
Chapter 19 

Randomized Rounding Without Solving the Linear Program 

Neal E. Young* 

Abstract 

We introduce a new technique called oblivious rounding - 

a variant of randomized rounding that avoids the bottleneck 

of first solving the linear program. Avoiding this bottle- 

neck yields more efficient algorithms and brings probabilistic 

methods to bear on a new class of problems. We give obliv- 

ious rounding algorithms that approximately solve general 

packing and covering problems, including a parallel algo- 

rithm to find sparse strategies for matrix games. 

1 Introduction 

Randomized Rounding: Randomized rounding 

[18] is a probabilistic method [20, I] for the design of 

approximation algorithms. Typically, one formulates 

an NP-hard problem as an integer linear program, dis- 

regards the integrality constraints, solves the resulting 
linear program, and randomly rounds each coordinate 

of the solution up or down with probability depending 

on the fractional part. One shows that, with non-zero 
probability, the rounded solution approximates the op- 

timal solution. This yields a randomized algorithm; in 

most cases it can be derandomized by the method of 
conditional probabilities [17]. The probabilistic analy- 

ses are often simple, relying on just a few basic tech- 
niques. Yet for many NP-hard problems, randomized 
rounding yields the best approximation known by any 

polynomial time algorithm [3]. 
Oblivious Rounding: Derandomized or not, a 

main drawback of randomized rounding algorithms has 

been that they first solve a linear program to find a solu- 

tion to round. We show that this bottleneck can some- 

times be avoided as follows: (1) show that randomly 
rounding an optimal solution (possibly to smaller-than- 
integer units) yields an approximate solution; (2) ap- 

ply the method of conditional probabilities, finding pes- 
simistic estimators [17] that are essentially independent 

of the optimal solution. The method of conditional 

probabilities is used not to derandomize per se, but to 
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achieve the independence. 

Generalized Packing and Covering: The re- 

sulting algorithms find the approximate solution with- 

out first computing the optimal solution. This allows 

randomized rounding to give simpler and more efficient 

algorithms and makes it applicable for integer and non- 

integer linear programming. To demonstrate this, we 
give approximation algorithms for general packing and 

covering problems corresponding to integer and non- 

integer linear programs of small width, including a paral- 

lel algorithm for finding sparse, near-optimal strategies 
for zero-sum games. 

Packing and covering problems have been exten- 

sively studied (see $2). For example, Plotkin, Shmoys, 

and Tardos [16] approached these problems using 

Lagrangian-relaxation techniques directly. Their algo- 
rithms and ours share the following features: (1) they 

depend similarly on the width, (2) they are Lagrangian- 

relaxation algorithms, (3) they allow the packing or cov- 

ering set to be given by a (possibly approximate) sub- 
routine for optimizing over it, (4) they produce dual 

solutions that prove near-optimality, and (5) they can 

provide integer solutions comparable to those obtain- 
able by randomized rounding. Our approach shows a 
strong connection between probabilistic techniques and 

Lagrangian relaxation. Our algorithms are also rela- 
tively simple, although they are not as effective for some 

problems of large width. 

Flavor of Oblivious Rounding Algorithms: 

For the (integer) set cover problem, oblivious rounding 

yields the greedy set cover algorithm [lo, 141. For the 

fractional set cover problem, it yields an algorithm that 
repeatedly chooses a set whose elements have the largest 

net weight, where the weight of an element is initially 1 

and is multiplied by 1 - E each time a set containing it 
is chosen. To obtain the final cover, each set is assigned 

a weight proportional to the number of times it was 
chosen (this is similar in spirit to [4] and related works). 
For multicommodity flow, it yields algorithms that 

repeatedly augment flow along a shortest path, where 

the length of an edge is initially 1 and is multiplied by 

l+ec/c(e) each time the edge is used (c(e) is the capacity 
of the edge and c is the minimum edge capacity). 
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Problem Definitions: Let P be a convex set in 
lR” and let f be a linear function (not net. homogenous) 

from P to Rm. The width of P with respect to f is 

w = maxj,Z fj (z) - L, where L = minj,, fj(~). 
The generalized packing problem is to compute X* = 

minzEP maxj fj (z). The packing problem occurs when 

f is non-negative on P. The covering problem is to 

compute X’ = max,ep minj fj (a), assuming f is non- 
negative. (This is equivalent to the generalized packing 

problem with the restriction that f is non-positive.) 
Our algorithms assume an optimization oracle for 

P and f - given non-negative y E R,, the oracle 

returns 2 and f(z), where z minimizes Cj yjfj(z). 
(This models, e.g., packing source-sink paths subject to 
edge constraints; in this case the oracle would compute 

a shortest path for given non-negative edge lengths.) 

For covering, the oracle must maximize the sum. 
Quality of Solutions: Given the oracle, n, m, 

w, L, and E > 0, our algorithms return e-approximate 
solutions. For generalized packing, E is the additive 
error with respect to X*. For packing and covering, the 

error is a factor of 1 f e. 
Complexity: Table 1 shows the number of itera- 

tions required and the complexity per iteration. In that 

caption, “explicitly given” means that f(z) = Aa: + b, 

where A and b are, respectively, an explicitly given ma- 

trix and vector, while P = {Z E IR” : z > 0; c xi = 1). 
Granularity: The oracle is called once in each 

iteration of the algorithm; the algorithm returns the 

average of the solutions returned by the oracle. Thus, 
the granularity of the final solution is the granularity 
of the solutions returned by the oracle, divided by the 

number of iterations. For the abstract problems we 

consider, this can provide integer solutions comparable 

to those obtainable by other techniques. 
Dual Solutions: Our algorithms maintain a dual 

solution, represented by a vector y, initially uniform. 

In each iteration, each yj is multiplied by a factor 

depending on fj( ) h z w ere 2 is the solution returned 

by the oracle (e.g., for packing, yj is multiplied by 

1 + cf&c)/u). Th e average over all iterations of the 
values of these dual solutions is c-optimal with respect 

to the value of the final (primal) solution. 
Sparse Strategies for Zero-Sum Games: The 

explicitly given general packing problem generalizes the 

problem of finding near-optimal strategies for zero-sum 

matrix games: P is the set of mixed strategies for one 
player, f?(x) is the expected payoff if the player plays 

according to 2 and the opponent plays the pure strategy 
j, and X* is the value of the game. approximate solution 
is a mixed strategy z guaranteeing an expected payoff 
within an additive E of optimal. 
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generalized packing: 

b(e) := (1 + E) ln(1 + e) - E; 

b(--E) > $ > b(e) > &. 

Table 1: Number of iterations. Each iteration requires 
O(logm) time and O(m) operations (on an EREW- 

PRAM), plus one oracle call. For an explicitly given 

problem (no oracle), each iteration requires O(lognm) 
time and O(nm) operations. 

Each iteration chooses the best pure strategy given 

that the opponent plays the mixed strategy represented 
by y. The final solution returned is a mixed strategy 

that plays uniformly from [*I pure strategies, one 

for each iteration. (The opponent has m pure strategies; 
w is the minimum minus the maximum payoff.) The 

existence of such sparse, near-optimal strategies was 

shown probabilistically [2, 131; our existence proof of 
the approximate solution for generalized packing is a 

generalization of the proof in [13]. 

2 Related Work 

Plotkin, Shmoys, and Tardos [16] (generalizing a series 
of works on multicommodity flow [19, 11, 121) gave ap- 

proximation algorithms for general packing and covering 
problems similar to those we consider. For these ab- 

stract problems, their results are comparable to those 

in this paper, but for many problems their results are 

stronger. Most importantly, they give techniques for re- 

ducing the effective width of a linear program and tech- 

niques for problems (such as concurrent multicommod- 

ity flow) when the packing or covering set is a Cartesian 
product. 

Luby and Nisan [15] give a parallel approximation 
algorithm for positive linear programming - the special 
cases of linear programming of the form max,{c . x : 

Aa: > b; z 2 0) (a packing problem), or the dual 

min, { b . y : ATy I c; y 2 0) (a covering problem), 

where A, b, and c have non-negative coefficients. Here 

A, b, and c are explicitly given. 
Previous algorithms applicable to zero-sum games 

either required the solution of a linear program [8] or 

did not provide sparse strategies [5, 6, 151. 
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3 Introductory Example: Set Cover 

To introduce oblivious rounding, we give a simple 

example. The set cover problem is the following: 
given a family of sets 3 = {Sr , . _ , Sm}, with each 

si c {1,2,... , n}, a set cozrer C is a sub-family such 
that every element j = 1,. . , n is in some set in C. 

The problem is to find a cover C that is not much 

larger than C’, a minimum-cardinality cover. We derive 

an algorithm that, without knowing C*, emulates a 

random experiment that draws sets randomly from C”. 

The algorithm finds a cover of size at most []C*] lnnl. 

3.1 Existence: Let s = []C*] Inn]. Consider 
drawing s sets uniformly at random from C’. What 

is the expected number of elements left uncovered? For 

any given element II: E X, the probability that it is 
not covered in a given round is at most 1 - l/]C* ], 

because it is in at least one set in C*. Thus the 

expected number of elements left uncovered is at most 

n(1 - l/]C”])” < nexp(-s/]C*]) 5 1. Thus, with non- 

zero probability we obtain a cover C of size s. 

3.2 Construction: The method of conditional 
probabilities naively applied to the above proof yields 

an algorithm that depends on C*. We outline this next. 

Our ultimate goal is not derandomization per se, but an 
algorithm that does not require knowledge of C’. 

Consider an algorithm that chooses the sets sequen- 
tially, making each choice deterministically to do “as 

well” as the corresponding random choice would. Specif- 

ically, the algorithm chooses each set to minimize the 
expected number of elements that would remain uncov- 

ered if the remaining sets were chosen randomly from 
C’. Letting C denote the collection of sets chosen so 

far, this expected number is 

(3.1) 
a(c) = c ( L3~l”:)‘-‘c’ 

j@JC 

(We use xt to denote 1 if Si E C* and 0 otherwise; we 

use UC to denote the union of sets in C.) G is called 

a pessimistic estimator [17], because (a) it is an upper 

bound on the conditional probability of failure (in this 

case, by hlarkov’s inequality), (b) it is initially less than 
1, and (c) each choice can be made without increasing 

it. (The latter property follows in this case because Q, 

is an expected value conditioned on the choices made so 
far.) These three properties imply the invariant that if 
the remaining s - ]C] se t s were to be chosen randomly 

from C*, the probability of failure would be less than 

one. Consequently, when ]C] = s, C is a cover. 

Achieving Obliviousness: Because an uncovered 
element that occurs in several sets in C* contributes less 

to a, the above algorithm depends on the number of 
times each element is covered by C*. This is counter- 
intuitive, in that the only aspect of C* used in the 

proof was Csi9j z$/]C*] < 1 - l/]C*]. Replacing each 

corresponding term in Q, yields 

(3.2) 5(C) = c (1 - &)-. 

j@Jc 

& is a pessimistic estimator. More importantly, among 

collections of sets of the same size, (a is uniformly pro- 

portional to the number of uncovered elements in the 
set. Thus, the algorithm that uses 6 instead of @ 

does not depend on C*, it simply chooses each set 

to minimize the number of elements remaining uncov- 
ered. Nonetheless, it is guaranteed to keep up with the 
random experiment, finding a cover within ]]C*[ Inn] 

steps. This is the greedy set cover algorithm, origi- 

nally analyzed non-probabilistically by Johnson [lo] and 

Lovasz [ 141. 
Versus fractional cover: If the cover C* is a 

fractional cover, the analyses of both algorithms carry 

over directly to show a Inn performance guarantee. 
What enables oblivious rounding? We call 

such algorithms oblivious rounding algorithms. What 
kinds of randomized rounding schemes admit them? 

The key property is that the proof bounds the probabil- 

ity of failure by the expected value of a sum of products 
and bounds the terms corresponding across products 
uniformly. To illustrate, here is the explicit proof that 

min; &(C U ($1) < 6(C) : 

%C) = &II (l- &q)‘lC 

2 j~c(~&)+&)‘“‘-’ 
s-‘Cl-I = c- i I:, j~(uc)us, l- Ii*1 = ( -> 

= 
c Z&(C u {S,}) 
i Ic*l 

2 mZin &(C U {Si}). 

The first inequality is obtained-by “undoing” one step 
of the substitution that yielded Q from @. The standard 

argument then applies. We use this principle for each 

of our analyses., 
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4 Algorithm for Generalized Packing z > 0. 0 

Fix an instance (P, f, L, w, E) of the generalized packing The proof of Lemma (4.1) bounds the probability of 

problem. We consider randomly rounding an optimal failure by a sum of probabilities, each of which is 

solution to obtain an e-approximate solution; we then bounded by an expected value (4.3) in Hoeffding’s proof. 

derive the algorithm that finds such a solution. Thus (when L = 0 and w = l), the proof bounds the 

probability of failure by the expected value of 

4.1 Existence: Let X* and Z* be an optimal 

solution. Let S be a multiset obtained by repeatedly 1+ ctfj(4 

choosing random elements of P, where each random TzFs (1++*+” 

element is chosen from a distribution over P with n- 

dimensional mean z*. Let z be the average of the points the expectation of which is less than m/exp(2]S]e2). 
in S. The conditional expectation of the sum given T c S is 

LEMMA 4.1. The probability that zz is not an E- 

approximate solution is less than m/ exp [ Q$] . 

ED 

1+cfjw 1 + of3 (x*)1 s-‘T’ 

Proof. Without loss of generality, assume L = 0 and 
f(x)--L 

j 
sET (1 + Cy)X*+t I[ (1 + ckp’f~ 1 

w = 1. Otherwise take f(x) + - and c + E/W. 
The convexity of P ensuresWthat 3: E P. For where s is the desired size of S. To obtain the 

each j, fj(%) = C ,esfj(~c)/]S], which is the average pessimistic estimator for the algorithm, replace each 

of /S] independent random variables in [0, l]. Since fj(z*) by the uPPer bound A*: 

E[fj(s)] = f.j(~*) 5 X*, by Hoeffding’s bound [7], 
Pr[f,(g) > X* + C] is less than l/exp(2]S]?). Since 

j ranges from 1 to m, the result follows. 0 ED j 

1+ “fM] . [ (&+;;l;e] -IT’ 

,&T (1+ a) 

4.2 Construction: As in the set cover example, When s is large enough that m/exp(2]S]e2) 2 1, this 
our algorithm mimics the random experiment. Each quantity is a pessimistic estimator: (a) it is an upper 
round it adds an element to S to minimize a pessimistic bound on the conditional probability of failure, (b) it 
estimator. This pessimistic estimator is implicit in the is initially less than 1, and (c) some z can always be 

existence proof. To find it, we need the inequalities that added to S without increasing it. Properties (a) and 
prove (a simplified version of) Hoeffding’s bound: (b) follow from the choice of s and the inequalities in 

LEMMA 4.2. ([7]) Let X = xxi/s be the awer- the proof of Hoeffding’s lemma. Property (c) follows 
age of s independent random variables in [0, 11, with from the derivation, as explained for the set cover ex- 

E(X,) I pi and Cp~i = p. Then Pr[X > ,LL + SE] < ample. Among multisets of a given size, this pessimistic 
l/ exp(2se2). estimator is uniformly proportional to 

Proof. Let (1~ = e4’ - 1. 

Pr [TX; L ~+SE 1 t- 

= PI 

c n 1+ dj(4. 
j XET 

-D 
(1 + cY)x, 

i (1 + cK)pL”+c > l I 

[ I-I 
1+axi 

i (1+ cY)p;+c 1 

Thus, to augment a given multiset T, the algorithm 

adds the element z minimizing Cj yj fj (CC), where yj = IIzcT l-tafj(x). Th is, accounting for the normalization 

L = 0 and w = 1, is the algorithm in Figure 1. (4.3) L E 

5 Packing and Covering Algorithms 

We derive the packing algorithm analogously. Fix an 
instance (P,f,w, E) of the packing problem. Let X*, 
z*, S and z be as for Lemma 4.1. Note that, for this 

problem, an e-approximate solution is an II: E P with 

f(x) L (1 + E)X*. 

i 
5.1 Existence: 

The second step follows from (1 + a)’ 5 1 + IYZ for 
0 5 z 5 1 and Markov’s inequality. The last step uses 

LEMMA 5.1. The probability that Z is not an E- 

1 + CYZ < (1 + c~y)~+‘/e~~’ for E > 0, (Y = e4’ - 1, and 
approximate solution is less than m/ exp [ IW~P-]~ 
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FIND-GENERALIZED-PACKING(P,~, L,w,E) 

1. E+-~;cY-~*~-~;S+-{}; st$ 
2. yj . + 1 (j = 1,. ,m) 
3. repeat 

4. choose 5 E P to minimize Cj y.j fj (z) 

5. S+Su{x} 

6. Yj +-- Y.i 4 1+&+] (j= l,...,m) 
7. until ISI > s 

8. return & CzES z 

FIND-PACKING-GIVEN-S (P, f, E, W, S) 

1. s-0 
2. yj + 1 (j = 1, . . . ) m) 

3. repeat 

4. choose z E P to minimize Cj y.j fj (z) 

5. s+slJ{x} 

6. yj+yj.[l+,y] (j=l,...,m) 
7. until ISI > s do 

8. return h CzES 5 

Figure 1: Algorithm for generalized packing Figure 2: Algorithm for packing, given s. To obtain 

covering algorithm, negate E and change “minimize” to 
“maximize”. 

Proof. Without loss of generality, assume w = 1. 
Otherwise take f(lc) + f(~)/w and X* c X*/w. 

The convexity of P ensures that 5 E P. For each 
corresponding to (5.4). The expectation given T G S is 

j7 f&4 = c zESfj(~)/]S], which is the average of s- tT’ 
IS] independent random variables in [O,l], each with 

1+ cfj(X) 1 + Efj (z*) 

’ 
expectation fj(2*) 5 X*. By Raghavan’s bound [17], Gin ii 

2ET (1 + +++* . (1 + +++* I[ 1 
Pr[fj(Z) > (1+6)X*] is less than l/exp[lS]b(e)x*]. Since 
j ranges from 1 to m, the result follows. ’ 

where s is the desired size of S. When s is large enough 

that m/exp[]S]b(E)X*] 5 1, replacing fj(Z*) by X* gives 

5.2 Construction: Here is Raghavan’s proof: 

LEMMA 5.2. ([17]) Let X = CX;/s be the uv- 

erage of independent random variables in [0, I] with 

E(Xi) I pi and Cp~i = p > 0. Then Pr[X 2 

Cl+ 4~1 < VwlW4. 

Proof. 

I-I 1-t e E(X,) = 
i (1 + E)u+4Pt 

The last line equals 1/ exp[b(t)p]. The second step uses 

(1 + a)” 5 1+ CYZ for 0 2 2 5 1 and Markov’s inequality. 

The last uses E(X;) I p; and 1 + z I e*, which is strict 
if .z # 0. 0 

Thus (assuming w = l), the proof of Lemma 5.1 bomlds 

the probability of failure by the expectation of 

a pessimistic estimator. Among multisets T of the same 
size, the pessimistic estimator is proportional to 

c n 1 + Efj(X). 
j XET 

Thus, to augment a given multiset T, the algorithm 
adds the element x minimizing Cj yjfj(z), where yj = 

I-I zET l+efj(x). Th’ is, accounting for the normalization 
to the case w = 1, gives the algorithm in Figure 2. 

This algorithm assumes s is given. We remove this 

requirement in Section 6. 

5.3 Covering Algorithm. The covering algo- 

rithm is described in Figure 2. Its derivation is analo- 
gous to that of the packing algorithm. Fix an instance 

(P, f, w, E) of the approximate covering problem. Let 
x*, x*, S and rC be as for Lemma 4.1. Note that for 

this problem, X’ = minj fj(x*) and an +approximate 

solution z E P satisfies f(Z) 2 (1 - E)X*. 

LEhlhlA 5.3. The probability that 2 is not an E- 

approximate solution is less than m/ exp[]S[b(e)X*/w]. 

We omit the proof, which is essentially the same as for 

packing, except it is based on the following variant of 
Raghavan’s bound: 

L~hfnlx 5.4. ([17]) Let X = xxi/s be the au- 
erage of independent random variables in [0, l] with 

E(X,) 2 pi and CpL1 = IL > 0. Then Pr[X 5 

(1 - E)P] < l/exp[b(--E)jL). 
We omit the derivation of the algorithm, noting only 

that the proof of Lemma 5.3 implicitly bounds the 
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probability of failure by the expectation of 

6 Dual Solutions 

Our aIgorithms implicitly find good approximate solu- 

tions to the underlying dual linear programs. The ar- 

gument that the algorithm “keeps up” with the random 
rounding of an unknown optimal solution implicitly uses 

a dual solution to bound the optimal at each iteration. 

The value of the solution generated by the algorithm 
thus converges not only to the value of the optimum, 

but also to the average of the values of these dual solu- 
tions. The basic principle in each case is similar to that 

for set cover, which we give first for illustration. 

6.1 Set Cover Dual: The dual problem is to 

assign non-negative weights to the elements so that the 

net weight assigned to the elements in any set is at most 

one. The value of the dual solution is the net weight 

assigned. 
At the start of a given iteration, suppose r elements 

remain uncovered, and let d denote the largest number 
in any set in 3. Then assigning each uncovered element 

a weight of I/d yields a dual solution of value ZI = r/d. 
During the course of the algorithm, let ii denote the 

harmonic mean of the dual solutions corresponding to 

the iterations so far. 

LEMMA 6.1. The set cover algorithm maintains the 

invariant that the number of elements not covered by the 

current partial cover C is less than n/ exp(lCl/ti>. 

The proof is essentially the same as the proof that 6 

is a pessimistic estimator, except the values of the dual 

solutions take the place of IC*l. 

Proof. In an iteration where the dual solution has 

value r/d, the number of uncovered elements decreases 

from T to r - d = ~(1 - l/,u) < re-‘lv. By induction 
on the iterations, the algorithm maintains the invariant 

that the number of uncovered elements is less than 

nlexp(Cellw) h w ere me is the value of the dual 
solution corresponding to the Cth iteration and e ranges 

over the iterations so far. Note that ti = ICI/C &. 0 
Before the last iteration at least one element is left, 

so at that point n/ exp( (k - 1)/a) > 1. Thus, 

COROLLARY 6.1. The harmonic mean of the values 
of the dual solutions over the first h- - 1 iterations is 

larger than e, where k: is the size of the final cover. 
The maximum value is at least the arithmetic mean, 

which is at least the harmouic mean, so at least one of 

these simple dual solutions has value above 2. 

6.2 Generalized Packing Dual: The vector 

y maintained by the generalized packing algorithm 

represents a dual solution. At the start of a given 
iteration, the value of the dual solution associated with 

y is 

(6.5) 
minzEP Cj Yjfj(z) 

Cj% 

(Since 1~ 2 0: a simple argument shows this is a lower 
bound on X’ = min,ep maxj f,(x).) 

Notation: During the course of the algorithm, let 

Z denote the current solution CzES~/(SI represented 

by S. Let 1 denote maxj fj(?). Let v denote the average 

of the values of the dual solutions for the previous 
iteratious. Let W(IF, y) denote Cj yjfj(~c)/ Cj yj. 

LER~~IA 6.2. The generalized packing algorithm 
maintains the invariant 

Proof. WLOG, assume L = 0 and w = 1. We show 

that Cj yj is at least the left-hand side and at most the 

right-hand side. The first part follows from the same 
sequence of inequalities that was used in $4.2 to derive 

the (numerator of the) pessimistic estimator: 

(1 + ,)lSlX < X(1 + o)lW*) - 

= c H(l +,)fJ@) 

j z:ES 

L Cfl l+cYfj(Z). 

J XES 

Since yj = IjLcES 1 + ofj(~), the first part follows. 

For the second part, we first note the role of the 

dual solution in each iteration: given the current IC 
and y, the iteration increases the quantity Cj yj by a 

factor of 1 + av(z, y). (This follows from inspection 

of the algorithm and the definition of v(~,y).) Next 

we apply the sequence of inequalities that bounded 

the pessimistic estimator below 1 in $4.2: By the 
last inequality in Hoeffding’s bound (Lemma 4.2), 1 + 

a!?J(rc, y) <_ (1 + cp~y)+~ / exp(2e2). Let ve denote the 
value of v(~,y) at the Jth iteration (for 1 5 C < ISI). 

By induction on the iterations 

c ?j3 5 m(l+ cu)~~(“‘+c)/exp(21Sl~2). 
Since lS[V = Ce ve, this gives the result. q 

COROLLARY 6.2. After I+1 iterution,s of the 
generalized packing algorithm, X 5 v + E. That is, the 
primal and average dual values differ by at most E. 
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FIND-PACKING(P, f, E, W) 

1. St {}; yj t 1 (j= l,...,m) 
2. repeat 

3. choose II: E P to minimize ‘u = & yjfj(~) 

4. StSu{x} 

5. yjCyjj[l+E+] (j=l,...,m) 

6. V + ma@, v/ Cj yj> 
7. p++KJ ;, 1v.i + fj(4l/lsl (j = 13. . .T m> 
8. 

9. until X 5 (lf+“t,V 

10. return CtES z/JSJ 

Figure 3: Algorithm for packing. To obtain covering 

algorithm, negate E’S and change each “max” to “min”, 
“minimize” to “maximize”, and “5” to “2”. 

6.3 Packing Dual: The packing and covering 
algorithms also generate implicit dual solutions whose 

average values converge to the primal value. Let 1 and 
V be defined as for the generalized packing dual. 

LEMMA 6.3. The packing algorithm 

invariant that 

(1 + ,)lSlU~ < me’lSI”l~* 

maintains the 

We omit this and subsequent proofs in this section, since 
they are similar to that of Lemma 6.2. 

COROLLARY 6.3. Afier [cl~J~$ml iterations of 

the packing algorithm, 5 5 (1 + E)‘U. That is, the primal 

and average dual values differ by at mosi a factor of 
1 + E. 

Our final packing algorithm detects convergence by 

comparing the primal value to the best dual value so 

far. The algorithm is shown in Figure 3. The algorithm 

maintains f(z) (in the variable F) instead of 3:. 

6.4 Covering Dual: 

LEMMA 6.4. The covering algorithm maintains the 

invariant that 

COROLLARY 6.4. After [ej iterations of the 

covering algorithm, x 2 (1 - e)V, that is, the primal and 

average dual values d@er by at most a factor of 1 - E. 

The algorithm is described in Figure 3. 
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7 Using an Approximate Oracle 

If the subroutine for computing minzEP Cj yj fj (z) re- 

turns only an approximate minimizer 5, our algorithms 
still work well. The degree of approximation (absolute 

and/or relative) of the subroutine carries over into the 
performance guarantee of the algorithm. For covering, 

it can also affect the convergence rate (and therefore the 
granularity). 

We model the error by assuming that, given y, the 
oracle returns an x such that 

(7.6) ~v(x,Y) I (l+h)~y(~,?/) +62 

j 

where ~(2, y) = Cj yjj’j(z)/ Cj yj, Si] 2 0 denotes the 

relative error and &J > 0 denotes the absolute error. We 

call this a &,&J-approximate oracle. (For covering, 

the notion of approximation is defined analogously.) 
In each iteration, y still represents a dual solution. 

Since z is only an approximate minimizer, the value of 

the dual solution is no longer ~(2, y), but it is at least 
42,Y)-& 

lC61 . Still using V to denote the average of the 
values of the dual solutions for the previous iterations, 

define V to be the average of the corresponding U(Z, y)‘s. 

Lemmas 6.2, 6.3, and 6.4 go through directly provided 

‘%” is substituted for “P. From the (modified) lemmas, 

by the same reasoning that gives the corollaries to those 
lemmas, together with the fact that G 2 (1 + ~!&)a + Sz, 

we get the following propositions. 

PROPOSITION 7.1. Suppose the generalized packing 

algorithm uses a (61, &)-approximate oracle. After 
2lIlm 1 21 2E 

iterations, X I. V + E < (1 + &)G + ~52 + E. 

PROPOSITION 7.2. Suppose the packing aZgorithm 

uses a (61, &)-approximate oracle. After [ 
(l+e wlnm 

A* b(c) 1 
iterations, J 5 (1+ e)V < (1 + e)(l + Si)V + (1+ c)&. 

For covering, E 2 (1 - Si)V - 6,. 

PROPOSITION 7.3. Suppose the covering algorithm 

uses a (61, &)-approximate oracle. After 

1 

wlnm 

[(l - 61)X’ - &]b(-6) 1 
iterations, J 2 (1 - e)ZI 2 (1 - e)(l - Sr)3 - (1 - E)&. 

These results hold for the algorithms without mod- 

ification. In particular, V in the packing algorithm in 

Figure 3 equals the best ~(5, y) seen so far, which is at 

least 6, so is guaranteed to be within a 1 + E factor of x 
within the required number of rounds. 
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8 Integer Packing and Covering 

The packing and covering algorithms in Figure 3, as 

they stand, do not allow explicit control over the gran- 

ularity of the final solution. Because the number of 

iterations can be less than the upper bound, the algo- 

rithms only guarantee a lower bound on the granularity. 
Of course, the lower bound is the difficult part, so it is 

not surprising that exact control over the granularity 

can be obtained. In this section, we discuss briefly how 
to modify those algorithms to find, e.g., an integer so- 

lution. 

For simplicity, we consider a particular case of 

integer packing. Fix an instance of the packing problem 

(P, f, w, E). Let X* and X* be an optimal solution. In 
addition, let V c P be the extreme points on the 

boundary of P (if P is a polytope, V is its vertex set). 
We assume that the oracle returns only elements of V. 

The integer packing problem is to compute a maximum 

cardinality multiset S & V such that CIES fj(~) 5 1. 

Note that for any such S, ISI I 11/X*], because 

f(Z) 5 l/]S], where Z = CzES z/]S]. An e-approzimate 

integer solution is a set S such that ISI > [l/X*] and 

C&S fj(X> I l-i- E* 
Let S be a multiset obtained by repeatedly choosing 

random elements of V, where each random element is 

chosen from a distribution on V with mean x*. (Such 

distributions exist because P is the convex closure of 

v.1 
LEMMA 8.1. When ISI 2 l/X*, 

Pr [(W C fj(x) L 1 + 61 < m/exp[b(~)/w]. 
XGS 

The proof is essentially the same as that of Lemma 5.1, 

except l/IS] replaces X’. 
A corollary to the lemma is that, provided 

m/ exp[b(e)/w] 5 1, there exists an e-approximate inte- 

ger solution. The corresponding algorithm is the same 

as the basic packing algorithm, except the termination 

condition is different. The algorithm terminates when 
adding another element would cause xlFES fj (x) > 1 +E 

for some j. Because the algorithm keeps up with 
the random process, the resulting set has size at least 

P/W 
Complexity and Performance Guarantee: 

The algorithm is given in Figure 4. Note that 11/X*] 5 

ISI I 1(1+ f)/X*J, so the number of iterations in 
this case is at most (1 + e)/X*. For the condition 

m/exp[b(e)/w] < 1, it suffices that, for instance, E > 

2 max(w In m, &XGi). 

Covering: The same techniques apply for integer 

covering. For covering, define an c-approximate integer 

solution to be a set S such that (S( 2 [l/X*1 and 

CzES fj(X) 2 1 - c- (Many variations are possible.) 

FIND-INTEGER-PACKING (P, f, E, w) 
assumption: m/exp[b(e)/w] 5 1. 

l- St 0; Yj +l,FjtO (j=l,...,m) 
2. repeat 

3. choose II: E P to minimize Cj yj fj (z) 

4. Fj+Fj+fj(z) (j=l,...,m) 
5. if maxj Fj > 1+ E return S 

6. StSU{x} 

7. Yj ‘J/j- [l+E@] (j=l,...,m) 

Figure 4: Algorithm for integer packing. To obtain 

covering algorithm, negate E’S and change ‘lmax” to 

“min” , “minimize” to “maximize”, and “>” to “<“. 

Let S be a random multiset as above. 

LEMMA 8.2. When ISI 2 l/X*, 

Pr [CM C fj(x) 5 1 - e] < m/exp[b(--E)/w]. XES 
The resulting algorithm is described in Figure 4. The 

number of iterations in this case is at most [l/X*]. 
For the condition m/exp[b(-e)/w] < 1, it suffices that 

o~!zJiGi 

9 Conclusion 

Partial derandomization: The point of oblivious 
rounding is not derandomization per se, but to achieve 

independence from the unknown aspects of the optimal 

solution. For some random rounding schemes, some of 
the parameters of the random process are known; these 

can be left in the algorithm. For instance, in concur- 
rent multicommodity flow, the relative amount of flow 

of each commodity is known. A natural randomized 
rounding scheme is to choose a commodity with prob- 

ability proportional to its (known) demand, and then 

to choose a flow path among paths for that commodity 

with probability proportional to its (unknown) weight in 
the optimal flow. Applying oblivious rounding to only 

the second random choice, gives a randomized algorithm 

in the style of [16]. 
Mixed bounds: Each of the random analyses 

in this paper employed a single type of probabilistic 

bound, This is not a limitation of the technique. 
Oblivous rounding can be applied to analyses using, e.g., 

sums of probabilities bounded by Raghavan’s bounds, 
Hoeffding’s bound, and Markov’s inequality. This is 

relatively straightforward, if technically more tedious. 
More general functions: Chernoff-type bounds 

exist for more general classes of functions than linear 

functions (e.g., Azuma’s inequality [l]). A natural 
question is whether oblivious rounding can be applied 
to such bounds to optimize more general functions. 
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