
Chapter 19

Randomized Rounding Without Solving the Linear Program

Neal E. Young*

Abstract

We introduce a new technique called oblivious rounding -

a variant of randomized rounding that avoids the bottleneck

of first solving the linear program. Avoiding this bottle-

neck yields more efficient algorithms and brings probabilistic

methods to bear on a new class of problems. We give obliv-

ious rounding algorithms that approximately solve general

packing and covering problems, including a parallel algo-

rithm to find sparse strategies for matrix games.

1 Introduction

Randomized Rounding: Randomized rounding

[18] is a probabilistic method [20, I] for the design of

approximation algorithms. Typically, one formulates

an NP-hard problem as an integer linear program, dis-

regards the integrality constraints, solves the resulting
linear program, and randomly rounds each coordinate

of the solution up or down with probability depending

on the fractional part. One shows that, with non-zero
probability, the rounded solution approximates the op-

timal solution. This yields a randomized algorithm; in

most cases it can be derandomized by the method of
conditional probabilities [17]. The probabilistic analy-

ses are often simple, relying on just a few basic tech-
niques. Yet for many NP-hard problems, randomized
rounding yields the best approximation known by any

polynomial time algorithm [3].
Oblivious Rounding: Derandomized or not, a

main drawback of randomized rounding algorithms has

been that they first solve a linear program to find a solu-

tion to round. We show that this bottleneck can some-

times be avoided as follows: (1) show that randomly
rounding an optimal solution (possibly to smaller-than-
integer units) yields an approximate solution; (2) ap-

ply the method of conditional probabilities, finding pes-
simistic estimators [17] that are essentially independent

of the optimal solution. The method of conditional

probabilities is used not to derandomize per se, but to

*AT&T Bell Labs, rm. 2D-145, 600 Mountain Ave., Mur-

ray Hill, NJ 07974. Part of this research was done while at

School of ORIE, Cornell University, Ithaca NY 14853 and sup-

ported by &a Tardos’ NSF PYI grant DDM-9157199. E-mail:

ney@research.att.com.

achieve the independence.

Generalized Packing and Covering: The re-

sulting algorithms find the approximate solution with-

out first computing the optimal solution. This allows

randomized rounding to give simpler and more efficient

algorithms and makes it applicable for integer and non-

integer linear programming. To demonstrate this, we
give approximation algorithms for general packing and

covering problems corresponding to integer and non-

integer linear programs of small width, including a paral-

lel algorithm for finding sparse, near-optimal strategies
for zero-sum games.

Packing and covering problems have been exten-

sively studied (see $2). For example, Plotkin, Shmoys,

and Tardos [16] approached these problems using

Lagrangian-relaxation techniques directly. Their algo-
rithms and ours share the following features: (1) they

depend similarly on the width, (2) they are Lagrangian-

relaxation algorithms, (3) they allow the packing or cov-

ering set to be given by a (possibly approximate) sub-
routine for optimizing over it, (4) they produce dual

solutions that prove near-optimality, and (5) they can

provide integer solutions comparable to those obtain-
able by randomized rounding. Our approach shows a
strong connection between probabilistic techniques and

Lagrangian relaxation. Our algorithms are also rela-
tively simple, although they are not as effective for some

problems of large width.

Flavor of Oblivious Rounding Algorithms:

For the (integer) set cover problem, oblivious rounding

yields the greedy set cover algorithm [lo, 141. For the

fractional set cover problem, it yields an algorithm that
repeatedly chooses a set whose elements have the largest

net weight, where the weight of an element is initially 1

and is multiplied by 1 - E each time a set containing it
is chosen. To obtain the final cover, each set is assigned

a weight proportional to the number of times it was
chosen (this is similar in spirit to [4] and related works).
For multicommodity flow, it yields algorithms that

repeatedly augment flow along a shortest path, where

the length of an edge is initially 1 and is multiplied by

l+ec/c(e) each time the edge is used (c(e) is the capacity
of the edge and c is the minimum edge capacity).

170

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 170-178 (1995)

171

Problem Definitions: Let P be a convex set in
lR” and let f be a linear function (not net. homogenous)

from P to Rm. The width of P with respect to f is

w = maxj,Z fj (z) - L, where L = minj,, fj(~).
The generalized packing problem is to compute X* =

minzEP maxj fj (z). The packing problem occurs when

f is non-negative on P. The covering problem is to

compute X’ = max,ep minj fj (a), assuming f is non-
negative. (This is equivalent to the generalized packing

problem with the restriction that f is non-positive.)
Our algorithms assume an optimization oracle for

P and f - given non-negative y E R,, the oracle

returns 2 and f(z), where z minimizes Cj yjfj(z).
(This models, e.g., packing source-sink paths subject to
edge constraints; in this case the oracle would compute

a shortest path for given non-negative edge lengths.)

For covering, the oracle must maximize the sum.
Quality of Solutions: Given the oracle, n, m,

w, L, and E > 0, our algorithms return e-approximate
solutions. For generalized packing, E is the additive
error with respect to X*. For packing and covering, the

error is a factor of 1 f e.
Complexity: Table 1 shows the number of itera-

tions required and the complexity per iteration. In that

caption, “explicitly given” means that f(z) = Aa: + b,

where A and b are, respectively, an explicitly given ma-

trix and vector, while P = {Z E IR” : z > 0; c xi = 1).
Granularity: The oracle is called once in each

iteration of the algorithm; the algorithm returns the

average of the solutions returned by the oracle. Thus,
the granularity of the final solution is the granularity
of the solutions returned by the oracle, divided by the

number of iterations. For the abstract problems we

consider, this can provide integer solutions comparable

to those obtainable by other techniques.
Dual Solutions: Our algorithms maintain a dual

solution, represented by a vector y, initially uniform.

In each iteration, each yj is multiplied by a factor

depending on fj() h z w ere 2 is the solution returned

by the oracle (e.g., for packing, yj is multiplied by

1 + cf&c)/u). Th e average over all iterations of the
values of these dual solutions is c-optimal with respect

to the value of the final (primal) solution.
Sparse Strategies for Zero-Sum Games: The

explicitly given general packing problem generalizes the

problem of finding near-optimal strategies for zero-sum

matrix games: P is the set of mixed strategies for one
player, f?(x) is the expected payoff if the player plays

according to 2 and the opponent plays the pure strategy
j, and X* is the value of the game. approximate solution
is a mixed strategy z guaranteeing an expected payoff
within an additive E of optimal.

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEARPROGRAM

generalized packing:

b(e) := (1 + E) ln(1 + e) - E;

b(--E) > $ > b(e) > &.

Table 1: Number of iterations. Each iteration requires
O(logm) time and O(m) operations (on an EREW-

PRAM), plus one oracle call. For an explicitly given

problem (no oracle), each iteration requires O(lognm)
time and O(nm) operations.

Each iteration chooses the best pure strategy given

that the opponent plays the mixed strategy represented
by y. The final solution returned is a mixed strategy

that plays uniformly from [*I pure strategies, one

for each iteration. (The opponent has m pure strategies;
w is the minimum minus the maximum payoff.) The

existence of such sparse, near-optimal strategies was

shown probabilistically [2, 131; our existence proof of
the approximate solution for generalized packing is a

generalization of the proof in [13].

2 Related Work

Plotkin, Shmoys, and Tardos [16] (generalizing a series
of works on multicommodity flow [19, 11, 121) gave ap-

proximation algorithms for general packing and covering
problems similar to those we consider. For these ab-

stract problems, their results are comparable to those

in this paper, but for many problems their results are

stronger. Most importantly, they give techniques for re-

ducing the effective width of a linear program and tech-

niques for problems (such as concurrent multicommod-

ity flow) when the packing or covering set is a Cartesian
product.

Luby and Nisan [15] give a parallel approximation
algorithm for positive linear programming - the special
cases of linear programming of the form max,{c . x :

Aa: > b; z 2 0) (a packing problem), or the dual

min, { b . y : ATy I c; y 2 0) (a covering problem),

where A, b, and c have non-negative coefficients. Here

A, b, and c are explicitly given.
Previous algorithms applicable to zero-sum games

either required the solution of a linear program [8] or

did not provide sparse strategies [5, 6, 151.

172 YOUNG

3 Introductory Example: Set Cover

To introduce oblivious rounding, we give a simple

example. The set cover problem is the following:
given a family of sets 3 = {Sr , . _ , Sm}, with each

si c {1,2,... , n}, a set cozrer C is a sub-family such
that every element j = 1,. . , n is in some set in C.

The problem is to find a cover C that is not much

larger than C’, a minimum-cardinality cover. We derive

an algorithm that, without knowing C*, emulates a

random experiment that draws sets randomly from C”.

The algorithm finds a cover of size at most []C*] lnnl.

3.1 Existence: Let s = []C*] Inn]. Consider
drawing s sets uniformly at random from C’. What

is the expected number of elements left uncovered? For

any given element II: E X, the probability that it is
not covered in a given round is at most 1 - l/]C*],

because it is in at least one set in C*. Thus the

expected number of elements left uncovered is at most

n(1 - l/]C”])” < nexp(-s/]C*]) 5 1. Thus, with non-

zero probability we obtain a cover C of size s.

3.2 Construction: The method of conditional
probabilities naively applied to the above proof yields

an algorithm that depends on C*. We outline this next.

Our ultimate goal is not derandomization per se, but an
algorithm that does not require knowledge of C’.

Consider an algorithm that chooses the sets sequen-
tially, making each choice deterministically to do “as

well” as the corresponding random choice would. Specif-

ically, the algorithm chooses each set to minimize the
expected number of elements that would remain uncov-

ered if the remaining sets were chosen randomly from
C’. Letting C denote the collection of sets chosen so

far, this expected number is

(3.1)
a(c) = c (L3~l”:)‘-‘c’

j@JC

(We use xt to denote 1 if Si E C* and 0 otherwise; we

use UC to denote the union of sets in C.) G is called

a pessimistic estimator [17], because (a) it is an upper

bound on the conditional probability of failure (in this

case, by hlarkov’s inequality), (b) it is initially less than
1, and (c) each choice can be made without increasing

it. (The latter property follows in this case because Q,

is an expected value conditioned on the choices made so
far.) These three properties imply the invariant that if
the remaining s -]C] se t s were to be chosen randomly

from C*, the probability of failure would be less than

one. Consequently, when]C] = s, C is a cover.

Achieving Obliviousness: Because an uncovered
element that occurs in several sets in C* contributes less

to a, the above algorithm depends on the number of
times each element is covered by C*. This is counter-
intuitive, in that the only aspect of C* used in the

proof was Csi9j z$/]C*] < 1 - l/]C*]. Replacing each

corresponding term in Q, yields

(3.2) 5(C) = c (1 - &)-.

j@Jc

& is a pessimistic estimator. More importantly, among

collections of sets of the same size, (a is uniformly pro-

portional to the number of uncovered elements in the
set. Thus, the algorithm that uses 6 instead of @

does not depend on C*, it simply chooses each set

to minimize the number of elements remaining uncov-
ered. Nonetheless, it is guaranteed to keep up with the
random experiment, finding a cover within]]C*[Inn]

steps. This is the greedy set cover algorithm, origi-

nally analyzed non-probabilistically by Johnson [lo] and

Lovasz [141.
Versus fractional cover: If the cover C* is a

fractional cover, the analyses of both algorithms carry

over directly to show a Inn performance guarantee.
What enables oblivious rounding? We call

such algorithms oblivious rounding algorithms. What
kinds of randomized rounding schemes admit them?

The key property is that the proof bounds the probabil-

ity of failure by the expected value of a sum of products
and bounds the terms corresponding across products
uniformly. To illustrate, here is the explicit proof that

min; &(C U ($1) < 6(C) :

%C) = &II (l- &q)‘lC

2 j~c(~&)+&)‘“‘-’
s-‘Cl-I = c- i I:, j~(uc)us, l- Ii*1 = (->

=
c Z&(C u {S,})
i Ic*l

2 mZin &(C U {Si}).

The first inequality is obtained-by “undoing” one step
of the substitution that yielded Q from @. The standard

argument then applies. We use this principle for each

of our analyses.,

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEAR PROGRAM 173

4 Algorithm for Generalized Packing z > 0. 0

Fix an instance (P, f, L, w, E) of the generalized packing The proof of Lemma (4.1) bounds the probability of

problem. We consider randomly rounding an optimal failure by a sum of probabilities, each of which is

solution to obtain an e-approximate solution; we then bounded by an expected value (4.3) in Hoeffding’s proof.

derive the algorithm that finds such a solution. Thus (when L = 0 and w = l), the proof bounds the

probability of failure by the expected value of

4.1 Existence: Let X* and Z* be an optimal

solution. Let S be a multiset obtained by repeatedly 1+ ctfj(4

choosing random elements of P, where each random TzFs (1++*+”

element is chosen from a distribution over P with n-

dimensional mean z*. Let z be the average of the points the expectation of which is less than m/exp(2]S]e2).
in S. The conditional expectation of the sum given T c S is

LEMMA 4.1. The probability that zz is not an E-

approximate solution is less than m/ exp [Q$] .

ED

1+cfjw 1 + of3 (x*)1 s-‘T’

Proof. Without loss of generality, assume L = 0 and
f(x)--L

j
sET (1 + Cy)X*+t I[(1 + ckp’f~ 1

w = 1. Otherwise take f(x) + - and c + E/W.
The convexity of P ensuresWthat 3: E P. For where s is the desired size of S. To obtain the

each j, fj(%) = C ,esfj(~c)/]S], which is the average pessimistic estimator for the algorithm, replace each

of /S] independent random variables in [0, l]. Since fj(z*) by the uPPer bound A*:

E[fj(s)] = f.j(~*) 5 X*, by Hoeffding’s bound [7],
Pr[f,(g) > X* + C] is less than l/exp(2]S]?). Since

j ranges from 1 to m, the result follows. 0 ED j

1+ “fM] . [(&+;;l;e] -IT’

,&T (1+ a)

4.2 Construction: As in the set cover example, When s is large enough that m/exp(2]S]e2) 2 1, this
our algorithm mimics the random experiment. Each quantity is a pessimistic estimator: (a) it is an upper
round it adds an element to S to minimize a pessimistic bound on the conditional probability of failure, (b) it
estimator. This pessimistic estimator is implicit in the is initially less than 1, and (c) some z can always be

existence proof. To find it, we need the inequalities that added to S without increasing it. Properties (a) and
prove (a simplified version of) Hoeffding’s bound: (b) follow from the choice of s and the inequalities in

LEMMA 4.2. ([7]) Let X = xxi/s be the awer- the proof of Hoeffding’s lemma. Property (c) follows
age of s independent random variables in [0, 11, with from the derivation, as explained for the set cover ex-

E(X,) I pi and Cp~i = p. Then Pr[X > ,LL + SE] < ample. Among multisets of a given size, this pessimistic
l/ exp(2se2). estimator is uniformly proportional to

Proof. Let (1~ = e4’ - 1.

Pr [TX; L ~+SE 1 t-

= PI

c n 1+ dj(4.
j XET

-D
(1 + cY)x,

i (1 + cK)pL”+c > l I

[I-I
1+axi

i (1+ cY)p;+c 1

Thus, to augment a given multiset T, the algorithm

adds the element z minimizing Cj yj fj (CC), where yj = IIzcT l-tafj(x). Th is, accounting for the normalization

L = 0 and w = 1, is the algorithm in Figure 1. (4.3) L E

5 Packing and Covering Algorithms

We derive the packing algorithm analogously. Fix an
instance (P,f,w, E) of the packing problem. Let X*,
z*, S and z be as for Lemma 4.1. Note that, for this

problem, an e-approximate solution is an II: E P with

f(x) L (1 + E)X*.

i
5.1 Existence:

The second step follows from (1 + a)’ 5 1 + IYZ for
0 5 z 5 1 and Markov’s inequality. The last step uses

LEMMA 5.1. The probability that Z is not an E-

1 + CYZ < (1 + c~y)~+‘/e~~’ for E > 0, (Y = e4’ - 1, and
approximate solution is less than m/ exp [IW~P-]~

174 YOUNG

FIND-GENERALIZED-PACKING(P,~, L,w,E)

1. E+-~;cY-~*~-~;S+-{}; st$
2. yj . + 1 (j = 1,. ,m)
3. repeat

4. choose 5 E P to minimize Cj y.j fj (z)

5. S+Su{x}

6. Yj +-- Y.i 4 1+&+] (j= l,...,m)
7. until ISI > s

8. return & CzES z

FIND-PACKING-GIVEN-S (P, f, E, W, S)

1. s-0
2. yj + 1 (j = 1, . . .) m)

3. repeat

4. choose z E P to minimize Cj y.j fj (z)

5. s+slJ{x}

6. yj+yj.[l+,y] (j=l,...,m)
7. until ISI > s do

8. return h CzES 5

Figure 1: Algorithm for generalized packing Figure 2: Algorithm for packing, given s. To obtain

covering algorithm, negate E and change “minimize” to
“maximize”.

Proof. Without loss of generality, assume w = 1.
Otherwise take f(lc) + f(~)/w and X* c X*/w.

The convexity of P ensures that 5 E P. For each
corresponding to (5.4). The expectation given T G S is

j7 f&4 = c zESfj(~)/]S], which is the average of s- tT’
IS] independent random variables in [O,l], each with

1+ cfj(X) 1 + Efj (z*)

’
expectation fj(2*) 5 X*. By Raghavan’s bound [17], Gin ii

2ET (1 + +++* . (1 + +++* I[1
Pr[fj(Z) > (1+6)X*] is less than l/exp[lS]b(e)x*]. Since
j ranges from 1 to m, the result follows. ’

where s is the desired size of S. When s is large enough

that m/exp[]S]b(E)X*] 5 1, replacing fj(Z*) by X* gives

5.2 Construction: Here is Raghavan’s proof:

LEMMA 5.2. ([17]) Let X = CX;/s be the uv-

erage of independent random variables in [0, I] with

E(Xi) I pi and Cp~i = p > 0. Then Pr[X 2

Cl+ 4~1 < VwlW4.

Proof.

I-I 1-t e E(X,) =
i (1 + E)u+4Pt

The last line equals 1/ exp[b(t)p]. The second step uses

(1 + a)” 5 1+ CYZ for 0 2 2 5 1 and Markov’s inequality.

The last uses E(X;) I p; and 1 + z I e*, which is strict
if .z # 0. 0

Thus (assuming w = l), the proof of Lemma 5.1 bomlds

the probability of failure by the expectation of

a pessimistic estimator. Among multisets T of the same
size, the pessimistic estimator is proportional to

c n 1 + Efj(X).
j XET

Thus, to augment a given multiset T, the algorithm
adds the element x minimizing Cj yjfj(z), where yj =

I-I zET l+efj(x). Th’ is, accounting for the normalization
to the case w = 1, gives the algorithm in Figure 2.

This algorithm assumes s is given. We remove this

requirement in Section 6.

5.3 Covering Algorithm. The covering algo-

rithm is described in Figure 2. Its derivation is analo-
gous to that of the packing algorithm. Fix an instance

(P, f, w, E) of the approximate covering problem. Let
x*, x*, S and rC be as for Lemma 4.1. Note that for

this problem, X’ = minj fj(x*) and an +approximate

solution z E P satisfies f(Z) 2 (1 - E)X*.

LEhlhlA 5.3. The probability that 2 is not an E-

approximate solution is less than m/ exp[]S[b(e)X*/w].

We omit the proof, which is essentially the same as for

packing, except it is based on the following variant of
Raghavan’s bound:

L~hfnlx 5.4. ([17]) Let X = xxi/s be the au-
erage of independent random variables in [0, l] with

E(X,) 2 pi and CpL1 = IL > 0. Then Pr[X 5

(1 - E)P] < l/exp[b(--E)jL).
We omit the derivation of the algorithm, noting only

that the proof of Lemma 5.3 implicitly bounds the

RANDOMIZED R.OUNDING WITHOUT SOLVING THE LINEAR PROGRAM 175

probability of failure by the expectation of

6 Dual Solutions

Our aIgorithms implicitly find good approximate solu-

tions to the underlying dual linear programs. The ar-

gument that the algorithm “keeps up” with the random
rounding of an unknown optimal solution implicitly uses

a dual solution to bound the optimal at each iteration.

The value of the solution generated by the algorithm
thus converges not only to the value of the optimum,

but also to the average of the values of these dual solu-
tions. The basic principle in each case is similar to that

for set cover, which we give first for illustration.

6.1 Set Cover Dual: The dual problem is to

assign non-negative weights to the elements so that the

net weight assigned to the elements in any set is at most

one. The value of the dual solution is the net weight

assigned.
At the start of a given iteration, suppose r elements

remain uncovered, and let d denote the largest number
in any set in 3. Then assigning each uncovered element

a weight of I/d yields a dual solution of value ZI = r/d.
During the course of the algorithm, let ii denote the

harmonic mean of the dual solutions corresponding to

the iterations so far.

LEMMA 6.1. The set cover algorithm maintains the

invariant that the number of elements not covered by the

current partial cover C is less than n/ exp(lCl/ti>.

The proof is essentially the same as the proof that 6

is a pessimistic estimator, except the values of the dual

solutions take the place of IC*l.

Proof. In an iteration where the dual solution has

value r/d, the number of uncovered elements decreases

from T to r - d = ~(1 - l/,u) < re-‘lv. By induction
on the iterations, the algorithm maintains the invariant

that the number of uncovered elements is less than

nlexp(Cellw) h w ere me is the value of the dual
solution corresponding to the Cth iteration and e ranges

over the iterations so far. Note that ti = ICI/C &. 0
Before the last iteration at least one element is left,

so at that point n/ exp((k - 1)/a) > 1. Thus,

COROLLARY 6.1. The harmonic mean of the values
of the dual solutions over the first h- - 1 iterations is

larger than e, where k: is the size of the final cover.
The maximum value is at least the arithmetic mean,

which is at least the harmouic mean, so at least one of

these simple dual solutions has value above 2.

6.2 Generalized Packing Dual: The vector

y maintained by the generalized packing algorithm

represents a dual solution. At the start of a given
iteration, the value of the dual solution associated with

y is

(6.5)
minzEP Cj Yjfj(z)

Cj%

(Since 1~ 2 0: a simple argument shows this is a lower
bound on X’ = min,ep maxj f,(x).)

Notation: During the course of the algorithm, let

Z denote the current solution CzES~/(SI represented

by S. Let 1 denote maxj fj(?). Let v denote the average

of the values of the dual solutions for the previous
iteratious. Let W(IF, y) denote Cj yjfj(~c)/ Cj yj.

LER~~IA 6.2. The generalized packing algorithm
maintains the invariant

Proof. WLOG, assume L = 0 and w = 1. We show

that Cj yj is at least the left-hand side and at most the

right-hand side. The first part follows from the same
sequence of inequalities that was used in $4.2 to derive

the (numerator of the) pessimistic estimator:

(1 + ,)lSlX < X(1 + o)lW*) -

= c H(l +,)fJ@)

j z:ES

L Cfl l+cYfj(Z).

J XES

Since yj = IjLcES 1 + ofj(~), the first part follows.

For the second part, we first note the role of the

dual solution in each iteration: given the current IC
and y, the iteration increases the quantity Cj yj by a

factor of 1 + av(z, y). (This follows from inspection

of the algorithm and the definition of v(~,y).) Next

we apply the sequence of inequalities that bounded

the pessimistic estimator below 1 in $4.2: By the
last inequality in Hoeffding’s bound (Lemma 4.2), 1 +

a!?J(rc, y) <_ (1 + cp~y)+~ / exp(2e2). Let ve denote the
value of v(~,y) at the Jth iteration (for 1 5 C < ISI).

By induction on the iterations

c ?j3 5 m(l+ cu)~~(“‘+c)/exp(21Sl~2).
Since lS[V = Ce ve, this gives the result. q

COROLLARY 6.2. After I+1 iterution,s of the
generalized packing algorithm, X 5 v + E. That is, the
primal and average dual values differ by at most E.

176

FIND-PACKING(P, f, E, W)

1. St {}; yj t 1 (j= l,...,m)
2. repeat

3. choose II: E P to minimize ‘u = & yjfj(~)

4. StSu{x}

5. yjCyjj[l+E+] (j=l,...,m)

6. V + ma@, v/ Cj yj>
7. p++KJ ;, 1v.i + fj(4l/lsl (j = 13. . .T m>
8.

9. until X 5 (lf+“t,V

10. return CtES z/JSJ

Figure 3: Algorithm for packing. To obtain covering

algorithm, negate E’S and change each “max” to “min”,
“minimize” to “maximize”, and “5” to “2”.

6.3 Packing Dual: The packing and covering
algorithms also generate implicit dual solutions whose

average values converge to the primal value. Let 1 and
V be defined as for the generalized packing dual.

LEMMA 6.3. The packing algorithm

invariant that

(1 + ,)lSlU~ < me’lSI”l~*

maintains the

We omit this and subsequent proofs in this section, since
they are similar to that of Lemma 6.2.

COROLLARY 6.3. Afier [cl~J~$ml iterations of

the packing algorithm, 5 5 (1 + E)‘U. That is, the primal

and average dual values differ by at mosi a factor of
1 + E.

Our final packing algorithm detects convergence by

comparing the primal value to the best dual value so

far. The algorithm is shown in Figure 3. The algorithm

maintains f(z) (in the variable F) instead of 3:.

6.4 Covering Dual:

LEMMA 6.4. The covering algorithm maintains the

invariant that

COROLLARY 6.4. After [ej iterations of the

covering algorithm, x 2 (1 - e)V, that is, the primal and

average dual values d@er by at most a factor of 1 - E.

The algorithm is described in Figure 3.

YOUNG

7 Using an Approximate Oracle

If the subroutine for computing minzEP Cj yj fj (z) re-

turns only an approximate minimizer 5, our algorithms
still work well. The degree of approximation (absolute

and/or relative) of the subroutine carries over into the
performance guarantee of the algorithm. For covering,

it can also affect the convergence rate (and therefore the
granularity).

We model the error by assuming that, given y, the
oracle returns an x such that

(7.6) ~v(x,Y) I (l+h)~y(~,?/) +62

j

where ~(2, y) = Cj yjj’j(z)/ Cj yj, Si] 2 0 denotes the

relative error and &J > 0 denotes the absolute error. We

call this a &,&J-approximate oracle. (For covering,

the notion of approximation is defined analogously.)
In each iteration, y still represents a dual solution.

Since z is only an approximate minimizer, the value of

the dual solution is no longer ~(2, y), but it is at least
42,Y)-&

lC61 . Still using V to denote the average of the
values of the dual solutions for the previous iterations,

define V to be the average of the corresponding U(Z, y)‘s.

Lemmas 6.2, 6.3, and 6.4 go through directly provided

‘%” is substituted for “P. From the (modified) lemmas,

by the same reasoning that gives the corollaries to those
lemmas, together with the fact that G 2 (1 + ~!&)a + Sz,

we get the following propositions.

PROPOSITION 7.1. Suppose the generalized packing

algorithm uses a (61, &)-approximate oracle. After
2lIlm 1 21 2E

iterations, X I. V + E < (1 + &)G + ~52 + E.

PROPOSITION 7.2. Suppose the packing aZgorithm

uses a (61, &)-approximate oracle. After [
(l+e wlnm

A* b(c) 1
iterations, J 5 (1+ e)V < (1 + e)(l + Si)V + (1+ c)&.

For covering, E 2 (1 - Si)V - 6,.

PROPOSITION 7.3. Suppose the covering algorithm

uses a (61, &)-approximate oracle. After

1

wlnm

[(l - 61)X’ - &]b(-6) 1
iterations, J 2 (1 - e)ZI 2 (1 - e)(l - Sr)3 - (1 - E)&.

These results hold for the algorithms without mod-

ification. In particular, V in the packing algorithm in

Figure 3 equals the best ~(5, y) seen so far, which is at

least 6, so is guaranteed to be within a 1 + E factor of x
within the required number of rounds.

RANDOMIZED ROUNDING WITHOUT SOLVING THE LINEAR PROGRAM 177

8 Integer Packing and Covering

The packing and covering algorithms in Figure 3, as

they stand, do not allow explicit control over the gran-

ularity of the final solution. Because the number of

iterations can be less than the upper bound, the algo-

rithms only guarantee a lower bound on the granularity.
Of course, the lower bound is the difficult part, so it is

not surprising that exact control over the granularity

can be obtained. In this section, we discuss briefly how
to modify those algorithms to find, e.g., an integer so-

lution.

For simplicity, we consider a particular case of

integer packing. Fix an instance of the packing problem

(P, f, w, E). Let X* and X* be an optimal solution. In
addition, let V c P be the extreme points on the

boundary of P (if P is a polytope, V is its vertex set).
We assume that the oracle returns only elements of V.

The integer packing problem is to compute a maximum

cardinality multiset S & V such that CIES fj(~) 5 1.

Note that for any such S, ISI I 11/X*], because

f(Z) 5 l/]S], where Z = CzES z/]S]. An e-approzimate

integer solution is a set S such that ISI > [l/X*] and

C&S fj(X> I l-i- E*
Let S be a multiset obtained by repeatedly choosing

random elements of V, where each random element is

chosen from a distribution on V with mean x*. (Such

distributions exist because P is the convex closure of

v.1
LEMMA 8.1. When ISI 2 l/X*,

Pr [(W C fj(x) L 1 + 61 < m/exp[b(~)/w].
XGS

The proof is essentially the same as that of Lemma 5.1,

except l/IS] replaces X’.
A corollary to the lemma is that, provided

m/ exp[b(e)/w] 5 1, there exists an e-approximate inte-

ger solution. The corresponding algorithm is the same

as the basic packing algorithm, except the termination

condition is different. The algorithm terminates when
adding another element would cause xlFES fj (x) > 1 +E

for some j. Because the algorithm keeps up with
the random process, the resulting set has size at least

P/W
Complexity and Performance Guarantee:

The algorithm is given in Figure 4. Note that 11/X*] 5

ISI I 1(1+ f)/X*J, so the number of iterations in
this case is at most (1 + e)/X*. For the condition

m/exp[b(e)/w] < 1, it suffices that, for instance, E >

2 max(w In m, &XGi).

Covering: The same techniques apply for integer

covering. For covering, define an c-approximate integer

solution to be a set S such that (S(2 [l/X*1 and

CzES fj(X) 2 1 - c- (Many variations are possible.)

FIND-INTEGER-PACKING (P, f, E, w)
assumption: m/exp[b(e)/w] 5 1.

l- St 0; Yj +l,FjtO (j=l,...,m)
2. repeat

3. choose II: E P to minimize Cj yj fj (z)

4. Fj+Fj+fj(z) (j=l,...,m)
5. if maxj Fj > 1+ E return S

6. StSU{x}

7. Yj ‘J/j- [l+E@] (j=l,...,m)

Figure 4: Algorithm for integer packing. To obtain

covering algorithm, negate E’S and change ‘lmax” to

“min” , “minimize” to “maximize”, and “>” to “<“.

Let S be a random multiset as above.

LEMMA 8.2. When ISI 2 l/X*,

Pr [CM C fj(x) 5 1 - e] < m/exp[b(--E)/w]. XES
The resulting algorithm is described in Figure 4. The

number of iterations in this case is at most [l/X*].
For the condition m/exp[b(-e)/w] < 1, it suffices that

o~!zJiGi

9 Conclusion

Partial derandomization: The point of oblivious
rounding is not derandomization per se, but to achieve

independence from the unknown aspects of the optimal

solution. For some random rounding schemes, some of
the parameters of the random process are known; these

can be left in the algorithm. For instance, in concur-
rent multicommodity flow, the relative amount of flow

of each commodity is known. A natural randomized
rounding scheme is to choose a commodity with prob-

ability proportional to its (known) demand, and then

to choose a flow path among paths for that commodity

with probability proportional to its (unknown) weight in
the optimal flow. Applying oblivious rounding to only

the second random choice, gives a randomized algorithm

in the style of [16].
Mixed bounds: Each of the random analyses

in this paper employed a single type of probabilistic

bound, This is not a limitation of the technique.
Oblivous rounding can be applied to analyses using, e.g.,

sums of probabilities bounded by Raghavan’s bounds,
Hoeffding’s bound, and Markov’s inequality. This is

relatively straightforward, if technically more tedious.
More general functions: Chernoff-type bounds

exist for more general classes of functions than linear

functions (e.g., Azuma’s inequality [l]). A natural
question is whether oblivious rounding can be applied
to such bounds to optimize more general functions.

178 YOUNG

References

[l] Noga Alon and Joel H. Spencer. The Probabilistic
Method. John Wiley and Sons, New York, 1992.

[2] Ingo Althijfer. On sparse approximations to random-

ized strategies and convex combinations. Linear Alge-

bra and its Applications, 199, March 1994.

[3] Dimitris Bertsimas and Rakesh Vohra. Linear pro-
gramming relaxations, approximation algorithms and

randomization; a unified view of covering problems.

Draft, January 1994.

[4] H. Brijnnimann and Michael T. Goodrich. Almost
optimal set covers in bounded VC-dimension. In

Proc. of the 10th Annual Symposium on Computational

Geometry, 1994.
[5] M. D. Grigoriadis and L. G. Kachiyan. Approximate

Solution of Matrix Games in Parallel, pages 129-136.

Elsevier Science Publishers B.V., 1992. Also available

as TR-91-73 from DIMACS.

[S] M. D. Grigoriadis and L. G. Kachiyan. A sublinear-

time randomized approximation algorithm for ma-

trix games. Technical Report LCSR-TR-222, Rut-

gers University Computer Science Department, New

Brunswick, NJ, April 1994.

[7] Wassily Hoeffding. Probability inequalities for sums

of bounded random variables. American Statistical
Journal, pages 13-30, March 1963.

[8] Thomas Hofmeister and Hanno Lefmann. Computing

sparse approximations deterministically. Unpublished
manuscript, Dort-
mund, Germany. hofmeist,lefmann@ls2.informatik,uni-

dortmund.de, 1994.

[9] Joseph J&J& Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, Inc., 1992.

[lo] David S. Johnson. Approximation algorithms for

combinatorial problems. Journal of Computer and
System Sciences, 9:256-278, 1974.

[ll] P. Klein, S. Plotkin, C. Stein, and E. Tardos. Faster

approximation algorithms for the unit capacity con-

current flow problem with applications to routing and

finding sparse cuts. SIAM Journal on Computing,

23(3):466-487, June 1994.

[12] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tar-

dos, and S. Tragoudas. Fast approximation algorithms

for multicommodity flow problems. In Proc. of the 23rd

Ann. ACM Symp. on Theory of Computing, pages lOl-

111, 1991.

[13] Richard J. Lipton and Neal E. Young. Simple strate-

gies for large zero-sum games with applications to com-

plexity theory. In Proc. of the 26th Ann. ACM Symp.

on Theory of Computing, 1994. To appear.

[14] L&.szl6 Lov&z. On the ratio of optimal integral and

fractional covers. Discrete Mathematics, 13:383-390,

1975.
[15] Michael Luby and Noam Nisan. A parallel approxi-

mation algorithm for positive linear programming. In

Proc. of the 25th Ann. ACM Symp. on Theory of Com-

puting, pages 448457, 1993.

[16] Serge Plotkin, David Shmoys, and Eva Tardos. Fast

approximation algorithms for fractional packing and

covering problems. In Proc. of the 32nd IEEE Annual

Symp. on Foundation of Computer Science, pages 495-

504, 1991.
[17] Prabhakar Raghavan. Probabilistic construction of de-

terministic algorithms approximating packing integer

programs. Journal of Computer and System Sciences,

37(2):13O-143, October 1988.

[18] Prabhakar Raghavan and C. Thompson. Randomized

rounding: A technique for provably good algorithms

and algorithmic proofs. Combinatorics, 7~365-374,

1987.
[19] F. Shahroki and D. W. Matula. The maximum concur-

rent flow problem. Journal of the ACM, 37:318-334,

1990.

[20] Joel H. Spencer. Ten Lectures on the Probabilistic

Method. Society for Industrial and Applied Mathemat-

ics, 3600 University City Science Center, Philadelphia,

PA 19104-2688. 1987.

