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Abstract In a general discrete-time market model with proportional transaction costs, we
derive new expectation representations of the range of arbitrage-free prices of an arbitrary
American option. The upper bound of this range is called the upper hedging price, and
is the smallest initial wealth needed to construct a self-financing portfolio whose value
dominates the option payoff at all times. A surprising feature of our upper hedging price
representation is that it requires the use of randomized stopping times (Baxter and Chacon,
1977), just as ordinary stopping times are needed in the absence of transaction costs. We
also represent the upper hedging price as the optimum value of a variety of optimization
problems. In addition we show a two-player game where at Nash equilibrium, the value to
both players is the upper hedging price, and one of the players must in general choose a
mixture of stopping times. We derive similar representations for the lower hedging price as
well. Our results make use of strong duality in linear programming.
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1 Introduction

This paper examines the no-arbitrage pricing of American options in a discrete-time market
model where stock trades are subject to proportional transaction costs. We characterize the
range of option prices that is consistent with no-arbitrage, and find necessary and sufficient
conditions for the absence of arbitrage in the model. Similar results are known for European
options, but not for American options. The American case turns out to be significantly more
challenging because of the added complication of there being an exercise strategy at the
disposal of the option bearer. To help put this paper in context, we review below the related
literature on the topic of transaction costs.

The classical option valuation framework of Black and Scholes (1973) and Merton
(1973) is based on a replication argument, in a continuous trading model with no frictions,
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i.e., unrestricted short-sales and no transaction costs. In the scenario of these papers, when
the payoff from an option can be perfectly replicated by trading in the underlying stock(s)
and bond, there is a unique arbitrage-free option price, which is given by the initial value of
the replicating portfolio. Moreover, as has been made explicit by Harrison and Kreps (1979)
and by Harrison and Pliska (1981), in markets where there is a unique equivalent martingale
measure the no-arbitrage price of a European option can be expressed as the expected
discounted terminal payoff from the option, under this martingale measure. For American
options one takes the supremum over all stopping timesτ (which represent possible exercise
strategies of the option bearer) of the expected discounted payoff atτ, under the martingale
measure.

The appeal of the arbitrage-free approach is that it is independent of buyers’ and sell-
ers’ preferences, attitude towards risk, or probability beliefs. In the presence of transaction
costs, however, the replication argument in continuous time breaks down, because perfect
replication may require that the portfolio be rebalanced infinitely often, incurring infinite
transaction costs. Thus perfect replication is impossible, the market model is incomplete,
and there may no longer be a unique arbitrage-free option price.

As a result, several recent papers in the transaction costs area are concerned with defin-
ing and characterizing therangeof option prices that are required by the absence of ar-
bitrage. This work has for the most part focused exclusively onEuropeanoptions, and
American options have not received any serious treatment, even in the discrete-time case.
In the absence of arbitrage, the highest possible pricehup of a European option is the small-
est initial wealth required in order tosuper-replicatethe option payoff at expiration, via a
self-financing trading strategy. Thushup, called theupper hedging price, is the minimum
price the seller of the option needs to receive in order to construct a portfolio that enables
him to meet his obligation to the option buyer at expiration without risk. Similarly, the
lower hedging price hlow is the largest amount that the option buyer can borrow (in the
form of money from a bank or stocks for short-selling) to buy the option, so that by means
of a self-financing trading strategy he is able to pay off his debt using the option payoff at
expiration, without risk. The range[hlow;hup] is precisely the arbitrage-free range for the
option price; any price outside this range leads to an arbitrage, and no price in the range
does.

For European options, a number of authors have derivedexpectation representations
of the upper and lower hedging prices, in both discrete and continuous-time settings. The
continuous-time papers include those of Jouini and Kallal (1995) (who call these prices
arbitrage bounds), Cvitanić and Karatzas (1996) (who only consider the upper hedging
price and call it thehedging price), Cvitanic et al. (1999), (who show an explicit form for
the expectation defining the upper hedging price), and Karoui and Quenez (1995) (who
call these price-bounds theselling priceandbuying price). Papers showing similar results
in discrete-time include those of Koehl et al. (1999), Jaschke (1996), and Ortu (1996). Our
use of the terms upper and lower hedging price, and some other terms and definitions, is
borrowed from Karatzas and Kou (1998), who give expectation expressions for the no-
arbitrage price-range of an American option with constraints on hedging portfolios.

These results have the following flavor. The upper (lower) hedging price can be ex-
pressed as the supremum (respectively, infimum) of the expected discounted terminal pay-
off from the option, over all probability measures that make the discounted stock price
“nearly” a martingale, in a certain precise sense. For example in Jouini and Kallal (1995)
the “near-martingale” measures are those under which some process (appropriately dis-
counted) that lies between the bid and ask prices of the stock becomes a martingale. Note
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that the presence of proportional transaction costs on stock purchases and sales is equiva-
lent to assuming that the stock has a bid price process and an ask price process that is never
below the bid price process. (This is made clearer later in the paper.)

In continuous time, the above arbitrage-based price bounds are principally of theoretical
interest, and yield trivial results. For instance, a result conjectured by Davis and Clark
(1994) and later proved by Soner et al. (1995), and Levental and Skorohod (1997), states
that for a European call option, the upper hedging price is equal to the initial stock price,
and the minimal super-replicating strategy is the trivial buy-and-hold strategy: buy one
share of the stock and hold it until the option expires. This upper hedging price is typically
too high to be used as a reasonable option price in practice, suggesting that something
more than no-arbitrage is needed to obtain a satisfactory pricing theory for options in the
present of frictions. Despite this negative result, as Cvitanic et al. (1999) argue, the study of
super-replicating strategies can be helpful in solving other problems involving transaction
costs, and also in finding a more realistic, utility-based price of an option. Examples of the
utility-maximization approach to pricing options under transaction costs include the work
of Davis et al. (1993) and Cvitani´c and Karatzas (1996) on European options, and that of
Davis and Zariphopoulou (1995) on American options.

In contrast to the continuous-time situation, itis possible to obtain non-trivial results in
discrete time, as the aforementioned papers on European options show.

Expectation representations for American option prices in incomplete but frictionless
markets have been shown before. For instance Harrison and Kreps (1979) show that in
their frictionless model, ifP is the class of equivalent martingale measures,T the class of
stopping times, andR the discounting factor, then the upper hedging price of an American
option with payoff processG is given by

hup = sup
τ2T

sup
P2P

E
P �GτR�τ� : (1.1)

Similarly the lower hedging price is

hlow = sup
τ2T

inf
P2P

E
P �GτR�τ� : (1.2)

The chief contribution of our paper is to show various representations for the upper and
lower hedging price of American options in the presence of proportional transaction costs.
Some of these representations are similar in form to (1.1) and (1.2) above.

1.1 Outline of the paper

In Sections 2 and 3 we introduce our market model and related definitions. We introduce in
Section 4 a central notion of this paper:randomized stopping times. In our discrete market
model a randomized stopping time is a non-negative adapted processX0;X1; : : : ;Xn (nbeing
the time horizon of the model) whose sum on any path is 1. Such stopping times, also called
fuzzystopping times, have been studied in other contexts (Baxter and Chacon, 1977; Dalang
et al., 1988). It turns out that they play an essential role in our expectation representations
of the upper hedging price of American options with proportional transaction costs. In fact
the bulk of the paper consists of showing a variety of representations for the upper hedging
price.
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Section 5 collects, for later reference, several useful properties of randomized stopping
times and related notions. Section 6 introduces another basic concept, that of anapproxi-
mate martingale measure.

Sections 7 defines self-financing portfolios. In Section 8 we borrow notation from
Karatzas and Kou (1998) to define the upper and lower hedging prices ((8.2) and (8.4))
for American options under transaction costs, and define what constitutes an arbitrage op-
portunity. In contrast to the European case, the situations of the buyer and seller here are
fundamentally asymmetric, a point that has been made clearly in Karatzas and Kou (1998):
The seller needs to hedge againstanyexercise strategy of the buyer, whereas the buyer need
only hedge againstsomeexercise strategy since he has the choice of it.

Section 9 contains results showing a variety of representations of the upper hedging
price of an American option with proportional transaction costs. Not surprisingly, one of
these representations, namely (9.2), is similar in form to the above expression (1.1) with
zero transaction costs. The differences are that in the case of (9.2) the outer maximiza-
tion is over randomized stopping times, and the inner maximization is over approximate
martingale measures.

We find it surprising that the upper hedging price representation requires randomized
exercise strategies. We present two other results that provide some insight into why random-
ized strategies appear to be necessary to represent the upper hedging price when there are
transaction costs. The first involves Nash equilibria in game theory, wheremixed strategies
are often necessary. In Section 10 we define a natural game between a seller and a “devil”
where it turns out that at Nash equilibrium, the seller’s “cost” and the devil’s “utility” are
both equal to the upper hedging price, and the devil must in general choose amixtureof
stopping times (a notion closely related to randomized stopping times, see Section 4). The
second result is presented in Section 11 where we make a distinction between anoblivious
hedge(a single portfolio that hedges against all exercise strategies) and anadaptive hedge
(a possibly different portfolio to hedge against each exercise strategy). With zero transac-
tion costs, the minimum initial wealth needed for an adaptive hedge also suffices for an
oblivious hedge. But with non-zero transaction costs, an oblivious hedge may require more
initial wealth.

In Section 12 we show that the lower hedging price for an American option with propor-
tional transaction costs can be represented by an expression analogous to (1.2) above. The
difference is that with non-zero transaction costs, the inner minimization is over approxi-
mate martingale measures. We prove in Section 13 various conditions that are equivalent
to the absence of arbitrage in our model. Section 14 contains a proof that our results imply
those of Koehl et al. (1999) (and others mentioned above) for European options with pro-
portional transaction costs. In Section 15 we show examples that illustrate our main results.
Section 16 concludes with a discussion of possible future research directions.

The techniques we use to derive our expectation representations ofhup and hlow are
elementary, and depend only onstrong duality of linear programming. In the case ofhup

we observe that its definition is a linear programming problem. Strong duality assures us
that the dual optimum equals the primal optimum, so after some algebraic manipulation of
the dual linear program, we are able to interpret its variables in terms of an approximate
martingale measure and a randomized exercise strategy. In the case ofhlow our approach is
much the same, except thathlow is a linear programming problem only for a fixed stopping
timeτ. We are also able to show that the existence of a certain approximate martingale mea-
sure is necessary and sufficient for the absence of arbitrage in our market model (Theorem
13.1).
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Fig. 2.1 Illustrating notation on an event tree withn= 3. For instance on this tree,w2 T andt(u) = 2

The form of our expectation formulas is closest to the discrete-time results of Koehl
et al. (1999) for European options. However they appear to use much more complex meth-
ods than ours. We show in Section 14 that results very similar to theirs follow from our
results for American options. Jaschke (1996), Naik (1995) and Ortu (1996) obtain results
similar to ours via linear programming, but only for European options. Other authors have
used linear programming to study hedging strategies for European options with transaction
costs. These include Edirisinghe et al. (1993), who also show efficient approximations to
the linear program defining an optimal super-replication strategy; and Bensaid et al. (1992),
who were one of the first to point out that a super-replicating hedge strategy may have less
initial cost than a perfectly replicating one.

2 Market model

We model discrete time by means of a finiteevent treewhich contains nodes corresponding
to trading dates (or time-steps) 0;1; : : : ;n, wheren is the expiration date of the option
under consideration. Nodes will be identified by letters such asu;v;w. There is exactly
one node at time-step 0, called theroot node, and it is denoted 0; this node represents the
present time. The set of nodes at timen is denotedT; nodes inT are calledterminal nodes
or leaves. Each non-terminal nodeu has anon-emptyset ofimmediate successorsdenoted
u+. If u is a terminal node,u+ will be treated as the empty set. The uniqueimmediate
predecessorof a nodeu 6= 0 is denotedu�. We use the termpath to refer to a sequence
of nodes from the root to a leaf, where each node but the last is the predecessor of the next
node in the sequence. Paths will be denoted by letters such asω;ω0, etc. The node at time
i on pathω is denotedωi . We writeu2 ω to say that nodeu is on the pathω. The time
corresponding to a node is denotedt(u). Thus,t(0) = 0 and for anyu 2 T, t(u) = n. If u
andv are nodes on a given path, andt(v)> t(u) we write for brevityv> u or u< v. We also
write u� v to indicate thatu is either equal tov or a predecessor ofv. Figure 2.1 illustrates
some of this notation. For ease of reference a summary of the notation used in this paper is
provided in Appendix B.

All random variables in this paper will be defined with respect to the measurable space
(Ω;F ) whereΩ is the set of all paths in the tree from time 0 to timen, andF is the
σ-algebra consisting of all subsets ofΩ. Note that each node in the tree represents the
set of all tree paths that contain that node. This allows us to define a naturalfiltration
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F 0;F 1; : : : ;F n =F (denotedfF kg for brevity) on the spaceΩ, whereF k is theσ-algebra
generated by the path-sets represented by all the time-k nodes. In other words,F k repre-
sents the information known at timek: at timek, market participants only know which atom
of F k the tree path belongs to.

For our purposes, any real-valued functionF of the tree nodes defines arandom process
fF0;F1; : : : ;Fng. HereFk is the random variable that assigns to any pathω in Ω, the value
of the processF at ωk. We will denote the process either byfFkg or simply by F. By
definition, such a process isadaptedto the filtrationfF kg. If u is a node in the event-tree,
then we writeF(u) for the value of the processF atu, whereas ifk is a non-negative integer
andω 2 Ω is a path, then we write eitherFk(ω) or F(ωk) for the value ofF at timek on
pathω.

To avoid notational clutter, we will only consider a market consisting of a single risk-
less security called thebondand a single risky security called thestock. Our results can be
easily extended to the case of multiple risky assets. The stock price process is denoted byS,
which meansSk is the stock price random variable at timek, andS(u) is the stock price at a
specific nodeu. We assume trading in the stock is subject toproportionaltransaction costs.
In particular, to buy a stock whose market price isSdollars, one pays(1+λ)Sdollars, and
upon selling a share at priceS, one receives(1�µ)Sdollars, whereλ� 0, andµ lies in the
interval [0;1]. In other words,λ andµ are the transaction costs per dollar of share bought
and sold respectively. Another way to say this is that thebid price of the stock at nodeu is
S(u)(1�µ) and itsask price is S(u)(1+λ). We assume that therisk-free interest rateis r,
and that one dollar in bonds at timek will grow to R= 1+ r dollars at timek+1. For any
adapted processZ, the correspondingdiscounted processwill be denotedZ�, or in other
words,Z�

k := ZkR�k. (Here and elsewhere, we follow Williams (1991) in using the notation
“:=” to stand for “is defined as”, and “=:” to stand for “is the definition of”).

An American option on the stock is specified by anon-negativeadapted processG,
whereG(u) is the payoff from exercising the option at nodeu in the tree. The function
G(u) may be any arbitrary path-dependent function, and not just a function of the stock
price S(u) at u. An American option can be exercised at any time until it expires. The
exercise strategy of the holder of an American option can be described by astopping time.
In our model a stopping timeτ is a random variable that maps each pathω 2Ω to a number
in f0;1; : : : ;ng, with the restriction that for anyk, the indicator-random variableIτ=k is
F k-measurable. In other words, if there is some pathω with τ(ω) = k andωk = u, then for
everypathω0 containingu, we must haveτ(ω0) = k. For any pathω, there is thus a unique
stopping point ωτ(ω). For any adapted processfFkg, we use the standard notationFτ to
denote the random variable that maps a pathω 2 Ω to Fτ(ω)(ω). The setIτ of all stopping
points of a stopping timeτ is called thestopping boundary of τ. The set of all stopping
timesτ is denotedT .

3 Measures and Node-measures

A non-negative node-functionP is called aprobability measure (or simply “measure” for
short) on the event tree ifP(0) = 1, and for any nodeu 62 T, the sum ofP over all immediate
successors ofu equalsP(u), i.e.,

∑
v2u+

P(v) = P(u): (3.1)
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We can think ofP(u) as the probability of reachingu, or as the total probability of all paths
containing nodeu. Note that a non-terminal node with positive probability must have at
least one successor with positive probability. For any pathω2Ω we define theprobability
P(ω) of the path ω to be the probability of its last node, i.e.,P(ω) := P(ωn). When we
say a certain relationship among random variables (defined below) holdsP-almost surely,
(abbreviatedP-a.s.) we mean that it holds on every path with positive probability under
P. The expectation of a random variable underP is denotedEP(Z), and the conditional
expectationEP(ZjF k) is abbreviatedEP

k (Z). Note thatEP
k (Z) is a random variable, and

its value on a particular pathω 2 Ω is thereforeEP
k (Z)(ω); if ωk = u then for brevity we

denote this value byEP
u (Z).

We will also find it convenient to use the notion of anode probability measure (or
just “node-measure” for short), which is simply a non-negative node-functionq such that
∑uq(u) = 1. (Here and elsewhere in the paper, a summation sign, subscripted by a node-
name, such asu, stands for a summation overall nodes in the event tree.) Thesupport of a
node-measureq is the set of nodesu such thatq(u)> 0; we writeu2 q if u is in the support
of q. The set of all possible node-measures is denotedQ .

Node-measures whose support is on the stopping boundary a stopping time will be
calledsimple node-measures. In other wordsq is a simple node-measure if and only if
there donot exist nodesu, v such thatu< v, q(u)> 0 andq(v) > 0, i.e., on every path in
the event-tree there is at most one node whereq is strictly positive. We writeQ τ to denote
the set of simple node-measures whose support lies on the boundary of a stopping timeτ.

4 Randomized Stopping Times and Mixed Strategies: Definitions

An ordinary exercise strategy is specified by a stopping timeτ, which specifies exactly one
exercise point on every event-tree path. A natural generalization is to allowrandomized(or
“fractional” or “fuzzy”) stopping times; these will play a central role in this paper.

Definition 4.1 A randomized stopping time(or randomized exercise strategy) is anon-
negativeadapted process (i.e. node-function) X with the property that on every pathω in
the event tree,

n

∑
i=0

X(ωi) = 1;

i.e., the sum of the random variables X0;X1; : : : ;Xn is 1 on every path (see Figure 4.1). We
denote the collection of all randomized stopping times byX . Thesupport of a randomized
stopping time X2 X is the set of nodes u such that X(u)> 0; we write u2 X if u is in the
support of X.

Randomized stopping times have been studied, among others, by Baxter and Chacon
(1977), Dalang et al. (1988), Edgar et al. (1981) and Mazziotto and Millet (1986), primarily
as an aid to show the existence and properties of optimal ordinary stopping times in certain
optimal control problems. In certain optimization problems, randomized stopping times
can be viewed as a natural linearrelaxation(Grötschel et al., 1993) of ordinary stopping
times. When a randomized stopping timeX is used to describe an exercise strategy, we can
think of X(u) as the probability of exercising the option atu giventhat the nodeu has been
reached.
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Remark 4.2Note that an ordinary stopping timeτ corresponds to the degenerate random-
ized stopping timeXτ whose values are restricted to lie in thesetf0;1g, and defined as
follows for anyω 2Ω andk= 0;1; : : : ;n:

Xτ(ωk) :=

(
1 if τ(ω) = k,

0 otherwise.
(4.1)

We will sometimes abuse notation and useτ to meanXτ.

It is easy to see that ordinary (or pure) stopping times are extreme points of the convex
set of randomized stopping times (Baxter and Chacon, 1977). Thus a randomized stopping
time can always be written as a convex combination, ormixture, of pure stopping times
(see Fig. 4.1), in a manner reminiscent of mixed strategies in game theory (Fudenberg and
Tirole, 1998). Section 10 explores this connection in detail. A mixture of stopping times is
formally defined as follows.

Definition 4.3 A mixture σ of stopping times is a probability assignmentσ(τ) for each
τ 2 T such that

σ(τ)� 0 8τ 2 T ; ∑
τ2T

σ(τ) = 1:

The collection of all mixtures of stopping times will be denotedT . Thesupport of a
mixtureσ is defined as the set of stopping timesτ 2 T such thatσ(τ)> 0; we writeτ 2 σ if
τ is in the support ofσ. We writeτ to denote the mixture with support at just one stopping
timeτ.

Note that a given mixtureσ corresponds to the unique randomized exercise strategyXσ

defined by:

Xσ := ∑
τ2σ

σ(τ)Xτ: (4.2)

However, the converse is not true, i.e., there may be more than one way to express a ran-
domized exercise strategyX 2 X as a mixture of pure stopping times.

4.1 Average values

There are many natural ways of defining the “average” value of an adapted processZ on
the event tree. First, for a randomized stopping timeX 2 X , we define thetime-X value of
Z as the random variable

ZX :=
n

∑
i=0

(XiZi): (4.3)

Note that ifX = Xτ for some pure stopping timeτ, thenZX is the familiar random variable
Zτ. For a specific pathω 2Ω, it is clear that

ZX(ω) = ∑
u2ω

Z(u)X(u): (4.4)

For a randomized stopping timeX 2 X , we define themaximum time-X value ofZ asbZX := max
ω2Ω

ZX(ω): (4.5)
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Fig. 4.1 Illustrating how a randomized exercise strategyX on an event tree withn= 2 can be viewed
as a weighted average of three “pure” stopping times. The numbers on the leftmost tree show the value
of X alongside the nodes. Only the positiveX values are shown; all others are 0. Note that along any
path, the sum of theX values is 1. The residualX-exercise probability at the circled node is 0:6. Each
of the three trees on the right shows a “pure” stopping time represented as a 0�1 valued randomized
stopping time; again only the 1 values are shown. Alongside each of these trees the weight of the
corresponding stopping time used to produceX is indicated in parentheses.

For a (pure) stopping timeτ 2 T , we define themaximum value ofZ at τ as

bZτ := max
ω2Ω

Zτ(ω); (4.6)

and for a mixtureσ 2 T we define theσ-expected maximum value ofZ as

bZσ := ∑
τ2σ

σ(τ)bZτ: (4.7)

Lastly, for any node-measureq2 Q , we letZq denote theq-weighted average ofZ over
the entire event-tree:

Zq := ∑
u

q(u)Z(u): (4.8)

It turns out that a useful equivalence relation can be defined between measure-strategy
pairs(P;X) and node-measures.

Definition 4.4 SupposeP is a probability measure, X is a randomized exercise strategy,
and q is a node-probability measure. We say that q isequivalent to (P;X) if P(u)X(u) =
q(u) holds at every node u (See Figure 4.2). We will use the notation q� (P;X) to mean
that q is a node-measure and(P;X) is an equivalent measure-strategy pair.

Theorem 5.4 shows that for any node-measureq there always exists an (essentially unique)
equivalent measure-strategy pair(P;X), and vice versa.

4.2 Future average values

We will often want to refer to the future average value of an adapted process at some
arbitrary nodeu. We do this by defining appropriate generalizations ofZq andZX . First
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randomized stopping time  X

Fig. 4.2 A node-probability measureq and an equivalent measure-strategy pair(P;X). Only the
positiveq andX values are shown. Note thatq(u) = P(u)X(u) holds at every nodeu. Starting from
the (P;X) values shown on the right, theq values on the left are obtained by simply settingq(u) =
P(u)X(u) at everyu. Starting from theq values on the left, theP;X values on the right are computed
as in Theorem 5.4.

we need a notation for the remaining futureX-value orq-weight. More precisely, for a
randomized exercise strategyX, we define the random variable

X+
k :=

n

∑
i=k+1

Xi = 1�
k

∑
i=0

Xi ; k� n; (4.9)

where the first summation is interpreted as 0 ifk= n. The second expression above follows
from the definition of a randomized strategy, and implies thatX+

k is F k-measurable. When
X represents a randomized option exercise strategy, for example,X+

k can be viewed as the
probability that at timek, the option has not yet been exercised at timek or earlier (see
Figure 4.1).

Remark 4.5If X corresponds to an ordinary stopping timeτ, thenX+
k = 1 for k < τ, and

X+
k = 0 for k� τ. The node-function corresponding to the processX+ is given byX+(v) =

1�∑u�vX(u) for any nodev. Note also that ifv2 u+ thenX+(u) = X(v)+X+(v).

For a node-measureq, the node-function analogous toX+
k is

q+(u) := ∑
v>u

q(v); 8u; (4.10)

the sum being interpreted as 0 ifu is a terminal node. We writeq(u) to denoteq(u)+q+(u).
Notice an important difference between the node-functionsq+(u) andX+(u): the former
is the sum ofq(v) over all nodesv that are successors ofu, while the latter is the sum of
X(v) over all successorsv of u that lie on aspecificpath containingu (the choice of path is
arbitrary since this sum must be the same on every such path).

We can now define the following generalizations ofZq andZX. For any integerk2 [0;n],
if X+

k > 0, the random variable

ZXjk :=
∑n

i=k+1(XiZi)

X+
k

(4.11)

represents thefuture time-X value ofZ at time k. Note that ifP is a probability measure on
the event-tree, thenEP

k ZXjk is theexpectedfuture time-X value ofZ at timek; for brevity we
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will write this expectation asEP
k ZX. Also for a nodeusuch thatωk = uwe write

�
E

P
k ZX

�
(ω)

more compactly asEP
u ZX; this quantity is well-defined only ifP(u)> 0 andX+(u)> 0. It

is important to bear in mind that in the expressionEP
k ZX, theZX stands for∑n

i=k+1(ZiXi),
i.e., the term(ZkXk) is not included in this summation.

If u is a node withq+(u)> 0, we define theq-weighted average future value ofZ at
nodeu as

Zq(u) :=
∑v>u q(v)Z(v)

q+(u)
: (4.12)

Theorem 5.6 shows that ifq� (P;X) thenZq = E
PZX , andZq(u) = E

P
u ZX for all u such

thatq+(u)> 0.

5 Useful properties

We are now ready to show several useful properties that relate to node-measures, random-
ized stopping times, and mixtures.

Proposition 5.1 Suppose q� (P;X), and letσ 2 T be a mixture such that X= Xσ. Then
for any adapted process Z,

Zq � bZX � bZσ:

Proof By definition of equivalence, we haveq(u) =P(u)X(u) for all u. Recalling thatP(ω)

representsP(ωn), the probability of the last node onω, we can then write

Zq :=∑
u

q(u)Z(u) = ∑
u

Z(u)X(u)P(u)

=∑
u

"
Z(u)X(u) ∑

ω2Ω:ω3u

P(ω)

#
= ∑

ω2Ω
P(ω) ∑

u2ω
Z(u)X(u)

= ∑
ω2Ω

P(ω)ZX(ω)

�max
ω2Ω

ZX(ω) =: bZX:

To show the second inequality, note that for any fixedω 2 Ω andτ 2 σ we have

Zτ(ω)�max
ω2Ω

Zτ(ω) =: bZτ;

and taking theσ-weighted average of both sides over allτ 2 σ,

ZX(ω) := ∑
τ2σ

σ(τ)Zτ(ω) � ∑
τ2σ
bZτ =: bZσ;

whence taking the maximum of the left hand side over allω 2 Ω,

bZX := max
ω2Ω

ZX(ω) � bZσ:
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An easy consequence of the above proposition is:

Proposition 5.2 LetC be any closed set of adapted processes. Then

max
q2Q

min
Z2C

Zq � max
X2X

min
Z2C

bZX � max
σ2T

min
Z2C

bZσ � min
Z2C

max
u

Z(u);

where the lastmaxu above is taken over all nodes u in the event tree.

Proof Let q0 be an optimal node-measure in the first expression above. By Theorem 5.4
there exists a pair(P0;X0) equivalent toq0. SupposeZ = Z0 minimizesbZX0 . Then by Propo-
sition 5.1,bZ0

X0 � Z0
q0 , and so

min
Z2C

bZX0 = bZ0
X0 � Z0

q0 �min
Z2C

Zq0 = max
q2Q

min
Z2C

Zq;

from which the first inequality follows by noting that the leftmost expression above is at
most maxX2X minZ2C bZX. A similar argument proves the second inequality. To show the
third inequality, note first that

max
σ2T

min
Z2C

bZσ � min
Z2C

max
σ2T

bZσ:

For a fixedZ 2 C , the value ofbZσ is maximized by pickingσ to be a pure stopping time
τ whose stopping boundary contains some nodeu whereZ(:) is maximum.Thus the right
hand side above equals minZ2C maxuZ(u), and this proves the third inequality.

Equivalence between a node-measureq and a measure-strategy pair(P;X) has the fol-
lowing useful consequence.

Proposition 5.3 Suppose q� (P;X). Then for any node v we have

P(v)X+(v) = q+(v): (5.1)

Proof By definition of an exercise strategy, ifv is a time-k non-terminal node, then

n

∑
i=k+1

Xi(ω) = 1� ∑
u�v

X(u)

for every pathω containingv, so we can write

X+(v) = 1�∑
u�v

X(v) =Y(v); (5.2)

whereY is the random variable defined by

Y := E
P
k

 
n

∑
i=k+1

Xi

!
:

Now multiplying (5.2) byP(v) we get

P(v)X+(v) = ∑
w>v

P(w)X(w) = ∑
w>v

q(w) = q+(v):
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Now we turn to the question of constructing an equivalent node-measure given a measure-
strategy pair, and vice versa. Not surprisingly, given a node-measure pair(P;X), the unique
equivalent node-measureq is given byq(u) = P(u)X(u) for all u. Conversely, given a
node-measureq, there is a natural way to define a measureP, and it turns out that the
node-functionX(u) = q(u)=P(u) (with a modified definition ifP(u) = 0) is actually a ran-
domized stopping time. Also, the(P;X) pair defined in this way is “effectively unique”.
This is formalized below:

Theorem 5.4 (Existence of equivalent(P;X) and q) If (P;X) is a measure-strategy pair,
then the node-function q defined by q(u) =P(u)X(u) at all u is the unique equivalent node-
measure. Conversely, suppose q is a node-measure on the event tree. Then there always
exists a measure-strategy pair(P;X) equivalent to q, whereP is uniquely defined at nodes
u whereq(u)> 0, and X is uniquely defined at nodes u where q(u)> 0.

Proof To prove the first statement note that the unique node-functionq defined at allu by
q(u) =P(u)X(u), is a node-probability measure: Clearlyq is non-negative everywhere, and

∑
u

q(u) = ∑
u

P(u)X(u) =
n

∑
i=0

E
P(Xi) = E

P
n

∑
i=0

Xi = 1:

To show the converse, consider some node-measureq Define the node function (which will
turn out to be a probability measure)P forward-inductively as follows: SetP(0) = q(0) = 1
(Recall thatq(u) = q(u) + q+(u)). For any non-terminal nodeu, if q+(u) = 0 then set
P(v) = P(u) for an arbitraryv2 u+ and setP(v) = 0 for all otherv2 u+. (The reason for
doing this is that ifP is a probability measure then any non-terminal nodeu with P(u)> 0
must have at least one successorv with P(v)> 0.) If q+(u)> 0, then for eachv2 u+, we
will define P(v) so that the ratioP(v)=P(u) equals theproportionof q+(u) that is on the
subtree starting atv:

P(v) = P(u)
q(v)

q+(u)
8v2 u+: (5.3)

The P values defined above are clearly non-negative at all nodes sinceq is non-negative.
For any non-terminalu, if q+(u) = 0, then one of the immediate successorsv of u has
P(v) = P(u) and all other immediate successorsv haveP(v) = 0, so∑v2u+ P(v) =P(u). On
the other hand, ifq+(u)> 0 for someu, then for eachv2 u+,

∑
v2u+

P(v) =
P(u)
q+(u) ∑

v2u+
q(v) = P(u);

ThusP satisfies the requirements (3.1) of a probability measure on the event tree.
Next define the node functionX (which will turn out to be a randomized stopping time)

forward-inductively in terms ofq and the above-definedP as follows:

X(v) =

8><>:
q(v)=P(v) if P(v)> 0;

q+(v�)=P(v�) if P(v�)> 0;P(v) = 0,

0 otherwise

(5.4)
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We now argue thatX is a randomized stopping time. Consider any non-terminal nodeu
with P(u)> 0. By definition of a measure,u has an immediate successoru0 with P(u0)> 0.
Then we have

X(u) =
q(u)
P(u)

=
q(u)+q+(u)

P(u)
�

q+(u)
P(u)

=
q(u)
P(u)

�
q(u0)
P(u0)

(definition ofP(u0)).

Therefore ifv is a non-terminal node withP(v)> 0, andv0 is an immediate successor ofv
with P(v0)> 0 (there must be at least one suchv0 2 v+ by definition of a measure), we have

∑
u�v

X(u) =
q(0)
P(0)

�
q(v0)
P(v0)

= 1�
q(v0)
P(v0)

:

If v0 is a terminal node, thenq(v0) = q(v0) andX(v0) = q(v0)=P(v0), so we have by the first
case of the definition (5.4) ofX,

∑
u�v

X(u) = 1�
q(v0)
P(v0)

= 1�X(v0);

which means the sum of theX values on any positive-probability path on the event-tree is
1. Now suppose that in addition to an immediate successorv0 with P(v0)> 0, v has another
immediate successorw with P(w) = 0. Then by definition ofP we have

∑
u�v

X(u) = 1�
q(v0)
P(v0)

= 1�
q+(v)
P(v)

;

which equals 1�X(w) by the second case of the definition (5.4) ofX. Note that theX
values on all successors ofw will be zero, by the third case of the definition ofX above.
Thus the sum of theX values on a zero-probability path is also 1. ClearlyX is non-negative
everywhere, soX is indeed a randomized stopping time.

Now we verify thatq� (P;X). From the definition ofP we can see that for anyv, if
P(v) = 0 thenq(v) = 0. This fact and the definition ofX imply thatP(v)X(v) = q(v) holds
at everyv.

To see the uniqueness properties, suppose(P;X) is a measure-strategy pair equivalent
to the node-measureq. By definitionP(0) is necessarily 1 for any such measureP. Let us
consider any nodev 6= 0 whereq(v) > 0, and letu = v� be its unique predecessor. This
meansq+(u)> 0 and by Proposition 5.3 we haveq+(u)> 0, and

P(u)
q(v)

q+(u)
= P(u)

P(v)X(v)+P(v)X+(v)
P(u)X+(u)

= P(v)
X(v)+X+(v)

X+(u)
= P(v):

Thus the equation (5.3) necessarily holds at allv whereq(v) > 0. It is then easy to see
by induction thatP(v) is unique at suchv. In particularP(v) is unique at nodesv where
q(v)> 0, and at suchv, X(v) is therefore also unique, since it must satisfyP(v)X(v) = q(v).

This Theorem immediately implies a corresponding result for simple node-measures:
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Corollary 5.5 If for some pure stopping timeτ, (P;Xτ) is a measure-strategy pair, then the
unique equivalent node-measure q is a simple node-measure inQ τ, defined by q(u) = P(u)
for every u that is on the stopping boundary ofτ, and q(u) = 0 for all other u. Conversely,
if q 2 Q τ is a simple node-measure, then(P;Xτ) is the unique equivalent measure-strategy
pair, whereP is defined byP(u) = q(u) whenever q(u)> 0.

The term “equivalent” is justified by the following Theorem.

Theorem 5.6 Suppose q� (P;X). Then for any adapted process Z,

E
PZX = Zq; (5.5)

and expected future values are identical under q and(P;X), i.e.,Zq(u) is defined exactly
whenEP

u ZX is defined (i.e., q+(u)> 0 if and only if bothP(u)> 0 and X+(u)> 0), and

Zq(u) = E
P
u ZX; 8u : q+(u)> 0: (5.6)

Proof Proposition 5.3 implies thatq+(u)> 0 if and only if bothP(u)> 0 andX+(u)> 0.
Note that

E
P
u ZX =

∑v>u X(v)P(v)Z(v)
P(u)X+(u)

:

Applying the equalitiesP(u)X(u) = q(u) and P(u)X+(u) = q+(u) to expression (4.12)
shows thatZq(u) equals the above expression forEP

u ZX . This proves (5.6) above, and a
similar argument proves 5.5.

6 Approximate martingale measures

Now we have enough vocabulary to define “approximate martingale measures”. Roughly
speaking, given an exercise strategyX, a measureP is an approximate martingale measure
if at any time, the discounted expected future exercise value of the stock price is not too far
from the current stock price.

Definition 6.1 For any probability measureP and randomized strategy X, we say thatP is
a (λ;µ;X)-approximate martingale measure, if P-almost surely,

S�k(1�µ) � E
P
k S�X � S�k(1+λ); 8k< n : X+

k > 0: (6.1)

The set of all measuresP that are(λ;µ;X)-approximate martingale measures is denoted by
P (λ;µ;X).

(Recall thatS�k stands for thediscountedstock price, i.e.,S�k = SkR�k. It is worth noting
some special cases of this definition. From the above remarks it follows thatP2 P (λ;µ;τ)
if and only if, P-almost surely,

S�k(1�µ) � E
P
k S�τ � S�k(1+λ); 8k< τ:

Clearly the process

Y := E
P
k S�τ
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is aP-martingaleup to the stopping timeτ, i.e., fork� τ. ThusP2 P (λ;µ;τ) implies that
there is some processS0 lying between the bid and ask price processes of the stock, such that
the discounted processS0k=Rk is aP-martingale, up to the stopping timeτ. If P2 P (λ;µ;τ)
for the special stopping timeτ = n, then this means that there is some processS0 lying
between the bid and ask price processes, such that the discounted processS0k=Rk is a P-
martingale. (This type of interpretation has been made, for example, by Jouini and Kallal
(1995) for European option prices under transaction costs.) In this case we say simply that
P is a (λ;µ)-approximate martingale measure, and denote the set of such measures by
P (λ;µ). Cvitanić and Karatzas (1996) and Koehl et al. (1999) define a very similar class
of measures in the context of pricing European options with transaction costs. Clearly an
ordinary martingale measureP belongs to the setP (0;0;τ) whereτ = n on every path; we
denote the set of martingale measures byP .

From the above remarks it is easy to see that the following holds:

Proposition 6.2 The following relationship holds among the various sets of probability
measures on the event tree:

P � P (λ;µ)�
[

τ2T
P (λ;µ;τ)�

[

X2X
P (λ;µ;X):

We can define a notion of(λ;µ)-approximate martingale node-measures, analogous to
(λ;µ;X)-approximate martingale measures:

Definition 6.3 We say that a node-measure q is a(λ;µ)-approximate martingale node-
measureif

S�(u)(1�µ)� S�q(u)� S�(u)(1+λ); 8u : q+(u)> 0:

The collection of(λ;µ)-approximate martingale node-measures will be denoted byQ (λ;µ).
For brevity we use the notation

Q (λ;µ;τ) := Q τ\Q (λ;µ):

Remark 6.4Note thatQ (λ;µ) is never empty: the trivial node-measure withq(0) = 1 and
q(u) = 0 for all nodesu 6= 0 is a(λ;µ)-approximate martingale node-measure.

From Theorem 5.6 it is clear that:

Corollary 6.5 If q� (P;X) then q2 Q (λ;µ) if and only ifP2 P (λ;µ;X). In particular, if
q� (P;τ) then q2 Q (λ;µ;τ) if and only ifP2 P (λ;µ;τ).

This implies a result that we will frequently appeal to in this paper:

Theorem 6.6 For any adapted process Z,

max
q2Q (λ;µ)

Zq = max
X2X

max
P2P(λ;µ;X)

E
PZX; (6.2)

max
q2Q (λ;µ;τ)

Zq = max
P2P(λ;µ;τ)

E
PZτ; 8τ 2 T ; (6.3)

and the corresponding statements with “max” replaced by “min” also hold.
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Proof The equality (6.2) (either with “max” everywhere or “min” everywhere) follows
from: Theorem 5.4 which says that for everyq2 Q there is an equivalent measure-strategy
pair (P;X) and vice versa, Corollary 6.5 which says that ifq� (P;X) thenq2 Q (λ;µ) if
and only ifP2 P (λ;µ;X), and Theorem 5.6 which says that ifq� (P;X) thenZq = E

PZX.
The argument for the second equality is the same, except that we use Corollary 5.5 in place
of Theorem 5.4.

Clearly the set of node-measuresQ (λ;µ) is convex, since it is defined by linear con-
straints. If there are no transaction costs, the Theorem below shows that all theextreme
pointsof this set aresimplenode-measures. Recall from Section 3 that a node-measureq is
said to be simple if its support lies on the boundary of some stopping time.

Theorem 6.7 (Extreme points ofQ (0;0)) The extreme points of the set of node-measures
Q (0;0) are simple node-measures.

Proof Recall that a pointx is an extreme point of a convex setSif it cannot be expressed as
a strict convex combination of distinct points ofS (see Bertsekas (1995)). Consider some
non-simple node-measureq 2 Q (0;0). We will construct two new node-measuresa and
c that belong toQ (0;0) such thatq= 1

2(a+ c), and this would imply that no non-simple
node-measure can be an extreme point ofQ (0;0). Recall that for any node measurep,
p(u)� p(u)+ p+(u) for any nodeu.

Now recall from Section 3 that ifq is not simple, there is a nodeu such thatq(u)> 0
andq+(u) > 0. Fix such a nodeu. Fix some strictly positiveε such thatε < q(v) for all
v� u with q(v) > 0. Define a node-measurea by “redistributing” the node-measureq as
follows: reduceq(u) by an amountε, and for everyv> u, increaseq(v) by a fraction ofε
that is equal to value ofq(v) relative toq+(u). More precisely,a is identical toq everywhere
except that :a(u) = q(u)� ε, and

a(v) = q(v)

�
1+

ε
q+(u)

�
; 8v> u: (6.4)

Notice that the total amount by whichq is increased on all the successors ofu matches the
amount by whichq is decreased atu, i.e., a is just a redistribution ofq, and so is also a
node-measure. Note also that

q(v) = a(v); 8v� u; q+(v) = a+(v); 8v< u: (6.5)

The above statements also hold for the node-functionc constructed asa but with�ε instead
of ε. It is easy to see thatq= 1

2(a+c).
We now argue thata2 Q (0;0); the argument forc is similar. To see this we first note

that if a node-measurep is in Q (0;0) then the “martingale-like” constraints hold:

S(v)p+(v) = ∑
w>v

S(w)p(w) = ∑
v02v+

 
S(v0)p(v0)+ ∑

w>v0

S(w)p(w)

!
= ∑

v02v+

�
S(v0)p(v0)+S(v0)p+(v0)

�
;

or

S(v)p+(v) = ∑
v02v+

S(v0)p(v0) (6.6)
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In fact it is easy to see that a node-measurep is in Q (0;0) if and only if (6.6) holds at all
v 62T. We know (6.6) holds forp= q, and since for anyv> u, a(v) is a fixed multiple ofq(v)
(definition (6.4)), this equality also hold forp= a and anyv� u. From (6.5), the equality
(6.6) holds forp= a and anyv< u. Clearly for nodesv that are not on a path containingu,
q(v) = a(v), so the equality (6.6) holds for suchv andp= a. Thusa2 Q (0;0).

7 Portfolios

A portfolio processis defined by a triple(x;∆;B) wherex is theinitial wealth , and∆k and
Bk are adapted processes representing thestock and bond positionsat timek respectively,
for k= 0;1; : : : ;n�1. (Note that the portfolio process is not defined at timen). In particular
for a non-terminal nodeu, ∆(u) is the number of shares of stock held in the state represented
by nodeu, from timet(u) to timet(u)+1, andB(u) is the number of dollars in bonds held
at nodeu, between timest(u) andt(u)+1. Consider some nodev 6= 0. Recall thatv� is
the unique predecessor ofv. At nodev, just before it is re-balanced, the portfolio consists
of ∆(v�)S(v) dollars in stocks andB(v�)R dollars in bonds (or justx dollars in bonds if
v= 0). We therefore define the (pre-rebalancing)portfolio value at any nodev as

Vx;∆;B(v) =

(
x if v= 0

∆(v�)S(v)+B(v�)R otherwise:
(7.1)

Note that if we define∆(0�) := 0 andB(0�) := x=R then we can omit the first case in
the above definition. We will therefore assume these definitions throughout. Ifv 62 T, after
re-balancing, the portfolio atv consists of∆(v) shares andB(v) dollars. This rebalancing
involves either buying or selling of shares at nodev, but not both(it can never help to both
buy and sell shares at the same node, since this will only incur more transaction costs).
If ∆(v) > ∆(v�), thenb(v) = (∆(v)�∆(v�)) shares must be bought. Otherwise,s(v) =
(∆(v�)�∆(v)) shares must be sold. Clearlyb(v) and s(v) are uniquely defined by the
constraints

b(v)�s(v) = ∆(v)�∆(v�); b(v)s(v) = 0; b(v)� 0; s(v)� 0: (7.2)

The portfolio (x;∆;B) is said to beself-financing if the cost of (or proceeds from) re-
balancing the stock position is offset by a change in the bond position. In other words, at
every nodev, in caseb(v) > 0 the cost of shares bought is financed by a reduction in the
bond holdings, and in cases(v)> 0 the proceeds from selling shares is offset by an increase
in bond holdings. Thus for a self-financing portfolio(x;∆;B), at any nodev 62 T we must
have

b(v)S(v)(1+λ)� B(v�)R�B(v) if b(v)> 0,

and

s(v)S(v)(1�µ)� B(v)�B(v�)R if s(v)> 0.

Noting thatb(v) ands(v) can never both be positive, these conditions can be combined into

�b(v)S(v)(1+λ)+s(v)S(v)(1�µ)+B(v�)R�B(v)� 0 8v 62 T; (7.3)



Randomized Stopping Times and American Options 19

whereb(v) ands(v) are given by (7.2). A similar formulation appears in Edirisinghe et al.
(1993).

We writeΦ to denote the set of all self-financing portfolios(x;∆;B). We will sometimes
abuse notation and writeΦ(x) to mean the set of all pairs of adapted processes(∆;B) such
that(x;∆;B) 2 Φ. Since the constraints defining self-financing portfolios are all linear, it is
clear thatΦ is convexandclosed.

8 Hedging and the pricing problem

In order to characterize the range of prices for an American option that are consistent
with the absence of arbitrage, we first need to understand the situation of the buyer and
seller of the option. In Karatzas and Kou (1998), the authors point out eloquently that these
two situations are fundamentally asymmetric. The treatment in this section closely follows
theirs.

The buyer and seller are essentially entering into the following agreement at time 0: the
seller agrees to pay the buyer a random amountGτ � 0 at timeτ, whereτ is a stopping
timechosen by the buyer. In return for this commitment, the buyer agrees to pay an amount
x� 0 to the seller at time 0. We consider the question: what is the “fair” price for the buyer
to pay the seller at time 0, for his obligation to deliver the amountGτ � 0 at any stopping
timeτ picked by the buyer?

Let us examine the seller’s objective. When he receivesx from the buyer, he wants to
find a portfolio(x;∆;B) 2Φ that enables him to meet his obligation without risk (i.e. on all
paths) and foranystopping timeτ chosen by the buyer, i.e.,

Vx;∆;B
τ �Gτ; 8τ 2 T : (8.1)

Note that we are implicitly making the followingassumptions:(a) when it is exercised,
the option issettled in cash, and (b)there are no transaction costs when a portfolio is
liquidatedto settle the option. If there were transaction costs at this time, we would have
to consider the liquidated portfolio value, which would be smaller than the pre-rebalancing
portfolio value. (See Musiela and Rutkowski (1998, page 56) for a discussion of these
assumptions.) We make these assumptions for simplicity; removing these assumptions only
complicates the notation without adding much insight.

The smallest initial wealthx�0 that allows the seller to meet his obligation as described
above, is called theupper hedging pricefor the American option:

hup(λ;µ) := minfx� 0 j 9(∆;B) 2 Φ(x) s.t. (8.1) holdsg: (8.2)

We will refer to the optimization problem in (8.2) as themin-cost super-replication prob-
lem, and an optimal solution(x0;∆0;B0) will be called anoptimal super-replicating port-
folio. Clearly in any optimal super-replicating portfolio(x0;∆0;B0), we havex0 = hup(λ;µ)
by definition.

We will need the following definition in Section 9.

Definition 8.1 Thediscounted deficitprocess Dx;∆;B of the portfolio(x;∆;B) is the dis-
counted amount by which the portfolio value falls short of the payoff:

Dx;∆;B
k := (Gk�Vx;∆;B

k )R�k:

In particular at a given node u,

Dx;∆;B(u) = (G(u)�Vx;∆;B(u))R�t(u):
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Now let us consider the buyer’s objective: he starts out by borrowing the amountx� 0
(i.e. he starts with wealth�x) at time 0 to pay the seller for the option, and picks a stopping
time τ 2 T and portfolio(∆;B) 2 Φ(�x) such that, by exercising his option at timeτ, the
payment that he receives enables him to repay without risk, the debt incurred at time 0
when purchasing the option, i.e.,

V�x;∆;B
τ +Gτ � 0: (8.3)

Note that again we are assuming that (a) a debt must be repaidin cash, and (b)there are no
transaction costs when a portfolio is liquidated to settle a debt.

The largest amountx� 0 that enables the buyer to repay his debt in this way, is called
the lower hedging priceof the option:

hlow(λ;µ) := maxfx� 0 j 9τ 2 T ;(∆;B) 2 Φ(�x); s.t. (8.3) holds:g (8.4)

Notice the asymmetry between the seller and the buyer: the former needs to hedge against
anystopping timeτ 2 T , while the latter need only hedge forsomestopping timeτ 2 T .
It is important to point out thathlow could be bigger thanhup. However, in the absence of
arbitrage,hlow � hup always holds, as we show in Theorem 8.3. We now define the notion
of arbitrage.

Suppose the price of the American optionG is y. We say that the pair(G;y) admits an
arbitrage opportunity in the market if there exists either

1. a portfolio(∆;B) 2 Φ(x) that satisfies

Vx;∆;B
τ �Gτ; 8τ 2 T ; (8.5)

for some 0< x< y; or
2. a stopping timeτ 2 T and a portfolio(∆;B) 2 Φ(�x) such that

V�x;∆;B
τ +Gτ � 0; (8.6)

for somex> y.

In the first case, the option pricey is too high because the seller is able to construct a port-
folio using justx < y that allows him to meet his obligations to the option buyer without
risk, so he can pocket the differencey�x, which represents a risk-less profit, i.e., an arbi-
trage. In the second case, the option pricey is too low because the buyer can borrowx> y,
and pay onlyy for the option, pocketing the differencex�y, and construct a portfolio that
allows him to repay his initial debt without risk at some stopping timeτ that he chooses.
Again this is an arbitrage.

We say that the market isarbitrage-free if for any American optionG there is some
pricey such that(G;y) does not admit an arbitrage opportunity.

The following theorem is adapted from Karatzas and Kou (1998), and is immediate
from the above definitions.

Theorem 8.2 Suppose G is an American option. Then(G;y) admits an arbitrage opportu-
nity if and only if y< hlow(λ;µ) or y> hup(λ;µ).
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Proof Supposey < hlow(λ;µ). By definition (8.4),hlow(λ;µ) is the largest amountx that
allows the option bearer to construct a portfolio(∆;B) 2 Φ(�x) such that (8.6) holds for
some stopping timeτ. Note that any amountx smaller thanhlow(λ;µ), and in particular any
x in the interval(y;hlow(λ;µ)), will also allow the option bearer to do this. Thusy satisfies
the condition 2 of an arbitrage arbitrage opportunity as defined above. On the other hand
supposey > hup(λ;µ). By definition (8.2),hup(λ;µ) is the smallest initial wealthx that
allows the option seller to construct a portfolio(∆;B) 2 Φ(x) such that (8.5) holds. Note
that any amountx larger thanhup(λ;µ), and in particular anyx in the interval(hup(λ;µ);y),
will also allow the option seller to do this. Thusy satisfies the condition 1 of an arbitrage
opportunity defined above.

On the other hand, suppose thathlow(λ;µ) � y� hup(λ;µ) and that the conditions of
(1) in the definition of arbitrage opportunity above are satisfied, for some positivex < y.
Since by definition (8.2),hup(λ;µ) is the smallestx� 0 such that these conditions hold,
this implies thathup(λ;µ)� x< y, which is a contradiction. The argument is similar if the
conditions of (2) are satisfied.

An immediate corollary to this is:

Corollary 8.3 The market is arbitrage-free if and only if hlow(λ;µ)� hup(λ;µ) holds for
everyAmerican option G, and in this case the interval[hlow(λ;µ);hup(λ;µ)] is called the
arbitrage-free interval .

In Theorem 13.1 we show some other conditions that are equivalent to the absence of
arbitrage. The remainder of the paper is concerned with characterizing the upper and lower
hedging priceshup(λ;µ) andhlow(λ;µ).

9 Representations of the Upper Hedging Price

The goal of this section is to represent the upper hedging pricehup(λ;µ) in terms of several
optimization problems. Consider the following seven optimization problems.

h(Q (λ;µ)) := max
q2Q (λ;µ)

G�
q; (9.1)

h(X ) := max
X2X

max
P2P(λ;µ;X)

E
PG�

X; (9.2)

h(Q ;Φ) := max
q2Q

min
(x;∆;B)2Φ

(x+D
x;∆;B
q ); (9.3)

h(X ;Φ) := max
X2X

min
(x;∆;B)2Φ

(x+ bDx;∆;B
X ); (9.4)

h(T ;Φ) := max
σ2T

min
(x;∆;B)2Φ

(x+ bDx;∆;B
σ ); (9.5)

h(Φ) := min
(x;∆;B)2Φ

max
u

(x+Dx;∆;B(u)); (9.6)

h(Q (λ;µ;τ)) := max
q2Q (λ;µ;τ)

G�
q; 8τ 2 T : (9.7)

We have used a mnemonic scheme to name each of the optimum values above. For exam-
ple we chose the nameh(X ;Φ) in (9.4) because the domains of the max and min in the
corresponding optimization problem areX andΦ respectively. Thus the “arguments” ofh
in each name above should not be treated literally as arguments of a function.
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Some explanation of each of the above problems might be helpful here. Also the reader
may wish to review the definitions of the various averages in Section 4.1. Expression (9.1)
defines the “maximum discountedq-weighted payoff, over all(λ;µ)-approximate martin-
gale node-measuresq”. Expression (9.2) forh(X ) is a generalization of expression (1.1),
the difference being that the outer maximization is now performed over allrandomized
stopping timesX 2 X and the inner maximization is over all(λ;µ;X)-approximate martin-
gale measures. Note that unlike in (1.1), the domain of the inner “max” in (9.2) depends on
whichX is fixed in the domain of the outer “max”. In Theorem 11.1 we show that with zero
transaction costs this expression reduces to (1.1) if there exists a martingale measure with
positive measure on every path. Expression (9.3) is essentially the dual of the linear pro-
gram corresponding to (9.1). For a fixedq2 Q the inner “min” represents the “best hedge”
achievable by self-financing portfolios with respect toq, in the sense of minimizing the
sum of initial wealth andq-weighted discounted deficit. Expression (9.4) is similar, except
that the outer maximization is over randomized stopping timesX 2 T , and “best hedge”
is defined in terms of the maximumX-value of the discounted deficit. Expression (9.5)
is yet another variant where the outer maximization is over mixturesσ of stopping times
and “best hedge” is defined in terms of theσ-expected maximum value of the discounted
deficit. Expression (9.6) is obtained by interchanging the “max” and “min” in (9.3) and
simplifying; for a fixed self-financing portfolio(x;∆;B)2Φ the inner “max” represents the
maximum value ofx plus the discounted deficit, over all nodesu. Finally, expression (9.7)
is similar to (9.1) except that the maximization is restricted to simple node-measures whose
support lies on the stopping boundary of some stopping timeτ.

Theorems 9.1 and 9.2 below show that all but the last of the above expressions equals
the upper hedging pricehup(λ;µ), as defined by (8.2). The principal tool for our proofs
is Strong Duality of Linear Programming (see Appendix A). Example 15.1 in Section 15
illustrates the computation ofhup(λ;µ).

It is also instructive to consider the problem of hedging against a particular exercise
strategyτ, i.e., the problem of finding the minimum initial wealth needed to be able to
construct a self-financing portfolio that can hedge againstτ. More precisely, consider

hτ
up := minfx� 0j9(∆;B) 2 Φ(x) s.t.Vx;∆;B

τ �Gτg: (9.8)

Theorem 9.3 shows thathτ
up = h(Q (λ;µ;τ)).

Theorem 9.1 (Upper hedging price)The minimum in the definition (8.2) of the upper
hedging price is finite, and is given by:

hup(λ;µ) = h(Q (λ;µ)) = h(X ): (9.9)

Proof The plan of the proof is to first observe that the optimization problem implicit in the
definition (8.2) of the upper hedging price, is a linear programming problem. We then write
the dual of this linear program (LP) (see Appendix A), and by making a judicious choice
of dual variables observe that the dual LP is equivalent to the definition ofh(Q (λ;µ)). The
equality ofh(Q (λ;µ)) andh(X ) then follows from Theorem 6.6. Thus we only need to
show the first equality in (9.9).

Let us then write the optimization in the definition (8.2) ofhup(λ;µ) as an LP. This
defineshup(λ;µ) as the smallestx such thatVx;∆;B(u)�G(u) holds at every nodeu, subject
to the self-financing constraints (7.2) and (7.3). First observe that since it is always sub-
optimal to simultaneously buy and sell shares of the stock, for anyv the variablesb(v)
ands(v) cannot both be positive at an optimal solution. Therefore we can dispense with
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the product constraintsb(v)s(v) = 0 appearing in (7.2). Thus we can write the LP in the
variablesx;b(:);s(:);∆(:);B(:):

hup(λ;µ) = minx

subject to the following constraints (the dual variable corresponding to each constraint is
shown on the left):

the self-financing constraints (7.2) and (7.3) forv= 0:

z(0) : �b(0)(1+λ)S(0)+s(0)(1�µ)S(0)�B(0)+x� 0; (9.10)

y(0) : �∆(0)+b(0)�s(0) = 0; (9.11)

self-financing constraints (7.2) and (7.3) for each nodev 62 T [f0g:

z(v) :�b(v)(1+λ)S(v)+s(v)(1�µ)S(v)�B(v)+B(v�)R� 0; (9.12)

y(v) : �∆(v)+∆(v�)+b(v)�s(v) = 0; (9.13)

the initial domination constraint:

z0(0) : x�G(0); (9.14)

the domination constraints for everyv 6= 0 (see definition (7.1) ofVx;∆;B):

z0(v) : ∆(v�)S(v)+B(v�)R�G(v) (9.15)

and the non-negativity constraints

b(u)� 0; s(u)� 0; 8u 62 T: (9.16)

We need not add the non-negativity constraintx� 0 since the option payoffG(:) is non-
negative and so the initial domination constraintx�G(0) is a stronger constraint. Clearly
the LP above is feasible since for a sufficiently large initial wealthx one can always con-
struct a self-financing portfolio whose value dominates the payoff everywhere. Further-
more, the initial domination constraint ensures that the solution to the linear program is
bounded from below. Therefore the LP is feasible and has a bounded optimum value, and
by strong duality of linear programming (Schrijver, 1986) (see Appendix, Theorem A.1),
the dual LP also has a bounded optimum value equal to that of the primal LP.

Let us now write down the dual of the above LP. We have defined three families of dual
variables:z(u);y(u) for each nodeu 62 T, andz0(u) for each nodeu. Thus we can express
hup(λ;µ) in terms of the dual LP as

hup(λ;µ) = max∑
u

z0(u)G(u) (9.17)
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subject to the following constraints, with the corresponding primal variables shown on the
left. (The appendix describes how the dual LP is written in general.)

B(u) : �z(u)+R ∑
v2u+

(z(v)+z0(v)) = 0; 8u : u+ 6� T; (9.18)

B(u) : �z(u)+R ∑
v2u+

z0(v) = 0; 8u : u+ � T; (9.19)

∆(u) :�y(u)+ ∑
v2u+

(y(v)+z0(v)S(v)) = 0; 8u : u+ 6� T; (9.20)

∆(u) : �y(u)+ ∑
v2u+

z0(v)S(v) = 0; 8u : u+ � T; (9.21)

x : z(0)+z0(0) = 1; (9.22)

b(u) : �z(u)(1+λ)S(u)+y(u)� 0; 8u 62 T; (9.23)

s(u) : z(u)(1�µ)S(u)�y(u)� 0; 8u 62 T; (9.24)

and the non-negativity constraints

z(u)� 0; 8u 62 T; z0(u)� 0; 8u: (9.25)

The dual constraints (9.18)-(9.24) can be re-written in a more informative way as follows:

z(u) = R�t(u) ∑
v>u

z0(v)Rt(v); 8u 62 T; (9.26)

y(u) = ∑
v>u

z0(v)S(v); 8u 62 T; (9.27)

∑
u

z0(u)Rt(u) = 1; (9.28)

(1�µ)z(u)S(u)� y(u)� (1+λ)z(u)S(u); 8u 62 T: (9.29)

Now if we define the node functionq(u) := z0(u)Rt(u) for all u, the dual LP is equivalent to:

hup(λ;µ) = max∑
u

q(u)R�t(u)G(u) (9.30)

subject to

∑
u

q(u) = 1; (9.31)

S(u)(1�µ) ∑
v>u

q(v) � Rt(u) ∑
v>u

q(v)R�t(v)S(v) �

S(u)(1+λ) ∑
v>u

q(v); 8u 62 T; (9.32)

q(u)� 0; 8u; (9.33)

which is equivalent tohup(λ;µ) = maxq2Q (λ;µ)G�
q.

Theorem 9.2 (Upper hedging price)For the optimization problems defined above,

h(Q ;Φ) = h(X ;Φ) = h(T ;Φ) = h(Φ) = hup(λ;µ)

Moreover, the order of the “max” and “min” can be reversed in the definitions of h(Q ;Φ),
h(X ;Φ) and h(T ;Φ) without changing the optimum value.
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Proof Recall thatΦ is a convex, closed set, so we can apply Prop. 5.2 to infer that

h(Q ;Φ)� h(X ;Φ)� h(T ;Φ)� h(Φ):

Also, if we reverse the order of the “max” and “min” in the definition ofh(Q ;Φ), the
resulting expression cannot be smaller thanh(Q ;Φ), and by an argument similar to the one
in the proof of Prop. 5.2, it equalsh(Φ). The same is true if we reverse the “max” and “min”
in the expressions definingh(X ;Φ) and h(T ;Φ). Now suppose(x;∆;B) is any optimal
super-replicating portfolio (see (8.2)). This means that starting with wealthx = hup(λ;µ),
there is a self-financing portfolio(∆;B) whose value dominates the payoff everywhere, i.e.,
the (discounted) deficit at every node is� 0. Therefore for this portfolio,

max
u

(x+Dx;∆;B(u))� hup(λ;µ);

which means thath(Φ)� hup(λ;µ).
Thus to prove our Theorem it suffices to show thath(Q ;Φ) = hup(λ;µ). We show this

using Strong Duality of Linear Programming. For brevity we will drop the superscript
“x;∆;B” on V andD in what follows. We first writeh(Q ;Φ) as

h(Q ;Φ) = max
q2Q

h(q);

where

h(q) := min
(x;∆;B)2Φ

(x+Dq) = min
(x;∆;B)2Φ

�
x+G�

q�V�
q
�

=G�
q+ min

(x;∆;B)2Φ

�
x�V�

q
�
: (9.34)

The optimization problem in the last “min” expression above is a linear program:

α = min x�∑
u

q(u)V(u)R�t(u)

subject to the self-financing constraints (9.10)-(9.13) in the proof of Theorem 9.1. Recall
thatV(u) above is given by expression (7.1), which is linear in(x;∆;B). This LP and is
very similar to the primal LP in the proof of Theorem 9.1. The only difference is that in the
present LP, eachV(u) term appears in the objective function with coefficient�q(u)R�t(u),
whereas in the proof of Theorem 9.1 there was a constraintV(u)�G(u) for each nodeu.
Not surprisingly, the dual of the LP above is also similar to the dual LP in that Theorem; it
is

α = max0

subject to the constraints (9.18)-(9.24) with each dual variablez0(v) replaced by the constant
q(v)R�t(v). Recall that in the proof of Theorem 9.1 wedefined q(v) to bez0(v)Rt(v). Thus we
can carry out exactly the same algebraic manipulations as in that Theorem, and write the
dual of our LP as: max0 subject to the constraints (9.31)-(9.33). Since the node-measureq
is fixed in the present Theorem, these constraints merely enforce the requirement thatq2
Q (λ;µ), i.e., thatq is a(λ;µ)-approximate martingale node-measure. Thus ifq2 Q (λ;µ)
the dual LP is feasible and its optimum value, as well as that of the primal LP (i.e. the “min”
expression in (9.34)) is 0, and soh(q) = G�

q. If q 62Q (λ;µ), the dual LP is not feasible and
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therefore the primal LP is unbounded (since it is clearly feasible) andh(q) =�∞. Since we
know Q (λ;µ) is not empty (see Remark 6.4),h(Q ;Φ) can be written as

h(Q ;Φ) = max
q2Q

h(q) = max
q2Q (λ;µ)

G�
q =: h(Q (λ;µ));

which by Theorem 9.1 equalshup(λ;µ).

Theorem 9.3 (Seller’s hedge against a givenτ) For any stopping timeτ 2 T ,

hτ
up= h(Q (λ;µ;τ)):

Proof The proof closely mirrors that of Theorem 9.1. Recall thatIτ is the stopping bound-
ary of τ. We also define the set

Jτ := fu : 9v> u s.t. v2 Iτg (9.35)

of nodes that areinsidethe stopping boundary.
Consider the definition (9.8) ofhτ

up. This is a linear program much like the definition
(8.2) ofhup(λ;µ). The difference is that in the case ofhτ

up, the domination constraints only
need to hold at the stopping boundaryIτ. Thus in the LP forhτ

up, the optimum does not
change if we restrict the domain of optimization to portfolios that satisfy the self-financing
constraints (7.3) only for nodesv2 Jτ. Without writing down the LP explicitly, we can see
that it can be written as

hτ
up = maxx

subject to the following constraints: (a) the initial self-financing constraints (9.10) and
(9.11) if 02 Jτ, (b) self-financing constraints (9.12) and (9.13) for everyv 2 Jτ, (c) the
initial domination constraint (9.14) if 02 Iτ, (d) the domination constraints (9.15) for every
v2 Iτ, and (e) the non-negativity constraints (9.16) for everyu2 Jτ.

As in the proof of Theorem 9.1 we define the dual variablesz(:);y(:);z0(:) but this time
we only need dual variablesz(u);y(u) for each nodeu2 Jτ, andz0(u) for eachu2 Iτ. Then
the dual LP is

hτ
up = max∑

u2Iτ

z0(u)G(u) (9.36)

subject to these constraints: (a) constraints (9.18) for allu2 Jτ such thatu+ 6� T, (b) con-
straints (9.19) for allu such thatu+ � T, (c) constraints (9.20) for allu 2 Jτ such that
u+ 6� T, (d) constraints (9.21) for allu such thatu+ � T, (e) the constraintz0(0) = 1 if
02 Iτ, or the constraintz(0) = 1 if 0 62 Iτ, (f) constraints (9.23) and (9.24) for everyu2 Jτ,
and (g) the non-negativity constraints

z(u)� 0; 8u2 Jτ; z0(u)� 0; 8u2 Iτ:

These dual constraints can be re-written as (9.26)-(9.29), except that now we only need
(9.26), (9.27), and (9.29) for allu 2 Jτ, and the summation in (9.28) should only be over
u2 Iτ. As in the proof of Theorem 9.1, if we define the node functionq(u)� z0(u)Rt(u) for
all u2 Iτ, the dual LP is equivalent to

hτ
up = max

u2Iτ
q(u)G�(u)
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subject to the following constraints: (a) (9.31) with the summation only over nodesu2 Iτ,
(b) the constraints (9.32) for allu 2 Jτ, with q(v) interpreted as 0 forv 62 Iτ, and (c) the
non-negativity constraints (9.33) foru 2 Iτ. The constraints (a) and (c) requireq to be
a simple node-measure inQ τ, and the constraints (b) require thatq 2 Q (λ;µ). Thus the
constraints together require thatq 2 Q τ \Q (λ;µ) =: Q (λ;µ;τ), so we can writehτ

up =

maxq2Q (λ;µ;τ)G�
q.

10 Randomized Strategies and Nash Equilibria

In the last Section we saw that some optimization problems involved in the representation of
the upper hedging pricehup(λ;µ) appear to require the use of mixtures of stopping times (or
randomized stopping times). In game theory it is often the case that at a Nash equilibrium,
one or more players must choose amixtureof strategies. It is thus natural to seek a game-
theoretic interpretation of some of our results. We give here such an interpretation of the
max-min expressionsh(Q ;Φ) andh(T ;Φ) defined in the previous Section.

We would like to set up a simultaneous-move game between thesellerand thedevil.
We will consider two variants of such a game. Thenode gameis defined as follows:

– The seller picks a self-financing portfolio(x;∆;B) 2 Φ,
– The devil picks a node-measureq 2 Q , i.e., a “mixture” of nodes (in the sense that

choosing a single node constitutes a pure strategy, and choosing a node-measure with
support at more than one node constitutes a non-degenerate mixed strategy).

– For given choices(x;∆;B) andq, the seller’scostand the devil’sutility are both equal to

x+D
x;∆;B
q . (Recall from Section 4.1 that for any adapted processZ, Zq is theq-weighted

average value ofZ over the entire event-tree.)

Thestopping gameis defined similarly except that the strategy space of the devil is the set
T of all mixtures of stopping times.

– The seller again picks a self-financing portfolio(x;∆;B) 2 Φ,
– The devil picks a mixtureσ 2 T of stopping times,
– For given choices(x;∆;B) andσ, the seller’scostand the devil’sutility are both equal

to x+ bDx;∆;B
σ .

In both games, the seller would like to minimize her cost, while the devil would like to
maximize his utility. (We are using the term “devil” rather than “buyer” because the devil’s
objective in this game is solely to force the seller’s cost to be as large as possible; the option
buyer on the other hand would presumably try to maximize his own payoff from exercising
the option). In the node game, a pair of choicesq0;(x0;∆0;B0) is said to constitute aNash
equilibrium (Fudenberg and Tirole, 1998) if the seller’s choice of(x0;∆0;B0) minimizes
her cost given the devil’s choice ofq0, and the devil’s choice ofq0 maximizes his utility
given the seller’s choice of(x0;∆0;B0). A Nash equilibrium in the stopping game is defined
similarly.

Theorems 10.2 and 10.3 below characterize Nash equilibria in the node game and stop-
ping game respectively. See Example 15.3 for an illustration of these Theorems. We first
need the following definition.

Definition 10.1 We say that a portfolio(x0;∆0;B0) is equivalent to a portfolio (x;∆;B)
if the portfolio (x0;∆0;B0) is identical to(x;∆;B) except that(x0;∆0;B0) starts with some
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additional initial wealthα (could be negative) that is simply held in the bank (or in bonds)
and allowed to grow at the risk-free interest rate, or in other words x0 = x+α, and for
every node u,∆0(u) = ∆(u), and B0(u) = B(u)+αRt(u).

Clearly if (x;∆;B) is equivalent to(x0;∆0;B0) with x0 = x+α, then at every node, the
discounted portfolio values differ by exactlyα, i.e.,

Vx0;∆0;B0

(u)R�t(u) =Vx;∆;B(u)R�t(u)+α; 8u:

Theorem 10.2 (Node game)A node-measure q0 2Q and a self-financing portfolio(x0;∆0;B0)2

Φ constitute a Nash equilibrium in the node game if and only if: (a) q0 is an optimal node-
measure for expression (9.1) defining h(Q (λ;µ)), and (b)(x0;∆0;B0) is equivalent to an
optimal super-replicating portfolio (defined by (8.2)). In particular the seller’s cost and
devil’s utility at any Nash equilibrium is hup(λ;µ).

Proof Recall from the proof of Theorem 9.1 that the minimization problem (8.2) and the
maximization problem in (9.1) are linear programs that are dual to each other. In particular,
each variableq(u) in the first LP corresponds to adomination constraintin the second LP.
Complementary slackness(see Appendix A) tells us thatq0 2 Q is optimal for (9.1) and
(x0;∆0;B0) is optimal for (8.2) if and only if for every nodeu with q0(u)> 0, the domination
constraint atu is tight for the portfolio(x0;∆0;B0), i.e.,Dx0;∆0;B0

(u) = 0. For brevity we will
denote the processDx0;∆0;B0

by D in what follows.
To prove the “if” part of the Theorem, consider anyq0 2 Q optimal for (9.1), and

any(x0;∆0;B0) 2 Φ optimal for (8.2). The complementary slackness property stated above
implies thatDq0 = 0, so x0 + Dq0 = hup(λ;µ). Suppose the seller chooses the portfolio
(x0;∆0;B0). Since this is a super-replicating portfolio, the deficit at every node is� 0, so
the devil cannot hope to choose aq00 2 Q with Dq00 > 0. Thus the devil’s choice ofq0 is
optimal, given that the seller has chosen(x0;∆0;B0). Now suppose the devil has chosenq0.
If the seller chooses(x0;∆0;B0), her cost would bex0+Dq0 = hup(λ;µ). This is the smallest
possible cost the seller can hope for, given the devil’s choice ofq0. This follows from the
duality argument in the last paragraph of the proof of Theorem 9.2, where it can be seen
that

h(q0) := min
(x;∆;B)2Φ

(x+Dq0) = G�
q0 = hup(λ;µ):

In fact any portfolio(x00;∆00;B00) that is equivalent to(x0;∆0;B0) would also be an optimal
choice for the seller.

To prove the “only if” part, consider a Nash equilibrium where the seller’s choice is
(x0;∆0;B0) 2 Φ and the devil’s choice isq0. Since this is a Nash equilibrium, the devil must
be indifferentamong all nodes in the support ofq0, i.e., the discounted deficitD(u) of the
portfolio must equalα = Dq0 for everyu2 q0 (otherwise the devil could drop some nodes
from the support ofq0 and improve his utility). Moreover, there is no node in the tree where
the deficit exceedsα. Therefore we can construct a new portfolio(x00;∆00;B00) with initial
wealthx00 = x0+α that is equivalent to(x0;∆0;B0), and the discounted deficit of this portfolio
would be� 0 everywhere, and exactly 0 at every nodeu2 q0. In other words(x0;∆0;B0) is a
super-replicating portfolio whose value exactly matches the option payoff at every node in
the support ofq0. By the complementary slackness property stated above, this implies both
thatq0 is optimal for (9.1) and that(x00;∆00;B00) is optimal for (8.2).
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We now prove a necessary condition for a Nash equilibrium in the stopping game.

Theorem 10.3 (Stopping game)Suppose a mixtureσ0 2 T and a self-financing portfolio
(x0;∆0;B0) 2 Φ constitute a Nash equilibrium in the stopping game. Thenσ0 is an optimal
mixture in the definition (9.3) of h(T ;Φ), and(x0;∆0;B0) is equivalent to an optimal super-
replicating portfolio (defined by (8.2)). In particular the seller’s cost and devil’s utility at
any Nash equilibrium is hup(λ;µ).

Proof Consider a Nash equilibrium where the seller chooses(x0;∆0;B0) 2 Φ and the devil
choosesσ0 2 T . For brevity we will denote the discounted deficit processDx0

;∆0
;B0

by D. Let
δ = bDσ0 , so that the seller’s cost and devil’s utility is(x0+δ). Since this is a Nash equilib-
rium, the devil must beindifferentamong allτ2 σ0, and sobDτ = δ for all τ 2 σ0. Also, there

is noτ 2 T with bDx0;∆0;B0

τ > δ. Thus the discounted deficitD(u) of the portfolio(x0;∆0;B0)

is at mostδ at every nodeu. This means we can construct a self-financing portfolio equiva-
lent to(x0;∆0;B0) by starting with wealthx00 = x0+δ, and the deficit of this portfolio would
be� 0 everywhere, i.e., the portfolio value dominates the option payoff everywhere. Thus
this is a super-replicating portfolio with initial wealthx0+δ, and by definition ofhup(λ;µ)
we must havex0+δ� hup(λ;µ). However we know that foranymixtureσ and any optimal

super-replicating portfolio(x;∆;B) we havex+ bDx;∆;B
σ � hup(λ;µ), and since the seller must

make an optimal choice, her cost (as well as the devil’s utility) must bex0+δ = hup(λ;µ).
Thus the seller’s choice is a portfolio equivalent to an optimal super-replicating portfolio.
In particular, for the devil’s choice ofσ0, the seller’s minimum cost ishup(λ;µ). From the
definition (9.5) ofh(T ;Φ) and the fact thath(T ;Φ) = hup(λ;µ) (Theorem 9.2) it follows
that the devil’s choice ofσ0 optimizes (9.3).

11 The case of zero transaction costs

The previous sections showed that randomized (or mixed) exercise strategies are an essen-
tial feature of the upper-hedging price representations. By contrast, with zero transaction
costs, it turns out to be sufficient to restrict attention to only pure exercise strategies in all
of the previous results. In this section we will examine this difference between the zero and
non-zero transaction costs cases in some detail.

Recall that the upper hedging pricehup is defined in terms of a super-replication prob-
lem:hup is the smallest initial wealth needed so that the option seller is able to hedge against
anyexercise strategyτ of the buyer’s choosing (we will drop the argumentsλ;µ for brevity
here). In other words, starting withhup, the seller can construct asinglehedging portfolio
that will hedge againstanyexercise strategyτ the buyer chooses. We call such a hedge an
oblivious hedge, because it does not depend on any specific exercise strategy. Thushup is
the smallest initial wealth needed to construct an oblivious hedge.

Now it is natural to ask what is the maximum value ofhτ
up over allτ, i.e., what is the

initial wealth needed to hedge against the “toughest” exercise strategy? That is, we want to
compute

h�up := max
τ2T

hτ
up: (11.1)

Notice thath�up is the smallest initial wealth needed to hedge against anypre-announced
exercise strategyτ. In other words, if the option buyer announces his exercise strategyτ in
advance (and sticks to it), then the seller, starting with an initial wealthh�up, can construct
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a hedge thatdependson τ, and dominates the payoff at timeτ. We call such a hedge an
adaptive hedge,because the specific portfolio can vary depending on the pre-announced
exercise strategy. Thush�up is the smallest initial wealth needed for an adaptive hedge. A
reasonable question is:

Doesh�up suffice to construct an oblivious hedge, i.e, asinglehedge portfolio that
hedges againstall exercise strategies?

Here is the subtle difference between the case of zero and no transaction costs. With zero
transaction costs, the answer to the above question is always “yes”, i.e.,h�up = hup, as The-
orem 11.2 states. However with non-zero transaction costs, the answer is in general “no”,
i.e.,h�up may be smaller thanhup; Section 15 shows an example of this situation.

First we will show in Theorem 11.1 that ifλ = µ= 0 then the outer maximization in the
definition (9.2) ofh(X ) can be restricted to pure stopping times without affecting the value
of the optimum. If in addition there exists a martingale measure with positive measure
on every path, then the inner maximization can be restricted to the setP of martingale
measures. Thus the representation (1.1) in Harrison and Kreps (1979) follows from our
results.

Theorem 11.1 (Upper hedging price with zero transaction costs)If λ = µ= 0 in our
model, the upper hedging price is given by

hup(0;0) = max
τ2T

max
P2P(0;0;τ)

E
PG�

τ: (11.2)

If there exists a martingale measureQ 2 P with Q(ω)> 0 for everyω 2Ω, then the upper
hedging price is

hup(0;0) = max
τ2T

max
P2P

E
PG�

τ: (11.3)

Proof Consider the expression (9.1) definingh(Q (λ;µ)) (which by Theorem 9.1 equals
hup(λ;µ)), with λ = µ= 0:

hup(0;0) = max
q2Q (0;0)

∑
u

q(u)G�(u):

Theorem 6.7 says that the extreme points of the convex setQ (0;0) are simple node-
measures, and since the maximum of a linear function over a convex set must occur at
one of its extreme points (Bertsekas, 1995), it suffices to do the above maximization over
simple node-measures inQ (0;0):

hup(0;0) = max
τ2T

max
q2Q (0;0;τ)

G�
q; (11.4)

and by Theorem 6.6 we can write this as (11.2).
Now suppose there exists a martingale measureQ with positive measure on every path.

Then we claim that the domain of the inner maximization in (11.2) can be restricted to the
setP of all martingale measures without affecting the value of the optimum. This follows
from two facts. First, any measureP2 P also belongs toP (0;0;τ). Second, any measure
P2 P (0;0;τ) can be redefined to be a martingale measureP0 such thatEP0

G�
τ = E

PG�
τ , as

follows (forward inductively):

P0(u) =

(
P(u); if u2 Iτ[Jτ;

P0(u�)Q(u)=Q(u�); otherwise,
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where the notationIτ;Jτ is defined in the proof of Theorem 9.3. This new measure is iden-
tical toP at or before the stopping boundary ofτ, and for any nodeu beyond this boundary,
the ratioP0(u)=P0(u�) equalsQ(u)=Q(u�) (wheneverP0(u�)> 0). Thus it is easy to verify
thatP0 is a martingale measure. This establishes our claim, and the Theorem follows.

Theorem 11.2 (Adaptive and oblivious hedge with zero transaction costs)With λ =

µ= 0, the minimum initial wealth needed to hedge against the “toughest” stopping time
also suffices to hedge everywhere. In other words an oblivious hedge requires no more
initial wealth than an adaptive hedge, or:

h�up = hup(0;0):

Proof From Theorem 9.3 it follows that for anyτ 2 T ,

hτ
up = h(Q (0;0;τ)) := max

q2Q (0;0;τ)
G�

q;

and so maxτ2T hτ
up equals expression (11.4) in the proof of Theorem 11.1, and we showed

there that it equalshup(0;0).

The above result implies that in the absence of transaction costs, the optimization prob-
lems in the definitions ofh(X ;Φ) andh(T ;Φ), have optimal solutions that involve only
pure stopping times. It also implies that in the absence of transaction costs, there is a Nash
equilibrium in the stopping game where the devil picks a pure stopping time. This is stated
in the following Theorem.

Theorem 11.3 (Representations ofhup(0;0)) Supposeλ = µ= 0. Letτ 2 T be a stopping
time that maximizes hτ

up. Let(x;∆;B)2Φ be any optimal super-replicating portfolio. Then:

1. The randomized stopping time Xτ and the portfolio(x;∆;B) are optimal for expression
(9.4) defining h(X ;Φ),

2. the degenerate mixtureτ, and the portfolio(x;∆;B) are optimal for expression (9.5)
defining h(T ;Φ), and

3. in the stopping game, there is a Nash equilibrium where the devil chooses the pure
stopping timeτ, and the seller chooses the portfolio(x;∆;B).

Proof For brevity let us denotehup(0;0) by hup. Note that ifX = Xτ thenδ := bDx;∆;B
X =bDx;∆;B

τ . Since(x;∆;B) is an optimal super-replicating portfolio,x+δ� hup. We claim there

cannot exist a portfolio(x0;∆0;B0) with x0 + bDx0;∆0;B0

τ < hup. This is because if there were
such a portfolio, we could construct a new portfolio equivalent to(x0;∆0;B0) that starts with
initial wealthx0+δ0 < hup. This would be a self-financing portfolio that starts with wealth
less thanhup and dominates the option payoff at timeτ. This however would contradict

Theorem 11.2, sinceτ is a “toughest” stopping time. Thus we havex+ bDx;∆;B
X = hup, and so

(x;∆;B) is optimal for the inner “min” in (9.4) and (9.5), forX =Xτ andσ= τ respectively.
By Theorem 9.2 this in turn implies thatX = Xτ andσ = τ are optimal for the outer “max”
in the respective expressions. This proves the first two statements of the Theorem.

Consider now the stopping game. The observations of the previous paragraph imply that
the seller’s choice of portfolio(x;∆;B) is optimal, given that the devil has chosen the pure
strategyτ; the seller’s cost isx+ bDx;∆;B

τ = hup. Also, since(x;∆;B) is a super-replicating

portfolio, the devil cannot hope to pick aτ0 for which bDx;∆;B
τ0 > 0. Thus, given that the seller

has chosen(x;∆;B), if the devil choosesτ then his utility would bex+ bDx;∆;B
τ = hup, and

this would be highest possible utility he can get. This proves the third statement.
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12 Representations of the Lower Hedging Price

Just as in Section 9 we will represent the lower hedging pricehlow(λ;µ) in terms of some
optimization problems:

g(T ;Q ) := max
τ2T

min
q2Q (λ;µ;τ)

G�
q (12.1)

g(T ) := max
τ2T

min
P2P(λ;µ;τ)

E
PG�

τ (12.2)

hτ
low := maxfx� 0 j 9(∆;B) 2 Φ(�x); s.t. V�x;∆;B

τ +Gτ � 0g; 8τ 2 T : (12.3)

A few remarks about the above expressions might be helpful. In the definition (12.1) of
g(T ;Q ), for a fixedτ 2 T , the inner “min” represents the smallestq-weighted discounted
option payoff, over all(λ;µ;τ)-approximate martingale node-measuresq. Expression (12.2)
for g(T ) is analogous to (9.2) except that it involves only ordinary stopping times. Theorem
12.2 asserts thatg(T ;Q ) andg(T ) equal the lower hedging pricehlow(λ;µ), as defined in
(8.4). Example 15.1 in Section 15 illustrates the computation ofhlow(λ;µ).

It is possible to derive representations analogous to (9.3)-(9.6) forhlow(λ;µ), but we do
not do so in this paper. Definition (12.3) ofhτ

low is analogous to definition (9.8) ofhτ
up; it

is the maximum amount of cash the option buyer can borrow to purchase the option and
be able to repay the loan by exercising the option according toτ. Theorem 12.1 shows a
representation ofhτ

low which is analogous to that shown in Theorem 9.3 forhτ
up, with the

“max” replaced by a “min”.

Theorem 12.1 (Buyer’s hedge against a givenτ)

hτ
low = min

q2Q (λ;µ;τ)
G�

q:

Proof The proof is almost identical to that of Theorem 9.3.

Theorem 12.2 (Lower hedging price)In our market model, the lower hedging price
hlow(λ;µ) is given by

hlow(λ;µ) = g(T ;Q ) = g(T ); (12.4)

where the inner “min” is interpreted as+∞ if P (λ;µ;τ) is empty.

Proof Clearlyhlow(λ;µ) defined in (8.4) can be written as

hlow(λ;µ) = max
τ2T

hτ
low;

and the Theorem follows from Theorem 12.1 and Theorem 6.6.

Remark 12.3It is possible to show using duality arguments that

hlow(λ;µ) = max
X2X

min
P2P(λ;µ;X)

E
PG�

X; (12.5)

where the right hand side is a “relaxation” of the expression (12.2) definingg(T ). “Relax-
ation” is a commonly used term in mathematical programming, to refer to the program that
results when integrality restrictions are removed; such relaxed programs are easier to com-
pute numerically. In our case expression (12.2) involves ordinary stopping times, which
can be modeled by integer variables, and removing the integer restrictions gives rise to the
expression on the right in (12.5) involving randomized stopping times. For reasons of space
we do not exhibit the proof of (12.5) in this paper.
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Unlike the upper hedging pricehup(λ;µ), the lower hedging pricehlow(λ;µ) may be
unboundedly large. We show in Theorem 13.1 however thathlow(λ;µ) is finite if and only
if the market is arbitrage-free. The intuition behind this difference between the upper and
lower hedging prices is the following. Regardless of whether or not the market is arbitrage-
free, the definition (8.2) ofhup(λ;µ) implies that it cannot be smaller than 0 since the option
payoff functionG is non-negative. However if there is a buyer’s arbitrage (defined by (8.6)),
then the buyer can borrow an unboundedly large amount of cash and still pay it back by
exercising the option appropriately.

With zero transaction costs we show that the expression (1.2) of Harrison and Kreps
(1979) follows from our results:

Theorem 12.4 (Lower hedging price with zero transaction costs)If λ = µ= 0 in our
model, and if there exists a martingale measureQ 2 P with Q(ω)> 0 for all ω 2 Ω, then
for an American option G the lower hedging price is given by

hlow(0;0) = max
τ2T

min
P2P

E
PG�

τ: (12.6)

Proof From Theorem 12.1 it follows that

hlow(0;0) = max
τ2T

min
P2P(0;0;τ)

E
PG�

τ;

where the domain of the inner minimization is the set of measuresP in P (0;0;τ). By the
same reasoning as in the proof of Theorem 11.1 we can replace this domain by the setP of
all martingale measures.

13 Conditions equivalent to the absence of arbitrage

Theorem 13.1 The following statements are equivalent:

1. The lower hedging price hlow(λ;µ) is finite for every American option G,
2. There exists a(λ;µ)-approximate martingale measureP, i.e.,P (λ;µ) 6= φ,
3. hlow(λ;µ)� hup(λ;µ) for every American option G,
4. The market is arbitrage-free.

Proof We first show 1 and 2 are equivalent. From Theorem 12.2 it follows that (regardless
of the American optionG) hlow(λ;µ) is finite if and only if for every stopping timeτ (and in
particular the stopping timeτ= n), the inner “min” in the definition (12.2) ofg(T ) is finite,
which means there exists someP2 P (λ;µ;τ), which meansP (λ;µ) 6= φ. The equivalence
of 1 and 3 follows from the Strong Duality Theorem of Linear Programming (Theorem
A.1) and the fact (Theorem 9.1) thathup(λ;µ) is always finite. The equivalence of 3 and 4
was already stated as Corollary 8.3.

We now show that as transaction costs increase, the arbitrage-free interval “expands”,
in the sense that the interval with higher transaction costs contains the interval with smaller
transaction costs.

Theorem 13.2 If 0� λ� λ0 < 1 and0� µ� µ0 < 1 andP (λ;µ) 6= φ, then

hlow(λ0;µ0)� hlow(λ;µ)� hup(λ;µ)� hup(λ0;µ0)< ∞:
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Proof This easily follows from the observation that
[

X2X
P (λ;µ;X)�

[

X2X
P (λ0;µ0;X):

An easy corollary to this Theorem is:

Corollary 13.3 If there exists a martingale measure in our market model, i.e., ifP 6= φ,
then the range of arbitrage-free option prices without transaction costs, is contained in the
range[hlow(λ;µ);hup(λ;µ)], and the limits of this range are finite.

14 European options with transaction costs

As mentioned in the Introduction, this case has been studied in several papers. In particular
for European options, our results imply an expectation representation that is very similar to
the one shown by Koehl et al. (1999).

Theorem 14.1 For a European option G in our model, if the market is arbitrage-free, the
upper and lower hedging prices are given by

hup(λ;µ) = max
P2P(λ;µ)

E
PG�

n; (14.1)

hlow(λ;µ) = min
P2P(λ;µ)

E
PG�

n: (14.2)

Proof A European optionG is merely a special case of an American option with payoff
Gk = 0 for all k < n. Therefore in the maxX2X in expression (9.2) forhup(λ;µ), we need
only consider the special randomized exercise strategyX with Xn = 1 (and all otherXi = 0
for i < n by definition). This means that the inner max in that expression can be restricted
to P 2 P (λ;µ), i.e., the(λ;µ)-approximate martingale measures. This implies expression
(14.1) above. The argument for expression (14.2) is similar.

15 Examples

In Section 9 we showed several representations for the upper hedging pricehup(λ;µ) (de-
fined by (8.2)). In particular the expression (9.2) definingh(X ) involves a maximization
over randomized stopping timesX 2 X . A natural question is, if we restrict this maximiza-
tion to just the pure stopping timesτ 2 T , is the optimum the same? In Section 11 we saw
that with zero transaction costs the answer to this question is “yes”. The following example
shows that in the presence of transaction costs the answer to this question is “no”: (non-
degenerate) randomized strategies are essential in the representation ofhup(λ;µ). Some
more insight into the need for randomized strategies is provided in Example 15.3 later in
this section. The example below also illustrates the computation of the lower hedging price.

Example 15.1 (Need for randomized strategies.)We will show an example where no op-
timal simplenode-measure exists for the optimization problem in the definition (9.1) of
h(Q (λ;µ)). Proposition 5.5 then implies that the optimalX in expression (9.2) forh(X )
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0 u v

G = 0

q = 0opt: q = 0.5 q = 0.5

S = 1 S, G = 2 S, G = 4

λ = 2.0,    µ = 0.0,   R = 1.0

X = 0 X = 0.5 X = 0.5

Fig. 15.1 A simple event tree showing that with non-zero transaction costs, it is necessary to use a
randomized exercise strategyX to optimize the second expression in (9.9). Node names are shown
inside the nodes, and the stock priceS and payoffG are indicated under each node. The optimal
node-measureq and strategyX are indicated above the nodes.

cannot correspond to a pure stopping time. A non-degenerate randomized exercise strategy
is thus necessary in this example.

Consider the simple 3-node event tree of Figure 15.1, with the parameters shown there.
The optimization problem corresponding to the expression (9.1) definingh(Q (λ;µ)) (and
thereforehup(λ;µ)) is:

hup(λ;µ) = max q(0)G(0)+q(u)G(u)+q(v)G(v) (15.1)

subject to

q(0)+q(u)+q(v) = 1; (15.2)

q(v)S(u)(1�µ) � q(v)S(v) � q(v)S(u)(1+λ); (15.3)

(q(u)+q(v))S(0)(1�µ) � q(u)S(u)+q(v)S(v) � (q(u)+q(v))S(0)(1+λ); (15.4)

q(0)� 0; q(u)� 0; q(v)� 0: (15.5)

We will write q = (q(0);q(u);q(v)) for the vector of unknowns, i.e., the node-measure.
Constraint (15.3) always holds independently of theq values, sinceS(u)<S(v) andS(v) =
4 < S(u)(1+λ) = 2�3:0= 6. Similarly, the left inequality in (15.4) always holds since
S(0) < S(u) and the middle term is always at leastS(u). SinceS(0)(1+λ) lies between
S(u) andS(v), we can chooseq(0) = 0, and chooseq(u) so that we maximize

q(u)G(u)+(1�q(u))G(v)

subject to

q(u)S(u)+(1�q(u))S(v)� S(0)(1+λ); 0� q(u)� 1:

Noting thatG andSare equal atu andv, the optimalq(u) is given by

2q(u)+4(1�q(u)) = 3; or q(u) = 0:5;

which means the optimal solution isq= (0;0:5;0:5). The corresponding value of the ob-
jective function is thus

hup(λ;µ) = 3:

It is easy to verify that this objective value cannot be achieved with any simple node-
measure: there are only two simple node-measures that are(λ;µ)-approximate martingale
node-measures: the node-measureq = (1;0;0), which yields an objective function value
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of 0, andq= (0;1;0), which yields an objective value of 2. Thus there is no simple node-
measure that optimizes expression (9.1) definingh(Q (λ;µ)).

Note that on this simple event tree there can only be one measureP, namely the one
given byP(0) = P(u) = P(v) = 1. Thus for any node-measureq on this tree, the unique
equivalent measure-strategy pair is(P;X), whereX(:) = q(:) everywhere. Therefore the
optimal X in expression (9.2) definingh(X ) = hup(λ;µ) is the one whereX(0) = 0 and
X(u) =X(v) = 0:5. Again it is easy to see that there is no pure stopping time that optimizes
that expression, for this example.

Now let us turn to the computation of the lower hedging pricehlow(λ;µ) using the max-
min expression in (12.4):

hup(λ;µ) = max
τ2T

min
P2P(λ;µ;τ)

E
PG�

τ:

As noted above, there is only one possible probability measureP on this event tree, and so
for any fixedτ, the inner “min” equalsEPG�

τ if P 2 P (λ;µ;τ), and equals+∞ otherwise.
There is only one stopping timeτ for whichP2 P (λ;µ;τ), namelyτ = 0 (i.e. stop at node
0). Since we want to maximize the inner “min” above with respect toτ, the optimalτ to
pick is eitherτ = 1 or τ = 2, and in both cases the value of the inner “min” is+∞. Thus
the lower hedging price in this example is unboundedly large; the American option in this
case admits an arbitrage opportunity. This is not surprising in light of Theorem 13.1 where
we showed that the market is arbitrage-free if and only if there is a(λ;µ)-approximate
martingale measure, i.e.,P (λ;µ) 6= φ. In this example the only possible measureP is not a
(λ;µ)-approximate martingale measure.

Let us consider this example with zero transaction costs, i.e.,λ = µ= 0. It is easy to see
that the only(0;0)-approximate martingale node-measure is the one withq(0) = 1;q(u) =
0;q(v) = 0, and the corresponding objective function value ishup(0;0) = 0. The lower
hedging price can be seen to behlow(0;0) = +∞.

The following example illustrates the difference between an adaptive and oblivious
hedge.

Example 15.2 (Hedging)Let us consider the previous example from the perspective of
adaptive and oblivious hedging (as defined in Section 11). There are just three pure stopping
times on this event-tree: we denote the stopping timeτ = i by τi , for i = 0;1;2. Consider
the quantityhτ

up defined in (9.8). For brevity we denotehτi
up by hi

up. First take the case of
non-zero transaction costs, withλ = 2:0, µ= 0. From Theorem 9.3 we know that

hi
up = max

q2Q (λ;µ;τi)
G�

q:

In this example the right hand side has a particularly simple form: if the unique node-
measureq corresponding toτi is a (λ;µ)-approximate martingale node-measure, then the
“max” equalsG�

q, otherwise it equals�∞. Thush0
up = 0, h1

up = 2 andh3
up = �∞, and so

the “toughest” exercise strategy isτ = 1, and an initial wealth of

h� = 2

suffices to construct a self-financing portfolio that hedges against any pre-announced ex-
ercise strategy, i.e., for anadaptivehedge. However, sincehup(λ;µ) = 3, we know that an
oblivioushedge requires initial wealth 3. Thus, any portfolio that starts with wealth 2 will
fail to dominate the payoff at at least one node of the tree.
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By contrast, ifλ = µ= 0, we know from the previous example thath� = hup(0;0) = 0.
As noted above, the only(0;0)-approximate martingale node-measure isq = (1;0;0), so
thath0

up = 0 andh1
up = h2

up = �∞. Thus the “toughest” exercise strategy isτ = 0, and the
smallest initial wealth needed to hedge against it ish� = 0. Sinceh� = hup(0;0), we know
that this initial wealth also suffices to construct an oblivious hedge.

Nash equilibria in the stopping game and the node game are illustrated in the next
example.

Example 15.3 (Nash Equilibrium)Now for the same example above, let us consider the
stopping game defined in Section 10. Since there is only one path in our event tree, the
stopping game and node game are in fact equivalent. First let us examine the case of non-
zero transaction costs, withλ = 2; µ= 0. Suppose the devil simply picks the “toughest”
exercise strategyτ = 1, and the seller picks the smallest-initial-wealth portfolio that domi-
nates the payoff at time 1 (i.e., nodeu). Such a portfolio would match the payoff exactly at
nodeu, and so the seller’s cost and devil’s utility would beh1

up= 2. However these choices
wouldnotconstitute a Nash equilibrium, for the following reason. We know that the seller’s
portfolio value must fall below the option payoff at node 0 orv, so the devil could switch to
a different stopping time and improve his utility. However if the devil chooses amixtureof
the stopping timesτ = 1 andτ = 0:5, each with weight 0:5, and the seller picks an optimal
super-replicating portfolio, then by Theorem 10.2 this would be a Nash equilibrium, where
the seller’s cost ishup(λ;µ) = 3.

Example 15.4 (American call option)A more realistic example where a non-degenerate
randomized stopping time is required is an American call option, as shown in Figure 15.2.
The node-measureq that optimizes (9.1) for this example is not a simple node-measure.
This means that the optimumX in expression (9.2) (which equalshup(λ;µ)) is a non-
degenerate randomized strategy. Note that if there were no transaction costs, the optimal
X would correspond to a pure stopping time – it is well known (Duffie, 1996) that under
the martingale measure the optimal exercise strategy for an American option (on a non
dividend-paying stock) isτ = n, i.e., exercise at expiration. However the example in Fig.
15.2 shows that with non-zero transaction costs, the optimal randomized strategy may have
some non-zero “probability” of exercise before expiration. It is not immediately clear what
the interpretation of this example ought to be: what is the optimal or “rational” exercise
policy for the option holder?

One difficulty with addressing this question is that in expression (9.2), the set of mea-
sures in the domain of the inner “max”dependson whichX is picked in the outer “max”.
If this were not the case, standard results in linear programming would imply that the op-
timum of (9.2) must occur at a pure stopping time. This state of affairs appears to confirm
a remark of Duffie (1996): “The real difficulties with analyzing American securities be-
gin with incomplete markets. In that case, the choice of exercise policy may play a role in
determining the marketed subspace, and therefore a role in pricing securities. If the state-
price-deflator depends on the exercise policy, it could even turn out that the notion of a
rational exercise policy is not well defined.”
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q = 0.71726

q = 0.071726

q = 0.21101

Fig. 15.2 A binomial event tree showing a non-simple node-measureq that optimizes expression
(9.1) definingh(Q (λ;µ)), for an American call option with the following parameters:n= 3, initial
stock priceS0 = 10, strike priceK = 8, stock price “up factor” (factor by which stock price moves up
or down)u= 1:1, λ = µ= 0:2, andR= 1:0. Only the positiveq values are shown.

16 Concluding Remarks

This paper considered the following question. In the presence of proportional transaction
costs, what is the permissible range of prices of an American option in the absence of ar-
bitrage? This range is defined by the upper and lower hedging prices. We examined this
pricing problem in a general discrete-time event-tree model. Our goal was to generalize the
expectation representations (1.1) and (1.2) that were shown by Harrison and Kreps (1979)
for a frictionless but incomplete market where there may be multiple martingale measures.
We found that in the presence of proportional transaction costs, expressions analogous to
these can be written, provided we generalize both the notion of a “martingale” and that of
an “exercise strategy”. In particular we need the notion of an approximate martingale mea-
sure. More interestingly and surprisingly, we need to expand the class of stopping times
to includerandomizedstopping times. We showed several perspectives from which to un-
derstand why randomized strategies are needed when there are transaction costs, including
one based on Nash equilibria in a two-player game. We derived most of our results using
elementary methods, requiring only the Strong Duality Theorem of linear programming.

One of the main contributions of this paper has been to show that randomized stopping
times are necessary to arrive at an elegant expectation representation of the upper hedg-
ing price of an American option with proportional transaction costs, in discrete time. We
believe it would be interesting to consider similar representations in continuous time, or
consider the continuous-time limit of our representations. Randomized stopping times can
also be defined in continuous time; in fact Baxter and Chacon (1977) introduce this concept
in the continuous-time setting.

We have noted in Section 11 that the value of the expression (1.1) for the case of zero
transaction costs remains unchanged even if the outer maximization is over randomized
exercise strategies. This raises the possibility that randomized stopping times could have
computationalapplications as alinear relaxationof ordinary stopping times. For instance,
even in the absence of transaction costs, is it possible to use randomized stopping times
to design efficient Monte Carlo algorithms for pricing American options? A key difficulty
in using Monte Carlo simulation to price American options is that the optimal exercise
boundary is unknown. Perhaps one way to get around this difficulty is to simulate not
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just the stock price paths but also the randomized exercise strategy along each path. An
intriguing possibility is whether randomized stopping times can help in the quest forclosed
form formulas for say an American call option (even in the absence of transaction costs).

The computation of the expressions for the upper and lower hedging prices appears
to be non-trivial. It would be useful to design efficient algorithms for approximating the
values of these expressions

It would also be interesting to show expressions representing upper and lower hedging
prices for American options when there are capital gainstaxes. Karatzas and Kou (1998)
have shown expressions for upper and lower hedging prices withportfolio constraintsbut
without transaction costs. It would of significant interest to extend their results to the case
of non-zero transaction costs; it is conceivable that randomized strategies will play a role
here as well, at least in a discrete-time framework.

More works needs to be done to define an appropriate notion of “rational” exercise
policy for the holder of an American option, when there are transaction costs. As discussed
in Example 15.4, it is not clear what the economic implications are of the fact that (non-
degenerate) randomized exercise strategies appear to turn up at the optima of the various
upper-hedging price representations.

In Section 10 we showed a game between the option seller and a “devil” from which the
upper hedging price emerges fairly naturally. A more economically appealing result would
be to define a game between the option seller and thebuyerwhich naturally gives rise to
the upper and lower hedging prices. This is easy to set up without transaction costs, but is
challenging when there are transaction costs.

AcknowledgementsWe would like to thank Steven Shreve for encouraging us to work on this paper.
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A Appendix: Linear programming and duality

Let A be anm�n (m rows,n columns) matrix with real-valued entries. Letb be a column
vector inRm, and letc be a column vector inRn. Let x 2 R

n be a column vectors of
variables. For any matrixZ, ZT denotes its transpose,Z(i; :) denotes itsi’th row, andZ(:; j)
denotes it’sj ’th column. For any column vectorz, zi refers to itsi’th entry. For two matrices
X;Y, XY denotes the usual matrix product.

The following optimization problem is alinear program(LP) in the variable vectorx:

maxfcTx : x� 0; Ax� bg; (A.1)

or more explicitly:

max
n

∑
i=1

cixi (A.2)

subject to

xi � 0; i = 1;2; : : : ;n; (A.3)

A(i; :)x� bi; i = 1;2; : : : ;m: (A.4)

The function (A.2) is called theobjectiveof the LP. The inequalities (A.3) are thenon-
negativityconstraints on the variablesxi . The inequalities (A.4) are referred to simply as
theconstraints. A vectorx that satisfies (A.3) and (A.4) is said to befeasible, and the set of
such vectors is called thefeasible setof the LP. If the feasible set is empty, the LP is said
to beinfeasible. If the LP has an unbounded optimum (i.e.,+∞ or�∞) then the LP is said
to beunbounded.

Since we are starting with this LP, it is called theprimal, and the correspondingdual
LP is

minfyTb : y� 0; yTA� cTg; (A.5)

or more explicitly:

min
m

∑
i=1

yibi (A.6)

subject to

yi � 0; i = 1;2; : : : ;m; (A.7)

yTA(:; i)� ci; i = 1;2; : : : ;n: (A.8)

Notice that fori = 1;2; : : : ;n, the primalvariable xi corresponds to the dualconstraint
yTA(:; i)� ci . Also for i = 1;2; : : : ;m, the primalconstraint A(i; :)x� bi corresponds to the
dualvariable yi .

In general the primal LP may havefree variables, i.e., those which are not constrained
to be non-negative. There may also beequality constraintsof the formA(i; :)x = bi . (If
there are inequalities such asxi � 0 or constraints of the formA(i; :)x� bi , the LP can
easily be re-written so that all variables are non-negative or free, and all constraints are
equalities or of the form (A.4).) To write the dual of a general LP, we modify the above
dual specification as follows:
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1. If primal variablexi is free, the corresponding dual constraint will be anequalitycon-
straint:yTA(:; i) = ci .

2. For a primalequalityconstraintA(i; :)x= bi , the corresponding dual variableyi will be
free.

The dual of a maximization LP problem can also easily be written using the above rules.
It is therefore clear that thedual of the dual LP is the primal LP.

The following relationship between the primal and dual optima is called theStrong
Duality Theorem, and John von Newmann is credited with stating it in privately circulated
notes as early as 1947. (See also Schrijver (1986) for more details.)

Theorem A.1 (Strong Duality of LP) Consider an LP P in general form, and its dual P0.
Then exactly one of the following cases occurs:

1. P;P0 are both infeasible,
2. One of P;P0 is unbounded, the other is infeasible,
3. P;P0 are both feasible, and their optima are equal.

A useful optimality condition for LP problems is the following.

Theorem A.2 (Complementary Slackness)Suppose u is a feasible solution for the primal
LP, and v is a feasible solution for its dual. Then a necessary and sufficient condition for u
and v to be optimal for the primal and dual LP respectively, is: for every i, if ui > 0 then
the corresponding dual constraint istight at v, i.e., holds with equality.

Let us apply this condition to the primal LP (A.1) and its dual (A.5). Ifu is primal
feasible andv is dual feasible, thenu is optimal for the primal andv is optimal for the dual,
if and only if:

ui > 0=) vTA(:; i) = ci ; i = 1;2; : : : ;n;

or equivalently,

vTA(:; i)> ci =) ui = 0; i = 1;2; : : : ;n:
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B Notation

For easy reference we give here a summary of notation used in this paper. For each symbol
we show where it is defined and a brief definition.

Symbol Where defined Brief definition
General event-tree and process notation.
u+ Sec. 2 Set of immediate successors of nodeu.
u� Sec. 2 Immediate predecessor of nodeu.
u< v Sec. 2 v is a successor ofu on the event tree.
u� v Sec. 2 u= v or u< v:
t(u) Sec. 2 Time-period corresponding to nodeu.
0 Sec. 2 Stands for initial node in event-tree.
T Sec. 2 Set of terminal nodes in event-tree.
ωk Sec. 2 Timek node on pathω.
Sk Sec. 2 Stock price at timek.
R Sec. 2 Equals 1+ r, wherer is the risk-free interest rate per time-period.
Gk Sec. 2 Payoff of American option at timek.
Z(u) Sec. 2 Value of a processfZkg at nodeu.
Z� Sec. 2 Discounted process corresponding toZ, i.e.,Z�

k = ZkR�k.
Iτ Sec. 2 Set of nodes on stopping boundary ofτ.
Jτ Eq. (9.35) Set of nodes inside the stopping boundary ofτ.
Node-measures
q Sec. 3 A node probability measure.∑uq(u) = 1, andq(u)� 0 for all u.
Q Sec. 3 Set of all possible node-measuresq.
Q τ Sec. 3 Set of all simple node-measuresq corresponding toτ.
q+(u) Sec. 4.2 ∑v>u q(v):
q(u) Sec. 4.2 q(u)+q+(u):
Zq Eq. (4.8) q-weighted average value ofZ.
Zq(u) Eq. (4.12) q-weighted average future value ofZ at nodeu.
q� (P;X) Def. 4.4 q is equivalent to(P;X), i.e.,q(u) = P(u)X(u) for all u.
Randomized stopping times
X Def. 4.1 A randomized stopping time:∑n

k=0 Xk = 1, Xk � 0 for all k.
X+

k Def. 4.9 Remaining value ofX at timek, or ∑n
i=k+1Xi .

Xτ Eq. (4.1) Randomized stopping time corresponding to pure stopping timeτ.
σ Def. 4.3 A mixture of pure stopping times.
Xσ Eq. (4.2) Randomized stopping time corresponding to mixtureσ.
ZX Eq. (4.3) Time-X value ofZ; analogous toZτ.
ZXjk Eq. (4.11) Future time-X value ofZ at timek.
E

P
k (Z) Sec. 3 Shorthand for the conditional expectationEP(ZjF k).
E

P
k ZX Sec. 4.2 Shorthand forEP

k ZXjk.
E

P
u ZX Sec. 4.2 Shorthand forEP

k ZX(ω) whenωk = u.bZX Eq. (4.5) Maximum time-X value ofZ.bZτ Eq. (4.6) Maximum value ofZ atτ.bZσ Eq. (4.7) σ-expected maximum value ofZ.
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Symbol Where defined Brief definition
Approximate martingale measures
P (λ;µ;X) Def. 6.1 Set of(λ;µ;X)-approximate martingale measures.
P (λ;µ;τ) Sec. 6 P (λ;µ;X) with X = Xτ.
P (λ;µ) Sec. 6 P (λ;µ;τ) with τ(ω) = n for all ω.
P Sec. 6 The set of all martingale measures.
Q (λ;µ) Def. 6.3 The set of all(λ;µ)-approximate martingale node-measures.
Q (λ;µ;τ) Def. 6.3 Q τ\Q (λ;µ).
Portfolios and hedging
λ Sec. 2 Transaction cost per dollar of shares bought;λ� 0.
µ Sec. 2 Transaction cost per dollar of shares sold; 0� µ� 1.
∆k Sec. 7 Number of shares held at timek.
Bk Sec. 7 Number of dollars (in bonds) held at timek.
x Sec. 7 Initial wealth of a portfolio.
Φ Sec. 7 Set of self-financing portfolios(x;∆;B).
Φ(x) Sec. 7 Set of(∆;B) such that(x;∆;B) 2 Φ.
Vx;∆;B(v) Eq. (7.1) Value of portfolio(x;∆;B) at nodev.
Dx;∆;B

k Def. 8.1 Discounted deficit of portfolio(x;∆;B) at timek.
hup(λ;µ) Eq. (8.2) Upper hedging price.
hlow(λ;µ) Eq. (8.4) Lower hedging price.
hτ

up Eq. (9.8) Min. wealth needed for seller to hedge againstτ.
h�up Eq. (11.1) Min. wealth needed for seller to hedge against toughestτ.
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