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Abstract 

In tbis paper we study randomized algorithms for circuit switching 
on multistage networks related to the butterfly. We devise algo- 
rithms that route messages by constructing circuits (or paths) for 
the messages with small congestion, dilation, and setup time. Our 
algorithms are based on the idea of having each message choose a 
route from two possibilities, a technique that has previously proven 
successful in simpler load balancing settings. As an application of 
our techniques, we propose a novel design for a data server. 

1 Introduction 

In this paper, we devise algorithms for routing messages in circuit- 
switching networks where each message chooses from two possible 
routes, an idea that has been applied with great success in other load 
balancing situations [12,17,26,27]. 

Underlying every parallel computer is a nehvork that delivers 
messages between processors or between processors and memory 
modules. Similar networks are found in the switches that route 
telephone calls and intemet traffic. ‘&pically, a message is sent 
from its input node (source) to its output node (destination) via a 
path in the network. Methods for routing messages include circuit- 
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switching, store-and-forward routing, and wormhole routing. With 
circuit switching, each message must first lock down (i.e., reserve) 
a path (i.e., circuit) in the network from its input node to its output 
node. The path is then used to transmit the message through the 
network. In contrast, with store-and-forward routing and worm- 
hole routing paths are not reserved before transmission, 

Circuit-switching has enjoyed widespread popularity since its 
early use in telephony and subsequently in the design of parallel 
computers. Recent trends in network design emphasize the need 
for providing quality of service (QoS) guarantees for communica- 
tion. To provide guarantees as opposed to just best-effort service, 
network resources must be reserved before communication begins. 
Consequently, several modem high-speed multimedia switches and 
ATMs reserve a (virtual) circuit through the network for each com- 
munication request [37,38]. 

1.1 Circuit routing algorithms and their performance 

In a circuit-switched network, a message arrives requesting a path 
from its source to its destination. A routing algoritlun determines 
which of many possible paths is locked down for each message, WC 
measure the performance of a routing algorithm in terms of three 
parameters: congestion, dilation, and setup time. 

Congestion and dilation are properties of the paths locked down 
for the messages by the routing algorithm. The congcstiorr of a set 
of paths is defined to be the maximum number of paths that pass 
through any link in the network. Congestion is a measure of the 
maximum number of paths that must be simultaneously supported 
by a link of the network, and hence determines the bandwidth that 
a link should possess. The dilarion of a set of paths is defined to 
be the maximum Iength of a path in the set. Dilation is n melure 
of maximum distance (in links) that a message must tmvel to reach 
its destination. Finally, the serup rime is the time taken by the rout- 
ing algorithm to allocate paths through the network. This is the 
time overhead involved in path selection before the actual message 
transmissions begin. 

The goal of this paper is to devise routing algorithms with small 
congestion, dilation, and setup time. 

1.2 Network and problem definitions 

The results in this paper apply to variants of a popular type of multl- 
stage interconnection network called the 6ulterfIy network. Buttcr- 
fly networks and its variants have been widely used for packet rout- 
ing in a number of commercial and experimental networks [7, 15, 
28,291. More recently, several proposed designs for the switching 
fabric of scalable high-speed ATM networks use the butterfly and 
its variants for routing virtual circuits [37,38]. 

We define an n-input butte& network B, as follows, An n- 
input butterfly has n(log n + 1) nodes arranged in log n + 1 lcvcls 
of n nodes each.’ An example of an n-input butterfly (n = 8) 
with depth log n (log n = 3) is show in Figure 1. Each node has a 
distinct label (2u, i) where i is the level of the node (0 s i 4 log n) 

‘Throughout this paper we use log ra to denote loga n. 
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Figure 1: An d-input butterfly network. 

nnd w = uJleu2 , . . zut,,s R is a log n-bit binary number that denotes 
the row of the node, All nodes of the form (w, i), 0 5 i C logn, 
arc said to belong to row 2~. ‘Iwo nodes (w,i) and (w’;i’) are 
linked by an edge if i’ = i I- 1 and either zu and w’ are identical or 
w nnd w’ differ only in the bit in position i’. (The bit positions are 
numbered 1 through log n.) We call the first type of edge a straight 
ed,qe and the second a cross edge. The nodes on level 0 are called 
the btprrls of the network, and the nodes on level log it are called 
the orrtprrls, Sometimes the level 0 node in each row is identified 
with the level log n node in the same row, In this case, the butterfly 
B, la said to wrap around. 

WC dellne a randomly-wired buttefly RB, as follows. Net- 
work RB,, has the same set of nodes and edges as Bn, except 
that lhe cross edges incident on the input nodes of RB,, are per- 
muted randomly according to the following rule. Let d = logn 
Bach node (WI 
nqdc (wi , , , 

, , , wd, 0) of RB,, is connected by a cross edge to 
wi, 1) if and only if wr # w: and ~,,r (wz . . . wd) = 

w2 , , , ul;, where 00 and or are random permutations of the set of 
(lo&n - 1).bit numbers. 

WC define a two-fold bttttetjly B& as follows. Network BB,, 
consists of two copies of B,, placed one after the other such that 
cnch output node in the ilrst copy is identified with the correspond- 
ing input node of the second copy with the same row number. Note 
that BB,, is a multistage network with n rows and 2logn+ 1 lev- 
els, The nodes in level 0 are called the inputs of BB,, and the nodes 
in level 2 log a arc called the outputs of BB,. Also, observe that a 
routing algorithm on BB,, can be simulated by making two passes 
through a butterfly B, that wraps around. 

It is important to contrast the BB, network with another com- 
mon variant of the butterfiy, the BeneSnehvork. An n-node Be& 
network consists of two copies of B, placed “back-to-back” such 
that each output node of the first copy is identified with the corre- 
sponding output node of the second copy. 

In this paper, we study n canonical circuit routing problem that 
ia known as the permutation routing problem. In a permutation 
rorrlhg problerrr nt most one message originates at each input of 
the network and nt most one message is destined for each output of 
the network. 

WC distinguish two kinds of permutation routing problems: static 
and dynamic, In n sruric probletn, all the messages that constitute 
R permutation routing problem are present at time 0, before the 
routing begins, The routing algorithm constructs paths for all the 
messages in a “batch” mode. All the messages are delivered to 
their respective destinations before the routing of the next batch of 
messages begins. In contrast, in a dynamic problem, messages are 
injected or deleted one by one. The routing algorithm routes a path 
for each injected message in an on-line fashion with no knowledge 

of future message arrivals. We assume that at any time, the mes- 
sages being routed form a partial permutation; that is, each input 
and output node correspond to at most one routed message. 

1.3 Previous work 

There are several different sub-areas of research that relate to our 
work We provide a summary of the most relevant. 
Routing in Butterfly Networks. There is a vast literature on rout- 
ing in butterfly networks [20,21]. Much of the early work focuses 
on store-and-forward routing [I, 23,24,31,35,39,41,42]. More 
recently, there has been progress in analyzing wormhole routing 
algorithms [IO, 11, 13,361. Since we present no new results in 
these two routing methods, we focus only on the butterfly circuit- 
switching literature. 

In two early papers, Beizer [S] and Ben& [9] showed that any 
static permutation routing problem can be routed with congestion 
1 and dilation 2logn on an n-input BeneS network. Subsequently, 
Waksman 1431 provided an elegant algorithm that takes O(n log n) 
time to determine all the paths, but requires global knowledge of 
the source and destination of all the messages. Later, Nassimi and 
Sahni [30] showed how to implement Waksman’s algorithm in par- 
allel on the Benti and related networks in time O(log4 n). How- 
ever, their algorithm is complex and requires the BeneS network to 
emulate a complete network by executing a series of sorting rou- 
tines. 

Although the Ben& network and the BB,, are closely related 
in structure, whether or not it is possible to route an arbitrary per- 
mutation routing problem in an offline fashion with congestion 1 
on the BB, is a long-standing open problem. 

In this paper, we devise routing algorithms that minimize con- 
gestion. A complementary approach aims to maximize throughput. 
Previous work has studied the model where each link can support at 
most q paths, and the goal is to maximize the number of messages 
that lock down paths. Kruskal and Snir [I91 showed that if each in- 
put in a butterfly network B,, sends a message to a randomly chosen 
output, and at most one message can use any edge of the network 
(i.e., q = l), then the expected number of messages that succeed in 
locking down paths to their destinations is @(n/log n). Koch [IS] 
generalized the result of Kruskal and Snir by showing that if each 
edge can support q messages, q I 1, then the expected fraction 
of messages that succeed in locking down paths is Q(n/ log’/9 n). 
Maggs and Sitaraman [24] generalized the previous two results by 
showing that, by making two passes through a butterfly, it is possi- 
ble to route an n(n/ log’/9 n) fraction of any permutation (rather 
than only a random permutation), with high probability. 
Use of Randomness. An early example of the use of random- 
ization for circuit-switching in butterfly networks is the work of 
Valiant [41,42]. Valiant showed that any permutation routing prob- 
lem can be transformed into two random problems by first routing 
a path for each message to a random intermediate destination, and 
then on to its true destination. This implies that we can route paths 
for a (static or dynamic) permutation routing problem on a two- 
fold butterfly BB,, with congestion Q(log n/ log log n), and dila- 
tion 2logn. Note that the paths for each message can be set up 
independently without complete knowledge of the permutation in 
O(log n) time. We show how to use randomization to route permu- 
tations with substantially smaller congestion and the same dilation. 

Ranade [34] observed that a smaller amount of randomness is 
sufficient to implement Valiant’s algorithm. Note that each switch 
has two input links and two output links. Ranade noted that it is 
sufficient that each switch in the first log n levels of BB,, shunts a 
message from each input link to a random (and distinct) outgoing 
link. Thus, messages are sent to random but not independent des- 
tinations using one random bit per switch. The first logn levels of 
such a BBn constitute ajIip network. A flip network was subse- 
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quently used in [24] in the context of circuit routing. We use flip 
networks in our routing algorithms in Section 2. 

Randomness can be used in constructing the network itself. 
The use of randomness to design multistage networks dates back 
to Ikeno[lB], and Bassalygo and Pinsker [5]. Networks such as 
the randomly-wired multibutterfly are known to have good routing 
and fault tolerance properties [3O, 221. Recent results provide al- 
gorithms for routing circuits for any permutation routing problem 
with congestion 1 in multibutterfly and multi-Bend networks with 
set-up time O(log n) [2,32]. Unlike these networks, our results in 
Section 2 apply to commonly-used networks like Bn and BE& that 
require neither random wiring nor expanders. 
Balls-and-bins problem. Our approach to circuit routing is influ- 
enced by recent advances in the classical balls-and-bins problem. 
It is well known that if n balls are tossed randomly into n bin:., the 
mclsimum number of balls in any bin will be @(log n/ log log n) 
with high probability. Azar et al [4] consider the following dy- 
namic protocol for throwing n balls into n bins: for each ball pick 
two bins independently and uniformly at random, and place the ball 
in the bin with the smaller load at the time of placement. They show 
tlyat after all balls are placed in bins, the maximum load of any bin 
is @(log log n), with high probability. 

Static protocols for the balls-and-bins problem were developed 
in 1171, [12], and [27] and applied to PRAh1 simulations. They con- 
sider variants of the following process. Initially, each ball chooses 
two random bins. In a round, each ball not yet allocated accesses 
its two bins. Each bin with at most c accessing balls accepls all 
of them. The other balls try again in the next round. This proto- 
col guarantees masimum load c Even for constant c, the protocol 
allocates all balls, with high probability, using only O(log log n) 
rounds. 

We apply similar “two-choice” algorithms to circuit routing. 
Note that this is a more complex situation. Thinking of each mes- 
sage as a ball and each network edge as a bin, we see that finding 
a path for each message corresponds to placing each ball in sev- 
eral dependent bins. These dependencies substantially incre%e the 
difficulty of the analysis. 
Circuit routing in general topology networks. Dynamic circuit- 
switching has been estensively studied in an on-line competitive 
framework for arbitrary nehvork topologies. (See [33] for a sur- 
vey). Results are known for minimizing congestion [3] and for the 
mmimizing throughput [ 141. This framework can incorporate more 
general parameters such as the circuit bandwidth and circuit hold- 
ing time. However, these results do not yield routing algorithms 
with congestion smaller than Q(log n) for the regularly-structured 
mu&stage nehvorks that are the focus of this paper. 

1.4 Our results 

We introduce two new protocols for circuit-routing: the collision 
protocol and the minimum protocol. In contrast to Valiant’s algo- 
rithm, which picks one random path for each message, these pro- 
tocols choose nvo random (but not independent) paths p and p’ for 
each message dl. The collision protocol uses a suitably chosen 
threshold c, and allocates either p or p’ to message M, provided 
the congestion of the allocated path is at most c In contrast, the 
nuikmzprokxol allocates to M the path with the smaller conges- 
tion. As mentioned previously, protocols of this flavor have been 
utilized and analyzed in simpler settings. We estend these tech- 
niques to circuit-routing. 
Static Permutation Routing. In Section 2.1, we show the collision 
algorithm routes any permutation on the hvo-fold butterfly BB, 

man’s algorithm, which achieves congestion 1 on a Beneg network, 
we require substantially smaller setup time. Furthermore, we do not 
require complete knowledge about the permutation being routed 
and our routing algorithm can be implemented on the network it- 
self. Comparing our result to the algorithm of Nassimi and Sahni 
[303, our algorithm is much simpler and faster, although their algo- 
rithm achieves smaller congestion. 
Dynamic Permutation Routing. In Section 2.2, we analyze the 
minimum algorithm for routing any dynamic permutation routing 
problem on network BB,. The congestion is O(loglogn) with 
high probability, the dilation is 2 log n, and the setup time for each 
new message is O(logn). Prior to this work, every known algo- 
rithm for the dynamic permutation routing problem on the butterfly 
and related networks required R(log n/ log log n) congestion. Our 
algorithm is optimal in that any routing algorithm on BBn that 
considers only a constant number of alternate paths per message 
must incur R(log log n) congestion [4]. 
Data Server Architecture. As an application of our techniques, 
in Section 3, we present a proposal for the architecture of a data 
server. The data server utilizes network RB,, to connect n users 
to n disks. Each user is associated with a distinct input node and 
each disk is associated with a distinct output node of RB,,. Objects 
(typically large, e.g. movies) are distributed among the disks. 

A canonical task performed by the data server is the following. 
Given n requests to objects, one per user, these requests must be 
satisfied by providing a path from each user to a disk that contains; 
their requested object. The congestion of the paths must be min- 
imized. Besides congestion, another important performance met- 
ric is disk contention, which is often a bottleneck. We define disk 
contention to be the maximum number of simultaneous requests 
that any disk must satisfy. In Section 3, we devise algorithms that 
achieve both small congestion and small disk contention. 

The standard technique of storing the objects by independently 
and randomly distributing them to the n disks yields congestion 
and disk contention 8(logn/loglogn), with high probability. To 
achieve lower congestion and disk contention, we store two copies 
of the same object on two disks. 

2 Routing in the two-fold butterfly 

2.1 Static routing in BB,, 

We describe a simple, efficient algorithm for routing permutations 
on the two-fold butterfly BBn. Recall that the two-fold butter- 
fly BB, has n inputs at level 0 and n outputs at level 24 where 
d = log n. Given a permutation ?r, our routing algorithm connects 
each input node i to the corresponding output node n(i); each pair 
(i, n(i)) of input and output nodes is called a reqrcest. Our random- 
ized algorithm routes paths such that the maximum congestion on 
an edge is Q(log log n/ log log log n), with high probability. Fur- 
thermore, the time required by the algorithm to set up all the paths 
is at most 0(log n log log n/ log log log n), with high probability. 
The c-collision algorithm. We use the collision protocol described 
below to perform the routing. The c-collision protocol initially 
chooses at random two possible paths for each request. Eventually 
one of these paths will serve as the required connection. 

The two random paths for each request are chosen as follows. 
ThenodesonlevelsO,...,d/2-landd$d/2$1,...,2dare 
flipped randomly. In particular, each input and output node mnps 
thefirst par/z p of a request to its stra$ht edge and its sccmd pafh 
p’ to its cross edge with probability Z,and with probability 4 the 
order is reversed. Similarly, each node on levels 1,. . . , d/2 - I 
andd+d/2+1,..., 2d - 1 with probability 8 connects its input with congestion O(log log n/ log log log n), with high probability, 

and dilation 2 log n. The setup time is O(log n log log n/ log log log n). straight edge with its output straight edge and its input cross edge 
Our routing algorithm achieves a substantially smaller congestion 
bound than Valiant’s algorithm. Comparing our result with Waks- 

with its output cross edge, and with probability 4 the connections 
are reversed. Note that these random choices completely determine 
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Ihc WO paths p and p’ of each request, because there is exactly 
one path connecting a node on level d/2 with a node on level d + 
d/2 in a BB, network. For a path p, the other path p’ cmnecting 
the same input and output nodes is called the Mu’y of p. The 
random switching ensures that any edge on the levels 1, . . . , d/2 
nndd+d/2-t-l,..,, 2d is traversed by at most one of the randomly- 
gcncrnted paths. However, each edge on the interior levels, i.e., 
one with “top” node on one of the levels d/2 -I- 1,. . . , d + d/2, 
ia potentially trnversed by several of these paths. We call these 
edges collision edges, and we say that two paths that cross the same 
collialon edge collide. 

The c-collision algorithm proceeds in rounds to select a path 
for each request as follows. Initially all paths are active and not 
sclcc~cd, A path p is eligible to be selected if for each edge e E 
p the number of nctive paths traversing e is at most c. If p and 
its buddy p’ arc both eligible to be selected, only one is selected 
arbitrarily, A path p ceases to be active in a round ifp is selected or 
the buddy of p is selected in that round. The algorithm terminates 
when there are no more active paths. 

Each round of the c-collision algorithm can be implemented 
using n store-and-forward algorithm as a subroutine: in a first pass, 
for each active path, a packet is sent along the path from level 0 to 
level 2d, During this pass, for each edge, the number of packets 
trnverslng the edge is counted. Then, in a second pass, all packets 
are routed backward along their respective paths from level 2d to 
level 0, During this pass the congestion for each active path is 
computed, Note that, in this model, when computing the setup time 
the packets and edges of the network can act in parallel, and hence 
a round may complete in o(n) time. 

The c-collision algorithm selects a path p in a round only if 
p collides with no more than c - 1 other active paths on any of 
the edges in p, This implies that any edge that is included in at 
least one selected path is included in at most c - 1 other selected 
or active paths, As a consequence, the congestion of all selected 
pnthrt Is at most c, Note that the algorithm as described is not guar- 
anteed to terminate, However, in Theorem 2.1, we show that if c 
ia ouftlciently large, the algorithm will terminate with maximum 
congestion at most c, after a small number of rounds, with high 
probability, In practice, we may terminate the algorithm after some 
fixed number of rounds: all requests that still have two active paths 
at the tcrminntion point may choose one arbitrarily, and in this case 
we fail to guarantee congestion c. 

Thcorcm 2.1 fir arty constunt e > 0 and c such rhut c! = (1 + 
e) e log n, lhc probability thur the c-collision ulgotithm on BB,, 
lukcs wore than t = Q(log log n/ log log log n) rounds to select a 
palhfor every mqaest is at most n-c’4f1+o(1). Furthcrmorc, each 
rortrtd cm be computed in time O(log n), with high probability. 

Proof, First, we show that if the algorithm does not terminate after 
t rounds, we can construct a “witness tree”. Next, we show how 
the witness tree can be pruned to avoid stochastic dependencies. 
Flnnlly, we show by enumeration that the probability of occurrence 
of n pruned witness tree is at most n-C/4+1+0(1). 
Conotructlng a witness tree. Fix a permutation n to be routed, and 
the settings of the randomly-flipped switches on thelevels 0,. . . , d/2- 
1 and d + d/2 -I- 1,. . , , 2d. This determines the two paths chosen 
for each request, Assume that there is a request with paths p and 
p’, and neither path has been selected by round t, where the proper 
vnlue at’ t is to be determined later. Then p collides with at least c 
paths of’other requests in round t at some edge e. Let ~1,. . . ,pC 
denote the c paths that collide with p in round t at e. The root of 
the witness tree Is the request corresponding top and the requests 
corresponding to pl , . . . , pC are its children. The paths pl, . . . ,pe 
nnd their buddies pi, . . . ,pL were not selected at round t - 1. Ap- 
plying the argument recursively to pi:, . . . ,pi we can construct a 
complete c-ary tree of height t. This tree is called the wirncss tree. 

Each node u in the witness tree corresponds to a request with 
two associated paths, one of which collides with one of the paths 
associated with each sibling and the parent of 2) (unless v is the 
root), and the other of which collides with one of the paths associ- 
ated with each of the children of v (unless v is a leaf). We call the 
first path the up purh of v and the other path the down purh of v. 
The up path of the root and the down paths of the leaves are defined 
to be empty paths. Note that by the term “collision represented by 
node v” we mean the collision of the down path of v with the up 
paths of the children of v in the witness tree. Finally, to give each 
tree a unique representation, we assume that children of a node are 
listed in increasing order from left to right based on the input node 
number of the corresponding request. 

The requests corresponding to the nodes of a witness tree are 
not necessarily pairwise distinct. Furthermore, the up and down 
paths of distinct requests may overlap in the randomly-flipped lev- 
els, so that a randomly-flipped switch can be included in more than 
one of these paths. Hence, the collision events represented by a 
witness tree are not necessarily stochastically independent. Note 
that, if they were stochastically independent, it would be relatively 
straightforward to argue the theorem. 
Pruning the witness tree. The intuitive reason why the dependen- 
cies do not affect the final conclusion is that there are only O(log n) 
nodes in the witness tree, hence the dependencies are “rare”. In or- 
der to handle dependencies. we prune nodes from the witness tree 
as necessary. This pruning is done by a traversal through the tree 
visiting the internal nodes in breadth-first-search order starting at 
the root. When a node v is visited during this traversal, the depen- 
dencies between the collision represented by v and the collisions 
represented by nodes visited before v are checked. If the depen- 
dencies significantly affect our calculations, the nodes below v are 
pruned, and these pruned nodes are excluded from the subsequent 
traversal. 

The detailed pruning rules follow. For a node v visited during 
the traversal, let B(v) denote the set of nodes visited before v. Fur- 
thermore, let I’(v) denote the set of nodes that are children of the 
nodes in B(v). that are not pruned before v is visited, and that are 
not in B(v) themselves. For the root r of the witness tree, B(r) 
and J?(r) are empty since our traversal starts at r. We distinguish 
two pruning rules: 

1. If a path associated with one of v’s non-pruned children tra- 
verses a randomly-ffippcd switch that is also traversed by a 
path associated with a node u from I’(v) then the c subtrees 
rooted at the children of v are removed from the tree, and the 
c subtrees rooted at the children of u are also removed from 
the tree. The node v is called a pruning node. The node u 
that caused the pruning is called the conflicting node of v. 

2. If a path associated with one of v’s non-pruned children tra- 
verses a randomly-flipped switch that is also traversed by a 
path associated with a node u from B(v) then the c subtrees 
rooted at the children of v are removed from the tree. The 
nodes v and u are again called pruning and conflicting nodes 
respectively. 

When there is more than one choice for a conflicting node for a 
certain pruning node we make the choice arbitrarily, so that each 
pruning node can be associated with exactly one conflicting node. 
Furthermore, the second pruning rule is considered only if the con- 
ditions for the first pruning rule are not met. 

Note that the pruning rules ensure that, for every node v visited 
after the root r, the subgraph induced by B(v) W(v) is connected; 
that is, B(v) U I’(v) induces a subtree of the full witness tree with 
root r. Also, when a node v is visited, up to 2c subtrees of max- 
imum height t - 2 could be pruned from the tree. These subtrees 
do not include any node from B(v) u r(v). Hence, the subtree 
induced by this set only grows during the traversal. 
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We continue the pruning process till either there are no more 
nodes to visit or there are 6 = [c/2] pruning nodes. In the latter 
case, we apply a final pruning. If v is the Kth pruning node, we 
remove from the tree all nodes not included in B(v) U I’(v). This 
effectively stops the pruning process at the 6th pruning node. 

The witness tree pruned in this fashion is called theprunedwir- 
ness free. Let m denote the number of internal nodes in this tree, 
and m’ 5 K denote the number of pruning nodes. Let ~11, . . . , v, 
denote the internal nodes and w , . . . , wmt the pruning nodes in or- 
der of visitation, respectively. Furthermore, let ui denote the con- 
flictin? node of ,wt, for 1 5 i 5 m’. The pruned tree possesses the 
folIowing properties. 

1) Any internal node u represents a collision of the down path 
of v and the cup paths of the children of v. 

2) For any internal node v, the pruning ensures that the up paths 
of the children of v do not share a randomly-flipped switch 
with a path associated with a node in B(v) Ur(v) except for 
the down path of v. (As a consequence, all nodes of the tree 
correspond to distinct requests.) 

3) The down path of a pruning node v either collides with a path 
p that is associated wivith the conflicting node U, or it collides 
with a path p such that p or its buddy shares a random switch 
with a path associated with U. This path p is denoted the 
conflicting path of v. 

4) The down path of a pruning node wi is not the conflicting 
path of a pruning node 201: with b < i. (This can be proved 
as foIIows. For contradiction, assume the opposite. Then 
Wi = ok and Wi E I’(wr:). Hence, the subtree below Wi is 
removed when WI: is visited. This means that wi has no non- 
pruned children when Wi is visited and ConsequentIy, wi is 
not a pruning node.) 

5) For each pruning node wl, the down path p of wi shares at 
most 5c mndomly flipped switches with up and down paths 
associated with any other node and conflicting paths associ- 
ated with the pruning nodes WI,. . . ,wi. (This is because, 
according to Properties 2 and 4. the down path of wi is not 
equivalent to any such up, down, or conflicting path. Further- 
more, according to Property 2, the down path of wi does not 
share a random switch with any other up or down path, ex- 
cept for the up and down paths of the siblings of wi, and the 
up path of w(. With each of these 2c- 1 paths. the down paths 
overlaps at most twice in the randomization IeveIs, once in 
each of the butterflies in EBn. The same holds for the i con- 
flicting paths associated with 2~1, . . . , Wi. Thus, there are at 
most 4c - 2 + 2~. 5 5c overlappings with these paths in the 
randomization levels.) 

Bounding the probability of occurrence of a pruned witness 
tree. We bound the probability of occurrence of a pruned witness 
tree via enumeration. Define the tree shape to be a description of 
the topoloa of the tree including the pruning and the conflicting 
nodes. Define an admissible witness tree configuration to be a tree 
shape with associated requests, up and down paths, and conflicting 
paths which eventually, i.e., for some setting of the random switch- 
ing, matches to a pruned witness tree. In particular, any admissible 
witness tree configuration has to fulfill the 5 properties above. 

Let 7 denote the set of tree shapes corresponding to at least one 
admissible witness tree configuration, and let XT denote the set of 
all admissible witness tree configurations with tree shape 2’ E 7. 
An admissible configuration K is said to be active if the outcome 
of the random switching corresponds to all paths of the configura- 
tion. Hence, each admissible configuration K has a probability to 
become active, which is just 2-pcK) with p(K) denoting the total 

number of randomly flipped switches covered by all paths of I<. 
As a consequence, the probability that the c-collision process takes 
more than t rounds can be bounded by 

c c p(K) 

TcT KEXT 
\ * J 

=: E(T) . 

We aim to give an upper bound on E(T), for a iiscd tree shape 
T E 1. E(T) is equal to the expected member of active witness 
free configurations with tree shape T. Note that the tree shape T 
only restricts the number of admissible configurations, that is, it 
defines the set XT, but does not influence the probability for a given 
configuration K E XT to become active. This probability depends 
only on p(K), and, hence, on the overlapping of the paths in the 
randomization IeveIs. 

In the following, we utilize Properties 2 and 5 that govern how 
paths may overlap to compute E(T). Instead of summing over all 
admissible configurations in XT and multiplying each individual 
configuration with its probability, we consider the nodes of the wit- 
ness tree one by one and calculate an upper bound on the expected 
number of configurations for each individual node. In particular, 
we consider first all the internal tree nodes and then all the pruning 
nodes; both sets of nodes are considered in the order of visitation, 

Define the configuration of an internal node vi to consist of the 
down path of v~i and the up paths of the children of vi, for 1 S i 5 
m. Furthermore, define the conjguration of a pnming node uy to 
be the down path of wi and the two paths belonging to the colliding 
request Of wit for 1 5 i < m’. A collection of node configurations 
is said to be admissible, if they are a subset of an admissible tree 
configuration. Note that a collection of admissible configurations 
for all internal and all pruning nodes (in conjunciion with the tree 
shape) completely defines the configuration of the witness tree. 

For an internal node vf and a collection K of contiyrations 
for the nodes VI , . . . , vi-1, let E&(vi, ZC) denote the espected 
number of active configurations for vi under the assumption that 
the configurations in K are active. Note that ZC already specifics 
the request associated with vt. (For the root VI we assume that I\’ 
specifies only this request.) Let Z&n(vi) be the masimum over all 
configurations K of Z&(Vi, K). 

Lemma 2.2 EC&(?&) < log n/c! . 

Proof. We bound the expected number of active configurations for 
vi by choosing the down path p of vi arbitrarily nnd then deriving 
an upper bound on the expected number of choices of active up 
paths PI , . . . ,pC of the children of vvt that fulfill Properties 1 and 2. 

The expected number of active down paths p is at most one. 
This is because, there are several different paths in BB,, that con- 
nect the two input and output nodes which are given by the conlig- 
uration K. However, at most two of them are active, and the con- 
figuration K determines which of them is the up path und which is 
the down path of vi. 

Given path p, there are d = log n possible choices for the col- 
lision edge at which the down path collides with pl, . . , , pC. Let c 
denote this edge and f? the level of this edge. \V.l.o.g., we assume 
thatd/2$-1<15d. 

We calculate an upper bound on the expected number of active 
UP paths PI , . . . , pC traversing e and fulfilling Property 2. Property 
2 ensures that pl , . . . , pC use only unrevealed random switches. 
Therefore, we assume for the following that all switches are un- 
revealed. Note that this does not decrease the number of admissi- 
ble configurations, and, hence, not decrease the expected number 
of active configurations for pl , . . . , pC. The main problem in cnl- 
culating the number of active configurations for ~1,. . , ,p, is to 
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handle overlappings among these paths and overlapping between 
lhcsc paths and the down path p in the randomization levels. 

The number of nodes on level 0 from which e can be reached 
in 2’-‘. We select an input node for each of the pi’s from these 
JIO~CS, The number of possible ways to choose these c nodes is 
(a’:‘) because the requests associated with the children of a node 
are ordered according to the ID’s of the input nodes. Let sl,. . . , se 
denote the source nodes of the paths pl, . . . ,pc on level 0 and 
dl = T(Q), * 4,) dc = n(sc) the destination nodes of these paths 
on level 2d, 

Next WC choose an intermediate destination d; for each path pt 
on node lcvcl d-l-l. For every pi, there arc (eventually) several pos- 
sibilities to choose these intermediate destination. However, inde- 
pendent from the other paths of the configuration of vi, the number 
of nctlvc destinations is at most one. Hence, the expected number 
of active Intermediate destinations is at most one. 

Now nssumc the intermediate destinations are fixed. Note that 
this also fixes the path from level d + .t to level 2d. It remains to 
consldcr the number of active configurations of c paths pi,. . . , pi 
such lhat pi connects si and di and traverses e. Paths pi,. . . ,pk 
nnd p do not overlap in the randomization levels. This can be shown 
as follows, If two paths share a random switch s then these paths 
arrive and leave s on different edges. Purthermore, these paths do 
not overlap at any other switch with distance less than d -I- 1 from 
n, Hence, two paths that traverse edge e cannot have used a random 
owltch with distance less than d-l- 1 from the two switches adjacent 
to c, nnd consequently, they cannot meet on a random switch on the 
levels 0 ,..,,d/2-lorthclevelsd-t-d/2$1,...,d+f?. 

The number of different paths connecting st with d; and travers- 
ing c in one, Thus, the number of admissible configuration for the 
pi’s is at most one. All paths in the admissible configuration do not 
share a randomly flipped switch with another path from the config- 
uration of ~1. Hence, the number of unrevealed random switches 
traversed by each of these paths is d/2 $ (d $ t) - (d + d/2) = .t. 
Except for the switch on level 0, all of these switches must corre- 
spond to the course of the respective path. The probability for this 
event is 2-(‘-‘). As a consequence, the probability that all Ic paths 
arc active hi at most 2-c’(e-1), 

Putting it nll together, the expected number of active configura- 
tions for II( Is 

d‘ Ze-l 

( > C 

, pv-‘1 5 ; ) 
C. 

which completes the proof of Lemma 2.2. I 

Now we give an upper bound on the expected number of the 
active configurations for the pruning nodes. For a pruning node 
1u( and a collection it’ of configurations for all internal nodes and 
the pruning nodes ~1,. , . , 2~1-1, let Eprune(~t, K) denote the ex- 
pected number of active configurations for wi under the assumption 
that all configurations in I< are active. Let Eprune(~f) be the max- 
imum over all configurations I< of Eprune(~f, I<). 

Lcmmn 23 Enruno(ref) < 25c+3 + (logn f l)/JZ . 

Prook’. The conflicting path p of pruning node UJU~ is either asso- 
ciated with the conflicting node U( or p or its buddy shares a ran- 
domly fljpped switch with a path associated to UY. The tree shape 
npecit’ies ~1, and the configuration I< fixes the request associated 
with ut, For any consistent setting of the random switches, the 
number of paths sharing a randomly flipped switch with the two 
paths belonging to this request is at most 2 * (logn + 1) (inclu- 
alve the two paths themselves). Consequently, for any setting of 
the swhchcs, the number of candidates for the collision request is 
nt most 2 * (log n + l), and, hence, the number of candidates for 
the collision path is at most 4 * (logn +i- 1). 

Now suppose the collision path is fixed. The down path of uri 
collides with this path. First, we assume that the collision is in 
level f?, with d/2+ 1 I -! 5 d. Let e denote the respective collision 
edge. There is at most one admissible course for the down path of 
Wi from its source node on level 0, which is determined by K, to 
the collision edge e. 

The course of the down path from level 0 to level e is deter- 
mined by tbe randomly flipped switches. Property 5 ensures that 
at most 5c of the switches traversed by the down path are shared 
witb other paths in K. Hence, at least 1- 5c of the randomly 
flipped switches determining the course of the path from level 0 
to level 1 are independent of K, and consequently, the probabil- 
ity that the down path of wi is equivalent to the only admissible 
path in these levels is 2 -‘+“. Summing over all collision levels 
k’, with d/2 + 1 I e 5 d, yields an upper bound on the probabil- 
ity that the switches along the collision path are set appropriately 
of 2--d/2csc. Since the same bound holds also for collisions when 
d + 1 5 e I 3d/2, the probability that the down path is equivalent 
to the only admissible path is at most 2-d’2+5c+1. As a conse- 
quence, the expected number of active configurations for wi is at 
most 2-d/2’5e+1 - 4 . (log n + 1) = 25c+3 . (log n + l)/&. B 

The bound for &,u(Vi) on the expected number of active con- 
figurations for an internal node Vi is independent of the configura- 
tions of the internal nodes ~1,. . . , Vi-l. Furthermore, the bound 
for Epmne(wi) on the expected number of active configurations 
for a pruning node wi is independent of the configurations on all 
internal nodes and the pruning nodes WI,. . . uri-I. Consequently, 
these bounds are independent estimations of expected values and 
can be multiplied in order to get an upper bound on the expected 
number of all configurations. Since the number of choices for the 
initial configuration K in E(vl, K) specifying the request associ- 
ated with the root is 71, we get the following upper bound on the 
expected number of active witness tree configurations. 

(3) 
,< n . pt+s . 

( 

25c+3 * (logn + 1) lc 

fi > 
< n-c/4+l+o(l) 

for 6 = rc/21 = 0 (log log n/ ldg log log n) and a suitably large 
t = 8 (loglogn/logloglogn). 

Equation 1 is an immediate consequence of Lemma 2.2 and 
Lemma 2.3. 

Equation 2 is based on tbe relationship between m and m’: The 
full witness tree includes c disjoint subtrees of height t - 1. For 
each of the m’ pruning nodes, some nodes from at most two of 
these subtrees are removed. Consequently, at least c - 2771’ of the 
subtrees remain untouched. Since each of them include at least 
‘-* C internal nodes, we get 

m~(c-22m’).C’-*>_(K-7n’).ct-* . 

Applying this equation and substituting c! = (1 -I- e) . log n yields 

logn m 
( > I I u+ 4 

-c*--2.()s-m’) 
C. 
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( 25c+3 - (log 92 + 1) h-m’ 
5 

6 > 
2 

fort I log, Iogr+,. n + 2 = Q(loglogn/logloglogn). 
Equation 3 results from a bound on the number of different tree 

shqes. In particular, there are at most 

K 
CC 

(c” - l)/(c- 1) 
j 

< pt 
j=O >- 

possible choices for the at most K pruning nodes among the (ct - 

WC - 1) internal nodes of the witness tree, and at most 

,t+1 _ 1 

( > 
,’ 

< @-l) 

c-l - 

possibilities to choose them’ conflicting nodes among the (@Or - 
l)/(c + 1) < ct+l nodes of the full witness tree. Since specifying 
these nodes completely determines the shape of the tree, the total 
number of different tree shapes is at most c~* + &+l) 5 c~~‘+~. 

We have already shown that &,, E(T) is an upper bound on 
the probability that the c-collision process takes more than t rounds. 
Hence, this probability is at most n --c’4+*+0t1). It remains to show 
that determining which paths become inactive each round can be 
done in time O(logn), with high probability. Recall that, in our 
model, this computation is accomplished by sending a packet back 
and forth along each active path through the nehvork using a store- 
and-forward algorithm. According to [23], such a computation can 
be done in time O(congestion + dilation), with high probability, 
using only constant size buffers at each edge. Note here that the 
congestion we wish to bound is the congestion caused using this 
store-and-fonvard scheme, not the congestion under the collision 
algorithm. However, this congestion is easily bounded. Let C de- 
note the congestion of all 2n paths. 

Lemma 2.4 C 5 o-log n/log log n, wifhprobability n-“+“(l). 

Proof. The congestion in the randomization levels is 1. Therfore, 
we only have to consider the collision levels. The probability that 
a fised collision edge is traversed by at least C paths is at most 
l/C!. This bound follows analogously to the proof of Lemma 2.2. 
Hence, the probability that one of the 2 - n - log n collision edges 
has congestion C is at most 

2 - n - log n - l/C! 5 n-a+ot’) , 

forC>cr-logn/loglogn. I 

Applying Lemma 2.4 yields that each round can be computed in 
time O(log n), with high probability. This completes the proof of 
Theorem 2.1. I 

2.2 Dynamic routing in BB, 

We now describe a simple algorithm that routes paths dynamically 
in the network BB,, where the dynamic model is specified as fol- 
lows. As before, a request is an input-output pair. An oblivious 
adversary specifies an infinite sequence 61, ~2, , . . of requests. The 
request Q must be handled at time step i. If at time i neither the 
input nor the output of ui is already locked, then the algorithm 
must establish and lock a path in the network between the input 
and output of og: This is an arrival. If a locked path between the 
input-output pair already exists, then the path is released: This is 
a departure. In all other cases the request may be ignored. That 

is, the algorithm only connects an input-output pair if neither is al- 
ready involved in a connection. Without loss of generality we may 
assume that the sequence of requests includes only valid arrival ond 
departure events. An input-output pair is said to esist at each time 
b between its arrival and departure. 
The minimum algorithm. To solve the dynamic routing problem 
on the two-fold butterfly BB,, we initialize BB, as in Section 
2.1. Let sf denote an arrival event. A path for the corresponding 
request ri is chosen as follows. For an edge e in the collision levels, 
define c(e) to be the number of paths that traverse e at time i. The 
algorithm examines the two paths p and p’ that connect the input 
to the output of ri. The congestion c(p) of a path p is detined to 
be mas,a,(c(e)). If c(p) 5 c(p’), path p is chosen for rcqucst rr; 
otherwise, path p’ is chosen. 

Theorem 2.5 At any time t, the probability that the corrgestiotl is 
greater than $(log log n) is at most n-e(‘08*0~ n), 

Proof. The proof is similar to that of Theorem 2.1. 
Constructing a witness tree. First, we fix the settings of the randomly- 
flipped switches. This determines two choices of paths for each rc- 
quest. Assume that there is an edge e with congestion larger than 
4c at some time t, where c = [log log nl, Let p denote the last 
path mapped to edge e on or before time t. When p was mapped 
to e there were already 4c other paths present at this edge. Let 
pl, . . . ,pdc denote these paths such that pr was mapped to e at 
time step ti with tr < tr+l. The root of the tree is the request 
corresponding to p and the requests corresponding to pl, . . . , psi0 
are its children. Now we consider the buddies pi,. . . , pit of these 
paths. Path pi traverses an edge with congestion at least i - 1 at 
time step tt, because the congestion of pi is not larger than the con- 
gestion of pi at time i, and when pi was mapped to e them were 
already i - 1 other paths present at this edge. As a consequence, 
we can construct a tree by applying the argument above recursively 
to PG , - - - ,PL 

The tree constructed above is irregular in that nodes have vary- 
ing degrees. However, it contains a c-ary tree of height c, which WC 
call the witness tree, with the following properties. 

l The node on level 0, i.e., the root, has c children that are 
internal nodes. 

l Each internal node on levels 1,. . . , c - 2 has two children 
that are internal nodes and c - 2 children that are leaves, 
and each internal node on level c - 1 has c children that are 
leaves. 

Pruning the witness tree. The pruning is done by a breadth-first 
traversal of the tree. We use the same definitions for B(v) and I’(v) 
as in Section 2.1. However, the pruning rules are slightly different. 
When a node u is visited, the following rules are applied. 

1. If a path associated with one of 2r’s non-pruned children tm- 
verses a randomly-flipped switch that is also traversed by a 
path associated with a node u from B(v) U l?(v) then all 
nodes below v are pruned. Node u is denoted the conflicting 
node of v. Note that the down path of v either shares a colli- 
sion edge with a path p that is associated with u, or it shares 
a collision edge with a path p such that p or its buddy shams 
a random switch with a path associated with U. This path p 
is denoted the conjpictingpath of v. 

2. Depending on the conflicting path p we apply a further prun- 
ing. For each node u E I’(v) such that either the input or 
output node of ‘u, coincides with the input or output node of 
path p, we prune all the nodes below u. The first pruning rule 
ensures that there is at most one request in B(v) U I’(v) in- 
cident on each input and output of the network, even though 
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the requests in B(u)Ur( v ) exist at possibly non-overlapping 
times. Thus, at most two nodes, call them 21 and u’, get 
pruned due to an application of this rule. Nodes u and TV’ 
arc detlned to be the conflicting nodes of v. (For simplic- 
ity, vie pretend that each pruning node v has two conflicting 
nodes u nnd u’; if this is not the case we simply set 21 and u’ 
to be the same node.) The second pruning rule ensures that 
Properties 4 and 5 as stated in Section 2.1 hold for the pruned 
witness tree - specifically, the down path of a pruning node 
cannot share more than two randomly-flipped switches with 
R given conflicting path. 

We continue the pruning process till either there are no more 
nodes to visit or there are K = j-c/31 pruning nodes. In the latter 
cnsc, we apply a linal pruning. If v is the &h pruning node, we 
remove from the tree all nodes not included in B(v) U l?(v). The 

remaining tree is called thepruhed witness tree. 
Ilounding the probability of occurrence of a pruned witness 
free, The terms tree shape, admissible configuration, and active 
cor&quruliorr are defined as in Section 2.1. Let ‘T denote the set of 
all tree shapes, and, for T E T, let E(T) denote the expected 
number of active witness tree configurations with tree shape T. 
Let vr, , , , , urn be the m internal nodes of T. Furthermore, for 
n collection K of configurations for the nodes VI,. . . , ~1-1, let 
Z&ca~t(~t, I<) denote the expected number of active configurations 
for vt under the assumption that I< is active, and let E,a(vr) de- 
note the maximum over all configurations K of &,,u(vf, K). 

Lemmn 2.6 EC,,!1 (vi) 5 log n/c! . 

Proof, The proof is identical to that of Lemma 2.2, since the 
pruned witness constructed here fulfills Properties 1 and 2 as stated 
in Section 2.1. I 

IAWl,..,, W,I denote the m’ pruning nodes of T, and let tli 
and n{ denote the conflicting nodes associated with WG For a col- 

where n = [$I = 8 (loglogn). 
Equation 1 follows from the relationship between m and m’: 

Each of the c children of the root of the full witness tree is a root of 
a subtree with 2”-’ - 1 internal nodes. For each of the m’ pruning 
nodes, nodes from at most 3 of these subtrees are removed. Thus, at 
least c- 3m’ of the subtrees remain untouched. As a consequence, 

m 2 (c- 3m’) . (2’-’ - 1) 2 (K - m’) . (2’-’ - 1) . 

Applying this equation and substituting c = [log Iogral yields 

logn m (4 
K-d 

1 
~ 2-(2C-‘-l).(K-m’) < 25c+3 - (logn + 1) 

- 
C. ( fi > 

for sufficiently large n. 
Equation 2 results from a bound on the number of different tree 

shapes. In particular, there are at most 

possible ways of chooosing the at most K pruning nodes from the at 
most c - 2’-’ internal nodes of the witness tree. Furthermore, there 
are at most 

(c2s2c-1)2~' I p*.p--1).2x 

possibilities to choose the 2m’ contlicting nodes from the at most 
c2 .2’-’ nodes of the full witness tree. Multiplying the bounds 
yields that the total number of different tree shapes is at most co” l 
23CA 

This completes the proof of Theorem 2.5. Ii 

3 A proposal for a data server 

lection I< of contigurations for the nodes vr, . . . , urn and ‘~1, . . . , wf-1, We present an application of our techniques to the data server archi- 
let ,!$rm,no(w~, 1~7) denote the expected number of active configu- 
rations for wt under the assumption that K is active. Furthermore, 
let &,n(wt) denote the maximum over all configurations K of 
&oll(l/h IO* 

Lemma 27 IZpruno(wf) < 2cc+3 v (log n f l)/fi . 

Proof, The pruned witness tree described above fulfills Properties 
3, 4 and 5 stated in Section 2.1. Hence, the proof of Lemma 2.3, 
which is bancd only on these three properties, holds also for this 
lemma, I 

The probability that the congestion exceeds 4c is at most the 
probability that a pruned witness tree. exists, The latter probability 
lo at most 

tecmre proposedin the introduction. For each input node a’, let 01 
be the object requested by the user at input node i of the randomly- 
wired butterfly RB,,. We assume that oi # oj for a’ # j. Each 
object is stored on two disks: the first disk is chosen uniformly 
and randomly from the first n/2 disks, while the second disk is 
chosen uniformly and randomly from the last 7~/2 disks. We call 
the two instances of object oi the copies ofoi. For an object of, 
let dr(oi) and da(or) be the disks storing the copies of of. As in 
Section 2, we define two paths p and p’ starting at input node a’: p 
connects input node i with output node dr(oi), and p’ connects a’ 
with &(or). Since the copies of object oi are located in different 
sub-butterflies, p and p’ are edge disjoint paths. Unlike Section 2. 
we must minimize not only congestion, but also the contention at 
the output nodes, i.e., the maximum number of requests any disk 
has to serve. 

< n-c/wto(') 
, 

3.1 Static routing 

For the static selection of paths we use a modified version of the 
collision protocol of Section 2. Initially, all paths are active and 
not selected. For a path p connecting input node a’ and output node 
&(o~), k E {1,2}, let A(p) be the destination of p. A path p is 
selected if for each edge e E p the number of active paths plus the 
number of selected paths traversing e is at most e, Md the number 
of active paths plus the number of selected paths with destination 
A(p) is at most E If p and its buddy p’ are both eligible to be 
selected, one is chosen arbitrarily. A path p ceases to be active in a 
round if p is selected or the buddy of p, p’, is selected in that round. 
The algorithm terminates when there are no more active paths. 
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Theorem 3.1 For any E 2 5 and c! 2 2 log n, the probability that 
the collision algorithm on RBn takes more than t = log, log(n/ log n) 
rounds to select a path for evev request is at most n-E’2+1+0(1). 

Proof. The proof is similar to that of Theorem 2.1 in Section 2.1. 
Constructing a witness tree. For each input node i fix its re- 
quested object oi. Fix the random permutations no and ~1 used to 
define the randomly-wired butterfly RB,,, and fix the random disks 
dl(oi) and &(oi), for i = 0,. . . , n - 1. For each request, this de- 
termines two paths. We say that two paths p and fi edge-collide, 
if p and fi both traverse an edge e. They are said to disk-collide if 
p and fi have the same destination node on the output level. ‘%o 
paths that either edge- or disk-collide are said to simply collide. 

Assume that there is a request with paths p and p’, and nei- 
ther path has been selected by round t, where the value of t is 
to be determined later. Then p either edge-collided with c other 
paths Pl,..., pc in round t or p disk-collided with E other paths 
pl , . . . , pa in round t. If p is involved in an edge-collision (resp., 
disk-collision), the root of the witness tree is the request corre- 
sponding to p and the requests corresponding to pl , . . . , pc (resp., 
pl, . . . , pa) are the children. Now pl, . . . ,pC (resp., pl, . . . ,pe) 
and their buddies pi,. . . ,pi (resp., pi,. . . ,pk) must have bezn ac- 
tive in round t - 1. Applying the same argument recursively to 

, 
PI ,..., P’C (rev.. pi ,... , pi) we can construct a tree of height t. 
This tree is called wifness tree. 

Each node in the witness tree is a request with two paths, a 
down path and an up path. Some nodes in the tree corresponding to 
disk collisions have degree c while others corresponding to edge 
collisions have degree c >_ E The rightmost c - E children of a 
node representing an edge collision are called supefluous nodes. In 
order to bound the number of nodes in the witness tree, all subtrees 
rooted at a child of a superfluous node are removed. (we will not 
refer to this as “pruning’ in the sequel.) Note that a superiluous 
node does not represent a collision. 
Pruning the witness tree. As in Section 2.1, the nodes of a witness 
tree do not necessarily correspond to distinct requests. However, 
the situation here is less complex because there are no randomly- 
flipped switches that could be shared by different paths. Thus, it is 
sufficient to ensure that the requests in the pruned witness tree are 
distinct. 

The pruning is done by a breadth-first traversal of the witness 
tree. Let B(w) and l?(v) be defined as in Section 2. When a node v 
is visited, we use the following pruning rules: 

1. If a path associated with one of v’s non-pruned children is 
also associated with a node u in l?(v), then the subtrees rooted 
at the children of u are removed from the tree, and tha sub- 
trees rooted at the children of u are also removed from fhe 
tree. The node w is called a pruning node. The node u is 
denoted the conjicting node of v. 

2. If a path associated with one of v’s non-pruned children is 
associated with a node u from B(w) then the subtrees rooted 
at the children of v are removed from the tree. The node v is 
called apruning node. The node u is denoted the conflicting 
node of v. 

We continue the pruning process till either there are no more 
nodes to visit or there are ti = [$I pruning nodes. In the latter 
case, we apply a final pruning. If u is the Hth pruning node, we 
remove from the tree all nodes not included in B(v) U l?(v). This 
effectively stops the pruning process at the Kth pmning node. The 
remaining tree is called the pruned witness tree. 

Let .uu1,..., w,,, be the m internal nodes and let WI,. . . , W~I 
be the m’ pruning nodes in the order of visitation. Further, let ui 
denote the conflicting node of wi, for 1 5 i 5 nz’. The pruned 
witness tree possesses the following properties: 

Any internal node v represents a collision of the down path of 
2) with the up paths of the children of w. The down path of a 
pruning node w collides with a path p that is associated with 
its conflicting node U. The path p is called the cottflictins 
path of w. 

All nodes of the tree correspond to different requests. In par- 
ticular, pruning node wt does not represent the same request 
as a conflicting node uj, 1 5 j 5 i. 

Bounding the probability of occurrence of a pruned witness 
tree. We define the tree sbpe to be a description of the topology 
of the pruned tree including the degree (c or Z) of the inner nodes, 
the pruning and the conflicting nodes. An admissible witrress tree 
conjiguration is a tree shape with associated requests, up and down 
paths, and conflicting paths, which eventually, i.e. for some sct- 
ting of the random permutations defining the RB, and the random 
choices for the &(ot), &(o& 0 5 i 5 n - 1, matches a pruned 
witness tree. In particular each admissible witness tree configura- 
tion has to fulfill the two properties stated above. An admissible 
configuration is active if the outcome of the random choices corrc- 
sponds to all paths in the configuration. 

The set of tree shapes corresponding to at least one admissible 
witness tree configuration is denoted by 7. As in Section 2.1, we 
bound the expected number of active witness tree configurations 
E(T), for an arbitrary T E 7. Let &II and Epruno be as defined 
in Section 2.1. 

Lemma 3.2 J&,u(v~) 5 max{ 9, $}. 

Proof. We first bound the expected number of active confiyra- 
tions for vi representing an edge collision. In this case vi has c 
children. Fix the random permutation ~0 and ~1 used to define the 
randomly-wired butterfly. 

The expected number of active down paths for vi is at most one. 
Given path p, there are d = log n possibilities to chose an edge e 
at which p collides with the up paths ~1,. . . ,pc of the children 
of wi. Let e be the level of e. Since ~0 and ~1 are fixed, there 

are at most (2’,-‘) p ossibilities to chose c paths possibly attaining 
e. Depending on the random choices of the destinations each such 
path attains e with probability 2 -@-‘), Thus, the expected number 
of active configurations for vi is 

2e-i 

de c ( > 

.2-4w < d 
- cl 

Similarly, the expected number of active configurations for 211 rep- 
resenting a disk collision (vi has E children) is bounded by 

n 2” p 

0 (1 B 
a- <-, 

n - El 

since there are n paths possibly having the same destination as the 
down path of vt and each such path actually has this destination 
with probability 2/n. n 

Lemma 3.3 Epruno(wf) < d/n. 

Proof. Let ui be the conflicting node of w(. Assume that W( 

represents an edge collision. Since ~1 is associated with 2 paths, 
there are 2d possibilities to choose the edge e on which the collision 
takes place. We distinguish two cases. If the up path p of w[ WCS 
a cross edge in level 0, then its buddy p’ starts by using a straight 
edge in level 0. Thus the level 1 node attained by p’ is a random 
node. If p uses a straight edge in level 0, then p’ uses a cross edge 
in level 0, and thus attains a random node in level 1. 
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In the level5 subsequent to level 1, the course of the down 
path p’ of ‘WI depends only on the random choice of its destina- 
tion A(#), hence at every level p’ attains a random edge and thus 
the probability for p’ to collide with edge e is 1/(2n). As a con- 
oequcncc the expected number of active configurations at pruning 
node w( ia nt most 2d l & 

Now, assume that wi represents a disk collision. Then let A(p) 
be the destination of the down path p of wt. The probability for the 
paths associated to 211 to have destination A(p) is l/n. Thus the 
cx ected number of active configurations at wt is at most 2/a 5 
d P n, if d 2 2, 

I 

A5 In Section 2.1 we proceed by bounding the expected number 
of active witness tree configurations. 

m ln’ 

Tt27 Tel- f=l j=l 

Bquntion 1 follows from a bound relating m and m’. Equation 2 is 
obtained by bounding the number of trees in 7, taking into account 
the fact each internal tree node can either represent an edge colli- 
oion or n disk collision, Both of these bounds are derived in a fash- 
ion olmilnr to their counterparts in Section 2.1. Equation 3 follows 
from the fact that t = log, lo&/d) and mm{?, $} < l/2. 

I 

3.2 Dynamic routing 

Model dcacription. The model is similar to the adversary model 
uoed In Section 2.2. An oblivious adversary constructs an infinite 
Gcquence of events, where each event is either an input requesting 
an object or nn input releasing an object. At any given time each 
object Is accessed by at most one input, and each input accesses at 
most one object. 
The mlnlmum algorithm. Let a request (i,o) arrive at time t, 
where i is an input node and o is the object requested by i. For an 
edge c, detinc c(c) to be the number of paths that traverse e at time 
t, and Z(i) to be the number of paths with destination i at time t. 
(We lenvc the t implicit as the meaning will be clear.) The conges- 
tion c(p) of a path p is defined to bemax{max,&c(e)), e(A(p))}, 
where A(p) is the destination of p. The algorithm examines the two 
pnths p and p’ that connect input node i with the two output nodes 
(11(o) and dz(o) that store object o. The request is fulfilled by p if 
c(p) g c(p’), otherwise the request is fulfilled by p’. 

Thcorcm 3.4 At any time t, the probability that the congestion ex- 

cecds Q(log log n) is at most n-‘(‘Og log n). 

ProoP, A5 in Section 3.1, we construct a witness tree obeying 
the moditlcntlons made in Section 2.2 to the witness tree construc- 
tion of Section 2.1. We prune the tree using the rules in Section 
3.1 (moditled ns in Section 2.2) using at most K = [c/31 pruning 
nodes, The proofs of the following lemmas are similar to the proofs 
of the corresponding lemmas in Section 3.1. 

Lemma 3.5 E,ll(Vf) < logn/c!. 

Lemma 3.6 Epmne(wf) _< d - +. 

Finally, we bound the probability that the congestion exceeds 4c, 
where c = e(log log n), by bounding the probability that a pruned 
witness tree exists. 

(21 n.c4” .zzus. 14 lc 
0 n 

,< n-c/3+l+o(l), 

where Equations 1 and 2 are justified as in Section 2.2. I 
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