [31]. Given a family F of configurations, and a boolean predicate P over F , a PLS for (F ,P) is a mechanism

for deciding P(Gs) for every Gs ∈ F . A PLS consists of two components: a prover p, and a verifier v. The prover

is an oracle which, given any configuration Gs ∈ F , assigns a bit string ℓ(v) to every node v, called the label of v.

The verifier is a decentralized algorithm running concurrently at every node. At each node v, it takes as input the

state s(v) of v, its label ℓ(v) and the labels of all its neighbors, i.e., the ordered set {ℓ(wi) | i = 1, . . . , deg(v)}
where wi is the neighbor reachable from v through the edge with port number i. The verifier v at each node outputs

a boolean. If the outputs are TRUE at all nodes, v is said to accept the configuration, and otherwise (i.e., v outputs

FALSE in at least one node) v is said to reject the configuration. For correctness, a proof-labeling scheme (p, v) for

(F ,P) must satisfy the following requirements, for every Gs ∈ F :

• If P(Gs) = TRUE then, using the labels assigned by p, the verifier v accepts Gs.
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• If P(Gs) = FALSE then, for every label assignment, the verifier v rejects Gs.

The verification complexity of a deterministic proof-labeling scheme (p, v), denoted by κ, is the maximal length

of the labels assigned by the prover p on a legal configuration Gs ∈ F (i.e., a configuration satisfying P).

In this paper we extend the above definition to randomized proof labeling schemes (RPLS). The idea is to allow

randomization in verification part of the scheme. Specifically, an RPLS is defined as follows. The goal and the

prover in an RPLS remain exactly as defined for PLS. However, in an RPLS the verifier v has access to a source of

independent random bits at each node. At node v, using the label ℓ(v) and the private random bits available at v,

the verifier produces a random bit string, called certificate, for each of its neighbors. The random certificate of v for

wi, the neighbor reachable through port i, is denoted by ci(v). In an RPLS, only the certificates are communicated

for verification. More precisely, the input of the verifier at node v consists of its state s(v), its label ℓ(v), and all the

certificates received from its neighbors, i.e., the collection {cpi(wi), i = 1, . . . , deg(v)} where wi is the neighbor

reachable from v through the edge ei with port number i at v, and pi is the port number of ei at wi. Following

the sequential complexity classes, we define two flavors of RPLS. A randomized scheme (p, v) for (F ,P) must

satisfy the following requirements, for every Gs ∈ F :

• If P(Gs) = TRUE then, using the labels assigned by p, Pr[v accepts Gs] ≥ paccept.

• If P(Gs) = FALSE then, for every label assignment, Pr[v rejects Gs] ≥ preject.

Following the sequential complexity classes RP and BPP (see, e.g., [34]), we define two flavors of RPLSs: in one-

sided error RPLS, we have paccept = 1 and preject =
1
2 ; and in two-sided error RPLS, we have paccept = preject =

2
3 .1

Unless explicitly stated otherwise, in this paper we refer by RPLS to two-sided RPLS.

Clearly, RPLSs give weaker guarantees than deterministic PLSs. The main reason to prefer an RPLS over a

PLS is the possible saving in verification complexity, defined next.

Definition 2.1 The verification complexity of a randomized proof-labeling scheme (p, v), denoted by κ, is the

maximal length of the (random) certificates generated by the (randomized) verifier v based on the labels assigned

to the nodes by the prover p on a legal configuration Gs ∈ F (i.e., a configuration satisfying P).

3 Relation to Deterministic Schemes

In this section we show that in RPLS, one can save exponentially in the verification complexity w.r.t. PLS. We start

with a reduction of RPLS to PLS.

Theorem 3.1 Let F be a family of configurations, and let P be a boolean predicate over F . If there is a PLS for

(F ,P) with verification complexity κ, then there is an RPLS for (F ,P) with verification complexity O(log κ).

The proof of this theorem uses a result about (2-party) communication complexity. In a 2-party communication

complexity problem there are two players, Alice and Bob. Alice receives as input a λ-bit string x and Bob receives

another λ-bit string y. The goal is for Alice and Bob to compute a certain function f(x, y) by exchanging the

smallest possible number of bits. For any two λ-bit strings x and y, let EQ(x, y) denote the equality predicate. The

following fact is well known (see [33]).

Lemma 3.2 The randomized communication complexity of deciding EQ over n-bit strings is Θ(log n).

The idea in the proof of Theorem 3.1 is to replicate the PLS label of a node over all its neighbors, use the

protocol from Lemma 3.2 to verify the integrity of the replicas, and then apply the verifier of the assumed PLS to

the local replicas as if they arrived from the neighbors. See Appendix A for details.

Next, we note the existence of a universal PLS construction summarized in the following lemma (see Ap-

pendix B for details).

1The choice of 1/2 and 2/3 is somewhat arbitrary. The idea is that we can boost the probability of correctness to 1− δ by repeating the

verification procedure O(log(1/δ)) times independently and outputting the majority of outcomes.
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Lemma 3.3 ([21, 31]) Let F be a family of configurations with states in S, and let P be a boolean predicate over

F . Assume that every state in S can be represented using k = k(n) bits in n-node networks. There exists a PLS

for (F ,P) with verification complexity O(min{n2,m log n}+ nk).

Combining Theorem 3.1 and Lemma 3.3 we obtain the following universal result for RPLSs.

Corollary 3.4 Let F be a family of configurations with states in S, and let P be a boolean predicate over F .

Assume that every state in S can be represented using k = k(n) bits in n-node networks. There exists a randomized

proof-labeling scheme for (F ,P) with verification complexity O(log n+ log k).

The upper bound in Corollary 3.4 is tight, as stated below.

Theorem 3.5 For any function k(n), there exist a family F of configurations with states on k = k(n) bits in n-

node graphs, and a predicate P over F such that any randomized proof-labeling scheme for (F ,P) has verification

complexity Ω(log n+ log k).

The proof follows from the lower bound on the 2-party communication complexity of EQ stated in Lemma 3.2.

Details are provided in Appendix C.

4 Generic Lower Bounds

In this section we formalize a general tool that can be used to prove lower bounds for both deterministic and

randomized proof-labeling schemes. The general idea was used many times in the past, most relevantly in [31].

4.1 A General Tool: Edge Crossing

We start with a technical definition, and then define our main concept.

Definition 4.1 Let G = (V,E) be a graph and let H1 = (V1, E1) and H2 = (V2, E2) be two subgraphs of G. H1

and H2 are independent if and only if V1 ∩ V2 = ∅ and E ∩ (V1 × V2) = ∅.

� 

  

!(�) 

!( ) 

Figure 1: Crossing two edges un-

der an isomorphism σ. Solid

edges are the edges of G, and

dashed edged are the edges of

σ⋊⋉(G).

The following definition is illustrated in Figure 1.

Definition 4.2 (Crossing) Let G = (V,E) be a graph, and let H1 =
(V1, E1) and H2 = (V2, E2) be two independent isomorphic subgraphs

of G with isomorphism σ : V1 → V2. The crossing of G induced by σ,

denoted by σ⋊⋉(G), is the graph obtained from G by replacing every pair

of edges {u, v} ∈ E1 and {σ(u), σ(v)} ∈ E2, by the pair {u, σ(v)} and

{σ(u), v}.

Crossing can be very useful in proving lower bounds on the verification

complexity of both deterministic and randomized proof labeling schemes.

We start by showing the simpler case of deterministic PLSs.

Proposition 4.3 Let (p, v) be a deterministic PLS for (F ,P) with verification complexity κ. Suppose that there is

a configuration Gs ∈ F where G contains r pairwise independent isomorphic subgraphs H1, . . . , Hr with s edges

each, and let σi : H1 → Hi be a port-preserving isomorphism for i ∈ {1, . . . , r}. If κ < log r
2s , then there are

1 ≤ i < j ≤ r such that Gs is accepted by (p, v) if and only if (σj ◦ σ
−1
i )

⋊⋉
(G)s is accepted by (p, v) .
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Proof: Let Gs be a configuration as described in the statement. Assume that κ < log r
2s , and consider a collection

{σi : V (H1) → V (Hi), i = 1, . . . , r} of r port-preserving isomorphisms. Order the nodes of H1 arbitrarily. This

order induces an order on the nodes of Hi thanks to σi. For every i, consider the bit-string Li constructed by

concatenating the labels given by p to the nodes of Hi, in the order induced by σi. We have |Li| < log r for every

i because |V (Hi)| ≤ 2s, and thus there are less than r possible distinct Li’s in total. Therefore, by the pigeonhole

principle, there are i 6= j such that Li = Lj . define σ = σj ◦ σ
−1
i , and consider the output of the verifier v in Gs

and in σ⋊⋉(G)s.

Suppose Gs is accepted by (p, v), i.e., with the labels provided by p, the verifier v outputs TRUE at all nodes

of G. Therefore, all nodes outside Hi and Hj also output TRUE in σ⋊⋉(G)s. Now, let v be a node in Hi. Each

neighbor w of v from Hi is replaced in σ⋊⋉(G)s by the node σ(w) from Hj . Since w and σ(w) have the same

label, the verifier acts the same at v in both Gs and σ⋊⋉(G)s. Therefore v outputs TRUE at every node of Hi in

σ⋊⋉(G)s. For the same reason, the verifier acts the same at every node v of Hj , in both Gs and σ⋊⋉(G)s. Therefore,

the verifier also outputs TRUE at all nodes in σ⋊⋉(G)s, which implies that σ⋊⋉(G)s is accepted by (p, v).
Similarly, if Gs is rejected by (p, v) then, for any label-assignment to the nodes, the verifier v outputs FALSE

in at least one node v of G. If this node v is not in Hi or Hj , then v also outputs FALSE at v in σ⋊⋉(G)s. If this node

v belongs to one of the two subgraph Hi or Hj , then, since the verifier acts the same at v in both Gs and σ⋊⋉(G)s,

v also outputs FALSE at this node in σ⋊⋉(G)s, which implies that σ⋊⋉(G)s is rejected by (p, v), and the proposition

follows.

Proposition 4.3 has the following useful consequence.

Theorem 4.4 Let F be a family of configurations, and let P be a boolean predicate over F . Suppose that there

is a configuration Gs ∈ F satisfying that (1) G contains as subgraphs r pairwise independent isomorphic copies

H1, . . . , Hr with s edges each, and (2) there exist r port-preserving isomorphisms σi : V (H1) → V (Hi) such that

for every i 6= j, the isomorphism σij = σj ◦σ
−1
i satisfies P(Gs) 6= P(σij

⋊⋉(G)s). Then the verification complexity

of any proof-labeling scheme for (F ,P) is Ω( log r
s

).

Remark: Note that Theorem 4.4 cannot yield lower bounds greater than Ω(log n), because r = O(n).

4.2 Generic Lower Bounds for Randomized Proof-Labeling Schemes

We now proceed with a generalization of Theorem 4.4 to randomized proof-labeling schemes. First we define

edge-independent RPLSs.

Definition 4.5 An RPLS (p, v) is called edge-independent if the verifier v uses independent random bits for each

certificate ci(v), for all nodes v, and all edges ei incident to v, i = 1, . . . , deg(v).

We can prove the following result for edge-independent two-sided error RPLSs. The proof is somewhat in-

volved, and due to space shortage, it is given in Appendix D.

Proposition 4.6 Let (p, v) be an edge-independent RPLS for (F ,P) with verification complexity κ. Assume that

there is a configuration Gs ∈ F with P(Gs) = TRUE such that G contains r pairwise independent isomorphic

subgraphs H1, . . . , Hr with s edges each, and let σi : H1 → Hi be a port-preserving isomorphism for each

i ∈ {1, . . . , r}. If κ < ( 1
2s − o(1)) log log r, then there are 1 ≤ i < j ≤ r such that Gs is accepted by (p, v) if and

only if (σj ◦ σ
−1
i )

⋊⋉
(G)s is accepted by (p, v).

The following corollary of Proposition 4.6 is the way we use to bound the verification complexity of two-sided

error, edge independent RPLSs.
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Theorem 4.7 Let F be a family of configurations, and let P be a boolean predicate over F . If there is a configura-

tion Gs ∈ F satisfying that (1) G contains r pairwise independent isomorphic subgraphs H1, . . . , Hr with s edges

each, and (2) there exist r port-preserving isomorphisms σi : V (H1) → V (Hi) such that P(Gs) 6= P(σ⋊⋉(G)s)
for every isomorphism σ = σj ◦ σ

−1
i between Hi and Hj , for 1 ≤ i 6= j ≤ r, then the verification complexity of

any edge-independent RPLS for (F ,P) is Ω( log log r
s

).

Again, we note that since r cannot be greater than O(n), Theorem 4.7 cannot be used to prove lower bounds

greater than Ω(log log n).

Lower bounds for one-sided RPLSs. We can replace the assumption of edge-independent RPLS in Theorem 4.7

by the requirement that the RPLS is one sided and obtain essentially the same lower bound. Recall that in one-

sided RPLS we insist that if P(Gs) = TRUE, then the verifier v must accept always, i.e., with probability 1. For

this case we have the following proposition, whose proof is much simpler.

Proposition 4.8 Let (p, v) be a one-sided RPLS for (F ,P) with verification complexity κ. Assume that there is a

configuration Gs ∈ F with P(Gs) = TRUE such that G contains r pairwise independent isomorphic subgraphs

H1, . . . , Hr with s edges each, and let σi : H1 → Hi be a port-preserving isomorphism for each 1 ≤ i ≤ r. If for

any isomorphism σij = σj ◦ σ
−1
i we have that P(σ⋊⋉(G)s) = FALSE, then κ ≥ 1

2s log log r.

Proof: Fix Gs as in the statement, and let (p, v) be a one-sided RPLS for (F ,P). Assume w.l.o.g. that all certifi-

cates under (p, v) have length exactly κ. For each edge e = {u, v}, let x(u, v) denote the support of the certificates

sent over e by u, i.e., all bit strings of length κ with positive probability to be sent from u to v under Gs and

(p, v). Since there are κ bits in each certificate, the number of distinct certificates is at most 2κ, and hence the

number of distinct supports is 2(2
κ). Ordering the nodes of H1 somehow and using the order induced by the port-

preserving isomorphisms, we can represent each specific setting of the 2s certificates sent over the edges of Hi as

a 2sκ-long bit string. Now, if κ < 1
2s log log r, then 2(2

2sκ) < r, and hence, by the pigeonhole principle, there are

1 ≤ i < j ≤ r such that the supports of all the 2s respective (directed) edges in Hi and Hj are identical. Define

σ = σj ◦ σ
−1
i , and let u′ = σ(u) for some node u in Hi. Let v be a neighbor of u in Hi and let v′ = σ(v).

Fix any global certificate c assignment (assigning a certificate to each direction of each edge of G) that can be

generated in Gs by (p, v) with positive probability. Note that since P(Gs) = TRUE and the RPLS is one sided,

and since the probability of generating c is strictly positive, it must be the case that under c, the verifier accepts at

all nodes (deterministically). Now, let c1 denote the coordinate of (u, v) in c, i.e., the certificate sent by u to v in

c. Similarly let c2 denote the certificate sent by u′ to v′ in c. Let c′ denote the global certificate obtained from c by

switching c1 and c2, i.e., under c′, u sends c1 to v′ and u′ sends c2 to v′ (cf. Figure 1).

We claim that the verifier v accepts at all nodes under c′. To see that, note that since P(Gs) = TRUE, it must

be the case (by the independence of certificates received at a node, given the labels) that any certificate in x(u′, v′)
sent to v′ results in the verifier v at v′ outputting TRUE: otherwise, there will be a non-zero probability that v rejects

at v′, resulting in rejecting a “yes” instance. Therefore, the fact that x(u, v) = x(u′, v′) (by our choice) necessarily

implies that if v′ receives c1 ∈ x(u, v) = x(u′, v′), the verifier v at v′ outputs TRUE. Similarly for v accepting c2.

Continuing inductively in this fashion we switch the certificates edge by edge, and arrive at the conclusion

that the verifier v accepts σ⋊⋉(G)s. Moreover, since we can apply the switching procedure described above to any

legal certificate assignment c for Gs, we have that if κ < 1
2s log log r, then σ⋊⋉(G)s is accepted by the RPLS with

probability 1, contradicting our assumption that P(σ⋊⋉(G)s) = FALSE and the requirement that a one-sided RPLS

rejects a “no” instance with probability at least 1
2 .

We note that all the upper bounds we derive in Section 5 are both edge-independent and one-sided.
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5 The Verification Complexity of Some Graph-Theoretic Predicates

We now bound, from above and from below, the deterministic and randomized verification complexity of a few

specific problems using the tools developed in Sections 3 and 4. We study three important problems of independent

interest. Each of these problems has received attention in the framework of (deterministic) proof-labeling schemes,

as well as in other frameworks like distributed algorithm design, property testing, etc. We note that all RPLSs

constructed in this section are edge-independent and one-sided RPLSs, and that all lower bounds here are for

RPLSs which are either edge independent or one-sided.

In the following, let Fcon be the family of all connected graphs. Most proofs are deferred to Appendix E.

5.1 Minimum-Weight Spanning Tree

Recall that a Minimum-weight Spanning Tree (MST) of a weighted n-node graph G is a spanning tree of G whose

the sum of all its edge-weights is minimum among all spanning trees of G. In this setting, we assume that every

node is aware of the weights of its incident edges (i.e., these weights, indexed by port numbers, are part of its state).

Theorem 5.1 The randomized verification complexity of (Fcon,MST ) is Θ(log log n).

The idea in the lower bound proof is to show that even a simpler predicate, namely deciding acyclicity, is hard.

The upper bound follows from the O(log2 n) upper bound on the deterministic verification complexity proved

in [31]. Details can be found in Appendix E.

5.2 Vertex Bi-Connectivity

A connected graph G is called vertex-biconnected if the result of removing any node from G is a connected graph.

In [31], the authors proved a Θ(log n) bound on the deterministic verification complexity of the s-t connectivity

problem. In this problem, given a connected graph G = (V,E) and two specified nodes s, t ∈ V , the goal is for

all nodes to agree on a natural number k, where k is the vertex connectivity between s and t in G. Note that

this is not a decision problem as it was presented. Slightly modified, where k is a parameter of the problem, we

obtain the problem s-t k-connectivity, where the goal is to decide whether the vertex connectivity between s and

t is exactly k, and the Θ(log n) bound still holds. This problem is closely related to vertex-biconnectivity, with

the main differences that in the latter we consider the connectivity between all pairs of nodes and we only check

whether it is at least 2. Let v2con denote the predicate of vertex-biconnectivity. We have the following result.

Theorem 5.2 The deterministic verification complexity of (Fcon, v2con) is Θ(log n), and its randomized verifica-

tion complexity is Θ(log log n).

The upper bounds follow from the observation that we can encode all relevant information used in the bicon-

nectivity algorithm of Tarjan [22] using O(log n) bits. The lower bounds use our crossing argument on a cycle

with chords (Figure 2). See Appendix E for details.

Another result in [31] regarding connectivity is an upper bound of O(k log n) on the deterministic verification

complexity of the k-flow problem. In this problem, the goal is to decide whether the value of the maximum flow

between s and t is exactly k. Using Theorem 3.1 on that result, we get an upper bound of O(log k + log log n) on

the randomized verification complexity of the k-flow problem.

5.3 Maximum-Length Cycle

A graph G is called Hamiltonian if there is a cycle in G visiting every node exactly once. For any positive integer

c, we define the predicate “cycle-at-most-c” over graphs, which is true for G if and only if no simple cycle in G
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contains more than c nodes. We also define the predicate “cycle-at-least-c” over graphs, which is true for G if and

only if there is a simple cycle in G with at least c nodes. We have the following upper bounds for cycle-at-least-c.

Theorem 5.3 The deterministic verification complexity of (Fcon, cycle-at-least-c) is O(log n), and its randomized

verification complexity is O(log log n).

The upper bounds follow by marking the cycle nodes using O(log n) bits. The following theorem states lower

bounds for cycle-at-least-c.

Theorem 5.4 The verification complexity of any deterministic PLS for (Fcon, cycle-at-least-c) is Ω(log c), and of

any RPLS is Ω(log log c).

v0

(a)

v0

(b)

Figure 2: (a): The graph G in

the proof of Theorem 5.2, and re-

stricted to nodes {v0, . . . , vc−1}
in the proof of Theorem 5.4.

Dashed edges are E0. (b): The

graph σij
⋊⋉(G).

Proof: Let G be a graph that consists of a c-node cycle, with port numbers

consistently ordered, and additional edges from one to all other nodes of

the graph (see Figure 2). Formally, G = ({v0, . . . , vn−1}, Ec ∪E0) where

Ec =
{

{vi, v(i+1) mod c} | i = 0, . . . , c − 1
}

and E0 =
{

{v0, vj} | j =
2, . . . , n−1 , j 6= c−1

}

. This graph satisfies cycle-at-least-c(G) = TRUE.

Let H1 = {v0, v1}. For i = 2, . . . ,
⌊

c
3

⌋

− 1, let Hi = {v3i, v3i+1}, and

σi : V (H1) → V (Hi) satisfying σi(v0) = v3i and σi(v1) = v3i+1. For

any 1 ≤ i < j ≤
⌊

c
3

⌋

−1, let σij = σj ◦σ
−1
i . We get that σij

⋊⋉(G) consists

of two disjoint cycles of size strictly less than c− 1 each, with some edges

in E0 between them. The size of every simple cycle in σij
⋊⋉(G) is strictly

less than c, and therefore, cycle-at-least-c(σij
⋊⋉(G)) = FALSE. Hence, the

conditions of Theorems 4.4 and 4.7 are satisfied, and the lower bounds

follow.

The lower bound in Theorem 5.4 shows the hardness of distinguishing

between graphs which contain a cycle of length c and ones which contain

only cycles of length up to c − 1. We now present an alternative technique, which shows that this lower bound

holds also in the case where the question is to distinguish between graphs with a cycle of size n and graphs where

all cycles are strictly smaller than c. Formally, let F = F1 ∪ F2, where F1 is the family of all connected graphs

over n ≥ c nodes that contains an n-node cycle, and F2 is the family of all connected graphs over n ≥ c nodes

where all cycles have size at most c− 1.

Theorem 5.5 The verification complexity of any deterministic PLS for (F , cycle-at-least-c) is Ω(log c).

We note that the proof of Theorem 5.5, which can be found in Appendix E, applies crossing iteratively.

Finally, consider now the problem of deciding the predicate cycle-at-most-c. We note that it is co-NP hard,

because for c = n − 1, cycle-at-most-c is the complement of Hamiltonian Cycle. Observe that a proof-labeling

scheme for (Fcon, cycle-at-most-c), with polynomial verification complexity and polynomial computation at each

node can be translated into a sequential verifiable proof of polynomial size, and hence the existence of such a

PLS would imply that NP = co-NP. Therefore, we do not expect to find an efficient PLS (let alone RPLS) for

this problem. The universal scheme, in which the computation complexity at each node is unbounded, is the best

scheme we know for this problem from the viewpoint of verification complexity. A lower bound on the verification

complexity is presented in the following theorem.

Theorem 5.6 The verification complexity of any deterministic proof-labeling scheme for (Fcon, cycle-at-most-c)
is Ω(log n

c
), and of any randomized proof-labeling scheme is Ω(log log n

c
).

The proof of Theorem 5.6 uses our crossing argument on a chain of cycles. See Appendix E for details.
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6 Conclusion

In this paper we introduced the concept of randomized proof-labeling schemes (RPLS) and derived a few funda-

mental results as well as a few concrete results. The main message of the paper is that randomized proof-labeling

schemes have very low communication complexity, and can be efficiently used for verifying every predicate,

whereas there are some natural predicates that cannot be verified within reasonable communication complexity

by deterministic schemes. Many questions remain open. We list a few below.

• What is the relation between one-sided and two-sided RPLSs?

• Can the lower bound of Theorem 4.7 be extended to two-sided RPLSs which are not edge independent?

And, what about the model that allows shared randomness between nodes?

• What are the exact connections between RPLS and the different complexity classes in [15], including LD,

BPLD, NLD, and BPNLD?

• Can the complexity of the prover p be also accounted for in proof-labeling scheme? In particular, does

randomization matter in this respect?

• In this paper we mostly used the crossing technique with single-edge gadgets, with the exception of Theo-

rem 5.5 where we applied it iteratively. Are there examples of problems for which we need more sophisti-

cated uses of crossing.
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APPENDIX

A Proof of Theorem 3.1

We first prove the following upper bound implied by Lemma 3.2.

Lemma A.1 (based on [33]) There exists a 2-party randomized protocol π for EQ with communication complexity

O(log λ) where λ is the length of the input strings. Moreover, for any input strings a, b we have that Pr[π(a, b) =
TRUE | a = b] = 1 and Pr[π(a, b) = FALSE | a 6= b] > 2/3.

Proof: Let a = a0a1 . . . aλ−1 be the λ-bit input string of Alice, and b = b0b1 . . . bλ−1 be the λ-bit input string of

Bob. We view a and b as polynomials A and B over the field GF [p] where 3λ < p < 6λ is a prime number. That

is, we define

A(x) = a0 + a1x+ · · ·+ aλ−1x
λ−1 mod p, and

B(x) = b0 + b1x+ · · ·+ bλ−1x
λ−1 mod p.

To solve the problem, Alice picks a number x in GF [p] uniformly at random, and sends the pair (x,A(x)) to

Bob. The size of (x,A(x)) is O(log p) = O(log λ). Bob outputs TRUE if A(x) = B(x) and FALSE otherwise.

Obviously, if a = b then A(x) = B(x) and the output is always TRUE. If a 6= b, then A and B are two distinct

polynomials of degree λ − 1, so they can be equal on at most λ − 1 elements of the field GF [p]. Hence, the

probability that A(x) = B(x) when a 6= b is at most λ−1
p

< λ
3λ = 1

3 . Therefore, the probability to reject an input

composed of two different strings is at least 2/3, as desired. This completes the proof of the lemma.

Proof of Theorem 3.1: Let (p, v) be a proof-labeling scheme for (F ,P) with verification complexity κ. We

construct a randomized proof-labeling scheme (p′, v′) for (F ,P) as follows. Let Gs ∈ F be a configuration

satisfying predicate P . For every node v, the prover p′ sets the label of v as the vector of labels

ℓ′(v) =
(

ℓ(v), ℓ(w1), . . . , ℓ(wd)
)

where ℓ(·) is the label assignment for Gs provided by p, and w1, . . . , wd denotes the d = deg(v) neighbors of v in

G, ordered by port number. To compute the certificate c(v) of node v, given a label

ℓ′(v) =
(

ℓ0, ℓ1, . . . , ℓd
)

,

the (random) verifier v′ aims at playing the protocol in the proof of Lemma A.1, with λ = κ. That is, it picks a

random number x ∈ GF [p] where 3κ < p < 6κ is a prime number, and sets c(v) = (x, P
(0)
v (x)) where P

(0)
v

is the polynomial of v corresponding to the κ-bit label ℓ0. Given the certificates c(wi) = (xi, P
(0)
wi (xi)) received

from each of v’s neighbors wi, i = 1, . . . , d, the verifier v′ returns FALSE if P
(i)
v (xi) 6= P

(0)
wi (xi) for some i, where

P
(i)
v is the polynomial of v corresponding to the κ-bit label ℓi. If P

(i)
v (xi) = P

(0)
wi (xi) for all i = 1, . . . , d, then v′

applies verifier v at node v to the set of labels (ℓ0, ℓ1, . . . , ℓd), and returns TRUE or FALSE in agreement to what v

outputs on this set. This concludes the construction of the random scheme (p′, v′).
The logarithmic verification complexity of (p′, v′) follows directly from the construction. We now show cor-

rectness of the scheme.

If Gs satisfies the predicate, then, with the labels assigned by p′, we have that, for every node v, ℓ′(v) =
(

ℓ(v), ℓ(w1), . . . , ℓ(wd)
)

, with the labels ℓ(·) assigned by p. Therefore P
(i)
v = P

(0)
wi for any i = 1, . . . , d. Thus, in

particular, P
(i)
v (xi) = P

(0)
wi (xi) for any random choice of xi by the ith neighbor wi of v. It follows that v′ applies v

at node v on the set (ℓ(v), ℓ(w1), . . . , ℓ(wd)), for which v returns TRUE at v. Hence, v′ returns TRUE at v as well.

If Gs does not satisfy the predicate, we first note that if the labels are consistent in the sense that, at every node

v, the sub-label ℓi at v is equal to the sub-label ℓ0 at wi, then v′ returns FALSE at some node because v cannot be

iii



fooled by “fake” labels. In the case the labels are not consistent, there is at least one pair of adjacent nodes {v, w}
such that w is the ith neighbor of v, and the sub-label ℓi of v’s label is different from the sub-label ℓ0 of w. In

this case we rely on the correctness of the equality protocol in Lemma A.1, insuring that v outputs FALSE with

probability at least 2/3.

B Universal Construction of PLS

We recall a universal construction that works for any family of configurations, and any boolean predicate over that

family (see [15, 21, 31]). Let F be a family of configurations with states in S, and let P be a boolean predicate

over F . Assume that every state in S can be represented using k = k(n) bits in n-node networks. There is a

proof-labeling scheme (v, p) with verification complexity O(min{n2,m log n}+nk). To see why, notice that any

n-node m-edge graph can be represented by an n × n adjacency matrix on O(n2) bits, and also by an adjacency

list on O(m log n) bits. The global state of a configuration in an n-node graph can be represented by an array

consuming O(nk) bits. So, overall, a configuration Gs can be represented on O(min{n2,m log n} + nk) bits. If

Gs satisfies P , then the oracle provides each node v with a representation R of Gs. The verifier at each node v
checks the local consistency of the representation R of Gs with the neighborhood of v. If the local neighborhood

of v is consistent with the representation R of Gs given to the nodes in this neighborhood, then v checks whether

R satisfies P . If all tests are passed, then v accepts, otherwise v rejects. This scheme is correct because if the

description of the neighborhood of v in the actual configuration is consistent with the neighborhood of v in the

given representation R for every node v, then necessarily the actual configuration is isomorphic to R (recall that

the state of a node includes its identity, and this identity is unique in the network).

C Proof of a Lower Bound for Universal RPLS

In this section we prove Theorem 3.5.

We start by proving a lemma for each of the two parts of the lower bound separately. Let F1 be the family of all

connected graphs over n nodes, where the state of each node is only its identifier. A connected graph G = (V,E)
is symmetric if there exists an edge e ∈ E such that G′ = (V,E \ e) consists of exactly two isomorphic connected

components. The predicate Sym over a graph G is true if and only if G is symmetric.

Lemma C.1 Any randomized proof-labeling scheme for (F1, Sym) has verification complexity Ω(log n).

In the proof of this lemma we show that any randomized proof-labeling scheme for (F1, Sym), with verification

complexity κ, can be used to construct a 2-party communication protocol for EQ of n-bit strings, with error

probability of at most 1/3, using κ bits of communication. Then, from Lemma 3.2, we get the desired lower

bound. We give the full proof.

Proof of Lemma C.1: Let (p, v) be a randomized proof-labeling scheme for (F1, Sym). We show how to derive

a 2-party protocol for EQ using that scheme.

Let x and y be the λ-bit input strings of Alice and Bob, respectively. We use each string as a description of a

graph in the following way. Given a λ-bit string z, let the bits of z be numbered z0, . . . , zs−1, and let ν = 2λ+ 3.

We define the corresponding ν-node graph G(z) = (V,E) as follows (See Figure 3 for illustration). The set

of nodes V is composed of three node sets: U and W of size λ each, and T of size 3. Denote the nodes of

U by {u0, . . . , uλ−1}, the nodes of W by {w0, . . . , wλ−1} and the nodes of T by {t0, t1, t2}. The set of edges

E is composed of four edge sets: Eu, Ew, Et and {e0 = {t0, u0}}. Three of the sets are independent on z,

Eu = {{ui, ui+1} | 0 ≤ i ≤ λ − 2} is a path on the nodes of U , Et = {{ti, tj} | 0 ≤ i < j ≤ 2} is a triangle

over the nodes of T, and e0 is an edge connecting the triangle to u0. The edge set Ew is dependent on z in the

following way. Ew = {{wi, ui} | zi = 1} ∪ {{wi, t1} | zi = 0}. Intuitively, a node wi represents ‘1’ in the string
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Figure 3: Illustration for the proof of Lemma C.1. The graph G(z), where z = 10011.
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Figure 4: The graph G(z, z), where z = 10011.

z if it is connected to the path of nodes U , and it represents ‘0’ if it is connected to t1. The edge e0 indicates u0,

by connecting the triangle to it, to avoid isomorphism between G(z) and G(zR) where z 6= zR (z reversed).

Given two λ-bit strings z and z′, define the graph G(z, z′) = (V0 ∪ V1, E0 ∪E1 ∪ e) as follows (see Figure 4).

V0 = U0∪W0∪T0 where U0 = {u00, . . . , u
0
λ−1}, W0 = {w0

0, . . . , w
0
λ−1} and T0 = {t00, t

0
1, t

0
2}. V1 = U1∪W1∪T1

where U1 = {u10, . . . , u
1
λ−1}, W1 = {w1

0, . . . , w
1
λ−1} and T1 = {t10, t

1
1, t

1
2}. E0 is the set of edges of G(z) over

nodes V0, E1 is the set of edges of G(z′) over nodes V1, and e = {u0λ−1, u
1
λ−1}

Claim C.2 For any two λ-bit strings z and z′, G(z, z′) is symmetric if and only if z = z′.

To establish the claim, notice first that, since both z and z′ are of length λ, |V0| = |V1| = 2λ+3. Hence, since

e is the only edge between V0 and V1, removing any other edge from G(z, z′) either not disconnects the graph or

disconnects it to two connected components with different number of nodes, and in particular not isomorphic. By

construction of G(z, z′), removing the edge e from G(z, z′) disconnects the graph to two connected components

which are exactly G(z) = (V0, E0) and G(z′) = (V1, E1). Therefore, G(z, z′) is symmetric if and only if G(z)
and G(z′) are isomorphic. If z = z′ then G(z) = G(z′), so G(z, z′) is symmetric. Suppose now that z 6= z′. For

λ = 1, one can easily verify that G(′0′) and G(′1′) are not isomorphic. Note that for every string b, G(b) contains

exactly one triangle. For λ ≥ 2, by construction, in both G(z) and G(z′) there is only one node of the triangle

that is connected to a path of length at least λ, which does not include a triangle edge. In G(z) this node is t00,

and in G(z′) this node is t10. Since there is no isomorphism between G(z) and G(z′) that does not map t00 to t10,

from now on, we consider only the nodes that are reachable from t00 and t10 without using a triangle edge. Let i be

the smallest index such that zi 6= z′i. W.l.o.g, zi = 1 and z′i = 0. If i < λ − 1, by construction, there is exactly

one node of degree greater than one at distance i + 1 from t00. This node is u0i , and its degree is 3. Similarly, in

that case, there is exactly one node of degree greater than one at distance i + 1 from t10. This node is u1i , and its

degree is 2. Therefor, G(z) and G(z′) are not isomorphic in that case. If i = λ− 1, there is a node, w0
i , at distance

i + 2 from t00. On the other hand, there is no node at distance i + 2 from t10. Therefore, G(z) and G(z′) are not

isomorphic. Hence, G(z, z′) is not symmetric. This conclude the proof of Claim C.2.

We now construct a protocol for EQ using the scheme (p, v). Given λ, define ν as above, and set n = 2ν.

1. Alice constructs the graph G(x, x).
2. Bob constructs the graph G(y, y).
3. Alice and Bob apply, separately, the prover p to G(x, x) and G(y, y), respectively, and in this way obtain

labels for all nodes in their graph.
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4. Alice and Bob simulate the verifier v in the following way: Alice simulates the nodes in V0 of G(x, x), and

Bob simulates the nodes in V1 of G(y, y). The only communication between Alice and Bob induced by this

simulation consists of exchanging the bits that are crossing link {u0λ−1, u
1
λ−1}.

5. Alice (resp., Bob) outputs TRUE if and only if all nodes she (resp., he) simulated accept.

Let G = G(x, y). G has n nodes, and, by Claim C.2, we have

x = y ⇐⇒ Sym(G) = TRUE.

Hence, if x = y, then, with probability at least 2/3, all nodes of G output TRUE. Thus, with probability at least

2/3, both Alice and Bob returns TRUE. Similarly, if x 6= y, then, with probability at least 2/3, at least one node

of G outputs FALSE. Hence, with probability at least 2/3, either Alice, or Bob, or both, returns FALSE. Therefore,

the 2-party protocol is correct with probability at least 2/3. In this protocol, Alice and Bob exchange κ bits. If

κ = o(log n) then κ = o(log λ) as well since n ∼ λ. This would be in contradiction with the lower bound in

Lemma 3.2. Thus the verification complexity of (p, v) is at least Ω(log n).

The second lemma is for the Ω(log k) part of the lower bound. For any function k(n) ∈ Ω(log n), let Fk be the

family of all connected symmetric graphs over the set of n nodes V , and states from the set S = [1, n]×{0, 1}k, to

distinguish identities in [1, n] from the rest. Given a state s(u) = (x, y), we note y = s′(u). Consider the predicate

Unif that is true on Gs ∈ Fk if and only if s′(u) = s′(v) for every two nodes u, v ∈ V .

Lemma C.3 For any function k(n), any randomized proof-labeling scheme for (Fk,Unif) has verification com-

plexity Ω(log k).

Proof: Let k(n) be any function in Ω(log n), and let (p, v) be a randomized proof-labeling scheme for (Fk,Unif).
We show how to derive a 2-party protocol for EQ using that scheme. Given a bit-string z, let G(z) be the graph

which consists of a single edge {v1, v2}, whose extremities have respective states (1, z) and (2, z). Let x and y be

the k-bit input strings of Alice and Bob, respectively. The protocol to solve EQ(x, y) is as follows.

1. Alice constructs G(x), and Bob constructs G(y).
2. Alice uses p to construct the labels for both nodes of G(x), and so does Bob to construct the labels for G(y).
3. Alice simulates the verifier v on v1 ∈ G(x), and Bob does so on v2 ∈ G(y), in order to generate the

certificates c(v1) and c(v2), respectively.

4. Alice and Bob exchange their certificates.

5. Alice outputs the result of v at v1, and Bob outputs the result of v at v2.

Let G be the graph which consists of a single edge {v1, v2}, whose extremities have respective states (1, x) and

(2, y). By construction, we have

x = y ⇐⇒ Unif(G).

Therefore, by Lemma 3.2, the verification complexity of (p, v) is Ω(log k).

Proof of Theorem 3.5: Let F = F1 ∪ Fk. Consider the predicate Unif-Sym that is true on Gs ∈ F if and

only if Unif(Gs) ∧ Sym(Gs) = TRUE. Let (p, v) be a randomized proof-labeling scheme for (F ,Unif-Sym). By

Lemma C.1, and the fact that for every graph G1 ∈ F1 it holds that Unif(G1) = TRUE, the verification complexity

of (p, v) is Ω(log n). By Lemma C.3, and the fact that for every graph G2 ∈ Fk it holds that Sym(G2) = TRUE, the

verification complexity of (p, v) is Ω(log k). Therefore, the verification complexity of (p, v) is Ω(log n + log k),
and we get the desired family F and predicate P .

D Proof of Proposition 4.6

We start the proof by a collection of technical preliminary results. Given a real number x and 0 < ǫ ≤ 1, we

denote by ⌊x⌋ǫ the value of x rounded down to the closest integer multiple of ǫ, i.e., ⌊x⌋ǫ
def
=

⌊

x
ǫ

⌋

ǫ. Given a real
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function f : X → R over a set X , and ǫ > 0, we define the ǫ-rounded fǫ : X → R of f by fǫ(x)
def
= ⌊f(x)⌋ǫ for

every x ∈ X .

We shall consider ǫ-rounded probability distributions. Note that an ǫ-rounded probability distribution is not

necessarily a probability distribution, because it may not sum up to 1. However, it has the following probabilistic

interpretation. Let X be a set, and let Pr and Pr′ be two probability distributions over X . Then

Prǫ = Pr′ǫ ⇒ ∀Y ⊆ X,
∣

∣Pr[Y ]− Pr′[Y ]
∣

∣ ≤ ǫ|X| . (1)

Indeed, if Prǫ[x] = Pr′ǫ[x] for every x ∈ X , then we have that
∣

∣Pr[x]−Pr′[x]
∣

∣ < ǫ for every x. Using the triangle

inequality we thus get
∣

∣Pr[Y ]− Pr ′[Y ]
∣

∣ ≤
∑

x∈Y

∣

∣Pr[x]− Pr ′[x]
∣

∣ < ǫ|Y | ≤ ǫ|X|.
The advantage of ǫ-rounded distributions is that there are not too many. Indeed, let X be a finite set, and let D

be the set of all probability distributions over X . The number of distinct ǫ-rounded distributions over X is at most

2|X|ǫ−|X|, that is,

|{Prǫ | Pr ∈ D}| ≤ (2/ǫ)|X|. (2)

This is because the set of ǫ-rounded distributions is a subset of the functions from X to {ǫi, i = 0, 1 . . . , ⌊1/ǫ⌋},

which implies that their number is at most (1 + 1
ǫ
)|X| ≤ 2|X|ǫ−|X|.

We now have all the ingredients we need to prove the proposition. Let Gs be a configuration and {σi}
r
i=1 be

the isomorphisms as described in the proposition. Note that for any i 6= j, if Gs is labeled by p and the crossing

with σ = σj ◦ σ
−1
i satisfies

∣

∣

∣
Pr[v accepts Gs]− Pr[v accepts σ⋊⋉(G)s]

∣

∣

∣
<

1

3
, (3)

then Gs is accepted by (p, v) if and only if σ⋊⋉(G)s is accepted by (p, v). We prove that if κ < ( 1
2s−o(1)) log log r,

then there exist i 6= j that satisfy Eq. (3). We use a counting argument. Order the edges of H1 arbitrarily, and

obtain, using σi, an ordering for each Hi. Assume w.l.o.g. that all certificates are exactly κ bits long. Then, using

the order we defined, there is a 1-1 correspondence between each 2κs bit string and each particular choice of

certificates communicated in any Hi. Let D denote the set of distributions over 2κs-long bit strings, and define

ǫ = 1/(12s · 22sκ) .

Consider the set of distributions in D, ǫ-rounded. Since there are at most 22sκ bit strings of length 2κs, from Eq. (2)

we conclude that there are no more than (2/ǫ)(2
2sκ) such ǫ-rounded distributions. Let us now make the following

technical observation. Let α ≥ 1, β ≥ 1 and γ ≥ 2 be such that log(β + logα) = o(log log γ). Then

β < (1− o(1)) log log γ ⇒ γ > (α2β)(2
β).

This follows from the fact that

β < log log γ − log(β + logα) ⇐⇒ 2β(β + logα) < log γ ⇐⇒ (α2β)(2
β) < γ.

By setting α = 24s and β = 2sκ we obtain that the number of ǫ-rounded distributions satisfies

(2/ǫ)(2
2sκ) =

(

24s · 22sκ
)(22sκ)

< r.

Therefore, by the pigeonhole principle, it must be the case that among H1, . . . , Hr there are Hi and Hj , where

i 6= j, with identical ǫ-rounded distributions over the certificates.

Now, let σ = σj ◦ σ
−1
i . For any u ∈ Hi, we say that u and σ(u) ∈ Hj are siblings. Consider running v on Gs

and on σ⋊⋉(G)s, where, in both cases, we assume that the correct labels are given to the nodes by prover p applied

to Gs. This means that in both Gs and σ⋊⋉(G)s, the distributions of certificates sent by sibling nodes are the same.
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However, the distributions of certificates received by sibling nodes may have changed (albeit only slightly, as we

show next), due to crossing Hi with Hj .

To analyze v on Gs and σ⋊⋉(G)s, we change the certificates sent in Gs to those sent in σ⋊⋉(G)s inductively,

and show that each such modification results only in a small change in the probability of acceptance. We view

G = (V,E) as a symmetric directed graph, i.e., each edge e = {u, v} ∈ E is viewed as two symmetric arcs (u, v)
and (v, u). Let us order these arcs in G arbitrarily, and let C denote the set of certificate vectors ~c for which the

verifier v accepts Gs, with coordinates ordered according to the fixed order of the arcs. Consider a node v in Hi,

and one of its incoming arcs (u, v) in Hi. Let u′ and v′ in Hj be the respective siblings of u and v. Assume,

w.l.o.g., that (u, v) = e1. Let ~c ∈ C. The certificate sent to v by u along e1 is therefore c1. Let ~c−1 be the vector ~c
with the first coordinate c1 omitted, i.e., ~c−1 is one dimension less than ~c. Using the above notations, we have:

Pr[v accepts Gs] =
∑

~c∈C

Pr[nodes in V send ~c on E] (4)

=
∑

~c∈C

(

Pr[u sends c1 on e1] · Pr[V sends ~c−1 on E \ {e1}]
)

(5)

>
∑

~c∈C

(

(

Pr[u′ sends c1 on (u′, v′)]− ǫ
)

· Pr[V sends ~c−1 on E \ {e1}]
)

(6)

Eq. (4) is by definitions. Eq. (5) follows from the independence of c1 from ~c−1 by our assumption of edge indepen-

dence of v. Eq. (6) follows from Eq. (1) since u and u′ have the same ǫ-rounded distribution over their certificates.

Let G′
s be the virtual labeled configuration consisting of Gs labeled by p but where the certificate distribution sent

by u along e1 is changed to the distribution of certificates sent by u′ along (u′, v′) in Gs. We get that

Pr[v accepts Gs] = Pr[v accepts G′
s]− ǫ

∑

~c∈C

Pr[V sends ~c−1 on E \ {e1}] (7)

≥ Pr[v accepts G′
s]− ǫ 2κ (8)

Eq. (7) is by definition of G′
s, and Eq. (8) follows from the observation that the second sum in Eq. (7) is at most 2κ

since the number of distinct c1 values is at most 2κ, and, for any fixed certificate value γ,

∑

~c∈C,c1=γ

Pr[V sends ~c−1 on E \ {e1}] ≤ 1.

We repeat the same process for the certificate sent along another arc (a, b) of Hi, resulting in a virtual configuration

G′′
s in which we replace the distribution of the certificates sent by a to b by the distribution of the certificates sent

by a′ to b′, where a′ and b′ are the respective siblings of a and b in Hj . Again, we get

Pr[v accepts G′
s] ≥ Pr[v accepts G′′

s ]− ǫ2κ.

By repeating the process 4s times, once for every arc in Hi and in Hj , we eventually get

Pr[v accepts Gs] ≥ Pr[v accepts σ⋊⋉(G)s]− 4ǫs2κ.

Moreover, by switching the roles of Gs and σ⋊⋉(G)s in the analysis, we also get that,

Pr[v accepts σ⋊⋉(G)s] ≥ Pr[v accepts Gs]− 4ǫs2κ.

I.e., Pr[v accepts σ⋊⋉(G)s] and Pr[v accepts Gs] differ by at most ±4ǫs2κ. By the choice of ǫ, we conclude that

Pr[v accepts σ⋊⋉(G)s]−
1

3
≤ Pr[v accepts Gs] ≤ Pr[v accepts σ⋊⋉(G)s] +

1

3
,

which proves Eq. (3), and completes the proof.
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E Proofs for Section 5

Proof of Theorem 5.1: The upper bound follows from combining Theorem 3.1 with the proof-labeling scheme

for MST in [31], whose verification complexity is O(log2 n) (assuming polynomial edge weights). For the lower

bound, we will show that any randomized proof-labeling scheme that solves a much simpler problem, namely

verifying acyclicity, has verification complexities as stated. Let F be the family of graphs that consist of lines and

cycles, i.e., if G ∈ F then G is a line or G is a cycle, where all edges have weight 1. Let P = (u1, u2, . . . , un)
be the n-node path, with port numbers consistently ordered. We define H1, . . . , Hr, for r =

⌊

n
3

⌋

− 1, as follows.

Let H1 = {u1, u2}. For i = 2, . . . ,
⌊

n
3

⌋

− 1, let Hi = {u3i, u3i+1}, and σi : V (H1) → V (Hi) satisfying

σi(u1) = u3i and σi(u2) = u3i+1. For any 1 ≤ i < j ≤
⌊

n
3

⌋

−1, let σij = σj ◦σ
−1
i . We get that σij

⋊⋉(P ) consists

of removing edges {u3i, u3i+1} and {u3j , u3j+1} from P , and replacing them by {u3i, u3j+1} and {u3j , u3i+1},

creating the cycle C = (u3i+1, u3i+2, . . . , u3j−1, u3j). Note that σij
⋊⋉(P ) /∈ F , but C is a connected component

of σij
⋊⋉(P ) and C ∈ F . Moreover, C is a cycle, i.e., not satisfying the predicate. Therefore, by Theorem 4.7, the

verification complexity of (F , acyclicity) is Ω(log log n). Hence, since F ⊂ Fcon, the verification complexity of

(Fcon,MST ) is Ω(log log n).

Proof of Theorem 5.2: We first describe a deterministic proof-labeling scheme (p,v) for (Fcon, v2con), based

on the algorithm for finding the biconnected components of a graph, presented in [22] (a detailed analysis of

this algorithm can be found in [37]). Let G = (V,E) be a 2-vertex-connected graph. The prover p assigns the

following labels to G. Let T be a DFS tree of G. For every node v ∈ V , the label ℓ(v) of v consists of the following

components:

• id-root(v) - the identity of the root of T .

• dist(v) - the distance of v from the root.

• preo(v) - the pre-order number of v defined by the DFS traversal generating T .

• span(v) - the interval of the pre-order numbers of the nodes in the subtree of T rooted at v.

• lowpt(v) - the smallest pre-order number among the pre-order numbers of the nodes that can be reached

from the subtree rooted at v using a back edge.

All the labels are therefore on O(log n) bits. We call a node u satisfying dist(u) = dist(v) + 1 a child of v. The

verifier v is the logical conjunction of the following predicates, at every node v:

- DFS verification. (P1) For every neighbor u of v, id-root(v) = id-root(u). (P2) dist(v) ≥ 0. (P3) If dist(v) = 0
then id-root(v) = Id(v), and if dist(v) > 0 then v has exactly one neighbor w that satisfies dist(w) = dist(v)− 1.

(P4) The set of intervals {span(u) | u is a child of v} is a partition of span(v), not including the pre-order number

of v itself. (P5) For every neighbor u of v, dist(u) 6= dist(v). (P6) For every neighbor u of v, if dist(u) < dist(v)
then span(v) ⊂ span(u), and if dist(u) > dist(v) then span(u) ⊂ span(v).
- lowpt-values verification. Let childmin(v) = min{lowpt(u) | u is a child of v} and let neighbormin(v) =
min{preo(u) | u is a neighbor of v}. (P7) lowpt(v) = min{childmin, neighbormin}.

- Bi-connectivity verification. (P8) If v is the root (i.e., dist(v) = 0), then v has no more than one child, and, if v
is not the root, then, for every child u of v, lowpt(u) < preo(v).

Let us now prove the correctness of that scheme (p,v). If v2con(G) = TRUE, then, by construction, all the

above predicates P1, . . . , P8 are true at every node, and therefore all nodes returns TRUE, as desired. Conversely,

assume that all nodes returns TRUE. From the DFS verification part (predicates P1, . . . , P6), and Theorem 1 in

[37], it follows that the id-root, dist and span values of all nodes define a proper DFS tree T of G. From the

lowpt-values verification part (predicate P7), and by definition of LOWPT in [37], we derive that the lowpt values

are correct according to this DFS tree T . From the bi-connectivity verification part (predicate P8), and Lemma 5

in [37], there are no articulation points in G. Therefore, v2con(G) = TRUE. Therefore, (p,v) is a proof-labeling

scheme for (Fcon, v2con). The desired randomized proof-labeling scheme follows from Theorem 3.1.

For the lower bounds, let G be a graph that consists of an n-node cycle, with port numbers consistently

ordered, and additional edges from one node to all other nodes. (See Figure 2a for illustration). That is, G =

ix



({v0, . . . , vn−1}, Ec ∪ E0) where

Ec =
{

{vi, v(i+1) mod n} | i = 0, . . . , n− 1
}

and E0 =
{

{v0, vj} | j = 2, . . . , n− 2
}

.

We have v2con(G) = TRUE. Now, let H1 = {v1, v2}. For i = 2, . . . ,
⌊

n
3

⌋

− 1, let Hi = {v3i, v3i+1}, and

σi : V (H1) → V (Hi) satisfying σi(v1) = v3i and σi(v2) = v3i+1. For any 1 ≤ i < j ≤
⌊

n
3

⌋

− 1, let

σij = σj ◦ σ
−1
i . We get that σij

⋊⋉(G) consists of two disjoint cycles with some edges in E0 between them, and v0
is an articulation point. Therefore, v2con(σij

⋊⋉(G)) = FALSE. Hence, the conditions of Theorems 4.4 and 4.7 are

satisfied, and the lower bounds follow.

Proof of Theorem 5.3: Let G = (V,E) be a graph. Consider the following labeling scheme (p,v). Let

C = (V ′, E′), where V ′ ⊆ V and E′ ⊆ E, be a cycle with maximum length in G. Let us index the nodes in V ′

from 0 to |V ′| − 1, clockwise, starting from some node v′ ∈ V ′. For every node v ∈ V , the prover p assigns label

ℓ(v) to v, consisting of the following components:

• dist(v): the distance of v from the cycle C.

• index(v): if v ∈ V ′, then index(v) is the index of v in C, otherwise index(v) = 0.

The verifier v is defined as the logical disjunction of the following two predicates.

(P1) dist(v) = 0 and v has exactly two neighbors, u1 and u2, that satisfy dist(u1) = 0 and dist(u2) = 0. In

addition, if index(v) = i then index(u1) = i+ 1 (or index(u1) = 0 if i ≥ c− 1) and index(u2) = i− 1 (or

index(u2) ≥ c− 1 if i = 0).

(P2) dist(v) > 0 and there exists some neighbor u of v that satisfies dist(u) = dist(v)− 1.

If cycle-at-least-c(G) = TRUE then by the specified construction, the verifier accepts at all v ∈ V . Conversely, if

the verifier accepts at all v ∈ V , then every node v with dist(v) = d > 0, has a neighbor u with dist(u) = d − 1.

By induction, there is at least one node v′ with dist(v′) = 0. Consider such node v′, with index(v′) = i .

Node v′ has exactly two neighbors, u1 and u2, that satisfy dist(u1) = 0, dist(u2) = 0, index(u1) = i + 1 (or

index(u1) = 0 if i ≥ c− 1); and index(u2) = i− 1 (or index(u2) ≥ c− 1 if i = 0). Therefore, we get a sequence

of nodes with dist-values equal to 0, and the following index-values: (. . . , 0, 1, 2, . . . , c1, 0, 1, . . . , c2, 0, . . .), for

ci ≥ c − 1. Since the graph is finite, and this sequence is infinite, this is a cycle and its size is at least c. Hence,

cycle-at-least-c(G) = TRUE. This concludes the proof of the proof-labeling scheme. The randomized proof-

labeling scheme follows from Theorem 3.1.

Proof of Theorem 5.5: Let G be as described in the lower bound part of the proof of Theorem 5.2 (see Figure 2a),

where n ≥ c. This graph satisfies G ∈ F and cycle-at-least-c(G) = TRUE. Let (p,v) be a proof-labeling scheme

for cycle-at-least-c over F . Assume, for the purpose of contradiction, that the verification complexity of that

scheme is less than 1
2 log(

⌊

c−1
3

⌋

). Let {H1, . . . , Hr}, for r =
⌊

c−1
3

⌋

, be a set of pairwise independent cycle edges.

This set exists since n ≥ c − 1. For each edge, there are less than log(
⌊

c−1
3

⌋

) bits in the sequence of both labels

of the extremities of the edge. Hence, there are less than
⌊

c−1
3

⌋

possible sequences. Therefore, by the pigeonhole

principle, there are two independent cycle edges, say e1 and e2, that have exactly the same labels. Recall that

the port numbers of the cycle edges are consistently ordered. Hence, for the corresponding isomorphism, σ⋊⋉(G)
consists of two disjoint cycles of size strictly less than n each, with only edges in E0 between them. Note that

possibly σ⋊⋉(G) /∈ F . We apply this crossing inductively as long as there is a cycle of size at least c − 1. This

process terminates when we eventually get at a graph G′ which consists of a set C of disjoint cycles, all of size less

than c− 1, with only edges in E0 connecting them (see Figure 2b). Note that at most two E0 edges can participate

in any simple cycle in G′. Since there are no other connections between the cycles in C, both edges in E0 have

to be connected to the same cycle in C. Therefore, a simple cycle of maximum length in G′ is a simple cycle of

maximum length in C, with two edges from E0 instead of just one, and its size is strictly less than c. Hence, G′ ∈ F
and cycle-at-least-c(G′) = FALSE. On the other hand, the verifier accepts G′, a contradiction. This concludes the

proof of the theorem.

Proof of Theorem 5.6: Let G be a chain of
⌈

n
c

⌉

disjoint cycles of c nodes each (except one of at most c nodes),

where every two neighboring cycles are connected by an edge (see Figure 5a). We have cycle-at-most-c(G) =

x



e1e2

(a)

e1e2

(b)

Figure 5: (a) the graph G in the proof of Theorem 5.6 for c = 8. (b) σ⋊⋉(G).

TRUE. Let {H1, . . . , Hr}, for r =
⌈

n
c

⌉

, be a set of pairwise independent edges from distinct cycles. This set exists

since there are
⌈

n
c

⌉

cycles. For every two independent edges from different cycles, say e1 = {u, v} from cycle i
and e2 = (u′, v′) from cycle j, where i 6= j, we have that cycle-at-most-c(σ⋊⋉(G)) = FALSE for any isomorphism

σ (see Figure 5). Therefore, the conditions of Theorems 4.4 and 4.7 are satisfied, and the lower bounds follow.
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