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Randomized Pursuit–Evasion in a
Polygonal Environment

Volkan Isler, Student Member, IEEE, Sampath Kannan, and Sanjeev Khanna

Abstract—This paper contains two main results. First, we revisit
the well-known visibility-based pursuit–evasion problem, and show
that in contrast to deterministic strategies, a single pursuer can lo-
cate an unpredictable evader in any simply connected polygonal
environment, using a randomized strategy. The evader can be ar-
bitrarily faster than the pursuer, and it may know the position of
the pursuer at all times, but it does not have prior knowledge of
the random decisions made by the pursuer. Second, using the ran-
domized algorithm, together with the solution to a problem called
the “lion and man problem” as subroutines, we present a strategy
for two pursuers (one of which is at least as fast as the evader) to
quickly capture an evader in a simply connected polygonal envi-
ronment. We show how this strategy can be extended to obtain a
strategy for a polygonal room with a door, two pursuers who have
only line-of-sight communication, and a single pursuer (at the ex-
pense of increased capture time).

Index Terms—Dynamic noncooperative game theory, path plan-
ning, pursuit–evasion games, randomized algorithms.

I. INTRODUCTION

PURSUIT–EVASION games are among the fundamental
problems studied by robotics researchers. In a pursuit–eva-

sion game, one or more pursuers try to capture an evader who,
in turn, tries to avoid capture indefinitely. A typical example is
the homicidal chauffeur game, where a driver wants to collide
with a pedestrian, and the goal is to determine conditions under
which he can (not) do so. Among the numerous applications of
this game are collision avoidance and air traffic control.

Recently, there has been increasing interest in developing pur-
suit strategies (which incorporate sensing limitations) to cap-
ture intelligent evaders contaminating a complex environment
[3]–[5]. The main ingredient of a pursuit–evasion game is the
presence of an adversarial evader who actively avoids capture.
Due to this aspect, a pursuit strategy is usually different from

Manuscript received July 27, 2004; revised December 22, 2004. This paper
was recommended for publication by Associate Editor D. Fox and Editor I.
Walker upon evaluation of the reviewers’ comments. The work of V. Isler
was supported in part by MURI under DAAH-19-02-1-03-83. The work of
S. Kannan was supported in part by the National Science Foundation under
Grant CCR0105337 and in part by the Army Research Office under Grant
DAAD19-01-1-0473. The work of S. Khanna was supported in part by an
Alfred P. Sloan Research Fellowship and in part by the NSF under Career
Award CCR-0093117. This paper was presented in part at the Workshop on
Algorithmic Foundations of Robotics, Utrecht/Zeist, The Netherlands, July
2004.

V. Isler is with the Center for Information Technology Research in the Interest
of Society (CITRIS), University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: isler@eecs.berkeley.edu).

S. Kannan and S. Khanna are with the Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
kannan@cis.upenn.edu; sanjeev@cis.upenn.edu).

Digital Object Identifier 10.1109/TRO.2005.851373

a search strategy, where the target’s motion is independent of
the pursuer’s (e.g., [6], [7]). Obtaining such pursuit strategies is
important for surveillance applications, where we would like to
locate, and perhaps capture, intruders who may be adversarial.
Another application is a search-and-rescue operation, where we
would like to save a victim. In this setting, even though the
victim is not adversarial, a pursuit strategy is still desirable, as
it guarantees a rescue, regardless of the victim’s actions.

To model the adversarial nature of the game, pursuit–evasion
games are usually studied in a game-theoretic framework [8],
[9]. The conditions under which the pursuer can capture the
evader are obtained by studying a Hamilton–Jacobi–Isaacs
equation which brings together the system equations of the
pursuer and the evader. This approach has the advantage of
yielding a closed-form solution of the game. Unfortunately,
as the environments get complicated, solving Hamilton–Ja-
cobi–Isaacs equations becomes intractable. Therefore, solutions
of pursuit–evasion games in complex environments are usually
algorithmic.

Perhaps the most well-understood game in this context is
the visibility-based pursuit–evasion game, where one or more
pursuers try to locate an evader in a polygonal environment
[10]–[12]. In this game, the evader is very powerful: it has un-
bounded speed and global visibility, meaning that it knows the
location of the pursuers at all times. In [4], the authors study
a similar game in a probabilistic framework (where the evader
performs a random walk), and propose a greedy algorithm.

In this paper, we propose randomized pursuer strategies for
the visibility-based pursuit–evasion problem. Randomization is
a powerful technique which allows us to solve many problems
that are not solvable by deterministic algorithms, and has found
widespread applications in many areas, ranging from computa-
tional geometry to cryptography.

As we show in the following sections, it turns out that
randomization provides a drastic increase in the power of
the pursuers. For example, it is known that there are simply
connected environments where pursuers are required
[12] in order to locate the evader with deterministic strategies.
Here, denotes the number of vertices of the polygon. In
contrast, we show that a single pursuer can locate the evader
in any simply connected environment with high probability,
even if the evader knows the pursuer’s location at all times and
has unbounded speed (Theorem 2). The power of randomized
strategies comes from the fact that the evader has no prior
knowledge of the random decisions inherent in such strategies.
It is worth noting that randomized strategies work against any
evader strategy, and require no prior information about the
strategy of the evader.

1552-3098/$20.00 © 2005 IEEE
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Fig. 1. Single pursuer cannot capture an evader using deterministic strategies.

We also address the harder task of capturing the evader. For
this problem, we present a strategy for two pursuers, one of
which is at least as fast as the evader. The strategy is based on
the randomized strategy to locate the evader and the known solu-
tion to a problem called the “lion and man problem” [2], which
is reviewed in Section III-A. The same strategy can be used to
capture the evader while protecting a door. This problem was in-
troduced in [13] to model scenarios where the goal is to locate
the evader, which may leave the polygonal area through a door
and win the game.

The two-pursuer strategy can be modified so that a single pur-
suer can also capture the evader. However, the expected time-to-
capture in this case, though finite, may be significantly longer
than the expected time-to-capture with two pursuers.

Organization of the Paper: We start the paper with a mo-
tivating example for randomized strategies (Section I-A). We
present preliminary concepts and definitions in Section I-B. In
Section II, we address the problem of locating a fast, unpre-
dictable evader with global visibility.

Next, in Section III, we address the task of capturing the
evader in a simply connected environment. For this problem, we
present a randomized strategy for two pursuers, who can com-
municate at all times, to quickly capture the evader. We show
how this strategy can be modified for a single pursuer, at the ex-
pense of increasing the capture time, in Section IV-A. We also
present extensions of the basic two-pursuer strategy for the case
where the pursuers have limited communication (Section IV-B),
and for a scenario where the polygonal room has a door through
which the evader can escape (Section IV-C).

A. Randomized Strategies

The power of randomization in the context of pursuit–evasion
games is nicely illustrated by the example in Fig. 1. A similar
example can be found in [14].

In this example, a single pursuer can never locate the evader
using a deterministic strategy. Let us distinguish four regions

, and , as shown in the figure. Now suppose the pur-
suer has a deterministic strategy of visiting these regions in the
order . In this case, the evader can first hide at
and escape to while the pursuer is visiting . Afterwards,
it can repeat the same strategy and escape to while is at

. If visits the regions in a different order, it is easy to see
that can find a similar strategy to avoid . Therefore, in this
polygon, one pursuer can never locate the evader.

An alternative interpretation of this situation is the following.
Suppose the polygon in Fig. 1 is contaminated with many

evaders executing all possible evader strategies. There is no de-
terministic pursuer strategy that guarantees that all the evaders
will be caught; for any given deterministic pursuer strategy,
there will be at least one evader which can avoid being located
forever.

Now consider the following randomized strategy. Instead of
committing to a deterministic strategy, moves to the center
of the polygon and selects one of the regions uni-
formly at random and visits it. It is easy to see that if guesses
the region where is located correctly, then cannot escape,
and the probability of this desired event is . The crucial
observation is that since does not know which region will
visit, it cannot choose a strategy based on the order of points
visited by .

The probability of locating the evader can be made arbitrarily
small by repeating the same strategy a few times. If is the
number of trials, the probability of missing in all trials is

in this example, which decreases exponentially with .
In general, if the probability of capture is , the expected number
of rounds to capture is . Note that each round is indepen-
dent. We can obtain the expected time to locate the evader as fol-
lows. Since the length of a round is bounded by the time to travel
between the two furthest points in the polygon (say, ), the ex-
pected time to capture is . By repeating the experiment
roughly times, we can show (using the Chernoff
bound) that the pursuer has a high probability of locating the
evader. For details of this analysis, the reader is referred to [15].

B. Preliminaries

Let be the input polygon, including its interior, and be the
set of vertices of . The letter denotes the number of vertices
of the polygon. Two points can see each other if the
line segment lies entirely in .

We use to denote the length of the shortest path from
to that remains inside . The shortest path has the following

property.
Property 1: The shortest path between any two points and
inside a polygon is a polygonal path whose inner vertices

are vertices of .
The shortest path tree from a point in is defined as

, where denotes the shortest path from
to . A polygon is simply connected if any simple closed curve
inside the polygon can be shrunk to a point. In other words, a
simply connected polygon does not contain any “holes.” All
the polygons considered in this paper are simply connected.

The triangulation of a polygon is a decomposition of the
polygon into triangles by a maximal set of nonintersecting diag-
onals (see Fig. 2). The dual of a triangulation is a graph whose
vertices correspond to the triangles. There is an edge between
two vertices if the corresponding triangles share a side. It is well
known that the triangulation of a simply connected polygon has
exactly triangles. In addition, the dual of the triangulation
is a tree [16].

Game Formulations: In this paper, we study two pur-
suit–evasion games with different objectives. Both games take
place in a simply connected polygon , which is known to all
players.
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Fig. 2. Triangulation of a polygon and its dual tree.

The first game, which we call the locating game,1 is defined
as follows.

It is played between an evader and a single pursuer. An evader
trajectory is a continuous function , such that

denotes the evader’s position at time . The pursuer tra-
jectory, , is defined similarly. The pursuer moves with unit
speed so that . The diameter of the polygon , de-
noted , is defined as . Since the pur-
suer moves with unit speed, the diameter is also equal to the
maximum amount of time it takes the pursuer to travel between
two points in . The evader can be arbitrarily faster than the
pursuer, but it must move continuously.

After the game starts, the players can observe their surround-
ings continuously. Further, at any given time , the pursuer’s
location is revealed to the evader. Therefore, the evader’s
strategy is a function of both the environment and the pursuer’s
trajectory. Since the pursuer does not observe the evader until
the end of the game, a pursuer strategy is a function of only the
environment. The pursuer wins the game if, in finite time , he
can reach a position such that sees . The evader wins
the game otherwise, i.e., if for any given pursuer strategy, there
exists a strategy for the evader to avoid being seen by a pursuer
forever.

We assume that in both games, the evader knows the strategy
of the pursuer(s) before the game starts. However, it does not
have access to the outcome of the random coin tosses during the
execution of the pursuer’s strategy. The pursuer, on the other
hand, knows nothing about the evader’s strategy.

The second game is called the capture game and is defined
as follows. Let denote the evader’s and denote the th
pursuer’s trajectories, as before. Instead of finding the evader,
the pursuers win the capture game if in finite time , they can
reach a position such that there exists an with .

In this game, one of the pursuers is as fast as the evader.
Without loss of generality, we assume that .
Similar to the locating game, the players observe their surround-
ings continuously, and at any given time , the pursuers’ location

is revealed to the evader.
Unlike the previous game, we assume that the players move

in discrete time intervals and in turns; the evader first, followed

1The general version of this game is known as the visibility-based pur-
suit–evasion game [12].

Fig. 3. Intuitive explanation of the pursuer strategy. Each component is
displayed with a different color. While the pursuer is at �, the evader cannot
move from one component to another. Further, when the pursuer moves to� ,
he can restrict the game to a smaller polygon.

by the pursuers. It is easy to see that a pursuit strategy that cap-
tures the evader in this formulation can be modified to a pursuit
strategy which guarantees that a pursuer can reach a point
within unit distance from the evader in a game where the players
move continuously and simultaneously. It is interesting to note
that for 25 years, the basic lion’s strategy for the discrete-time
formulation (Section III-A) was believed to be sufficient to cap-
ture the evader in the continuous formulation, as well. However,
in 1952, Besicovitch showed that this is incorrect and that the
evader can escape. In [17], Littlewood shows how this result can
be generalized, and that it is not possible to capture the evader
in the continuous formulation (see also [18]).

II. LOCATING THE EVADER

In this section, we study the locating game and show that
for any simple polygon , the pursuer can locate the evader in

expected time.

A. The Pursuer Strategy

The pursuer strategy to locate the evader uses the acyclic
structure of the triangulation dual of a simply connected
polygon. Intuitively, it relies on the the following observation.
Let be the triangle that contains the pursuer’s current location
(see Fig. 3), and suppose is nonleaf, i.e., has more than one
neighbor. Since the triangulation dual is a tree, it is easy to see
that is a separator. Removing it from the polygon results
in smaller, disconnected polygons, called components. This
implies that the evader cannot move from one component to
another while the pursuer is located at without revealing
itself.

The second observation is that the pursuer can not only pre-
vent the evader from moving between components, but also re-
strict the game to a smaller polygon. While the pursuer is at ,
let , and be the components, such that the evader is
located in . Let be the neighbor of in . If the pursuer
moves to , he can restrict the game to , as the evader will
not be able to move to any triangle not contained in .
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Fig. 4. Choosing the next triangle within a round (Lemma 1).

Therefore, had the pursuer known the subtree that contains the
evader, he could gradually move toward it, trapping the evader
in smaller and smaller components. This process guarantees that
the pursuer can enter the triangle which contains the evader, and
this clearly implies that the evader would be located.

The main difficulty in implementing the strategy above is
that the pursuer does not know the component that contains the
evader. In what follows, we show how the pursuer can use ran-
domization to tackle this difficulty.

The pursuer strategy is divided into rounds. Each round lasts
at most time units.2 The pursuer will start the round at
a leaf triangle and end the round at another leaf triangle.3

Let be the pursuer’s triangle at the beginning of the round
and be the triangulation tree (see Fig. 2) rooted at . Within
the round, the pursuer will visit triangles , where

is chosen from among the children of as follows. When
the pursuer is at , let be the immediate children
of (see Fig. 4). For each child , let denote the number of
leaves of the subtree rooted at . Let . The next
triangle, , is chosen randomly from among the children
according to the following distribution. The probability that
is chosen for is . After choosing the next triangle

, the pursuer moves there. If he arrives at a leaf triangle,
the round is over. Otherwise, the pursuer continues the round
by picking one of the children of as described above.

Next, we show that using this guessing strategy, the pursuer
efficiently locates the evader.

Lemma 1: At each round, if the pursuer follows the guessing
strategy described above, he can locate the evader with proba-
bility at least , where is the total number of leaves of
the triangulation tree .

Proof: The lemma is proven by induction on the height
of . The basis, where the height is zero, corresponds to the
case where the input polygon is a triangle. The pursuer trivially
locates the evader with probability 1 in this case.

Let be the probability that the evader is located within
a round, after the pursuer visits the triangle . We inductively
assume that the lemma is true for all trees of height less than or
equal to .

Given a triangulation tree of height , the probability of
success starting from the root is

(1)

2Note that the pursuer has unit speed.
3When the game starts, if the pursuer is located at a nonleaf triangle, he moves

to an arbitrary leaf before starting the first round.

TABLE I
PURSUER’S STRATEGY FOR LOCATING THE EVADER. PLEASE REFER

TO FIG. 4 AND LEMMA 1 FOR NOTATION

Note that for all , the subtrees rooted at the immediate chil-
dren have height at most , therefore, by the inductive hy-
pothesis, we have for all , and the lemma
follows.

Clearly, the number of leaves of any triangulation tree is less
than the number of vertices of the polygon, therefore, at each
round, the evader is located with probability at least .
Moreover, since the length of a round is , we have the
main result of this section in the following theorem.

Theorem 2: In any simply connected polygonal environment
, against any evader strategy, the expected time to locate the

evader with a single pursuer is at most , where
is the number of vertices and is the diameter of the
polygon.

The strategy for finding the evader is presented in Table I.
Remark 1: Any simply connected polygon can be partitioned

into a minimum number of disjoint convex polygons in polyno-
mial time [19], [20]. The dual of such a partition will also be a
tree. Therefore, instead of using a triangulation dual, the pursuer
can execute the strategy described above using the dual of the
convex partition. However, in general, this does not improve the
expected capture time. For example, for the polygon shown in
Fig. 5, the number of leaves of the triangulation dual is equal to
the number of leaves of the dual of a minimum convex partition.

Remark 2—Multiply Connected Environments: The strategy
presented in this section requires the triangulation dual to be a
tree, and therefore, it does not hold for multiply connected envi-
ronments. To obtain an upper bound on the number of pursuers
required for deterministic strategies, in [12] the following tech-
nique is presented. For an environment with holes,
pursuers are used to reduce the environment into simply con-
nected components. An additional pursuers are used
to deterministically clear each simply connected component.
This yields an upper bound of pursuers. Using
the same technique, we can establish an improved

bound for randomized strategies. Using pursuers,
we partition the environment into simply connected poly-
gons . After partitioning the environment, we use an
extra pursuer to locate the evader. The strategy of this pursuer
is as follows. Pick a simply connected polygon from among

, uniformly at random. Execute one round of the ran-
domized strategy on . The probability of success is easily seen
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Fig. 5. For any randomized pursuer strategy, the expected time to capture the
evader in this star with hooks is O(n � diam(P )).

to be , and therefore, the expected time
to capture the evader is .

B. Lower Bounds

One might suspect that the expected time to locate an evader
can be improved using a more sophisticated strategy. Unfortu-
nately, this is not possible. The polygon in Fig. 5 is a -star with
hooks attached at the end of each spike (in the figure, ).
The evader’s strategy is to choose a hook at random and hide
there until the end of the game. In order to locate the evader,
the expected number of spikes searched by the pursuer is ,
and it takes steps to travel from one spike to another.
Since the number of vertices is a constant multiple of , the time
it takes to locate the evader is . In fact, using the
well-known technique of Yao, this argument can be extended to
show that the expected time to locate the evader for any random-
ized pursuer strategy is (see [15] for details).

We present the results of a simulation of the pursuer’s and
evader’s strategy for such an environment in Fig. 6. For the
simulation, the visibility-based pursuit–evasion game was
played 1000 times. The average number of rounds for locating
the evader is 8.9. This is in agreement with Lemma 1, since the
number of the leaves of the triangulation dual is nine.

On the other hand, the randomized strategy may not be op-
timal for some environments. The simplest example of such an
environment is a star-shaped polygon, such as the one shown in
Fig. 7. In this environment, the optimal strategy is to go to a point
(e.g., in the figure) from where the entire polygon (hence, the
evader) will be visible.

III. CAPTURING THE EVADER WITH TWO PURSUERS

In this section, we move on to the more challenging task of
capturing the evader, defined as moving to the same point as the
evader. We start by presenting a pursuit strategy for two pursuers
(who can communicate at all times) to capture the evader. Later,
we will show how to modify this strategy to obtain a strategy
for two pursuers who have only line-of-sight (LOS) communi-
cation, and a single pursuer (at the expense of increasing the
expected capture time).

The strategy of one of the pursuers is based on the solution to
a problem known as the lion and man problem [2]. We present an

extension of this strategy in the case of a (possibly nonconvex)
polygonal environment. One of the major difficulties for our
pursuers is that the evader may not be visible at all times, in
which case, the lion’s strategy is not well defined. The second
pursuer will use the strategy presented in the previous section to
tackle this difficulty.

We start with a review of the lion’s strategy.

A. Lion and Man Problem

The lion and man problem with discrete time in the nonneg-
ative quadrant of the plane is attributed to Gale [21]. Let the
initial positions of the lion and man be and

, respectively. In each round, first the man moves
to any point in the quadrant at distance at most one from his cur-
rent position, and then the lion does the same. The lion wins if he
moves to the current position of the man. The man wins if he can
keep escaping for infinitely many rounds. In [2], Sgall proves
that when both and , the lion always catches
the man in a finite number of rounds (in remaining cases, the
man wins the game). The number of moves required is bounded
by a quadratic function in and the slope (or its inverse) of
the line segment .

B. Lion’s Strategy

Let the initial positions of the lion and man be
and , respectively. In the beginning of the game,
the lion finds a point on the line , such that is inside
the segment and the circle with center , radius ,
and passing through intersects both axes. Among all possible
such circles, it chooses the one whose center is closest to the
origin. remains fixed throughout the game.

Let and denote the current positions of the lion and the
man, respectively (see Fig. 8). Let denote the point the man
moves to, . If , the lion catches the man.
Otherwise, it moves to a point on the line , such that

. There are two such points, and it chooses the one
closer to the man.

Definition 5: We will refer to this move as the lion’s move
from with respect to and (Fig. 8).

The lion’s move maintains the following lemma.
Lemma 6 [2]: If the lion does not catch the man in the current

move, then:

1) has both coordinates strictly smaller than ;
2) is inside the segment ;
3) .

Proof: See [2].

C. Strategy to Capture the Evader

Let , and denote the locations of the pursuers
and the evader, respectively, at time . In the beginning of the
game, the two pursuers move together and search for the evader
using the strategy described in the previous section. Without
loss of generality, we assume that the game starts at ,
where and is visible from . We will
sometimes refer to point as the origin. The origin will be fixed
until the evader is captured. Let

, and .
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Fig. 6. Left: Instance of the simulator showing the triangulation of the environment, as well as the hiding location of the evader. Right: Histogram of the number
of rounds required to locate evader in 1000 simulations. The mean � and the standard deviation � of the number of rounds was � = 8:8960 and � = 9:0479.

Fig. 7. Star-shaped polygon. The optimal strategy is to go to a point (e.g., x
in the figure) from where the entire polygon is visible.

Fig. 8. Lion’s strategy.

Definition 7: Suppose is visible from , but
is not visible from . This means that the shortest path
from to is composed of at least two line segments
(Property 1). The first vertex on the path from to
is called a pseudo-blocking vertex.

Fig. 9. Pocket with respect to c and v.

Let be the ray starting from a vertex and passing through
another vertex that is not adjacent to . In the following, will
be the center of the circle for the lion’s move, and will be the
pseudo-blocking vertex. Consider the first time the ray leaves
the polygon after it passes through , and let be the point
on just before this happens (see Fig. 9). The line segment

splits the boundary of the polygon into two chains. The chain
which does not contain the point together with the line segment

defines a polygon. We will refer to this polygon as the pocket
with respect to and . The line segment is referred to as the
entrance of the pocket.

We will use the following properties of pockets.
Property 2: Let be a point on the line segment and be

a point in the pocket with respect to and . The line segment
is contained in the shortest path from to (Fig. 9).

Property 3: Let be a pocket with respect to and inside
a polygon . Any path from to crosses the
entrance of the pocket (Fig. 9).

Looking ahead, let us describe how we will use these prop-
erties. Suppose pursuer is moving toward the evader and the
evader disappears. Let be the current pseudo-blocking vertex.
If moves toward , Property 2 implies that it is still moving
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Fig. 10. Extended lion’s move.

on the shortest path from the evader to the origin. If the evader
becomes visible before reaches , Property 3 implies that it
must cross the entrance of the pocket, and can continue its
strategy (described in the next section) as if the evader has not
disappeared.

If the evader is not visible when arrives at , then be-
comes a blocking vertex. At this point, the second pursuer will
enter the game.

Next, we present the details of the strategies of and .

D. Strategy of Pursuer

As stated earlier, we assume that pursuer is at least as fast
as the evader. At time step moves according to the fol-
lowing strategy.

If the evader is visible, he performs an extended lion’s move,
which is defined as follows. Let be the shortest path from
to . Without loss of generality, will pretend that the
evader followed . As a point moves from to
along , the vertices on the shortest path from to the origin
may change. However, the number of changes is at most . The
first vertex on the shortest path from to must be one of the
vertices of the polygon. Since is the shortest path from to

, each vertex of the polygon can be this first vertex for at
most one contiguous subpath in . Let correspond
to the points on where such changes occur, we define
and . Let be the first vertex on the shortest
path from to . The extended lion’s move consists of
phases. During phase , pursuer performs the
lion’s move with respect to and (see Fig. 10). Note that the
time spent by the pursuer in phase is equal to the time spent
by the evader in traveling from from .

If the evader was visible in the previous time step, but is not
visible any more, let be the pseudo-blocking vertex. Pursuer

moves toward until he reaches it. If the evader becomes
visible before arrives at , he continues with the lion’s move.
Otherwise, becomes a blocking vertex.

Fig. 11. Summary of pursuer p ’s strategy. Left: Evader is visible to p , who
proceeds with the extended lion’s move. Middle: Evader disappears for the first
time. It is known to be behind the pseudo-blocking vertex v. Pursuer p moves
toward v. Right: Pursuer p cannot see the evader after arriving at v. The vertex
v becomes a blocking vertex, and p sends out p to search for the evader. After
finding the evader, p will report v , the new pseudo-blocking vertex.

If the evader is still not visible after reaches the blocking
vertex, he waits for to report the location of the evader. Let
be the current pocket defined with respect to the blocking vertex
and the current center. There are two possibilities.

1) The evader reveals itself to . Then, by Property 3, this
must be while the evader is crossing the entrance of .
In this case, continues the game with the lion’s move.

2) Pursuer finds the evader located at . Let be the first
vertex on the shortest path from to , and be the
pocket with respect to and . In this case, becomes
a pseudo-blocking vertex, becomes the new pocket,
and continues this strategy by moving toward .

An illustration of different modes of the pursuer’s strategy is
presented in Fig. 11.

E. Strategy of Pursuer

The task of pursuer is to search for the evader when it is
not visible to . When the evader disappears from the sight
of , pursuer waits until reaches the blocking vertex.
Afterwards, locates the evader using the strategy described
in the previous section, and reports the location of the evader to

.

F. Properties of Pursuer ’s Strategy

Lemma 8: For all times , pursuer maintains the following
invariants until the evader is caught:

I1) is on the shortest path from to ;
I2) if .

Proof of Invariant I1: We prove the invariant by induction.
Assume that it holds at time .

First, consider the case where can see at time . Let the
first vertex on the shortest path from to be . It follows
that is in the line segment joining to , since if is
between and on the shortest path, it would not be able to see

.
Let denote the evader’s position at an arbitrary time in the

time interval . Suppose when the evader is at , the
first vertex on the shortest path from to changes from to .
Note that can see the evader until this point. Then, the shortest
path from to passing through , and the shortest path from



882 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 5, OCTOBER 2005

to passing through , have the same length. This implies that
, and have to be collinear. For otherwise, a shorter path

from to can be found in the interior of the polygon formed
by these two presumed shortest paths from to , which is a
contradiction.

This implies that either is an ancestor or a descendant of in
the shortest-path tree rooted at . If is an ancestor, at the point

where the switch occurs, could either be on the segment
, in which case it can continue the lion’s move in the next

phase, or is on the segment , in which case will become
invisible to after . In this case, must be either moving
toward a pseudo-blocking vertex or waiting at a blocking vertex.
In both cases, the invariant is maintained by Property 2. If is
a descendant of , then is already on the segment , and
hence, on the segment . Hence, it can continue the lion’s move
in the next phase. The invariant is therefore maintained as a
corollary of Lemma 6.

Otherwise, if does not see the evader at time , he must be
either waiting at a blocking vertex or moving toward a pseudo-
blocking vertex. In both cases, the invariant is maintained by
Property 2.

Proof of Invariant I2: If is moving toward a pseudo-
blocking vertex, his distance to the origin is increasing by one,
and the invariant is maintained.

Next, we show that the extended lion’s move maintains the in-
variant. Suppose the lion’s move has phases, and consider
phase of the extended lion’s move, where the evader moves
from the point to . Suppose that during this phase, pur-
suer moved from point to (see Fig. 10), and let be
the center of the circle for the lion’s move during this phase.

Let .
As a corollary of Lemma 6, we have

Summing up over all phases, we get the total progress as
.

This expression, when subject to , is minimized
when all . Therefore, we have

, which implies the invariant I2.
The combined strategy of the two pursuers can be viewed as

follows. Pursuer moves only when it knows the shortest path
from the evader to the origin . Performing the lion’s move is
equivalent to growing a disk inside the polygon, whose center
is at the origin and passes through the current location of .
By invariant I1, the evader can never enter the disk. Further, the
disk is still protected if does not move. Invariant I2 implies
that, whenever moves, the disk monotonically grows, and
the evader is eventually squeezed between and the polygon
boundary.

Pursuer moves only when does not know the evader’s
path to the origin. It locates the evader using the randomized
strategy given in the previous section, and reports its location to

so that , in turn, can keep growing the disk and eventually
capture the evader.

G. Expected Time to Capture

Let be the time it takes pursuer 1 (who per-
forms the lion’s move) to travel the diameter of the polygon. By

Invariant I2 (Lemma 8), this pursuer will capture the evader in
steps. However, in the meantime, pursuer 2 may have to

search for the evader.
The number of searches is bounded by the number of ver-

tices. This is because once a vertex becomes a blocking vertex,
it can never become a blocking vertex again. Next, we bound the
length of each search. Recall that the probability of capturing
the evader within a round is at least (Lemma 1). Using
the inequality , it can be easily shown that after

rounds, the probability of not finding the evader is at
most . Using the union bound, the probability of failure
in any of the searches is bounded by .
Therefore, with probability , all searches finish in
total time with high probability, where is the
time for pursuer to travel the diameter of the polygon.

In conclusion, the expected time to capture the evader is
with probability arbitrarily close to

one.
Our main result is summarized by the following theorem.
Theorem 9: In any simply connected polygon, two pursuers
and can capture an evader (whose speed is bounded by the

speed of ) with probability arbitrarily close to one.

IV. EXTENSIONS OF THE TWO-PURSUER STRATEGY

In this section, we present three extensions of the two-pursuer
strategy presented in the previous section. In Section IV-A, we
show how a single pursuer can implement the same strategy at
the expense of increased capture time. In Section IV-B, we show
how the global communication requirement can be relaxed. Fi-
nally, in Section IV-C, we show that two pursuers can capture
the evader, even if the polygon has a door through which the
evader can escape and win the game.

A. Capturing the Evader With a Single Pursuer

Suppose we have only pursuer . In this case, instead of
waiting for to find the evader, can guess the first vertex
on the shortest path from the evader to its current location and
move there.

Consider the shortest-path tree from the origin to the ver-
tices of the polygon. For each vertex , let be the number
of leaves of the subtree of rooted at the vertex . Then
the probability that the pursuer’s guess will be successful if it is
located at is at least . If the guess is correct and the
evader is visible, the pursuer continues with the lion’s move.
However, in the case of a wrong guess, the evader may end up
in an advantageous location and move toward the origin , in
which case, the pursuer must restart the game. Further, if all the
guesses are correct, no vertex can be a blocking vertex more than
once. Continuing this way, we can obtain a worst-case lower
bound on the probability of success. Unfortunately, this bound
can be possibly exponentially small in the number of reflex ver-
tices in the environment. However, the expected time to capture
the evader is still finite for any simply connected environment,
and this strategy may still be practical for simple settings.

One might suspect that an analysis similar to the one in Sec-
tion II can be applied to prove that the expected time to capture is
polynomial. The reason such an analysis does not apply directly
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Fig. 12. Pursuer p is waiting at the current blocking vertex v. Pursuer p
finds the evader in the pocket with respect to v and u (the shaded region). The
vertex u will become the new pseudo-blocking vertex.

is that even if the pursuer and the evader are co-located in a leaf
triangle, the capture game still continues, and the evader can
move to another triangle in the tree. Therefore, the number of
guesses may exceed the depth of the tree, resulting in a possibly
exponential capture time. This poses an interesting tradeoff be-
tween the pursuer’s visibility and the capture time. If the pur-
suer can somehow track the evader at all times (perhaps using a
satellite), then Lemma 8 implies that it could capture the evader
in time . If this is not possible, though, it can
either use a second pursuer for locating the evader and still cap-
ture it in polynomial time, or simultaneously search and capture,
which results in a much longer capture time.

B. Relaxing the Global Communication Requirement

When pursuer 1 arrives at a blocking vertex , suppose
the evader is not visible from . Therefore, pursuer 2 starts
searching for the evader, and finds it at time .

In the previous section, we assumed that the two pursuers can
communicate all the time. Hence, after finding the evader at time
, pursuer 2 can compute the first vertex on the shortest path

from to , and report to pursuer 1. Afterwards, be-
comes the pseudo-blocking vertex and pursuer 1 starts moving
toward (Fig. 12).

The two pursuers can implement this strategy even if they
have only LOS communication. That is, the pursuers can com-
municate if and only if they can see each other. The only modi-
fication required in the strategy is the following.

After finding the evader and computing the pseudo-blocking
vertex at time , if pursuers 1 and 2 can not see each other,
pursuer 2 can not report the vertex (see Fig. 12). In this case,
pursuer 2 starts moving toward pursuer 1 along the shortest path
from to . Let be the pocket with respect to the cur-
rent blocking vertex and the pseudo-blocking vertex (the
shaded area in Fig. 12). Since pursuer 1 will eventually see pur-
suer 2, there are two possibilities, based on whether the evader
becomes visible to pursuer 1 in the meantime.

If pursuer 1 sees the evader before seeing pursuer 2, this
means that the evader is leaving (Property 3). Further, at this
time, pursuer 1 will be on the evader’s shortest path to the origin,
by Property 2. Therefore, in this case, pursuer 1 proceeds with

the extended lion’s move, maintaining both invariants and
.
Otherwise, if pursuer 1 sees pursuer 2 first, the evader must

be in the pocket with respect to and . In this case, pursuer
2 reports the new pseudo-blocking vertex , and pursuer 1 pro-
ceeds as before by moving toward . Note that pursuer 2 reports
only the pseudo-blocking vertex, not the precise location of the
evader.

C. Polygonal Rooms With a Door

In [13], Lee et al. studied the following variant of the pur-
suit–evasion problem. The input is a pair where is the
polygonal room the game is played in, and is a door, a point
marked on the boundary of . The goal is to devise a strategy for
the pursuer to eventually see the evader, in such a way that the
evader cannot escape through the door. The authors presented a
characterization of polygons where a single pursuer with very
narrow visibility (represented by a single ray) can locate the
evader before it reaches the door.

In a similar scenario, the two-pursuer algorithm presented
in Section III can be used to capture an evader before it exits
through the door. The only modification necessary is the fol-
lowing. Initially, pursuer is located at the door and waits
until pursuer locates the evader. Afterwards, it continues with
the lion’s move with respect to . This ensures that the evader
can never enter the disk whose origin is , and passes through
the current location of . Therefore, the door is always pro-
tected until the evader is captured.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the visibility-based pursuit–evasion
game, and showed that by using a randomized strategy, a single
pursuer can locate an unpredictable evader in any simply con-
nected polygonal environment. The evader may be arbitrarily
faster than the pursuer, and it may know the location of the pur-
suer at all times.

The randomized strategy has some desirable properties.
First, as shown in [12], there are polygonal environments which
require an arbitrary number of pursuers if they are restricted
to deterministic strategies. Therefore, in such environments, a
randomized strategy is mandatory for locating the evader with
a single pursuer. Moreover, even if the polygon is determin-
istically searchable by a single pursuer, it is known that some
of these polygons require revisiting parts of the polygon
times [12]. In such polygons, the expected time-to-capture with
a randomized strategy is comparable to the time-to-capture with
a deterministic strategy. However, the randomized strategies
may be preferable to the deterministic strategies, as they do not
require complicated data structures and costly preprocessing.

Second, the randomized strategy to locate the evader does
not require an exact map of the environment. It is based on the
dual graph of the triangulation, and as long as the structure of
the triangulation dual is preserved, it is insensitive to errors in
the map of the environment. An interesting research direction
is to incorporate the navigation strategies in [7] which require a
minimal representation of the environment.
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Another interesting extension is the case of nonpolygonal en-
vironments. The randomized strategy can be used to locate the
evader in nonpolygonal, simply connected environments. For
example, this could be done by replacing the triangulation tree
(Lemma 1) with the decomposition studied in [22]. Another al-
ternative is to use the medial axis (cf. [16] for a definition and
related properties) of a simply connected polygon instead of the
triangulation tree.

We have also studied the more challenging problem of cap-
turing the evader. For this problem, we presented a strategy for
two pursuers (one of which is as fast as the evader) to capture the
evader in an expected time polynomial in the number of vertices
and the diameter of the environment. The strategy can be mod-
ified for a single pursuer, however, it is not clear whether the
expected time-to-capture remains a polynomial in the number
of vertices. We leave this as a future research direction.
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