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Randomized Scheduling Algorithms for
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Abstract—The aggregate bandwidth of a switch is its port count
multiplied by its operating line rate. We consider switches with
high-aggregate bandwidths; for example, a 30-port switch oper-
ating at 40 Gb/s or a 1000-port switch operating at 1 Gb/s. De-
signing high-performance schedulers for such switches with input
queues is a challenging problem for the following reasons: 1) high
performance requires finding good matchings; 2) good matchings
take time to find; and 3) in high-aggregate bandwidth switches
there is either too little time (due to high line rates) or there is too
much work to do (due to a high port count).
We exploit the following features of the switching problem to de-

vise simple-to-implement, high-performance schedulers for high-
aggregate bandwidth switches: 1) the state of the switch (carried in
the lengths of its queues) changes slowly with time, implying that
heavy matchings will likely stay heavy over a period of time and
2) observing arriving packets will convey useful information about
the state of the switch. The above features are exploited using hard-
ware parallelism and randomization to yield three scheduling algo-
rithms—APSARA, LAURA, and SERENA. These algorithms are
shown to achieve 100% throughput and simulations show that their
delay performance is quite close to that of the maximum weight
matching, even when the traffic is correlated. We also consider
the stability property of these algorithms under generic admissible
traffic using the fluid-model technique.
The main contribution of this paper is a suite of simple to imple-

ment, high-performance scheduling algorithms for input-queued
switches.We exploit a novel operation, calledMERGE,which com-
bines the edges of two matchings to produce a heavier match, and
study of the properties of this operation via simulations and theory.
The stability proof of the randomized algorithms we present in-
volves a derandomization procedure and uses methods which may
have wider applicability.

Index Terms—Input queued switch scheduling, packet
switching, randomized scheduling algorithms.

I. INTRODUCTION

O
VER THE past few years the input-queued switch archi-

tecture has become dominant in high-speed switching.

This is mainly due to the fact that the memory bandwidth

of its packet buffers is very low compared with that of an

output-queued or a shared-memory architecture.

Fig. 1 shows the logical structure for an input-queued (IQ)

switch. Suppose that time is slotted so that at most one packet
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Fig. 1. Logical structure of an input-queued cell switch.

can arrive at each input in one time slot. Packets arriving at

input and destined for output are buffered in a “virtual

output queue” (VOQ), denoted here by VOQ . The use of

VOQs avoids performance degradation due to the head-of-line

blocking phenomenon [2]. Let the average cell arrival rate

at input for output be . The incoming traffic is called

admissible if , and . We assume

that packets are switched from inputs to outputs by a crossbar

fabric. When switching unicast traffic,1 this fabric imposes the

following constraint: in each time slot, at most one packet may

be removed from each input and at most one packet may be

transferred to each output.

To perform well, an input-queued switch requires

a good packet scheduling algorithm for determining which in-

puts to connect with which outputs in each time slot. It is well-

known that the crossbar constraint makes the switch scheduling

problem a matching problem in an weighted bipartite

graph. The weight of the edge connecting input to output is

often chosen to be some quantity that indicates the level of con-

gestion; for example, queue lengths or the ages of packets.

A matching for this bipartite graph is a valid schedule for the

switch. Note that a valid matching can be seen as a permutation

of the outputs. In this paper, we will use the words schedule,

matching and permutation interchangeably. A matching of

particular importance for this paper is the maximum weight

matching (MWM) algorithm. Given a weighted bipartite graph,

the MWM finds that matching whose weight is the highest.

For example, Fig. 2 shows a weighted bipartite graph and one

valid schedule (or matching). We shall use to denote the

schedule used by the switch at time .

1We do not consider multicast traffic in this paper.
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Fig. 2. Example of weighted bipartite graph and its maximum weight
matching.

This paper is primarily concerned with designing schedulers

for “high-aggregate bandwidth” switches. The aggregate band-

width of an switch running at a line rate of bits/s is

defined to be the product bits/s. Thus, high-aggregate band-

width switches can be designed in two ways: a small number of

ports (small ) connected to very high-speed lines (large )

and a large number of ports (large ) connected to slower lines

(small ). As discussed in [13], the former type of switch typi-

cally resides in a “core router,” interconnecting a small number

of enterprise networks via high-speed lines. The latter type of

switch resides in an “edge router,” which typically has a large

number of ports running at relatively lower speeds.

There are two main quantities for measuring the performance

of a switch scheduling algorithm: throughput and delay. Early

theoretical work on packet switches has been concerned with

designing algorithms that achieve 100% throughput. Such

algorithms are referred to as “stable” algorithms. In particular,

the papers [16], [28], showed that under Bernoulli independent

and identically distributed (i.i.d.) packet arrival processes the

MWM is stable as long as no input or output is oversubscribed.2

More recently, other algorithms have been proposed for

providing exact delay bounds [4], [14], [24]. Those algorithms

in fact provide something much stronger: they allow a switch

whose fabric runs at a speedup of between two and four to

exactly emulate an output-queued switch. Thus, they are stable

and permit the use of sophisticated algorithms for supporting

quality-of-service (QoS).

But, all of the above algorithms are too complicated for

implementation in high-aggregate bandwidth switches. They

require too many iterations (for example, the MWM requires

iterations in the worst case), and the computation of

weights used in the algorithms of [4], [14], and [24] requires

too much information to be communicated between inputs and

outputs.

Implementation considerations have, therefore, seen the pro-

posal of a number of practicable scheduling algorithms; no-

tably, iSLIP [18], iLQF [17], RPA [1], MUCS [6], and WFA

[26]. However, these algorithms perform poorly compared with

MWM when the input traffic is nonuniform: they induce very

large delays and their throughput can be less than 100%.

More recently, some particularly simple-to-implement sched-

uling algorithms have been proposed in [3] and [12] and proven

to be stable. But, [3] introduces an extra packet resequencing

2The weights were taken to be the length of originally and later work
[19] took the weights to be the age of the oldest packet in .

problem and [12] needs multiple switching fabrics. Neverthe-

less, these algorithms make a significant point: delivering 100%

throughput does not complicate the scheduling problem.

On the other hand, in order to keep delays small, it seems

necessary to find good matchings; and finding good matchings

takes many iterations and consumes time. And high-aggregate

bandwidth switches do not leave much time for scheduling, be-

cause they are either connected to very-high-speed lines or they

have too many ports.

Our goal of designing simple-to-implement, high-perfor-

mance schedulers for high-aggregate bandwidth switches leads

to the following question: Is it possible for an algorithm to

compete with the throughput and delay performance of MWM

and yet be simple to implement? If yes, what feature of the

scheduling problem remains to be exploited?

The answer lies in recognizing two features of the high-speed

switch scheduling problem. 1)Using memory:Note that packets

arrive (depart) at most one per input (output) per time slot.

This means that queue lengths, taken to be the weights by

MWM, change very little during successive time slots. Thus,

a heavy matching will continue to be heavy over a few

time slots, suggesting that carrying some information, or

retaining memory, between iterations should help simplify the

implementation while maintaining a high level of performance.

2) Using arrivals: Since the increase in queue lengths is

entirely due to arrivals, it might help to use a knowledge of

recent arrivals in finding a matching.

We shall see that both these features considerably simplify

the implementation and provide a high performance. We also

use some novel techniques for simplifying the implementation.

1) Hardware parallelism: Finding heavy matchings essen-

tially involves a search procedure, requiring a comparison

of the weight of several matchings. In Section III-A, we

propose an algorithm called APSARA, that exploits a nat-

ural structure on the space of matchings and uses paral-

lelism in hardware to conduct this search efficiently. In

particular, it requires a single iteration, is stable, and its

delay is comparable to that of MWM.

2) Randomization: In a variety of situations where the scala-

bility of deterministic algorithms is poor, randomized al-

gorithms are easier to implement and provide a surpris-

ingly good performance. The main idea is simply stated:

Basing decisions upon a few random samples of a large

state space is often a good surrogate for making decisions

with complete knowledge of the state. See [21] for a gen-

eral exposition of randomized algorithms, [11], [27] for

application to switching, and [20], [23] for other applica-

tions to networking. The randomized algorithms in this

paper build on the previous work of Tassiulas [27] to a

large degree.

A. Organization of the Paper

The rest of the paper exploits the above observations and pro-

poses some new algorithms and proof techniques. The results

are divided into two parts. Section II deals with throughput and

Section III deals with delay. Section II begins by establishing
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that algorithms based only upon random samples are unstable,

making it necessary to use memory. We recall the recent work

of Tassiulas [27], which presents a simple randomized algorithm

that uses memory for achieving 100% throughput. We present a

derandomized version of Tassiulas’ algorithm and prove that it

is also stable (in Theorem 3). Lemma 1 states a simple criterion

for the “goodness” of a switch algorithm, which may be useful

elsewhere.

The derandomization mentioned above leads to the algorithm

APSARA in Section III-A. APSARA is shown to be stable and

simulations show that its delay performance is very competitive

compared with MWM. In Section III-B, we present a random-

ized algorithm called LAURA, which uses memory and outper-

forms Tassiulas’ scheme in terms of delay. It is based on the

observation that the weight of a heavy matching is carried in a

few of its edges; therefore, it is better to remember heavy edges

than it is to remember matchings. Finally, in Section III-C, we

propose an algorithm called SERENA, which uses the random-

ness in the arrivals process for finding good matchings to pro-

vide very low delays.

In Section IV, we consider the stability property of these algo-

rithms under general admissible traffic using fluid-model tech-

nique.We present simulations to show that these algorithms per-

form well even under correlated traffic.

II. THROUGHPUT

We first define some notations which will be used in the rest

of the paper. A matching matrix can be represented

equivalently as a permutation via the equation iff

(i.e., if input is connected to output under matching

, then is mapped under permutation ). Thus, the matching

is equivalent to the permutation .

Let denote the queue length of at

time . The weight of matching is defined as:

. Given the queue lengths at

time , is used to denote the corresponding maximum

weight matching and to denote its

weight.

As mentioned in the introduction, randomized algorithms are

particularly simple to implement because they work on a few

randomly chosen samples rather than on the whole state space.

As a simple randomized approximation to MWM, consider the

following algorithm.

A. ALGO1

The MWM algorithm finds, from amongst the possible

matchings, that matching whose weight is the highest. An ob-

vious randomization of MWM yields the following algorithm,

ALGO1: At each time , let the schedule used by ALGO1

be the heaviest of matchings chosen uniformly at

random.

The following theorem shows that ALGO1 is not stable, even

when .

Theorem 1: For an switch and for any , where

, ALGO1 does not deliver 100% throughput.

Proof: Consider the edge between input and output

. This edge is present in the schedule, , at time , only if

it belongs to at least one of the randomly chosen matchings.

Consider

one of the random matchings

any of the random matchings

one random matching

for

Therefore, the service rate available for packets from input to

output is at most . And, as soon as ,

we have that the switch is unstable under ALGO1.

Remark: Note that the above theorem has a much stronger

implication:Any scheduling algorithm that only uses

random matchings cannot achieve 100% throughput. Further,

there is no assumption about the distribution of the packet arrival

process, only a rate assumption. This adds strength to the next

algorithm, ALGO2, due to Tassiulas [27].

B. ALGO2: A Randomized Scheme With Memory

Consider the following algorithm, ALGO2.

a) Let be the schedule used at time .

b) At time choose a matching uniformly at

random from the set of all possible matchings.

c) Let .

Theorem 2 (Tassiulas [27]): ALGO2 is stable under any

Bernoulli i.i.d. admissible input.

C. ALGO3: A Derandomization of ALGO2

Before presenting the algorithm we need the concept of a

Hamiltonian walk on the set of all matchings. Consider a graph

with nodes, each corresponding to a distinct matching,

and all possible edges between these nodes. Let denote a

Hamiltonian walk on this graph; that is, visits each of the

distinct nodes exactly once during times .

We extend for by defining mod .

One simple algorithm for such a Hamiltonian walk is described,

for example, in [22, Ch. 7]. This is a very simple algorithm that

requires space and time, to generate given

. Under this algorithm and differ in exactly

two edges. For this algorithm generates the match-

ings: , , ,

, , ,

, and .

Now consider ALGO3.

a) Let be the schedule used at time .

b) At time let , the matching visited

by the Hamiltonian walk.

c) Let .
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We shall prove the stability of ALGO3 after establishing the

following lemma.

Lemma 1: Consider an input-queued switch with admissible

Bernoulli i.i.d. inputs. Let be the queue-size process

that results when the switch uses scheduling algorithm .

Let denote the weight of the schedule used by at

time , and let be the weight of MWM given the same

queue-size process . If there exists a positive constant

such that the property

holds for all , then the algorithm is stable.

Proof: To establish stability it suffices to prove that (for

example, see [15] and [16]) for some and

whenever

where .

Consider the following:

Let be the schedule used by at time and let

denote arrivals to at time . We know that

Hence, we obtain

Taking conditional expectations with respect to yields

Since the arrival rate matrix, , is admissible it is strictly

doubly substochastic. Therefore, from arguments made in

[16, Lemma 2], we may write

, where the are permutation matrices and

and .

Let and let . Putting the

above observations together, we get

where

Hence, for large enough constant , we obtain for

This proves the stability of algorithm .

Theorem 3: An input-queued switch using ALGO3 is stable

under all admissible Bernoulli i.i.d. inputs.

Proof: Since there is at most one packet arriving at or de-

parture from each in each time slot, we obtain for any

matching that

(1)

Let denote the schedule used by ALGO3 at time , and let

be its weight. If, for every time , it

holds that for some , then by Lemma

1 it follows that ALGO3 is stable.

Consider a specific time instant . Let and denote the

maximumweight matchings at time and , respectively.

Now, by the property of the Hamiltonian walk, there is a

such that . Then

(2)

where follows from the definition of ALGO3 and follows

from (1).

For every , it follows from (1) and the definition of ALGO3

that

Using this repeatedly in the following, we obtain:

where follows from (2), follows from the fact that is

the maximumweight schedule at time , and follows

from (1).
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Since was arbitrary, we have shown that

for every . This completes the proof of

Theorem 3.

Lemma 1 and Theorem 3 together provide a general method

for establishing the stability of algorithms whose weight is

“good enough.” Thus, they may be applicable to a wider class

of algorithms than those that use memory.

III. DELAY

For a scheduling algorithm to have a good delay performance

in addition to providing 100% throughput, it needs to do extra

work. In the following sections, we describe three different al-

gorithms that respectively use parallelism, randomization and

the information in arrivals to achieve 100% throughput and a

good delay performance.

A. APSARA

As noted in the introduction, determining the maximum

weight matching essentially involves a search procedure, which

can take many iterations and be time-consuming. Since our

goal is to design high-performance schedulers for high-aggre-

gate bandwidth switches, algorithms that involve too many

iterations are unattractive.

Our goal is to design a high-performance scheduler that only

requires a single iteration. Therefore, we must devise a fast

method for finding good schedules. One method for speeding

up the scheduling process is to search the space matchings in

parallel. Fortunately, the space ofmatchings has a nice combina-

torial structure which can be exploited for conducting efficient

searches. In particular, it is possible to query the “neighbors” of

the current matching in parallel and use the heaviest of these as

the matching for the next time slot. This observation inspires the

APSARA algorithm, which employs the following two ideas:

1) use of memory;

2) exploring neighbors in parallel. The neighbors are defined

such that it is easy to compute them using hardware par-

allelism.

Definition 1: (Neighbor) Given a permutation , let be the

corresponding matching: for all . A matching is

said to be a neighbor of iff there are exactly two inputs, say

and , such that connects input to output and input

to output . All other input–output pairs are the same under

and . The set of all neighbors of a matching is denoted

.

Essentially, a neighbor, , of is obtained by swapping two

edges in , leaving the other edges of fixed. Note that

the cardinality of is . For example, the matching

for a 3 3 switch and its three neighbors , , and are

given below

1) APSARA: The Basic Version: Let be the matching

determined by APSARA at time . Let the matching

corresponding to the Hamiltonian walk at time . At time

APSARA does the following.

1) Determine and .

2) Let . Compute

the weight for all .

3) The matching at time is given by

APSARA requires the computation of the weight of neighbor

matchings. Each such computation is easy to implement since a

neighbor differs from thematching in exactly two edges.

However, computing the weights of all neighbors requires

a lot of space in hardware for large values of .

To overcome this, we make a different definition of what it

means to be a neighbor, thereby restricting the size of the neigh-

borhood set. In particular, we are aiming for a neighborhood of

size , as opposed to the order as in APSARA.

Definition 2: (Linear Neighbor) A matching is said to be

a linear neighbor of another matching iff there are exactly

two inputs, and mod , such that connects

input to output and input to output . All other

input–output pairs are the same under and . The set of all

neighbors of a matching is denoted .

Note that the cardinality of is exactly . Denote by

APSARA-L the version of the basic APSARA algorithm when

neighbors are chosen from .

Further, suppose that hardware space constraints allow the

use of at most modules, then how can the search pro-

cedure required by APSARA(or APSARA-L) be conducted ef-

ficiently?

One obvious solution is to search the neighborhood set over

multiple iterations by reusing the modules. After all, at low

line speeds there is more time for scheduling packets, allowing

one to conduct more iterations. However, if line speeds are high

and one is only allowed one iteration, then the question arises

as to which neighbors should be chosen. A deterministic pro-

cedure for choosing the neighbors will usually result in poor

choices since, a priori, it is not clear which neighbors are heavy.

It is better to choose neighbors at random and use the heav-

iest of these. This motivates the following variant of APSARA.

2) APSARA-R: The Randomized Variant: Suppose hard-

ware constraints only allow us to query neighbors. Let

denote the set of elements picked uniformly at

random from the set . APSARA-R determines the

matching as follows.

1) Determine (note that it is not necessary to

generate ). Determine , the status of

the Hamiltonian walk.

2) Let .

Compute for every .

3) .

Remark: We conclude the description of APSARA by men-

tioning one last point. APSARA generates all the matchings in

the neighborhood set oblivious of the current queue lengths. The

queue lengths are only used to select the heaviest matching from

the neighborhood set. It is, therefore, possible that the matching

determined by APSARA, while being heavy, is not of maximal

size. That is, there exists an input, say , which has packets for an

output , but the matching connects input to some other

output and connects output some other input , and both
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and are equal to zero. Thus, input and output

will both idle unnecessarily.

If needed, it is easy to complete thematching determined

by APSARA into a maximal matching. We shall call the max-

imal version MaxAPSARA. There are several simple ways to

maximize APSARA, and pretty much any one can be chosen.

We note from simulations that the maximization step leads to

relatively very small improvements in the performance of AP-

SARA and, therefore, may be avoided altogether.

3) APSARA Theorems:

Theorem 4: The algorithmsAPSARA,APSARA-L, andAP-

SARA-R are all stable under admissible Bernoulli i.i.d. inputs.

Proof: All versions use the Hamiltonian walk. Therefore,

Lemma 1 and Theorem 3 apply and the stability of algorithms

follows.

Theorem 5: Let denote the schedule obtained by AP-

SARA at time , and let denote its

weight. If , that is the schedule does not change

from time to time , then

where is the weight of maximum weight matching at

time .

Proof: Without loss of generality, assume that the max-

imum weight matching, , at time is the identity permu-

tation; that is, input is matched to output under the max-

imum weight matching. Let the permutation corresponding to

the schedule be . That is, matches input to output

. Let denote the weight of at time . Consider

any , . Suppose . Let be the input

matched to output under . Since , from

the property of APSARA, it follows that for every

Now, summing over , we obtain

But, , since is a permutation and,

hence

Now is the weight of the APSARA schedule and

is the weight of the maximum weight matching. Thus,

and the theorem is proved.

4) Implementation: All versions of APSARA involve

a Hamiltonian walk. This was done for purely theoretical

reasons: to ensure their stability (Theorem 4). We have found

that, in practice, the Hamiltonian walk is not necessary; that is,

the algorithms provide virtually the same delay and throughput

even without it. Thus, while the walk is extremely simple to

implement, we do not consider it either in implementation or in

performance evaluation.3

3Note that eliminating the Hamiltonian walk can only worsen the perfor-
mance, the actual algorithms perform even better.

Fig. 3. Schematic for the implementation of APSARA. The oldmatching
and the new arrivals , are used to compute the weights of the neighbor
matchings in parallel. The newmatching is the one with highest weight
among all the neighbors. Note that this architecture is parallel and can be easily
pipelined.

Themain feature of APSARA is that it can be implemented in

a parallel architecture very efficiently. Fig. 3 shows a schematic

for the implementation of APSARA with modules.

5) The Simulation Setting: Before presenting the perfor-

mance of APSARA, we outline the simulation setting that will

be used throughout the rest of the paper. We have conducted

extensive simulations of all the algorithms we present under

all the different types of traffic mentioned below. In addition,

we have also conducted simulations of switches with 64 and

1024 ports. Due to limitations of space and for uniformity of

comparison, we only present a subset of simulations which

represent “critical” loading conditions. Fig. 13 shows the

average queue length of each VOQ for different algorithms

under uniform traffic. Not surprisingly, all algorithms perform

well under this loading uniform traffic; thus, it is not “critical.”

More extensive simulations may be found in [9] and [25].

Switch: number of ports: . Each can store up

to 10 000 packets. Excess packets are dropped.

Input Traffic: All inputs are equally loaded on a normalized

scale, and denotes the normalized load. The arrival

process is Bernoulli i.i.d.

Let mod . The following load matrices are used

to test the performance of APSARA.

1) Uniform: . This traffic does not test much

since all algorithms perform well under it (see Fig. 13).

2) Diagonal: , , and

for all other and . This is a very skewed loading, in the

sense that input has packets only for outputs and .

It is more difficult to schedule than uniform loading.

3) Logdiagonal: and . For ex-

ample, the distribution of the load at input 1 across outputs

is: . This type of load is more

balanced than diagonal loading, but clearly more skewed

than uniform loading. Hence, the performance of a spe-

cific algorithm becomes worse as we change the loading

from uniform to logdiagonal to diagonal. In this paper, we

do not presents simulation results for logdiagonal traffic,

since they are qualitatively similar to the results for diag-

onal traffic.

Performance Measures: We compare the queue lengths in-

duced by different algorithms, the delays can be computed using
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Fig. 4. Mean IQ length for APSARA under diagonal traffic.

Little’s Law.4 The simulations are run until the estimate of the

average delay reaches the relative width of the confidence in-

terval equal to 1% with probability 95%. The estimation of

the confidence interval width uses the batch means approach.

Fig. 4 compares the average queue sizes induced by AP-

SARA, MWM, iSLIP (with iterations), and iLQF (with

iterations) under diagonal traffic. As seen, APSARA and

MaxAPSARA perform very competitively with MWM under

all loadings. On the other hand, both iLQF and iSLIP incur

severe packet losses and delays under heavy loading. We also

note that under low loads, APSARA deviates from MaxAP-

SARA since it is not maximal. Therefore, it may cause certain

s to idle. But, the difference is very small—no more than

ten packets on average.

We see that APSARA-L only 32 modules, performs quite

well when compared with APSARA, which uses

modules; even at high loads, the difference between queue sizes

is very small. While APSARA-R(32) does not perform, as well

as APSARA-L, when the number of modules , then

randomization appears to be the best option.

B. LAURA

As shown by Tassiulas [27], ALGO2 provides 100%

throughput. However, its delay performance is quite poor (as

we will see in Fig. 6). This is because of its particular use of

memory: it carries matchings between iterations via memory.

But, when the weight of a heavy matching resides in a few

heavy edges, it is more important to remember the heavy edges

than it is to remember the matching itself. This simple obser-

vation motivates the next algorithm LAURA, which iteratively

augments the weight of the current matching by combining

its heavy edges with the heavy edges of a (nonuniformly)

randomly chosen matching.

There are three main features in the design of LAURA:

1) use of memory;

2) nonuniform random sampling;

3) a merging procedure for weight augmentation.

4Note that Little’s Law holds also for nonwork-conserving stable systems,
like IQ switches.

1) The LAURA Algorithm: Let be the matching used

by LAURA at time . At time LAURA does the following:

a) generate a random matching using the RANDOM

procedure.

b) use Merge as the schedule for

time .

Random Procedure: Let denote the minimal set

of edges in the matching carrying at least a fraction

of its weight. We shall call the selection factor.

RANDOM is the following iterative procedure: Initially, all

inputs and outputs are marked as unmatched. The following

steps are repeated in each of iterations, where is typically

.

1) Let be the current iteration number. Let be

the number of unmatched input–output pairs. Out of

the possible matchings between these unmatched

input–output pairs, a matching is chosen uni-

formly at random.

2) If , retain the edges corresponding to

and mark the nodes they cover as matched. If ,

then retain all edges of .

Merge Procedure: Given a bipartite graph and two match-

ings and for this graph, the MERGE procedure returns

a matching whose edges belong either to or to .

MERGE works as follows.

Color the edges of red and the edges of green. Start

at output node and follow the red edge to an input node, say

. From input node follow the (only) green edge to its output

node, say . If , stop. Else continue to trace a path of

alternating red and green edges until is visited again. This

gives a “cycle” in the subgraph of red and green edges.

Suppose the above cycle does not cover all the red and green

edges. Then, there exists an output outside this cycle. Starting

from repeat the above procedure to find another cycle. In this

fashion, find all cycles of red and green edges. Suppose there are

cycles, at the end. Then, each cycle contains

two matchings: which has only green edges, and which

has only red edges. The MERGE procedure returns the matching

Fig. 5 illustrates the MERGE procedure. It is easy to show that

the final matching is the maximum weight matching on the

subgraph defined by edges of and .

2) LAURA: Complexity and Stability: It can be shown that

the running time of LAURA is bounded by .

In our simulation study, we set . Thus running time

of algorithm is .

The following theorem is about the stability of LAURA.

Theorem 6: LAURA is a stable algorithm, i.e., it achieves

100% throughput under admissible Bernoulli i.i.d. inputs.

Proof: This follows from the proof of Theorem 2, since

the probability that equals the maximum weight

matching is lower bounded by a positive constant for all time.

And, as shown in Theorem 2, this is sufficient to ensure its

stability.
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Fig. 5. An illustration of the MERGE applied to matchings M1 and M2. The
final matching is the maximum weight matching on the subgraph defined by
edges of M1 and M2.

Fig. 6. Mean IQ length for LAURA under diagonal traffic.

3) Performance: The simulation setting is identical to

that for the APSARA algorithm. We set the selection factor

, and the number of iterations .

LAURA is compared with the MWM, iSLIP, iLQF, and ALGO2

algorithms under diagonal traffic. The results are shown in

Fig. 6. The algorithms LAURA and MaxLAURA (which

outputs a maximal matching, similarly to what happens with

MaxAPSARA) perform quite competitively with respect to

MWM. We see that iSLIP and iLQF suffer large packet losses

at high loads. Strangely enough, although ALGO2 is provably

stable (as opposed to iSLIP and iLQF), its performance in terms

of average backlog is the worst. Note that this is not surprising,

if the Lyapunov’s criteria for the stability is carefully under-

stood. The switching system is stable if infinite queue sizes are

allowed. This fact, in some sense, gives stronger motivation

for the algorithms we propose in this paper, since they achieve

100% throughput (like ALGO2) but with delays very low and

comparable with the MWM algorithm.

4) Role of the Merge Procedure: In this section, we study

the role of the MERGE procedure in LAURA for obtaining good

delay performance.

Fig. 7. Mean IQ length under uniform traffic for ALGO2 and ALGO4. The two
algorithms behave almost the same.

Fig. 8. Mean IQ length under diagonal traffic for ALGO2 and ALGO4. ALGO4
shows a much better behavior than ALGO2, illustrating the goodness of the
MERGE procedure.

We consider the following two simple algorithms: ALGO2 (by

Tassiulas) and its variant called ALGO4, in which:

Merge .

Figs. 7 and 8 show the average queue lengths for these two

algorithms. Fig. 7 shows that both algorithms behave almost the

same under uniform traffic and, thus, theMERGE procedure does

not make a big difference to the performance under this traffic.

When the traffic is not uniform, as shown in Fig. 8, ALGO4

performs much better compared with ALGO2. This shows that

the use of the MERGE procedure is essential for obtaining good

delay performance under nonuniform traffic.

5) Learning Time: MERGE Versus MAX: The main reason

behind achieving 100% throughput for algorithms like ALGO2

and ALGO4 is the finite amount of time (on average) that it takes

these algorithms to obtain a matching whose weight is compa-

rable to that of MWM. But the learning time can be drastically

different and this directly affects the delay performance of the

underlying scheduling algorithm.

We now make a comparison of the learning time of ALGO4,

which uses MERGE procedure, with that ALGO2, which uses

MAX procedure. First, we present the simulation study under
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Fig. 9. The comparison of learnning time between ALGO2 and ALGO4 under
different weight distributions: uniform (“Uni”), exponential (“Exp”), and
bimodal (“Bi”). Only ALGO4 adopting MERGE procedure is able to learn 90%
of the weight of the MWM in a small number of iterations.

different scenarios and then present analytical results to under-

stand the observed behavior under a simple model.

Simulation setting: A random weighted bipartite graph is

created by choosing the weight of each edge according to inde-

pendent and identically distributed random variables with mean

1. We consider three different distributions: 1) exponential;

2) uniform on [0, 2]; and 3) bimodal on with

probabilities .

Both algorithms ALGO2 and ALGO4 start with same random

initial matching and subsequently they are provided with the

same randommatchings. Both the algorithms run till they obtain

a matching whose weight is at least a pre-determined fraction

of the weight of MWM on the same graph. The average number

of iterations taken by an algorithm to achieve this weight is used

as a measure of its learning time. When an algorithm takes more

than 10 000 iterations to learn this weight, we simply report the

number of iterations as 10 000.

For each , and for each distributions, we obtain

the average number of iterations over 100 sample runs. The re-

sults are plotted in the Fig. 9. It shows that for all distributions,

both algorithms manage to learn quickly when . But

as grows the average number of iterations taken by ALGO2 is

very high compared to that of ALGO4.We also note that learning

time gets worse as the variance of the edge-weight distribution

increases; i.e., uniform is easier to learn than exponential distri-

bution which is easier to learn than bimodal distribution.

MERGE Versus MAX: Analytical Results: The simulation

study showed that ALGO4 learns “good” matchings a lot

quicker compared with ALGO2 under different edge-weight

distributions. It is not as easy to obtain such qualitative results

analytically for any general edge-weight distribution. As our

interest is in determining the learning time of an algorithm, we

consider a simplified model in which the edges of the maximum

weight matching are assigned weight (or a large enough

vaule) and all other edges are assigned weight 0. We will then

be interested in theoretically understanding the average time

taken to learn the MWM.

Without loss of generality, assume that the MWM is the iden-

tity matching: i.e., the edge-weight matrix of the bipartite graph

has on the entries of the main diagonal and zero on the

remaining positions. We compare the performance of

ALGO2 and ALGO4 in this context. Each time both algorithms

are provided the same random matching. The MWM is learned

when all edges of the identity matching are learned by the algo-

rithm.

First, consider the performance of ALGO2. Note that the

matching retained by ALGO2 at the end of iteration will be the

matching with the most of edges in common with the identity

matching, among all random matchings chosen till iteration .

An edge of a matching is said to be fixed if it matches input

to output . Note that all the elements of the identity matching

are fixed. To understand the learning time of an algorithm, it is

therefore useful to study the distribution of the number of fixed

edges in a randomly chosen permutation. This distribution is

well-studied in the literature in various contexts.

Let denote the event that element is fixed in a randomly

chosen permutation . Let denote the probability that ex-

actly elements are fixed in a randomly chosen permutation of

size . First, let us compute : the probability that no ele-

ment is fixed

Pr Pr

where (a) is direct application of inclusion-exclusion principle.

Now for any

and

(3)

is the probability that there are at least fixed elements in a

randomly chosen matching. Thus, on average, ALGO2 takes

iterations to learn fixed elements or

elements of MWM.

We will now show that the order of the learning time for

ALGO4 is significantly smaller than that of ALGO2. Let

denote the matching retained by ALGO4 at the end of iteration ,

and be the random matching chosen at iteration .

Then, results by with .

Now, the bipartite graph containing the edges of and

is made up of cycles with edges alternatively belonging

to and . This is the same as the cyclic decomposi-

tion of a random a permutation. In each cycle, theMERGE proce-

dure either picks all edges from or all edges from .

Hence, it is important to know the distribution of cycles in a

random permutation.We briefly recall the salient features of this

well-studied distribution. Let be the random variable rep-

resenting the number of cycles in the graph defined by and
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, and let , be the length of th cycle.

It is well-known that is sharpy concentrated around its

mean: . Although the distribution of cycle-lengths

is not concentrated around its mean, , for simplicity

we assume the following: there are cycles each of length

. (It can be shown that this assumption gives a weaker

upper bound on the learning time of ALGO4.)

Let be the number of fixed elements in ; that is the

elements of MWM already learnt by . We now obtain a lower

bound for the probability that the number of fixed elements will

increase in by at least one.

Consider the following event: contains a fixed ele-

ment and it belongs to a cycle which does not contain any of the

fixed elements of . In this case, the ALGO4 will pick

elements of for this cycle. This in turn increases the

number of fixed elements in to at least . We

now compute the probability of this event.

The probability that there are fixed elements in is

as computed above. The fixed elements of

are distributed among the cycles uniformly at random.

A cycle contains elements from each of

and . The probability that the cycle containing the fixed

element of does not contain any of the elements

is

It follows from the above discussion that

Let . Then we obtain the following dif-

ferential equation for large :

The solution of this equation is

(4)

which implies

(5)

Thus, ALGO4 takes amount of

time to learn MWM, while we have seen earlier that ALGO2

takes time. These times compare as

This shows the drastic difference in the learning times of these

two algorithms and the power of the MERGE procedure. While

we have made some simplifying assumptions in both the mod-

eling and analysis above, in the future, we plan to investigate

Fig. 10. An illustration of the ARR-MERGE procedure, given the matching
and the arrival graph .

graphs with random edge weights (not just zero or ) and take

into account the details of the cycle-length distribution. This will

help to tighten the rather weak bounds derived above, and give

a more complete picture of the analysis.

C. SERENA

Our final algorithm, SERENA is based on the following

ideas:

1) use of memory;

2) exploiting the randomness in arrivals;

3) a merging procedure, involving new arrivals.

The need to usememory is, by now,well-justified. One source

of randomness available in switches is that which is in the ar-

rivals process. Using arrivals to find matchings also has the

big benefit of providing information about recently loaded, and

hence likely heavy VOQs. (At least these VOQs will certainly

be nonempty!)

Since the edges which receive an arrival at a given time will

not necessarily form a matching, the MERGE procedure we have

used in LAURA will not be directly usable for SERENA. A

simple modification of the MERGE procedure leads to the ARR-

MERGE procedure described below.

1) The Serena Algorithm: Let be the matching used by

SERENA at time . Let denote the

arrival graph, where indicates arrival at VOQ .

At time :

a) compute Arr-Merge ;

b) use as the schedule.

The Arr-Merge Procedure (Fig. 10): Let denote the

schedule used at time , and let denote the subgraph induced

by packets arriving at time . Let be the sub-

graph induced by the edges of and on the bipartite graph

consisting of input and output nodes. As in the MERGE proce-

dure of LAURA, the goal of ARR-MERGE is to find a maximum

weight matching , on . Whereas, is a matching, is not

necessarily a matching. This is because multiple edges can be

incident on the same output node due to multiple arrivals to that

output. Therefore, we cannot simply combine and using
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Fig. 11. Mean IQ length under diagonal traffic.

the MERGE procedure. We need to consider the following two

cases.

Case 1) is a matching. This is a simple case, Arr-Merge

reduces to MERGE on , yielding the matching

.

Case 2) is not a matching. Let denote collection of out-

puts which have one or more arrival edges incident

on them. For every do the following: among

the arrival edges incident on output , pick the edge

with the highest weight and discard the remaining

edges. At the end of this process, each output in

is matched with exactly one input.

To complete the matching , connect the remaining

input–output pairs by adding edges in a round-robin fashion,

without considering their weights. The round-robin mechanism

avoids queue starvation and provides fairness among queues

which are not receiving arrival. Call the resulting complete

matching . Now ARR-MERGE reduces to MERGE on ,

yielding matching .

Theorem 7: SERENA is stable under all admissible

Bernoulli i.i.d. inputs.

Proof: Again, this follows from Theorem 2, since the

probability that the arrival graph at any time will be equal

to the maximum weight matching is lower bounded by some

constant . This is sufficient to establish the stability of

SERENA.

Performance: The simulation setting is identical to that

of the APSARA algorithm. SERENA is compared with the

MWM, iSLIP, and iLQF algorithms under diagonal traffic. The

results are shown in Fig. 11. The algorithms SERENA and

MAXSERENA (the maximized version of SERENA) perform

quite competitively with respect to MWM.

Finally, Fig. 12 compares the three algorithms we have

proposed—APSARA, LAURA and SERENA—under diag-

onal traffic. All these algorithms perform competitively with

each other, showing very good delays. SERENA, which uses

randomness from arrivals, performs better than LAURA for

all loads, showing the usefulness of using information from

arrivals. For lower loads, APSARA performs the worst but for

higher loads, it outperforms both SERENA and LAURA.

Fig. 12. Mean IQ length under diagonal traffic.

Fig. 13. Mean IQ length for uniform traffic.

Fig. 13 shows that all the algorithms considered are well-

behaved under uniform traffic.

SERENA: Complexity: All of the work done by SERENA

is in the ARR-MERGE procedure. It is not hard to see that the

complexity of ARR-MERGE is . Indeed, ARR-MERGE only

needs to perform the following simple operations: 1) break ties

at outputs for which there is more than one arrival; 2) maxi-

mize the resulting arrival graph (indiscriminately, if need be);

and 3) MERGE. Since all of these operations are simple to im-

plement, and the performance of SERENA, we prefer SERENA

to LAURA.

IV. GENERAL STABILITY CONDITIONS

The scheduling algorithms discussed in this paper are proved

to be stable under Bernoulli i.i.d. arrival traffic. It is not clear

apriori how the algorithms APSARA, SERENA, or LAURA

would behave under admissible correlated traffic. This leads us

to study the rate stability of these algorithms using fluid-model

developed in [5]. We first present basic notations and definitions

from [5].
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Recall that and denote the

discrete-time arrival process and queue sizes as defined before.

Let the cumulative arrival process be denoted as

Let denote the cumulative departure process,

that is, total departures occurred till time . Consider the fol-

lowing definitions.

Definition 3: A cumulative arrival process is called rate

admissible if the following conditions are satisfied.

1) satisfies the strong law of large numbers; and let

w.p. ;

2) and .

Definition 4: A switch is said rate stable if, with probability

one

for any rate admissible arrival process.

Consider the following rate-stable version of Lemma 1 which

is proved in [8]:

Lemma 2: Consider an input-queued switch with arbitrary

arrival traffic. Let be the queue-size process that results

when the switch uses scheduling algorithm . Let

denote the weight of the schedule used by at time , and

let be the weight of MWM given the same queue-size

process . Let . If there exists a

positive constant such that

(6)

then, the algorithm is rate stable if the arrival traffic is rate

admissible.

We would like to apply the result of Lemma 2 to obtain rate

stability of the proposed algorithms. The property (6) holds

for APSARA and LAURA because of Hamiltonian walk and

random sampling, respectively, and hence, it is independent of

the type of arrival traffic. For exactly the same reason as for

LAURA, the property (6) holds for algorithm ALGO2 proposed

by Tassiulas [27] too. Thus, APSARA, LAURA, and ALGO2

are rate stable. For SERENA, property (6) is true only if the

arrival process is stationary and independent between inputs. It

does not require independence of the arrival processes in time.

Thus, we obtain the following theorem:

Theorem 8: Under any rate-admissible traffic APSARA,

LAURA and ALGO2 are rate stable. Further, if the traffic is such

that the arrival process is stationary and independent between

inputs, then SERENA is also rate stable.

Proof: To prove the stability for these algorithms, we

would like to use Lemma 2. To do this, we need to prove that

for all these algorithms, property (6) is true. We check this as

follows.

1) APSARA: The proof of Theorem 3 shows that the AP-

SARA (with Hamiltonian walk) schedule has weight

at most smaller than the weight of MWM

schedule. This shows that property (6) holds.

2) LAURA and ALGO2: This can be proved similarly to

the argument for APSARA in Theorem 3. First note

that both algorithms LAURA and ALGO2 have the

random sampling procedure which will guarantee that

at any time the probability of schedule to be MWM

will be at least . Thus, on average every

times the schedule becomes of same weight as MWM.

Between two consecutive time slots, the difference be-

tween the weight of MWM schedule and the schedule

obtained by LAURA (or ALGO2) can at most increase

by . Thus, on average at any time , the weight

difference between MWM schedule and the schedule

obtained by LAURA (or ALGO2) is bounded above

. This proves the desired property (6).

3) SERENA: as in case 1), if any algorithm has positive

probability of having MWM as a schedule every time,

the algorithm has property (6). Under SERENA, the

new schedule is obtained by the arrival occurred in pre-

vious time. If the traffic is independent between inputs

and stationary, then the probability of any matching

formed using arrivals is positive bounded away from

zero. This guarantees the desired property (6).

From above and Lemma 2, we obtain the rate stability of

APSARA, LAURA, and ALGO2 under any admissible traffic.

Under additional conditions on arrival traffic of stationarity and

independence between inputs, SERENA is rate stable.

A. Simulation Study under Correlated Traffic

The algorithms discussed in this paper all try to learn the

weight of the MWM schedule. Hence, intuitively, temporal cor-

relation in traffic could help these algorithms to learn quicker

and achieve better performance relative to MWM. Stability for

correlated traffic is guaranteed by Theorem 8, and we study the

effect of correlation on delays by simulations.

We consider the same simulation setting as in Section III-A5,

but now the traffic is generated according to correlated “bursty”

traffic. The cell arrival process at each input is characterized

by a two-state ON–OFF model.

• ON state. As soon as the input has just entered this state, it

chooses one random destination weighted by the elements

of the row corresponding to that input in the traffic matrix.

When input is in this state for the current time slot, a

packet is generated. All packets, generated during a single

visit of input to the ON stage, have the same destination.

The duration in time slots of the ON state is geometrically

distributed with a given mean.

• OFF state. In this state, no cells are generated. The proba-

bility that the OFF state lasts slots is

The average idle period duration in slots is

. The parameter is set so as to achieve the desired

input load.

In other words, the above model generates packets destined

for the same output with a geometric burst size. The average

burst size is an indicator of the temporal correlation in the traffic.

Fig. 14 shows the mean IQ length for the proposed scheduling

algorithms as a function of the average burst size. The input load
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Fig. 14. Mean IQ length under diagonal traffic, when the traffic is correlated
according to a bursty ON/OFF source. The input load is 0.9.

is set equal to 0.9. Note that the case with average burst size

equal to 1 correspond to the result for i.i.d. Bernoulli traffic,

shown in Fig. 12, for normalized load 0.9.

All the three proposed algorithms behave closer to the MWM

as the average burst size (i.e., the degree of correlation in the

traffic) increases. Correlation can indeed help, since the correla-

tion among subsequent maximum weight matchings is captured

by the memory retained in the previous matching.

Particular attention should be paid to SERENA, whose per-

formance could degrade if correlation among different inputs is

allowed (note that Theorem 8 is not guaranteed to hold in this

case). For example: at time all the inputs receive packets des-

tined for the mod th output. The arrival graph, after the

ARR-MERGE procedure, will degenerate in only one edge, cor-

responding to one single arrival and this fact can considerably

degrade the performance of SERENA. In this paper, we do not

consider the effect of correlation among different inputs, since

it is not a realistic scenario in a large network.

V. CONCLUSION

The paper presented some new approaches for designing

simple, high-performance schedulers for high-aggregate band-

width switches. The following general features of the switch

scheduling problem were exploited: 1) the use of memory; 2)

the randomized weight augmentation; and 3) the randomness

and the information provided by recent arrivals.

We have presented a derandomized algorithm and established

its stability using methods which may apply more widely. Three

algorithms—APSARA, LAURA, and SERENA—were devel-

oped to exploit the above-mentioned features. These algorithms

are stable under any admissible arrival process and are robust to

correlated traffic. Simulations show that they outperform some

other known algorithms in terms of delay, and perform competi-

tively with respect to the maximum weight matching algorithm.

While the algorithms proposed exploit different features, imple-

mentations could easily combine these features.
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