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RANDOMIZED SKETCHES FOR KERNELS: FAST AND

OPTIMAL NONPARAMETRIC REGRESSION1

BY YUN YANG∗, MERT PILANCI†,2 AND MARTIN J. WAINWRIGHT†

Florida State University∗ and University of California, Berkeley†

Kernel ridge regression (KRR) is a standard method for performing non-
parametric regression over reproducing kernel Hilbert spaces. Given n sam-
ples, the time and space complexity of computing the KRR estimate scale as
O(n3) and O(n2), respectively, and so is prohibitive in many cases. We pro-
pose approximations of KRR based on m-dimensional randomized sketches
of the kernel matrix, and study how small the projection dimension m can
be chosen while still preserving minimax optimality of the approximate KRR
estimate. For various classes of randomized sketches, including those based
on Gaussian and randomized Hadamard matrices, we prove that it suffices
to choose the sketch dimension m proportional to the statistical dimension
(modulo logarithmic factors). Thus, we obtain fast and minimax optimal ap-
proximations to the KRR estimate for nonparametric regression. In doing so,
we prove a novel lower bound on the minimax risk of kernel regression in
terms of the localized Rademacher complexity.

1. Introduction. The goal of nonparametric regression is to make predictions
of a response variable Y ∈ R based on observing a covariate vector X ∈X . In prac-
tice, we are given a collection of n samples, say {(xi, yi)}ni=1 of covariate-response
pairs and our goal is to estimate the regression function f ∗(x) = E[Y |X = x]. In
the standard Gaussian model, it is assumed that the covariate-response pairs are
related via the model

yi = f ∗(xi) + σwi for i = 1, . . . , n,(1)

where the sequence {wi}ni=1 consists of i.i.d. standard Gaussian variates. It is typ-
ical to assume that the regression function f ∗ has some regularity properties, and
one way of enforcing such structure is to require f ∗ to belong to a reproducing
kernel Hilbert space, or RKHS for short [4, 12, 33]. Given such an assumption,
it is natural to estimate f ∗ by minimizing a combination of the least-squares fit
to the data and a penalty term involving the squared Hilbert norm, leading to an
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estimator known as kernel ridge regression, or KRR for short [14, 28]. From a
statistical point of view, the behavior of KRR can be characterized using existing
results on M-estimation and empirical processes (e.g., [17, 22, 32]). When the reg-
ularization parameter is set appropriately, it is known to yield a function estimate
with minimax prediction error for various classes of kernels.

Despite these attractive statistical properties, the computational complexity of
computing the KRR estimate prevents it from being routinely used in large-scale
problems. More precisely, in a standard implementation [27], the time complexity
and space complexity of KRR scales as O(n3) and O(n2), respectively, where n

refers to the number of samples. As a consequence, it becomes important to design
methods for computing approximate forms of the KRR estimate, while retaining
guarantees of optimality in terms of statistical minimaxity. Various authors have
taken different approaches to this problem. Zhang et al. [35] analyze a distributed
implementation of KRR, in which a set of t machines each compute a separate
estimate based on a random t-way partition of the full data set, and combine it
into a global estimate by averaging. This divide-and-conquer approach has time
complexity and space complexity O(n3/t3) and O(n2/t2), respectively. Zhang et
al. [35] give conditions on the number of splits t , as a function of the kernel, under
which minimax optimality of the resulting estimator can be guaranteed.

In this paper, we consider approximations to KRR based on random projections,
also known as sketches, of the data. The random projection method is classical way
of performing dimensionality reduction; see the papers [13, 20] and references
therein for its uses in numerical linear algebra and low-rank approximation. In
this spirit, our proposal is to approximate n-dimensional kernel matrix by project-
ing its row and column subspaces to a randomly chosen m-dimensional subspace
with m ≪ n. By doing so, an approximate form of the KRR estimate can be ob-
tained by solving an m-dimensional quadratic program, which involves time and
space complexity O(m3) and O(m2). Computing the approximate kernel matrix is
a pre-processing step that has time complexity O(n2 log(m)) for suitably chosen
projections; this pre-processing step is trivially parallelizable, meaning it can be
reduced to O(n2 log(m)/t) by using t ≤ n clusters.

Given such an approximation, we pose the following question: how small can
the projection dimension m be chosen while still retaining minimax optimality of
the approximate KRR estimate? We answer this question by connecting it to the
statistical dimension dn of the n-dimensional kernel matrix, a quantity that mea-
sures the effective number of degrees of freedom. (See Section 2.3 for a precise
definition.) In our earlier work on sketching constrained squares problems [23, 24],
we have studied how the projection dimension required for an accurate approxi-
mation varies as a function of the geometry of the constraint set. In the setting of
kernel ridge regression, the constraint set is elliptical in nature, with its geometry
determining a quantity known as the statistical dimension of the problem. Thus,
it is natural to conjecture that it should be possible to project the kernel matrix
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down to the statistical dimension while preserving minimax optimality of the re-
sulting estimator. The main contribution of this paper is to confirm this conjecture
for several classes of random projection matrices.

It is worth mentioning that our sketching approach is different in some impor-
tant ways from the classical form of sketching [20] for unconstrained least squares
problems. The classical method would apply the sketch to both the data vector
and the kernel matrix, whereas our sketch is applied only to the kernel matrix.
Moreover, our sketch operates on the right-hand side of the kernel matrix, thereby
reducing the effective dimensionality of the parameter space, whereas the classi-
cal sketch applies to the left-hand side of the kernel matrix. These differences are
important in establishing optimality of the method. As shown in the paper [24], al-
though the classical least-squares sketch yields a good approximation to the value
of the quadratic objective function, it is provably suboptimal for approximating
the solution in terms of some distance measure between the approximate mini-
mizer and the true minimizer. In contrast, the sketching approach developed here
is carefully constructed so as to retain minimax optimality of the approximate KRR
estimate with a relatively small projection dimension.

There are a related class of methods that form low-rank approximations K̃ to
the n-dimensional kernel matrix K , such as randomized singular value decom-
positions (e.g., [8, 13, 26]) and the Nyström methods (e.g., [10, 11]). The time
complexity of such low-rank approximations is either O(nr2) or O(n2r), depend-
ing on the specific approach (excluding the time for factorization), where r is the
maintained rank, and the space complexity is O(nr). For the randomized singular
value decomposition, if we use μ̂k to denote kth eigenvalue of the empirical ker-
nel matrix K , the results of Halko et al. [13] guarantee an operator norm bound
of the form |||K − K̃|||op ≤ (c1n/r)μ̂k for r ≥ c2k log(k) + c2 log(kn) log(k) us-
ing the sub-sampled randomized Hadamard transform (SRHT). However, in the
regime r ≪ n that is needed to reduce the complexity of KRR, this bound does not
seem strong enough to guarantee minimax optimality of the associated low rank
approximated kernel method. Subsequent work [8] gives an improved bound for
SRHT when the tail eigenvalue sum

∑n
j=k+1 μ̂j has a rapid decay. In contrast, the

theory developed in this paper requires no assumption on the tail eigenvalue sum
in order for our approximate KRR estimate to achieve minimax optimality with
the projection dimension proportional to the statistical dimension. Also related is
a recent line of work [2, 5] that analyzes the tradeoff between the rank r and the
resulting statistical performance of the estimator; we discuss it at more length in
Section 3.3.

The remainder of this paper is organized as follows. Section 2 is devoted to fur-
ther background on nonparametric regression, reproducing kernel Hilbert spaces
and associated measures of complexity, as well as the notion of statistical dimen-
sion of a kernel. In Section 3, we turn to statements of our main results. Theorem 2
provides a general sufficient condition on a random sketch for the associated ap-
proximate form of KRR to achieve the minimax risk. In Corollary 1, we derive
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some consequences of this general result for particular classes of random sketch
matrices, and confirm these theoretical predictions with some simulations. We also
compare at more length to methods based on the Nyström approximation in Sec-
tion 3.3. Section 4 is devoted to the proofs of our main results, with the proofs of
more technical results deferred to the Appendices. We conclude with a discussion
in Section 5.

2. Problem formulation and background. We begin by introducing some
background on nonparametric regression and reproducing kernel Hilbert spaces,
before formulating the problem discussed in this paper.

2.1. Regression in reproducing kernel Hilbert spaces. Given n samples
{(xi, yi)}ni=1 from the nonparametric regression model (1), our goal is to estimate
the unknown regression function f ∗. Our results apply to both fixed and random
design, where in the latter the results can be viewed as conditioning on the design
points {xi}ni=1. The quality of an estimate f̂ can be measured in different ways: in
this paper, we focus on the squared L2(Pn) error

∥∥f̂ − f ∗∥∥2
n :=

1

n

n∑

i=1

(
f̂ (xi) − f ∗(xi)

)2
.(2)

Naturally, the difficulty of nonparametric regression is controlled by the structure
in the function f ∗, and one way of modeling such structure is within the framework
of a reproducing kernel Hilbert space (or RKHS for short). Here, we provide a very
brief introduction referring the reader to the books [7, 12, 33] for more details and
background.

Given a space X endowed with a probability distribution P, the space L2(P)

consists of all functions that are square-integrable with respect to P. In abstract
terms, a space H ⊂ L2(P) is an RKHS if for each x ∈ X , the evaluation function
f �→ f (x) is a bounded linear functional. In more concrete terms, any RKHS is
generated by a positive semidefinite (PSD) kernel function in the following way.
A PSD kernel function is a symmetric function K : X ×X →R such that, for any
positive integer N , collections of points {v1, . . . , vN } and weight vector ω ∈ R

N ,
the sum

∑N
i,j=1 ωiωjK(vi, vj ) is nonnegative. Suppose moreover that for each

fixed v ∈ X , the function u �→ K(u, v) belongs to L2(P). We can then consider the
vector space of all functions g : X →R of the form

g(·) =
N∑

i=1

ωiK(·, vi)

for some integer N , points {v1, . . . , vN } ⊂ X and weight vector w ∈ R
N , and de-

fine its norm by ‖g‖2
H

:=∑N
i,j=1 ωiωjK(vi, vj ). By taking the closure of all such

linear combinations, it can be shown [4] that we generate an RKHS H equipped
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with a norm ‖ · ‖H, and one that is uniquely associated with the kernel K. We
provide some examples of various kernels and the associated function classes in
Section 2.3 to follow.

2.2. Kernel ridge regression and its sketched form. Given the dataset
{(xi, yi)}ni=1, a natural method for estimating unknown function f ∗ ∈ H is known
as kernel ridge regression (KRR): it is based on the convex program

f ♦ := arg min
f ∈H

{
1

2n

n∑

i=1

(
yi − f (xi)

)2 + λn‖f ‖2
H

}
,(3)

where λn is a regularization parameter corresponding to the Hilbert space norm
‖ · ‖H.

As stated, this optimization problem can be infinite-dimensional in nature, since
it takes place over the Hilbert space. However, as a straightforward consequence
of the representer theorem [16], the solution to this optimization problem can be
obtained by solving the n-dimensional convex program. In particular, let us define
the empirical kernel matrix, namely the n-dimensional symmetric matrix K with
entries Kij = n−1K(xi, xj ). Here, we adopt the n−1 scaling for later theoretical
convenience. In terms of this matrix, the KRR estimate can be obtained by first
solving the quadratic program

ω† = arg min
ω∈Rn

{
1

2
ωT K2ω − ωT Ky√

n
+ λnω

T Kω

}
,(4a)

and then outputting the function

f ♦(·) =
1√
n

n∑

i=1

ω
†
i K(·, xi).(4b)

In principle, the original KRR optimization problem (4a) is simple to solve: it
is an n dimensional quadratic program, and can be solved exactly using O(n3)

via a QR decomposition. However, in many applications, the number of samples
may be large, so that this type of cubic scaling is prohibitive. In addition, the n-
dimensional kernel matrix K is dense in general, and so requires storage of order
n2 numbers, which can also be problematic in practice.

In this paper, we consider an approximation based on limiting the original pa-
rameter ω ∈ R

n to an m-dimensional subspace of Rn, where m ≪ n is the pro-

jection dimension. We define this approximation via a sketch matrix S ∈ R
m×n,

such that the m-dimensional subspace is generated by the row span of S. More
precisely, the sketched kernel ridge regression estimate is given by first solving

α̂ = arg min
θ∈Rm

{
1

2
αT (SK)

(
KST )α − αT S

Ky√
n

+ λnα
T SKST α

}
,(5a)
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and then outputting the function

f̂ (·) := 1√
n

n∑

i=1

(
ST α̂

)
iK(·, xi).(5b)

Note that the sketched program (5a) is a quadratic program in m dimensions:
it takes as input the m-dimensional matrices (SK2ST , SKST ) and the m-
dimensional vector SKy. Consequently, it can be solved efficiently via QR de-
composition with computational complexity O(m3). Moreover, the computation of
the sketched kernel matrix SK = [SK1, . . . , SKn] in the input can be parallelized
across its columns. In passing, it is worth mentioning that this sketching idea can
be extended to other kernel methods based on more general loss functions, such as
kernel SVM, using the representer theorem. Characterizing theoretical properties
of general sketched kernel methods is an interesting direction for future work

In this paper, we analyze various forms of random sketch matrices S. Let us
consider a few of them here.

Sub-Gaussian sketches: We say the row si of the sketch matrix is zero-mean
1-sub-Gaussian if for any fixed unit vector u ∈ Sn−1, we have

P
[∣∣〈u, si〉 ≥ t

∣∣]≤ 2e− nt2
2 for all t ≥ 0.

Many standard choices of sketch matrices have i.i.d. 1-sub-Gaussian rows in this
sense; examples include matrices with i.i.d. Gaussian entries, i.i.d. Bernoulli en-
tries or random matrices with independent rows drawn uniformly from a rescaled
sphere. For convenience, the sub-Gaussian sketch matrices considered in this paper
are all rescaled so that their rows have the covariance matrix 1√

m
In×n.

Randomized orthogonal system (ROS) sketches: This class of sketches are based
on randomly sampling and rescaling the rows of a fixed orthonormal matrix H ∈
R

n×n. Examples of such matrices include the discrete Fourier transform (DFT)
matrix, and the Hadamard matrix. More specifically, a ROS sketch matrix S ∈
R

m×n is formed with i.i.d. rows of the form

si =
√

n

m
RH T pi for i = 1, . . . ,m,

where R is a random diagonal matrix whose entries are i.i.d. Rademacher vari-
ables and {p1, . . . , pm} is a random subset of m rows sampled uniformly from the
n×n identity matrix without replacement. An advantage of using ROS sketches is
that for suitably chosen orthonormal matrices, including the DFT and Hadamard
cases among others, a matrix-vector product (say of the form Su for some vec-
tor u ∈ R

n) can be computed in O(n logm) time, as opposed to O(nm) time re-
quired for the same operation with generic dense sketches. For instance, see Ailon
and Liberty [1] and [23] for further details. Throughout this paper, we focus on
ROS sketches based on orthonormal matrices H with uniformly bounded entries,
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meaning that |Hij | ≤ c√
n

for all entries (i, j). This entrywise bound is satisfied by
Hadamard and DFT matrices, among others.

Sub-sampling sketches: This class of sketches are even simpler, based on sub-
sampling the rows of the identity matrix without replacement. In particular, the

sketch matrix S ∈ R
m×n has rows of the form si =

√
n
m

pi , where the vectors
{p1, . . . , pm} are drawn uniformly at random without replacement from the n-
dimensional identity matrix. It can be understood as related to a ROS sketch, based
on the identity matrix as an orthonormal matrix, and not using the Rademacher ran-
domization nor satisfying the entrywise bound. In Appendix A, we show that the
sketched KRR estimate (5a) based on a sub-sampling sketch matrix is equivalent
to the Nyström approximation.

2.3. Kernel complexity measures and statistical guarantees. So as to set the
stage for later results, let us characterize an appropriate choice of the regularization
parameter λ, and the resulting bound on the prediction error ‖f ♦ − f ∗‖n. Recall
the empirical kernel matrix K defined in the previous section: since it is symmetric
and positive definite, it has an eigendecomposition of the form K = UDUT , where
U ∈ R

n×n is an orthonormal matrix, and D ∈ R
n×n is diagonal with elements

μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂n ≥ 0. Using these eigenvalues, consider the kernel complexity

function

R̂(δ) =

√√√√1

n

n∑

j=1

min
{
δ2, μ̂j

}
,(6)

corresponding to a rescaled sum of the eigenvalues, truncated at level δ2. This
function arises via analysis of the local Rademacher complexity of the kernel class
(e.g., [6, 17, 22, 25]). For a given kernel matrix and noise variance σ > 0, the
critical radius is defined to be the smallest positive solution δn > 0 to the inequality

R̂(δ)

δ
≤ δ

σ
.(7)

Note that the existence and uniqueness of this critical radius is guaranteed for any
kernel class [6].

Bounds on ordinary KRR: The significance of the critical radius is that it can
be used to specify bounds on the prediction error in kernel ridge regression. More
precisely suppose that we compute the KRR estimate (3) with any regularization
parameter λ ≥ 2δ2

n. If f ∗ is in H, then with probability at least 1 − c1e
−c2nδ2

n with
respect to the noise {wi}ni=1, we are guaranteed that

∥∥f ♦ − f ∗∥∥2
n ≤ cu

{
λn + δ2

n

}
,(8)

where cu > 0 is a constant (depends on ‖f ∗‖H but independent of n, σ and the
kernel). This known result follows from standard techniques in empirical process
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theory (e.g., [6, 32]); we also note that it can be obtained as a corollary of our more
general theorem on sketched KRR estimates to follow (namely, Theorem 2).

To illustrate, let us consider a few examples of reproducing kernel Hilbert
spaces, and compute the critical radius in different cases. In working through
these examples, so as to determine explicit rates, we assume that the design points
{xi}ni=1 are sampled i.i.d. from some underlying distribution P, and we make use of
the useful fact that, up to constant factors, we can always work with the population-
level kernel complexity function

R(δ) =

√√√√1

n

∞∑

j=1

min
{
δ2,μj

}
,(9)

where {μj }∞j=1 are the eigenvalues of the kernel integral operator (assumed to be
uniformly bounded). This equivalence follows from standard results on the popu-
lation and empirical Rademacher complexities [6, 22].

EXAMPLE 1 (Polynomial kernel). For some integer D ≥ 1, consider the ker-
nel function on [0,1] × [0,1] given by Kpoly(u, v) = (1 + 〈u, v〉)D . For D = 1, it
generates the class of all linear functions of the form f (x) = a0 + a1x for some
scalars (a0, a1), and corresponds to a linear kernel. More generally, for larger inte-
gers D, it generates the class of all polynomial functions of degree at most D, that
is, functions of the form f (x) =∑D

j=0 ajx
j .

Let us now compute a bound on the critical radius δn. It is straightforward to
show that the polynomial kernel is of finite rank at most D + 1, meaning that the
kernel matrix K always has at most min{D + 1, n} nonzero eigenvalues. Conse-
quently, as long n > D + 1, there is a universal constant c such that

R̂(δ) ≤ c

√
D + 1

n
δ,

which implies that δ2
n � σ 2 D+1

n
. Here, we use the notation A(n) � B(n) to mean

A(n) ≤ cB(n) for some universal constant c > 0. Consequently, we conclude that
the KRR estimate satisfies the bound ‖f̂ − f ∗‖2

n � σ 2 D+1
n

with high probability.
Note that this bound is intuitive, since a polynomial of degree D has D + 1 free
parameters.

EXAMPLE 2 (Gaussian kernel). The Gaussian kernel with bandwidth h > 0

takes the form KGau(u, v) = e
− 1

2h2 (u−v)2

. When defined with respect to Lebesgue
measure on the real line, the eigenvalues of the kernel integral operator scale as
μj ≍ exp(−πh2j2) as j → ∞. Based on this fact, it can be shown that the criti-

cal radius scales as δ2
n ≍ σ 2

nh2

√
log(nh2

σ 2 ). Thus, even though the Gaussian kernel is
nonparametric (since it cannot be specified by a fixed number of parameters), it is
still a relatively small function class.
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EXAMPLE 3 (First-order Sobolev space). As a final example, consider the ker-
nel defined on the unit square [0,1] × [0,1] given by Ksob(u, v) = min{u, v}. It
generates the function class

H
1[0,1] =

{
f : [0,1] → R|f (0) = 0,

(10)

and f is abs. cts. with
∫ 1

0

[
f ′(x)

]2
dx < ∞

}
,

a class that contains all Lipschitz functions on the unit interval [0,1]. Roughly
speaking, we can think of the first-order Sobolev class as functions that are al-
most everywhere differentiable with derivative in L2[0,1]. Note that this is a much
larger kernel class than the Gaussian kernel class. The first-order Sobolev space
can be generalized to higher order Sobolev spaces, in which functions have addi-
tional smoothness. See the book [12] for further details on these and other repro-
ducing kernel Hilbert spaces.

If the kernel integral operator is defined with respect to Lebesgue measure on the
unit interval, then the population level eigenvalues are given by μj = ( 2

(2j−1)π
)2

for j = 1,2, . . . . Given this relation, some calculation shows that the critical radius
scales as δ2

n ≍ (σ 2

n
)2/3. This is the familiar minimax risk for estimating Lipschitz

functions in one dimension [29].

Lower bounds for nonparametric regression: For future reference, it is also con-
venient to provide a lower bound on the prediction error achievable by any estima-

tor. In order to do so, we first define the statistical dimension of the kernel as

dn := min
{
j ∈ [n] : μ̂j ≤ δ2

n

}
,(11)

and dn = n if no such index j exists. By definition, we are guaranteed that μ̂j > δ2
n

for all j ∈ {1,2, . . . , dn}. Our definition of the statistical dimension may differ
from some others in the literature, such as the one for cones in [3]. In terms of this
statistical dimension, we have

R̂(δn) =
[

dn

n
δ2
n +

1

n

n∑

j=dn+1

μ̂j

]1/2

,

showing that the statistical dimension controls a type of bias-variance tradeoff.
It is reasonable to expect that the critical rate δn should be related to the sta-

tistical dimension as δ2
n ≍ σ 2dn

n
. This scaling relation holds whenever the tail sum

satisfies a bound of the form
∑n

j=dn+1 μ̂j � dnδ
2
n. Although it is possible to con-

struct pathological examples in which this scaling relation does not hold, it is true
for most kernels of interest, including all examples considered in this paper. For
any such regular kernel, the critical radius provides a fundamental lower bound on
the performance of any estimator, as summarized in the following theorem.
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THEOREM 1 (Critical radius and minimax risk). Given n i.i.d. samples

{(yi, xi)}ni=1 from the standard nonparametric regression model over any regular

kernel class, any estimator f̃ has prediction error lower bounded as

sup
‖f ∗‖H≤1

E
∥∥f̃ − f ∗∥∥2

n ≥ cℓδ
2
n,(12)

where cℓ > 0 is a numerical constant, and δn is the critical radius (7).

The proof of this claim, provided in Appendix B.1, is based on a standard ap-
plication of Fano’s inequality, combined with a random packing argument. It es-
tablishes that the critical radius is a fundamental quantity, corresponding to the
appropriate benchmark to which sketched kernel regression estimates should be
compared.

3. Main results and their consequences. We now turn to statements of our
main theorems on kernel sketching, as well as a discussion of some of their con-
sequences. We first introduce the notion of a K-satisfiable sketch matrix, and then
show (in Theorem 2) that any sketched KRR estimate based on a K-satisfiable
sketch also achieves the minimax risk. We illustrate this achievable result with
several corollaries for different types of randomized sketches. For Gaussian and
ROS sketches, we show that choosing the sketch dimension proportional to the
statistical dimension of the kernel (with additional log factors in the ROS case)
is sufficient to guarantee that the resulting sketch will be K-satisfiable with high
probability. In addition, we illustrate the sharpness of our theoretical predictions
via some experimental simulations.

3.1. General conditions for sketched kernel optimality. Recall the defini-
tion (11) of the statistical dimension dn, and consider the eigendecomposition
K = UDUT of the kernel matrix, where U ∈ R

n×n is an orthonormal matrix of
eigenvectors, and D = diag{μ̂1, . . . , μ̂n} is a diagonal matrix of eigenvalues. Let
U1 ∈ R

n×dn denote the left block of U , and similarly, U2 ∈ R
n×(n−dn) denote the

right block. Note that the columns of the left block U1 correspond to the eigen-
vectors of K associated with the leading dn eigenvalues, whereas the columns of
the right block U2 correspond to the eigenvectors associated with the remaining
n− dn smallest eigenvalues. Intuitively, a sketch matrix S ∈ R

m×n is “good” if the
sub-matrix SU1 ∈ R

m×dn is relatively close to an isometry, whereas the sub-matrix
SU2 ∈R

m×(n−dn) has a relatively small operator norm.
This intuition can be formalized in the following way. For a given kernel ma-

trix K , a sketch matrix S is said to be K-satisfiable if there is a universal constant
c such that

∣∣∣∣∣∣(SU1)
T SU1 − Idn

∣∣∣∣∣∣
op ≤ 1/2, and

∣∣∣∣∣∣SU2D
1/2
2

∣∣∣∣∣∣
op ≤ cδn,(13)

where D2 = diag{μ̂dn+1, . . . , μ̂n}.
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Given this definition, the following theorem shows that any sketched KRR esti-
mate based on a K-satisfiable matrix achieves the minimax risk (with high proba-
bility over the noise in the observation model).

THEOREM 2 (Upper bound). Given n i.i.d. samples {(yi, xi)}ni=1 from the stan-

dard nonparametric regression model, consider the sketched KRR problem (5a)
based on a K-satisfiable sketch matrix S. If f ∗ ∈ H, then any for λn ≥ 2δ2

n, the

sketched regression estimate f̂ from equation (5b) satisfies the bound

∥∥f̂ − f ∗∥∥2
n ≤ cu

{
λn + δ2

n

}

with probability greater than 1 − c1e
−c2nδ2

n . Here, constant cu only depends on

‖f ∗‖H.

We emphasize that in the case of fixed design regression and for a fixed sketch
matrix, the K-satisfiable condition on the sketch matrix S is a deterministic state-
ment: apart from the sketch matrix, it only depends on the properties of the kernel
function K and design variables {xi}ni=1. Thus, when using randomized sketches,
the algorithmic randomness can be completely decoupled from the randomness in
the noisy observation model (1). In fact, since our work was first posted, some
other researchers [9] have used the conditions underlying our Theorem 2 to show
that a rather different class of sketch matrices can be used to perform optimal KRR
regression. This illustrates that the decoupling approach in Theorem 2 is a fruitful
one.

Proof intuition: The proof of Theorem 2 is given in Section 4.1. At a high-level,
it is based on an upper bound on the prediction error ‖f̂ − f ∗‖2

n that involves two
sources of error: the approximation error associated with solving a zero-noise ver-
sion of the KRR problem in the projected m-dimensional space, and the estimation

error between the noiseless and noisy versions of the projected problem. In more
detail, letting z∗ := (f ∗(x1), . . . , f

∗(xn)) denote the vector of function evaluations
defined by f ∗, consider the quadratic program

α† := arg min
α∈Rm

{
1

2n

∥∥z∗ −
√

nKST α
∥∥2

2 + λn

∥∥K1/2ST α
∥∥2

2

}
,(14)

as well as the associated fitted function f † = 1√
n

∑n
i=1(Sα†)iK(·, xi). The vector

α† ∈ R
m is the solution of the sketched problem in the case of zero noise, whereas

the fitted function f † corresponds to the best penalized approximation of f ∗ within
the range space of ST .

Given this definition, we then have the elementary inequality

1

2

∥∥f̂ − f ∗∥∥2
n ≤

∥∥f † − f ∗∥∥2
n︸ ︷︷ ︸

Approximation error

+
∥∥f † − f̂

∥∥2
n︸ ︷︷ ︸

Estimation error

.(15)
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For a fixed sketch matrix, the approximation error term is deterministic: it cor-
responds to the error induced by approximating f ∗ over the range space of ST .
On the other hand, the estimation error depends both on the sketch matrix and the
observation noise. In Section 4.1, we state and prove two lemmas that control the
approximation and error terms, respectively.

As a corollary, Theorem 2 implies the stated upper bound (8) on the prediction
error of the original (unsketched) KRR estimate (3). Indeed, this estimator can
be obtained using the “sketch matrix” S = In×n, which is easily seen to be K-
satisfiable. In practice, however, we are interested in m × n sketch matrices with
m ≪ n, so as to achieve computational savings. In particular, a natural conjecture
is that it should be possible to efficiently generate K-satisfiable sketch matrices
with the projection dimension m proportional to the statistical dimension dn of
the kernel. Of course, one such K-satisfiable matrix is given by S = UT

1 ∈ R
dn×n,

but it is not easy to generate, since it requires computing the eigendecomposition
of K . Nonetheless, as we now show, there are various randomized constructions
that lead to K-satisfiable sketch matrices with high probability.

3.2. Corollaries for randomized sketches. When combined with additional
probabilistic analysis, Theorem 2 implies that various forms of randomized
sketches achieve the minimax risk using a sketch dimension proportional to the
statistical dimension dn. Here, we analyze the Gaussian and ROS families of ran-
dom sketches, as previously defined in Section 2.2. Throughout our analysis, we
require that the sketch dimension satisfies a lower bound of the form

m ≥
{
cdn, for Gaussian sketches, and

cdn log4(n), for ROS sketches,
(16a)

where dn is the statistical dimension as previously defined in equation (11). Here,
it should be understood that the constant c can be chosen sufficiently large (but
finite). In addition, for the purposes of stating high probability results, we define
the function

φ(m,dn, n)

(16b)

:=

⎧
⎨
⎩

c1e
−c2m, for Gaussian sketches, and

c1
[
e
−c2

m

dn log2(n) + e−c2dn log2(n)], for ROS sketches,

where c1, c2 are universal constants. With this notation, the following result pro-
vides a high probability guarantee for both Gaussian and ROS sketches.

COROLLARY 1 (Guarantees for Gaussian and ROS sketches). Given n i.i.d.
samples {(yi, xi)}ni=1 from the standard nonparametric regression model (1), con-

sider the sketched KRR problem (5a) based on a sketch dimension m satisfying

the lower bound (16a). If f ∗ ∈ H, then there is a constant c′
u only depending on
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‖f ∗‖H such that for any λn ≥ 2δ2
n, the sketched regression estimate (5b) satisfies

the bound
∥∥f̂ − f ∗∥∥2

n ≤ c′
u

{
λn + δ2

n

}

with probability greater than 1 − φ(m,dn, n) − c3e
−c4nδ2

n .

As a remark, in Corollary 1, ROS sketches require an additional log4(n) factor
over dn in the sketch dimension m. For some kernels (such as the Gaussian, which
has a logarithmic statistical dimension), these logarithmic factors are significant.
Based on our simulation results below, we suspect that some of these additional
poly-log terms may be an artifact of our proof technique. We leave as an important
open problem whether or not the scaling for ROS sketches can be sharpened.

In order to illustrate Corollary 1, let us return to the three examples previously
discussed in Section 2.3. To be concrete, we derive the consequences for Gaussian
sketches, noting that ROS sketches incur only an additional log4(n) overhead:

• For the Dth-order polynomial kernel from Example 1, the statistical dimension
dn for any sample size n is at most D + 1, so that a sketch size of order D + 1
is sufficient. This is a very special case, since the kernel is finite rank and so the
required sketch dimension has no dependence on the sample size.

• For the Gaussian kernel from Example 2, the statistical dimension satisfies the

scaling dn ≍ h−2
√

log(nh2), so that it suffices to take a sketch dimension scaling
logarithmically with the sample size.

• For the first-order Sobolev kernel from Example 3, the statistical dimension
scales as dn ≍ n1/3, so that a sketch dimension scaling as the cube root of the
sample size is required.

In order to illustrate these theoretical predictions, we performed some simu-
lations. Beginning with the Sobolev kernel Ksob(u, v) = min{u, v} on the unit
square, as introduced in Example 3, we generated n i.i.d. samples from the
model (1) with noise standard deviation σ = 0.5, the unknown regression func-
tion

f ∗(x) = 1.6
∣∣(x − 0.4)(x − 0.6)

∣∣− 0.3,(17)

and uniformly spaced design points xi = i
n

for i = 1, . . . , n. By construction,
the function f ∗ belongs to the first-order Sobolev space with ‖f ∗‖H ≈ 1.3. As
suggested by our theory for the Sobolev kernel, we set the projection dimension
m = ⌈n1/3⌉, and then solved the sketched version of kernel ridge regression, for
both Gaussian sketches and ROS sketches based on the fast Hadamard transform.
We performed simulations for n in the set {32,64,128, . . . ,16,384} so as to study
scaling with the sample size. As noted above, our theory predicts that the squared
prediction loss ‖f̂ − f ∗‖2

n should tend to zero at the same rate n−2/3 as that of the
unsketched estimator f ♦. Figure 1 confirms this theoretical prediction. In panel
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FIG. 1. Prediction error versus sample size for original KRR, Gaussian sketch and ROS

sketches for the Sobolev one kernel for the function f ∗(x) = 1.6|(x − 0.4)(x − 0.6)| − 0.3 with

λ = 2δ2
n = 0.5n−2/3. In all cases, each point corresponds to the average of 100 trials, with

standard errors also shown. (a) Squared prediction error ‖f̂ − f ∗‖2
n versus the sample size

n ∈ {32,64,128, . . . ,16,384} for projection dimension m = ⌈n1/3⌉. (b) Rescaled prediction error

n2/3‖f̂ − f ∗‖2
n versus the sample size. (c) Runtime versus the sample size. The original KRR for

n = 8192 and n = 16,384 samples are not computed due to out-of-memory failures. (d) For a prob-

lem of size n = 1024, plots of the ratios ‖f̂c − f♦‖2
n/‖f♦ − f ∗‖2

n versus the scaling parameter c,
where the sketched estimate is computed using a projection dimension m = ⌈cn1/3⌉. The constant c

ranges over {0.5,1,2, . . . ,7}.

(a), we plot the squared prediction error versus the sample size, showing that all
three curves (original, Gaussian sketch and ROS sketch) tend to zero. Panel (b)
plots the rescaled prediction error n2/3‖f̂ − f ∗‖2

n versus the sample size, with
the relative flatness of these curves confirming the n−2/3 decay predicted by our
theory. Panel (c) plots the running time versus the sample size and the squared
prediction error, showing that kernel sketching considerably speeds up KRR.

In our second experiment, we repeated the same set of simulations this time

for the 3-d Gaussian kernel KGau(u, v) = e
− 1

2h2 ‖u−v‖2
2 with bandwidth h = 1, and

the function f ∗(x) = 0.5e−x1+x2 − x2x3. In this case, as suggested by our theory,
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FIG. 2. Prediction error versus sample size for original KRR, Gaussian sketch and ROS

sketches for the Gaussian kernel with the function f ∗(x) = 0.5e−x1+x2 − x2x3 with

λ = 2δ2
n = 0.5 log1.5(n)/n. In all cases, each point corresponds to the average of 100 trials,

with standard errors also shown. (a) Squared prediction error ‖f̂ − f ∗‖2
n versus the sample size

n ∈ {32,64,128, . . . ,16,384} for projection dimension m = ⌈1.25(logn)3/2⌉. (b) Rescaled predic-

tion error n
(logn)3/2 ‖f̂ − f ∗‖2

n versus the sample size. (c) Runtime versus the sample size. The orig-

inal KRR under n = 8192 and 16,384 are not computed due to out-of-memory failures. (d) For a

problem of size n = 1024, plots of the ratios ‖f̂c −f♦‖2
n/‖f♦ −f ∗‖2

n versus the scaling parameter

c, where the sketched estimate is computed using a projection dimension m = ⌈cn1/3⌉. The constant

c ranges over {0.5,1,2, . . . ,7}.

we choose the sketch dimension m = ⌈1.25(logn)3/2⌉. Figure 2 shows the same
types of plots with the prediction error. In this case, we expect that the squared

prediction error will decay at the rate (logn)3/2

n
. This prediction is confirmed by the

plot in panel (b), showing that the rescaled error n
(logn)3/2 ‖f̂ − f ∗‖2

n, when plotted
versus the sample size, remains relatively constant over a wide range.

REMARK. In practice, the target sketch dimension m is only known up to
a multiplicative constant. To determine this multiplicative constant, one can im-
plement the randomized algorithm in an adaptive fashion where the multiplica-
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tive constant is increased until the squared prediction norm of the change in the
sketched function estimate f̂ falls below a desired tolerance. More precisely, let-
ting {m1,m2, . . .} denote a sequence of projection dimensions, we compute the
sketched estimates f̂t based on a projection dimension of size mt . This adaptive
procedure only increases the computational complexity by a constant multiple:
when increasing the sketch dimension from mt to mt+1, we only need to sample
additional mt+1 − mt rows to form the new sketch matrix S′. Correspondingly,
forming the new sketched kernel matrix S′K only requires computing the product
of the new rows of S′ and the kernel matrix K , and computing the new sketched
estimate f̂t+1 is a quadratic program in the low-dimensional space. The plots in
panels (d) of Figure 1 and Figure 2 show that the approximation error ‖f̂t − f ♦‖2

n

rapidly approaches zero relative to the squared error ‖f ♦ − f ∗‖2
n in the original

KRR estimate f ♦ as the projection dimension mt grows, which justifies the va-
lidity of the adaptive procedure. In practice, we cannot compute the differences
‖f̂t − f ♦‖2

n, but the differences ‖f̂t − f̂t+1‖2
n exhibit a rapid decay that is qualita-

tively very similar, and can be used as a stopping criterion.

3.3. Comparison with Nyström-based approaches. It is interesting to compare
the convergence rate and computational complexity of our methods with guaran-
tees based on the Nyström approximation. As shown in Appendix A, this Nyström
approximation approach can be understood as a particular form of our sketched
estimate, one in which the sketch corresponds to a random row-sampling matrix.

Bach [5] analyzed the prediction error of the Nyström approximation to KRR
based on uniformly sampling a subset of p-columns of the kernel matrix K , lead-
ing to an overall computational complexity of O(np2). In order for the approxi-
mation to match the performance of KRR, the number of sampled columns must
be lower bounded as

p � n
∥∥diag

(
K(K + λnI )−1)∥∥

∞ logn,

a quantity which can be substantially larger than the statistical dimension required
by our methods. Moreover, as shown in the following example, there are many
classes of kernel matrices for which the performance of the Nyström approxima-
tion will be poor.

EXAMPLE 4 (Failure of Nyström approximation). Given a sketch dimension
m ≤ n log 2, consider an empirical kernel matrix K that has a block diagonal
form diag(K1,K2), where K1 ∈ R

(n−k)×(n−k) and K2 ∈ R
k×k for any integer

k ≤ n
m

log 2. Then the probability of not sampling any of the last k columns/rows
is at least 1 − (1 − k/n)m ≥ 1 − e−km/n ≥ 1/2. This means that with probability at
least 1/2, the sub-sampling sketch matrix can be expressed as S = (S1,0), where
S1 ∈ R

m×(n−k). Under such an event, the sketched KRR (5a) takes on a degenerate
form, namely

α̂ = arg min
θ∈Rm

{
1

2
αT S1K

2
1ST

1 α − αT S1
K1y1√

n
+ λnα

T S1K1S
T
1 α

}
,



RANDOMIZED SKETCHES FOR KERNELS 1007

and objective that depends only on the first n − k observations. Since the values of
the last k observations can be arbitrary, this degeneracy has the potential to lead to
substantial approximation error.

The previous example suggests that the Nyström approximation is likely to be
very sensitive to non-inhomogeneity in the sampling of covariates. In order to ex-
plore this conjecture, we performed some additional simulations, this time com-
paring both Gaussian and ROS sketches with the uniform Nyström approxima-

tion sketch. Returning again to the Gaussian kernel KGau(u, v) = e
− 1

2h2 (u−v)2

with
bandwidth h = 0.25, and the function f ∗(x) = −1 + 2x2, we first generated n

i.i.d. samples that were uniform on the unit interval [0,1]. We then implemented
sketches of various types (Gaussian, ROS or Nyström) using a sketch dimension
m = ⌈4

√
logn⌉ and regularization parameter λ = 0.5

√
log(n)/n. As shown in the

top row [panels (a) and (b)] of Figure 3, all three sketch types perform very well
for this regular design, with prediction error that is essentially indistinguishable
from the original KRR estimate. Keeping the same kernel and function, we then
considered an irregular form of design, namely with k = ⌈

√
n⌉ samples perturbed

as follows:

xi ∼
{

Unif[0,1/2], if i = 1, . . . , n − k,

1 + zi, for i = k + 1, . . . , n,

where each zi ∼ N(0,1/n). The performance of the sketched estimators in this
case are shown in the bottom row [panels (c) and (d)] of Figure 3. As before, both
the Gaussian and ROS sketches track the performance of the original KRR esti-
mate very closely; in contrast, the Nyström approximation behaves very poorly for
this regression problem, consistent with the intuition suggested by the preceding
example.

As is known from general theory on the Nyström approximation, its perfor-
mance can be improved by knowledge of the so-called leverage scores of the un-
derlying matrix. In this vein, recent work by Alaoui and Mahoney [2] suggests
a Nyström approximation nonuniform sampling of the columns of kernel matrix
involving the leverage scores. Assuming that the leverage scores are known, they
show that their method matches the performance of original KRR using a nonuni-
form sub-sample of the order trace(K(K + λnI )−1) logn columns. When the reg-
ularization parameter λn is set optimally—that is, proportional to δ2

n—then apart
from the extra logarithmic factor; this sketch size scales with the statistical di-
mension, as defined here. However, the leverage scores are not known, and their
method for obtaining a sufficiently approximation requires sampling p̃ columns of
the kernel matrix K , where

p̃ � λ−1
n trace(K) logn.

For a typical (normalized) kernel matrix K , we have trace(K) � 1; moreover, in
order to achieve the minimax rate, the regularization parameter λn should scale
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FIG. 3. Prediction error versus sample size for original KRR, Gaussian sketch, ROS sketch

and Nyström approximation. Left panels (a) and (c) show ‖f̂ − f ∗‖2
n versus the sample size

n ∈ {32,64,128,256,512,1024} for projection dimension m = ⌈4
√

logn⌉. In all cases, each point

corresponds to the average of 100 trials, with standard errors also shown. Right panels (b) and (d)
show the rescaled prediction error n√

logn
‖f̂ − f ∗‖2

n versus the sample size. Top row correspond to

covariates arranged uniformly on the unit interval, whereas bottom row corresponds to an irregular

design (see text for details).

with δ2
n. Putting together the pieces, we see that the sampling parameter p̃ must

satisfy the lower bound p̃ � δ−2
n logn. This requirement is much larger than the

statistical dimension, and prohibitive in many cases:

• For the Gaussian kernel, we have δ2
n ≍

√
log(n)
n

, and so p̃ � n log1/2(n), mean-
ing that all rows of the kernel matrix are sampled. In contrast, the statistical
dimension scales as

√
logn.

• For the first-order Sobolev kernel, we have δ2
n ≍ n−2/3, so that p̃ � n2/3 logn.

In contrast, the statistical dimension for this kernel scales as n1/3.
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It remains an open question as to whether a more efficient procedure for approxi-
mating the leverage scores might be devised, which would allow a method of this
type to be statistically optimal in terms of the sampling dimension.

4. Proofs. In this section, we provide the proofs of our main theorems. Some
technical proofs of the intermediate results are provided in the Appendices.

4.1. Proof of Theorem 2. Recall the definition (14) of the estimate f †, as well
as the upper bound (15) in terms of approximation and estimation error terms. The
remainder of our proof consists of two technical lemmas used to control these two
terms.

LEMMA 1 (Control of estimation error). Under the conditions of Theorem 2,
we have

∥∥f † − f̂
∥∥2
n ≤ cδ2

n(18)

with probability at least 1 − c1e
−c2nδ2

n .

LEMMA 2 (Control of approximation error). For any K-satisfiable sketch ma-

trix S, we have

∥∥f † − f ∗∥∥2
n ≤ c

{
λn + δ2

n

}
and

∥∥f †∥∥
H

≤ c

{
1 +

δ2
n

λn

}
.(19)

These two lemmas, in conjunction with the upper bound (15), yield the claim in
the theorem statement. Accordingly, it remains to prove the two lemmas.

4.1.1. Proof of Lemma 1. So as to simplify notation, we assume throughout
the proof that σ = 1. (A simple rescaling argument can be used to recover the
general statement.) Since α† is optimal for the quadratic program (14), it must
satisfy the zero gradient condition

−SK

(
1√
n
f ∗ − KST α†

)
+ 2λnSKST α† = 0.(20)

By the optimality of α̂ and feasibility of α† for the sketched problem (5a), we have

1

2

∥∥KST α̂
∥∥2

2 −
1√
n
yT KST α̂ + λn

∥∥K1/2ST α̂
∥∥2

2

≤
1

2

∥∥KST α†∥∥2
2 −

1√
n
yT KST α† + λn

∥∥K1/2ST α†∥∥2
2.
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Defining the error vector �̂ := ST (α̂ − α†), some algebra leads to the following
inequality:

1

2
‖K�̂‖2

2 ≤ −
〈
K�̂,KST α†〉+

1√
n
yT K�̂

(21)
+ λn

∥∥K1/2ST α†∥∥2
2 − λn

∥∥K1/2ST α̂
∥∥2

2.

Consequently, by plugging in y = z∗ + w and applying the optimality condi-
tion (20), we obtain the basic inequality

1

2
‖K�̂‖2

2 ≤
∣∣∣∣

1√
n
wT K�̂

∣∣∣∣− λn

∥∥K1/2�̂
∥∥2

2.(22)

The following lemma provides control on the right-hand side.

LEMMA 3. With probability at least 1 − c1e
−c2nδ2

n , we have that for all � ∈
R

n,
∣∣∣∣

1√
n
wT K�

∣∣∣∣
(23)

≤

⎧
⎨
⎩

6δn‖K�‖2 + 2δ2
n, if

∥∥K1/2�
∥∥

2 ≤ 1,

2δn‖K�‖2 + 2δ2
n

∥∥K1/2�
∥∥

2 +
1

16
δ2
n, if

∥∥K1/2�
∥∥

2 ≥ 1.

See Appendix B.2 for the proof of this lemma.
Based on this auxiliary result, we divide the remainder of our analysis into two

cases.

Case 1: If ‖K1/2�̂‖2 ≤ 1, then the basic inequality (22) and the top inequality
in Lemma 3 imply

1

2
‖K�̂‖2

2 ≤
∣∣∣∣

1√
n
wT K�̂

∣∣∣∣≤ 6δn‖K�̂‖2 + 2δ2
n(24)

with probability at least 1 − c1e
−c2nδ2

n . Note that we have used that fact that the
randomness in the sketch matrix S is independent of the randomness in the noise
vector w. The quadratic inequality (24) implies that ‖K�̂‖2 ≤ cδn for some uni-
versal constant c.

Case 2: If ‖K1/2�̂‖2 > 1, then the basic inequality (22) and the bottom in-
equality in Lemma 3 imply

1

2
‖K�̂‖2

2 ≤ 2δn‖K�̂‖2 + 2δ2
n

∥∥K1/2�̂
∥∥

2 +
1

16
δ2
n − λn

∥∥K1/2�̂
∥∥2

2

with probability at least 1 − c1e
−c2nδ2

n . If λn ≥ 2δ2
n, then under the assumed condi-

tion ‖K1/2�̂‖2 > 1, the above inequality gives

1

2
‖K�̂‖2

2 ≤ 2δn‖K�̂‖2 +
1

16
δ2
n ≤

1

4
‖K�̂‖2

2 + 4δ2
n +

1

16
δ2
n.
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By rearranging terms in the above, we obtain ‖K�̂‖2
2 ≤ cδ2

n for a universal con-
stant, which completes the proof.

4.1.2. Proof of Lemma 2. Without loss of generality, we may assume ‖f ∗‖H ≤
1. Our goal is to show that the bound

1

2n

∥∥z∗ −
√

nKST α†∥∥2
2 + λn

∥∥K1/2ST α†∥∥2
2 ≤ c

{
λn + δ2

n

}
.

In fact, since α† is a minimizer, it suffices to exhibit some α ∈ R
m for which this

inequality holds. Recalling the eigendecomposition K = UDUT , it is equivalent
to exhibit some α ∈ R

m such that
1

2

∥∥θ∗ − DS̃T α
∥∥2

2 + λnα
T S̃DS̃T α ≤ c

{
λn + δ2

n

}
,(25)

where S̃ = SU is the transformed sketch matrix, and the vector θ∗ = n−1/2Uz∗ ∈
R

n satisfies the ellipse constraint ‖D−1/2θ∗‖2 ≤ 1.
We do so via a constructive procedure. First, we partition the vector θ∗ ∈ R

n

into two sub-vectors, namely θ∗
1 ∈ R

dn and θ∗
2 ∈ R

n−dn . Similarly, we partition the
diagonal matrix D into two blocks, D1 and D2, with dimensions dn and n − dn,
respectively. Under the condition m > dn, we may let S̃1 ∈ R

m×dn denote the left
block of the transformed sketch matrix, and similarly, let S̃2 ∈ R

m×(n−dn) denote
the right block. In terms of this notation, the assumption that S is K-satisfiable
corresponds to the inequalities

∣∣∣∣∣∣S̃T
1 S̃1 − Idn

∣∣∣∣∣∣
op ≤

1

2
and

∣∣∣∣∣∣S̃2
√

D2
∣∣∣∣∣∣

op ≤ cδn.(26)

As a consequence, we are guarantee that the matrix S̃T
1 S̃1 is invertible, so that we

may define the m-dimensional vector

α̂ = S̃1
(
S̃T

1 S̃1
)−1

(D1)
−1θ∗

1 ∈R
m.

Recalling the disjoint partition of our vectors and matrices, we have
∥∥θ∗ − DS̃T α̂

∥∥2
2

(27a)
=
∥∥θ∗

1 − D1S̃
T
1 α̂
∥∥2

2︸ ︷︷ ︸
=0

+
∥∥θ∗

2 − D2S̃
T
2 S̃1

(
S̃T

1 S̃1
)−1

D−1
1 θ∗

1

∥∥2
2︸ ︷︷ ︸

T 2
1

.

By the triangle inequality, we have

T1 ≤
∥∥θ∗

2

∥∥
2 +

∥∥D2S̃
T
2 S̃1

(
S̃T

1 S̃1
)−1

D−1
1 θ∗

1

∥∥
2

≤
∥∥θ∗

2

∥∥
2 +

∣∣∣∣∣∣D2S̃
T
2

∣∣∣∣∣∣
op

∣∣∣∣∣∣S̃1
∣∣∣∣∣∣

op

∣∣∣∣∣∣(S̃T
1 S̃1

)−1∣∣∣∣∣∣
op

∣∣∣∣∣∣D−1/2
1

∣∣∣∣∣∣
op

∥∥D−1/2
1 θ∗

1

∥∥
2

≤
∥∥θ∗

2

∥∥
2 +

∣∣∣∣∣∣√D2
∣∣∣∣∣∣

op

∣∣∣∣∣∣S̃2
√

D2
∣∣∣∣∣∣

op

∣∣∣∣∣∣S̃1
∣∣∣∣∣∣

op

×
∣∣∣∣∣∣(S̃T

1 S̃1
)−1∣∣∣∣∣∣

op

∣∣∣∣∣∣D−1/2
1

∣∣∣∣∣∣
op

∥∥D−1/2
1 θ∗

1

∥∥
2.
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Since ‖D−1/2θ∗‖2 ≤ 1, we have ‖D−1/2
1 θ∗

1 ‖2 ≤ 1 and, moreover,

∥∥θ∗
2

∥∥2
2 =

n∑

j=dn+1

(
θ∗

2,j

)2 ≤ δ2
n

n∑

j=dn+1

(θ∗
2,j )

2

μ̂j

≤ δ2
n,

since μ̂j ≤ δ2
n for all j ≥ dn + 1. Similarly, we have |||

√
D2|||op ≤ √

μ̂dn+1 ≤ δn,

and |||D−1/2
1 |||op ≤ δ−1

n . Putting together the pieces, we have

T1 ≤ δn +
∣∣∣∣∣∣S̃2

√
D2
∣∣∣∣∣∣

op

∣∣∣∣∣∣S̃1
∣∣∣∣∣∣

op

∣∣∣∣∣∣(S̃T
1 S̃1

)−1∣∣∣∣∣∣
op ≤ (cδn)

√
3

2
2 = c′δn,(27b)

where we have invoked the K-satisfiability of the sketch matrix to guarantee the
bounds |||S̃1|||op ≤

√
3/2, |||(S̃T

1 S̃)|||op ≥ 1/2 and |||S̃2
√

D2|||op ≤ cδn. Bounds (27a)
and (27b) in conjunction guarantee that

∥∥θ∗ − DS̃T α̂
∥∥2

2 ≤ cδ2
n,(28a)

where the value of the universal constant c may change from line to line.
Turning to the remaining term on the left-hand side of inequality (25), applying

the triangle inequality and the previously stated bounds leads to

α̂T S̃DS̃T α̂ ≤
∥∥D−1/2

1 θ∗
1

∥∥2
2 +

∣∣∣∣∣∣D1/2
2 S̃T

2

∣∣∣∣∣∣
op

∣∣∣∣∣∣S̃1
∣∣∣∣∣∣

op

×
∣∣∣∣∣∣(S̃T

1 S̃1
)−1∣∣∣∣∣∣

op

∣∣∣∣∣∣D−1/2
1

∣∣∣∣∣∣
op

∥∥D−1/2
1 θ∗

1

∥∥
2(28b)

≤ 1 + (cδn)
√

3/2
1

2
δ−1
n (1) ≤ c′.

Combining the two bounds (28a) and (28b) yields the claim (25).

5. Discussion. In this paper, we have analyzed randomized sketching meth-
ods for kernel ridge regression. Our main theorem gives sufficient conditions on
any sketch matrix for the sketched estimate to achieve the minimax risk for non-
parametric regression over the underlying kernel class. We specialized this general
result to two broad classes of sketches, namely those based on Gaussian random
matrices and randomized orthogonal systems (ROS), for which we proved that a
sketch size proportional to the statistical dimension is sufficient to achieve the min-
imax risk. More broadly, we suspect that sketching methods of the type analyzed
here have the potential to save time and space in other forms of statistical compu-
tation, and we hope that the results given here are useful for such explorations.

APPENDIX A: SUB-SAMPLING SKETCHES YIELD
NYSTRÖM APPROXIMATION

In this Appendix, we show that the sub-sampling sketch matrix described at
the end of Section 2.2 coincides with applying Nyström approximation [34] to the
kernel matrix.
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We begin by observing that the original KRR quadratic program (4a) can be
written in the equivalent form minω∈Rn,u∈Rn{ 1

2n
‖u‖2 + λnω

T Kω} such that y −√
nKω = u. The dual of this constrained quadratic program (QP) is given by

ξ† = arg max
ξ∈Rn

{
−

n

4λn

ξT Kξ + ξT y −
1

2
ξT ξ

}
.(29)

The KRR estimate f † and the original solution ω† can be recovered from the dual

solution ξ† via the relation f †(·) = 1√
n

∑n
i=1 ω†

iK(·, xi) and ω† =
√

n
2λn

ξ†.
Now turning to the sketched KRR program (5a), note that it can be written in the

equivalent form minα∈Rn,u∈Rn{ 1
2n

‖u‖2 + λnα
T SKST α} subject to the constraint

y −
√

nKST α = u. The dual of this constrained QP is given by

ξ‡ = arg max
ξ∈Rn

{
−

n

4λn

ξT K̃ξ + ξT y −
1

2
ξT ξ

}
,(30)

where K̃ = KST (SKST )−1SK is a rank-m matrix in R
n×n. In addition, the

sketched KRR estimate f̂ , the original solution α̂ and the dual solution ξ‡ are

related by f̂ (·) = 1√
n

∑n
i=1(S

T α̂)iK(·, xi) and α̂ =
√

n
2λn

(SKST )−1SKξ‡.

When S is the sub-sampling sketch matrix, the matrix K̃ = KST (SKST )−1SK

is known as the Nyström approximation [34]. Consequently, the dual formulation
of sketched KRR based on a sub-sampling matrix can be viewed as the Nyström
approximation as applied to the dual formulation of the original KRR problem.

APPENDIX B: TECHNICAL PROOFS

Without loss of generality, we assume that {xi}ni=1 are fixed and otherwise we
can view everything as conditioning on {xi}ni=1.

B.1. Proof of Theorem 1. We begin by converting the problem to an in-
stance of the normal sequence model [15]. Recall that the kernel matrix can
be decomposed as K = UT DU , where U ∈ R

n×n is orthonormal, and D =
diag{μ̂1, . . . , μ̂n}. Any function f ∗ ∈ H can be decomposed as

f ∗ =
1√
n

n∑

j=1

K(·, xj )
(
UT β∗)

j + g,(31)

for some vector β∗ ∈ R
n, and some function g ∈ H is orthogonal to span{K(·, xj ),

j = 1, . . . , n}. Consequently, the inequality ‖f ∗‖H ≤ 1 implies that
∥∥∥∥

1√
n

n∑

j=1

K(·, xj )
(
UT β∗)

j

∥∥∥∥
2

H

=
(
UT β∗)T UT DU

(
UT β∗)=

∥∥√Dβ∗∥∥2
2 ≤ 1.

Moreover, we have f ∗(xn
1 ) =

√
nUT Dβ∗, and so the original observation

model (1) has the equivalent form y =
√

nUT θ∗ + w, where θ∗ = Dβ∗. In fact,
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due to the rotation invariance of the Gaussian, it is equivalent to consider the nor-
mal sequence model

ỹ = θ∗ +
w√
n
.(32)

Any estimate θ̃ of θ∗ defines the function estimate f̃ (·) = 1√
n

∑n
i=1 K(·, xi) ×

(UT D−1θ̃ )i , and by construction, we have ‖f̃ − f ∗‖2
n = ‖θ̃ − θ∗‖2

2. Finally, the
original constraint ‖

√
Dβ∗‖2

2 ≤ 1 is equivalent to ‖D−1/2θ∗‖2 ≤ 1. Thus, we have
a version of the normal sequence model subject to an ellipse constraint.

After this reduction, we can assume that we are given n i.i.d. observations ỹn
1 =

{ỹ1, . . . , ỹn}, and our goal is to lower bound the Euclidean error ‖θ̃ − θ∗‖2
2 of

any estimate of θ∗. In order to do so, we first construct a δ/2-packing of the set
B = {θ ∈ R

n|‖D−1/2θ‖2 ≤ 1}, say {θ1, . . . , . . . , θM}. Now consider the random
ensemble of regression problems in which we first draw an index A uniformly at
random from the index set [M], and then conditioned on A = a, we observe n i.i.d.
samples from the nonparametric regression model with f ∗ = f a . Given this setup,
a standard argument using Fano’s inequality implies that

P

[∥∥f̃ − f ∗∥∥2
n ≥

δ2

4

]
≥ 1 −

I (ỹn
1 ;A) + log 2

logM
,

where I (ỹn
1 ;A) is the mutual information between the samples ỹn

1 and the random
index A. It remains to construct the desired packing and to upper bound the mutual
information.

For a given δ > 0, define the ellipse

E(δ) :=
{
θ ∈ R

n
∣∣∣

n∑

j=1

θ2
j

min{δ2, μ̂j }
︸ ︷︷ ︸

‖θ‖E 2

≤ 1

}
.(33)

By construction, observe that E(δ) is contained within Hilbert ball of unit radius.
Consequently, it suffices to construct a δ/2-packing of this ellipse in the Euclidean
norm.

LEMMA 4. For any δ ∈ (0, δn], there is a δ/2-packing of the ellipse E(δ) with

cardinality

logM =
1

64
dn.(34)

Taking this packing as given, note that by construction we have

∥∥θa
∥∥2

2 = δ2
n∑

j=1

(θa)2
j

δ2 ≤ δ2, and hence
∥∥θa − θb

∥∥2
2 ≤ 4δ2.
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In conjunction with concavity of the KL diveregence, we have

I
(
yn

1 ;J
)
≤

1

M2

M∑

a,b=1

D
(
P

a‖Pb)=
1

M2

n

2σ 2

M∑

a,b=1

∥∥θa − θb
∥∥2

2 ≤
2n

σ 2 δ2.

For any δ such that log 2 ≤ 2n
σ 2 δ2 and δ ≤ δn we have

P

[∥∥f̃ − f ∗∥∥2
n ≥ δ2

4

]
≥ 1 − 4nδ2/σ 2

dn/64
.

Moreover, since the kernel is regular, we have σ 2dn ≥ cnδ2
n for some positive con-

stant c. Thus, setting δ2 = cδ2
n

512 yields the claim.

PROOF OF LEMMA 4. It remains to prove the lemma, and we do so via the
probabilistic method. Consider a random vector θ ∈ R

n of the form

θ =
[

δ√
2dn

w1
δ√
2dn

w2 · · ·
δ√
2dn

wdn 0 · · · 0
]
,(35)

where w = (w1, . . . ,wdn)
T ∼ N(0, Idn) is a standard Gaussian vector. We claim

that a collection of M such random vectors {θ1, . . . , θM}, generated in an i.i.d.
manner, defines the required packing with high probability.

On one hand, for each index a ∈ [M], since δ2 ≤ δ2
n ≤ μ̂j for each j ≤ dn, we

have ‖θa‖2
E

= ‖wa‖2
2

2dn
, corresponding to a normalized χ2-variate. Consequently, by

a combination of standard tail bounds and the union bound, we have

P
[∥∥θa

∥∥2
E

≤ 1 for all a ∈ [M]
]
≥ 1 − Me− dn

16 .

Now consider the difference vector θa − θb. Since the underlying Gaussian
noise vectors wa and wb are independent, the difference vector wa − wb follows
a N(0,2Im) distribution. Consequently, the event ‖θa − θb‖2 ≥ δ

2 is equivalent
to the event

√
2‖θ‖2 ≥ δ

2 , where θ is a random vector drawn from the original

ensemble. Note that ‖θ‖2
2 = δ2 ‖w‖2

2
2dn

. Then a combination of standard tail bounds

for χ2-distributions and the union bound argument yields

P

[∥∥θa − θb
∥∥2

2 ≥
δ2

4
for all a, b ∈ [M]

]
≥ 1 − M2e− dn

16 .

Combining the last two display together, we obtain

P

[∥∥θa
∥∥2
E

≤ 1 and
∥∥θa − θb

∥∥2
2 ≥

δ2

4
for all a, b ∈ [M]

]

≥ 1 − Me− dn
16 − M2e− dn

16 .

This probability is positive for logM = dn/64. �
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B.2. Proof of Lemma 3. For use in the proof, for each δ > 0, let us define the
random variable

Zn(δ) = sup
‖K1/2�‖2≤1
‖K�‖2≤δ

∣∣∣∣
1√
n
wT K�

∣∣∣∣.(36)

Top inequality in the bound (23): If the top inequality is violated, then we claim
that we must have Zn(δn) > 2δ2

n. On one hand, if the bound (23) is violated by
some vector � ∈R

n with ‖K�‖2 ≤ δn, then we have

2δ2
n ≤

∣∣∣∣
1√
n
wT K�

∣∣∣∣≤ Zn(δn).

On the other hand, if the bound is violated by some function with ‖K�‖2 > δn,
then we can define the rescaled vector �̃ = δn

‖K�‖2
�, for which we have

‖K�̃‖2 = δn, and
∥∥K1/2�̃

∥∥
2 =

δn

‖K�‖2

∥∥K1/2�
∥∥

2 ≤ 1

showing that Zn(δn) ≥ 2δ2
n as well.

When viewed as a function of the standard Gaussian vector w ∈ R
n, it is easy

to see that Zn(δn) is Lipschitz with parameter δn/
√

n. Consequently, by concen-
tration of measure for Lipschitz functions of Gaussians [19], we have

P
[
Zn(δn) ≥ E

[
Zn(δn)

]
+ t
]
≤ e

− nt2

2δ2
n .(37)

Moreover, we claim that

E
[
Zn(δn)

] (i)
≤

√√√√1

n

n∑

i=1

min
{
δ2
n, μ̂j

}

︸ ︷︷ ︸
R̂(δn)

(ii)
≤ δ2

n,(38)

where inequality (ii) follows by definition of the critical radius (recalling that we
have set σ = 1 by a rescaling argument). Setting t = δ2

n in the tail bound (37), we

see that P[Zn(δn) ≥ 2δ2
n] ≤ enδ2

n/2, which completes the proof of the top bound.
It only remains to prove inequality (i) in equation (38). The kernel matrix K

can be decomposed as K = UT DU , where D = diag{μ̂1, . . . , μ̂n}, and U is a
unitary matrix. Defining the vector β = DU�, the two constraints on � can be
expressed as ‖D−1/2β‖2 ≤ 1 and ‖β‖2 ≤ δ. Note that any vector satisfying these
two constraints must belong to the ellipse

E :=
{
β ∈R

n
∣∣∣

n∑

j=1

β2
j

νj

≤ 2 where νj = max
{
δ2
n, μ̂j

}
}
.
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Consequently, we have

E
[
Zn(δn)

]
≤ E

[
sup
β∈E

1√
n

∣∣〈UT w,β
〉∣∣
]

= E

[
sup
β∈E

1√
n

∣∣〈w,β〉
∣∣
]
,

since UT w also follows a standard normal distribution. By the Cauchy–Schwarz
inequality, we have

E

[
sup
β∈E

1√
n

∣∣〈w,β〉
∣∣
]

≤
1√
n
E

√√√√
n∑

j=1

νjw
2
j ≤

1√
n

√√√√
n∑

j=1

νj

︸ ︷︷ ︸
R̂(δn)

,

where the final step follows from Jensen’s inequality.
Bottom inequality in the bound (23): We now turn to the proof of the bottom

inequality. We claim that it suffices to show that
∣∣∣∣

1√
n
wT K�̃

∣∣∣∣≤ 2δn‖K�̃‖2 + 2δ2
n +

1

16
‖K�̃‖2

2(39)

for all �̃ ∈ R
n such that ‖K1/2�̃‖2 = 1. Indeed, for any vector � ∈ R

n with
‖K1/2�‖2 > 1, we can define the rescaled vector �̃ = �/‖K1/2�‖2, for which
we have ‖K1/2�̃‖2 = 1. Applying the bound (39) to this choice and then multi-
plying both sides by ‖K1/2�‖2, we obtain

∣∣∣∣
1√
n
wT K�

∣∣∣∣≤ 2δn‖K�‖2 + 2δ2
n

∥∥K1/2�
∥∥

2 +
1

16

‖K�‖2
2

‖K1/2�‖2

≤ 2δn‖K�‖2 + 2δ2
n

∥∥K1/2�
∥∥

2 +
1

16
‖K�‖2

2,

as required.
Recall the family of random variables Zn previously defined (36). For any u ≥

δn, we have

E
[
Zn(u)

]
= R̂(u) = u

R̂(u)

u

(i)
≤ u

R̂(δn)

δn

(ii)
≤ uδn,

where inequality (i) follows since the function u �→ R̂(u)
u

is nonincreasing, and step

(ii) follows by our choice of δn. Setting t = u2

32 in the concentration bound (37), we
conclude that

P

[
Zn(u) ≥ uδn + u2

64

]
≤ e−cnu2

for each u ≥ δn.(40)

We are now equipped to prove the bound (39) via a “peeling” argument.
Let E denote the event that the bound (39) is violated for some vector �̃ with
‖K1/2�̃‖2 = 1. For real numbers 0 ≤ a < b, let E(a, b) denote the event that it
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is violated for some vector with ‖K1/2�‖2 = 1 and ‖K�̃‖2 ∈ [a, b]. For m =
0,1,2, . . . , define um = 2mδn. We then have the decomposition E = E(0, u0) ∪
(
⋃∞

m=0 E(um, um+1)), and hence by union bound,

P[E] ≤ P
[
E(0, u0)

]
+

∞∑

m=0

P
[
E(um, um+1)

]
.(41)

The final step is to bound each of the terms in this summation, Since u0 = δn, we
have

P
[
E(0, u0)

]
≤ P

[
Zn(δn) ≥ 2δ2

n

]
≤ e−cnδ2

n .(42)

On the other hand, suppose that E(um, um+1) holds, meaning that there exists some
vector �̃ with ‖K1/2�̃‖2 = 1 and ‖K�̃‖2 ∈ [um, um+1] such that

∣∣∣∣
1√
n
wT K�̃

∣∣∣∣≥ 2δn‖K�̃‖2 + 2δ2
n + 1

16
‖K�̃‖2

2

≥ 2δnum + 2δ2
n +

1

16
u2

m

≥ δnum+1 +
1

64
u2

m+1,

where the second inequality follows since ‖K�̃‖2 ≥ um; and the third inequality
follows since um+1 = 2um. This lower bound implies that Zn(um+1) ≥ δnum+1 +
u2

m+1
64 , whence the bound (40) implies that

P
[
E(um, um+1)

]
≤ e−cnu2

m+1 ≤ e−cn22mδ2
n .

Combining this tail bound with our earlier bound (42) and substituting into the
union bound (41) yields

P[E] ≤ e−cnδ2
n +

∞∑

m=0

exp
(
−cn22mδ2

n

)
≤ c1e

−c2nδ2
n,

as claimed.

B.3. Proof of Corollary 1. Based on Theorem 2, we need to verify that the
stated lower bound (16a) on the projection dimension is sufficient to guarantee
that a random sketch matrix is K-satisfiable is high probability. In particular, let us
state this guarantee as a formal claim.

LEMMA 5. Under the lower bound (16a) on the sketch dimension, a {Gauss-

ian, ROS} random sketch is K-satisfiable with probability at least φ(m,

dn, n).

We split our proof into two parts, one for each inequality in the definition (13)
of K-satisfiability.
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B.3.1. Proof of inequality (i). We need to bound the operator norm of the ma-
trix Q = UT

1 ST SU1 −Idn , where the matrix U1 ∈ R
n×dn has orthonormal columns.

Let {v1, . . . , vN } be a 1/2-cover of the Euclidean sphere Sdn−1; by standard argu-
ments [21], we can find such a set with N ≤ e2dn elements. Using this cover, a
straightforward discretization argument yields

|||Q|||op ≤ 4 max
j,k=1,...,N

〈
vj ,Qvk 〉= 4 max

j,k=1,...,N
(ṽ)j

{
ST S − In

}
ṽk,

where ṽj := U1v
j ∈ Sn−1, and Q̃ = ST S − In. In the Gaussian case, standard sub-

exponential bounds imply that P[(ṽ)j Q̃ṽk ≥ 1/8] ≤ c1e
−c2m, and consequently,

by the union bound, we have

P
[
|||Q|||op ≥ 1/2

]
≤ c1e

−c2m+4dn ≤ c1e
−c′

2m,

where the second and third steps uses the assumed lower bound on m. In the ROS
case, results of Krahmer and Ward [18] imply that

P
[
|||Q|||op ≥ 1/2

]
≤ c1e

−c2
m

log4(n) ,

where the final step uses the assumed lower bound on m.

B.3.2. Proof of inequality (ii). We split this claim into two sub-parts: one for
Gaussian sketches, and the other for ROS sketches. Throughout the proof, we
make use of the n × n diagonal matrix �D = diag(0dn,D2), with which we have

SU2D
1/2
2 = SU �D1/2.

Gaussian case:
By the definition of the matrix spectral norm, we know

∣∣∣∣∣∣SU �D1/2∣∣∣∣∣∣
op := sup

u∈Sm−1

v∈E

〈u,Sv〉,(43)

where E = {v ∈R
n|‖U �Dv‖2 ≤ 1}, and Sm−1 = {u ∈ R

m|‖u‖2 = 1}.
We may choose a 1/2-cover {u1, . . . , uM} of the set Sm−1 of the set with

logM ≤ 2m elements. We then have

∣∣∣∣∣∣SU �D1/2∣∣∣∣∣∣
op ≤ max

j∈[M]
sup
v∈E

〈
uj , Sv

〉
+

1

2
sup

u∈Sdn−1

v∈E

〈u,Sv〉

= max
j∈[M]

sup
v∈E

〈
uj , Sv

〉
+

1

2

∣∣∣∣∣∣SU �D1/2∣∣∣∣∣∣
op,

and rearranging implies that
∣∣∣∣∣∣SU �D1/2∣∣∣∣∣∣

op ≤ 2 max
j∈[M]

sup
v∈E

〈
uj , S̃v

〉

︸ ︷︷ ︸
Z̃

.
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For each fixed uj ∈ Sdn−1, consider the random variable Zj := supv∈E 〈uj , Sv〉.
It is equal in distribution to the random variable V (g) = 1√

m
supv∈E 〈g, v〉, where

g ∈ R
n is a standard Gaussian vector. For g,g′ ∈ R

n, we have

∣∣V (g) − V
(
g′)∣∣≤

2√
m

sup
v∈E

∣∣〈g − g′, v
〉∣∣

≤
2|||D1/2

2 |||op√
m

∥∥g − g′∥∥
2 ≤

2δn√
m

∥∥g − g′∥∥
2,

where we have used the fact that μ̂j ≤ δn
2 for all j ≥ dn + 1. Consequently, by

concentration of measure for Lipschitz functions of Gaussian random variables
[19], we have

P
[
V (g) ≥ E

[
V (g)

]
+ t
]
≤ e

−mt2

8δ2
n .(44)

Turning to the expectation we have

E
[
V (g)

]
=

2√
m
E
∥∥D1/2

2 g
∥∥

2 ≤ 2

√∑n
j=dn+1 μj

m
(45)

= 2
√

n

m

√∑n
j=dn+1 μj

n
≤ 2δn,

where the last inequality follows since m ≥ nδ2
n and

√∑n
j=dn+1 μj

n
≤ δ2

n. Combining

the pieces, we have shown have shown that P[Zj ≥ c0(1 + ε)δn] ≤ e−c2m for each
j = 1, . . . ,M . Finally, setting t = cδn in the tail bound (44) for a constant c ≥ 1
large enough to ensure that c2m

8 ≥ 2 logM . Taking the union bound over all j ∈
[M] yields

P
[∣∣∣∣∣∣SU �D1/2∣∣∣∣∣∣

op ≥ 8cδn

]
≤ c1e

− c2m

8 +logM ≤ c1e
−c′

2m

which completes the proof.
ROS case: Here we pursue a matrix Chernoff argument analogous to that in the

paper [30]. Letting r ∈ {−1,1}n denote an i.i.d. sequence of Rademacher variables,
the ROS sketch can be written in the form S = PHdiag(r), where P is a partial
identity matrix scaled by n/m, and the matrix H is orthonormal with elements
bounded as |Hij | ≤ c/

√
n for some constant c. With this notation, we can write

∣∣∣∣∣∣PHdiag(r)D̄1/2∣∣∣∣∣∣2
op =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

m

m∑

i=1

viv
T
i

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

,

where vi ∈ R
n are random vectors of the form

√
n�D1/2diag(r)He, where e ∈ R

n

is chosen uniformly at random from the standard Euclidean basis.
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We first show that the vectors {vi}mi=1 are uniformly bounded with high proba-
bility. Note that we certainly have maxi∈[m] ‖vi‖2 ≤ maxj∈[n] Fj (r), where

Fj (r) :=
√

n
∥∥�D1/2diag(r)Hej

∥∥
2 =

√
n
∥∥�D1/2diag(Hej )r

∥∥
2.

Beginning with the expectation, define the vector r̃ = diag(Hej )r , and note that it
has entries bounded in absolute value by c/

√
n. Thus, we have

E
[
Fj (r)

]
≤
[
nE
[
r̃T �Dr̃

]]1/2 ≤ c

√√√√
n∑

j=dn+1

μ̂j ≤ c
√

nδ2
n.

For any two vectors r, r ′ ∈ R
n, we have

∣∣F(r) − F
(
r ′)∣∣≤

√
n
∥∥r − r ′∥∥

2

∥∥�D1/2diag(Hej )
∥∥

2 ≤ δn.

Consequently, by concentration results for convex Lipschitz functions of
Rademacher variables [19], we have

P
[
Fj (r) ≥ c0

√
nδ2

n logn
]
≤ c1e

−c2nδ2
n log2 n.

Taking the union bound over all n rows, we see that

max
i∈[n]

‖vi‖2 ≤ max
j∈[n]

Fj (r) ≤ 4
√

nδ2
n log(n)

with probability at least 1 − c1e
−c2nδ2

n log2(n). Finally, a simple calculation shows
that |||E[v1v

T
1 ]|||op ≤ δ2

n. Consequently, by standard matrix Chernoff bounds [30,
31], we have

P

[∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

m

m∑

i=1

viv
T
i

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

≥ 2δ2
n

]
≤ c1e

−c2
mδn

2

nδ4
n log2(n) + c1e

−c2nδ2
n log2(n),(46)

from which the claim follows.
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