
The Annals of Applied Probability
2013, Vol. 23, No. 4, 1409–1436
DOI: 10.1214/12-AAP875
© Institute of Mathematical Statistics, 2013

RANDOMIZED URN MODELS REVISITED USING
STOCHASTIC APPROXIMATION

BY SOPHIE LARUELLE AND GILLES PAGÈS

Université Paris 6

This paper presents the link between stochastic approximation and clin-
ical trials based on randomized urn models investigated by Bai and Hu
[Stochastic Process. Appl. 80 (1999) 87–101], Bai and Hu [Ann. Appl.
Probab. 15 (2005) 914–940] and Bai, Hu and Shen [J. Multivariate Anal.
81 (2002) 1–18]. We reformulate the dynamics of both the urn composition
and the assigned treatments as standard stochastic approximation (SA) algo-
rithms with remainder. Then, we derive the a.s. convergence and the asymp-
totic normality [central limit theorem (CLT)] of the normalized procedure
under less stringent assumptions by calling upon the ODE and SDE methods.
As a second step, we investigate a more involved family of models, known
as multi-arm clinical trials, where the urn updating depends on the past per-
formances of the treatments. By increasing the dimension of the state vector,
our SA approach provides this time a new asymptotic normality result.

1. Introduction. The aim of this paper is to illustrate the efficiency of
stochastic approximation (SA) theory by revisiting several recent results on ran-
domized urn models applied to clinical trials (especially [5–7]). We will first re-
trieve the a.s. convergence (strong consistency) and asymptotic normality results
obtained in these papers under less stringent assumptions. Then we will take ad-
vantage of this more synthetic approach to establish a new central limit theorem
(CLT) in the more sophisticated randomized urn model known as “multi-arm clin-
ical test.” In this model, the urn updating which produces the adaptive design is
based on statistical estimators of the past efficiency of the assigned treatments.

In these adaptive models, the starting point is the equation which governs the
urn composition updated after each newly treated patient. Basically, we will show
that a normalized version of this urn composition can be formulated as a classical
recursive stochastic algorithm with step γn = 1

n
which classical stochastic approx-

imation theory deals with. Doing so we will be in position to establish the a.s.
convergence of the procedure by calling upon the so-called ordinary differential
equation method (ODE method) and to derive the asymptotic normality (a CLT, to
be precise) from the standard CLT for stochastic algorithms (sometimes called the
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stochastic differential equation method (SDE method) (see, e.g., [9, 14]). These
two main theoretical results are recalled in a self-contained form in the Appendix.
They can be found in all classical textbooks on SA [9, 13, 14, 22] and go back to
[21] and [11]. SA theory is also used in clinical trials to solve dose-finding prob-
lems (see, e.g., [12] and citations therein).

Clinical trials essentially deal with the asymptotic behavior of the patient al-
location to several treatments during the procedure. Adaptive designs in clinical
trials aim at detecting “on line” which treatment should be assigned to more pa-
tients, while keeping randomness enough to preserve the basis of treatments. This
adaptive approach relies on the cumulative information provided by the responses
to treatments of previous patients in order to adjust treatment allocation to the new
patients. To this end, many urn models have been suggested in the literature (see
[15, 20, 25, 27] and [28]). The most widespread random adaptive model is the
generalized Friedman urn (GFU) (see [2] and more recently [19, 24]), also called
generalized Pólya urn (GPU). The idea of this modeling is that the urn contains
balls of d different types representative of the treatments. All random variables
involved in the model are supposed to be defined on the same probability space
(�, A,P). Denote Y0 = (Y i

0)i=1,...,d ∈ R
d+ \ {0} the initial composition of the urn,

where Y i
0 denotes the number of balls of type i, i = 1, . . . , d (of course, a more re-

alistic though not mandatory assumption would be Y0 ∈ N
d \ {0}). The allocation

of the treatments is sequential and the urn composition at draw n is denoted by
Yn = (Y i

n)i=1,...,d . When the nth patient presents, one draws randomly (i.e., uni-
formly) a ball from the urn with instant replacement. If the ball is of type j , then
the treatment j is assigned to the nth patient, j = 1, . . . , d , n ≥ 1. The urn com-
position is updated by taking into account the response of the nth patient to the
treatment j , or the responses of all patients up to the nth one (i.e., the efficiency
of the assigned treatment), namely, by adding D

ij
n balls of type i, i = 1, . . . , d .

The procedure is iterated as long as patients present. Consequently, the larger the
number of balls of a given type, the more efficient the treatment is. The urn com-
position at stage n, modeled by an R

d -valued vector Yn, satisfies the following
recursive procedure:

Yn = Yn−1 + DnXn, n ≥ 1, Y0 ∈ R
d+ \ {0},(1.1)

where Dn = (D
ij
n )1≤i,j≤d is the addition rule matrix and Xn is the result of

the nth draw and Xn : (�, A,P) → {e1, . . . , ed} models the selected treatment
({e1, . . . , ed} denotes the canonical basis of R

d and ej stands for treatment j ).
We assume that there is no extinction, that is, Yn ∈ R

d+ \ {0} a.s. for every n ≥ 1:

so is the case if all the entries D
ij
n are a.s. nonnegative, but other settings can also

be taken under consideration (see Section 2). We model the drawing in the urn by
setting

Xn =
d∑

j=1

1{(∑j−1
�=1 Y �

n−1)/(
∑d

�=1 Y �
n−1)<Un≤(

∑j
�=1 Y �

n−1)/(
∑d

�=1 Y �
n−1)}e

j , n ≥ 1,(1.2)
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where (Un)n≥1 is i.i.d. with distribution U1
L∼ U[0,1].

Let Fn = σ(Y0,Uk,Dk,1 ≤ k ≤ n) be the filtration of the procedure. The gen-
erating matrices are defined as the Fn-compensator of the additions rule sequence,
that is,

Hn = (
E
[
Dij

n |Fn−1
])

1≤i,j≤d, n ≥ 1.

Other fields of application can be considered for such procedures like the adaptive
asset allocation by an asset manager or a trader. Indeed this has already been done
in [23] and successfully implemented with multi-armed bandit procedure. Imagine
an asset manager who can trade the same financial instrument (tradable asset) on
different trading venues. To optimize the execution of an inventory of this asset,
she can split her orders across these trading destinations. She starts with the initial
allocation vector Y0. At stage n, she chooses a trading destination according to
the distribution (1.2) of Xn, then evaluates its performance during one time step
and modifies the urn composition (most likely virtually) and proceeds. Thus the
normalized urn composition represents the allocation vector among the venues
and the addition rule matrices model the successive re-allocations depending on
the past performances of the different trading destinations.

One may also consider this type of procedure as a strategy to update the compo-
sition of a portfolio or even a whole fund, based on the (recent) past performances
of the assets.

The first designs under consideration were the homogeneous GFU models
where the addition rules Dn are i.i.d. and the so-called generating matrices Hn =
H = EDn are identical, nonrandom, with nonnegative entries and irreducible.
Hence, by the Perron–Frobenius theorem, H has a unique and positive maximal
eigenvalue and an eigenvector with positive components (see [2, 3, 17, 18]). But
the homogeneity of the generating matrix is often not satisfied in practice and
inhomogeneous GFU models have been introduced (see [5]) in which Hn are not
random but converge to a deterministic limit H , under the assumption that the total
number of balls added at each stage is constant. As a third step, the homogeneous
extended Pólya urn (EPU) models have been introduced in [26] in which only the
mean total number of balls added at each stage is constant. This number is called
the balance of the urn and the urn is said to be balanced.

Finally, in [6] the authors proposed a nonhomogeneous EPU model because in
applications, the addition rule Dn depends on the past history of previous trials
(see [1]), so that the general generating matrix Hn is usually random. Thus the
entries of H may not be all nonnegative (e.g., when there is no replacement after
the draw diagonal terms may become negative), and they assume that the matrix
H has a unique maximal eigenvalue λ with associated (right) eigenvector v∗ =
(v∗,i )i=1,...,d with

∑d
i=1 v∗,i = 1. Furthermore, the conditional expectation of the

total number of balls added at each stage was constant.
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The first theoretical investigations on these models focused on the asymptotic
properties of the urn composition (consistency and asymptotic normality). How-
ever, for practical matter, it is clear that the asymptotic behavior of the vector
Nn :=∑n

k=1 Xk which stores the treatment allocation among the first n patients is
of high interest, especially its variance structure in order to compare several adap-
tive designs. Thus, in [6] is proved the strong consistency of both (normalized)
quantities Yn/n and Nn/n (under a summability assumption on the generating
matrices).

By considering an appropriate recursive procedure for the normalized urn com-
position derived from (1.1) we prove by the ODE method its a.s. convergence
toward v∗ under a significantly less stringent assumption, namely, the minimal
requirement that Hn

a.s.−→
n→∞H . The a.s. convergence of the treatment allocation fre-

quency Nn/n toward the same v∗ follows from the previous one.
Concerning asymptotic normality, separate results on these two quantities are

obtained in [6] under an additional assumption on the rate of convergence of the
generating matrices Hn toward H . On our side we propose to consider a stochas-
tic approximation procedure with remainder satisfied by the higher-dimensional
vector (Yn/n,Nn/n). Then, the standard CLT for SA procedures with remainder
directly provides the expected asymptotic normality result for the whole vector un-
der an assumption on the L2-rate of convergence of the generating matrices toward
their limit [i.e., |||Hn − H ||| = o(n−1/2)] which is again slightly less stringent than
the original one. As a result, we obtain the asymptotic joint distribution with an
explicit global covariance structure matrix.

In the end of [6], an application to multi-arm clinical trials randomized urn mod-
els is proposed. This adaptive design has already been introduced in [7] with first
consistency results. This kind of model is clearly the most interesting for prac-
titioners since it takes into account the past results of the assigned treatments in
the addition rule matrices, denoted Sn at time n (Si

n denotes the number of cured
patients by treatment i among the Ni

n treated ones). The above strong consistency
results apply but none of the asymptotic normality works as stated since the gen-
erating matrices Hn do not (in fact cannot as we will emphasize) converge at the
requested rate. The reason is that they themselves satisfy a CLT. However, we can
overcome this obstacle by once again increasing the structural dimension of the
problem; we show that the triplet (Yn/n,Nn/n,Sn/n) can be written as a recur-
sive SA algorithm with remainder satisfying a.s. convergence and a CLT (provided
the limiting generating matrix is still irreducible, etc.). Thus we illustrate on this
example that SA theory is a powerful tool to investigate this kind of adaptive design
problem. The main difficulty is to exhibit the appropriate form for the recursion by
making a priori the balance between significant asymptotic terms and remainder
terms.

The paper is organized as follows. We rewrite the dynamics (1.1) of the urn
composition as a stochastic approximation procedure with state variable for Ỹn :=
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Yn/n in Section 2.1. In Section 2.2 the a.s. convergence of 1
n

∑d
i=1 Y i

n is established
which implies that of Ỹn and Ñn := Nn/n by using the ODE method of SA under
slightly lighter assumption than in [6]. The rate of convergence is investigated in
Section 2.3: we obtain a CLT, once again under slightly less stringent assumptions
on the limit generating matrix H than in [6]. Section 3 is devoted to multi-arm clin-
ical tests. In Section 3.1 we briefly recall the Wei GFU model introduced [7, 27]
where the generating matrices Hn are not random. In this case, the strong consis-
tency and the asymptotic normality follow from the results of Section 2 (as in [6]).
In Section 3.2 we study the adaptive design proposed in [7] where the addition rule
matrices depend on the responses of all the past patients. We use the results from
Section 2.2 to prove the strong consistency. We prove in Section 3.3 a new CLT
for this model, when the generating matrix Hn satisfies itself a CLT, which relies
again on stochastic approximation techniques.

NOTATION. ∀u = (ui)i=1,...,d ∈ R
d , ‖u‖ denotes the canonical Euclidean

norm of the column vector u on R
d , w(u) =∑d

k=1 uk denotes its “weight,” ut de-
notes its transpose; |||A||| denotes the operator norm of the matrix A ∈ Md,q(R)

with d rows and q columns with respect to canonical Euclidean norms. When
d = q , Sp(A) denotes the set of eigenvalues of A. 1 = (1 · · ·1)t denotes the
unit column vector in R

d , Id denotes the d × d identity matrix and diag(u) =
[δijui]1≤i,j≤d , where δij is the Kronecker symbol.

2. Convergence and first rate result. With the notation and definitions de-
scribed in the the Introduction, we then formulate the main assumptions to estab-
lish the a.s. convergence of the urn composition

(A1) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Addition rule matrix: for every n ≥ 1, the matrix Dn a.s.
has nonnegative entries.

(ii) Generating matrix: for every n ≥ 1, the generating matrices
Hn = (H

ij
n )1≤i,j≤d a.s. satisfies

∀j ∈ {1, . . . , d}
d∑

i=1

Hij
n = c > 0.

(iii) Starting value: the starting urn composition vector
Y0 ∈ R

d+ \ {0}.
The constant c is known as the balance of the urn. In fact, we may assume

without loss of generality, up to a renormalization of Yn, that c = 1 since Ŷn = Yn

c

and D̂n+1 = Dn+1
c

, n ≥ 0, formally satisfy the dynamic (1.1), namely,

Ŷn = Ŷn−1 + D̂nXn, n ≥ 1, Ŷ0 ∈ R
d+ \ {0}.

From now on, throughout the paper, we will consider this normalized balance ver-
sion. Nevertheless, we will still denote by Yn and Dn the normalized quantities and
assume that c = 1.
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(A2) The addition rule Dn is conditionally independent of the drawing proce-
dure Xn given Fn−1 and satisfies

∀1 ≤ j ≤ d sup
n≥1

E
[∥∥D·j

n

∥∥2|Fn−1
]
< +∞ a.s.,(2.1)

where D
·j
n = (D

ij
n )i=1,...,d .

(A3) Assume that there exists an irreducible d ×d matrix H (with nonnegative
entries) such that

Hn
a.s.−→

n→∞H.(2.2)

H is called the limit generating matrix.

The combination of assumptions (A1)–(A3) guarantees that H satisfies the as-
sumptions of the Perron–Frobenius theorem (see [10]) so that 1 is the eigenvalue
of H with the highest norm (maximal eigenvalue) and that the components of its
right eigenvector v can be chosen all positive. Therefore, we may normalize this
vector v∗ such that w(v∗) = 1.

A VARIANT INCLUDING POSSIBLE DEFINITE REMOVAL. We may relax as-
sumption (A1) by allowing the removal of the drawn ball from its urn (see,
e.g., [19]). Other relaxation of these requirements may be considered; it could
be possible to remove balls other than the drawn one. This leads to tenable urns
(studied notably in [4]; see also [24]) where an arithmetical assumption to the row
of any negative diagonal entry in Dn is added in order to avoid the urn extinc-
tion [see assumption (A′1) below]. Thus we may replace assumption (A1) (after
renormalization) by

(A′1) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Addition rule matrix: For every i ∈ {1, . . . , d},
there exists ci ∈ (0,+∞) such that,

for every n ≥ 1,∀i, j ∈ {1, . . . , d}, δij

ci
+ D

ij
n ∈ N

ci
a.s.

and ∀j ∈ {1, . . . , d},∑d
i=1 D

ij
n ≥ 0 a.s.

(ii) Generating matrix: For every n ≥ 1, Hn a.s. satisfies

∀j ∈ {1, . . . , d}
d∑

i=1

Hij
n = 1.

(iii) Starting value: The starting urn composition vector

Y0 ∈
(

d∏
i=1

N

ci

)∖
{0}.

In this case H may have negative (diagonal) entries and the Perron–Frobenius
theorem cannot be used, so we change assumption (A3) into

(A′3) 1 is the maximal eigenvalue of H and ∃v ∈ R
d+ \ {0} such that Hv = v.
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Throughout the paper, we may substitute (A′1)–(A′3) for (A1)–(A3) as recalled in
each result.

The following preliminary lemma ensures that if (A′1) holds, then the urn ex-
tinction never occurs and its weight w(Yn) is nondecreasing.

LEMMA 2.1 (Preliminary). If (A′1) holds, then w(Yn) is nondecreasing and
positive.

PROOF. We proceed by induction on n ≥ 0. Assume Yn−1 ∈ (
∏d

i=1
N

ci
) \ {0}.

For every i ∈ {1, . . . , d},

Y i
n = Y i

n−1 +
d∑

j=1

Dij
n 1{Xn=ej } and

{
Xn = ej }⊂ {

Y
j
n−1 > 0

}= {
Y

j
n−1 ≥ 1/cj

}
.

Consequently, Y i
n ≥ Y i

n−1 and Y i
n ∈ N

ci
\{0} on the event

⋃
j �=i{Xn = ej }. On {Xn =

ei}, {Y i
n−1 ≥ 1

ci
} so that Y i

n = Y i
n−1 + Dii

n ≥ 1
ci

− 1
ci

≥ 0. Finally,

w(Yn) = w(Yn−1) +
d∑

j=1

(
d∑

i=1

Dij
n

)
1{Xn=ej } ≥ w(Yn−1) > 0.

�

2.1. The dynamics as a stochastic approximation procedure. Our aim in this
section is to reformulate the dynamics (1.1)–(1.2) into a recursive stochastic algo-
rithm. Then we aim at applying the most powerful tools of SA, namely the “ODE”
and the “SDE” methods to elucidate the asymptotic properties (a.s. convergence
and weak rate) of both the urn composition and the treatment allocation. We start
from (1.1) with Y0 ∈ R

d+ \ {0}. For n ≥ 1,

Yn+1 = Yn + Dn+1Xn+1 = Yn + E[Dn+1Xn+1|Fn] + �Mn+1,(2.3)

where

�Mn+1 := Dn+1Xn+1 − E[Dn+1Xn+1|Fn]
is an Fn-martingale increment. By the definition of the generating matrix Hn, we
have

E[Dn+1Xn+1|Fn] =
d∑

i=1

E
[
Dn+11{Xn+1=ei}ei |Fn

]

=
d∑

i=1

E[Dn+1|Fn]P(Xn+1 = ei |Fn

)
ei

= Hn+1

d∑
i=1

Y i
n

w(Yn)
ei = Hn+1

Yn

w(Yn)
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so that Yn+1 = Yn + Hn+1
Yn

w(Yn)
+ �Mn+1.

Now we can derive a stochastic approximation for the normalized urn compo-
sition Yn. First we have for every n ≥ 1,

Yn+1

n + 1
= Yn

n
+ 1

n + 1

(
Hn+1

Yn

w(Yn)
− Yn

n

)
+ �Mn+1

n + 1
.

Consequently, Ỹn = Yn

n
, n ≥ 1, satisfies a canonical recursive stochastic approxi-

mation procedure

Ỹn+1 = Ỹn + 1

n + 1
(Hn+1 − Id)Ỹn

+ 1

n + 1

(
�Mn+1 +

(
n

w(Yn)
− 1

)
Hn+1Ỹn

)
(2.4)

= Ỹn − 1

n + 1
(Id − H)Ỹn + 1

n + 1
(�Mn+1 + rn+1)

with step γn = 1
n

and a remainder term given by

rn+1 :=
(

n

w(Yn)
− 1

)
Hn+1Ỹn + (Hn+1 − H)Ỹn.(2.5)

Furthermore, in order to establish the a.s. boundedness of (Ỹn)n≥1, we will rely
on the following recursive equation satisfied by w(Yn):

w(Yn+1) = w(Yn) + w(Hn+1Yn)

w(Yn)
+ w(�Mn+1).

By the properties of the generating matrix Hn+1, we obtain

w(Hn+1Yn) =
d∑

i=1

(Hn+1Yn)i =
d∑

i=1

d∑
j=1

H
ij
n+1Y

j
n =

d∑
j=1

(
d∑

i=1

H
ij
n+1

)
Y j

n = w(Yn).

Consequently,

w(Yn+1) = w(Yn) + 1 + w(�Mn+1).(2.6)

2.2. Convergence results.

THEOREM 2.1. Let (Yn)n≥0 be the urn composition sequence defined by
(1.1)–(1.2). Under the assumptions (A1), (A2) and (A3) [or (A′1), (A2) and
(A′3)],

(a) w(Yn)
n

a.s.−→
n→∞ 1 and Yn

w(Yn)

a.s.−→
n→∞v∗.

(b) Ñn := Nn

n
= 1

n

∑n
k=1 Xk

a.s.−→
n→∞v∗.
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REMARKS. • We simply need that Hn
a.s.−→

n→∞H while the assumption in [6] is

∑
n≥1

‖Hn − H‖∞
n

< +∞,

where ‖ · ‖∞ is the norm on L∞
Rd×d (P).

• Assumption (A3) is not necessary to prove that w(Yn)
n

a.s.−→
n→∞ 1.

PROOF OF THEOREM 2.1. We will first prove that (a) ⇒ (b), then we will
prove (a).

(a) ⇒ (b). We have

E[Xn|Fn−1] =
d∑

i=1

Y i
n−1

w(Yn−1)
ei = Yn−1

w(Yn−1)

and by construction ‖Xn‖2 = 1 so that E[‖Xn‖2|Fn−1] = 1. Hence, the martingale

M̃n =
n∑

k=1

Xk − E[Xk|Fk−1]
k

a.s. and L2−−−−−→
n→∞ M̃∞ ∈ L2

and by the Kronecker lemma we obtain

1

n

n∑
k=1

Xk − 1

n

n∑
k=1

Yk−1

w(Yk−1)

a.s.−→
n→∞ 0.

This yields the announced implication owing to the Cesaro lemma.
(a) FIRST STEP: We have

Dn+1Xn+1 =
d∑

j=1

D
·j
n+11{Xn+1=ej }.

Therefore,

‖Dn+1Xn+1‖2 =
d∑

j=1

∥∥D·j
n+1

∥∥21{Xn+1=ej },

so that

E
[‖Dn+1Xn+1‖2|Fn

]= d∑
j=1

E
[∥∥D·j

n+1

∥∥2|Fn

]
P
(
Xn+1 = ej |Fn

)
≤ sup

n≥0
sup

1≤j≤d

E
[∥∥D·j

n+1

∥∥2|Fn

]
< +∞ a.s.
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Consequently, supn≥1 E[‖�Mn+1‖2|Fn] < +∞ a.s. Therefore, thanks to the
strong law of large numbers for conditionally L2-bounded martingale increments,
we have Mn

n

a.s.−→
n→∞ 0. Consequently, it follows from (2.6) that

w(Yn)

n
= 1 + w(Y0) − 1

n
+ w(Mn)

n

a.s.−→
n→∞ 1.(2.7)

SECOND STEP: Since the components of Ỹn = Yn

n
are nonnegative and w(Ỹn) =

w(Yn)
n

a.s.−→
n→∞ 1, it is clear that (Ỹn)n≥1 is a.s. bounded and that a.s. the set Y∞ of all

its limiting value is contained in

V = w−1{1} = {
u ∈ R

d+|w(u) = 1
}
.

So we may try applying the ODE method (see the Appendix, Theorem A.1). Since
Ỹn and Hn+1Ỹn are a.s. bounded, (2.7) and (A3) imply that rn

a.s.−→
n→∞ 0.

The ODE associated to the recursive procedure reads

ODEId−H ≡ ẏ = −(Id − H)y.

Owing to assumption (A3), Id − H admits v∗ as unique zero in V . The restriction
of ODEId−H to the affine hyperplane V is the linear system ż = −(Id −H)z, where
z = y − v∗ takes values in V0 = {u ∈ R

d |w(u) = 0}, since Sp((Id − H)|V0) ⊂ {λ ∈
C,�e(λ) > 0}, owing to assumption (A3). As a consequence v∗ is a uniformly
stable equilibrium for the restriction of ODEId−H to V , the whole hyperplane, as
an attracting area. The fundamental result derived from the ODE method (see The-
orem A.1 in the Appendix and the notation therein, in particular, the remainder rn)
yields the expected result

Ỹn
a.s.−→

n→∞v∗. �

REMARK. If we assume that the addition rule matrices (Dn)n≥1 satisfy be-
sides (A1), then we can directly write a stochastic approximation for Yn

w(Yn)
with

step 1
w(Yn)

in which the remainder simply reads rn+1 = (Hn+1−H) Yn

w(Yn)
and prove

the a.s. convergence under the same assumptions.

COMMENTS. We could apply directly the ODE method because we first
proved that (Ỹn)n≥1 is a.s. bounded without using the standard Lyapunov machin-
ery developed in SA theory. That is why the assumption on the remainder sequence
(rn)n≥1 simply reads

rn
a.s.−→

n→∞ 0.

Another approach is the martingale one. It relies on the existence of a Lyapunov
function V : Rd → R+ associated to the algorithm satisfying

∃a > 0,∀y ∈ R
d, y �= v∗

(2.8)
〈∇V |Id − H 〉(y) > 0 and 〈∇V |Id − H 〉 > a|∇V |2.
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In this framework the existence of a Lyapunov function can be established. Hence,
the natural condition on the remainder sequence (rn)n≥1 reads (see [13])

∑
n≥1

‖rn‖2

n
< +∞ a.s.

In that perspective, the assumption on the generating matrices would read∑
n≥1

|||Hn−H |||2
n

< +∞ a.s. which is still slightly less stringent than assumption
on the generating matrices made in [6].

2.3. Rate of convergence. In the previous section we proved the a.s. conver-
gence of both quantities of interest, namely, Ỹn and Ñn, toward v∗. In this sec-
tion we establish a “joint CLT” for the couple θn := (Ỹn, Ñn)

t with an explicit
asymptotic joint normal distribution (including covariances). To this end we will
show that θn satisfies an SA recursive procedure which [a.s. converges toward
θ∗ = (v∗, v∗)t and] fulfills the assumptions of the CLT Theorem A.2 for SA algo-
rithms (see the Appendix), with a special attention paid to condition (A.3) about
the remainder term.

Concerning Ỹn, we derive from (2.4) that

∀n ≥ 1 Ỹn+1 = Ỹn − 1

n + 1

(
Id − (2 − w(Ỹn)

)
H
)
Ỹn

+ 1

n + 1
(�Mn+1 + r̄n+1),

where r̄n+1 := (
Hn+1−H

w(Ỹn)
+ (w(Ỹn)−1)2

w(Ỹn)
H)Ỹn.

For Ñn we have, still for every n ≥ 1,

Ñn+1 = Ñn − 1

n + 1

(
Ñn − (2 − w(Ỹn)

)
Ỹn

)+ 1

n + 1
(�M̃n+1 + r̃n+1)

with �M̃n+1 := Xn+1 − E[Xn+1|Fn] = Xn+1 − Yn

w(Yn)
and r̃n+1 := (w(Ỹn)−1)2

w(Ỹn)
Ỹn.

Thus, we obtain a new recursive SA procedure, still with step γn = 1
n

, namely,

θn+1 = θn − 1

n + 1
h(θn) + 1

n + 1
(�Mn+1 + Rn+1), n ≥ 1,

with �Mn+1 := (�Mn+1
�M̃n+1

)
, Rn+1 := (r̄n+1

r̃n+1

)
and

∀θ =
(

y

ν

)
, y ∈ R

d, ν ∈ R
d

h(θ) :=
((

Id − (2 − w(y)
)
H
)
y

ν − (2 − w(y)
)
y

)
with h

(
θ∗)= 0.
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The function h is differentiable on R
2d and its differential at point θ∗ is given by

Dh
(
θ∗)= (

Id − H + v∗1t 0Md (R)

v∗1t − Id Id

)
.

To establish a CLT for the sequence (θn)n≥1 we need to make the following addi-
tional assumptions:

(A4) The addition rules Dn a.s. satisfy

∀1 ≤ j ≤ d

⎧⎪⎨⎪⎩
sup
n≥1

E
[∥∥D·j

n

∥∥2+δ|Fn−1
]≤ C < ∞, for a δ > 0,

E
[
D·j

n

(
D·j

n

)t |Fn−1
] −→
n→∞Cj ,

where Cj = (C
j
il)1≤i,l≤d , j = 1, . . . , d , are d × d positive definite matrices.

Note that (A4) ⇒ (A2) since E[‖D·j
n ‖2|Fn−1] ≤ (E[‖D·j

n ‖2+δ|Fn−1])2/(2+δ).
(A5) The matrix H satisfies

nE
[|||Hn − H |||2] −→

n→∞ 0.(2.9)

THEOREM 2.2. Assume (A1), (A3) [or (A′1), (A′3)], (A4) and (A5).

(a) Assume furthermore that

�e
(
Sp(H) \ {1})< 1/2.(2.10)

Then, θn → θ∗ a.s. as n → +∞ and

√
n
(
θn − θ∗) L−→

n→∞ N (0,�) with � =
∫ +∞

0
eu(Dh(θ∗)−I/2)�eu(Dh(θ∗)−I/2)t du

and

� =
⎛⎜⎝

d∑
k=1

v∗kCk − v∗(v∗)t H
(
diag

(
v∗)− v∗(v∗)t )

(
diag

(
v∗)− v∗(v∗)t )tH t diag

(
v∗)− v∗(v∗)t

⎞⎟⎠
(2.11)

= a.s.- lim
n→∞ E

[
�Mn�Mt

n|Fn−1
]
.

(b) Denote by λmax the eigenvalue, different from 1, of H with the highest real
part. If λmax = 1/2, then θn → θ∗ a.s. as n → +∞ and√

n

logn

(
θn − θ∗) L−→

n→∞ N (0,�).

(c) If λmax > 1/2, then θn → θ∗ a.s. as n → +∞ and nβ(θn −θ∗) a.s. converges
as n → +∞ toward a finite random variable, where β = 1 − λmax.
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PROOF. (a) We will check the three assumptions of the CLT for SA algo-
rithms recalled in the Appendix, Theorem A.2. First, the condition (A.4) on the
spectrum of Dh(θ∗) requested for algorithms with step 1

n
in Theorem A.2 reads

�e(Sp(Dh(θ∗))) > 1
2 . This follows from our assumption (2.10) since by decom-

posing R
d = Rv∗ ⊕ Ker(w), one checks that

Sp
(
Dh
(
θ∗))= {1} ∪ {1 − λ,λ ∈ Sp(H) \ {1}}.

Second, assumption (A4) ensures that condition (A.2) is satisfied since

sup
n≥1

E
[‖�Mn‖2+δ|Fn−1

]
< +∞ a.s.

and

E
[
�Mn�Mt

n|Fn−1
] a.s.−→
n→∞� as n → ∞,

where � is the symmetric nonnegative matrix given by (2.11) as established below.
To this end we have to determine three blocks since � reads

� =
(

�1 �12
�t

12 �2

)
where �1,�2,�12 ∈ Md(R).

Computation of �1.

E
[
�Mn+1�Mt

n+1|Fn

]
=

d∑
q=1

P
(
Xn+1 = eq |Fn

)(
E
[
D

·q
n+1

(
D

·q
n+1

)t |Fn

]
− E[Dn+1Xn+1|Fn]E[Dn+1Xn+1|Fn]t )

=
d∑

q=1

Y
q
n

w(Yn)
E
(
D

·q
n+1

(
D

·q
n+1

)t |Fn

)− (Hn+1
Yn

w(Yn)

)(
Hn+1

Yn

w(Yn)

)t

a.s.−→
n→∞�1 =

d∑
q=1

v∗qCq − v∗(v∗)t .
Computation of �2.

E
[
�M̃n+1�M̃t

n+1|Fn

]= E
[
Xn+1X

t
n+1|Fn

]− Yn

w(Yn)

(
Yn

w(Yn)

)t

= diag
(

Yn

w(Yn)

)
− Yn

w(Yn)

(
Y

q
n

w(Yn)

)t
a.s.−→

n→∞�2

= diag
(
v∗)− v∗(v∗)t .
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Computation of �12.

E
[
�Mn+1�M̃t

n+1|Fn

]
= E

[
Dn+1Xn+1X

t
n+1|Fn

]− E[Dn+1Xn+1|Fn]E[Xn+1|Fn]t
= E[Dn+1|Fn]E[Xn+1X

t
n+1|Fn

]
− E[Dn+1|Fn]E[Xn+1|Fn]E[Xn+1|Fn]t

= Hn+1 diag
(

Yn

w(Yn)

)
− Hn+1

Yn

w(Yn)

(
Yn

w(Yn)

)t

a.s.−→
n→∞�12 = H

(
diag

(
v∗)− v∗(v∗)t ).

Finally, it remains to check that the remainder sequence (Rn)n≥1 satisfies (A.3) for
an ε > 0:

E
[
(n + 1)‖Rn+1‖21{‖θn−θ∗‖≤ε}

] −→
n→∞ 0.(2.12)

We note that ‖Rn+1‖2 = ‖r̄n+1‖2 + ‖̃rn+1‖2. It follows from the definition of r̄n+1
and the elementary facts ‖Ỹn − v∗‖ ≤ ‖θn − θ∗‖ and w(Ỹn) ≥ ‖Ỹn‖ that

‖r̄n+1‖21{‖θn−θ∗‖≤‖v∗‖/2}

≤ 2
(

(w(Ỹn) − 1)4

‖v∗‖/2
+ |||Hn+1 − H |||2

‖v∗‖/2

)
3

2

∥∥v∗∥∥1{‖θn−θ∗‖≤‖v∗‖/2}

≤ 6
((

w(Ỹn) − 1
)4 + |||Hn+1 − H |||2)1{‖θn−θ∗‖≤‖v∗‖/2}.

But w(Ỹn) − 1 = w(�Mn)
n

where supn≥0 E[|w(�Mn+1)|2+δ|Fn] ≤ C′, δ > 0, ow-
ing to (A4). Now using that |w(y)| ≤ Cd‖y‖,

E
[
n
∣∣w(Ỹn) − 1

∣∣41{‖θn−θ∗‖≤‖v∗‖/2}
] ≤ C∗

δ nE
[∣∣w(Ỹn) − 1

∣∣2+δ]
= Cd

n1+δ
E
[∣∣w(�Mn)

∣∣2+δ]
≤ C′

d

n1+δ
,

where C∗
δ > 0 is a real constant. Consequently

E
[∣∣w(Ỹn) − 1

∣∣41{‖θn−θ∗‖≤‖v∗‖/2}
]= o

(
1

n

)
.

Thus, by (A5) we obtain

E
[‖r̄n+1‖21{‖θn−θ∗‖≤‖v∗‖/2}

]= o

(
1

n

)
.

The same argument yields E[‖̃rn+1‖21{‖θn−θ∗‖≤‖v∗‖/2}] = o( 1
n
), therefore (2.12)

is satisfied.
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Theorem 2.2(b) and (c) follows from Theorem A.2(b) and (c) in the Appendix
(see also [14]). �

3. Application to urn models for multi-arm clinical trials. In this section,
we consider urn models for multi-arm clinical trials introduced by Wei and gen-
eralized by Bai, Hu and Shen. In this context, the initial framework where the
addition rule matrices have nonnegative entries is the only one to make sense.

3.1. The Wei GFU model. We consider here the model presented in [27] and
in [7], where balls are added depending on the success probabilities of each treat-
ment. Define an efficiency indicator as follows: let (T i

n)n≥1, 1 ≤ i ≤ d , be d in-
dependent sequences of [0,1]-valued i.i.d. random variables, independent of the
i.i.d. sampling sequence (Un)n≥1 so that

E
[
T i

n

]= pi, 0 < pi < 1, 1 ≤ i ≤ d.(3.1)

REMARK. If (T i
n)n≥1, 1 ≤ i ≤ d , is simply a success indicator, namely, d in-

dependent sequences of i.i.d. {0,1}-valued Bernoulli trials with respective param-
eter pi , then the convention is to set T i

n = 1 to indicate that the response of the ith
treatment in the nth trial is a success and T i

n = 0 otherwise.

In this framework one considers the filtration Fn = σ(Y0,Uk, Tk,1 ≤ k ≤ n),
n ≥ 0. Consider the following addition rules: a success on the treatment i adds a
ball of type i to the urn and a failure on the treatment i adds 1

d−1 balls for each of
the other d − 1 types. Thus the addition rule proposed in [27] is as follows:

Dn+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 1
n+1

1 − T 2
n+1

d − 1
· · · 1 − T d

n+1

d − 1
1 − T 1

n+1

d − 1
T 2

n+1 · · · 1 − T d
n+1

d − 1
...

...
. . .

...

1 − T 1
n+1

d − 1

1 − T 2
n+1

d − 1
· · · T d

n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
so that

Hn+1 = E[Dn+1|Fn] = EDn+1 = H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 q2

d − 1
· · · qd

d − 1
q1

d − 1
p2 · · · qd

d − 1
...

...
. . .

...

q1

d − 1

q2

d − 1
· · · pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where qi = 1 − pi , 1 ≤ i ≤ d . The strong consistency has been first established
in [3], then redone in [6]. It follows from Theorem 2.1 as well. The asymptotic
normality

Yn − nv∗
√

n
= √

n

(
Yn

n
− v∗

)
L−→ N (0,�)

results from Theorem 3.2 in [6] and from Theorem 2.2 of this paper. However,
using Theorem 2.2 we obtain a joint CLT for (Ỹn, Ñn). Furthermore, we know that

v∗i = 1/qi∑d
j=1 1/qj

, 1 ≤ i ≤ d.

Note that if pi > pj , then v∗i > v∗j . Hence, the components v∗i are ordered ac-
cording to the increasing efficiency pi of the treatments. Furthermore, it is clear
that, if pi ↑ 1 and all other probabilities pj stand still, then

lim
pi→1

v∗j = δij .

Consequently, since v∗i is the asymptotic probability of assigning treatment i to a
patient, the procedure asymptotically allocates more patients to the most efficient
treatment(s). Following the practitioners, the fact that a marginal allocation of less
efficient treatments is preserved is justified by some comparison matter.

However, this model only takes into account, in the addition rule matrix Dn,
the response of the nth patient without considering the ones of past patients. This
led the author to introduce [7] a new model based on statistical observations of the
efficiency of the assigned treatments to all past patients.

3.2. The Bai–Hu–Shen GFU model. We consider now the model introduced
in [7] (and considered again in [6]) where (T i

n)n≥1, 1 ≤ i ≤ d , are d independent
sequences of i.i.d. {0,1}-valued Bernoulli trials satisfying (3.1) and the filtration
(Fn)n≥0 is defined as in the previous section. Let Nn = (N1

n, . . . ,Nd
n )t and Sn =

(S1
n, . . . , Sd

n )t , where Ni
n = Ni

n−1 + Xi
n, n ≥ 1, still denotes the number of times

the ith treatment is selected among the first n stages and

Si
n = Si

n−1 + T i
nXi

n, n ≥ 1,

denotes the number of successes of the ith treatment among these Ni
n trials,

i = 1, . . . , d . However, to avoid degeneracy of the procedure, we will make the
following initialization assumption

Ni
0 = 1, Si

0 = 1, i = 1, . . . , d

(which makes the above interpretation of these quantities correct “up to one unit”).

REMARK. Like with the Wei model, we can simply assume that T i
n is a {0,1}-

valued efficiency indicator.
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Define �n = (�1
n, . . . ,�

d
n)t , where �i

n = Si
n

Ni
n
, i = 1, . . . , d . In [7] the authors

consider the following addition rule matrices:

Dn+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 1
n+1

�1
n(1 − T 2

n+1)∑
j �=2 �

j
n

· · · �1
n(1 − T d

n+1)∑
j �=d �

j
n

�2
n(1 − T 1

n+1)∑
j �=1 �

j
n

T 2
n+1 · · · �2

n(1 − T d
n+1)∑

j �=d �
j
n

...
...

. . .
...

�d
n(1 − T 1

n+1)∑d
j �=1 �

j
n

�d
n(1 − T 2

n+1)∑d
j �=2 �

j
n

· · · T d
n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

that is, at stage n+1, if the response of the j th treatment is a success, then one ball

of type j is added in the urn. Otherwise, �i
n∑

k �=j �k
n

(virtual) balls of type i, i �= j ,

are added. This addition rule matrix clearly satisfies (A1)(i) and (A2). Then, one
easily checks that the generating matrices are given by

Hn+1 = E[Dn+1|Fn] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 �1
n(1 − p2)∑

j �=2 �
j
n

· · · �1
n(1 − pd)∑

j �=d �
j
n

�2
n(1 − p1)∑

j �=1 �
j
n

p2 · · · �2
n(1 − pd)∑

j �=d �
j
n

...
...

. . .
...

�d
n(1 − p1)∑

j �=1 �
j
n

�d
n(1 − p2)∑

j �=2 �
j
n

· · · pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and satisfy (A1)(ii). As soon as Y0 ∈ R

d+ \ {0}, Hn
a.s.−→ H (see Lemma 3.1 below

or [7] when Y0 ∈ (0,∞)d ) where

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p1(1 − p2)∑
j �=2 pj

· · · p1(1 − pd)∑
j �=d pj

p2(1 − p1)∑
j �=1 pj

p2 · · · p2(1 − pd)∑
j �=d pj

...
...

. . .
...

pd(1 − p1)∑
j �=1 pj

pd(1 − p2)∑
j �=2 pj

· · · pd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix H is clearly irreducible since 0 < pi < 1, 1 ≤ i ≤ d so that assumption
(A3) is satisfied. Then, calling upon Theorem 2.1 (or following the direct proof
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from [7]), we obtain

Ỹn = Yn

n

a.s.−→
n→∞v∗ and Ñn = Nn

n

a.s.−→
n→∞v∗.(3.2)

Note that the normalized maximal eigenvector v∗ (associated to the eigenvalue 1)
is given by

v∗i = (pi/(1 − pi))
∑

k �=i p
k∑

1≤j≤d(pj/(1 − pj ))
∑

k �=j pk
, i = 1, . . . , d.

Note that if pi > pj , pi

pj

∑
k �=i pk∑
k �=j pk > 1 and 1−pj

1−pi > 1 so that v∗i > v∗j . Hence, the

entries v∗i are ordered according to the increasing efficiency pi of the treatments.
This model can be considered as more ethical than the Wei model since a better
treatment will be administrated to more patients. Indeed, when d > 2, for any
i �= j , 1 ≤ i, j ≤ d , if pi > pj ,

v∗i
BHS

v
∗j
BHS

>
v∗i
W

v
∗j
W

> 1

(when d = 2 both matrices H coincide).

REMARK. Note that in the Bai–Hu–Shen GFU model the “balls” in the urn
become virtual since there exists no N ∈ N such that, for every n ≥ 1, NDn ∈
Md(N).

3.3. Asymptotic normality for multi-arm clinical trials for the Bai–Hu–Shen
(BHS) GFU model. In order to derive a CLT in [7], not with the bias EYn but
with nv∗, from their own general asymptotic normality result (which statement is
similar to Theorem 2.2) they need to fulfill the following convergence rate assump-
tion for Hn: ∑

n≥1

‖Hn − H‖∞√
n

< +∞,(3.3)

where ‖ · ‖∞ is the norm on L∞
Rd×d (P). In [7], the a.s. rate of decay |||Hn −H |||∞ =

o(n−1/4) is shown which is clearly not fast enough to fulfill (3.3).
However, by enlarging the dimension of the structure process of the procedure

by considering the 3d-dimensional random sequence

θ̃n =
⎛⎝ Ỹn

Ñn

S̃n

⎞⎠ where S̃n = Sn

n
, n ≥ 1,

we will establish that a CLT does hold for the BHS GFU model.



RANDOMIZED URN MODELS REVISITED 1427

The first step is to notice that the generating matrix Hn+1 can be written as a
function depending on S̃n and Ñn, that is, Hn+1 = �(S̃n, Ñn), where � : Rd+ ×
(0,∞)d → Md(R) is a differentiable function defined by

�(s, ν) = (
�ij (s, ν)

)
1≤i,j≤d,

where ⎧⎪⎨⎪⎩
�ii(s, ν) = pi, 1 ≤ i ≤ d,

�ij (s, ν) = si/νi∑
k �=j sk/νk

qj , 1 ≤ i, j ≤ d, i �= j .

Then the following strong consistency and CLT hold for (θ̃n)n≥1.

THEOREM 3.1. Assume that Y0 ∈ R
d+ \ {0}.

(a) If �e(Sp(H) \ {1}) < 1
2 , then

θ̃n
a.s.−→

n→∞ θ̃∗ and
√

n
(
θ̃n − θ̃∗) L−→

n→∞ N (0, �̃),

where

θ̃∗ := (
v∗, v∗,diag(p)v∗)t ,

�̃ =
∫ +∞

0
eu(Dh̃(θ̃∗)−I/2)�̃eu(Dh̃(θ̃∗)−I/2)t du

with

�̃ =

⎛⎜⎜⎜⎜⎝
d∑

k=1

v∗kCk − v∗(v∗)t H
(
diag

(
v∗)− v∗(v∗)t )

(
diag

(
v∗)− v∗(v∗)t )tH t diag

(
v∗)− v∗(v∗)t

diag(p)
(
diag

(
v∗)− v∗(v∗)t )t diag(p)

(
diag

(
v∗)− v∗(v∗)t )t

(
diag

(
v∗)− v∗(v∗)t )diag(p)(

diag
(
v∗)− v∗(v∗)t )diag(p)

diag(p)
(
v∗ − v∗v∗t diag(p)

)
⎞⎟⎟⎟⎟⎠ ,

where Ck = (Ck
ij )1≤i,j≤d , 1 ≤ k ≤ d , are d × d positive definite matrices with

Ck
ij = pipj (1 − pk)

(
∑

� �=k p�)2 1{i,j �=k} + pk1{i=j=k}
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and

Dh̃
(
θ̃∗)=

⎛⎜⎜⎝ Id − H + v∗1t − ∂

∂ν

(
�(s, ν)y

)
|θ̃=θ̃∗ − ∂

∂s

(
�(s, ν)y

)
|θ̃=θ̃∗

v∗1t − Id Id 0Md (R)

diag(p)
(
v∗1t − Id

)
0Md (R) Id

⎞⎟⎟⎠,

which is invertible.
(b) Denote by λmax the eigenvalue, different from 1, of H with the highest real

part. If λmax = 1/2, then, θn → θ∗ a.s. as n → +∞ and√
n

logn

(
θn − θ∗) L−→

n→∞ N (0,�).

(c) If λmax > 1/2, then nβ(θn − θ∗) a.s. converges as n → +∞ toward a finite
random variable, where β = 1 − λmax.

PROOF. Step 1 (Strong consistency). We will show with Lemma 3.1 that
S̃n

a.s.−→
n→∞ diag(p)v∗ and we will deduce that Hn

a.s.−→
n→∞H , that is, assumption (A3)

holds. As we have already checked that assumptions (A1)(i)–(ii) and (A2) are sat-
isfied, then by only adding (A1)(iii) we use Theorem 2.1 to prove that θ̃n

a.s.−→
n→∞ θ̃∗.

LEMMA 3.1. If the assumption (1.1) holds and Y0 ∈ R
d+ \ {0}, then,

�n
a.s.−→ p = (

p1, . . . , pd) as n → ∞
so that assumption (2.2) holds, that is, Hn

a.s.−→
n→∞H .

REMARK. If we assume that Y i
0 > 0, 1 ≤ i ≤ d , then we can prove that

limn Ni
n = +∞ a.s., 1 ≤ i ≤ d , faster than below by using that Y i

n ≥ Y i
0 , 1 ≤ i ≤ d ,

n ≥ 1. The following proof considers the more general case where Y0 ∈ R
d+ \ {0}.

PROOF OF LEMMA 3.1. Step 1. It follows from the dynamics (1.1) and the
definitions of Dn+1 and Hn+1 that, for every n ≥ 0, w(Yn) = w(Y0) + n and that,
for every i ∈ {1, . . . , d},

Y i
n+1 = Y i

n +
d∑

j=1

H
ij
n+1

Y i
n

w(Yn)
+ �Mi

n+1,

where (�Mi
n)n≥1 is a sequence of martingale increments satisfying

sup
n

E
[∣∣�Mi

n

∣∣2|Fn−1
]
< +∞
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since the addition rule matrices satisfy (2.1). Now, using that Si
0 = Ni

0 = 1 by
convention, one derives that

∀i �= j H
ij
n+1 ≥ κ0

n
with κ0 = 1

2d
min

1≤i≤d

(
pi,1 − pi)> 0

so that, using that Hii
n+1 = pi , there exists a deterministic integer n0 such that for

every n ≥ n0,

Y i
n+1 ≥

(
1 + pi

n
− κ0

w(Yn)

)
Y i

n + κ0

n
+ �Mi

n+1

≥
(

1 + pi

2w(Yn)

)
Y i

n + κ0

n
+ �Mi

n+1.

Standard computations show that, setting ai
n =∏n−1

k=n0
(1 + pi

2w(Yn)
), i = 1, . . . , d ,

∀n ≥ n0
Y i

n

ai
n

≥ Y i
n0

ai
n0

+
n∑

k=n0+1

κ0

ai
k

+
n∑

k=n0+1

�Mi
k

ai
k

.

Since there exists κ1, κ2 > 0 such that κ1n
pi/2 ≤ ai

n ≤ κ2n
pi/2, one has

∀η > 0
n∑

k=n0+1

�Mi
k

ai
k

= o
(
n(1−pi+η)/2).

Finally, there exists a positive real constant c′ such that, for every i = 1, . . . , d ,

Y i
n ≥ c′npi/2

n∑
k=n0+1

k−pi/2 + o
(
n(1+η)/2)

so that

∀i ∈ {1, . . . , d} lim inf
n

Ỹ i
n ≥ c′

∫ 1

0
u−pi/2 du > 0

and, as a consequence,
∑

n≥1 Ỹ i
n = +∞ a.s. Now, using that for every i = 1, . . . , d ,

Ni
n =

n∑
k=1

1{Xk=ei} and P
(
Xn = ei |Fn−1

)= Ỹ i
n−1

(
1 − w(Y0)

w(Yn−1)

)
, n ≥ 1,

we get by the conditional Borel–Cantelli lemma that Ni∞ = limn Ni
n = +∞ a.s.

Step 2. First, we note that

�i
n =

∑n
k=1 T i

k �Ni
k

Ni
n
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and we introduce the sequence (�̃n)n≥1 defined by

�̃i
n =

n∑
k=1

(
T i

k − pi) �Ni
k

Ni
k−1 + 1

, n ≥ 1.

It is an Fn-martingale since, T i
k being independent of Fk−1 and Xk ,

E
((

T i
k − pi)�Ni

k|Fk−1
)= E

(
T i

k − pi)
P
(
Xk = ei |Fk−1

)= 0.

It has bounded increments since |T i
k − pi | ≤ 1 and

〈
�̃i 〉

n ≤
n∑

k=1

E((�Ni
k)

2|Fk−1)

(Ni
k−1 + 1)2

.

It follows, using (�Ni
k)

2 = �Ni
k , that, for every n ≥ 1,

E
〈
�̃i 〉

n ≤ E

(
n∑

k=1

�Ni
k

(Ni
k−1 + 1)2

)
≤ E

(
n∑

k=1

�Ni
k

Ni
k−1N

i
k

)
≤ 1

Ni
0

= 1.

Consequently, �̃i
n → �̃i∞ ∈ L1(P) a.s. as n → ∞. This in turn implies by Kro-

necker’s lemma that

�i
n

a.s.−→ pi as n → ∞
since Ni

n → ∞ by the first step. �

It follows from the lemma and Theorem 2.1 that (Ỹn, Ñn) → (v∗, v∗). Further-
more, diag(S̃n) = diag(Qn)Ñn → diag(p)v∗ = u∗ so that θ̃n → θ̃∗ as n → +∞.

Step 2 (Asymptotic normality). We will show now that (θ̃n)n≥1 satisfies an ap-
propriate recursion to apply Theorem A.2 (CLT). First, we write a recursive pro-
cedure for S̃n. Having in mind that Sn = 1 +∑1≤k≤n diag(Tk)Xk , we get

S̃n+1 = S̃n − 1

n + 1

(
S̃n − diag(Tn+1)Xn+1

)
= S̃n − 1

n + 1

(
S̃n − diag(p)

Ỹn

w(Ỹn)

)
+ 1

n + 1
�M̂n+1

(3.4)

= S̃n − 1

n + 1

(
S̃n − diag(p)

(
2 − w(Ỹn)

)
Ỹn

)
+ 1

n + 1
(�M̂n+1 + r̂n+1),

where

�M̂n+1 := diag(Tn+1)Xn+1 − E
[
diag(Tn+1)Xn+1|Fn

]
= diag(Tn+1)Xn+1 − diag(p)

Ỹn

w(Yn)
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is an Fn-martingale increment and r̂n+1 = diag(p) (w(Ỹn)−1)2

w(Ỹn)
Ỹn. Then we rewrite

the dynamics satisfied by Ỹn as

Ỹn+1 = Ỹn − 1

n + 1

(
Id − (2 − w(Ỹn)

)
Hn+1

)
Ỹn + 1

n + 1
(�Mn+1 + řn+1),(3.5)

where řn+1 := (w(Ỹn)−1)2

w(Ỹn)
Hn+1Ỹn. Finally, we get the following recursive proce-

dure for θ̃n:

θ̃n+1 = θ̃n − 1

n + 1
h̃(θ̃n) + 1

n + 1
(�M̃n+1 + R̃n+1), n ≥ 1,

where, for every θ̃ = (y, ν, s)t ∈ R
3d+ ,

h̃(θ̃ ) :=
⎛⎝
(
Id − (2 − w(y)

)
�(s, ν)

)
y

ν − (2 − w(y)
)
y

s − (2 − w(y)
)

diag(p)y

⎞⎠ , �M̃n+1 :=
⎛⎝�Mn+1

�M̃n+1

�M̂n+1

⎞⎠
and

R̃n+1 :=
⎛⎝ řn+1

r̃n+1
r̂n+1

⎞⎠ .

Let us check that the addition rule matrices satisfy (A4). For every j ∈ {1, . . . , d},
let set C

j
n = E[D·j

n+1(D
·j
n+1)

t |Fn]. We have that

(
Cj

n

)
ii′ = E

[
D

ij
n+1

(
D

i′j
n+1

)t |Fn

]
= Qi

nQ
i′
n

(
∑

k �=j Qk
n)

2 E
[(

1 − T
j
n+1

)2|Fn

]
1{i,i′ �=j} + E

[(
T

j
n+1

)2|Fn

]
1{i=i′=j},

because T
j
n+1(1 − T

j
n+1) = 0. Then, owing to Lemma 3.1, C

j
n

a.s.−→
n→+∞Cj with

C
j

ii′ =
pipi′(1 − pj )

(
∑

k �=j pk)2 1{i,i′ �=j} + pj1{i=i′=j }.

We can check that Cj is a positive definite matrix. Consequently, (A4) holds.
The function � being differentiable at the equilibrium point θ̃∗, we have

Dh̃
(
θ̃∗)=

⎛⎜⎜⎝ Id − H + v∗1t − ∂

∂ν

(
�(s, ν)y

)
|θ̃=θ̃∗ − ∂

∂s

(
�(s, ν)y

)
|θ̃=θ̃∗

v∗1t − Id Id 0Md (R)

diag(p)
(
v∗1t − Id

)
0Md (R) Id

⎞⎟⎟⎠,
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which is invertible since, by Schur complement, we have det(Dh̃(θ̃∗)) = det(Id −
H + v∗1t ) thanks to ∂

∂ν
(�(s, ν)y)|θ̃=θ̃∗ = −diag(p) ∂

∂s
(�(s, ν)y)|θ̃=θ̃∗ .

At this stage, the proof follows the lines of that of Theorem 2.2: the computation
of the covariance matrix �̃ and the treatment of the remainder term uses the same
tools as before. The three results of convergence rate follows from Theorem A.2
in the Appendix. The details are left to the reader. �

REMARK. The asymptotic variances of Ỹn and Ñn in Theorem 3.1 are dif-
ferent from those in Theorem 2.2 because the differential matrices Dh(θ∗) and
Dh̃(θ̃∗) are not the same.

COROLLARY 3.1. Under the assumptions of Theorem 3.1,

√
n(Hn − H)

L−→
n→∞ N (0;�H),

where �H is a d2 × d2 matrix given by �H = D�(u∗, v∗)[�̃i+d,j+d]1≤i,j≤2d ×
D�(u∗, v∗)t .

PROOF. This is an easy consequence of the so-called �-method since

Hn = �(S̃n, Ñn)

= �
(
u∗, v∗)+ D�

(
u∗, v∗)(S̃n − u∗, Ñn − v∗)

+ ∥∥(S̃n − u∗, Ñn − v∗)∥∥ε(S̃n, Ñn)

with limy→(u∗,v∗) ε(y) = 0. Consequently,
√

n(Hn − H) = D�
(
u∗, v∗)(√n

(
S̃n − u∗),√n

(
Ñn − v∗))+ εP(n),

where εP(n) goes to 0 in probability (as the product of a tight sequence and an a.s.
convergent sequence). The proof is complete. �

REMARK. This corollary shows a posteriori that it was hopeless to try apply-
ing Theorem 2.2 in its standard form to establish asymptotic normality for multi-
arm clinical trials since the assumption (A5) cannot be satisfied. Our global SA
approach breaks the vicious circle.

NUMERICAL EXAMPLE: BHS MODEL. We consider the case d = 2, so that
v∗ has the same form as in the example in Section 2.3. The results of the simulation
are reproduced in Figure 1 (the parameters are included in the caption).
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FIG. 1. Convergence of Yn
n toward v∗ (up-windows) and of Nn

n toward v∗ (down-windows): d = 2,

n = 2.103, p1 = 0.5, p2 = 0.7, Y0 = (0.5,0.5)t and N0 = (1,1)t .

APPENDIX: BASIC TOOLS OF STOCHASTIC APPROXIMATION

Consider the following recursive procedure defined on a filtered probability
space (�, A, (Fn)n≥0,P)

∀n ≥ n0 θn+1 = θn − γn+1h(θn) + γn+1(�Mn+1 + rn+1),(A.1)

where h : Rd → R
d is a locally Lipschitz continuous function, θn0 an Fn0 -

measurable finite random vector and, for every n ≥ n0, �Mn+1 is an Fn-
martingale increment and rn is an Fn-adapted remainder term.

THEOREM A.1 (A.s. convergence with ODE method; see, e.g., [8, 9, 14, 16,
22]). Assume that h is locally Lipschitz, that

rn
a.s.−→

n→∞ 0 and sup
n≥n0

E
[‖�Mn+1‖2|Fn

]
< +∞ a.s.

and that (γn)n≥1 is a positive sequence satisfying∑
n≥1

γn = +∞ and
∑
n≥1

γ 2
n < +∞.
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Then the set �∞ of its limiting values as n → +∞ is a.s. a compact connected
set, stable by the flow of

ODEh ≡ θ̇ = −h(θ).

Furthermore, if θ∗ ∈ �∞ is a uniformly stable equilibrium on �∞ of ODEh, then

θn
a.s.−→

n→∞ θ∗.

Comments. By uniformly stable we mean that

sup
θ∈�∞

∣∣θ(θ0, t) − θ∗∣∣−→ 0 as t → +∞,

where θ(θ0, t)θ0∈�∞,t∈R+ is the flow of ODEh on �∞.

THEOREM A.2 (Rate of convergence (see [14], Theorem 3.III.14, page 131; for
CLT see also, e.g., [9, 22])). Let θ∗ be an equilibrium point of {h = 0}. Assume
that the function h is differentiable at θ∗ and all the eigenvalues of Dh(θ∗) have
positive real parts. Assume that for some δ > 0,

sup
n≥n0

E
[‖�Mn+1‖2+δ|Fn

]
< +∞ a.s.,

(A.2)
E
[
�Mn+1�Mt

n+1|Fn

] a.s.−→
n→∞ �,

where � is a deterministic symmetric definite positive matrix and for an ε > 0,

E
[
(n + 1)‖rn+1‖21{‖θn−θ∗‖≤ε}

] −→
n→∞ 0.(A.3)

Specify the gain parameter sequence as

∀n ≥ 1 γn = 1

n
.(A.4)

(a) If � := �e(λmin) > 1
2 , where λmin denotes the eigenvalue of Dh(θ∗) with

the lowest real part, then, the above a.s. convergence is ruled on the convergence
set {θn −→ θ∗} by the following central limit theorem:

√
n
(
θn − θ∗) L−→

n→∞ N
(

0,
1

2� − 1
�

)
with

� :=
∫ +∞

0

(
e−(Dh(θ∗)−Id/2)u)t�e−(Dh(θ∗)−Id/2)u du.

(b) If � = 1
2 , then √

n

logn

(
θn − θ∗) L−→

n→∞ N (0,�).

(c) If � < 1
2 , then n�(θn − θ∗) a.s. converges as n → +∞ toward a finite ran-

dom variable.
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