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Abstract 

Recurrent Neural Networks (RNNs) trained with a set of molecules represented as unique (canonical) SMILES strings, 

have shown the capacity to create large chemical spaces of valid and meaningful structures. Herein we perform an 

extensive benchmark on models trained with subsets of GDB-13 of different sizes (1 million, 10,000 and 1000), with 

different SMILES variants (canonical, randomized and DeepSMILES), with two different recurrent cell types (LSTM and 

GRU) and with different hyperparameter combinations. To guide the benchmarks new metrics were developed that 

define how well a model has generalized the training set. The generated chemical space is evaluated with respect 

to its uniformity, closedness and completeness. Results show that models that use LSTM cells trained with 1 million 

randomized SMILES, a non-unique molecular string representation, are able to generalize to larger chemical spaces 

than the other approaches and they represent more accurately the target chemical space. Specifically, a model was 

trained with randomized SMILES that was able to generate almost all molecules from GDB-13 with a quasi-uniform 

probability. Models trained with smaller samples show an even bigger improvement when trained with randomized 

SMILES models. Additionally, models were trained on molecules obtained from ChEMBL and illustrate again that train-

ing with randomized SMILES lead to models having a better representation of the drug-like chemical space. Namely, 

the model trained with randomized SMILES was able to generate at least double the amount of unique molecules 

with the same distribution of properties comparing to one trained with canonical SMILES.
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Introduction
Exploring the unknown chemical space in a meaning-

ful way has always been one of the major objectives in 

drug discovery. Given the fact that the drug-like chemi-

cal space is enormous (the lower estimation is  1023 mol-

ecules) [1], it cannot be easily searched. One of the most 

interesting attempts to understand the chemical space is 

the GDB project [2], which encompasses a set of data-

bases that combinatorially enumerate large parts of the 

small molecule fragment-like chemical space. Currently 

there are databases that enumerate most fragment-like 

molecules with up to 13 (975 million molecules) [3] and 

17 (166 billion molecules) [4] heavy atoms. Another 

approach, GDB4c [5], enumerates ring systems up to four 

rings both in 2D (circa one million ring systems) and 3D 

(more than 6 million structures). Although managing 

billion-sized databases is computationally challenging, 

the enumerative approach has proven useful to study the 

entire small drug-like molecular chemical space in an 

unbiased way [6].

In the last 2  years molecular deep generative models 

have emerged as a powerful method to generate chemi-

cal space [7] and obtain optimized compounds [8]. Given 

a training set with molecules (generally a database such 

as ChEMBL [9]), these models learn how to create mol-

ecules that are similar but not the same as those in the 

training set, thus spanning a bigger chemical space than 

that of the training data. Either after or during training, 

the probability of generating molecules with specific 
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properties can be altered with techniques such as rein-

forcement [8] or transfer learning [7, 10]. Multiple archi-

tectures have been reported in literature: the first one is 

Recurrent Neural Networks (RNNs) [7], but also others 

such as Variational AutoEncoders (VAEs) [11], Genera-

tive Adversarial Networks (GANs) [12, 13], etc. [14]. Due 

to its simplicity, in most published research the format 

representing molecules is the canonical SMILES nota-

tion [15], a string representation unique to each mole-

cule. Nevertheless, models that use the molecular graph 

directly are starting to gain interest [16, 17].

Notwithstanding the popularity of RNNs, the idi-

osyncrasies of the canonical SMILES syntax can lead to 

training biased models [18]. Specifically, models trained 

with a set of one million molecules from GDB-13 have 

a higher probability of generating molecules with fewer 

rings. Additionally, the canonical SMILES representation 

can generate substantially different strings for molecules 

that are very similar, thus making some of them more dif-

ficult to sample. To prove this, these models were sam-

pled with replacement 2 billion times and at most only 

68% of GDB-13 could be obtained from a theoretical 

maximum of 87%. This maximum would be from sam-

pling with replacement the same number of times from 

a theoretical ideal model that has a uniform probability 

of obtaining each molecule from GDB-13, thus obtaining 

the least possible biased output domain.

We performed an extensive benchmark of RNN mod-

els trained with SMILES obtained from GDB-13 whilst 

exploring an array of architectural changes. First and 

foremost, models were trained with three different 

variants of the SMILES notation. One of them is the 

commonly used canonical SMILES, another one are ran-

domized SMILES (also known as enumerated SMILES), 

which have been used as a data amplification technique 

and are shown to generate more diversity in some model 

architectures [19–21]. The third one is DeepSMILES 

[22], a recently published modification of the canoni-

cal SMILES syntax. Secondly, models were trained with 

decreasing training set sizes (1,000,000, 10,000 and 

1000 molecules) to explore the data amplification capa-

bilities of randomizes SMILES. Thirdly, the two most 

used recurrent cell architectures were compared: long 

short-term memory (LSTM) [23] and Gated Recurrent 

Unit (GRU) [24]. GRU cells are widely used as a drop-

in replacement of LSTM cells with an noticeable speed 

improvement, but it has been shown that in some tasks 

they perform worse [25]. Fourthly, regularization tech-

niques such as dropout [26] in conjunction with different 

batch sizes were also tested and their impact on the gen-

erated chemical space assessed. All of the benchmarks 

were supported by a set of metrics that evaluate the uni-

formity, completeness and closedness of the generated 

chemical space. With this approach, the generated chem-

ical space is treated as a generalization of the training set 

to the entire GDB-13 and the chemical space exploration 

capability of the models can be assessed. Finally, to dem-

onstrate how the same methodology can be used to train 

models that generate real-world drug-like compounds, 

models were trained with a subset of the ChEMBL [9] 

database.

Methods
Randomized SMILES strings

To obtain canonical SMILES the atoms in a given mol-

ecule have to be uniquely and consistently numbered. In 

the case of RDKit this is done by using a modified ver-

sion of the Morgan algorithm [27, 28]. The SMILES 

generation algorithm is then able to traverse the molec-

ular graph always in the same way (Fig. 1a). Some atom 

CC(=O)Oc1ccccc1C(=O)O c1cc(c(cc1)C(O)=O)OC(C)=O c1cc(C(O)=O)c(OC(C)=O)cc1 
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Fig. 1 Traversal of the molecular graph of Aspirin using three methods: a the canonical ordering of the molecule; b atom order randomization 

without RDKit restrictions; c Atom order randomization with RDKit restrictions of the same atom ordering as b. Atom ordering is specified with a 

number ranking from 1 to 13 for each atom and the arrows show the molecular graph traversal process. Notice that the atom ordering is altered in 

c, prioritizing the sidechains (red arrows) when traversing a ring and preventing SMILES substrings like c1cc(c(cc1))



Page 3 of 13Arús‑Pous et al. J Cheminform           (2019) 11:71 

orderings can lead to overly complicated SMILES strings 

and that is why RDKit has some built-in fixes that alter 

atom order on-the-fly. They prevent strange combina-

tions, such as prioritizing traversing sidechains before 

the ring atoms, and are by default active.

One easy way of obtaining randomized SMILES is by 

randomizing atom ordering. This does not alter how 

the algorithm traverses the graph (i.e., depth-first in the 

case of RDKit), but changes the starting point and in 

what order the branching paths are selected. With this 

approach, theoretically, at most n! different SMILES 

can be generated on a molecule with n heavy atoms, yet 

the resulting number of different combinations ends 

up being much lower. The two different variants of ran-

domized SMILES used here (Fig.  1b, c) only change on 

the application of the RDKit fixes. This makes the unre-

stricted version a superset of the restricted one, which 

includes the SMILES that are disallowed in the regular 

restricted version.

RNNs trained with SMILES

Pre‑processing SMILES strings

SMILES strings of all variants need to be tokenized to be 

understood by the model. Tokenization was performed 

on a character basis with the exception of some specific 

cases. The first are the “Cl” and “Br” atoms, which are 

two-character tokens. Second are atoms with explicit 

hydrogens or charge, which are between brackets (e.g., 

“[nH]” or “[O-]”). Third, ring tokens can be higher than 

9 in which case the SMILES syntax represents the num-

ber prepended with the “%” character (e.g., “%10”). These 

rules apply to all SMILES variants used in this research. 

Lastly, the begin token “^” was prepended and the end 

token “$” appended to all SMILES strings. The tokeniza-

tion process was performed independently for each data-

base and yielded vocabulary sizes of 26 in GDB-13 and 

31 in ChEMBL. When training the DeepSMILES models, 

the official implementation [22] was used to convert the 

SMILES.

Architecture

The model architecture used is similar to the one used 

in [7, 8, 18] and is illustrated in Fig.  2. The training set 

sequences are pre-processed, and for each training epoch 

the entire training set is shuffled and subdivided in b 

batches. The encoded SMILES strings of each batch are 

fed token by token to an embedding layer of m dimen-

sions, followed by l layers of LSTM [23] /GRU [24] cell 

size w . To prevent squeezing the encoded input, the 

embedding dimensions should be m ≤ w . Between the 

inner RNN layers there can be dropout layers [26] with 

a probability d . The output from the cells is squeezed to 

the vocabulary size v by a linear transformation layer and 

a softmax is performed to obtain the probabilities of sam-

pling each token in the next position. This is repeated for 

each token in the entire sequence.

Training a model

Following [18], all models have two sets: a training and 

a validation set. The validation set holds molecules 

that are in the target chemical space but are not used 

for training the model. Depending on the training set 

different splits can be made. In Table  1 is shown the 

size of the training and validation sets for each of the 

benchmarks (see Additional file 1: Methods S1 for more 

information on how the databases were filtered). In the 

case of models trained with randomized SMILES, a new 

sample of randomized SMILES of the same molecules 

are used for the training and validation set for each 

epoch. These training set files are created beforehand 

and the model uses a different file for each epoch. For 

example, a model trained with one million molecules 
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Fig. 2 Architecture of the RNN model used in this study. For every 

step i  , input one-hot encoded token Xi goes through an embedding 

layer of size m ≤ w , followed by l > 0 GRU/LSTM layers of size w with 

dropout in-between and then a linear layer that has dimensionality w 

and the size of the vocabulary. Lastly a softmax is used to obtain the 

token probability distribution Yij . Hi symbolizes the input hidden state 

matrix at step i
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for 300 epochs will have approximately 300 million dif-

ferent randomized SMILES, although the number is 

generally lower because some SMILES are more com-

monly sampled than others.

During each epoch the training set is shuffled and 

minibatches of size b are created. These batches are 

in the form of a matrix with a row for each encoded 

SMILES string and appended with end tokens as pad-

ding. The “teacher’s forcing” approach is used in train-

ing, which means that the correct token is always input 

in the next step, regardless of the prediction from the 

model [29]. The loss function to minimize by the model 

is the average negative log-likelihood (NLL) of the 

entire batch of tokenized SMILES strings. Given Xi and 

xi as the sampled and expected token at previous step 

i ≥ 0 respectively and the current time step T ≥ 0 , the 

partial NLL of a SMILES string is computed as:

To prevent instability during training, the computed 

gradients are updated so that the norm is 1.0 . When 

performing a forward-pass on a batch, the model does 

not apply any mask to already finished sequences. This 

makes the model run slightly faster because no masks 

are computed and, as the padding token is the end of 

sequence, it does not affect the quality of the train-

ing process. All weight matrices are initialized from a 

uniform random distribution U
(

−

√

1/w,
√

1/w
)

 . The 

learning decay strategy is based on a custom metric 

calculated at each epoch (UC-JSD) and is discussed in 

section “Adaptive learning rate decay strategy” of the 

Additional file 1: Methods S2.

Benchmark

The models were optimized over the hyperparam-

eter combinations shown in Table  2. The two models 

with bigger training set sizes were optimized for fewer 

J (T ) = NLL(T ) = − ln P(X0 = xo)

−

T∑

t=1

ln P(Xt = xt |Xt−1 = xt−1 . . .X1 = x1)

parameters, as training times were much longer. On the 

other hand, the two smaller models allowed for more 

optimizations, as each epoch took few seconds to calcu-

late. After the first benchmark, GRU cells were dropped 

because of their consistently lower performance.

After each hyperparameter optimization, the best 

epoch was chosen as follows. A smoothing window func-

tion size 4 was applied to the UC-JSD calculated on each 

epoch, selecting the epoch with the lowest UC-JSD (see 

next section) as the best one.

UC‑JSD—a metric for generative models

The metric used for the benchmark is derived from pre-

vious research [18]. There, it was hypothesized that the 

best models are those in which the validation, train-

ing and sampled set NLL distributions are uniform and 

equivalent. The Jensen–Shannon Divergence (JSD) meas-

ures the divergence between a set of probability distribu-

tions [30] and is calculated as:

where H(d) is the Shannon entropy of a given probabil-

ity distribution and ∀d ∈ D; 0 < αd < 1 and 
∑

αd = 1 

are weights. The JSD → 0 when ∀di ∈ D; di = dj; i �= j , 

which does not explicitly consider uniformity (i.e., the 

distributions can be non-uniform but equal).

To solve this issue the Uniformity–Completeness JSD (UC-

JSD) was designed. Instead of binning the raw distribution 

NLLs, each of the NLLs is used as it is. Given the three NLL 

vectors for the sampled, training and validation sets of the 

same size NLLS =

{

NLLvalidation,NLLtraining ,NLLsampled

}

 

and αi = 1/3 , the values in each vector are divided by the 

total sum, giving a probability distribution with as many val-

ues as items in the vector. Then (Eq. 1 is used to calculate the 

JSD between the three distributions. Notice that, since the 

model is sampled randomly, the UCJSD → 0 either in the 

highly unlikely case that all the samples have molecules with 

(1)JSD = H

(

∑

d∈D

αi · di

)

−

∑

d∈D

αiH(di)

Table 1 Training and  validation set sizes for  the  different 

benchmarks

Notice that depending on the expected size of the target chemical space and 

the total amount of molecules, different ratios have been used

Model Training set size Validation set size

GDB-13 1M 1,000,000 10,000

GDB-13 10K 10,000 1000

GDB-13 1K 1000 1000

ChEMBL 1,483,943 78,102

Table 2 Hyperparameter combinations used in  the  grid 

search

Number of layers (l), dimensions of the RNN layers (w), dropout rate % (d), batch 

size (b), RNN cell type (RNN)

Model l w d b RNN

GDB-13 1M 3 512 0, 25, 50 64, 128, 256, 
512

GRU, LSTM

GDB-13 10K 2, 3, 4 256, 384, 512 0, 25, 50 8, 16, 32 LSTM

GDB-13 1K 2, 3, 4 128, 192, 256 0, 25, 50 4, 8, 16 LSTM

ChEMBL 3 512 0, 25, 50 64, 128, 256, 
512

LSTM
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the same NLL or all three distributions are uniform, and the 

model is complete.

Sampling the best epoch of a model

The main objective of sampling a model is to assess the 

properties of the output domain. Namely, in the case of 

GDB-13, the uniformity (equal probability of sampling), 

completeness (sampling all molecules from GDB-13) and 

closedness (only molecules from GDB-13 are sampled) are 

to be assessed. To ease the evaluation of the models, three 

ratios representing the three properties were defined.

Given a sample with replacement size k , the valid 

(SMILES parsed correctly with repeats), in (SMILES with 

repeats in GDB-13), unique (sampled unique canoni-

cal SMILES in GDB-13) subsets are obtained. Both 

ratiovalid =
|valid|

k
 and ratioin =

|in|

k
 are relative to the 

entire sample but ratiounique =
|unique|
|GDB13|

 is relative to ϕ(k) , 

which represents the expected ratio of different molecules 

obtainable when a sample size k with replacement is per-

formed on a model that generates uniformly all mole-

cules from and only from GDB-13 (ideal model) [18] (i.e., 

ϕ
(

2 · 10
9
)

= 0.8712 ). This allows to define the ratios as:

Also, the UCC = completeness · uniformity · closedness 

was also defined as a unified score that heavily penalizes 

completeness =

ratiounique

ϕ(k)

uniformity =
ratiounique

ϕ(|in|)

closedness = ratioin

models that have low scores. See the Additional file  1: 

Methods S2–4 for further details on how the benchmark 

was performed.

Technical notes

All the software was coded in Python 3.6.8. The models 

were coded using the PyTorch 1.0.1 library [31]. Unless 

specified, the chemistry library used throughout is RDKit 

2019_03_01 [32] and for all the big data processing Spark 

2.4.3 [33] was used. All plots were made with matplot-

lib 3.0.3 [34] and seaborn 0.9.0 [35]. The GPU hardware 

used to train and sample the models were Nvidia Tesla 

V100 (Volta) 16  GB VRAM cards using CUDA 9.1 on 

stable driver 390.30. The MOSES and FCD benchmarks 

were calculated using the code provided in (https ://githu 

b.com/molec ulars ets/moses ).

Results
Optimizing generative models with 1 million SMILES 

from GDB‑13

Canonical vs. randomized SMILES

Hyperparameter optimizations of the three main SMILES 

variants (canonical, randomized restricted and rand-

omized unrestricted) were performed on models trained 

with 1 million molecules randomly sampled from GDB-

13 (Table  2). A k = 2 · 10
9 SMILES sample was per-

formed on the best epoch for each of the models trained 

in the benchmark (see Additional file  1: Methods S1). 

Results show (Table 3, Additional file 2: Figure S4 for the 

best hyperparameter combinations for each SMILES type 

and Additional file 3: Table S1 for all results) that the ran-

domized variants greatly outperform canonical SMILES. 

The best canonical SMILES model was only able to 

Table 3 Best models trained on subsets of GDB-13 after the hyperparameter optimization

See “Methods” section for a description of the ratios

Best result for each training set size are indicated in italics

Set Benchmark training set size, SMILES SMILES variant, including randomized variants with and without data augmentation (DA), Time training time up in hh:mm, 

% GDB-13 Percent of unique molecules from GDB‑13 generated in a 2 billion sample with replacement, Valid valid SMILES, Unif uniformity ratio, Comp completeness 

ratio, Closed closedness ratio, UCC  UCC ratio

Set SMILES Time % GDB‑13 Valid Unif Comp Closed UCC 

1M Canonical 4:08 72.8 0.994 0.879 0.836 0.861 0.633

Rand. unr. 31:47 80.9 0.995 0.970 0.929 0.876 0.790

Rand. unr. no DA 1:37 77.0 0.987 0.957 0.795 0.883 0.672

Rand. rest. 7:19 83.0 0.999 0.977 0.953 0.925 0.860

Rand. rest. no DA 1:21 78.2 0.992 0.957 0.829 0.898 0.712

DS branch 1:33 72.1 0.987 0.881 0.828 0.834 0.608

DS rings 1:11 68.6 0.979 0.852 0.788 0.798 0.535

DS both 1:05 68.4 0.979 0.851 0.785 0.796 0.532

10K Canonical 0:04 38.8 0.905 0.666 0.445 0.426 0.126

Rand. rest. 0:36 62.3 0.974 0.882 0.715 0.598 0.377

1K Canonical 0:01 14.5 0.504 0.611 0.167 0.133 0.014

Rand. rest. 0:04 34.1 0.812 0.790 0.392 0.276 0.085

https://github.com/molecularsets/moses
https://github.com/molecularsets/moses
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enumerate 72.8% of GDB-13 compared to the 83.0% of 

the restricted randomized SMILES (Fig.  3). All three 

metrics, uniformity, completeness and closedness are 

much higher and show that the restricted randomized 

models are theoretically able to generate most of GDB-13 

with uniform probability. This can be further seen in 

Fig. 4b, where the NLL distribution of a sample of mole-

cules from the GDB-13 randomized SMILES models is 

centered at NLLGDB13 = −ln

(

1

|GDB13|

)

= 20.6 and is 

much narrower than that of the canonical variant model.

Comparing the two variants of randomized SMILES, 

models trained with both variants have a similarly uni-

form output domain (Fig. 4b), but models trained with 

restricted randomized variant have a more complete 

and more closed domain than those trained with the 

unrestricted variant. The output domain of the ideal 

randomized SMILES models would comprise all pos-

sible SMILES strings of any given variant possible to 

be generated from all molecules in GDB-13. This con-

trasts with the canonical model, in which the output 

domain is one SMILES per molecule. Each molecule 

has a different number of SMILES strings, depending 

on its topology, although only a few (generally highly 

cyclic or branched molecules) have numbers above 

1000 (Fig.  4a). Knowing that the training objective is 

to obtain a uniform posterior distribution, it would 

be expected that molecules with more randomized 

SMILES should have a higher probability of being sam-

pled than those that have fewer. However, this is never 

the case as models trained with randomized SMILES 

have a much more uniform posterior probability dis-

tribution than those trained with canonical SMILES 

(Fig. 4b). The model naturally learns to prioritize some 

SMILES in molecules with a large number of possi-

ble SMILES, and to have a more uniform distribution 

among all possible SMILES on molecules that have less. 

This can be seen in Fig. 4c, where two molecules have 

the same NLL, but one (blue) has six times the number 

of possible SMILES than the other (orange).

Models trained with randomized SMILES without data 

augmentation (the same SMILES strings each epoch) 

were also benchmarked. Results show (Table  3, Addi-

tional file 2: Figure S4 for the best hyperparameter com-

binations for each SMILES type and Additional file  3: 

Table S1 for all results) that they perform better than the 

models trained with canonical SMILES but worse than 

those with data augmentation. This indicates that not 

using the canonical representation constraint makes bet-

ter models, but also that data augmentation has a positive 

impact on the training process.

DeepSMILES is a SMILES syntax variant that alters the 

syntax and changes how rings and branching are repre-

sented [22]. Three different forms of DeepSMILES were 

explored: one with the new ring syntax, another with the 

Fig. 3 Plot illustrating the percent of GDB-13 sampled alongside the sample size of the ideal model (blue) and the best of the canonical (yellow), 

randomized restricted (green) and randomized unrestricted (orange) models. Notice that the ideal model is always an upper bound and eventually 

( n ∼ 21B ) would sample the entire GDB-13. The trained models would reach the same point much later
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new branching syntax and a last one with both changes. 

Results show (Table  3, Additional file  3: Table  S1 com-

plete) that the performance is consistently lower than 

using normal canonical SMILES. The validity is generally 

1–3% lower than in canonical SMILES, possibly indicat-

ing that the model has difficulties in learning the basics 

of the syntax.

The hyperparameter optimization also gives some 

hints on how dropout, batch size and cell type affect 

the training process, although it varies for each SMILES 

variant. Plots for each hyperparameter compared to the 

four ratios and the training time were drawn (Addi-

tional file  2: Figure S1) and show that adding drop-

out only makes canonical SMILES models better. The 

model improves its completeness, but at the expense of 

closedness, meaning that it generates more molecules 

from GDB-13 at the expense of making more mistakes. 

On the other hand, larger batch sizes have generally a 

positive impact in models of all SMILES variants and 

at the same time make training processes much faster. 

But the most interesting result is that the best models 

for all SMILES variants use LSTM cells. Moreover, even 

though the training time per epoch of the GRU cells 

is lower, LSTM models are able to converge in fewer 

epochs.

Similarity maps for the randomized SMILES were also 

plotted (Additional file  2: Figure S2) and confirm that 

models trained with randomized SMILES are able to 

generate mostly all molecules from GDB-13 with uni-

form probability. Only molecules on the left tip of the 

half-moon (highly cyclic) are slightly more difficult to 

generate, but this is because they have extremely compli-

cated SMILES with uncommon tokens and ring closures. 

Additionally, maps colored by the number of SMILES 

per molecule were created and show that most of the 

molecules that have more randomized SMILES are the 

same as those that are difficult to sample in the canonical 

models.

Fig. 4 Histograms of different statistics from the randomized SMILES models. a Kernel Density Estimates (KDEs) of the number of randomized 

SMILES per molecule from a sample of 1 million molecules from GDB-13. The plot has the x axis cut at 5000, but the unrestricted randomized 

variant plot has outliers until 15,000. b KDEs of the molecule negative log-likelihood (NLL) for each molecule (summing the probabilities for each 

randomized SMILES) for the same sample of 1 million molecules from GDB-13. The plot is also cropped between range (19, 25) . c Histograms 

between the NLL of all the restricted randomized SMILES of two molecules from GDB-13
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UC‑JSD can be used to predict the best models

The previous benchmark employed an adaptive learning 

rate strategy (see Additional file 1: Methods S2) that uses 

the UC-JSD metric to evaluate the quality of the models 

and trigger a learning rate change. Moreover, the same 

metric was used to select the best epochs to perform a 

sample for each model. Plotting the UC-JSD against UCC 

shows a strong correlation in all three SMILES variants 

(Fig. 5). It is important to notice that the UC-JSD values 

should not be compared between models, as the out-

put domain is different. This result shows that it is not 

necessary anymore to sample all models, but only the 

one that has the best UC-JSD. That is why for all future 

benchmarks only the model with the lowest UC-JSD 

is sampled. Moreover, the GRU cells have not shown 

any improvement whatsoever compared to the LSTM 

cells (Additional file  2: Figure S1) and the unrestricted 

randomized SMILES variant performs worse than the 

restricted variant. Henceforth, only the restricted variant 

of randomized SMILES and LSTM cells will be used for 

the next benchmarks.

Training generative models with smaller training sets

To further show the data augmentation capabilities of 

randomized SMILES, two models were trained with 1000 

and 10,000 molecules respectively, randomly obtained 

from GDB-13. Hyperparameter optimization was modi-

fied to accommodate smaller training sets and, as mod-

els were faster to train, different network topologies were 

tested (Table  2). When the training sets are so small, 

models are often unable to learn the syntax properly and 

thus generate more invalid structures. The model using 

1000 molecules was the most affected by this problem, 

with some models not even reaching 50% validity. This 

impacts the accuracy of the UC-JSD, because all mol-

ecules tend to have a sampling probability p → 0 . This 

makes the UC-JSD have low values because all molecules 

have very similar probability. For this reason, only models 

that had more than 50% valid SMILES were considered.

Results show (Table 3, Additional file 3: Table S1 com-

plete) that models trained with randomized SMILES 

have better performance than those trained with canoni-

cal SMILES. In the models trained with 1000 molecules, 

those with canonical SMILES are at most able to gener-

ate up to 70% valid SMILES, although the best model 

was only able to generate 50% valid SMILES. Moreover, 

the completeness ratio of the best model is only 0.1325, 

meaning that most of the SMILES generated are not part 

of GDB-13: they correspond to molecules containing fea-

tures excluded from GDB-13 (e.g. strained rings, unstable 

functional groups, wrong tautomer). Alternatively, the 

models trained with randomized SMILES show a much 

better behavior. Most models learn how to generate 

SMILES strings correctly (validity over 80%), complete-

ness is much higher (0.2757) and their posterior distri-

bution is more uniform. This is further illustrated with 

the fact that randomized SMILES models generate up to 

34.11% of unique GDB-13 molecules and canonical mod-

els only 14.54%.

Models trained with a bigger sample of 10,000 mol-

ecules show similar trends but have much better perfor-

mance in both cases. In this case, a model trained with 

randomized SMILES is able to uniquely generate 62.29% 

of GDB-13 while only training with less than 0.001% of 

the database, whereas a canonical SMILES model is only 

able to generate 38.77%. Closedness is much better in 

Fig. 5 Linear regression plots between the UC-JSD and the UCC ratio. a Canonical SMILES R2 = 0.931 . b Restricted randomized SMILES R2 = 0.856 . 

c Unrestricted randomized SMILES R2 = 0.885
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both models: canonical SMILES models have at most 

0.4262, whereas randomized SMILES models up to 

0.5978. Lastly, a large number of SMILES generated are 

not included in GDB-13, meaning that the model, even 

though generating valid molecules, does not fully learn 

the specific idiosyncrasies of GDB-13 molecules and gen-

erates valid molecules that break some condition.

Improving the existing ChEMBL priors with randomized 

SMILES

The same benchmark study was also performed on mod-

els with a drug-like training set from ChEMBL (see Addi-

tional file  1: Methods S1 for more information on how 

the training set was obtained). A different and reduced 

set of hyperparameter values were used due to long train-

ing times (Table 2). The best models for both the canoni-

cal and restricted randomized SMILES benchmarks 

were obtained using the same procedure as before and a 

2 billion sample was performed. Results show (Table  4, 

extended results Additional file 3: Table S2) that the out-

put domain of the canonical model is much smaller than 

that of the randomized SMILES model. Specifically, the 

randomized SMILES model can generate at least twice 

the number of different molecules than the canonical. 

Nevertheless, the Fréchet ChemNet Distance (FCD) [36] 

between the validation set and a sampled set of 75,000 

SMILES is lower on the canonical SMILES model. This 

could mean that the molecules generated by the canoni-

cal model have more similar properties than ChEMBL 

molecules, but it could also mean that the canonical 

model overfits and generates molecules that are similar 

to the training set given that the validation set and the 

training set are biased the same way (i.e., they are both 

obtained from a biased sample of the entire drug-like 

chemical space).

To prove that the molecules sampled from the ran-

domized SMILES model are at least as diverse as those 

in the canonical, several physicochemical properties and 

metrics (as used in the MOSES benchmark [37]), such 

as molecular weight, logP, Synthetic Accessibility Score 

(SA) [38], Quantitative Estimate of Drug-likeness Score 

(QED) [39], Natural-Product likeness score (NP) [40] and 

Internal Diversity (cross-molecule Tanimoto similarity 

on ECFP4) were calculated for a sample of the training, 

validation, randomized SMILES model and canonical 

SMILES model (Additional file  2: Figure S3). All of the 

plots are nearly identical, showing that there is no clear 

difference between molecules in any of the four sets. 

Additionally, molecule NLL plots for the same four sam-

ples were calculated for both models (Fig.  6) and show 

that the canonical model greatly overfits the training and 

validation sets compared to the randomized SMILES 

model, which has mostly the same distribution for both 

sets. When comparing the two samples, the canonical 

model has much lower probabilities of generating most 

of the molecules generated by the randomized SMILES 

model, but not the opposite. The randomized SMILES 

model is able to generate the canonical SMILES model 

Table 4 Best models from  the  ChEMBL benchmark 

for both SMILES variants

SMILES SMILES variant, Time time used to train the model hhh:mm, % Valid 

Percent of valid molecules, % Unique Percent of unique molecules in a 2 billion 

SMILES sample, Fréchet ChemNet Distance (FCD) between the validation and a 

sample of 75,000 molecules (FCD)

SMILES Time % Valid % Unique FCD

Canonical 131:32 98.26 34.67 0.0712

Rest. Random. 84:22 98.33 64.09 0.1265

Fig. 6 Kernel Density Estimates (KDEs) of the Molecule negative log-likelihoods (NLLs) of the ChEMBL models for the canonical SMILES variant (left) 

and the randomized SMILES variant (right). Each line symbolizes a different subset of 50,000 molecules from: Training set (green), validation set 

(orange), randomized SMILES model (blue) and canonical SMILES model (yellow). Notice that the Molecule NLLs for the randomized SMILES model 

(right) are obtained from the sum of all the probabilities of the randomized SMILES for each of the 50,000 molecules (adding up to 320 million 

randomized SMILES), whereas those from the canonical model are the canonical SMILES of the 50,000 molecules
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molecules with higher likelihood than average, implying 

that the output domain of the canonical SMILES model 

is a subset of the randomized SMILES model output 

domain.

Discussion
Why are randomized SMILES better?

A SMILES molecular generative model learns by finding 

patterns in the SMILES strings from the training set with 

the goal of generalizing a model that is able to obtain all 

the SMILES in the training set with the highest possible 

probability. The procedure is exactly the same with any 

SMILES variant, the only thing that changes is the string 

representation of each molecule and, in the case of rand-

omized SMILES, the number of different representations 

each molecule has. When the canonical representation is 

used, the model learns to generate one linear representa-

tion of each molecule obtained through a canonicaliza-

tion algorithm. This means that the model must learn not 

only to generate valid SMILES strings, but also to gener-

ate those in the canonical form. As shown in “Methods” 

section (Fig. 1), the canonicalization algorithm in RDKit 

does not only traverse the molecule using a fixed order-

ing, but also adds some restrictions on how to traverse 

rings. Moreover, models tend to see the same patterns 

repeatedly, leading to premature overfitting (Fig.  6). 

Alternatively, randomized SMILES models do not have 

the canonical form limitation and can learn the SMILES 

syntax without restriction. When no data augmentation 

is used, randomized SMILES still perform substantially 

better than canonical SMILES. Additionally, heavy regu-

larization with dropout in canonical models gave a better 

overall performance, but opposite results were obtained 

with randomized SMILES, showing that using different 

randomized SMILES on each epoch also serves as a regu-

larization technique.

Another way of understanding why randomized vari-

ants are better is to draw a parallel with image classifi-

cation models. For example, when an image classification 

model is trained to predict whether an image depicts a 

cat, the model performance can be improved with a 

training set that has examples of cats from all the pos-

sible angles and not always a front picture. This is not 

always easy to obtain in image predictive models, but in 

the case of molecular generative models it is extremely 

easy to generate snapshots of the same molecule from dif-

ferent angles (i.e., different ways of writing the SMILES 

string). This allows models to better learn the constraints 

of the training set chemical space (i.e., in the case of 

GDB-13: heteroatom ratios, allowed functional groups, 

etc.). Nevertheless, for each molecule there is a differ-

ent number of randomized SMILES (Fig.  4), thus pos-

sibly generating a bias towards the molecules that have 

more representations. None was detected in this study 

possibly because larger and highly branched molecules, 

which tend to have more combinations, are also generally 

more difficult to sample and can, in effect, counteract the 

bias (Fig. 4c). Lastly, the restricted variant of randomized 

SMILES performed best, indicating that restricting the 

randomized SMILES algorithm makes the model gener-

alize better. For example, the unrestricted randomized 

SMILES can represent the phenyl ring of aspirin (Fig. 1) 

in a much more convoluted way “c1cc(c(cc1)”, some-

thing that would be impossible in the restricted variant. 

Finding variants that perform even better should be a 

future research goal in this field.

Understanding diversity in molecular generative models

A challenge in Computer-Assisted Drug Design (CADD) 

is to computationally generate or evaluate molecules that 

fit a given set of constraints. This process is not devoid 

of error: for instance, an inactive molecule can be pre-

dicted as active (false positive) or an active one can be 

predicted as inactive (false negative). From a drug design 

perspective, false positives are more damaging due to 

the economic impact a wrong prediction can have. False 

negatives do not impact as directly but are important 

nonetheless: the next blockbuster could be any molecule 

wrongly skipped by computational solutions.

Analogously, the same problem can be brought to 

generative models. A model can generate molecules 

that are outside of the target chemical space (false posi-

tives) or the output domain can collapse [41] not being 

able to generate a chunk of the expected chemical space 

(false negatives). This is very easy to assess when training 

models that generate the GDB-13 chemical space. First, 

any molecule sampled not included in GDB-13 is a false 

positive (closedness). It was previously shown [18] that 

the vast majority of these clearly do not comply to one 

or more conditions of GDB-13, such as having invalid 

functional groups, molecular graph or not being the most 

stable tautomer. Alternatively, any molecule comprised 

in GDB-13 not possible to being sampled (i.e. very high 

NLL) becomes a false negative (completeness). In both 

cases this means that the model is not able to learn cor-

rectly the rules used in the enumeration process. When 

canonical and randomized SMILES models are com-

pared, the results show that randomized SMILES models 

perform substantially better in both properties (Table 3). 

They are able to learn better the filters used in enumerat-

ing GDB-13 and thus prevent the generation of incorrect 

molecules and at the same time generate more difficult 

outliers that comply with GDB-13 (Additional file 2: Fig-

ure S1, left tip of the NLL similarity maps).
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Training molecules on unknown target chemical spaces 

is a much more difficult task. Compared to GDB-13, 

where the generated molecules can be checked whether 

or not they form part of it, there is no way of bound-

ing the limits (if there are any) of a drug-like space. This 

makes benchmarking models much more complex. For 

instance, a model could generate an extremely diverse set 

of molecules, most of which are completely unrelated to 

the training set chemical space, compared to a model that 

generates less diverse and fewer molecules that are more 

akin to the training set chemical space. As it is unknown 

which is the target chemical space, assessing which is the 

best model is impossible. For this reason, some methods 

were published [37, 42] that aggregate a set of metrics 

to obtain a better overview of the output domain of the 

model. Unfortunately, they compare the models with a 

test set split from the training set and this tends to ben-

efit models that overfit. Additionally, they are not able to 

measure mode collapse the same way as with the GDB-13 

benchmark, as can be seen in [43]. This means that mod-

els may seem extremely diverse when being sampled a 

few thousand times, but when being sampled more times 

the same molecules start appearing repeatedly. This is 

the case with the ChEMBL models trained here. We 

know that the drug-like chemical space is huge [44], so 

we would not expect the model to collapse early. Results 

show that those trained with randomized SMILES have 

a much larger output domain (at least double) than 

those trained with canonical SMILES. Moreover, sets 

of molecules generated are physicochemically almost 

indistinguishable (Additional file 2: Figure S3) from sets 

generated from the canonical SMILES model, meaning 

that they are from the same chemical space. This show-

cases how models trained with randomized SMILES are 

able to represent chemical spaces that are more complete 

and at least as closed as those generated by models using 

canonical SMILES.

SMILES generative models as action‑based generative 

models

The most common way of understanding SMILES gen-

erative models is as grammar-based models that gener-

ate SMILES strings that are similar to the training set 

[7, 8], akin to language generative models [45]. Alterna-

tively, SMILES generative models can be also understood 

as action (or policy)-based graph generative models [16, 

46] in which a molecular graph is built stepwise. In these 

models, each step an action is chosen (“add atom”, “add 

bond”, etc.) and is sampled from a fixed or varying size 

action space (or policy) that has all possible actions (even 

invalid ones) alongside the probability of each happen-

ing. A parallelism can be partially drawn for SMILES 

generative models: the vocabulary is the action space in 

which atom tokens (“C”, “N”, “[O-]”, etc.) are “add atom” 

actions, the bond tokens (“=”, “#”, etc.) are “add bond” 

actions as are also the ring and branching tokens. The 

main difference is that “add atom” actions are always 

adding the new atom to the last atom added, the bond 

tokens add a bond to an unknown atom, which is speci-

fied just after, and the ring and branching tokens add also 

bonds and enable the model to jump from one place to 

another. Moreover, a single bond is by default added if no 

bond is specified between atoms when at least one is ali-

phatic, and an aromatic bond is added otherwise.

One of the main issues with graph generative models 

is that the action space can grow dangerously large, mak-

ing it very challenging to train models that generate big 

molecules [46]. This is not the case of SMILES generative 

models, as they only have to choose every epoch among 

a limited number of options (i.e., the vocabulary). On 

the other hand, SMILES models traverse the graph in a 

very specific way, they do not allow as many options as 

graph models. This is specially the case with canonical 

SMILES: Morgan numbering greatly reduces the possi-

ble paths, as it tends to prioritize starting in sidechains 

rather than in the rings of the molecule [28]. This makes 

sense when grammatically simpler SMILES strings are 

desired. We think that when using randomized SMILES, 

models become more action-based rather than grammar-

based. Additionally, this may also indicate why the syntax 

changes added in DeepSMILES have a detrimental effect 

on the learning capability of SMILES generative mod-

els, as they give the model a more complex action space. 

For instance, the ring token altered behavior makes the 

ring closures extremely grammar sensitive and the new 

branching token behavior makes the SMILES strings 

unnecessarily longer without any appreciable improve-

ment. We think that the SMILES syntax is, with all its 

peculiarities, an excellent hybrid between action-based 

and grammar-based generative models and is, to our 

knowledge, the most successful molecular descriptor for 

deep learning based molecular generation available so far.

Conclusions
In this research we have performed an extensive bench-

mark of SMILES-based generative models with a wide 

range of hyperparameters and with different variants 

of the SMILES syntax. To guide the benchmark a new 

metric, the UC-JSD, based on the NLL of the training, 

validation and sampled sets was designed. Our study 

shows that training LSTM cell-based RNN models using 

randomized SMILES substantially improves the qual-

ity of the generated chemical space without having to 

change anything in the generative model architecture. 

In the case of models trained with a sample of 1 million 

GDB-13 molecules, the best models are able to generate 
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almost all molecules from the database with uniform 

probability and generating very few molecules outside 

of it. Using smaller training set sizes (10,000 and 1000) 

further highlights the data augmentation effect of ran-

domized SMILES and enables training models that are 

able to generate 62% of GDB-13 with only a sample com-

prising 0.001% of the database. When training models 

on a ChEMBL training set, randomized SMILES models 

have a much bigger output domain of molecules in the 

same range of physicochemical properties as the canoni-

cal SMILES models. Moreover, randomized SMILES 

models can easily generate all molecules of the canonical 

SMILES output domain. The randomized SMILES vari-

ant that gave the best results is the one that has restric-

tions, compared to the one that is able to generate all 

possible randomized SMILES for each molecule. Regard-

ing different RNN hyperparameters and architectures, 

we wholeheartedly recommend using LSTM cells instead 

of GRU, due to their improved learning capability. Never-

theless, dropout and batch size have varying behavior on 

each training set, thus we would recommend perform-

ing a hyperparameter optimization to obtain the best 

values. We envision that randomized SMILES will play 

a significant role in generative models in the future and 

we encourage researchers to use them in different model 

architectures and problems, such as classification and 

prediction models.
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