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Abstract

A randomized model verification strategy for RANSAC is

presented. The proposed method finds, like RANSAC, a so-

lution that is optimal with user-controllable probability η. A

provably optimal model verification strategy is designed for

the situation when the contamination of data by outliers is

known, i.e. the algorithm is the fastest possible (on average)

of all randomized RANSAC algorithms guaranteeing 1 − η
confidence in the solution. The derivation of the optimality

property is based on Wald’s theory of sequential decision

making. The R-RANSAC with SPRT, which does not require

the a priori knowledge of the fraction of outliers and has

results close to the optimal strategy, is introduced. We show

experimentally that on standard test data the method is 2 to

10 times faster than the standard RANSAC and up to 4 times

faster than previously published methods.

1 Introduction

The1
RANSAC (RANdom SAmple Consensus) algo-

rithm introduced by Fishler and Bolles in 1981 [3] is a

widely used robust estimator that has become a de facto

standard in the field of computer vision [4]. RANSAC and

related hypothesize-and-verify methods [11, 10, 9, 7, 1, 8]

have been applied in many vision problems.

The RANSAC algorithm proceeds as follows. Repeatedly,

subsets of the input data (e.g. a set of tentative correspon-

dences) are randomly selected and model parameters fitting

the sample are computed. In a second step, the quality of

the parameters is evaluated on the input data. Different cost

functions have been proposed [10], the standard being the

number of inliers, i.e. the number of data points consistent

with the model. The process is terminated when the proba-

bility of finding a better model becomes lower than a user-

controlled probability η. The 1 − η confidence in the solu-

tion holds for all levels of contamination of the input data,

i.e. for any number of outliers within the input data.

1The authors were supported by the Czech Ministry of Education

project 1M6840770004 and by the EU Commission project IST-004176

COSPAL.

The speed of standard RANSAC depends on two factors.

The percentage of outliers determines the number of ran-

dom samples needed to guarantee the 1 − η confidence in

the solution. The time needed to assess the quality of a

hypothesized model parameters is proportional to the num-

ber N of the input data points. Almost all models whose

quality is verified are incorrect with arbitrary parameters

originating from contaminated samples. Such models are

consistent with only a small number of the data points. In

[6], Matas and Chum showed how this property can be ex-

ploited to increase the speed of RANSAC. The algorithm,

called R-RANSAC, speeds up the model evaluation step by

introducing a two-stage procedure. First, a statistical test

is performed on d randomly selected data points (d ≪ N ).

Evaluation of the remaining N − d data points is carried

out only if the first d data points are inliers. The speed up of

the R-RANSAC depends on the probabilities of the two types

of errors committed in the pre-test, the rejection of an un-

contaminated model and the acceptance of a contaminated

model. The idea was modified by Nistér to include compet-

itive verification of models and exploited in an impressive

real-time structure from motion system [8]. The main limi-

tation of Nistér’s pre-emptive RANSAC is that a fixed num-

ber of models is evaluated, which is equivalent to an a priori

assumption that the fraction of inliers is known. This limits

the applicability of pre-emptive RANSAC in some problems

where the fraction of inliers ranges widely, such as in wide

baseline stereo.

As noted in [6], the two-stage procedure of R-RANSAC is

not optimal. As a main contribution of this paper, we define

an optimal hypothesis evaluation procedure, i.e. a method

for randomized model quality evaluation that returns, in the

fastest average time possible, a solution with the confidence

1− η. The derivation of the optimality property is based on

Wald’s theory of sequential decision making [12].

From the statistical point of view, the evaluation of the

model quality can be formulated as a sequential test as fol-

lows. The hypothesis generation step proposes a model. It

is either ‘good’, i.e. it leads to the optimal solution (the solu-

tion with maximal support), or it is ‘bad’, i.e. one or more of

the data points in the sample are an outliers. The property



‘good’ is a hidden state that is not directly observable but

is statistically linked to observable events. The observable

events are ”a data point (correspondence) is/is-not consis-

tent with the model”. In sequential testing, as applied e.g.

in industrial inspection, the problem is to decide whether

the model (or the batch of products) is ‘good’ or ‘bad’ in

the shortest possible time (i.e. making the smallest number

of observations) and yet satisfying the predefined bounds

on the probabilities of the two possible errors – accepting a

‘bad’ model as ‘good’ and vice versa. Wald proposed the se-

quential probability ratio test (SPRT) and showed [12] that,

given errors bound on the errors of the first and second kind,

it minimizes the the number of observations (time to deci-

sion)2.

Wald’s SPRT test is a solution of a constrained optimiza-

tion problem. The user supplies the acceptable probabilities

of the errors of the first and the second kind and the result-

ing optimal test is a trade-off between time to decision (or

the cost of observations) and the errors committed. How-

ever, when evaluating RANSAC, the situation is different.

First of all, a ‘good’ model is always evaluated for all data

points (correspondences) since the number of inliers is one

of the outputs of the algorithms. So the only error that can

be committed is an early rejection of a ‘good’ model (error

of the first kind). But this only means that more samples

have to be drawn to achieve the required confidence 1 − η
of finding the optimal solution. So unlike in the classical

setting, we are solving a global optimization problem, min-

imizing a single real number – the time to decision, since

the consequence of an error is also a loss of time.

The structure of this paper is as follows. First, in Sec-

tion 2, we introduce the relevant parts of Wald’s decision

theory and show how its results can be brought to bear on

the problem of minimizing RANSAC run time. The RANSAC

with SPRT algorithm is described in detail in Section 3. In

Section 4, the theoretical results are experimentally verified

on standard stereo matching problems. The paper is con-

cluded in Section 5.

2. The Optimal Sequential Test

The model evaluation step of the optimal R-RANSAC

proceeds as Wald’s sequential probability ratio test (SPRT)

with the probability α of rejecting a ‘good’ sample set to

maximize the speed of the whole RANSAC process. To un-

derstand the operation of R-RANSAC with SPRT, some fa-

miliarity with Wald’s decision theory is required. We there-

fore introduce its relevant parts. Some of the results are

presented in a form that is not fully general, but sufficient

for the derivation of the R-RANSAC with SPRT algorithm.

2Precisely speaking, the SPRT is only approximately optimal. How-

ever, the approximation has been shown by Wald to be so close to the

optimum that it is considered the optimal test for all practical purposes.

Some of Wald’s terminology is modified in order to make

the exposition more accessible.

In the model evaluation step, our objective is to decide

between the hypothesis Hg that model is ‘good’ and the

alternative hypothesis Hb that the model is ‘bad’. A ‘good’

model is computed from an all-inlier sample. The Wald’s

SPRT is based on the likelihood ratio [12]

λj =

j
∏

r=1

p(xr|Hb)

p(xr|Hg)
= λj−1 ·

p(xj |Hb)

p(xj |Hg)
, (1)

a ratio of two conditional probabilities of an observation

xr under the assumptions of Hg and Hb respectively. In

RANSAC, xr is equal to 1 if the r-th data point is con-

sistent with a model with parameters θ and 0 otherwise3.

For example, a correspondence is consistent with (i.e. sup-

porting) an epipolar geometry represented by a fundamental

matrix F if its Sampson’s error is smaller than some prede-

fined threshold [4]. The probability p(1|Hg) that any ran-

domly chosen data point is consistent with a ‘good’ model

is approximated by the fraction of inliers ε among the data

points4. The probability of a data point being consistent

with a ‘bad’ model is modeled as a probability of a ran-

dom event with Bernoulli distribution with parameter δ:

p(1|Hb) = δ. The process of estimation of δ and ε is dis-

cussed in Section 3.

Output: model accepted/rejected, number of tested data

points, a fraction of data points consistent with the model

Set j = 1
1 Check whether j-th data point is consistent with the

model

2 Compute the likelihood ratio λj eq. (1)

3 If λj > A, decide the model is ’bad’ (model ”re-

jected”), else increment j or continue testing

4 If j = N the number of correspondences decide

model ”accepted”

Algorithm 1: The adapted sequential probability ratio test

(Adapted SPRT).

After each observation the standard Wald’s SPRT makes

one of three decisions: accept a ‘good’ model, reject a ‘bad’

model, or continue testing. Since in RANSAC the total num-

ber of inliers is needed to decide on termination, nothing

is gained by an early decision in favor of a ‘good’ model.

Therefore the option of an early acceptance of the model

3In this paper, we address the case of the step cost function only. The

method can be extended to a smooth cost function as used in MLESAC [10],

for details see [2].
4The probability p(1|Hg) would be exactly ε if the data points were se-

lected with replacement. Since the objective of the verification is to count

the size of the support of the model, the correspondences are drawn without

replacement.
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has been removed in the adapted SPRT (Alg. 1). The full

SPRT is described e.g. in Wald [12] and, in a more accessi-

ble form, in Lee [5].

2.1. The optimal value of the decision threshold

The decision threshold A is the only parameter of the

Adapted SPRT. We show how to set it to achieve optimal

performance, i.e. minimal average RANSAC running time

given the probabilities δ and ε. We use the following theo-

rems (for proofs, see [12]).

Theorem 1 The probability α of rejecting a ‘good’ model

in SPRT α ≤ 1/A.

Proof: Wald’s theorem [12, p. 41] states α ≤ (1 − β)/A,

where β stands for the probability that a ‘bad’ model is in-

correctly accepted as ‘good’. In the adapted SPRT, since

the only decision of the test can be ”reject”, β = 0 and thus

α ≤ 1/A. �

The approximation α ≈ 1/A is close and is often used.

Theorem 2 (Wald’s lemma) The average number of ob-

servations (checked data points) carried out while testing

a ‘bad’ model is C−1 log A, where

C = p(0|Hb) log
p(0|Hb)

p(0|Hg)
+ p(1|Hb) log

p(1|Hb)

p(1|Hg)
. (2)

Proof: According to [12, p. 53]

C = E

(

log
p(x|Hb)

p(x|Hg)

)

. (3)

The value of x is from {0, 1}. The expectation E is

a sum of two terms weighted by probability p(x|Hb).
Equation (2) follows. �

In the particular case of RANSAC, p(1|Hb) = δ,

p(0|Hb) = 1 − δ, p(0|Hg) = 1 − ε, and p(1|Hg) = ε.

Therefore the average number of verified correspondences

per model is:

log A

C
=

(

(1 − δ) log
1 − δ

1 − ε
+ δ log

δ

ε

)

−1

log A. (4)

The value of A influences the total running time in two

opposing ways. The larger the value of A, the smaller the

probability of rejection of a ’good’ model. On the other

hand, the number of correspondendes verified per model

increases with log A (eq (4)). We wish to set A to achieve

minimal average time needed to find the solution.

The average time-to-solution in R-RANSAC is t = k̄t̄s,

where k̄ is the average number of samples drawn until a

‘good’ model and t̄s is the average testing time per sam-

ple. In the following, the time unit will be the time needed

to check one data point. The probability Pg of drawing

a ‘good’ model is Pg = εm, where m is the number of

data points in the RANSAC sample. The number of tested

samples before a ’good’ one is drawn and not rejected is

a random variable with geometric distribution and mean

k̄ = 1/(Pg(1− α)) ≈ 1/(Pg(1− 1/A)). The average time

t̄s of processing a sample consists of two components: time

tM needed to instantiate a model hypotheses given a sam-

ple5, and the average time of testing each hypothesis. Let

mS be the number of models that are verified per sample6

and C−1 log A be the average length of the SPRT (Theo-

rem 2). The average time to the solution expressed as a

function of A is

t(A) =
1

Pg(1 − 1/A)
(tM + mS

log A

C
). (5)

The formula (5) can be simplified to t(A) = K1+K2 log A
1−1/A ,

where K1 = tM/Pg and K2 = mS/(PgC). We are inter-

ested in the optimal value of A, i.e.

A∗ = arg min
A

t(A).

The minimum is found by solving

dt

dA
= −

K1 + K2 − K2A + K2 log A

(A − 1)2
= 0.

After rearrangements, we have

A∗ =
K1

K2

+ 1 + log A∗ =
tMC

mS
+ 1 + log A∗. (6)

Equation (6) has two real solutions for positive K1/K2,

A∗

1 < 1 < A∗

2. Since δ < ε, the contribution to the

likelihood ratio (eq. (1)) of a correspondence that is not

consistent with the model is greater than 1, therefore the

solution of interest is A∗ > 1. This solution can be ob-

tained as A∗ = limn→∞ An, where A0 = K1/K2 + 1 and

An+1 = K1/K2 + 1 + log(An). The series converges fast,

typically within four iterations.

3. R-RANSAC with SPRT

The R-RANSAC with SPRT algorithm is outlined in

Alg. 2. To fully specify the details of the algorithm, two

issues have to be addressed. First, the estimation of param-

eters δ and ε; second, the termination criterion guaranteeing

1 − η confidence in the solution has to be derived.

5Computing model parameters from a sample takes the same time as

verification of tM data points.
6In the 7-pt algorithm for epipolar geometry estimation, 1 to 3 models

have to be verified.
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Initialize ε0, δ0, calculate A0 and set i = 0.

Repeat until the probability η (eq. (10)) of finding a

model with support larger than ε̂ falls under a user defined

confidence value η
0
:

1. Hypothesis generation

• Select a random sample of minimum size m from the

set of data points.

• Estimate model parameters θ fitting the sample.

2. Verification

Execute the SPRT (Alg. 1) and update the estimates if

a Model rejected: re-estimate δ. If the estimate δ̂ differs

from δi by more than 5% design (i+1)-th test (εi+1 =
εi, δi+1 = δ̂, i = i + 1)

b Model accepted and the largest support so far: design

(i+1)-th test (εi+1 = ε̂, δi+1 = δ̂, i = i + 1). Store

the current model parameters θ.

Algorithm 2: The structure of R-RANSAC with SPRT.

The algorithm proceeds like standard RANSAC [3, 4],

only instead of checking all data points in the model ver-

ification step, the data points are evaluated sequentially and

hypotheses with low support are rejected early. After a hy-

pothesis is rejected, δ is re-estimated (Alg. 2, step 2a). Ac-

cepted hypotheses are candidates for the RANSAC outcome

(see below). The overhead of the evaluation of the likeli-

hood ratio λj eq. (1) is negligible compared to the evalua-

tion of the model versus data point error function.

Probabilities ε and δ are different for different data sets

and we assume they are unknown. The R-RANSAC with

SPRT performs the optimal test derived in Section 2 and

uses values of ε and δ that are estimated during the sam-

pling process and the test is adjusted to reflect the current

estimates.

If the probabilities ε and δ are available a-priori, e.g. in

some standard setting where the algorithm is run repeatedly,

they can be used in the initialization of the algorithm.

Estimation of δ. Since almost all tested models are

‘bad’7, the probability δ can be estimated as the average

fraction of consistent data points in rejected models. When

current estimate δ differs from the estimate used to design

the SPRT (by more than 5%, for example), new (i+1)-th test

is designed. The initial estimate δ0 is obtained by geometric

considerations, i.e. as a fraction of the area that supports a

hypothesised model (a strip around an epipolar line in case

of epipolar geometry) to the area of possible appearance of

outlier data (the area of the search window). Alternatively,

a few models can be evaluated without applying SPRT in

order to obtain an initial estimate of δ.

7RANSAC verifies, on average, − log(η
0
) ‘good’ models, e.g. for the

typical η
0

= 0.05 a ‘good’ model is hypothesised three times prior to

termination of the algorithm.

Estimation of ε. In general, it is not possible to ob-

tain an unbiased estimate of ε, since this would require the

knowledge of the solution to the optimization problem we

are solving. The tightest lower bound on ε is provided

by the size of the largest support so far. It was shown

in [6] that a sample with the largest support so far ap-

pears log k times, where k is the number of samples drawn.

When such a sample (with support of size Ii+1) appears,

new test is designed for εi+1 = Ii+1/N . Throughout

the course of the algorithm, a series of different tests with

ε0 < . . . < εi < . . . < ε are performed. The initial value of

ε0 can be derived from the maximal time the user is willing

to allocate to the algorithm.

The termination criterion. The algorithm is termi-

nated, when the probability η of missing a set of inliers

larger than the largest support found so far falls under a

predefined threshold η
0
. In standard RANSAC, where the

probability of rejection of a ‘good’ model is zero, the prob-

ability is equal to ηR = (1 − Pg)
k

. In R-RANSAC, the prob-

ability of hypothesising and not rejecting a ‘good’ model is

Pg(1 − α) and the probability η becomes as

η = (1 − Pg(1 − α))
k

. (7)

In R-RANSAC with SPRT, the SPRT is adjusted to current

estimates of δi and εi, so α is no more constant. Theorem 1,

which gives the probability α of rejecting a ‘good’ model

for the test designed for optimal value of ε, does not cover

this situation. The following theorem is needed:

Theorem 3 The probability of rejecting a ‘good’ model

with fraction of inliers ε in a SPRT designed for εi and δi

with threshold Ai is

αi = A−hi

i , (8)

where hi is given by

ε

(

δi

εi

)hi

+ (1 − ε)

(

1 − δi

1 − εi

)hi

= 1. (9)

Proof: For proof see [12, p. 50]. �

Equation (9) has two solutions, one being hi = 0. Since

εi < ε, hi > 1 holds for other solution. This solution is

found numerically.

Let for each of l tests the following values be stored:

the estimated lower bound on the fraction of inliers εi, the

SPRT threshold Ai, the number of samples ki processed by

the test, and hi satisfying (9). Then, the probability η is

given by

η(l) =

l
∏

i=0

(

1 − Pg(1 − A−hi

i )
)ki

. (10)
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ROTUNDA THE GREAT WALL CORRIDOR

LEUVEN GRAFITTI LEUVEN H

Figure 1. The experimental image pairs with inliers (left) and outliers (right) superimposed. Two wide-baseline

epipolar geometry experiments ROTUNDA and the GREAT WALL; two narrow-baseline EG experiments LEUVEN and

CORRIDOR; two homography experiments GRAFITTI and LEUVEN H.

The number kl of samples that are needed to be drawn with

current (i.e. l-th) SPRT follows from (10) as

kl =
log η

0
− log (η(l − 1))

log(1 − PgA
−1
l )

(11)

Implementation note: since η > ηR the equation (11)

does not have to be evaluated before ηR < η
0

is satisfied.

4 Experiments

Several experiments were performed comparing the pro-

posed R-RANSAC with SPRT with three other RANSAC al-

gorithms: (1) standard RANSAC that verifies all correspon-

dences for every model, (2) R-RANSAC with the Td,d test

[6] that rejects the model when the first checked correspon-

dence is not consistent with it (d = 1), and (3) R-RANSAC

with the a priori SPRT, i.e. the R-RANSAC with SPRT de-

signed for the true values of ε and δ (labelled SPRT∗). The

results achieved with a priori SPRT show the best achiev-

able performance of RANSAC with a randomized verifica-

tion step for a problem characterized by given δ and ε.

For epipolar geometry estimation, the time needed to

compute model parameters tM = 200 was set within the

range observed in a large number of experiments (i.e. in our

implementation, checking whether a correspondence is con-

sistent with a fundamental matrix is 200 times faster than

estimating the matrix). The exact value depends on many

factors including the CPU speed and type. The constant

mS = 2.38 was set to the experimentally observed average

of the number of models generated by the 7-point algorithm

per sample8. The initial value of δ was set to δ0 = 0.05. The

maximum number of samples was set to 200,000. Since the

size of the sample is m = 7, the 95% confidence in the so-

lution can be only ensured for ε > 0.2, see eq. (7), therefore

ε0 was set to ε0 = 0.2.

For homography estimation (m = 4), the values were set

as follows tM = 200, mS = 1, δ0 = 0.01, ε0 = 0.1.

The experimental image pairs are displayed in Fig. 1.

The number N of correspondences as well as the true values

of ε and δ estimated by evaluation 100,000 verifications of

random models are summarized in Tab. 2. The results of

compared algorithms are shown in Table 1.

As a consequence of the randomization of model verifi-

cation that erroneously rejects some ‘good’ models, on av-

erage, the randomized algorithms must draw a larger num-

ber of samples than standard RANSAC. This is confirmed in

the first column of Table 1. This small increase is more than

compensated by the reduction in the number of data points

(correspondences) checked on average per model. The run-

ning time of RANSAC is reduced by factors ranging from

2.8 to 10.9 In all experiments the SPRT outperforms the

Td,d test.

5 Conclusions

We have derived an optimal sequential strategy for ran-

domized evaluation of model quality in RANSAC. A method

for estimating the two probabilities characterizing the prob-

8It is known that the 7-point algorithm produces 1 to 3 potential models.

In experiments, the average number of models per sample – 2.38 – has been

observed consistently in a number of scenes. No theoretical justification of

the stability of this average is known to the authors.
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The ROTUNDA A experiment

k models vpm time spd-up

RANSAC 195 470 886.0 4.3 1.0

Td,d 345 834 49.0 1.4 3.1

SPRT∗ 201 486 29.1 0.8 5.4

SPRT 200 483 41.5 0.9 4.9

The GREAT WALL experiment

k models vpm time spd-up

RANSAC 48085 122223 507.0 667 1.0

Td,d 224865 571059 6.9 642 1.0

SPRT∗ 56678 143993 14.4 178 3.8

SPRT 55796 141761 16.3 178 3.7

The CORRIDOR experiment

k models vpm time spd-up

RANSAC 145 344 600.0 2.3 1.0

Td,d 243 576 86.6 1.2 2.0

SPRT∗ 154 366 32.9 0.6 3.7

SPRT 153 364 77.2 0.8 2.8

The LEUVEN experiment

k models vpm time spd-up

RANSAC 1855 4434 786.0 35.5 1.0

Td,d 4490 10730 27.5 14.8 2.4

SPRT∗ 2025 4839 20.4 6.8 5.3

SPRT 1982 4736 23.2 6.8 5.2

The GRAFFITI experiment

k models vpm time spd-up

RANSAC 121 121 405.0 3.0 1.0

Td,d 287 287 16.7 1.0 2.8

SPRT∗ 132 132 35.1 0.6 4.6

SPRT 129 129 47.1 0.7 4.1

The homography LEUVEN experiment

k models vpm time spd-up

RANSAC 1203 1203 789.0 53.1 1.0

Td,d 5323 5323 3.4 15.0 3.5

SPRT∗ 1351 1351 14.5 4.7 11.2

SPRT 1266 1266 20.7 4.9 10.9

Table 1. The comparison of RANSAC, R-RANSAC

with Td,d test, a priori SPRT∗ and SPRT: the num-

ber of samples (k), the number of models (models),

the number of checked correspondences per model

(vpm), time in ms (time), and relative speed-up with

respect to standard RANSAC (spd-up). Averaged over

500 runs.

lem and critically influencing the design of the optimal strat-

egy was proposed. A termination criterion maintaining the

1 − η confidence in the solution was derived.

Properties of R-RANSAC with SPRT were tested on
wide range of standard data. Tests included epipolar ge-
ometry estimation in both wide baseline setting and narrow

corr ε δ
ROTUNDA 893 0.60 0.052

THE GREAT WALL 514 0.28 0.014

CORRIDOR 607 0.56 0.142

LEUVEN 793 0.47 0.032

GRAFFITI 409 0.51 0.018

LEUVEN H 793 0.29 0.004

Table 2. The number of correspondences

(corr), fraction of inliers (ε), the probability of a cor-

respondence being consistent with bad model (δ).

baseline settings and homography estimation. The method
was 2.8 to 10 times faster than RANSAC and up to 4 times
faster than R-RANSAC with Td,d test.
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[2] Ondřej Chum. Two-view geometry estimation by random

sample and consensus. PhD thesis, CMP, CTU in Prague,

2005.

[3] M.A. Fischler and R.C. Bolles. Random sample consen-

sus: A paradigm for model fitting with applications to image

analysis and automated cartography. CACM, 24(6):381–395,

June 1981.

[4] Richard Hartley and Andrew Zisserman. Multiple view ge-

ometry in computer vision. Cambridge University, Cam-

bridge, 2nd edition, 2003.

[5] Peter M. Lee. Sequential probability ratio test. University of

York. www.york.ac.uk/depts/maths/teaching/pml/ais/sprt.ps.
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