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Abstract Ina general discrete-time market model with proportional transaction costs, we
derive new expectation representations of the range of arbitrage-free prices of an arbitrary
American option. The upper bound of this range is called the upper hedging price, and
is the smallest initial wealth needed to construct a self-financing portfolio whose value
dominates the option payoff at all times. A surprising feature of our upper hedging price
representation is that it requires the use of randomized stopping times (Baxter and Chacon,
1977), just as ordinary stopping times are needed in the absence of transaction costs. We
also represent the upper hedging price as the optimum value of a variety of optimization
problems. In addition we show a two-player game where at Nash equilibrium, the value to
both players is the upper hedging price, and one of the players must in general choose a
mixture of stopping times. We derive similar representations for the lower hedging price as
well. Our results make use of strong duality in linear programming.
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1 Introduction

This paper examines the no-arbitrage pricing of American options in a discrete-time market
model where stock trades are subject to proportional transaction costs. We characterize the
range of option prices that is consistent with no-arbitrage, and find necessary and sufficient
conditions for the absence of arbitrage in the model. Similar results are known for European
options, but not for American options. The American case turns out to be significantly more
challenging because of the added complication of there being an exercise strategy at the
disposal of the option bearer. To help put this paper in context, we review below the related
literature on the topic of transaction costs.
The classical option valuation framework of Black and Scholes (1973) and Merton

(1973) is based on a replication argument, in a continuous trading model with no frictions,
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i.e., unrestricted short-sales and no transaction costs. In the scenario of these papers, when
the payoff from an option can be perfectly replicated by trading in the underlying stock(s)
and bond, there is a unique arbitrage-free option price, which is given by the initial value of
the replicating portfolio. Moreover, as has been made explicit by Harrison and Kreps (1979)
and by Harrison and Pliska (1981), in markets where there is a unique equivalent martingale
measure the no-arbitrage price of a European option can be expressed as the expected
discounted terminal payoff from the option, under this martingale measure. For American
options one takes the supremum over all stopping tingeich represent possible exercise
strategies of the option bearer) of the expected discounted payofiader the martingale
measure.

The appeal of the arbitrage-free approach is that it is independent of buyers’ and sell-
ers’ preferences, attitude towards risk, or probability beliefs. In the presence of transaction
costs, however, the replication argument in continuous time breaks down, because perfect
replication may require that the portfolio be rebalanced infinitely often, incurring infinite
transaction costs. Thus perfect replication is impossible, the market model is incomplete,
and there may no longer be a unique arbitrage-free option price.

As a result, several recent papers in the transaction costs area are concerned with defin-
ing and characterizing thenge of option prices that are required by the absence of ar-
bitrage. This work has for the most part focused exclusivelyEampeanoptions, and
American options have not received any serious treatment, even in the discrete-time case.
In the absence of arbitrage, the highest possible jprigef a European option is the small-
est initial wealth required in order ®uper-replicatehe option payoff at expiration, via a
self-financing trading strategy. Thbgp, called theupper hedging priceis the minimum
price the seller of the option needs to receive in order to construct a portfolio that enables
him to meet his obligation to the option buyer at expiration without risk. Similarly, the
lower hedging price By is the largest amount that the option buyer can borrow (in the
form of money from a bank or stocks for short-selling) to buy the option, so that by means
of a self-financing trading strategy he is able to pay off his debt using the option payoff at
expiration, without risk. The rangéiow, hyp] is precisely the arbitrage-free range for the
option price; any price outside this range leads to an arbitrage, and no price in the range
does.

For European options, a number of authors have dedxpeactation representations
of the upper and lower hedging prices, in both discrete and continuous-time settings. The
continuous-time papers include those of Jouini and Kallal (1995) (who call these prices
arbitrage boundy Cvitani¢ and Karatzas (1996) (who only consider the upper hedging
price and call it thénedging pricg, Cvitanic et al. (1999), (who show an explicit form for
the expectation defining the upper hedging price), and Karoui and Quenez (1995) (who
call these price-bounds tteelling priceandbuying pricg. Papers showing similar results
in discrete-time include those of Koehl et al. (1999), Jaschke (1996), and Ortu (1996). Our
use of the terms upper and lower hedging price, and some other terms and definitions, is
borrowed from Karatzas and Kou (1998), who give expectation expressions for the no-
arbitrage price-range of an American option with constraints on hedging portfolios.

These results have the following flavor. The upper (lower) hedging price can be ex-
pressed as the supremum (respectively, infimum) of the expected discounted terminal pay-
off from the option, over all probability measures that make the discounted stock price
“nearly” a martingale, in a certain precise sense. For example in Jouini and Kallal (1995)
the “near-martingale” measures are those under which some process (appropriately dis-
counted) that lies between the bid and ask prices of the stock becomes a martingale. Note
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that the presence of proportional transaction costs on stock purchases and sales is equiva-
lent to assuming that the stock has a bid price process and an ask price process that is never
below the bid price process. (This is made clearer later in the paper.)

In continuous timgthe above arbitrage-based price bounds are principally of theoretical
interest, and vyield trivial results. For instance, a result conjectured by Davis and Clark
(1994) and later proved by Soner et al. (1995), and Levental and Skorohod (1997), states
that for a European call option, the upper hedging price is equal to the initial stock price,
and the minimal super-replicating strategy is the trivial buy-and-hold strategy: buy one
share of the stock and hold it until the option expires. This upper hedging price is typically
too high to be used as a reasonable option price in practice, suggesting that something
more than no-arbitrage is needed to obtain a satisfactory pricing theory for options in the
present of frictions. Despite this negative result, as Cvitanic et al. (1999) argue, the study of
super-replicating strategies can be helpful in solving other problems involving transaction
costs, and also in finding a more realistic, utility-based price of an option. Examples of the
utility-maximization approach to pricing options under transaction costs include the work
of Davis et al. (1993) and Cvitaniand Karatzas (1996) on European options, and that of
Davis and Zariphopoulou (1995) on American options.

In contrast to the continuous-time situationisipossible to obtain non-trivial results in
discrete time, as the aforementioned papers on European options show.

Expectation representations for American option prices in incomplete but frictionless
markets have been shown before. For instance Harrison and Kreps (1979) show that in
their frictionless model, iP is the class of equivalent martingale measufethe class of
stopping times, an® the discounting factor, then the upper hedging price of an American
option with payoff proces6 is given by

hup = SupsupE” (G{R™).. (1.1)
1eT PeP

Similarly the lower hedging price is

hiow = supinf E” (GR™T). (1.2)
1eT Pe
The chief contribution of our paper is to show various representations for the upper and

lower hedging price of American options in the presence of proportional transaction costs.
Some of these representations are similar in form to (1.1) and (1.2) above.

1.1 Outline of the paper

In Sections 2 and 3 we introduce our market model and related definitions. We introduce in
Section 4 a central notion of this papeandomized stopping timek our discrete market
model a randomized stopping time is a non-negative adapted piqeess. .. , X, (nbeing

the time horizon of the model) whose sum on any path is 1. Such stopping times, also called
fuzzystopping times, have been studied in other contexts (Baxter and Chacon, 1977; Dalang
et al., 1988). It turns out that they play an essential role in our expectation representations
of the upper hedging price of American options with proportional transaction costs. In fact
the bulk of the paper consists of showing a variety of representations for the upper hedging
price.
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Section 5 collects, for later reference, several useful properties of randomized stopping
times and related notions. Section 6 introduces another basic concept, thapgdrari-
mate martingale measure

Sections 7 defines self-financing portfolios. In Section 8 we borrow notation from
Karatzas and Kou (1998) to define the upper and lower hedging prices ((8.2) and (8.4))
for American options under transaction costs, and define what constitutes an arbitrage op-
portunity. In contrast to the European case, the situations of the buyer and seller here are
fundamentally asymmetric, a point that has been made clearly in Karatzas and Kou (1998):
The seller needs to hedge agamsyexercise strategy of the buyer, whereas the buyer need
only hedge againstomeexercise strategy since he has the choice of it.

Section 9 contains results showing a variety of representations of the upper hedging
price of an American option with proportional transaction costs. Not surprisingly, one of
these representations, namely (9.2), is similar in form to the above expression (1.1) with
zero transaction costs. The differences are that in the case of (9.2) the outer maximiza-
tion is over randomized stopping times, and the inner maximization is over approximate
martingale measures.

We find it surprising that the upper hedging price representation requires randomized
exercise strategies. We present two other results that provide some insight into why random-
ized strategies appear to be necessary to represent the upper hedging price when there are
transaction costs. The first involves Nash equilibria in game theory, whieesl strategies
are often necessary. In Section 10 we define a natural game between a seller and a “devil”
where it turns out that at Nash equilibrium, the seller’s “cost” and the devil's “utility” are
both equal to the upper hedging price, and the devil must in general choosguae of
stopping times (a notion closely related to randomized stopping times, see Section 4). The
second result is presented in Section 11 where we make a distinction betwalgivanus
hedge(a single portfolio that hedges against all exercise strategies) aadagtive hedge
(a possibly different portfolio to hedge against each exercise strategy). With zero transac-
tion costs, the minimum initial wealth needed for an adaptive hedge also suffices for an
oblivious hedge. But with non-zero transaction costs, an oblivious hedge may require more
initial wealth.

In Section 12 we show that the lower hedging price for an American option with propor-
tional transaction costs can be represented by an expression analogous to (1.2) above. The
difference is that with non-zero transaction costs, the inner minimization is over approxi-
mate martingale measures. We prove in Section 13 various conditions that are equivalent
to the absence of arbitrage in our model. Section 14 contains a proof that our results imply
those of Koehl et al. (1999) (and others mentioned above) for European options with pro-
portional transaction costs. In Section 15 we show examples that illustrate our main results.
Section 16 concludes with a discussion of possible future research directions.

The techniques we use to derive our expectation representatidng ahd h, are
elementary, and depend only etrong duality of linear programmingn the case ohyp
we observe that its definition is a linear programming problem. Strong duality assures us
that the dual optimum equals the primal optimum, so after some algebraic manipulation of
the dual linear program, we are able to interpret its variables in terms of an approximate
martingale measure and a randomized exercise strategy. In the dageamifr approach is
much the same, except tha,, is a linear programming problem only for a fixed stopping
timet. We are also able to show that the existence of a certain approximate martingale mea-
sure is necessary and sufficient for the absence of arbitrage in our market model (Theorem
13.1).
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Fig. 2.1 lllustrating notation on an event tree with= 3. For instance on this tree,e T andt(u) = 2

The form of our expectation formulas is closest to the discrete-time results of Koehl
et al. (1999) for European options. However they appear to use much more complex meth-
ods than ours. We show in Section 14 that results very similar to theirs follow from our
results for American options. Jaschke (1996), Naik (1995) and Ortu (1996) obtain results
similar to ours via linear programming, but only for European options. Other authors have
used linear programming to study hedging strategies for European options with transaction
costs. These include Edirisinghe et al. (1993), who also show efficient approximations to
the linear program defining an optimal super-replication strategy; and Bensaid et al. (1992),
who were one of the first to point out that a super-replicating hedge strategy may have less
initial cost than a perfectly replicating one.

2 Market model

We model discrete time by means of a firéteent treewhich contains nodes corresponding

to trading dates (or time-step9 0,1,....n, wheren is the expiration date of the option
under consideration. Nodes will be identified by letters such.&sv. There is exactly

one node at time-step 0, called tlwot node, and it is denoted O; this node represents the
presenttime. The set of nodes at timis denotedr'; nodes inT are callederminal nodes

or leaves Each non-terminal nodehas anon-emptyget ofimmediate successordenoted

u™. If uis a terminal nodey™ will be treated as the empty set. The unigoenediate
predecessorof a nodeu # 0 is denoteds—. We use the termath to refer to a sequence

of nodes from the root to a leaf, where each node but the last is the predecessor of the next
node in the sequence. Paths will be denoted by letters sushudisetc. The node at time

i on pathw is denotedw;. We writeu € w to say that node is on the pathw. Thetime
corresponding to a node is denotéd). Thus,t(0) = 0 and foranyu € T, t(u) =n. If u

andv are nodes on a given path, arfd) > t(u) we write for brevityv > uoru < v. We also

write u < v to indicate that is either equal t@ or a predecessor of Figure 2.1 illustrates

some of this notation. For ease of reference a summary of the notation used in this paper is
provided in Appendix B.

All random variables in this paper will be defined with respect to the measurable space
(Q,F ) whereQ is the set of all paths in the tree from time 0 to timeandF is the
o-algebra consisting of all subsets @f Note that each node in the tree represents the
set of all tree paths that contain that node. This allows us to define a nfitmasion
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Fo,F1,....,Fn=F (denotedF «} for brevity) on the spac@, whereF | is theg-algebra
generated by the path-sets represented by all the kinmgles. In other wordg; ¢ repre-
sents the information known at tinkeat timek, market participants only know which atom
of F « the tree path belongs to.

For our purposes, any real-valued functfoof the tree nodes definesandom process
{Fo.F1,...,F}. HereR is the random variable that assigns to any path Q, the value
of the process at wx. We will denote the process either B} or simply by F. By
definition, such a processglaptedto the filtration{F }. If uis a node in the event-tree,
then we writeF (u) for the value of the proce$satu, whereas ik is a non-negative integer
andw € Q is a path, then we write eith&k(w) or F(wx) for the value ofF at timek on
pathaw.

To avoid notational clutter, we will only consider a market consisting of a single risk-
less security called theondand a single risky security called thtock Our results can be
easily extended to the case of multiple risky assets. The stock price process is derfyted by
which means is the stock price random variable at tikgeandS(u) is the stock price at a
specific nodais. We assume trading in the stock is subjeqtimportionaltransaction costs.

In particular, to buy a stock whose market pric&dollars, one payél+ A)Sdollars, and
upon selling a share at priG one receive$l — p)Sdollars, where\ > 0, andu lies in the
interval [0, 1]. In other wordsA andp are the transaction costs per dollar of share bought
and sold respectively. Another way to say this is thatttigeprice of the stock at noda is
S(u)(1—p) and itsask priceis S(u)(1+ A). We assume that thésk-free interest ratés r,

and that one dollar in bonds at tirkewill grow to R= 1+r dollars at timek+ 1. For any
adapted process, the correspondindiscounted processill be denotedz*, or in other
words,Z; = Z«R X, (Here and elsewhere, we follow Williams (1991) in using the notation
“:="to stand for “is defined as”, and=:" to stand for “is the definition of”).

An American option on the stock is specified byron-negativeadapted process,
whereG(u) is the payoff from exercising the option at nodén the tree. The function
G(u) may be any arbitrary path-dependent function, and not just a function of the stock
price S(u) at u. An American option can be exercised at any time until it expires. The
exercise strategy of the holder of an American option can be describestbyng time.

In our model a stopping tinmeis a random variable that maps each path Q to a number
in {0,1,....n}, with the restriction that for ank, the indicator-random variable_ is
F k-measurable. In other words, if there is some pathith T(w) = k andwy = u, then for
everypatha containingu, we must have(wf) = k. For any pathw, there is thus a unique
stopping point wy(y . For any adapted procegby}, we use the standard notatiép to
denote the random variable that maps a pathQ to F ¢ (w). The setl; of all stopping
points of a stopping time is called thestopping boundary of t. The set of all stopping
timest is denoted .

3 Measures and Node-measures

A non-negative node-functidnis called gprobability measure (or simply “measure” for
short) on the event treef(0) = 1, and for any noda ¢ T, the sum o’ over all immediate
successors af equalsP(u), i.e.,

Z P(v) = P(u). (3.1)

veut
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We can think ofP(u) as the probability of reaching or as the total probability of all paths
containing nodeu. Note that a non-terminal node with positive probability must have at
least one successor with positive probability. For any pathQ we define thgrobability
P(w) of the path w to be the probability of its last node, i.&(w) := P(wy). When we
say a certain relationship among random variables (defined below) Ratmost surely,
(abbreviated?-a.s.) we mean that it holds on every path with positive probability under
P. The expectation of a random variable unékeis denotedE® (Z), and the conditional
expectationE” (Z|F i) is abbreviatedif (Z). Note thatEf (Z) is a random variable, and
its value on a particular path € Q is thereforeEf (Z)(w); if wx = u then for brevity we
denote this value b¥, (Z).

We will also find it convenient to use the notion ohade probability measure (or
just “node-measure” for short), which is simply a non-negative node-funqgtgwrch that
Yua(u) = 1. (Here and elsewhere in the paper, a summation sign, subscripted by a node-
name, such ag, stands for a summation ovall nodes in the event tree.) Tlkepport of a
node-measureis the set of nodes such thaty(u) > 0; we writeu € qif uis in the support
of g. The set of all possible node-measures is denQted

Node-measures whose support is on the stopping boundary a stopping time will be
called simple node-measures. In other wordds a simple node-measure if and only if
there donot exist nodesy, v such thau < v, g(u) > 0 andq(v) > 0, i.e., on every path in
the event-tree there is at most one node wigggestrictly positive. We writd) ' to denote
the set of simple node-measures whose support lies on the boundary of a stopping time

4 Randomized Stopping Times and Mixed Strategies: Definitions

An ordinary exercise strategy is specified by a stopping timehich specifies exactly one
exercise point on every event-tree path. A natural generalization is to@i@emizedor
“fractional” or “fuzzy”) stopping times; these will play a central role in this paper.

Definition 4.1 Arandomized stopping time(or randomized exercise strategyis anon-
negativeadapted process (i.e. node-function) X with the property that on everygath
the event tree,

ix(m) =1,

i.e., the sum of the random variableg, X;.... , X, is 1 on every path (see Figure 4.1). We
denote the collection of all randomized stopping timeX byhesupport of a randomized
stopping time X X is the set of nodes u such thatX > 0; we write ue X if u is in the
support of X.

Randomized stopping times have been studied, among others, by Baxter and Chacon
(1977), Dalang et al. (1988), Edgar et al. (1981) and Mazziotto and Millet (1986), primarily
as an aid to show the existence and properties of optimal ordinary stopping times in certain
optimal control problems. In certain optimization problems, randomized stopping times
can be viewed as a natural lingataxation(Grotschel et al., 1993) of ordinary stopping
times. When a randomized stopping tiddés used to describe an exercise strategy, we can
think of X(u) as the probability of exercising the optioniagiventhat the noder has been
reached.
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Remark 4.2Note that an ordinary stopping timecorresponds to the degenerate random-
ized stopping timeX" whose values are restricted to lie in thet{0,1}, and defined as
follows for anyw e Q andk=0.1,...,n:

1 ift(w) =k

. (4.2)
0 otherwise.

X (ux) = {

We will sometimes abuse notation and age meanX?.

It is easy to see that ordinary (or pure) stopping times are extreme points of the convex
set of randomized stopping times (Baxter and Chacon, 1977). Thus a randomized stopping
time can always be written as a convex combinationmodture of pure stopping times
(see Fig. 4.1), in a manner reminiscent of mixed strategies in game theory (Fudenberg and
Tirole, 1998). Section 10 explores this connection in detail. A mixture of stopping times is
formally defined as follows.

Definition 4.3 A mixture o of stopping times is a probability assignmerit) for each
1€ T such that

o(1)>0 vieT; Zo(r):l.
1€

The collection of all mixtures of stopping times will be dendtedrhesupport of a
mixturea is defined as the set of stopping timesT such thaio(t) > 0; we writet € o if
T is in the support ob. We writeT to denote the mixture with support at just one stopping
timet.

Note that a given mixture corresponds to the unique randomized exercise stratégy
defined by:

X% = z o(T)X". 4.2)

1e0

However, the converse is not true, i.e., there may be more than one way to express a ran-
domized exercise strategyc X as a mixture of pure stopping times.

4.1 Average values

There are many natural ways of defining the “average” value of an adapted prooass
the event tree. First, for a randomized stopping tine X, we define théime-X value of
Z as the random variable

2= 5 (X2, @3

Note that ifX = X" for some pure stopping time thenZy is the familiar random variable
Z;. For a specific pato € Q, it is clear that

Zy(w) = ZOZ(U)X(U). (4.4)
ue

For a randomized stopping tinxec X, we define thenaximum time-X value of Z as

Zx 1= maxZx (w). 4.5
x = ma x (W) (4.5)
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0.9 (0.6) .+ (03

0.1; =
0.6

1
0.3 + (01

0.6

Fig. 4.1 lllustrating how a randomized exercise strateéggn an event tree with =2 can be viewed

as a weighted average of three “pure” stopping times. The numbers on the leftmost tree show the value
of X alongside the nodes. Only the positXevalues are shown; all others are 0. Note that along any
path, the sum of th¥ values is 1. The residuXl-exercise probability at the circled node i§0Each

of the three trees on the right shows a “pure” stopping time represented-a$ addued randomized
stopping time; again only the 1 values are shown. Alongside each of these trees the weight of the
corresponding stopping time used to prodcis indicated in parentheses.

For a (pure) stopping timee T , we define thenaximum value of Z at T as

~

Zy = &ag;ZT(w), (4.6)

and for a mixtures € T we define thes-expected maximum value o as

Zo = Z o(1)Zr. 4.7

Lastly, for any node-measurtge Q, we letZy denote they-weighted average ofZ over
the entire event-tree:

Zyq= z q(u)Z(u). (4.8)
u
It turns out that a useful equivalence relation can be defined between measure-strategy
pairs(P,X) and node-measures.

Definition 4.4 SupposeP is a probability measure, X is a randomized exercise strategy,
and g is a node-probability measure. We say that ggaeivalentto (P, X) if P(u)X(u) =

g(u) holds at every node u (See Figure 4.2). We will use the notat@mri, X) to mean
that g is a node-measure ariB, X) is an equivalent measure-strategy pair.

Theorem 5.4 shows that for any node-measytrere always exists an (essentially unique)
equivalent measure-strategy pé, X), and vice versa.
4.2 Future average values

We will often want to refer to the future average value of an adapted process at some
arbitrary nodeu. We do this by defining appropriate generalization&gfand Zx. First



10 P. Chalasani, S. Jha

node measure measure P randomized stopping time X
13
0.3 3 0.9
0
0.1 1 0.1
0.3 1/2 0.6
0.2 /3 03
0.1 16 0.6

Fig. 4.2 A node-probability measurg and an equivalent measure-strategy g&irX). Only the
positiveq andX values are shown. Note thatu) = P(u)X(u) holds at every noda. Starting from
the (P, X) values shown on the right, tlevalues on the left are obtained by simply settiig) =
P(u)X(u) at everyu. Starting from they values on the left, the, X values on the right are computed
as in Theorem 5.4.

we need a notation for the remaining futuevalue org-weight. More precisely, for a
randomized exercise strate}y we define the random variable

n k

XF = K:l—%x7k§m (4.9)
i=kF1 i=

where the first summation is interpreted ask4 n. The second expression above follows
from the definition of a randomized strategy, and implies ¥jats F (-measurable. When
X represents a randomized option exercise strategy, for exaXjplean be viewed as the
probability that at timek, the option has not yet been exercised at tkma earlier (see
Figure 4.1).

Remark 4.51f X corresponds to an ordinary stopping timehenX = 1 for k < 1, and
X = 0 fork > 1. The node-function corresponding to the procéssis given byX*(v) =
1— Y u<vX(u) for any nodev. Note also that it/ € ut thenX™ (u) = X(v) + X*(v).

For a node-measurg the node-function analogousXq is

q+(u) = Z q(V), VU, (410)
v>u

the sum being interpreted as Qifs a terminal node. We writg(u) to denoteg(u) +q*(u).
Notice an important difference between the node-funct@n®) and X+ (u): the former
is the sum ofg(v) overall nodesv that are successors of while the latter is the sum of
X(v) over all successonrsof u that lie on aspecificpath containingi (the choice of path is
arbitrary since this sum must be the same on every such path).

We can now define the following generalizationggindZyx . For any integek € [0, n],
if X > 0, the random variable

= T
represents thieiture time- X value of Z at time k. Note that ifP is a probability measure on
the event-tree, tthE Zy |k is theexpecteduture timeX value ofZ at timek; for brevity we

ZX|k : (411)
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will write this expectation af Zx. Also for a nodeu such thaty = uwe write (Ef Zx ) ()
more compactly aBf, Zx; this quantity is well-defined only #(u) > 0 andX*(u) > 0. It
is important to bear in mind that in the expressigjizx, theZx stands foryL, . 1(ZX),
i.e., the term(ZXy) is notincluded in this summation.

If uis a node withgt(u) > 0, we define the-weighted average future value o at
nodeu as

Zo(u):= ZeuUE)

Theorem 5.6 shows that if = (P,X) thenZq = E°Zx, andZ(u) = E}, Zx for all u such
thatqg™(u) > 0.

(4.12)

5 Useful properties

We are now ready to show several useful properties that relate to node-measures, random-
ized stopping times, and mixtures.

Proposition 5.1 Suppose & (P,X), and leto € T be a mixture such that % X°. Then
for any adapted process Z,

Zq< Zx < Zs.

Proof By definition of equivalence, we haggu) = P(u)X(u) for all u. Recalling thaP(w)
represent®(wn), the probability of the last node an, we can then write

Zy:= Zq(u)z(u) = ZZ(u)X(u)P(u)

=Y |Z(uXx P
z[ wxw S (w)]
= 3 P Y ZWX(u)

Q Uew

To show the second inequality, note that for any fixed Q andt € o we have
Z:(w) < maxZ(w) =: Z,
r(w) < ma (W) =1 Zg,

and taking thes-weighted average of both sides overwad o,

Zx(w) =y oV Z(w) < Y Z =7,

1€0 1e0

whence taking the maximum of the left hand side ovewedl Q,

Zx = maxZx (w) < Zs.
X (A)EQX()_ZG
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An easy consequence of the above proposition is:

Proposition 5.2 LetC be any closed set of adapted processes. Then

maxminZg maxmmZx maxmmZ0 < minmaxZ(u),
qeQ zeC — XeX zeC ~ oeT 2eC ZeC u

where the lastmayx, above is taken over all nodes u in the event tree.

Proof Let  be an optimal node-measure in the first expression above. By Theorem 5.4
there exists a paiP’, X') equivalent tay . Suppos& = Z' minimizesZy,. Then by Propo-
sition 5.1 Z’x, >7Z, q» and so

mmZx, = Z'x, > Z'q, > m|an, maxminZg,
zeC zeC geQ zeC

from which the first inequality follows by noting that the leftmost expression above is at
most maxex minzec Zx. A similar argument proves the second inequality. To show the
third inequality, note first that

maxman0 < mmmaxZ0
oeT ZeC ZeC geT

For a fixedZ € C, the value ofZ, is maximized by pickings to be a pure stopping time
T whose stopping boundary contains some nogéereZ(.) is maximum.Thus the right
hand side above equals mist max, Z(u), and this proves the third inequality. ]

Equivalence between a node-measyend a measure-strategy pét, X) has the fol-
lowing useful consequence.
Proposition 5.3 Suppose e (P, X). Then for any node v we have
P(V)XT (V) = q* (v). (5.1)

Proof By definition of an exercise strategyMis a timek non-terminal node, then

n

> X(@=1-5 X(u
i=k+1 uv
for every pathw containingv, so we can write

X*HW) =1-§ X(v) =Y(v), (5.2)

whereY is the random variable defined by

Now multiplying (5.2) byP(v) we get

PWX* (W)= T PWXW) = T qw) =

W>V W>V
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Now we turn to the question of constructing an equivalent node-measure given a measure-
strategy pair, and vice versa. Not surprisingly, given a node-measurépA4ir, the unique
equivalent node-measurgis given byq(u) = P(u)X(u) for all u. Conversely, given a
node-measure, there is a natural way to define a measBreand it turns out that the
node-functionX (u) = g(u)/P(u) (with a modified definition ifP(u) = 0) is actually a ran-
domized stopping time. Also, th@>, X) pair defined in this way is “effectively unique”.

This is formalized below:

Theorem 5.4 (Existence of equivalentP,X) and q) If (P, X) is a measure-strategy pair,

then the node-function q defined Kyig= P(u)X(u) at all u is the unique equivalent node-
measure. Conversely, suppose g is a hode-measure on the event tree. Then there always
exists a measure-strategy paf, X) equivalent to q, wherP is uniquely defined at nodes

u whereg(u) > 0, and X is uniquely defined at nodes u whefe)g> O.

Proof To prove the first statement note that the unique node-funqtitefined at all by
g(u) = P(u)X(u), is a node-probability measure: Cleagllis non-negative everywhere, and

> a(u) =y PX(w = ;EP(N) =E 3X%=1

To show the converse, consider some node-meagdDedine the node function (which will
turn out to be a probability measuf@forward-inductively as follows: S&®(0) =g(0) =1
(Recall thatt(u) = g(u) + g*(u)). For any non-terminal node, if g*(u) = O then set
P(v) = P(u) for an arbitrarw € ut and sefP(v) = 0 for all otherv € u*. (The reason for
doing this is that ifP is a probability measure then any non-terminal noeéth P(u) > 0
must have at least one success@rith P(v) > 0.) If g™ (u) > 0, then for eaclv € u™, we
will define P(v) so that the ratid®(v) /P(u) equals theproportionof g*(u) that is on the
subtree starting at

oy dv)
P(v)_P(u)q+(u) vweut. (5.3)

The P values defined above are clearly non-negative at all nodes giiscaon-negative.
For any non-terminall, if g*(u) = 0, then one of the immediate successois u has

P(v) = P(u) and all other immediate successoisaveP(v) = 0, S0Y + P(v) = P(u). On

the other hand, i (u) > 0 for someu, then for eaclv € u*,

P
2 PV =W

veut

3 qv) =P(),

veut

ThusP satisfies the requirements (3.1) of a probability measure on the event tree.
Next define the node functiok (which will turn out to be a randomized stopping time)
forward-inductively in terms off and the above-defind@las follows:

a(v)/P(v) if P(v) >0,
X(v)=4qt(v)/P(v’) if P(v')>0,P(v)=0, (5.4)
0 otherwise
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We now argue thaK is a randomized stopping time. Consider any non-terminal node
with P(u) > 0. By definition of a measure,has an immediate successbwith P(u') > 0.
Then we have

_qw _ gu+gtu gt

P(u) P(u) P(u)
_ G gu) initi ,
= 5w~ PW) (definition of P(U')).

Therefore ifv is a non-terminal node witR(v) > 0, andV is an immediate successorwof
with P(V') > 0 (there must be at least one swtk v by definition of a measure), we have

0 qv) _
0~ P(V)

zx(u):g

v

If V' is a terminal node, theq(Vv') = q(V') andX (V') = q(V')/P(V), so we have by the first
case of the definition (5.4) of,
qv)

X(U)=1- 57 = 1—X(V),

uv
which means the sum of th€ values on any positive-probability path on the event-tree is
1. Now suppose that in addition to an immediate succeésuaith P(V') > 0, v has another
immediate successerwith P(w) = 0. Then by definition oP we have

) _, g
P(V) P(V)

which equals - X(w) by the second case of the definition (5.4)Xaf Note that theX
values on all successors wfwill be zero, by the third case of the definition Xfabove.
Thus the sum of th¥ values on a zero-probability path is also 1. Cleaflig non-negative
everywhere, s is indeed a randomized stopping time.

Now we verify thatq = (P, X). From the definition oP we can see that for any; if
P(v) = 0 thenqg(v) = 0. This fact and the definition of imply thatP(v)X(v) = q(v) holds
at everyv.

To see the uniqueness properties, supffsi) is a measure-strategy pair equivalent
to the node-measurg By definitionP(0) is necessarily 1 for any such meastre et us
consider any node # 0 whereqj(v) > 0, and letu = v~ be its unique predecessor. This
meangy™ (u) > 0 and by Proposition 5.3 we hage (u) > 0, and

P(V)X(V) +P(V)XT(v)

qwv
Xt Y

at(u)

Thus the equation (5.3) necessarily holds atvallhereq(v) > 0. It is then easy to see
by induction thatP(v) is unique at such. In particularP(v) is unique at nodes where
g(v) > 0, and at such, X(v) is therefore also unique, since it must satBfy) X (v) = q(v).

[ |

X(v) +XT(v)

P I

P(u)

= P(v).

This Theorem immediately implies a corresponding result for simple node-measures:
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Corollary 5.5 If for some pure stopping tine (P, X') is a measure-strategy pair, then the
unigue equivalent node-measure g is a simple node-measQrk itefined by (u) = P(u)

for every u that is on the stopping boundarytpénd qu) = O for all other u. Conversely,

if g € QT is a simple node-measure, thg X') is the unique equivalent measure-strategy
pair, whereP is defined byP(u) = q(u) whenever ¢u) > O.

The term “equivalent” is justified by the following Theorem.
Theorem 5.6 Suppose & (P, X). Then for any adapted process Z,
E°Zx = Zq, (5.5)

and expected future values are identical under q éRgX), i.e., Zq(u) is defined exactly
whenE;, Zx is defined (i.e., §(u) > 0if and only if bothP(u) > 0 and X*(u) > 0), and

Zg(u) =E)Zx., Vu:qgt(u)>0. (5.6)

Proof Proposition 5.3 implies that" (u) > 0 if and only if bothP(u) > 0 andX*(u) > 0.
Note that

s Tl XVPWZW
R )

Applying the equalitieP(u)X(u) = g(u) and P(u)X*(u) = g*(u) to expression (4.12)
shows thaZy(u) equals the above expression féfZx. This proves (5.6) above, and a
similar argument proves 5.5. [ ]

6 Approximate martingale measures

Now we have enough vocabulary to define “approximate martingale measures”. Roughly
speaking, given an exercise stratéfjya measur® is an approximate martingale measure

if at any time, the discounted expected future exercise value of the stock price is not too far
from the current stock price.

Definition 6.1 For any probability measur® and randomized strategy X, we say tRds
a (A, W, X)-approximate martingale measure if P-almost surely,

S(1-w < EPSq < Si(1+A), Yk<n:xt>o0. (6.1)

The set of all measurdsthat are(A, i, X)-approximate martingale measures is denoted by
P (A, 1, X).

(Recall thatS} stands for thaliscountedstock price, i.e. S = SKRK. It is worth noting
some special cases of this definition. From the above remarks it followB th&t(A, |, T)
if and only if, P-almost surely,

S(1-p < ES < S(1+)), vk<T.
Clearly the process

Y =ES
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is aP-martingaleup to the stopping time, i.e., fork < 1. ThusP € P (A, ., T) implies that
there is some processlying between the bid and ask price processes of the stock, such that
the discounted proce$/Rk is aP-martingale, up to the stopping timelf P € P (A, 1)
for the special stopping time= n, then this means that there is some proc®@dyging
between the bid and ask price processes, such that the discounted [ggéss a P-
martingale. (This type of interpretation has been made, for example, by Jouini and Kallal
(1995) for European option prices under transaction costs.) In this case we say simply that
P is a(A, ) -approximate martingale measure and denote the set of such measures by
P (A, ). Cvitani¢ and Karatzas (1996) and Koehl et al. (1999) define a very similar class
of measures in the context of pricing European options with transaction costs. Clearly an
ordinary martingale measukebelongs to the sét(0,0,T) wheret = n on every path; we
denote the set of martingale measure®by

From the above remarks it is easy to see that the following holds:

Proposition 6.2 The following relationship holds among the various sets of probability
measures on the event tree:

PCPAwCUPApyC lJPOwX).

el XeX

We can define a notion @, p)-approximate martingale node-measures, analogous to
(A, 1, X)-approximate martingale measures:

Definition 6.3 We say that a node-measure q i$Xa)-approximate martingale node-
measureif

S (W(1-H < Sq(w) <SW(1+A), Yu:gh(u)>0.

The collection ofA, W)-approximate martingale node-measures will be denote@ Gy, |1).
For brevity we use the notation

QAT :=Q 'NQ ..

Remark 6.4Note thatQ (A, ) is never empty: the trivial node-measure wil®) = 1 and
g(u) = 0 for all nodesu # 0 is a(A, W)-approximate martingale node-measure.

From Theorem 5.6 it is clear that:

Corollary 6.5 If g= (P,X) then ge Q (A, ) if and only ifP € P (A, X). In particular, if
g= (P,1) thenge Q (A, 1) ifand only ifP € P (A, T).

This implies a result that we will frequently appeal to in this paper:
Theorem 6.6 For any adapted process Z,
max Zq=max max E°Z, (6.2)
qeQ (A XeX PeP (A, 1X)
max Zg= max E°Z;, VvieT, (6.3)

aeQ (A1) a PeP (A1)

and the corresponding statements with “max” replaced by “min” also hold.
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Proof The equality (6.2) (either with “max” everywhere or “min” everywhere) follows
from: Theorem 5.4 which says that for eveyg Q there is an equivalent measure-strategy
pair (P,X) and vice versa, Corollary 6.5 which says thag i£ (P,X) thenq € Q (A, p) if

and only ifP € P (A, 1, X), and Theorem 5.6 which says thati (P, X) thenZq = E Zx.

The argument for the second equality is the same, except that we use Corollary 5.5 in place
of Theorem 5.4. [ |

Clearly the set of node-measur@gA, 1) is convex, since it is defined by linear con-
straints. If there are no transaction costs, the Theorem below shows that eltteme
pointsof this set arsimplenode-measures. Recall from Section 3 that a nhode-megssire
said to be simple if its support lies on the boundary of some stopping time.

Theorem 6.7 (Extreme points ofQ (0,0)) The extreme points of the set of node-measures
Q (0,0) are simple node-measures.

Proof Recall that a poinkis an extreme point of a convex sif it cannot be expressed as
a strict convex combination of distinct points 8{see Bertsekas (1995)). Consider some
non-simple node-measutec Q (0,0). We will construct two new node-measuresnd
c that belong td) (0,0) such thag = %(a+ ¢), and this would imply that no non-simple
node-measure can be an extreme poin@a@0,0). Recall that for any node measupe
P(u) = p(u) + p* (u) for any nodeu.

Now recall from Section 3 that dj is not simple, there is a nodesuch that(u) > 0
andqgt(u) > 0. Fix such a node. Fix some strictly positive such that < g(v) for all
v > u with g(v) > 0. Define a node-measuaeby “redistributing” the node-measurgas
follows: reduceg(u) by an amount, and for every > u, increasey(v) by a fraction ofe
that is equal to value af(v) relative toq™ (u). More preciselyais identical tag everywhere
except that a(u) = q(u) — ¢, and

av) =q(v) <1+ > ., Yv>u (6.4)

€
qt(u)
Notice that the total amount by whichis increased on all the successorsiohatches the
amount by whichg is decreased at, i.e.,a is just a redistribution o€}, and so is also a
node-measure. Note also that

giv) =alv), wv<u, gt(vy=a'(v). vv<u. (6.5)

The above statements also hold for the node-funaimmstructed aa but with —¢ instead
of €. Itis easy to see thaf= 1(a+c).

We now argue thad € Q (0,0); the argument foc is similar. To see this we first note
that if a node-measungis in Q (0,0) then the “martingale-like” constraints hold:

SVPT(V) = Y Swpw) = ¥ (sw>pw>+ )3 s<w>p<w>>
w>V

w>Vv Vevt
= 5 (SV)p(V) +SV)p* (V).
Vvevt
or
Sv)ptv)= 5 SV)pV) (6.6)

Vevt
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In fact it is easy to see that a node-measguigin Q (0,0) if and only if (6.6) holds at all
v¢ T. We know (6.6) holds fop= g, and since for any > u, a(v) is a fixed multiple ofy(v)
(definition (6.4)), this equality also hold fgr= a and anyv > u. From (6.5), the equality
(6.6) holds forp = aand any < u. Clearly for nodes that are not on a path containiog
g(v) = a(v), so the equality (6.6) holds for sugtandp = a. Thusa e Q (0,0). ]

7 Portfolios

A portfolio processis defined by a tripléx, A, B) wherex is theinitial wealth , andAy and

By are adapted processes representingtibek and bond positionsat timek respectively,
fork=0,1,... ,n— 1. (Note that the portfolio process is not defined at titnén particular

for a non-terminal node, A(u) is the number of shares of stock held in the state represented
by nodeu, from timet(u) to timet(u) + 1, andB(u) is the number of dollars in bonds held

at nodeu, between times(u) andt(u) + 1. Consider some node# 0. Recall thatv— is

the unique predecessorafAt nodev, just before it is re-balanced, the portfolio consists
of A(v~)S(v) dollars in stocks an®@(v~ )R dollars in bonds (or just dollars in bonds if

v = 0). We therefore define the (pre-rebalancipgitfolio value at any noder as

VROB(y) = X ifv=0 (7.1)
A(v)Sv)+B(v )R  otherwise

Note that if we defineA(0~) := 0 andB(0~) := x/R then we can omit the first case in
the above definition. We will therefore assume these definitions throughot. T, after
re-balancing, the portfolio at consists ofA(v) shares an@®(v) dollars. This rebalancing
involves either buying or selling of shares at naglbut not both(it can never help to both
buy and sell shares at the same node, since this will only incur more transaction costs).
If A(v) > A(v™), thenb(v) = (A(v) — A(v™)) shares must be bought. Otherwisgy) =
(A(v™) — A(v)) shares must be sold. Cleayv) ands(v) are uniquely defined by the
constraints

b(v) —s(v) =A(v) —A(v ), b(v)s(v) =0, b(v) >0, s(v)>0. (7.2)
The portfolio (x,A,B) is said to beself-financing if the cost of (or proceeds from) re-
balancing the stock position is offset by a change in the bond position. In other words, at
every nodev, in caseb(v) > 0 the cost of shares bought is financed by a reduction in the
bond holdings, and in casév) > 0 the proceeds from selling shares is offset by an increase
in bond holdings. Thus for a self-financing portfolia A, B), at any nodes ¢ T we must
have

b(v)S(V)(1+A) < B(v )R—B(Vv) if b(v) > 0,
and
S(V)S(v)(1—p) <B(v)—B(v )R if s(v) > 0.
Noting thatb(v) ands(v) can never both be positive, these conditions can be combined into

—b(V)SV)(1+A) +s(V)SV)(1—Ww)+B(V)R-B(v) >0  W¢&T, (7.3)
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whereb(v) ands(v) are given by (7.2). A similar formulation appears in Edirisinghe et al.
(1993).

We write® to denote the set of all self-financing portfoliosA, B). We will sometimes
abuse notation and wri®(x) to mean the set of all pairs of adapted proce$AeB) such
that(x,A, B) € . Since the constraints defining self-financing portfolios are all linear, it is
clear that® is convexandclosed

8 Hedging and the pricing problem

In order to characterize the range of prices for an American option that are consistent
with the absence of arbitrage, we first need to understand the situation of the buyer and
seller of the option. In Karatzas and Kou (1998), the authors point out eloquently that these
two situations are fundamentally asymmetric. The treatment in this section closely follows
theirs.

The buyer and seller are essentially entering into the following agreement at time 0: the
seller agrees to pay the buyer a random am@nt O at timet, wheret is a stopping
time chosen by the buyein return for this commitment, the buyer agrees to pay an amount
x> 0 to the seller at time 0. We consider the question: what is the “fair” price for the buyer
to pay the seller at time 0, for his obligation to deliver the amdbint 0 at any stopping
time 1 picked by the buyer?

Let us examine the seller’s objective. When he recekwigem the buyer, he wants to
find a portfolio(x,A, B) € ® that enables him to meet his obligation without risk (i.e. on all
paths) and foanystopping timer chosen by the buyer, i.e.,

VEABS G, vieT. (8.1)

Note that we are implicitly making the followiregssumptions:(a) when it is exercised,
the option issettled in cashand (b)there are no transaction costs when a portfolio is
liquidatedto settle the option. If there were transaction costs at this time, we would have
to consider the liquidated portfolio value, which would be smaller than the pre-rebalancing
portfolio value. (See Musiela and Rutkowski (1998, page 56) for a discussion of these
assumptions.) We make these assumptions for simplicity; removing these assumptions only
complicates the notation without adding much insight.

The smallestinitial wealtk > 0 that allows the seller to meet his obligation as described
above, is called thepper hedging pricefor the American option:

hup(A, 1) := min{x > 0| 3(A,B) € d(x) s.t. (8.1) holds. (8.2)

We will refer to the optimization problem in (8.2) as timén-cost super-replication prob-
lem, and an optimal solutioftx',A’, B") will be called anoptimal super-replicating port-
folio. Clearly in any optimal super-replicating portfolig, A", B'), we havex' = hyp(A. 1)
by definition.

We will need the following definition in Section 9.
Definition 8.1 Thediscounted deficitprocess 3“8 of the portfolio(x,A,B) is the dis-
counted amount by which the portfolio value falls short of the payoff:

DA = (G- VA B)RK.
In particular at a given node u,
D*28(u) = (G(u) — V**B(u))R.
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Now let us consider the buyer’s objective: he starts out by borrowing the amouft
(i.e. he starts with wealth x) at time O to pay the seller for the option, and picks a stopping
timet € T and portfolio(A, B) € ®(—x) such that, by exercising his option at timethe
payment that he receives enables him to repay without risk, the debt incurred at time 0
when purchasing the option, i.e.,

Vi AB LG > 0. (8.3)

Note that again we are assuming that (a) a debt must be riepeagh and (b)there are no
transaction costs when a portfolio is liquidated to settle a debt

The largest amount > 0 that enables the buyer to repay his debt in this way, is called
thelower hedging price of the option:

hiow(A, 1) := max{x > 0| 3t € T ,(A,B) € ®(—x), s.t. (8.3) holds} (8.4)

Notice the asymmetry between the seller and the buyer: the former needs to hedge against
any stopping timetr € T, while the latter need only hedge feomestopping timet € T .
It is important to point out thalte, could be bigger thah,,. However, in the absence of
arbitrage hiow < hyp always holds, as we show in Theorem 8.3. We now define the notion
of arbitrage.

Suppose the price of the American opti@nis y. We say that the paiiG,y) admits an
arbitrage opportunity in the market if there exists either

1. aportfolio(A,B) € d(x) that satisfies
VEABS G, vieT, (8.5)

for some O< x < y; or
2. astoppingtime € T and a portfolio/A, B) € ®(—x) such that

Vi A8 1G>0, (8.6)

for somex > .

In the first case, the option priges too high because the seller is able to construct a port-
folio using justx < y that allows him to meet his obligations to the option buyer without
risk, so he can pocket the differenge x, which represents a risk-less profit, i.e., an arbi-
trage. In the second case, the option pyicetoo low because the buyer can bornow v,
and pay onlyy for the option, pocketing the differenge- y, and construct a portfolio that
allows him to repay his initial debt without risk at some stopping tinibat he chooses.
Again this is an arbitrage.

We say that the market erbitrage-free if for any American optiorG there is some
pricey such that{ G,y) does not admit an arbitrage opportunity.

The following theorem is adapted from Karatzas and Kou (1998), and is immediate
from the above definitions.

Theorem 8.2 Suppose G is an American option. TH&h1y) admits an arbitrage opportu-
nity if and only if y< hiow(A, 1) ory > hyp(A, ).
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Proof Supposey < hiow(A, ). By definition (8.4),how(A, 1) is the largest amount that
allows the option bearer to construct a portfglla B) € ®(—x) such that (8.6) holds for
some stopping time. Note that any amountsmaller tharhoy (A, 1), and in particular any
xin the interval(y, higw(A, 1)), will also allow the option bearer to do this. Thysatisfies
the condition 2 of an arbitrage arbitrage opportunity as defined above. On the other hand
supposey > hyp(A, ). By definition (8.2),hyp(A, ) is the smallest initial wealtlk that
allows the option seller to construct a portfolify, B) € ®(x) such that (8.5) holds. Note
that any amour larger tharhyp(A, W), and in particular any in the interval(hyp(A, 1), y),
will also allow the option seller to do this. Thyssatisfies the condition 1 of an arbitrage
opportunity defined above.

On the other hand, suppose thiy(A, 1) <y < hyp(A, ) and that the conditions of
(1) in the definition of arbitrage opportunity above are satisfied, for some positive
Since by definition (8.2)hyp(A, ) is the smallesk > 0 such that these conditions hold,
this implies thahyp(A, 1) < X <y, which is a contradiction. The argument is similar if the
conditions of (2) are satisfied. ]

An immediate corollary to this is:

Corollary 8.3 The market is arbitrage-free if and only ifl(A, 1) < hyp(A,p) holds for
every American option G, and in this case the inter{fabw(A, 1), hup(A, )] is called the
arbitrage-free interval.

In Theorem 13.1 we show some other conditions that are equivalent to the absence of
arbitrage. The remainder of the paper is concerned with characterizing the upper and lower
hedging pricesiyp(A. 1) andhjow (A, ).

9 Representations of the Upper Hedging Price

The goal of this section is to represent the upper hedging pgjga, ) in terms of several
optimization problems. Consider the following seven optimization problems.

h(Q (A, W) := qergm@q, (9.2)
h(X) := Xm&xpeFr’?%X) EP Gy, (9.2)
h(Q.®) = ZQ%X(X7£?§?€¢(X+BE’A’B), (9.3)
h(X,®) := Xm&x(xﬂéyem(x+ Dx~B), (9.4)
h(T.®) = r;gx(xﬂé?@(x+ D5AB), (9.5)
h(®) := (X’Kg?mml?xwr D*AB(u)), (9.6)

h(Q A\, 1)):= qu}%J)@q, vieT. 9.7

We have used a mnemonic scheme to name each of the optimum values above. For exam-
ple we chose the nantg X, ®) in (9.4) because the domains of the max and min in the
corresponding optimization problem afeand® respectively. Thus the “arguments” lof

in each name above should not be treated literally as arguments of a function.
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Some explanation of each of the above problems might be helpful here. Also the reader
may wish to review the definitions of the various averages in Section 4.1. Expression (9.1)
defines the “maximum discountegweighted payoff, over alfA, p)-approximate martin-
gale node-measurep. Expression (9.2) foh(X) is a generalization of expression (1.1),
the difference being that the outer maximization is now performed oveaatiomized
stopping times € X and the inner maximization is over &N, |1, X )-approximate martin-
gale measures. Note that unlike in (1.1), the domain of the inner “max” in (9.2) depends on
which X is fixed in the domain of the outer “max”. In Theorem 11.1 we show that with zero
transaction costs this expression reduces to (1.1) if there exists a martingale measure with
positive measure on every path. Expression (9.3) is essentially the dual of the linear pro-
gram corresponding to (9.1). For a fixgd Q the inner “min” represents the “best hedge”
achievable by self-financing portfolios with respectgan the sense of minimizing the
sum of initial wealth and}-weighted discounted deficit. Expression (9.4) is similar, except
that the outer maximization is over randomized stopping tikesT , and “best hedge”
is defined in terms of the maximuiX-value of the discounted deficit. Expression (9.5)
is yet another variant where the outer maximization is over mixtaresstopping times
and “best hedge” is defined in terms of theexpected maximum value of the discounted
deficit. Expression (9.6) is obtained by interchanging the “max” and “min” in (9.3) and
simplifying; for a fixed self-financing portfolix, A, B) € ® the inner “max” represents the
maximum value ok plus the discounted deficit, over all noded~-inally, expression (9.7)
is similar to (9.1) except that the maximization is restricted to simple node-measures whose
support lies on the stopping boundary of some stopping time

Theorems 9.1 and 9.2 below show that all but the last of the above expressions equals
the upper hedging prickup(A, 1), as defined by (8.2). The principal tool for our proofs
is Strong Duality of Linear Programming (see Appendix A). Example 15.1 in Section 15
illustrates the computation ¢ifip(A, ).

It is also instructive to consider the problem of hedging against a particular exercise
strategyr, i.e., the problem of finding the minimum initial wealth needed to be able to
construct a self-financing portfolio that can hedge againstore precisely, consider

hip := min{x > 03(A.B) € ®(x) s.LVY*® > G}, (9.8)
Theorem 9.3 shows thaf, = h(Q (A, 1)).

Theorem 9.1 (Upper hedging price)The minimum in the definition (8.2) of the upper
hedging price is finite, and is given by:

hup(A, 1) = h(Q (A, W) = h(X). (9.9)

Proof The plan of the proof is to first observe that the optimization problem implicit in the
definition (8.2) of the upper hedging price, is a linear programming problem. We then write
the dual of this linear program (LP) (see Appendix A), and by making a judicious choice
of dual variables observe that the dual LP is equivalent to the definitibf{QofA,p)). The
equality ofh(Q (A,p)) andh(X) then follows from Theorem 6.6. Thus we only need to
show the first equality in (9.9).

Let us then write the optimization in the definition (8.2) leh(A, ) as an LP. This
defineshyp(A, 1) as the smallestsuch thav/*4-B(u) > G(u) holds at every node, subject
to the self-financing constraints (7.2) and (7.3). First observe that since it is always sub-
optimal to simultaneously buy and sell shares of the stock, forvatie variables(v)
ands(v) cannot both be positive at an optimal solution. Therefore we can dispense with
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the product constraints(v)s(v) = 0 appearing in (7.2). Thus we can write the LP in the
variablesx, b(.),s(.),A(.),B(.):

hup(A, 1) = minx
subject to the following constraints (the dual variable corresponding to each constraint is

shown on the left):

the self-financing constraints (7.2) and (7.3) Vet O:

2(0): —b(0)(1+A)S(0) +5(0) (1 — WS(0) — B(0) + x> O, (9.10)
y(0) : —A(0) + b(0) —s(0) =0, (9.11)

self-financing constraints (7.2) and (7.3) for each negeT U {0}:

z(v): =b(V)(1+N)S(V) +s(v)(1— wS(v) — B(v)+ B(V )R> 0, (9.12)
y(v) : —A(V)+A(V)+b(v) —s(v) =0, (9.13)

the initial domination constraint:
Z(0): x> G(0), (9.14)
the domination constraints for evevy 0 (see definition (7.1) 0§*%2B):
Z(v): AV )S(v)+B(v )R> G(v) (9.15)
and the non-negativity constraints
b(u) >0, s(u)>0, YuégT. (9.16)

We need not add the non-negativity constraiiit O since the option payofs(.) is non-
negative and so the initial domination constraint G(0) is a stronger constraint. Clearly
the LP above is feasible since for a sufficiently large initial wealtime can always con-
struct a self-financing portfolio whose value dominates the payoff everywhere. Further-
more, the initial domination constraint ensures that the solution to the linear program is
bounded from below. Therefore the LP is feasible and has a bounded optimum value, and
by strong duality of linear programming (Schrijver, 1986) (see Appendix, Theorem A.1),
the dual LP also has a bounded optimum value equal to that of the primal LP.

Let us now write down the dual of the above LP. We have defined three families of dual
variablesz(u),y(u) for each nodes ¢ T, andZ(u) for each nodei. Thus we can express
hup(A, ) in terms of the dual LP as

hup(A, 1) = masz’(u)G(u) (9.17)
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subject to the following constraints, with the corresponding primal variables shown on the
left. (The appendix describes how the dual LP is written in general.)

Bu): —zw+RY (Zv)+Z(v)=0, Vuru"¢T, (9.18)
veut
B(u) : —ZW+R Y Z(v=0.  Vu: ut CT, (9.19)
veut
Alu) =y + S (V) +Z(v)Sv))=0, Vu:ut¢T, (9.20)
veut
Au) : —yw+ Yy Z(vSv)=0.  vu: ut CT, (9.21)
veut
X: 20)+Z(0)=1 (9.22)
b(u) : —z(u)(14+ M) Su) +y(u) <0, YugT, (9.23)
s(u) : ZW(1-WSu) —y(u) <0,  VugT, (9.24)

and the non-negativity constraints
z(u)y>0, YugT, Z(u)>0, Vu. (9.25)

The dual constraints (9.18)-(9.24) can be re-written in a more informative way as follows:

2(u) =R § Z(RY, YugT, (9.26)
yu=7y7 (\V/)>;(v), vugT, (9.27)

Y Z(WRWY =V1>,u (9.28)
(1—uu)Z(U)S(U) <yu) < (1+M)zu)Su),  YugT. (9.29)

Now if we define the node functiag(u) := Z (u)R(" for all u, the dual LP is equivalent to:

hup(A. ) = maxy. g(u) RMYG(u) (9.30)
subject to
ZOI(U) =1 (9:31)
Su(L-w Y qv) < RY S quRMsv) <
V>u3(u)(1+>\) {c:(v), vugT, (9.32)
q(u) > o,v>u\1u, (9.33)
which is equivalent tdiyp(A, 1) = MaX;eq o) G [ ]

Theorem 9.2 (Upper hedging price)or the optimization problems defined above,
h(Q.®) = h(X.®) = h(T,®) = h(®) = hup(A, 1)

Moreover, the order of the “max” and “min” can be reversed in the definitions @ (),
h(X,®) and HT , ®) without changing the optimum value.
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Proof Recall thatd is a convex, closed set, so we can apply Prop. 5.2 to infer that
h(Q.®) <h(X.®) <h(T.®) <h(®).

Also, if we reverse the order of the “max” and “min” in the definition ) , ®), the
resulting expression cannot be smaller thé@ , @), and by an argument similar to the one
in the proof of Prop. 5.2, it equaltg®). The same is true if we reverse the “max” and “min”
in the expressions defining X, ®) and h(T ,®). Now suppos&x,A, B) is any optimal
super-replicating portfolio (see (8.2)). This means that starting with waadthp(A, 1),
there is a self-financing portfolid, B) whose value dominates the payoff everywhere, i.e.,
the (discounted) deficit at every noded$). Therefore for this portfolio,

maxx-+ D*>2(u)) < hup(A. 1.

which means that(®) < hyp(A, 1).

Thus to prove our Theorem it suffices to show thd . @) = hyp(A, p). We show this
using Strong Duality of Linear Programming. For brevity we will drop the superscript
“x,A,B” onV andD in what follows. We first writen(Q , @) as

h(Q . ®) = maxh(q),
aeQ

where

h(g):= min (Xx+Dg) = min (x+G*q—V*
(@ (X,A,B)etb( +Da) (x.A,B)ecb( +5% a)

=G* min  (x—V*q). 9.34
at (x,A,B)eqa( ) (9.34)

The optimization problem in the last “min” expression above is a linear program:

a=minx— " guV (R

subject to the self-financing constraints (9.10)-(9.13) in the proof of Theorem 9.1. Recall
thatV(u) above is given by expression (7.1), which is lineaxA,. B). This LP and is

very similar to the primal LP in the proof of Theorem 9.1. The only difference is that in the
present LP, eac¥(u) term appears in the objective function with coefficierf(u)R (Y,
whereas in the proof of Theorem 9.1 there was a constvdimt > G(u) for each nodeu.

Not surprisingly, the dual of the LP above is also similar to the dual LP in that Theorem; it
is

o = max0

subject to the constraints (9.18)-(9.24) with each dual variéplereplaced by the constant

q(v)R ). Recall that in the proof of Theorem 9.1 wefined v) to beZ (v)R™. Thus we

can carry out exactly the same algebraic manipulations as in that Theorem, and write the
dual of our LP as: max0 subject to the constraints (9.31)-(9.33). Since the node-nteasure
is fixed in the present Theorem, these constraints merely enforce the requiremerg that

Q (A, ), i.e., thatq is a (A, Ww)-approximate martingale node-measure. ThupdfQ (A, W)

the dual LP is feasible and its optimum value, as well as that of the primal LP (i.e. the “min”
expression in (9.34)) is 0, and btq) = G*q. If g ¢ Q (A, W), the dual LP is not feasible and
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therefore the primal LP is unbounded (since it is clearly feasiblehéad= — . Since we
know Q (A, ) is not empty (see Remark 6.4)(Q , @) can be written as

h(Q,®) = rqr;%xh(q) = qerg(agm G'q=:h(Q(\.b),

which by Theorem 9.1 equalgp(A, ). [ ]

Theorem 9.3 (Seller's hedge against a giver) For any stopping time € T ,

hEp = h(Q ()\7 HT))

Proof The proof closely mirrors that of Theorem 9.1. Recall thas the stopping bound-
ary of 1. We also define the set

Ji={u:Iv>u st vel} (9.35)

of nodes that armsidethe stopping boundary.

Consider the definition (9.8) dfj,. This is a linear program much like the definition
(8.2) ofhyp(A, ). The difference is that in the caseltf,, the domination constraints only
need to hold at the stopping boundafy Thus in the LP forh{m, the optimum does not
change if we restrict the domain of optimization to portfolios that satisfy the self-financing
constraints (7.3) only for nodesc J;. Without writing down the LP explicitly, we can see
that it can be written as

L
hyp = maxx

subject to the following constraints: (a) the initial self-financing constraints (9.10) and
(9.11) if 0 € J;, (b) self-financing constraints (9.12) and (9.13) for every J;, (c) the
initial domination constraint (9.14) if @ I, (d) the domination constraints (9.15) for every
Vv € |, and (e) the non-negativity constraints (9.16) for eveeyJ;.

As in the proof of Theorem 9.1 we define the dual variallesy(.),Z(.) but this time
we only need dual variablesu), y(u) for each nodei € J;, andZ (u) for eachu € I;. Then
the dual LP is

hyp = max Z Z(u)G(u) (9.36)
uely

subject to these constraints: (a) constraints (9.18) fan all); such thatt ¢ T, (b) con-
straints (9.19) for alu such thatu™ C T, (c) constraints (9.20) for ali € J; such that
ut ¢ T, (d) constraints (9.21) for ali such thatu™ C T, (e) the constraint (0) = 1 if
0 € Iy, or the constraint(0) = 1 if 0 ¢ |+, (f) constraints (9.23) and (9.24) for evarg Jy,
and (g) the non-negativity constraints

Z(u) >0, Yuel; Z(uy >0, Vuel.

These dual constraints can be re-written as (9.26)-(9.29), except that now we only need
(9.26), (9.27), and (9.29) for all € J;, and the summation in (9.28) should only be over

u € li. As in the proof of Theorem 9.1, if we define the node functiom = Z (u)RY for

all u € I, the dual LP is equivalent to

T *
hyp = rpeixq(U)G (w)
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subject to the following constraints: (a) (9.31) with the summation only over nodds,
(b) the constraints (9.32) for all € J;, with q(v) interpreted as 0 fov ¢ I, and (c) the
non-negativity constraints (9.33) fare I;. The constraints (a) and (c) requigeto be
a simple node-measure @', and the constraints (b) require thgpe Q (A, ). Thus the
constraints together require thate Q" NQ (A, =: Q (A, 1, T), SO we can writeh, =

MaXeq (1) G- =

10 Randomized Strategies and Nash Equilibria

In the last Section we saw that some optimization problems involved in the representation of
the upper hedging pride(A, 1) appear to require the use of mixtures of stopping times (or
randomized stopping times). In game theory it is often the case that at a Nash equilibrium,
one or more players must choosentureof strategies. It is thus natural to seek a game-
theoretic interpretation of some of our results. We give here such an interpretation of the
max-min expressions(Q , ®) andh(T , ®) defined in the previous Section.

We would like to set up a simultaneous-move game betweesdher and thedevil.
We will consider two variants of such a game. Tiedle games defined as follows:

— The seller picks a self-financing portfolig, A, B) € @,

— The devil picks a node-measuges Q, i.e., a “mixture” of nodes (in the sense that
choosing a single node constitutes a pure strategy, and choosing a node-measure with
support at more than one node constitutes a non-degenerate mixed strategy).

— For given choices$x, A, B) andq, the seller'sostand the devil'sitility are both equal to

x+§é’A’B. (Recall from Section 4.1 that for any adapted pro@e g, is theg-weighted

average value of over the entire event-tree.)

Thestopping gameis defined similarly except that the strategy space of the devil is the set
T of all mixtures of stopping times.

— The seller again picks a self-financing portfalioA, B) € P,

— The devil picks a mixture € T of stopping times,

— For given choice$x,A,B) andag, the seller'scostand the devil'autility are both equal
tox—+ DSAB.

In both games, the seller would like to minimize her cost, while the devil would like to
maximize his utility. (We are using the term “devil” rather than “buyer” because the devil's
objective in this game is solely to force the seller’s cost to be as large as possible; the option
buyer on the other hand would presumably try to maximize his own payoff from exercising
the option). In the node game, a pair of choige$x',A’.B') is said to constitute &lash
equilibrium (Fudenberg and Tirole, 1998) if the seller’'s choice(®fA',B') minimizes
her cost given the devil's choice of, and the devil's choice off maximizes his utility
given the seller’s choice di',A’,B'). A Nash equilibrium in the stopping game is defined
similarly.

Theorems 10.2 and 10.3 below characterize Nash equilibria in the node game and stop-
ping game respectively. See Example 15.3 for an illustration of these Theorems. We first
need the following definition.

Definition 10.1 We say that a portfoligx,A’,B’) is equivalent to a portfolio (x,A, B)
if the portfolio (X,A',B') is identical to(x,A,B) except thatx',A’,B') starts with some
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additional initial wealtha (could be negative) that is simply held in the bank (or in bonds)
and allowed to grow at the risk-free interest rate, or in other wortls=x + o, and for
every node u) (u) = A(u), and B(u) = B(u) + aRW,

Clearly if (x,A,B) is equivalent to(x,A',B') with X = x+ a, then at every node, the
discounted portfolio values differ by exactly i.e.,

VleA/vB’(u)R_t(u) :VX’A’B(U)R_t(U) +a, Yu

Theorem 10.2 (Node gamel node-measure g Q and a self-financing portfolied,A',B') €
® constitute a Nash equilibrium in the node game if and only if: (4% @n optimal node-
measure for expression (9.1) defininQhA, ), and (b) (X,4',B') is equivalent to an
optimal super-replicating portfolio (defined by (8.2)). In particular the seller's cost and
devil’s utility at any Nash equilibrium isyg(A, 1.

Proof Recall from the proof of Theorem 9.1 that the minimization problem (8.2) and the
maximization problem in (9.1) are linear programs that are dual to each other. In particular,
each variablg(u) in the first LP corresponds todommination constrainin the second LP.
Complementary slackne¢see Appendix A) tells us thaf € Q is optimal for (9.1) and
(X,A',B) is optimal for (8.2) if and only if for every nodewith ¢ (u) > 0, the domination
constraint ati is tight for the portfolio(X,A',B'), i.e.,D¥-2"® (u) = 0. For brevity we will
denote the procesd**~ B by D in what follows.

To prove the “if” part of the Theorem, consider agyc Q optimal for (9.1), and
any (X,A',B') € @ optimal for (8.2). The complementary slackness property stated above
implies thatﬁq/ =0, sox +5q/ = hyp(A, ). Suppose the seller chooses the portfolio
(X,A',B'). Since this is a super-replicating portfolio, the deficit at every node G5 so
the devil cannot hope to choosefae Q with Dy > 0. Thus the devil’s choice af is
optimal, given that the seller has chogeh/',B'). Now suppose the devil has chosgn
If the seller choose§<, &', B'), her cost would be& + Dy = hyp(A, ). This is the smallest
possible cost the seller can hope for, given the devil's choia. dfhis follows from the
duality argument in the last paragraph of the proof of Theorem 9.2, where it can be seen
that

h(q) := (x,Z?B')”eq:(” Dy) = Gy = hup(A, ).
In fact any portfolio(x”,A”,B") that is equivalent t¢x',A',B') would also be an optimal
choice for the seller.

To prove the “only if” part, consider a Nash equilibrium where the seller’'s choice is
(X,A',B') € ® and the devil's choice if . Since this is a Nash equilibrium, the devil must
beindifferentamong all nodes in the support @f i.e., the discounted defidd(u) of the
portfolio must equabl = qu for everyu € d (otherwise the devil could drop some nodes
from the support off and improve his utility). Moreover, there is no node in the tree where
the deficit exceeda. Therefore we can construct a new portfalid, A", B") with initial
wealthx’ = X +a that is equivalent t¢x' , &', B'), and the discounted deficit of this portfolio
would be< 0 everywhere, and exactly 0 at every naded . In other wordgx',A',B') is a
super-replicating portfolio whose value exactly matches the option payoff at every node in
the support off. By the complementary slackness property stated above, this implies both
thatq is optimal for (9.1) and thaix”,A”,B") is optimal for (8.2). [ |
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We now prove a necessary condition for a Nash equilibrium in the stopping game.

Theorem 10.3 (Stopping gamepuppose a mixture’ € T and a self-financing portfolio
(X,A',B') € & constitute a Nash equilibrium in the stopping game. Ttleis an optimal
mixture in the definition (9.3) of(@ , ®), and(X,A’,B') is equivalent to an optimal super-
replicating portfolio (defined by (8.2)). In particular the seller’s cost and devil's utility at
any Nash equilibrium is (A, ).

Proof Consider a Nash equilibrium where the seller chogged’.B') € ® and the devil
chooses’ € T . For brevity we will denote the discounted deficit proce$<¥-B by D. Let

0= 50/, so that the seller’s cost and devil’s utility (g + ). Since this is a Nash equilib-
rium, the devil must bendifferentamong all € o', and sd; = S for all T € ¢'. Also, there
isnoteT with Af’N’B’ > d. Thus the discounted defidt(u) of the portfolio(x,A',B')

is at mos® at every nodel. This means we can construct a self-financing portfolio equiva-
lentto(X,A',B') by starting with wealthx’ = X 4§, and the deficit of this portfolio would

be < 0 everywhere, i.e., the portfolio value dominates the option payoff everywhere. Thus
this is a super-replicating portfolio with initial wealth+ 6, and by definition ohyp(A, )

we must haveX + 6 > hyp(A, ). However we know that forny mixtureo and any optimal
super-replicating portfoliéx, A, B) we havex+ DxAB < hyp(A, w), and since the seller must
make an optimal choice, her cost (as well as the devil’s utility) must Be&d = hyp(A, p).

Thus the seller’s choice is a portfolio equivalent to an optimal super-replicating portfolio.
In particular, for the devil’s choice af’, the seller’s minimum cost iByp(A, p). From the
definition (9.5) ofh(T ,®) and the fact tha(T . ®) = hup(A, 1) (Theorem 9.2) it follows
that the devil's choice of’ optimizes (9.3). ]

11 The case of zero transaction costs

The previous sections showed that randomized (or mixed) exercise strategies are an essen-
tial feature of the upper-hedging price representations. By contrast, with zero transaction
costs, it turns out to be sufficient to restrict attention to only pure exercise strategies in all
of the previous results. In this section we will examine this difference between the zero and
non-zero transaction costs cases in some detail.

Recall that the upper hedging pribg, is defined in terms of a super-replication prob-
lem:hypis the smallestinitial wealth needed so that the option seller is able to hedge against
anyexercise strategyof the buyer’s choosing (we will drop the argumektg for brevity
here). In other words, starting withy, the seller can constructsinglehedging portfolio
that will hedge againsiny exercise strategy the buyer chooses. We call such a hedge an
oblivious hedge because it does not depend on any specific exercise strategyhpias
the smallest initial wealth needed to construct an oblivious hedge.

Now it is natural to ask what is the maximum valuehgf, over allt, i.e., what is the
initial wealth needed to hedge against the “toughest” exercise strategy? That is, we want to
compute

k. T
hip == rTr;r%lxhup. (11.1)
Notice thath,, is the smallest initial wealth needed to hedge againstpaeyannounced

exercise strategy. In other words, if the option buyer announces his exercise strategy
advance (and sticks to it), then the seller, starting with an initial wéwjthcan construct



30 P. Chalasani, S. Jha

a hedge thatlependson 1, and dominates the payoff at timeWe call such a hedge an
adaptive hedge because the specific portfolio can vary depending on the pre-announced
exercise strategy. Thug,, is the smallest initial wealth needed for an adaptive hedge. A
reasonable question is:

Doeshy,, suffice to construct an oblivious hedge, i.esiaglehedge portfolio that
hedges againstll exercise strategies?

Here is the subtle difference between the case of zero and no transaction costs. With zero
transaction costs, the answer to the above question is always “yest j.e- hup, as The-
orem 11.2 states. However with non-zero transaction costs, the answer is in general “no”,
i.e., hj, may be smaller thahyp; Section 15 shows an example of this situation.

First we will show in Theorem 11.1 thatif= p= 0 then the outer maximization in the
definition (9.2) ofh(X ) can be restricted to pure stopping times without affecting the value
of the optimum. If in addition there exists a martingale measure with positive measure
on every path, then the inner maximization can be restricted to thé sétmartingale
measures. Thus the representation (1.1) in Harrison and Kreps (1979) follows from our
results.

Theorem 11.1 (Upper hedging price with zero transaction costdf A = = 0in our
model, the upper hedging price is given by

hup(0,0) = max max E°G:. 11.2

up(0,0) el PeP(0.01) | (112)

If there exists a martingale measu@ec P with Q(w) > 0 for everyw € Q, then the upper
hedging price is

hup(0,0) = rTr;aTlxr;we%prGi. (11.3)

Proof Consider the expression (9.1) defining (A,p)) (which by Theorem 9.1 equals
hup(A, 1)), withA = p=0:
hyp(0,0) = max u)G*(u).
p(0.0) = max 5 q(u)G(u)
Theorem 6.7 says that the extreme points of the convexX)$6t0) are simple node-
measures, and since the maximum of a linear function over a convex set must occur at
one of its extreme points (Bertsekas, 1995), it suffices to do the above maximization over
simple node-measures@y(0,0):
hup(0,0) = max max G*q, 11.4
up(0: ) 1€T geQ(0,0,1) & ( )
and by Theorem 6.6 we can write this as (11.2).

Now suppose there exists a martingale meaQuwéth positive measure on every path.
Then we claim that the domain of the inner maximization in (11.2) can be restricted to the
setP of all martingale measures without affecting the value of the optimum. This follows
from two facts. First, any measukRec P also belongs t® (0,0,1). Second, any measure

P € P(0.0,7) can be redefined to be a martingale mea§isuch thatE” Gt =FEPG:, as
follows (forward inductively):

P’(u)_ P(U)./ ifUElTUJ-[7
B P'(u™)Q(u)/Q(u™), otherwise,



Randomized Stopping Times and American Options 31

where the notatiofy, J; is defined in the proof of Theorem 9.3. This new measure is iden-
tical to P at or before the stopping boundarymwfand for any node beyond this boundary,
the ratioP'(u)/P'(u™) equalsQ(u)/Q(u™) (wheneveP’ (u~) > 0). Thus itis easy to verify
thatP’ is a martingale measure. This establishes our claim, and the Theorem foll@vs.

Theorem 11.2 (Adaptive and oblivious hedge with zero transaction costs)ith A =

p = 0, the minimum initial wealth needed to hedge against the “toughest” stopping time
also suffices to hedge everywhere. In other words an oblivious hedge requires no more
initial wealth than an adaptive hedge, or:

Proof From Theorem 9.3 it follows that for anyc T ,

h,=h(Q(0.0,1)):= max G,
up (Q ( 3 Yy )) qu (0,0,T) g
and SO may.T hﬂp equals expression (11.4) in the proof of Theorem 11.1, and we showed
there that it equalbyp(0,0). [ |

The above resultimplies that in the absence of transaction costs, the optimization prob-
lems in the definitions oh(X ,®) andh(T ,®), have optimal solutions that involve only
pure stopping times. It also implies that in the absence of transaction costs, there is a Nash
equilibrium in the stopping game where the devil picks a pure stopping time. This is stated
in the following Theorem.

Theorem 11.3 (Representations dfi,p(0,0)) Suppos@ =p=0. Lett € T be a stopping
time that maximizesp. Let(x,A, B) € ® be any optimal super-replicating portfolio. Then:

1. The randomized stopping timé xnd the portfoliox, A, B) are optimal for expression
(9.4) defining kX, @),

2. the degenerate mixture and the portfolio(x,A, B) are optimal for expression (9.5)
defining KT ,®), and

3. in the stopping game, there is a Nash equilibrium where the devil chooses the pure
stopping time, and the seller chooses the portfoli A, B).

Proof For brevity let us denothyp(0.0) by hyp. Note that ifX = X" thend := I3§(’A’B =

IS%"A’B. Since(x,A, B) is an optimal super-replicating portfolios- 6 < hyp. We claim there
cannot exist a portfoligx',A', B") with X + 5¥”N’B/ < hyp. This is because if there were
such a portfolio, we could construct a new portfolio equivalerixtay' , B') that starts with
initial wealthx 4+ & < hyp. This would be a self-financing portfolio that starts with wealth
less tharhyp and dominates the option payoff at timeThis however would contradict
Theorem 11.2, sinceis a “toughest” stopping time. Thus we haxe ISQA’B = hyp, and so
(x,A,B) is optimal for the inner “min” in (9.4) and (9.5), fot = X" ando = 1 respectively.
By Theorem 9.2 this in turn implies th&t= X' ando = 1 are optimal for the outer “max”
in the respective expressions. This proves the first two statements of the Theorem.
Consider now the stopping game. The observations of the previous paragraph imply that
the seller’s choice of portfoligx, A, B) is optimal, given that the devil has chosen the pure
strategyt; the seller’s cost ix+ DB = hyp. Also, since(x,A,B) is a super-replicating
portfolio, the devil cannot hope to picktafor which IZA)’T‘;A’B > 0. Thus, given that the seller
has choseltx, A, B), if the devil chooses then his utility would bex+ DrAB — hup, and
this would be highest possible utility he can get. This proves the third statement. B
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12 Representations of the Lower Hedging Price

Just as in Section 9 we will represent the lower hedging giiggA, 1) in terms of some
optimization problems:

T.0):=max min G* 121
9(T.Q) TGTquQ (iw) q (12.1)
T):= in E°G! 12.2
g(l) QWEE%XPGFY,T(WW T (12.2)

low '=Max{x>0|3(A,B) € P(—x), s.t. V{X’A’B+ G >0}, vieT. (12.3)

A few remarks about the above expressions might be helpful. In the definition (12.1) of
o(T ,Q), for afixedt € T, the inner “min” represents the smallgstveighted discounted
option payoff, over al{A, 4, T)-approximate martingale node-measugdsxpression (12.2)
for g(T ) is analogous to (9.2) except that it involves only ordinary stopping times. Theorem
12.2 asserts thaf(T ,Q ) andg(T ) equal the lower hedging pridg. (A, 1), as defined in
(8.4). Example 15.1 in Section 15 illustrates the computatidn@fA, ).

Itis possible to derive representations analogous to (9.3)-(9.8)feM. 1), but we do
not do so in this paper. Definition (12.3) bf , is analogous to definition (9.8) cb{,p; it
is the maximum amount of cash the option buyer can borrow to purchase the option and
be able to repay the loan by exercising the option accordirg Tieorem 12.1 shows a
representation dffi,,, which is analogous to that shown in Theorem 9.3Hgy; with the

low
“max” replaced by a “min”.

Theorem 12.1 (Buyer's hedge against a given)

hbwy= min G
oW ge Q)
Proof The proof is almost identical to that of Theorem 9.3. [ ]

Theorem 12.2 (Lower hedging price)ln our market model, the lower hedging price
hiow(A, W) is given by
hiow(A, 1) = g(T.Q) = g(T). (12.4)
where the inner “min” is interpreted ag- if P (A, 14, T) is empty.
Proof Clearlyhiow(A. ) defined in (8.4) can be written as
hiow(A, 1) = maxhiy,,,,
el

and the Theorem follows from Theorem 12.1 and Theorem 6.6. |

Remark 12.3lt is possible to show using duality arguments that

how(, ) = max_min E° G, (12.5)
where the right hand side is a “relaxation” of the expression (12.2) defigiihg. “Relax-
ation” is a commonly used term in mathematical programming, to refer to the program that
results when integrality restrictions are removed; such relaxed programs are easier to com-
pute numerically. In our case expression (12.2) involves ordinary stopping times, which
can be modeled by integer variables, and removing the integer restrictions gives rise to the
expression on the right in (12.5) involving randomized stopping times. For reasons of space
we do not exhibit the proof of (12.5) in this paper.
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Unlike the upper hedging pridays(A. ), the lower hedging pric@iow (A, ) may be
unboundedly large. We show in Theorem 13.1 howevertigatA, p) is finite if and only
if the market is arbitrage-free. The intuition behind this difference between the upper and
lower hedging prices is the following. Regardless of whether or not the market is arbitrage-
free, the definition (8.2) dfiup(A, 1) implies that it cannot be smaller than 0 since the option
payoff functionG is non-negative. However if there is a buyer’s arbitrage (defined by (8.6)),
then the buyer can borrow an unboundedly large amount of cash and still pay it back by
exercising the option appropriately.

With zero transaction costs we show that the expression (1.2) of Harrison and Kreps
(1979) follows from our results:

Theorem 12.4 (Lower hedging price with zero transaction costs)f A = u= 0in our
model, and if there exists a martingale measQre P with Q(w) > 0 for all w € Q, then
for an American option G the lower hedging price is given by

hiow(0,0) = qé?xg;iPnEPG{‘. (12.6)

Proof From Theorem 12.1 it follows that

hiow(0.0) = max min E° G,
ow(0.0) €T PeP(0,0.1) !
where the domain of the inner minimization is the set of meadRiiesP (0,0,1). By the
same reasoning as in the proof of Theorem 11.1 we can replace this domain byRhef set
all martingale measures. [ ]

13 Conditions equivalent to the absence of arbitrage

Theorem 13.1 The following statements are equivalent;

1. The lower hedging pricady (A, p) is finite for every American option G,
2. There exists @\, )-approximate martingale measurei.e.,P (A, ) # @,
3. how(A, 1) < hyp(A, W) for every American option G,

4. The market is arbitrage-free.

Proof We first show 1 and 2 are equivalent. From Theorem 12.2 it follows that (regardless
of the American optioi®) hiow (A, W) is finite if and only if for every stopping time(and in
particular the stopping tinte= n), the inner “min” in the definition (12.2) af(T ) is finite,

which means there exists sofRes P (A, 1, T), which mean® (A, ) # @. The equivalence

of 1 and 3 follows from the Strong Duality Theorem of Linear Programming (Theorem
A.1) and the fact (Theorem 9.1) thafy(A, ) is always finite. The equivalence of 3 and 4
was already stated as Corollary 8.3. [ ]

We now show that as transaction costs increase, the arbitrage-free interval “expands”,
in the sense that the interval with higher transaction costs contains the interval with smaller
transaction costs.

Theorem 13.2I1f0< A <N <land0< u< i < landP (A, W) # @ then
hiow(\', 1) < hiow(A, W) < hup(A, ) < hup(N:lvll) < .
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Proof This easily follows from the observation that

UPArX)C [JPN.H.X).
XeX XeX

An easy corollary to this Theorem is:

Corollary 13.3 If there exists a martingale measure in our market model, i.€,# @,
then the range of arbitrage-free option prices without transaction costs, is contained in the
range[hiow(A, W) hup(A, W], and the limits of this range are finite.

14 European options with transaction costs

As mentioned in the Introduction, this case has been studied in several papers. In particular
for European options, our results imply an expectation representation that is very similar to
the one shown by Koehl et al. (1999).

Theorem 14.1 For a European option G in our model, if the market is arbitrage-free, the
upper and lower hedging prices are given by

hup(A 1) = _ max, E° G, (14.1)
hiow(A, W) = Perly(i)r\]p) E G (14.2)

Proof A European optiorG is merely a special case of an American option with payoff
G = 0 for all k < n. Therefore in the maxx in expression (9.2) fohyp(A, 1), we need

only consider the special randomized exercise strategyth X, = 1 (and all otheiX; =0

for i < n by definition). This means that the inner max in that expression can be restricted
toP e P(A,p), i.e., the(A, yw-approximate martingale measures. This implies expression
(14.1) above. The argument for expression (14.2) is similar. [ ]

15 Examples

In Section 9 we showed several representations for the upper hedgindgiitgs) (de-

fined by (8.2)). In particular the expression (9.2) definiiy ) involves a maximization

over randomized stopping tim&se X. A natural question is, if we restrict this maximiza-

tion to just the pure stopping timesc T, is the optimum the same? In Section 11 we saw
that with zero transaction costs the answer to this question is “yes”. The following example
shows that in the presence of transaction costs the answer to this question is “no”: (non-
degenerate) randomized strategies are essential in the representatigth\gfl). Some

more insight into the need for randomized strategies is provided in Example 15.3 later in
this section. The example below also illustrates the computation of the lower hedging price.

Example 15.1 (Need for randomized strategi¥ge) will show an example where no op-
timal simplenode-measure exists for the optimization problem in the definition (9.1) of
h(Q (A,W)). Proposition 5.5 then implies that the optinalin expression (9.2) foh(X)
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A=20, u=00, R=10

X=0 X=05 X =05

opt: g=0 q=05 q=05
O——O—
s=1 5G=2 S.G=4
G=0

Fig. 15.1 A simple event tree showing that with non-zero transaction costs, it is necessary to use a
randomized exercise stratedfyto optimize the second expression in (9.9). Node names are shown
inside the nodes, and the stock prisend payoffG are indicated under each node. The optimal
node-measurg and strategy are indicated above the nodes.

cannot correspond to a pure stopping time. A non-degenerate randomized exercise strategy
is thus necessary in this example.

Consider the simple 3-node event tree of Figure 15.1, with the parameters shown there.
The optimization problem corresponding to the expression (9.1) defii@gA, ) (and
thereforehyp(A, W) is:

hup(A, 1) = max q(0)G(0) +q(u)G(u) +q(V)G(v) (15.1)

subject to
q(0) +q(u) +q(v) =1, (15.2)
avVSW(1-w < qv)Sv) < gVSu)(1+A), (15.3)
(Q(u) +q(v)S0)(1—-p) < qu)S(u) +q(V)S(v) < (gu)+a(Vv))S0)(1+A), (15.4)
q(0) >0, g(u) >0, q(v) > 0. (15.5)

We will write g = (q(0),q(u),q(v)) for the vector of unknowns, i.e., the node-measure.
Constraint (15.3) always holds independently ofdghalues, sinc&u) < S(v) andS(v) =

4 < Ju)(14+A) =2x 3.0=6. Similarly, the left inequality in (15.4) always holds since
S(0) < Su) and the middle term is always at le&tl). SinceS0)(1+A) lies between
S(u) andS(v), we can choosg(0) = 0, and choosg(u) so that we maximize

q(U)G(u) + (1-g(w)G(v)
subject to
q(u)S(u) + (1—-q(u))S(v) < SO)(1+A); 0<q(u) <1
Noting thatG andSare equal at andv, the optimalg(u) is given by
29(u) +4(1-q(u)) =3, orqg(u) = 0.5,

which means the optimal solutionds= (0,0.5,0.5). The corresponding value of the ob-
jective function is thus

hup()\7 |J) =3.

It is easy to verify that this objective value cannot be achieved with any simple node-
measure: there are only two simple node-measures théh grieapproximate martingale
node-measures: the node-measuyite (1,0,0), which yields an objective function value
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of 0, andg = (0, 1,0), which yields an objective value of 2. Thus there is no simple node-
measure that optimizes expression (9.1) defithiffgy (A, )).

Note that on this simple event tree there can only be one meBsur@mely the one
given byP(0) = P(u) = P(v) = 1. Thus for any node-measugeon this tree, the unique
equivalent measure-strategy pair(R X), whereX(.) = q(.) everywhere. Therefore the
optimal X in expression (9.2) defining(X) = hyp(A, ) is the one wher&(0) = 0 and
X(u) =X(v) =0.5. Again itis easy to see that there is no pure stopping time that optimizes
that expression, for this example.

Now let us turn to the computation of the lower hedging phigg(A, 1) using the max-
min expression in (12.4):

hup(A, ) = max_min E°G;.
As noted above, there is only one possible probability med3orethis event tree, and so
for any fixedt, the inner “min” equal&"G! if P € P (A, 1, 1), and equals-« otherwise.
There is only one stopping tintefor whichP € P (A, 1, T), namelyt = 0 (i.e. stop at node
0). Since we want to maximize the inner “min” above with respedt, tine optimalt to
pick is eithert = 1 ort = 2, and in both cases the value of the inner “min“*Hi®. Thus
the lower hedging price in this example is unboundedly large; the American option in this
case admits an arbitrage opportunity. This is not surprising in light of Theorem 13.1 where
we showed that the market is arbitrage-free if and only if there (5, p)-approximate
martingale measure, i.d (A, ) # @. In this example the only possible measBris nota
(A, w)-approximate martingale measure.

Let us consider this example with zero transaction costshize j41= 0. It is easy to see
that the only(0, 0)-approximate martingale node-measure is the onegih= 1,q(u) =
0,q(v) = 0, and the corresponding objective function valudyjg0,0) = 0. The lower
hedging price can be seen tolyg,(0,0) = +co. [ ]

The following example illustrates the difference between an adaptive and oblivious
hedge.

Example 15.2 (Hedgind)et us consider the previous example from the perspective of
adaptive and oblivious hedging (as defined in Section 11). There are just three pure stopping
times on this event-tree: we denote the stopping tireei by 1, fori = 0,1,2. Consider
the quantityh,, defined in (9.8). For brevity we denoltép by hiup. First take the case of
non-zero transaction costs, with= 2.0, u= 0. From Theorem 9.3 we know that
- G

up = 90 (o) o
In this example the right hand side has a particularly simple form: if the unique node-
measurej corresponding ta;j is a (A, y)-approximate martingale node-measure, then the
“max” equalsG*q, otherwise it equals-co. Thushl, = 0, h, = 2 andh}, = —w, and so
the “toughest” exercise strategytis= 1, and an initial wealth of

h*=2

suffices to construct a self-financing portfolio that hedges against any pre-announced ex-
ercise strategy, i.e., for adaptivehedge. However, sind&p(A, 1) = 3, we know that an
oblivioushedge requires initial wealth 3. Thus, any portfolio that starts with wealth 2 will
fail to dominate the payoff at at least one node of the tree.
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By contrast, ifA = p= 0, we know from the previous example thrit= hyp(0.0) = 0.
As noted above, the onl§0, 0)-approximate martingale node-measure is (1,0,0), so
thathd, = 0 andhl, = h3, = —c. Thus the “toughest” exercise strategyris: 0, and the
smallest initial wealth needed to hedge againstlfitis- 0. Sinceh* = hyp(0,0), we know
that this initial wealth also suffices to construct an oblivious hedge. ]

Nash equilibria in the stopping game and the node game are illustrated in the next
example.

Example 15.3 (Nash Equilibriunjow for the same example above, let us consider the
stopping game defined in Section 10. Since there is only one path in our event tree, the
stopping game and node game are in fact equivalent. First let us examine the case of non-
zero transaction costs, with= 2, u = 0. Suppose the devil simply picks the “toughest”
exercise strategy= 1, and the seller picks the smallest-initial-wealth portfolio that domi-
nates the payoff at time 1 (i.e., nodpe Such a portfolio would match the payoff exactly at
nodeu, and so the seller’s cost and devil’s utility would Ihi'g, = 2. However these choices
would notconstitute a Nash equilibrium, for the following reason. We know that the seller’s
portfolio value must fall below the option payoff at node Ovpso the devil could switch to

a different stopping time and improve his utility. However if the devil choosasxtureof

the stopping times = 1 andt = 0.5, each with weight &, and the seller picks an optimal
super-replicating portfolio, then by Theorem 10.2 this would be a Nash equilibrium, where
the seller’s cost isyp(A, 1) = 3. ]

Example 15.4 (American call optio#) more realistic example where a non-degenerate
randomized stopping time is required is an American call option, as shown in Figure 15.2.
The node-measurg that optimizes (9.1) for this example is not a simple node-measure.
This means that the optimuiX in expression (9.2) (which equalgp(A, ) is a non-
degenerate randomized strategy. Note that if there were no transaction costs, the optimal
X would correspond to a pure stopping time — it is well known (Duffie, 1996) that under
the martingale measure the optimal exercise strategy for an American option (on a non
dividend-paying stock) i = n, i.e., exercise at expiration. However the example in Fig.
15.2 shows that with non-zero transaction costs, the optimal randomized strategy may have
some non-zero “probability” of exercise before expiration. It is not immediately clear what
the interpretation of this example ought to be: what is the optimal or “rational” exercise
policy for the option holder?

One difficulty with addressing this question is that in expression (9.2), the set of mea-
sures in the domain of the inner “magé&pend®n whichX is picked in the outer “max”.
If this were not the case, standard results in linear programming would imply that the op-
timum of (9.2) must occur at a pure stopping time. This state of affairs appears to confirm
a remark of Duffie (1996): “The real difficulties with analyzing American securities be-
gin with incomplete markets. In that case, the choice of exercise policy may play a role in
determining the marketed subspace, and therefore a role in pricing securities. If the state-
price-deflator depends on the exercise policy, it could even turn out that the notion of a
rational exercise policy is not well defined.” ]
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q=0.71726

q=0.071726

= 021101

Fig. 15.2 A binomial event tree showing a non-simple node-measyuiigat optimizes expression
(9.1) definingh(Q (A,p)), for an American call option with the following parametens= 3, initial
stock priceS = 10, strike priceK = 8, stock price “up factor” (factor by which stock price moves up
or down)u= 1.1, A = u= 0.2, andR = 1.0. Only the positivag values are shown.

16 Concluding Remarks

This paper considered the following question. In the presence of proportional transaction
costs, what is the permissible range of prices of an American option in the absence of ar-
bitrage? This range is defined by the upper and lower hedging prices. We examined this
pricing problem in a general discrete-time event-tree model. Our goal was to generalize the
expectation representations (1.1) and (1.2) that were shown by Harrison and Kreps (1979)
for a frictionless but incomplete market where there may be multiple martingale measures.
We found that in the presence of proportional transaction costs, expressions analogous to
these can be written, provided we generalize both the notion of a “martingale” and that of
an “exercise strategy”. In particular we need the notion of an approximate martingale mea-
sure. More interestingly and surprisingly, we need to expand the class of stopping times
to includerandomizedstopping times. We showed several perspectives from which to un-
derstand why randomized strategies are needed when there are transaction costs, including
one based on Nash equilibria in a two-player game. We derived most of our results using
elementary methods, requiring only the Strong Duality Theorem of linear programming.

One of the main contributions of this paper has been to show that randomized stopping
times are necessary to arrive at an elegant expectation representation of the upper hedg-
ing price of an American option with proportional transaction costs, in discrete time. We
believe it would be interesting to consider similar representations in continuous time, or
consider the continuous-time limit of our representations. Randomized stopping times can
also be defined in continuous time; in fact Baxter and Chacon (1977) introduce this concept
in the continuous-time setting.

We have noted in Section 11 that the value of the expression (1.1) for the case of zero
transaction costs remains unchanged even if the outer maximization is over randomized
exercise strategies. This raises the possibility that randomized stopping times could have
computationabpplications as &near relaxationof ordinary stopping times. For instance,
even in the absence of transaction costs, is it possible to use randomized stopping times
to design efficient Monte Carlo algorithms for pricing American options? A key difficulty
in using Monte Carlo simulation to price American options is that the optimal exercise
boundary is unknown. Perhaps one way to get around this difficulty is to simulate not



Randomized Stopping Times and American Options 39

just the stock price paths but also the randomized exercise strategy along each path. An
intriguing possibility is whether randomized stopping times can help in the quedbgad
formformulas for say an American call option (even in the absence of transaction costs).

The computation of the expressions for the upper and lower hedging prices appears
to be non-trivial. It would be useful to design efficient algorithms for approximating the
values of these expressions

It would also be interesting to show expressions representing upper and lower hedging
prices for American options when there are capital gédnes Karatzas and Kou (1998)
have shown expressions for upper and lower hedging pricespeitfolio constraintsbut
without transaction costs. It would of significant interest to extend their results to the case
of non-zero transaction costs; it is conceivable that randomized strategies will play a role
here as well, at least in a discrete-time framework.

More works needs to be done to define an appropriate notion of “rational” exercise
policy for the holder of an American option, when there are transaction costs. As discussed
in Example 15.4, it is not clear what the economic implications are of the fact that (non-
degenerate) randomized exercise strategies appear to turn up at the optima of the various
upper-hedging price representations.

In Section 10 we showed a game between the option seller and a “devil” from which the
upper hedging price emerges fairly naturally. A more economically appealing result would
be to define a game between the option seller andbtiyerwhich naturally gives rise to
the upper and lower hedging prices. This is easy to set up without transaction costs, but is
challenging when there are transaction costs.

Acknowledgements We would like to thank Steven Shreve for encouraging us to work on this paper.
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A Appendix: Linear programming and duality

Let A be anmx n (mrows,n columns) matrix with real-valued entries. Lebe a column
vector inR™, and letc be a column vector ilR". Let x € R" be a column vectors of
variables. For any matrix, Z" denotes its transposg(i, .) denotes it§'th row, andZ(., j)
denotes it'y’th column. For any column vectar z refers to itd’th entry. For two matrices
X.,Y, XY denotes the usual matrix product.

The following optimization problem isknear program(LP) in the variable vectax:

max{c'x: x>0, Ax< b}, (A1)
or more explicitly:
n
max$ GX; (A.2)
2
subject to
x>0 i=12,...,n, (A.3)
A, )x<b, i=12....,m (A.4)

The function (A.2) is called thebjectiveof the LP. The inequalities (A.3) are then-
negativityconstraints on the variables The inequalities (A.4) are referred to simply as
theconstraints A vectorx that satisfies (A.3) and (A.4) is said to feasible and the set of
such vectors is called tifeasible sebf the LP. If the feasible set is empty, the LP is said
to beinfeasible If the LP has an unbounded optimum (i-£e or —) then the LP is said
to beunbounded

Since we are starting with this LP, it is called themal, and the correspondingual
LPis

min{y'b: y>0,yTA>cT}, (A.5)
or more explicitly:
m
min ' yib (A.6)
i; ™
subject to
yi>0, i=12,....m, (A7)
YTA(LI) >, i=12...,n (A.8)

Notice that fori = 1,2,...,n, the primalvariable % corresponds to the duabnstraint
yTA(.,i) > ¢i. Alsofori=1,2,...,m, the primalconstraint Ai,.)x < bj corresponds to the
dualvariable y.

In general the primal LP may ha¥eee variablesi.e., those which are not constrained
to be non-negative. There may also éguality constraintof the formA(i,.)x = by. (If
there are inequalities such &s< 0 or constraints of the form(i,.)x > by, the LP can
easily be re-written so that all variables are non-negative or free, and all constraints are
equalities or of the form (A.4).) To write the dual of a general LP, we modify the above
dual specification as follows:
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1. If primal variablex; is free the corresponding dual constraint will be egualitycon-
straint:y" A(.,i) =¢.

2. For a primakqualityconstraintA(i. .)x = b, the corresponding dual variablewill be
free.

The dual of a maximization LP problem can also easily be written using the above rules.
It is therefore clear that thdual of the dual LP is the primal LP

The following relationship between the primal and dual optima is calledtheng
Duality Theorem, and John von Newmann is credited with stating it in privately circulated
notes as early as 1947. (See also Schrijver (1986) for more details.)

Theorem A.1 (Strong Duality of LP) Consider an LP P in general form, and its dual P
Then exactly one of the following cases occurs:

1. PP are both infeasible,
2. One of PP is unbounded, the other is infeasible,
3. PP are both feasible, and their optima are equal.

A useful optimality condition for LP problems is the following.

Theorem A.2 (Complementary Slacknessyuppose u is a feasible solution for the primal
LP, and v is a feasible solution for its dual. Then a necessary and sufficient condition for u
and v to be optimal for the primal and dual LP respectively, is: for every i, 3 0 then

the corresponding dual constrainttight at v, i.e., holds with equality.

Let us apply this condition to the primal LP (A.1) and its dual (A.5)ulis primal
feasible andr is dual feasible, then is optimal for the primal and is optimal for the dual,
if and only if:

u>0=V'Ai)=qg, i=12...,n,
or equivalently,

VAL >G=u=0, i=12...,n
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B Notation
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For easy reference we give here a summary of notation used in this paper. For each symbol
we show where it is defined and a brief definition.

| Where defined | Brief definition

Set of immediate successors of nade

Immediate predecessor of node

vis a successor af on the event tree.

u=voru<v.

Time-period corresponding to node

Stands for initial node in event-tree.

Set of terminal nodes in event-tree.

Time k node on patfow.

Stock price at timéx.

Equals 4+ r, wherer is the risk-free interest rate per time-perio
Payoff of American option at timk.

Value of a proces$z} at nodeu.

Discounted process correspondingta.e.,Z; = ZR.
Set of nodes on stopping boundaryrof

Set of nodes inside the stopping boundary.of

A node probability measuré.,, q(u) = 1, andqg(u) > 0 for all u.
Set of all possible node-measucgs

Set of all simple node-measurgsorresponding ta.
Svsud(v).

q(w) +q*(u).

g-weighted average value a@f

g-weighted average future value ofat nodeu.

g is equivalent tdP, X), i.e.,q(u) = P(u)X(u) for all u.

Symbol

General event-tree and process notation.
ut Sec. 2
u- Sec. 2
u<v Sec. 2
u<v Sec. 2
t(u) Sec. 2
0 Sec. 2
T Sec. 2
Wk Sec. 2
S Sec. 2
R Sec. 2
Gy Sec. 2
Z(u) Sec. 2
z* Sec. 2
It Sec. 2
J Eqg. (9.35)
Node-measures

q Sec. 3
Q Sec. 3
QT Sec. 3
gt (u) Sec. 4.2
q(u) Sec. 4.2
Z4 Eq. (4.8)
Zg(u) Eqg. (4.12)
g=(P,X) Def. 4.4
Randomized stopping times
X Def. 4.1
X Def. 4.9
Xt Eq. (4.1)
o Def. 4.3
X° Eq. (4.2)
Zx Eq. (4.3)
ZX\k Eqg. (411)
E(Z) Sec. 3
Ef Zx Sec. 4.2
EF Zx Sec. 4.2
7x Eq. (4.5)
Z Eq. (4.6)
Zs Eq. (4.7)

A randomized stopping tim&,_, X« = 1, X« > 0 for all k.
Remaining value oX at timek, or 3., Xi.
Randomized stopping time corresponding to pure stoppingtin
A mixture of pure stopping times.

Randomized stopping time corresponding to mixtore
Time-X value ofZ; analogous t@;.

Future timeX value ofZ at timek.

Shorthand for the conditional expectatin(Z|F ).
Shorthand folEf Zy .

Shorthand foif, Zx (w) whenwy = u.

Maximum timeX value ofZ.

Maximum value ofZ atrt.

ne

og-expected maximum value &
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Symbol | Where defined | Brief definition

Approximate martingale measures

P(A 1 X) Def. 6.1 Set of (A, W, X)-approximate martingale measures.

PALT) Sec. 6 P (A, 1. X) with X = XT.

P(Ap Sec. 6 P (A, 1. T) with T(w) = nfor all .

P Sec. 6 The set of all martingale measures.

Q\p Def. 6.3 The set of al(A, p)-approximate martingale node-measur

QA1) Def. 6.3 Q'NQ (A, W.

Portfolios and hedging

A Sec. 2 Transaction cost per dollar of shares bought; O.

sl Sec. 2 Transaction cost per dollar of shares sold; 0. < 1.

AV Sec. 7 Number of shares held at tinke

By Sec. 7 Number of dollars (in bonds) held at tinke

X Sec. 7 Initial wealth of a portfolio.

P Sec. 7 Set of self-financing portfolio&, A, B).

d(x) Sec. 7 Set of(A, B) such thai{x,A,B) € ®.

V*AB(y) Eq. (7.1) Value of portfolio(x,A, B) at nodev.

DE’A’B Def. 8.1 Discounted deficit of portfoligx, A, B) at timek.

hup(A, 1) Eqg. (8.2) Upper hedging price.

hiow(A, 1) Eq. (8.4) Lower hedging price.

hip Eq. (9.8) Min. wealth needed for seller to hedge against

hip Eq. (11.1) Min. wealth needed for seller to hedge against toughest
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