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Abstract

We solve a 17 year old problem of Yao (FOCS 79).

In the two-player communication model introduced by

Yao in 1979, Alice and Bob wish to collaboratively evaluate

a function in which Alice knows only input and

Bob knows only input . Both players have unlimited com-

putational power. The objective is to minimize the amount

of communication.

Yao (FOCS 79) also introduced an oblivious version of

this communication game which we call the simultaneous

messages (SM) model. The difference is that in the SM

model, Alice and Bob don’t communicate with each other.

Instead, they simultaneously send messages to a referee,

who sees none of the input. The referee then announces

the function value.

The deterministic two-player SM complexity of any func-

tion is straightforward to determine. Yao suggested the ran-

domized version of this model, where each player has ac-

cess to private coin flips.

Our main result is that the order of magnitude of the ran-

domized SM complexity of any function is at least the

square root of the deterministic SM complexity of . We

found this result in February 1996, independently but sub-

sequently to I. Newman and M. Szegedy (STOC 96) who ob-

tain this lower bound for the special case of the “equality”

function. Our proof is entirely different from and much sim-

pler than the Newman-Szegedy solution, and it is stronger

in that it gives a lower bound not only for the “equality”

function but for all functions. A proof in a similar spirit was

also found by J. Bourgain and A. Wigderson simultaneously

to us (unpublished).

The quadratic reduction actually does occur for the

“equality” function (A. Ambainis [2], M. Naor [9], and I.

Newman [10] (cf. [7]).) We give a new proof of this fact.

This result, combined with our main result, settles Yao’s

question (FOCS 79), asking the exact randomized SM com-

plexity of the equality function. The lower bound proof uses

the probabilistic method; the upper bound uses linear alge-

bra.

We also give a constructive proof that public

coins reduce the complexity of “equality” to constant.

1 Introduction

In 1979, Yao [14] introduced the following communica-

tion game: Let be a boolean function.

There are two players, Alice and Bob, who wish to collab-

oratively compute the value of on input .

However, Alice sees only the input , and Bob sees only the

input . Both Alice and Bob have unlimited computational

power. They communicate with each other by writing on a

blackboard. The last bit written on the board must be the

function value. The cost of a communication protocol is the

number of bits written on the board for the worst case input.

The communication complexity of , denoted is the

minimum cost of a protocol computing

Yao [14] also proposed an oblivious version of this

model which we call the simultaneous messages (SM)

model: Let be a boolean function.

Alice is given an input and Bob is given an input

Alice, Bob, and a referee wish to collaboratively

evaluate Alice sees only input , Bob sees only in-

put , and the referee sees none of the inputs. Both players

simultaneously pass a message of fixed length to the referee,

after which the referee announces the function value. Each

player (including the referee) is a function of the arguments

it “knows.”

Definition 1.1 A simultaneous messages (SM) protocol

for consists of two players along with a referee that cor-

rectly computes on all inputs. The cost of an SM protocol



for is the length of the longer message sent to the referee.

The SM complexity of , denoted is the minimum

cost of an SM protocol computing

This quantity is straightforward to determine. Let

be the communication matrix corresponding to that

is, is the matrix with entry in

the corresponding cell. Let and de-

note the number of distinct rows and columns of ,

respectively. Then it is easy to show that

The analagous quantity for several players is very hard to

estimate. The SM model with several players is considered

in [12], [13], [5], and [3]. (Most of the authors use the term

“oblivious communication complexity.”)

Yao actually introduces the SM model for randomizing

players who use private coins, and calls this a “situation

that deserves special attention.” He specifically asks the

randomized SM complexity of the “equality” function [14,

Concl. Rem.D, p. 213]. In this paper we resolve this 17-

year old question. In doing so, we use simple but appealing

techniques from probabilistic combinatorics and linear al-

gebra. We show in Section 4 that this question is closely

related to an extremal problem in graph theory (“maximum

number of densely connected independent sets”), a fact also

established by [11].

Definition 1.2 A two-sided -error randomized SM proto-

col for is an SM protocol in which Alice, Bob, and the

referee are allowed to randomize, and for all

the referee outputs the correct value of with prob-

ability at least We define a one-sided -error ran-

domized SM protocol in the same way with the exception

that for all such that the

referee must always output 1. In the private-coin model,

each player, including the referee, flips private coins. In the

public-coin model, Alice and Bob are given the same ran-

dom bits, but they do not see the referee’s random bits, nor

does the referee see Alice’s and Bob’s random bits.

Remark 1.3 In view of amplification by repetition, all pos-

itive constants are equivalent for two-sided error

randomized protocols, and all positive constants are

equivalent for one-sided error randomized protocols.

Recently, the randomized SM and one-way communi-

cation models for two players have been studied in [7] in

connectionwith the VC dimension and the problem of com-

puting the inner product of two real vectors.

We shall briefly discuss the public-coin model at the

end of this paper, but our main concern is the private-coin

model. Our main result is the following:

Theorem 1.4 Let be any boolean

function. Any private-coin two-sided error randomized SM

protocol for has cost .

We also show using simple facts from linear algebra

that the quadratic reduction of cost can be achieved for the

“equality” function

where iff

Theorem 1.5 There exists a private-coin one-sided error

randomized SM protocol for of cost

Corollary 1.6 The private-coin randomized SM complexity

of is

This answers Yao’s question [14, Concl. Rem.D, p. 213].

Acknowledgment: We wish to thank Avi Wigderson for

bringing to our attention the history of this problem. In par-

ticular, our main result, Theorem 1.4, was recently proved

by Ilan Newman and Mario Szegedy [11] for the specific

case of the “equality” function. After Szegedy’s presen-

tation of the [11] results at the I.A.S., J. Bourgain and A.

Wigderson found a greatly simplified proof of the general

statement of Theorem 1.4 (all functions) [6]. Our work was

done independently of [11] and [6] and roughly simultane-

ously to the latter. Our work was completed by February,

1996. Although the [6] proof is different from ours, both

proofs are quite simple, use the Chernoff bounds, and are

closely related in spirit.

Avi Wigderson has also communicated to us that the

upper bound of Theorem 1.5 was also found previously by

A. Ambainis [2], M. Naor [9], and I. Newman [10] (cf. [7])

using protocols different from ours.

2 The Lower Bound

Let be any boolean function.

Let be the communication matrix corresponding to

. Without loss of generality, we assume that has

no identical rows or columns. Let be a private-coin two-

sided -error randomized SM protocol for . Without loss

of generality, we may assume Let and

be the number of bits that Alice and Bob send respectively

to the referee.

Theorem 2.1

Note that Theorem 1.4 is an immediate consequence.

Proof of Theorem 2.1:

Let and be the set of messages of Alice and Bob

respectively. Let and For

let be Alice’s probability measure on given

input For let be the Bob’s probability measure

on given input

The idea behind the proof is that for each and

we pick a logarithmic size sample space and prove, using
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a Chernoff bound, that these small sets uniquely correspond

to and respectively.

For and subset let

For and multiset let

For , let

be the probability that the referee outputs 1 on message pair

Remark 2.2 One could also proceed by assuming that the

referee is deterministic: From a protocol with a random-

izing referee, create a protocol in which the referee out-

puts 1 for every such that and 0 oth-

erwise. It is not hard to see that this increases the error by

at most a factor of 2. This is how the lower bound proof for

the equality function proceeds in [11].

For and we call the quantity

the strength of for . For

, we say is -strong for if

otherwise, is -weak for . For let

is -strong for and let

is -weak for

The two-sided error condition on the protocol can be re-

stated as follows. For every the following

two conditions hold:

(1)

and

(2)

Observation 2.3 For every the following

two conditions hold:

implies and (3)

implies (4)

Proof: Consider the case . Then

Hence . The case follows by

symmetry.

Observation 2.3.

For and multiset

define independent random vari-

ables

if the referee accepts

otherwise.

Note that depends implicity on In order for these

to be independent, we must ask the referee to perform inde-

pendent tests on each .

Lemma 2.4 For all there exists a multiset

with such that

for all ,

(5)

where the probability is taken over the independent tests of

the referee.

Proof: Fix Choose a at random by picking

elements independently at random accord-

ing to . For all we have

where denotes the expectation over the choice of the

and the referee’s coins.

For let

be the event that

Note that depends implicitly on

Fix a For define random variables

Then the are independent, and

Therefore, we can use a Chernoff bound

(cf. e. g. [1, Thm.A.16, p. 240]) to obtain

Therefore,
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Thus there exists a choice of such that

This trivially implies (for the same ): for all we

have

Lemma 2.4

Claim 2.5 For all we have

Proof: Assume there exist such that

Since the communicationmatrix has no identical

rows, there exists a such that

Without loss of generality, let us assume that

and

By Observation 2.3, and

Therefore, there exists a

Let be the event that

Let be the event that

By Lemma 2.4, we have and

Therefore,

(6)

By definition of and we know that

and Therefore, any value of

forces at least one of the events or to happen, so

This contradicts (6) and concludes the proof.

Claim 2.5

Claim 2.5 implies that is bounded from above by the

number of possible . This means

Therefore, By symmetrical

arguments, Thus,

Since and we have

Theorem 2.1

3 The Upper Bound for Equality

In this section, we prove Theorem 1.5, which shows that

the lower bound of Section 2 is tight for the “equality” func-

tion

iff

Proof of Theorem 1.5: Let

Notation: Let be the smallest even integer such that

Let be the vector space with the

standard inner product If

then we say that and are perpendicular

and write For let denote the subspace

For , we let

denote

Fact 3.1 There are more than subspaces of of di-

mension

The protocol works as follows. By Fact 3.1, with each

we associate a distinct subspace of dimen-

sion On input , Alice picks a vector uni-

formly at random from and sends it to the referee. On in-

put , Bob picks a vector uniformly at random

from and sends it to the referee. The referee outputs 1

if and only if .

Since Alice and Bob each send

bits to the referee.

If , then , and hence for any

we have and thus the referee outputs 1 with

probability 1. Suppose now that

Observation 3.2 If is a subspace of and then

Proof: It follows from the well known dimension formula

(cf. e. g. [4, Prop. 3.20, p. 53]) that Thus we

have iff span i.e.,

Observation 3.2

Since , we have and thus

Therefore,

If Alice picks a then by Observation 3.2, we

have and thus Therefore,

Thus we have the (referee

outputs 0) Theorem 1.5.

Remark 3.3 It may seem natural to require that an

protocol be symmetric: Alice and Bob follow the same in-

structions. This can be accomplished at a cost of a factor of

2 from any (asymmetric) protocol by having Alice and Bob

each send what both the old Alice and the old Bob would

have sent on their input. The new referee then uses only half

of the information from each player. However, we can do

slightly better than this factor of 2 in the above protocol for

if we are a little more careful with the subspaces we

associate with the inputs.

Recall that a subspace is called totally isotropic if

It is known that there are more than to-

tally isotropic subspaces of of dimension Now we

use the above protocol with and asso-

ciate a totally isotropic subspace of dimension

with each input The protocol is now symmetric because

and the cost is This is only
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a factor of more expensive than the original protocol,

instead of a factor of 2.

4 A Related Problem in Graph Theory:

Densely Connected Independent Sets

The results for the “equality” function give the tight or-

der of magnitude of the logarithm of a graph theoretic ex-

tremum, stated in Question 4.3.

Definition 4.1 For a graph and subsets

the density of between and is

Definition 4.2 Let A family of subsets of the

vertex set of a graph is called -densely connected if for

all the density of between and is

at least

Question 4.3 What is the maximum size of a -densely con-

nected family of independent sets of a graph on vertices?

It turns out that this question is equivalent to the one-

sided error randomized SM complexity of “equality” under

a restricted type of protocols. In fact, it was in this context

that we arrived at our solutions. Apparently, Newman and

Szegedy [11] followed a similar path and obtained the same

result prior to our independent work.

Theorem 4.4 For fixed the maximum size of

a -densely connected family of independent sets of a graph

on vertices is

Definition 4.5 A randomized SM protocol for a function

is called symmetric if under , Al-

ice and Bob follow the same instructions and the referee is

symmetric.

Definition 4.6 Let be a randomized SM protocol for a

function with and as the message

sets for Alice and Bob respectively. We call uniform if for

each there is a subset such that on input ,

Alice picks a message from uniformly at random, and

similarly for each there is a subset such

that on input , Bob picks a message from uniformly at

random.

Definition 4.7 An elementary randomized SM protocol is

a uniform, symmetric, one-sided error randomized SM pro-

tocol in which the referee is deterministic.

Note that the protocol of Remark 3.3 is a -error

elementary randomized SM protocol for

Theorem 4.8 The following two statements are equivalent:

1. There exists a graph on vertices with a family of

-densely connected independent sets.

2. There exists an elementary -error randomized

SM protocol for of cost

We first show how Theorem 4.8, together with our main

results, imples Theorem 4.4.

Proof of Theorem 4.4: By Theorem 1.4 and Remark 3.3,

there exists an elementary -error randomized SM pro-

tocol for of cost if and only if

or equivalently, with suitable

implied constants. By Remark 1.3, the same holds for error

for any Combined with Theorem 4.8,

this proves Theorem 4.4.

Proof of Theorem 4.8: Let be a graph on

vertices with a family of -densely connected inde-

pendent sets. Let from and , we

construct a -error randomized SM protocol for

With each input we associate a distinct indepen-

dent set . The set of possible messages of Alice

and Bob will be On input Alice and Bob pick

a message uniformly at random from The ref-

eree outputs 0 if and only if where is Alice’s

message, and is Bob’s.

Suppose Alice and Bob receive inputs and respec-

tively. If then Alice and Bob send vertices from

independent set , so the referee outputs 1. If then

the probability that the referee outputs 0 is exactly the den-

sity of between and which by hypothesis is It

is clear that this protocol is elementary.

Conversely, let be an elementary -error ran-

domized SM protocol for where

Let be the message set of Alice and

Bob. Since is elementary, for every input there

is a subset such that on input , Alice and Bob

pick a message from uniformly at random. from , we

define a graph The vertices of are the messages

of Alice and Bob under . The edges of and the family

of independent sets are given by

the referee outputs 0 on

Since has one-sided error, it follows that the are in-

deed independent sets of .

Let It is clear that the density of between

and is exactly the probability that the referee outputs

0 when Alice and Bob receive inputs and respectively.

By the condition of the protocol, this is at least

Theorem 4.8.
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5 The Public Coin Model

Recall that in the public-coinmodel, Alice and Bob share

random bits but do not see the referee’s random bits, nor

does the referee see Alice’s and Bob’s random bits. We

examine two different public-coin models:

Definition 5.1 In the public-fee model, the cost of a ran-

domized SM protocol is the length of the longer message

sent to the referee plus the number of common random bits

used by Alice and Bob. In the public-no-feemodel, the cost

of a randomized SM protocol is simply the length of the

longer message sent to the referee.

Yao states the following theorem [14, Thm. 5, p. 212] but

omits the proof “because of its complexity:”

Theorem 5.2 (Yao) For any the two-party (private-coin)

randomized communication complexity of is at least

nrow ncol where

nrow and ncol are the number of distinct rows and columns

of the communication matrix

A consequence of this is the following theorem, for

which we give a simple proof.

Theorem 5.3 Let be any boolean

function. Any public-fee two-sided error randomized SM

protocol for has cost

Proof: Let be a public-fee randomized SM protocol of

cost for Let and be the set of

messages of Alice and Bob respectively. Let

and Let be the number of common

random bits viewed by Alice and Bob. For , ,

let be the probability that the referee outputs 1 on

message pair

From we construct a deterministic SM protocol for

with players Alice , Bob , and referee Ref as follows. On

input Alice sends where is

the message Alice would send under on input upon

seeing the th possible random string. Similarly, on input

Bob sends where is the

message Bob would send under on input upon seeing

the th possible random string. Ref computes

referee of outputs 1 on input ,

and outputs 1 if and 0 otherwise. As is

a two-sided -error randomized SM protocol for and

we have that Ref always outputs the correct answer

under

The number of bits sent by Alice and Bob respectively

is and Since the public-fee cost of

is each of and

is at most Therefore, Alice and Bob each send at most

bits. Thus

Theorem 5.3.

The corollary of the next theorem shows that this lower

bound is tight for the “equality” function.

Theorem 5.4 There exists an explicit public-coin one-sided

error randomized SM protocol for using bits of

communication, public random bits, and no pri-

vate random bits.

By “explicit,” we mean that Alice and Bob can compute

the messages they send to the referee in poly( ) time, where

(In fact, the time is nearly linear: the dom-

inant part of the computation is the division of an n-digit

integer by a -digit integer.)

Remark 5.5 With public random bits, there is a sim-

ple randomized SM protocol for in which Alice and

Bob send bits. Let be chosen uniformly at random

from On input Alice sends (the inner prod-

uct modulo 2 of and ). Similarly, on input Bob sends

The referee outputs 1 if

If it is clear the referee outputs 1. If then

This one-sided error randomized

SM protocol, along with Theorem 5.3, separates the power

of the public-fee and public-no-fee models.

Remark 5.6 Using the above protocol and a standard de-

randomization argument, it is not hard to show the existence

of protocol that uses public coins and bits of

communication. This argument was pointed out to us by Jiřı́

Sgall, who learned it from Noam Nisan.

First, let Alice and Bob use protocol in which a ran-

dom string of length is chosen and then Alice and Bob

repeat the protocol of Remark 5.5 three times, so that the

probability that errs is The number of random

strings they chose from is thus but we can show that

it suffices to draw the random strings from a subset of size

for some constant and therefore we only need

random bits.

Fix input Let Choose a

multiset at random by

picking strings independently at random from

For let

if errs on ,

otherwise

The are independent, with Let protocol

be the same as except that the random string for of
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length is chosen uniformly at random from . Then the

probability that errs on input is

For let

Then the are independent, and for all we have

and Therefore, we can use a Chernoff bound

(cf. e. g. [1, Thm.A.16, p. 240]) to obtain

Therefore, the probability that there exist

such that is less than so

there exists a multiset

such that for all inputs we have ,

which implies , and so

the probability that errs on is at most 1/3.

Note that this protocol is not constructive.

Proof of Theorem 5.4: Our protocol is motivated by a one-

sided error randomized one-way protocol for by Ra-

bin, Simon, and Yao (cf. [8, Thm. 6.1, p. 22]): Alice and

Bob are given bits each, interpreted as integers less than

A random prime is chosen using random bits.

Alice and Bob compare the remainder of inputs modulo the

prime. This communication takes bits.

Instead of sending the remainders, we will test the two

bit remainders for equality by repeating the pro-

tocol by choosing a random prime using ad-

ditional random bits. This will give us remainders of

bits that we want to test for equality. We re-

peat this process until the size of the remainders is below a

certain constant, and then communicate them. The formal

proof follows.

Let

We denote the th iterated logarithm of by Note:

and

Let denote the least integer such that

Let and

Let so

For let be a random prime

For convenience, we let

Let and for let

mod

and

mod

Alice computes and sends to the referee. Bob com-

putes and sends to the referee. The referee outputs 1

if and 0 otherwise.

Since we can choose using

random bits. Therefore, the number of common

random bits used is

The number of bits sent by each of Alice and Bob is

Now we show the correctness of the protocol. If

it is clear that the referee outputs 1 with probability 1. Let

Then The referee outputs 1 if and only if

there exists an such that and

Therefore,

ref outputs 1 (7)

Let and assume that Then

divides (8)

Since we have

Therefore, the number of prime divisors of

is at most Since is chosen to be a

random prime and the number of primes

is greater than we

have

divides

From this, (7), and (8), it follows that

ref outputs 1

Theorem 5.4.

Corollary 5.7 There exists an explicit public-fee one-

sided error randomized SM protocol for of cost
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