
Randomized Turbo Codes for the Wiretap Channel
Alireza Nooraiepour and Tolga M. Duman

Abstract—We study application of parallel and serially concate-
nated convolutional codes known as turbo codes to the randomized
encoding scheme introduced by Wyner for physical layer security.
For this purpose, we first study how randomized convolutional
codes can be constructed. Then, we use them as building blocks for
developing randomized turbo codes. We also develop iterative low-
complexity decoders corresponding to the randomized schemes in-
troduced and evaluate the code performance. We demonstrate via
several examples that the newly designed schemes can outperform
other existing coding methods in the literature (e.g., punctured low
density parity check (LDPC) and scrambled BCH codes) in terms
of the resulting security gap.

I. INTRODUCTION

The wiretap channel is introduced in [1] by Wyner as a model
for studying secure communications. It consists of a transmitter
(Alice), a legitimate receiver (Bob) and an eavesdropper (Eve)
connected to the transmitter through the main and the eaves-
dropper’s channels, respectively. Alice’s purpose is to transmit
a message M while ensuring that 1) the probability of decoding
error for Bob goes to zero (as the reliability constraint), 2) the
normalized mutual information 1

𝑛
𝐼(M;Z𝑛) goes to zero (as

the security constraint) where Z𝑛 denotes the eavesdropper’s
observation of length 𝑛. Wyner defined the notion of secrecy
capacity as the highest transmission rate for which the security
constraint is satisfied and proved that there exists a coding
scheme which achieves the secrecy capacity using randomized
encoding in the form of coset-coding at the transmitter as the
main source of confusion at the eavesdropper.

Construction of practical codes for the wiretap channel has
enjoyed an increasing attention in the recent years. For the case
where the main channel is noiseless and the eavesdropper’s
channel is a binary erasure channel, the authors in [2] prove
that using LDPC codes along with their duals can achieve the
secrecy capacity. In [3], it is proved that polar codes can achieve
the secrecy capacity when both the main and the eavesdrop-
per’s channels are modeled as binary symmetric channels. In
addition, application of lattice codes to the wiretap channel
is studied in [4]. We emphasize that all the aforementioned
schemes use a form of coset-coding for the encoding process.

For the case of additive white Gaussian noise (AWGN)
channels, the secrecy capacity equals to the difference between
the capacities of the main and the eavesdropper’s channels, and
for it to be greater than zero, the signal to noise ratio (SNR) of
the main channel must be larger than that of the eavesdropper’s
channel. The difference between the qualities of the main and
eavesdropper’s channels needed for achieving physical layer
security is the security gap. The security gap is a valuable

A. Nooraiepour was a graduate student with the Dep. of Elect. Eng., Bilkent
University. He is now a PhD student at Rutgers university, NJ, US. T. M. Duman
is with the Dep. of Elect. Eng., Bilkent University, TR-06800, Ankara, Turkey.
emails: {nooraiepour, duman}@ee.bilkent.edu.tr. This work was supported by
the Scientific and Technical Research Council of Turkey (TUBITAK) under
the grant 113E223.

metric for secrecy which can be directly computed from the
bit error rate (BER) performance of a code over a noisy
channel. By denoting the BERs calculated through the main and
eavesdropper’s channels with 𝑃𝑚𝑎𝑖𝑛 and 𝑃𝑒𝑣𝑒, respectively, one
can use an alternative set of reliability and security constraints
as follows: 𝑃𝑚𝑎𝑖𝑛 ≤ 𝑃𝑚𝑎𝑥

𝑚𝑎𝑖𝑛 (≈ 0) and 𝑃𝑒𝑣𝑒 ≥ 𝑃𝑚𝑖𝑛
𝑒𝑣𝑒 (≈ 0.5)

where 𝑃𝑚𝑎𝑥
𝑚𝑎𝑖𝑛 and 𝑃𝑚𝑖𝑛

𝑒𝑣𝑒 represent the maximum and minimum
desired BERs for Bob and Eve, respectively. Denoting the
lowest SNR (in dB) which satisfies the reliability constraint
by SNRmain and the largest SNR (in dB) which satisfies the
security constraint by SNReve, the security gap is defined as
SNRmain − SNReve.

Some practical coding schemes aiming at reducing the
security gap have been proposed in [5–8]. Punctured LDPC
codes are utilized in [5], while the authors in [6] demonstrate
that using non-systematic codes obtained from scrambling
information bits of a systematic code are quite effective to
reduce the security gap. In [7], the authors apply different
techniques including scrambling, concatenation, and hybrid
automatic repeat-request (HARQ) to LDPC codes in order to
further reduce the security gap. In addition, code concatenation
based on polar and LDPC codes for the wiretap channel is
studied in [8].

In this paper, we consider application of the turbo codes to
the randomized encoding scheme. Turbo codes in the form of
parallel and serial concatenation of convolutional codes have
a near Shannon limit performance and consequently a very
sharp slope in their BER versus SNR curves over a variety
of channels, including AWGN channels [11, 12]. Hence, we
consider them as potential candidates for the wiretap channel
from a security gap perspective. With this motivation, in this pa-
per, we first describe how randomized convolutional codes are
constructed. Then, we obtain dual of turbo codes and explain
how they enable us to construct an effective randomized coding
scheme. We also propose low-complexity iterative decoders for
the resulting randomized codes, and evaluate their performance
in terms of the resulting security gaps.

The rest of the paper is organized as follows. The channel
model is introduced in Section II. We present the main idea of
the randomized encoding scheme in Section III. Then, we study
how convolutional codes can be applied to this scheme in Sec-
tion IV, and describe the corresponding decoder. Randomized
turbo codes along with their corresponding iterative decoders
are studied in Section V. Numerical examples are provided in
Section VI, and finally, the paper is concluded in Section VII.

II. CHANNEL MODEL

We consider an AWGN wiretap channel where both the main
and eavesdropper’s channels are expressed as

𝑦 = 𝑥 +𝑁 (1)

978-1-5090-5019-2/17/$31.00 ©2017 IEEE

where 𝑥 = (−1)𝑐 is the binary phase-shift keying (BPSK) mod-
ulated version of the transmitted bit 𝑐 ∈ {0,1}. 𝑁 represents
the Gaussian noise with zero mean and variance 𝑁0/2. We
assume that the noise samples are independent and identically
distributed (i.i.d.) across different uses of the channel. We
have 𝐸𝑏 = 1/𝑅 where 𝐸𝑏 is the energy per bit and 𝑅 is
the transmission rate. We define the SNR as 𝐸𝑏/𝑁0. We
emphasize that the model in (1) is used for both the main and
eavesdropper’s channels (with different noise power levels).

III. RANDOMIZED CODING SCHEME FOR SECRECY

A. Encoding

In conventional encoding used to provide reliability over a
noisy channel, each message is mapped to a unique codeword.
On the other hand, a randomized encoding scheme aims at
confusing the eavesdropper by introducing enough randomness
in the encoding process. Specifically, in the general scheme of
Wyner [1], each message gets mapped to a unique coset of
a certain code and codewords from this coset are transmitted
uniformly randomly. Therefore, to transmit a 𝑘-bit message,
2𝑘 cosets are needed. Assuming that each coset consists of 2𝑟

codewords, in order to cover all the codewords in this setup, we
need a linear code of dimension at least 𝑘+𝑟 which we call the
big code. We also refer to the coset corresponding to the all-
zero message as the small code denoted by C with generators
g1,g2, ...,g𝑟.

A message denoted by data bits s = [𝑠1, 𝑠2, ..., 𝑠𝑘] is
mapped to the coset obtained by 𝑠1h1 + 𝑠2h2 + ... + 𝑠𝑘h𝑘 + C
where h𝑖’s are linearly independent 𝑛-tuples outside C. Then
the transmitted codeword through the channel is obtained by
choosing a random codeword uniformly randomly in C. As
pointed out in [2], this can be accomplished by a random bit
vector v = [𝑣1, 𝑣2, ..., 𝑣𝑟] using

c = 𝑠1h1 + 𝑠2h2 + ... + 𝑠𝑘h𝑘 + 𝑣1g1 + 𝑣2g2 + ... + 𝑣𝑟g𝑟. (2)

The randomized encoding scheme needs two sets of gen-
erators, one for the random bits and the other for the data
bits. The vectors g𝑖’s are determined by choosing a linear code
as the small code C. Then, determination of h𝑖’s requires an
exhaustive search which may not be practical. In [10], it is
proved that one can use generators of the dual of the small
code C⊥ as h𝑖’s if C⊥ is not pseudo-self-dual1.

B. Optimal Decoding Rule

Given a received noisy vector y, the maximum a posteriori
probability (MAP) decoder picks a coset index which max-
imizes the probability 𝑃 (𝐶𝑖∣y) 2 where 𝐶𝑖 denotes the 𝑖th
coset. Assuming that there are 𝑀 cosets which represent the
messages, and in each of them there are 𝑁 codewords, the
output of the optimal MAP decoder is

�̂� = argmax
𝑖=1,2,...,𝑀

𝑃 (𝐶𝑖∣y). (3)

1A linear code C(𝑛, 𝑟) with generator matrix G is defined as pseudo-self-
dual if GG𝑇 is rank-deficient [9].

2We denote probability with 𝑃 and probability density with 𝑝 throughout
this paper.

Using Bayes’ rule and the total probability theorem (assum-
ing that the codewords in each coset have equal probabilities
to be transmitted through the channel), we can write

𝑃 (𝐶𝑖∣y) =
𝑝(y∣𝐶𝑖)𝑃 (𝐶𝑖)

𝑝(y)
,

𝑝(y∣𝐶𝑖) =
𝑁

∑
𝑗=1

𝑝(y∣c𝑗𝑖,C𝑖)𝑃 (c𝑗𝑖∣C𝑖) =
1

𝑁

𝑁

∑
𝑗=1

𝑝(y∣c𝑗𝑖,C𝑖),
(4)

where c𝑗𝑖 denotes the 𝑗th codeword in the 𝑖th coset. Finally, for
an AWGN channel and equiprobable cosets, the optimal MAP
decoder has the form

�̂� = argmax
𝑖=1,2,...,𝑀

𝑁

∑
𝑗=1

𝑒
−∥y−c𝑗𝑖∥

2

𝑁0 . (5)

Note that for the main and eavesdropper’s channel the noise
variances are different, hence the resulting optimal decoding
rules are different. We also note that for the optimal MAP
decoding, one needs to go through all the codewords in all the
cosets making implementation of the algorithm prohibitively
complex for practical code dimensions.

IV. RANDOMIZED CONVOLUTIONAL CODES

We will use randomized convolutional codes as building
blocks to construct the randomized turbo codes in Section V,
hence we first discuss their generation. In order to build a
randomized convolutional coding scheme, one can choose a
convolutional code as the small code introduced in Section
III-A (see [9] for the details). The dual of a convolutional
code is also necessary for this purpose which is obtained in
a systematic manner using the following result.

Definition 1: Reverse of a convolutional code C with polynomial
generator G(𝐷) = G0 + G1𝐷 + ... + G𝑚𝐷𝑚 is defined as
the convolutional code C̃ with polynomial generator G̃(𝐷) =
G𝑚+G𝑚−1𝐷+ ...+G0𝐷

𝑚 where 𝑚 denotes the memory size.

Theorem 1 (Taken from [14]): Dual of a convolutional code
C with the polynomial generator G(𝐷) has a polynomial
generator of the form H̃(𝐷) where G(𝐷)(H(𝐷))𝑇 = 0.

A. Decoding of Randomized Convolutional Codes

When the Euclidean distances among the codewords in each
coset are relatively large or when the SNR is sufficiently
high, the summation in the optimal decoding rule in (5) is
dominated by the terms which correspond to the codewords
at the minimum Euclidean distance to the received vector y.
Therefore, as an approximate decoding approach, one can find
the codeword at the minimum Euclidean distance to the given
received noisy vector (referred to as the minimum distance
decoder).

As described in Section III-A, the encoding process needs
two convolutional codes whose trellises can be combined to
form a trellis for the big code governing codewords obtained
by (2), i.e., the codewords that are being sent through the
channel. This “big” trellis can then enable us to find the
minimum distance codeword to the output of the channel y
via an appropriate use of the Viterbi algorithm.

B. Obtaining a Subset of Convolutional Codes

As discussed in Section III-A, the codewords in each coset
represent a single message and are aimed at confusing the
eavesdropper. If the main channel is noiseless, decoding process
at the legitimate receiver is trivial, and we only want to confuse
the eavesdropper. In this case, it is desirable to use as many
codewords as possible in each coset. If the main channel is
also noisy, then one should consider reducing the number of
codewords in each coset in order to increase the error correction
capabilities of the legitimate receiver. As discussed in Section
III-A, the number of codewords in each coset is governed by
the small code C(𝑛, 𝑟) and equals 2𝑟 assuming that the random
bits are being encoded by the generators of the small code.

Let C be a convolutional code of rate 𝑎/𝑏 with the generator
matrix G(𝐷) with 𝑎 rows. After finding the equivalent genera-
tor matrix G[𝑘](𝐷) to G(𝐷) with rate 𝑘𝑎/𝑘𝑏 for 𝑘 = 2,3, . . . ,
one can obtain a subset of C by choosing different rows from 𝑘𝑎
available rows of G[𝑘](𝐷). Clearly, the resulting convolutional
code has a smaller rate than C and improved error correction
capabilities.

We now explain how one can obtain an equivalent generator
matrix G[𝑘](𝐷) with rate 𝑘/𝑏𝑘, 𝑘 = 2,3, . . . for a convolu-
tional code with a generator matrix G(𝐷) of rate 1/𝑏. The
extension of the method to the general case (for a rate 𝑎/𝑏
code) is quite straightforward. G[𝑘](𝐷) accepts 𝑘 input bits in
each time slot, so the input bits 𝑢𝑖’s are fed to the encoders in
the following manner

. . . 𝑢𝑖+3𝑘−1 𝑢𝑖+2𝑘−1 𝑢𝑖+𝑘−1 → g1

. . . 𝑢𝑖+3𝑘−2 𝑢𝑖+2𝑘−2 𝑢𝑖+𝑘−2 → g2

⋮ ⋮ ⋮ ⋮
. . . 𝑢𝑖+2𝑘+1 𝑢𝑖+𝑘+1 𝑢𝑖+1 → g𝑘−1

. . . 𝑢𝑖+2𝑘 𝑢𝑖+𝑘 𝑢𝑖 → g𝑘

. . . 𝐷2 𝐷 1

(6)

where “→ g𝑖” means that the bits are being fed to a specific
generator g𝑖 (a row of G[𝑘](𝐷)) and the last row denotes the
delay associated with the input bits in each column. We denote
the output of the encoder corresponding to G(𝐷) to the input
𝑢𝑖+𝑓 by v𝑓 whose elements are 𝑣𝑓,𝑗 where 0 ≤ 𝑓 ≤ 𝑘 − 1
and 1 ≤ 𝑗 ≤ 𝑏. Furthermore, we consider the corresponding
output of G[𝑘](𝐷) to the input vector [𝑢𝑖 𝑢𝑖+1 . . . 𝑢𝑖+𝑘−1] as
[o0 o1 . . . o𝑘−1] whose elements, o𝑓 ’s, are vectors each
of which consists of 𝑏 sequences, and each sequence is the sum
of the delayed 𝑢𝑖’s produced through the 𝑘 generators within
the structure in (6). G[𝑘](𝐷) and G(𝐷) are equivalent if

v𝑓 = o𝑘−𝑓−1, 0 ≤ 𝑓 ≤ 𝑘 − 1 (7)

where v𝑓 = 𝑢𝑖+𝑓G(𝐷) which is known since G(𝐷) is given.
We note that each element of o𝑖 is produced by a column
of G[𝑘](𝐷). Furthermore, (7) consists of 𝑏𝑘 equations which
determine the desired generators, g𝑖’s, 1 ≤ 𝑖 ≤ 𝑘 needed for the
corresponding column of G[𝑘](𝐷).

3We denote convolutional codes in octal notation throughout the paper.

Example 1: Consider the code3 [561 753] of memory 𝑚 = 8
and rate 1/2, i.e.,

G(𝐷) = [1 +𝐷2 +𝐷3 +𝐷4+𝐷8,

1 +𝐷 +𝐷2 +𝐷3 +𝐷5 +𝐷7 +𝐷8].
(8)

Following the steps described above, we can obtain the equiv-
alent generator matrix of G(𝐷) with rate 4/8 as

G[4](𝐷) =
⎡⎢⎢⎢⎢⎢⎣

𝑝(𝐷) 1+𝐷2 0 1+𝐷 1 1 1 1+𝐷

𝐷 𝐷+𝐷2 𝑝(𝐷) 1+𝐷2 0 1+𝐷 1 1

𝐷 𝐷 𝐷 𝐷+𝐷2 𝑝(𝐷) 1+𝐷2 0 1+𝐷

0 𝐷+𝐷2 𝐷 𝐷 𝐷 𝐷+𝐷2 𝑝(𝐷) 1+𝐷2

⎤⎥⎥⎥⎥⎥⎦
(9)

where 𝑝(𝐷) = 1 +𝐷 +𝐷2. To obtain a subset of C, one can
use any subset of the rows of G[4](𝐷) as the generator matrix.
We note that the resulting subset may have a smaller rate than
the original code C. For example, if we choose only one of the
rows of G[4](𝐷) as the generator matrix, the resulting code
will have a rate of 1/8. ∎

C. Randomized Convolutional Code Design

Earlier in this section, we discussed how a small code and its
dual can be used to form the big code. Since both the small code
and its dual are assumed to be convolutional codes, the big code
is also a convolutional code. Clearly, the minimum pairwise
distance among the codewords in each coset with respect to a
specific codeword is larger than (or equal to) that in the big
code. For practical cases, the codewords in the big code which
are at the minimum distance of 𝑐𝑖𝑗 , the 𝑖th codeword in the 𝑗th
coset, do not belong to the 𝑗th coset. Therefore, assuming that
a minimum distance decoder is being used, they are important
sources of decoding errors. Hence, a design metric becomes
the minimum pairwise distance among the codewords of the
big code which controls the error correcting capability of the
minimum distance decoder. In practice, one should choose this
distance in a way that results in the smallest security gap.

If one uses a convolutional code C(𝑛, 𝑟) (small code) to
encode the random bits and its dual C⊥(𝑛,𝑛− 𝑟) to encode the
data bits, the big code consists of all the 2𝑛 𝑛-tuples (ignoring
trellis termination to the all-zero state for the time being); a fact
that results in the lowest possible minimum distance (of 1) for
the big code. In this case, performance of the minimum distance
decoder is poor from the legitimate receiver’s point of view.
Alternatively, one can use the approach described in Section
IV-B to obtain a subset of C(𝑛, 𝑟) denoted by C′(𝑛, 𝑟′) where
𝑟′ < 𝑟. Now, using generators of C′ and C⊥ to encode random
and data bits, respectively, the big code will have 𝑟′ + 𝑛 − 𝑟
many generators which is less than 𝑛; hence, the resulting big
code can achieve a larger minimum distance. We note that in
either case the data transmission rate is (𝑛−𝑟)/𝑛 since the data
bits’ encoder is the same.

Take the small code C as a convolutional code of rate 𝑅 = 𝑏/𝑐
with the minimal-basic generator matrix G(𝐷) [14]. Equivalent
generator matrices to G(𝐷) which reproduce C are obtained
by

G2𝑛𝑑(𝐷) = T(𝐷)G(𝐷) (10)

where T(𝐷) is a 𝑏×𝑏 full rank matrix. Then, instead of working
with G(𝐷), one may use G2𝑛𝑑(𝐷) to obtain new subsets of

C, and consequently new generators for the random bits (see
Section IV-B). That is, different choices for T(𝐷) result in
different generators for the random bits, and hence they result in
different sets of codewords in each coset and possibly different
minimum distances for the big code.

Example 2: Let us choose the small code C as the convolutional
code [561 753] which is the same code given earlier in (8).
Its dual C⊥ is the optimal convolutional code (in terms of
the minimum distance) of memory 8 and rate 1/2 with the
generator [657 435]. If one uses the generators of C⊥ and the
entire C to encode the data and random bits, respectively, the
resulting big code will have a minimum distance of 2 (they do
not cover all the 𝑛-tuples because of the trellis termination to
zero state). However, if one uses the generators of C⊥ for the
data bits, and [𝐷 𝐷 𝐷 𝐷 +𝐷2 𝑝(𝐷) 1 +𝐷2 0 1 +𝐷] for the
random bits which is a subset of C as discussed in Example 1,
the big code will attain a minimum distance of 6.

We can improve the minimum distance even more by using
(10), i.e., with

G
[4]
2𝑛𝑑(𝐷) = T(𝐷)G

[4](𝐷) (11)

where G[4](𝐷) is the same as (9), and the 4×4 matrix T(𝐷)
is described by its polynomial inverse

T−1(𝐷) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 +𝐷 𝐷 𝐷 1 +𝐷
𝐷 𝐷2 + 1 1 𝐷
𝐷 𝐷 1 +𝐷 𝐷

1 +𝐷 1 𝐷 𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

After some straightforward algebra, one can calculate
G
[4]
2𝑛𝑑(𝐷) (which is 4 × 8) and obtain one of its rows as the

1 × 8 vector

[𝐷5 +𝐷4 +𝐷3 𝐷5 +𝐷3 +𝐷2 𝐷4 +𝐷3 𝐷5 +𝐷
𝐷5 +𝐷4 +𝐷3 +𝐷2 +𝐷 + 1 𝐷5 +𝐷3 +𝐷2 +𝐷 + 1

𝐷3 +𝐷2 𝐷3 +𝐷2 + 1].
(13)

Using C⊥ and (13), we obtain a big code with minimum
distance 10. Here, it is clear that data bits are encoded with
rate 1/2 while the random bits’ encoding rate is 1/8. We note
that the code C⊥ has a minimum distance of 12 which is an
upper bound on the minimum distance of the big code. ∎

V. RANDOMIZED TURBO CODES

A. Randomized Parallel Concatenated Convolutional Codes
(RPCCCs)

Berrou et al. in [11] proposed a parallel concatenation of
two recursive systematic convolutional codes (RSCs) separated
by a 𝐾-bit interleaver. In parallel concatenated convolutional
codes (PCCCs), the first RSC code (denoted as RSC1) encodes
the information sequence u of length 𝐾, and produces the
parity bits p. The interleaved version of u denoted by uΠ gets
encoded by the second RSC code (denoted as RSC2) and parity
bits q are produced. We denote the generator of each RSC code
by 𝐺(𝐷) = [1 𝑔2(𝐷)

𝑔1(𝐷)
].

Dual of PCCCs can be obtained by substituting each com-
ponent RSC code with its dual. Using Theorem 1, a generator
for the dual of 𝐺(𝐷) is obtained as 𝐺⊥(𝐷) = [�̃�2(𝐷)

�̃�1(𝐷)
1]. We

note that uΠ is not transmitted in the original construction of
PCCCs [11], however, here we transmit uΠ as well in order
to be able to obtain the dual of RSC2. We denote the input
sequence corresponding to the dual of a PCCC by u′, and the
resulting parity bits by p′ and q′.

We use a PCCC for encoding the random bits, and its dual
to encode the data bits. Clearly, in the proposed scheme, the
number of data and random bits, which equal to the number
of cosets and the number of codewords in each coset, respec-
tively, is 𝑛/4 where 𝑛 is the codeword length (ignoring trellis
termination). We denote the resulting codeword of the PCCC
by c1 = [𝑐1, 𝑐2, . . . , 𝑐𝐾] where 𝑐𝑘

Δ= [𝑢𝑘, 𝑝𝑘, 𝑢Π,𝑘, 𝑞𝑘], and the
resulting codeword of its dual with c2 = [𝑐′1, 𝑐′2, . . . , 𝑐′𝐾] where

𝑐′𝑘
Δ= [𝑝′𝑘, 𝑢

′
𝑘, 𝑞

′
𝑘, 𝑢

′
Π,𝑘]. The codeword transmitted through the

channel is the modulo-2 sum of c1 and c2, i.e., c = c1 + c2.

B. Randomized Serially Concatenated Convolutional Codes
(RSCCCs)

A serially concatenated convolutional code (SCCC) consists
of two RSC codes as proposed in [12] as illustrated in Fig. 1
where the RSC codes are taken to be the same (though this is
not necessary). The outer RSC code encodes the information
sequence u, and the resulting codeword gets permuted and fed
to the inner code to generate the final codeword.

Fig. 1: The encoder for an SCCC.

Fig. 2: The encoder for the dual of the SCCC in Fig. 1.

Similar to the PCCC case, (a subset of) the dual of an SCCC
is obtained by replacing each constituent RSC encoder with its
dual as in Fig. 2. We note that 𝐺⊥(𝐷) = [1 𝑔1(𝐷)

𝑔2(𝐷)
] is also

a dual for 𝐺(𝐷) = [1 𝑔2(𝐷)
𝑔1(𝐷)

]. Then, we are able to use one
of the encoders in Figs. 1 and 2 to encode the random bits,
and the other one to encode the data bits in the randomized
encoding scheme. Assuming c1 = [𝑣1, 𝑞1, 𝑣2, 𝑞2, . . . , 𝑣𝐾 , 𝑞𝐾]
and c2 = [𝑣′1, 𝑞′1, 𝑣′2, 𝑞′2, . . . , 𝑣′𝐾 , 𝑞′𝐾], the transmitted codeword
is the modulo-2 sum of these two codewords, i.e.,

c = c1 +c2 = [𝑣1 +𝑣′1, 𝑞1 +𝑞
′

1, 𝑣2 +𝑣
′

2, 𝑞2 +𝑞
′

2, . . . , 𝑣𝐾 +𝑣
′

𝐾 , 𝑞𝐾 +𝑞′𝐾].
(14)

C. Decoding

We now describe the decoding for the proposed randomized
turbo coding schemes. First, we emphasize the importance of
the big trellis in the decoding process by taking RPCCCs as
an instance (similar arguments can be made for RSCCCs as
well). For this case, the big trellis obtained by combining
the trellises corresponding to RSC1 and RSC1⊥ governs the
modulo-2 sum [𝑢𝑘+𝑝′𝑘, 𝑝𝑘+𝑢

′
𝑘], and can be used to provide soft

information about the pair of bits (𝑢𝑘, 𝑢
′
𝑘). Similarly, the big

trellis corresponding to RSC2 and RSC2⊥ controls the modulo-
2 sum [𝑢Π,𝑘 + 𝑞′𝑘, 𝑞𝑘 + 𝑢

′
Π,𝑘].

The optimal MAP decoding rule for RPCCCs and RSCCCs is
the same as (5) which is not practical. Therefore, we propose a
sub-optimal decoder which jointly decodes the random and data
bits (i.e., 𝑢𝑖’s and 𝑢′𝑖’s) by generalizing the decoders introduced
in [11] and [12] for the case of PCCCs and SCCCs, respectively.
For this purpose, the MAP decoding criterion is given by

(�̂�𝑙, �̂�
′
𝑙) = argmax

(𝑢𝑙,𝑢′𝑙)
𝑃((𝑢𝑙, 𝑢

′
𝑙)∣y) (15)

where y is the received signal and (𝑢𝑙, 𝑢
′
𝑙) ∈ {00,01,10,11}.

The posterior probabilities 𝑃((𝑢𝑙, 𝑢
′
𝑙)∣y) are computed using

𝑃((𝑢𝑙 = 𝑘, 𝑢′𝑙 = 𝑗)∣y) = ∑
U𝑘𝑗

𝑝(𝑠𝑙−1 = 𝑠′, 𝑠𝑙 = 𝑠,y) (16)

where (𝑘𝑗) ∈ {00,01,10,11}, and U𝑘𝑗 is set of pairs (𝑠′, 𝑠)
for the state transitions (𝑠𝑙−1 = 𝑠′) → (𝑠𝑙 = 𝑠) whose
corresponding input labels are 𝑘𝑗. Such probabilities can be
computed efficiently using the BCJR algorithm [11].

Case 1 (Randomized PCCCs): Fig. 3 illustrates the proposed
iterative decoder for RPCCCs. 𝑀𝑒

12 and 𝑀𝑒
21 denote the loga-

rithmic extrinsic information on the pair of bits (𝑢𝑙, 𝑢
′
𝑙) which

are being exchanged between the two constituent decoders
and are of the form [log(𝑃 𝑒

00) log(𝑃 𝑒
01) log(𝑃 𝑒

10) log(𝑃 𝑒
11)]

where 𝑃 𝑒
𝑘𝑗 denotes the extrinsic probability that (𝑢𝑙, 𝑢

′
𝑙) =

(𝑘, 𝑗) satisfying 𝑃 𝑒
00 + 𝑃 𝑒

01 + 𝑃 𝑒
10 + 𝑃 𝑒

11 = 1. The ini-
tial value for either of 𝑀𝑒

12 and 𝑀𝑒
21 is taken as

[log(0.25) log(0.25) log(0.25) log(0.25)].
The logarithmic branch metric 𝛾𝑙(𝑠, 𝑠′) used in the log-

domain BCJR algorithm to compute functions �̃�𝑙(𝑠) and 𝛽𝑙(𝑠)
(see [13] for the notation) is obtained in a straightforward
manner as

𝛾𝑙(𝑠, 𝑠′) = log (𝑃 𝑒
𝑢𝑙𝑢′𝑙
) −
∥𝑦𝑙 − 𝑐𝑙∥

2

𝑁0
(17)

for an AWGN channel where 𝑐𝑙 denotes the output label for
each branch in the trellis at time 𝑙 and 𝑦𝑙 is the corresponding
observation. We note that for computing the outgoing extrinsic
information at each decoder, the information that is already
known at the destination should not be used, in other words,
log (𝑃 𝑒

𝑢𝑙𝑢′𝑙
) must be removed from (17).

Fig. 3: The iterative decoder for a RPCCC when the PCCC encodes
the random bits and its dual encodes the data bits.

Case 2 (Randomized SCCCs): The iterative decoder for an
RSCCC works based on the description in Fig. 4. Two con-
stituent decoders exchange their information on the pair of bits
(𝑏𝑖, 𝑏

′
𝑖) introduced in Figs. 1 and 2. Specifically, 𝑀12 and 𝑀21

are of the form [log(𝑃 𝑒
00) log(𝑃 𝑒

01) log(𝑃 𝑒
10) log(𝑃 𝑒

11)] where
𝑃 𝑒
𝑘𝑗 denotes the extrinsic probability that (𝑏𝑖, 𝑏

′
𝑖) = (𝑘, 𝑗). The

decoder corresponding to RSC2 and its dual works similar to
the ones in the case of RPCCCs described earlier. However,

the decoder for RSC1 and its dual only receives extrinsic
information (i.e., there is no observation from the channel).
The logarithmic branch metric used to obtain �̃�𝑙(𝑠) and 𝛽𝑙(𝑠)
is computed as

𝛾𝑖(𝑠, 𝑠′) = log (𝑃 𝑒
𝑏2𝑖−1𝑏

′
2𝑖−1
) + log (𝑃 𝑒

𝑏2𝑖𝑏
′
2𝑖

), (18)

and the extrinsic information on bits 𝑏2𝑖−1’s can be computed
using

𝛾𝑖(𝑠, 𝑠′) = log (𝑃 𝑒
𝑏2𝑖𝑏

′
2𝑖

) (19)

while the extrinsic information on 𝑏2𝑖’s is computed by setting

𝛾𝑖(𝑠, 𝑠′) = log (𝑃 𝑒
𝑏2𝑖−1𝑏

′
2𝑖−1
) (20)

in the BCJR algorithm.

Fig. 4: The iterative decoder for an RSCCC where one of the encoders
in Figs. 1 and 2 encodes the random bits and the other encodes the
data bits.

VI. NUMERICAL EXAMPLES

In this section, we evaluate the performance of the newly
proposed randomized coding schemes in terms of their security
gaps. We denote the length of the codewords, the number
of data bits and the number of random bits by 𝑛, 𝑘 and 𝑟,
respectively (see Section III-A). As a first example, we consider
two randomized convolutional codes. The first code is obtained
by using [657 435] for encoding the data bits, and the generator
of rate 1/8 and memory 4

[𝐷3 + 1 𝐷4 + 1 𝐷4 +𝐷3 +𝐷2 𝐷4 +𝐷3 +𝐷 + 1

𝐷3 +𝐷2 +𝐷 𝐷3 𝐷3 +𝐷2 𝐷3 +𝐷2 + 1],
(21)

which is a subset of dual of [657 435], is used to encode the
random bits. The minimum distance of the code is 8. Following
the discussion in Section IV-C, we have obtained a second
randomized convolutional code (of minimum distance 10) by
using the following encoder of rate 1/8 and memory 5 for the
random bits (which is another subset of the dual of [657 435])

[𝐷4+𝐷3+1 𝐷3+1 𝐷5+𝐷4+𝐷2+𝐷+1 𝐷4

𝐷5 +𝐷4 +𝐷3 +𝐷2 𝐷4 +𝐷2 + 1 𝐷5 +𝐷4 +𝐷3 +𝐷2 +𝐷 + 1

𝐷5 +𝐷4 +𝐷2 +𝐷]. (22)

For both code examples we have provided enough zero bits at
the end of the input sequences in order to force the trellises to
the all-zero state.

The RSC code used in all the randomized turbo code
examples is [1 7/5] whose dual is either [1 5/7] or [7/5 1]; the
latter is used for the case of RPCCCs and the former for the
case of RSCCCs. The number of iterations is set to 10 for the
decoders in the Figs. 3 and 4. The interleaver which has been
used for these examples is the 𝑆-random interleaver introduced
in [15]. Furthermore, the trellises in the RPCCCs and the inner
trellises in RSCCCs are terminated to the all-zero state.

The resulting BERs at the eavesdropper for the randomized
convolutional coding scheme are shown in Fig. 5 as a function
of security gap, which demonstrates that the randomized convo-
lutional codes can result in lower security gaps in comparison
with the punctured LDPC codes for high BERs at Eve [5].

Fig. 6 illustrates the performance of randomized turbo codes.
It shows that the RSCCC example results in lower security gaps
in comparison to the RPCCC one. By applying scrambling
to the RSCCC of length 𝑛 = 8004, a security gap of about
0.9 dB for 𝑃𝑚𝑖𝑛

𝑒𝑣𝑒 ≈ 0.5 (which is the worst scenario for the
eavesdropper) is obtained. The notion of perfect scrambling
in [6] ensures that a single (or more) bit error(s) in the
decoded word is sufficient to make on average half of the
bits in that word erroneous after descrambling. This result also
illustrates that for similar code lengths and similar code rates,
the scrambled RSCCC results in a 0.1 dB lower security gap in
comparison with the scrambled BCH scheme (which, to the best
of our knowledge, is the best existing scheme in the literature
as far as the security gap is concerned). Another advantage
of the newly proposed randomized coding schemes is shown
in the Fig. 7 where it is clear that one can achieve a 0.6
dB improvement in the waterfall region by using a scrambled
RSCCC compared to a scrambled BCH code.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Security gap (dB)

B
E

R
 a

t t
he

 E
av

es
dr

op
pe

r
(P

ev
e

 m
in

)

n=256, k=120, r=28, Eq. 21
n=856, k=420, r=103, Eq. 21
Punctured LDPC, n=770, k=385
n=856, k=420, r=103, Eq. 22
n=2056, k=1020, r=252, Eq. 22
Punctured LDPC, n=2364, k=1576

Fig. 5: 𝑃𝑚𝑖𝑛
𝑒𝑣𝑒 versus the security gap (at 𝑃𝑚𝑎𝑥

𝑚𝑎𝑖𝑛 ≈ 10−5) for a
randomized convolutional code when [657 435] encodes the data
bits for three different codeword lengths and two different random
bit encoders in (21) and (22).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Security gap (dB)

B
E

R
 a

t t
he

 E
av

es
dr

op
pe

r
(

P
ev

e
 m

in
)

RPCCC, n=2008, k=r=500, S=13
RPCCC, n=4008, k=r=1000, S=18
RSCCC, n=2004, k=r=500, S=13
RPCCC, n=10008, k=r=2500, S=23
RSCCC, n=4004, k=r=1000, S=18
RSCCC, n=8004, k=r=2000, S=23
Scrambled RSCCC, n=8004, k=r=2000
Scrambled BCH, n=8191, k=2055

Fig. 6: 𝑃𝑚𝑖𝑛
𝑒𝑣𝑒 versus the security gap (at 𝑃𝑚𝑎𝑥

𝑚𝑎𝑖𝑛 ≈ 10
−5) for the RSCCC

and RPCCC examples of different lengths.

0 1 2 3 4 5 6 7
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
it

er
ro

r
ra

te

RC, n=2056, k=1020, r=252, Eq. 21
RC, n=2056, k=1020, r=253, Eq. 22
RPCCC, n=10004, k=r=2500, S=22
RSCCC, n=8004, k=r=2000, S=22
Scrambled RSCCC, n=8004, k=r=2000
Scrambled BCH, n=8191, k=2055

Fig. 7: BER curves corresponding to some of the codes in Figs. 5 and
6. RCCs stands for randomized convolutional codes scheme.

VII. CONCLUSIONS

We have proposed ways of applying turbo codes to the coset
coding method used to provide secure transmission over wiretap
channels. First, we have studied how randomized convolutional
codes can be constructed. Armed with this result, we have
developed RPCCC and RSCCC schemes and proposed corre-
sponding iterative decoders. We have illustrated our findings via
numerical examples, which demonstrate that the randomized
convolutional codes can outperform punctured LDPC codes
for high BERs at Eve. Finally, we have demonstrated through
examples that using scrambling idea along with the RSCCCs
can improve upon the security gap obtained from scrambling a
BCH code.

REFERENCES
[1] A. Wyner, “The wire-tap channel,” Bell System Technical Journal, vol.

54, no. 8, pp. 1355-1387, Oct. 1975.
[2] A. Thangaraj, S. Dihidar, A. Calderbank, S. McLaughlin and J. Merolla,

“Applications of LDPC codes to the wiretap channel,” IEEE Trans. Inf.
Theory, vol. 53, no. 8, pp. 2933-2945, Aug. 2007.

[3] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap
channels using polar codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp.
6428-6443, Oct. 2011.

[4] F. Oggier, P. Sole and J. Belfiore, “Lattice codes for the wiretap Gaussian
channel: construction and analysis,” IEEE Trans. Inf. Theory, vol. 62, no.
10, pp. 5690-5707, Oct. 2016.

[5] D. Klinc, J. Ha, S. McLaughlin, J. Barros and B.-J. Kwak, “LDPC codes
for the Gaussian wiretap channel,” IEEE Trans. Inf. Forensics Security,
vol. 6, no. 3, pp. 532-540, Sep. 2011.

[6] M. Baldi, M. Bianchi, and F. Chiaraluce, “Non-systematic codes for
physical layer security,” in Proc. IEEE Information Theory Workshop (ITW
2010), Dublin, Ireland, Aug. 2010.

[7] M. Baldi, F. Bambozzi, and F. Chiaraluce, “Coding with scrambling,
concatenation, and HARQ for the AWGN wiretap channel: a security gap
analysis,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 883-894,
Jun. 2012.

[8] Y. Zhang, A. Liu, C. Gong, G. Yang, and S. Yang, “Polar-LDPC
concatenated coding for the AWGN wiretap channel,” IEEE Commun.
Lett., vol. 18, no. 10, pp. 1683-1686, Oct. 2014.

[9] A. Nooraiepour and T. M. Duman, “Randomized convolutional codes for
the wiretap channel,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3442-
3452, Aug. 2017.

[10] A. Nooraiepour, “Randomized convolutional and concatenated codes for
the wiretap channel,” M.S. Thesis, Dept. Elect. Eng., Bilkent Univ.,
Ankara, Turkey, 2016.

[11] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-
correcting coding and decoding: turbo codes,” Proc. 1993 Int. Conf. on
Communications, pp. 1064-1070, May 1993.

[12] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: performance analysis, design, and iterative
decoding,” IEEE Trans. Inf. Theory, vol. 44, pp. 909-926, May 1998.

[13] W. Ryan and S. Lin, Channel Codes, Classical and Modern. Cambridge
University Press, Cambridge, UK, 2009.

[14] R. Johannesson and K. Zigangirov, Fundamentals of Convolutional Cod-
ing. Piscataway, NJ: IEEE Press, 1999.

[15] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space com-
munications,” Telecommun. Data Acquisition Rep., Jet Propulsion Lab.,
Pasadena, CA, USA, pp. 66-77, May 1995.

