
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 409357, 15 pages
doi:10.1155/2012/409357

Research Article

Randomized SVD Methods in Hyperspectral Imaging

Jiani Zhang,1 Jennifer Erway,1 Xiaofei Hu,1 Qiang Zhang,2 and Robert Plemmons3

1 Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA
2 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
3 Departments of Mathematics and Computer Science, Wake Forest University, Winston-Salem, NC 27109, USA

Correspondence should be addressed to Robert Plemmons, plemmons@wfu.edu

Received 16 May 2012; Accepted 2 August 2012

Academic Editor: Heesung Kwon

Copyright © 2012 Jiani Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a randomized singular value decomposition (rSVD) method for the purposes of lossless compression, reconstruction,
classification, and target detection with hyperspectral (HSI) data. Recent work in low-rank matrix approximations obtained from
random projections suggests that these approximations are well suited for randomized dimensionality reduction. Approximation
errors for the rSVD are evaluated on HSI, and comparisons are made to deterministic techniques and as well as to other randomized
low-rank matrix approximation methods involving compressive principal component analysis. Numerical tests on real HSI data
suggest that the method is promising and is particularly effective for HSI data interrogation.

1. Introduction

Hyperspectral imagery (HSI) data are measurements of the
electromagnetic radiation reflected from an object or scene
(i.e., materials in the image) at many narrow wavelength
bands. Often, this is represented visually as a cube, where
each slice of the cube represents the image at a different
wavelength. Spectral information is important in many
fields such as environmental remote sensing, monitoring
chemical/oil spills, and military target discrimination. For
comprehensive discussions, please see, for example, [1–3].
Hyperspectral image data is often represented as a matrix
A ∈ Rm×n, where each entry Ai j is the reflection of ith pixel
at the jth wavelength. Thus, a column of A contains the entire
image at a given wavelength; each row contains the reflection
of one pixel at all given wavelengths—often referred to as the
spectral signature of a pixel.

HSI data can be collected over hundreds of wavelengths
—creating truly massive data sets. The transmission, stor-
ing, and processing of these large data sets often present
significant difficulties in practical situations [1]. Dimen-
sionality reduction methods provide means to deal with
the computational difficulties of the hyperspectral data.
These methods often use projections to compress a high-
dimensional data space represented by a matrix A into a
lower-dimensional space represented by a matrix B, which

is then factorized. Such factorizations are referred to as low-
rank matrix factorizations, resulting in a low-rank matrix
approximation to the original HSI data matrix A. See, for
example, [2, 4–6].

Dimensionality reduction techniques are generally
regarded as lossy compression; that is, the original data
is not exactly represented or reconstructed by the lower-
dimensional space. For lossless compression of HSI data,
there have been efforts to exploit the correlation structure
within HSI data plus coding the residuals after stripping
off the correlated parts; see, for example, [7, 8]. However,
given the large number of pixels, these correlations are
often restricted to the spatially or spectrally local areas,
while the dimension reduction techniques essentially
explore the global correlation structure. By coding the
residuals after subtracting the original matrix by its low-
dimensional representation, one can compress the original
data in a lossless manner, as in [8]. The success of lossless
compression requires low entropy of the data distribution,
and, as we shall see in the experiments section, generally the
entropy of residuals for our method will be much lower than
the entropy of the original data.

Low-rank matrix factorizations can be computed using
two general types of algorithms: deterministic and proba-
bilistic. The most popular methods for deterministic low-
rank factorizations include the singular value decomposition

2 Journal of Electrical and Computer Engineering

(SVD) [9] and principal component analysis (PCA) [10].
Advantages of these methods include the following: first,
often a small number of singular vectors (or principal
components) sufficiently capture the action of a matrix;
second, the singular vectors are orthonormal; third, the
truncated SVD (TSVD) is the optimal low-rank represen-
tation of the original matrix in terms of Frobenius norm
by the Eckart-Young theorem [9]. This last advantage is
especially suited for compression with the TSVD method,
since the Frobenius norm of the residual matrix is the
smallest among all rank-k representations of the original
matrix, and hence we should expect a much lower entropy in
its distributions—making it suitable for compressive coding
schemes. Both decompositions offer truncated versions so
that these decompositions can be used to represent an n-
band hyperspectral image with the data-size-equivalent of
only k images, where k ≪ n. For applications of the SVD
and PCA in hyperspectral imaging see, for example, [11, 12].

The traditional deterministic way of computing the SVD
of a matrixA ∈ Rm×n is typically a two-step procedure. In the
first step, the matrix is reduced to a bidiagonal matrix using
householder reflections or sometimes combined with a QR
decomposition if m ≫ n. This takes O(mn2) floating-point
operations (flops), assuming that m ≥ n. The second step is
to compute the SVD of the bidiagonal matrix by an iterative
method in O(n) iterations, each costing O(n) flops. Thus,
the overall cost is still O(mn2) flops [13, Lecture 31]. In HSI
applications, the datasets can easily break into the million-
pixel or even giga-pixel level, which renders this operation
impossible on typical desktop computers.

One solution is to apply probabilistic methods which
give closely approximated singular vectors and singular
values, while the complexity is at a much lower level. These
methods begin by randomly projecting the original matrix
to obtain a lower-dimensional matrix, while the range of
the original matrix is asymptotically kept intact. The much-
smaller projected matrix is then factorized using a full-
matrix decomposition such as SVD or PCA, after which the
resulting singular vectors are backprojected to the original
space. Compared to deterministic methods, probabilistic
methods often offer the lower cost and more robustness in
computation, while achieving high-accuracy results. See the
seminal paper [14], and the references therein.

Knowing the redundancy of HSI data, especially in the
spectral dimension, recently we have observed studies on
the compressive HSI sensing, either algorithmic [11, 15] or
experimental [6, 16, 17], and all of them involve a random
projection of the data onto a lower-dimensional space.
For example, in [11] Fowler proposed an approach that
exploits the use of compressive projections in sensors that
integrate dimensionality reduction and signal acquisition to
effectively shift the computational burden of PCA from the
encoder platform to the decoder site. This technique, termed
compressive-projection PCA (CPPCA), couples random
projections at the encoder with a Rayleigh-Ritz process for
approximating eigenvectors at the decoder. In its use of ran-
dom projections, this technique can be considered to possess
a certain duality with our approach to randomized SVD
methods in HSI. However, CPPCA recovers coefficients of

a known sparsity pattern in an unknown basis. Accordingly,
CPPCA requires the additional step of eigenvector recovery.

In this paper, we present a randomized singular value
decomposition (rSVD) method for the purposes of loss-
less compression, reconstruction, classification, and target
detection. On a large HSI dataset we apply the rSVD
method to demonstrate its efficiency and effectiveness of the
proposed method. On another HSI dataset, we will show the
effectiveness of the proposed algorithm in detecting targets,
especially small targets, through singular vectors. In terms of
reconstruction quality, we will compare our algorithm with
CPPCA [11] by using the signal-to-noise ratio (SNR).

We note that Chen et al. [18] have recently provided
an extensive study on the effects of linear projections on
the performance of target detection and classification of
hyperspectral imagery. In their tests they found that the
dimensionality of hyperspectral data can typically be reduced
to 1/5 ∼ 1/3 that of the original data without severely
affecting performance of commonly used target detection
and classification algorithms.

The structure of the remainder of the paper is as
follows. In Section 2, we give a detailed overview of rSVD in
Section 2.1, the connections between this work and CPPCA
in Section 2.2, and the compression and reconstruction of
HSI data in Section 2.3. In Section 3, we present numerical
results of the rSVD method on two publicly available real
data sets. Finally, we draw some conclusions and identify
some topics for future work in Section 4.

2. Review of Randomized Singular
Value Decomposition

We start by defining terms and notations. The singular value
decomposition (SVD) of a matrix A ∈ Rm×n is defined as

A = UΣVT , (1)

where U and V are orthonormal, and Σ is a rectangular
diagonal matrix whose entries on the diagonal are the
singular values denoted as σi. The column vectors of U and
V are left and right singular vectors, respectively, denoted as
ui and vi. Define the truncated SVD (TSVD) approximation
of A as a matrix Ak such that

Ak =

k∑

i=1

σiuiv
T
i . (2)

We define the randomized SVD (rSVD) of A as follows:

Âk = ÛΣ̂V̂T , (3)

where Û and V̂ are both orthonormal, and Σ̂ is diagonal with
diagonal entries denoted as σ̂i. Denote the column vectors of

Û and V̂ as ûi and v̂i, respectively, and call them randomized
singular vectors. Here, ui, vi, and σi are related to ûi, v̂i,
and σ̂i, respectively. Define the residual matrix of a TSVD
approximation as follows:

Rk = A− Ak, (4)

Journal of Electrical and Computer Engineering 3

Input: An m× n matrix A and a precision measure ǫ.
Output: An m× k matrix Q and rank k.
Initialize Q as an empty matrix, e = 1 and k = 0.
while e > ǫ do

(1) k = k + 1.
(2) yi = Aωi, where ωi is a Gaussian random vector.

(3) qi = (I −QQT)yi.
(4) qi = qi/‖qi‖.
(5) Q ← [Q qi].
(6) Ω← [Ωωi].

(7) Compute error e = ‖A−QQTA‖F /‖A‖F .
end

Algorithm 1: Construct an orthonormal matrix Q that approximates the range of matrix AΩ.

and the residual matrix of a rSVD approximation as follows:

R̂k = A− Âk. (5)

Define the random projection of a matrix as follows:

Y = Ω
TA, or Y = AΩ, (6)

where Ω is a random matrix with independent and identi-
cally distributed (i.i.d.) entries.

2.1. Randomized SVD Algorithm. The rSVD algorithm as
considered by [14] explores approximate matrix factoriza-
tions using random projections, separating the process into
two stages. In the first stage, random sampling is used to
obtain a reduced matrix whose range approximates the range
of A; in the second stage, the reduced matrix is factorized. In
this paper, we use this framework for computing the rSVD of
a matrix A.

The first stage of the method is common to many
approximate matrix factorization methods. For a given ǫ > 0,
we wish to find a matrix Q with orthonormal columns such
that

‖A−QQTA‖
2
F ≤ ǫ. (7)

Algorithm 1 [14] can be used to compute Q.
Because in practice we may not know the target rank k

of A, Algorithm 1 allows us to look for an appropriate target
rank based upon given ǫ such that (7) holds. However if the
target rank is known, one can avoid computing the error
term e at each iteration by replacing the While loop with a
For loop. In practice, the number of columns of Q is usually
chosen to be slightly larger than the numerical rank ofA [14].
Without loss of generality, we assume that Q ∈ Rm×l, where
l ≪ n. The columns of Q form an orthogonal basis for the
range of AΩ, where Ω is a matrix composed of the random
vectors {wi}, typically with a standard normal distribution
[14]. The range of the product AΩ is an approximation to
the range of A.

The second stage of the rSVD method is to compute the
SVD of the reduced matrix QTA ∈ R

l×m. Since l ≪ n, it
is generally computationally feasible to compute the SVD of

the reduced matrix. Letting ŨΣ̂V̂T denote the SVD of QTA,
we obtain that

A ≈
(
QŨ

)
Σ̂V̂T = ÛΣ̂V̂T , (8)

where Û = QŨ and V̂ are orthogonal matrices, and thus by

(8), ÛΣ̂V̂T is an approximate SVD of A, and the range of Û is
an approximation to range of A. Algorithm 2 summarizes the
discussion above. See [14] for details on the choice of l, along
with extensive numerical experiments using randomized
SVD methods and a detailed error analysis of the two-stage
method described above.

Next we discuss several variations of Algorithm 2
depending on the properties of A. We will test all cases in
the numerical results section.

Case 1. If knowing the target rank k, and if the singular
values of A decay rapidly, we can skip Algorithm 1 by simply
using the rank revealing QR factorization, Y = QR, where
Q is an orthogonal basis of the range of Y . Figure 1 from
[19] compares the approximation error ek and the theoretical
error σk+1 of a matrix A, and clearly when the singular values
of A decay rapidly, ek is close to the theoretical error σk+1 with
high probability.

Case 2. If the singular values of A decay gradually, or σk/σ1

is not small, we may lose the accuracy of estimates. Consider
introducing a power q and forming Y as Y = (AAT)qAR.
Since (AAT)qΩ has the same singular vectors as A, while

its singular values, {σ
2q−1
i , i = 1, . . . ,n}, decay more rapidly.

Hence the error will be smaller by Theorems 2.3 and 2.5 in
[14]. From Figure 2, we see that the ek is not always close to
σk+1, especially when q = 0, but, by increasing the power q,
we observe the reduction of errors.

Case 3. Algorithm 2 requires us to revisit the input matrix,
while this may be not feasible for large matrices. For example,
in ultraspectral imaging [20], one could have thousands of
spectral bands, and PCA on such datasets would require
computing the eigenvectors and eigenvalues of a covariance
matrix with a huge dimension. Another example is in the
atmospheric correction model called MODTRAN5 [21], that
utilizes large lookup tables (LUTs), and the compression

4 Journal of Electrical and Computer Engineering

Input: An m× n matrix A and rank k with k ≤ n ≤ m.

Output: The rSVD of A: Û , Σ̂, V̂ .
(1) Generate a Gaussian random matrix Ω ∈ Rn×k .
(2) Form the projection of A: Y = AΩ.
(3) Construct Q ∈ Rm×k by Algorithm 1.
(4) Set B = QTA ∈ Rk×n.

(5) Compute the SVD of B, B = ŨΣ̂V̂T .

(6) Û = QŨ .

Algorithm 2: The basic rSVD algorithm.

Input: An m× n matrix A and an integer J .
Output: {B j ,Q j , r̂ j , j = 1, . . . , J}.
j = 1
while flight continues do

(1) Acquire the HSI data, A j , scanned in the last few seconds.
(2) Apply Algorithm 1 for Q j and B j .
(3) Compute the residual, r j = A j −Q jB j .
(4) Code r j as r̂ j with a parallel floating point coding algorithm.
(5) Store Q j , B j and compressed r j .
(6) j = j + 1.

end

Algorithm 3: rSVD encoder.

of LUTs by the PCA technique would again require the
eigen decomposition of large covariance matrices. Here we
introduce a variation of Algorithm 2 that only requires one
pass over a large symmetric matrix. Now we define matrix B
as follows:

B = QTAQ, (9)

and we multiply by QTΩ, that is,

BQT
Ω = QTAQQT

Ω. (10)

Since A ≈ AQQT , we have the following approximation:

BQT
Ω ≈ QTAΩ = QTY , (11)

and hence by a least-square solution we have

B ≈ QTY
(
QT

Ω

)†
, (12)

where the superscript † represents the pseudoinverse. Notice
the absence of A in the approximate formula of B. Thus, for
a large symmetric A, we will use (12) rather than QTA to
compute B, while the rest of Algorithm 2 would remain the
same.

2.2. Connections to CPPCA. A significant difference between
the compressive-projection PCA (CPPCA) approach and our
work is that CPPCA uses a random orthonormal matrix
P to compress the data matrix A. In comparison, though
we also use random projections, the orthonormal matrix
Q is constructed from, and directly related to, the data

matrix A. In particular, we compute an orthogonal Q such
that ‖A−QQTA‖F ≤ ǫ. Also, because the projection onto
convex sets (POCSs) algorithm is used for reconstruction,
the projection matrix P of CPPCA has to be different for
different blocks of the scene, which have to be independently
drawn and orthogonalized; meanwhile, one random projec-
tion matrix Ω in rSVD is sufficient and can be applied to
the whole dataset. Another restriction of CPPCA lies in the
fact that the Rayleigh-Ritz method requires well-separated
eigenvalues [22], which might be true for the first few largest
eigenvalues, but usually not true for the smaller eigenvalues.
In a later section we present our approach for matrices with
slowly decaying singular values in Case 2.

2.3. Compression and Reconstruction of HSI Data by rSVD.
The flight times of airplanes carrying hyperspectral scanning
imagers are usually limited by the data capacity, since
within 5 to 10 seconds hundreds of thousands of pixels
of hyperspectral data are collected [1]. Hence for real-
time onboard processing, it would be desirable to design
algorithms capable for processing this amount of data within
5 to 10 seconds before the next section of the scene is
scanned. Here we use the proposed rSVD algorithm to
losslessly compress blocks of HSI data, each within a frame
of 10 second flight time, which is equivalent to dividing the
HSI data cube along the flight direction, either the x or y
direction, with the number of rows (y direction) or columns
(x direction) determined by the ground sample distance
(GSD) and the flight speed. Algorithm 3 describes the rSVD
encoder, which outputs {B j ,Q j , r̂ j , j = 1, . . . , J} to be stored
onboard, where B j and Q j are the outputs of Algorithm 2 for

Journal of Electrical and Computer Engineering 5

Input: {B j ,Q j , r̂ j , j = 1, . . . , J}.

Output: Reconstructed matrix Â.
For j = 1 : J do

(1) Decode r j from r̂ j with a parallel floating point decoding algorithm.
(2) A j = Q jB j + r j .
(3) j = j + 1.

end
Group all {A j , j = 1, . . . , J} together in A.

Algorithm 4: rSVD decoder.

the jth block of data, while r̂ j is the coded residual. These
are then used by Algorithm 4 to reconstruct the original data
losslessly, and we can see it only involves a one-pass matrix-
matrix multiplication and is without iterative algorithms.
Compared to CPPCA, the number of bytes used for storing
the Bs and Qs is smaller, and the reconstruction only involves
matrix-matrix multiplication. The only possible bottleneck
might be the residual coding, but the recent development
in floating point coding has seen throughputs reaching as
much as 75Gb/s [23] on a graphic processing unit (GPU),
while even on an eight-Xeon-core computer we have seen
throughput at 20Gb/s, and both would be sufficiently fast to
code the required amount of HSI data within 10 seconds.

3. Numerical Experiments

3.1. Accuracy of the rSVD Estimates. In this section, we will
first compare the results from rSVD and from the exact
TSVD by the MATLAB function, “svds,” which computes the
largest k singular values and the associated singular vectors
of a large matrix. It is considered to be an efficient and
accurate method to obtain the TSVD. To simulate large HSI
datasets, we generate random test matrices A ∈ Rm×n, with n
fixed at 100 representing 100 spectral channels, while m =

100, 000; 200, 000; . . . , 2, 000, 000, representing the number
of pixels. The singular values of A are simulated as following
a power decay with the power set as −1, that is, σk/σ1 =

1/k. We will use Algorithm 2 to compute the rSVD. The
comparison of computation time is shown in Figure 3(a),
from which we find that “svds” is almost as effective as rSVD
when n is relatively small. However, when m increases, the
computation times of “svds” increase at a much faster pace
than that of rSVD, and note that when m = 300, 000, the
processing time of rSVD is well within 10 seconds, meeting
the onboard processing time limit. To judge the accuracy of
estimated singular vectors, we compute the correlation or the

inner product of singular vectors in U by “svds” and Û by
rSVD as shown in Figure 3(b), where we clearly see that both
sets are almost identical up to the fifteenth singular vector. To
judge the accuracy of estimated singular values, we compute
the relative absolute errors, |σ̂k − σk|/|σk|, and plot them in
Figure 3(c). Again we observe the high accuracy of the esti-
mates up to the first 15 singular values. In most HSI datasets,
the singular values decay rate is generally faster than 1/k,
and hence we should expect even higher accuracy of the esti-
mates. Also, it is sufficient to estimate the first 15 or even 10

singular vectors and singular values, which would often cover
more than 90% of the original variance of the HSI data [1].

Then we numerically test the three special cases discussed
in Section 2.1.

Case 1. We have considered square Toeplitz matrices with
increasingly large sizes, n = 15, 30, . . . , 1500. Figure 4 shows
the rapid decay of a 1, 000 × 1, 000 matrix, and hence they
are suitable for testing the algorithm. Figure 5(a) shows that
the relative Frobenius norm errors rise and fall in the order
of 10−12 and remain in the same order even when the size
of a matrix increases. Figure 5(b) demonstrates that the
computational time of rSVD is very short for the Toeplitz
matrices whose singular values decay rapidly.

Case 2. Here we simulate 10, 000× 100 matrices with slowly
decaying singular values, that is, σi/σ1 = i−s, with s =

0.2, 0.4, . . . , 1.0. For each matrix, we run the rSVD algorithm
100 times for each power q in the set, {q = 1, 2, . . . , 20}. The
norm errors of reconstructed matrices are averaged across
100 runs and normalized by the norm error when q = 1, that
is, eq/e1. Figure 6 shows that increasing the power q improves
the reconstruction quality or decreases the norm error, and
greater effects are observed for larger s because the singular

values of (AAT)q are σ
2q
i = σ

2q
1 i−2qs.

Case 3. To simulate covariance matrices, we generate a
sequence of positive definite symmetric matrices with
increasing size as n = 100, 110, . . . , 2, 000. The eigen-
spectrum follows a power decay with the power set as −1.
We apply the modified B as in Case 3 to compute its SVD,
rather than using QTA. We set k = 25. Figure 7(a) shows
the computation time compared with using regular SVD
in MATLAB, while Figure 7(b) shows the relative Frobenius
norm errors between the original matrix and its low-rank
approximation. Apparently the computation time used by
rSVD is far less than the regular SVD, while the accuracies
are quite high.

3.2. rSVD on a Large HSI Dataset and a Lossless Compression.
The rSVD algorithm was also applied to a relatively large HSI
dataset consisting of a 920× 4, 933× 58 image cube collected
over Gulfport MS by a commercial hyperspectral sensor
having a spectral range of 0.45 to 0.72 microns. This cube
was then unfolded into a large matrix of size 4, 538, 360× 58.
Running an exact SVD algorithm is almost impossible on a
regular desktop computer with limited memory and speed,

6 Journal of Electrical and Computer Engineering

0

−2

−4

−6

−8

−10

−12

−14

−16

0 10 20 30 40 50 60

k

lo
g 1

0
(e

k
)

lo
g 1

0
(σ

k
+

1
)

Figure 1: Comparison of the computed error ek (blue) and the theoretical error σk+1 (red).

Error ek
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 50 100

k

M
ag

n
it

u
d

e

q = 1
q = 0

q = 2

3q =

Theoretical error

(a)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Estimated singular values σ j

0 50 100

j

(b)

Figure 2: Comparison of the error ek and the theoretical error σk+1. The red curve shows that the error ek is greater than the theoretical error
σk+1. Note that the singular values decay more rapidly as q increases.

while the rSVD algorithm gives us singular values and vectors
very close to the true ones, with a significantly reduced
amount of flops and memory required. For the first 25
singular vectors and singular values, it only takes 68 seconds
on a desktop computer with Xeon 3.2 GHz Quadcores and
12 GB memory. From the computed singular values and
vectors, we observed that the singular vectors after the ninth
singular vector all appear to be noise, indicating that the data
matrix does have a low-rank representation.

Figure 8 shows the results for a small scene from the large
dataset described above, consisting of part of the University
of Southern Mississippi Campus, extracted from the large
Gulfport MS dataset. Notice the targets placed in the scene,
for detection and identification tests. The first eight singular
vectors, ûi, are folded back from the transformed data. The
first singular vector shown in Figure 8 is the mean image
across 58 spectral bands, while the second singular vector
shows high intensity at the grass and foliage pixels, the third

Journal of Electrical and Computer Engineering 7

250

200

150

100

50

0

S
ec

o
n

d
s

0 0.5 1 1.5 2

m ×106

svds

rSVD

(a)

1.2

1

0.8

0.6

0.4

C
o

rr
el

at
io

n

0 5 10 2015

k

(b)

0

0.08

0.06

0.04

0.02

0
5 10 15 20

k

R
el

at
iv

e
ab

so
lu

te
 e

rr
o

r

(c)

Figure 3: (a) Computation time of “svds” and rSVD. (b) Correlations between the singular vectors in U by “svds” and rSVD. (c) Relative
absolute differences between the singular values estimated by “svds” and rSVD.

100 largest singular values of a Toeplitz matrix

105

100

10−5

10−10

10−15

10−20

Si
n

gu
la

r
va

lu
e

ith largest singular value

0 10 20 30 40 50 60 70 80 90 100

Figure 4: Illustration rapidly decaying singular values of matrix of size 1000× 1000.

8 Journal of Electrical and Computer Engineering

0 500 1000 1500

R
el

at
iv

e
er

ro
r

4

5

3

2

1

0

×10−12

The size of matrices (n× n)

(a)

2

1.5

1

0.5

0
0 500 1000 1500

S
ec

o
n

d
s

The size of matrices (n× n)

(b)

Figure 5: (a) The relative errors between the rSVD low-rank approximation and the original matrix A are shown by the red curve. (b) The
computational time for rSVD.

q

e q
/e

1

1

0.95

0.9

0.85

0.8

0.75
0 5 10 15 20

s = 0.2

s = 0.4

s = 0.6

s = 0.8

s = 1

Figure 6: The reduction of norm error by increasing the power q for singular value spectrums decaying with various powers s.

shows the targets quite clearly, as well as high-reflectance
sandy areas or rooftops, the fifth shows the low-reflectance
pavement or roof tops, and shadows, and the seventh shows
vehicles at various places marked by the circles. Starting
from the eighth, the rest of the singular vectors appear to be
mostly noise.

In Figure 9(b), the histogram of entries in R̂k shows that
residuals are roughly distributed as a Laplacian distribution,
and all residuals are within the range of [−.1, .1], which
is significantly smaller than the original range of A in
Figure 9(a). Moreover, most of the residuals (93%) are within
the range [−.01, .01] (notice the log scale on the y axis),
which means that the entropy of residuals is significantly
smaller than the entropy of the original. This justifies a
further coding step on the residuals so as to complete a
lossless compression scheme. Here we apply the Hoffman

coding due to its fast computation and show the compression
ratios at various error rates, corresponding to the numbers
of bits required to code the residuals. For example, a 16-
bit coding would result in an error in the range of 10−5.
Figure 10 provides us options on balancing compression
with accuracy. For practical purposes, an error rate in the
order of 0.001 might be sufficient, and this would result in
a compression ratio of 2.5 to 4. For comparison purpose,
the 3D-SPECK [7] on a small dataset of size 320 × 360 × 58
results in a compression ratio of 1.12 at the 16-bit coding. If
more sophisticated coding algorithms than Hoffman coding
are applied here, we could see more improvements on
the compression ratios. For computing the compression
ratios, we have assumed 16-bit coding (2-byte) for all the
matrices, including B j ,Q j , the residual matrix and the coded
(compressed) residual matrix.

Journal of Electrical and Computer Engineering 9

100

0 500 1000 1500 2000

n

S
ec

o
n

d
s

10−1

10−2

10−3

10−4

rSVD

SVD

(a)

500 1000 1500 2000

n

0.19

0.18

0.17

0.16

0.15

0.14

0.13
0

rSVD

SVD

N
o

rm
 e

rr
o

r

(b)

Figure 7: (a) Computation time of rSVD in blue and SVD in green. (b) Relative norm errors by rSVD and SVD.

To test the suitability of the onboard real-time processing
by Algorithm 3, we apply the rSVD on a 300, 000×100 matrix
and see it is finished in 7 seconds on a low-end dual-core
laptop computer, and if, with a parallel coding algorithm
for the residuals, we should finish Algorithm 3 within the
required 10-seconds time frame.

3.3. Small Target Detection Using rSVD. For a small target
detection experiment using rSVD, we choose a version of
the Forest Radiance HSI dataset, which has been analyzed by
using numerous target detection methods, see, for example,
[18, 24–26] Our rationale behind using an SVD algorithm
in target detection lies in the fact that even though targets
might be of small size, if all the spectrally similar targets have
sufficient presence, some singular vectors of the HSI data
matrix will reflect these features, and hence the presence of
targets can be simply shown by these singular vectors. After
removing the water-absorption and other noisy bands, we
unfold the 200 × 150 × 169 data cube into a 30, 000 × 169
matrix and apply Algorithm 2 for the singular vectors ûi.
Figure 11 shows the sum of first twelve ûi folded back into
a 200 × 150 matrix, and we can clearly detect 25 of the 27
targets, while the other two are slightly visible.

3.4. Comparison between rSVD and CPPCA. In this section,
we will compare rSVD with CPPCA from the aspects of
accuracy and computation time, first on simulated data
and then on a real HSI dataset. We first simulate a set of
matrices with increasing number of rows (pixels), m =

10, 000, 20, 000, . . . , 100, 000, while fixing n = 100 as 100
spectral bands. The singular value spectrum is simulated
as following a power decay rate with the power set as
−1. Both CPPCA and rSVD algorithms are applied to
each simulated matrix, and results are compared in terms
of their reconstruction quality and the computation time.
Figure 12(a) shows that the running time of rSVD increases
linearly with m, while that of CPPCA remains constant,

Table 1: Computation times (seconds) of rSVD and CPPCA.

k/n 0.1 0.15 0.2 0.3 0.4 0.5

rSVD 0.212 0.292 0.390 0.707 0.897 1.264

CPPCA 0.247 0.305 0.331 0.368 0.399 0.509

which is not surprising since CPPCA mainly works on
eigenvectors of fixed dimension n. However in terms of
reconstruction quality, Figure 12(b) shows the advantage of
rSVD. Here we set the number of reconstructed eigenvectors
by CPPCA to 3 since it provides the best norm errors, while
for rSVD we set it to 25.

For the real dataset, we use a small section of the Gulfport
dataset and fold it into a matrix A with size 115200 × 58.
From the reconstructed matrices Â by both methods, with
varying rank k we compare their reconstruction qualities in
terms of signal-to-noise ratio (SNR) in Figure 13, and the
computation time in Table 1. Again we observe the better
reconstruction quality though slightly slower computation of
rSVD when compared to CPPCA.

Next, we compare the accuracy of the reconstruction
of the eigenvectors, v̂i, of the covariance matrix of A by
these two methods. Given that PCA is an extremely useful
tool in HSI data analysis, for example, for classification
and target detection, it is essential to obtain a quality
reconstruction of the eigenvectors v̂i by rSVD in terms of
accuracy and efficiency. Here we simulate a 10, 000 × 100
matrix A with orthogonalized random matrices, Uo and
Vo, and a power-decay singular value spectrum in Σo, with
the power set as −1. Then we run both algorithms for
1, 000 times, and, within each time, we compute the angles
between eigenvectors by CPPCA and the true ones, and
between eigenvectors by rSVD and the true ones. The first
row of Figure 14 shows the histograms of angles between
the first eight reconstructed eigenvectors by CPPCA and
the true ones, while the second row shows the histograms

10 Journal of Electrical and Computer Engineering

50

100

150

200

250

300

50 100 150 200 250 300 350

(a)

50

100

150

200

250

300

50 100 150 200 250 300 350

(b)

50

100

150

200

250

300

50 100 150 200 250 300 350

(c)

50

100

150

200

250

300

50 100 150 200 250 300 350

(d)

50

100

150

200

250

300

50 100 150 200 250 300 350

(e)

50

100

150

200

250

300

50 100 150 200 250 300 350

(f)

50

100

150

200

250

300

50 100 150 200 250 300 350

(g)

50

100

150

200

250

300

50 100 150 200 250 300 350

(h)

Figure 8: The first eight singular vectors, ûi, are turned into images. The circles on the image of the seventh singular vectors indicate
identified vehicles.

Journal of Electrical and Computer Engineering 11

108

107

106

105

104

103

102

0 0.2 0.4 0.6 0.8 1

(a)

108

106

104

102

100

−0.1 0 0.05 0.1−0.05

(b)

Figure 9: (a) The distribution of intensities of the original Gulfport HSI cube. (b) The distributions of residuals after subtracting the TSVD
from the original.

3D-SPECK: 1.12

4.5

4

3.5

3

2.5

2

1.5

1

C
o

m
p

re
ss

io
n

 r
at

io

Error rate

10−5 10−4 10−3 10−2

Figure 10: The compression ratio as a function of error rate.

50 100 150 200

20

40

60

80

100

120

100th band of HSI

(a)

20

40

60

80

100

120

50 100 150 200

Sum of ui

(b)

Figure 11: One band of the Forest Radiance HSI dataset is shown on the left. Binary target detections are shown on the right, obtained after
a summation of the first 12 ûi.

12 Journal of Electrical and Computer Engineering

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8 10

×104
n

S
ec

o
n

d
s

rSVD

CPPCA

(a)

0 2 4 6 8 10
×104

n

rSVD

CPPCA

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

N
o

rm
 e

rr
o

r

(b)

Figure 12: (a) Running times of rSVD and CPPCA. (b) Reconstruction qualities of rSVD and CPPCA.

30

28

26

24

22

20

18

16

14

12

10
0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 S
N

R
 (

d
B

)

CPPCA

rSVD
rSVD (q = 2)

Relative subspace dimension, k/n

Figure 13: Comparison of reconstruction qualities of rSVD and CPPCA in terms of SNR.

of the angles between the first eight eigenvectors by rSVD
and the true ones. We can see that the first three or four
eigenvectors by CPPCA appear to be close to the true ones,
while the rest are not. Hence if using more than four
eigenvectors reconstructed by CPPCA, we observe a decrease
in reconstruction quality or an increase in the norm error.
However in the second row, we see good accuracy of the
eigenvectors computed by rSVD.

3.5. Classification of HSI Data by rSVD. Since the projection
of a HSI data matrix by its truncated singular matrix, that is,

AP = AVk, (13)

contains most of the information in the original matrix A,
we can use any classification algorithm, such as the popular
k means, to classify HSI data, but also use its representation

Journal of Electrical and Computer Engineering 13

300

200

200

100

0

300

400

200

100

100
0

300

200

100

0

0 1 2

0 5
×10−6

0 5
×10−6

0 5
×10−6

0 5

0 50 0 50 1000 50 1000 50 1000 50

×10−6
0 5

×10−6
0 5

×10−6
0 5

×10−6
0 5

×10−6

600

400

200

0

600

400

200

0
0 10 20 0 10 20

250

200

150

150

100

100

50

50

0 0

150

100

50

0

150

100

50

0

200

150

100

50

0

200

150

100

50

0

200

150

100

50

0

200

150

250

100

50

0

200

150

100

50

0

100

80

60

40

20

0

100

80

60

40

20

0

Figure 14: Comparison of reconstructed eigenvectors by rSVD and CPPCA with the true ones.

100

100

200

200

300

300

(a)

100

100

200

200

300

300

(b)

100

100

200

200

300

300

(c)

100

100

200

200

300

300

(d)

100

100

200

200

300

300

(e)

100

100

200

200

300

300

(f)

100

100

200

200

300

300

(g)

100

100

200

200

300

300

(h)
Figure 15: Plots of the first 8 columns of AP .

14 Journal of Electrical and Computer Engineering

50 100 150 200 250 300 350

50

100

150

200

250

300

Figure 16: The classification result of k-means using Ak .

in a lower-dimensional space. Consider a small section of the
Gulfport dataset. Figure 15 shows the first 8 columns of AP .
From the first subfigure, we see that most information of the
hyperspectral image is contained in the first column, while
the second column almost contains the rest of the informa-
tion which the first column does not contain. The rest of the
columns contain information at more detailed and spatially
clustered levels. Figure 16 shows the result of classification
by k-means, where we can see the low-reflectance water and
shadows in yellow, the foliage in red, the grass in dark red,
the pavement in green, high-reflectance beach sand in dark
blue, and dirt/sandy grass in blue and light blue.

A comparison with results from running k-means
on the full dataset shows that only 13 pixels of all the
320× 360 = 115, 200 pixels are classified differently between
the full dataset and its low-dimensional representation.
Hence it is highly suitable to use this low-dimensional
representation for classification.

4. Conclusions

As HSI data sets are growing increasingly massive, compres-
sion and dimensionality reduction for analytical purposes
has become more and more critical. The randomized SVD
algorithms proposed in this paper enable us to compress,
reconstruct, and classify massive HSI datasets in an efficient
way while maintaining high accuracy in comparison to
exact SVD methods. The rSVD algorithm is also found
to be effective in detecting small targets down to single
pixels. We have also demonstrated the fast computation in
compression and reconstruction of the proposed algorithms
on a large HSI dataset in an urban setting. Overall, the rSVD
provides a lower approximation error than some other recent
methods and is particularly well suited for compression,
reconstruction, classification, and target detection.

Acknowledgments

The authors wish to thank the referees and the project spon-
sors for providing very helpful comments and suggestions for

improving the paper. Research by Jiani Zhang and Jennifer
Erway was supported by NSF grant DMS-08-11106. Research
by Robert Plemmons and Qiang Zhang was supported by
the U.S. Air Force Of- fice of Scientific Research (AFOSR),
award number FA9550-11-1-0194, and by the U.S. National
Geospatial-Intelligence Agency under Contract HM1582-10-
C-0011, public release number PA Case 12-433.

References

[1] M. T. Eismann, Hyperspectral Remote Sensing, SPIE Press,
2012.

[2] H. F. Grahn and E. Paul Geladi, Techniques and Applications of
Hyperspectral Image Analysis, Wiley, 2007.

[3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon et al., “Hyperspec-
tral unmixing overview: geometrical, statistical, and sparse
regression-based approaches,” IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, vol. 5, no.
2, pp. 354–379, 2012.

[4] J. C. Harsanyi and C. I. Chang, “Hyperspectral image classifi-
cation and dimensionality reduction: an orthogonal subspace
projection approach,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 32, no. 4, pp. 779–785, 1994.

[5] A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G.
Sapiro, “Learning discriminative sparse models for source
separation and mapping of hyperspectral imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 49, pp.
4263–4281, 2011.

[6] C. Li, T. Sun, K. F. Kelly, and Y. Zhang, “A compressive sensing
and unmixing scheme for hyperspectral data processing,” IEEE
Transactions on Image Processing, vol. 21, no. 3, pp. 1200–1210,
2012.

[7] X. Tang and W. Pearlman, “Three-dimensional wavelet-based
compression of hyperspectral images,” Hyperspectral Data
Compression, pp. 273–308, 2006.

[8] H. Wang, S. D. Babacan, and K. Sayood, “Lossless hyper-
spectral-image compression using context-based conditional
average,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 45, no. 12, pp. 4187–4193, 2007.

[9] G. H. Golub and C. F. V. Loan, Matrix Computations, The
Johns Hopkins University Press, 3rd edition, 1996.

[10] I. Jolliffe, Principal Component Analysis, Springer, 2nd edition,
2002.

[11] J. E. Fowler, “Compressive-projection principal component
analysis,” IEEE Transactions on Image Processing, vol. 18, no.
10, pp. 2230–2242, 2009.

[12] P. Drineas and M. W. Mahoney, “A randomized algorithm for
a tensor-based generalization of the singular value decomposi-
tion,” Linear Algebra and Its Applications, vol. 420, no. 2-3, pp.
553–571, 2007.

[13] L. Trefethen and D. Bau, Numerical Linear Algebra, Society For
Industrial Mathematics, 1997.

[14] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure
with randomness: probabilistic algorithms for constructing
approximate matrix decompositions,” SIAM Review, vol. 53,
no. 2, pp. 217–288, 2011.

[15] Q. Zhang, R. Plemmons, D. Kittle, D. Brady, and S. Prasad,
“Joint segmentation and reconstruction of hyperspectral data
with compressed measurements,” Applied Optics, vol. 50, no.
22, pp. 4417–4435, 2011.

[16] M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J.
Schulz, “Single-shot compressive spectral imaging with a dual-
disperser architecture,” Optics Express, vol. 15, no. 21, pp.
14013–14027, 2007.

Journal of Electrical and Computer Engineering 15

[17] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single dis-
perser design for coded aperture snapshot spectral imaging,”
Applied Optics, vol. 47, no. 10, pp. B44–B51, 2008.

[18] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Effects of
linear projections on the performance of target detection and
classification in hyperspectral imagery,” Journal of Applied
Remote Sensing, vol. 5, no. 1, Article ID 053563, 2011.

[19] G. Martinsson, “Randomized methods for computing the
singular value decomposition of very large matrices,” in
Workshop on Algorithms for Modern Massive Data Sets, 2012.

[20] A. D. Meigs, L. J. Otten, and T. Y. Cherezova, “Ultraspectral
imaging: a new contribution to global virtual presence,” in
Proceedings of the IEEE Aerospace Conference, vol. 2, pp. 5–12,
March 1998.

[21] A. Berk, G. P. Anderson, P. K. Acharya et al., “MODTRAN
5, a reformulated atmospheric band model with auxiliary
species and practical multiple scattering options: update,” in
Algorithms and Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery XI, vol. 5806 of Proceedings of SPIE,
pp. 662–667, 2005.

[22] B. Parlett, The Symmetric Eigenvalue Problem, vol. 20, Society
for Industrial Mathematics, 1998.

[23] M. A. O’Neil and M. Burtscher, “Floating-point data compres-
sion at 75 Gb/s on a GPU,” in Proceedings of the 4th Workshop
on General Purpose Processing on Graphics Processing Units
(GPGPU ’11), p. 7, March 2011.

[24] R. C. Olsen, S. Bergman, and R. G. Resmini, “Target detection
in a forest environment using spectral imagery,” in Imaging
Spectrometry III, vol. 3118 of Proceedings of SPIE, pp. 46–56,
July 1997.

[25] C. I. Chang, “Target signature-constrained mixed pixel clas-
sification for hyperspectral imagery,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 40, no. 5, pp. 1065–1081,
2002.

[26] B. Thai and G. Healey, “Invariant subpixel material detection
in hyperspectral imagery,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 40, no. 3, pp. 599–608, 2002.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

