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Abstract

Accurate matching of local features plays an essential

role in visual object search. Instead of matching individual

features separately, using the spatial context, e.g., bundling

a group of co-located features into a visual phrase, has

shown to enable more discriminative matching. Despite

previous work, it remains a challenging problem to extract

appropriate spatial context for matching. We propose a ran-

domized approach to deriving visual phrase, in the form of

spatial random partition. By averaging the matching scores

over multiple randomized visual phrases, our approach of-

fers three benefits: 1) the aggregation of the matching s-

cores over a collection of visual phrases of varying sizes

and shapes provides robust local matching; 2) object lo-

calization is achieved by simple thresholding on the voting

map, which is more efficient than subimage search; 3) our

algorithm lends itself to easy parallelization and also al-

lows a flexible trade-off between accuracy and speed by ad-

justing the number of partition times. Both theoretical stud-

ies and experimental comparisons with the state-of-the-art

methods validate the advantages of our approach.

1. Introduction

Despite rapid progress in the whole-image retrieval tech-

niques [3, 4, 5, 15, 11, 23], visual object search, whose goal

is to accurately locate the target object in image collections,

remains a challenging problem. This is due to the fact

that the target objects, e.g., logos, usually occupy only a

small portion of an image with cluttered background, and

can differ significantly from the query in scale, orientation,

viewpoint and color. These all lead to difficulties in object

matching, and thereby raise the need for highly discrimina-

tive visual features.

Using spatial context is one of the most effective ways

to enhance the discriminative power of individual local fea-

tures, in which a group of co-located visual features can be

bundled together to form a visual phrase and matched as a

whole. The benefits of using visual phrase have been proven

to boost local feature matching [5, 10, 14, 18, 24, 20, 22].

∗This work is supported in part by the Nanyang Assistant Professorship
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However, it remains a challenging problem to select the ap-

propriate spatial context to compose the visual phrase.

Currently, there are mainly two ways to select the spatial

context to compose the visual phrase. The first category of

methods relies on image segmentation or region detection to

generate the spatial context for matching [16, 19, 20]. How-

ever, this is highly dependent on the accuracy of the image

segmentation. The second category of methods selects the

visual phrase at a relatively fixed scale, e.g., bundling each

local feature with its k spatial nearest neighbors [17, 22]

or with a fixed-size image grid [6], or extract geometry-

preserving visual phrases that can capture long-range spa-

tial layouts of the words [24]. However, as reported in [23],

these unstable feature points result in a varying number of

detected local features at different scales. Hence for each

local point, its k-NN phrase may be totally different from

that at a different scale, as shown in Fig. 1(a). Similarly,

the visual phrase provided by the fixed-size image grid is

also not scale invariant, as shown in Fig. 1(b). Furthermore,

it is difficult to determine an appropriate k or the grid size

without a priori knowledge.

We believe that an ideal visual phrase selection for object

search task should satisfy the following requirements: 1) it

should be able to handle scale variations of the objects, and

be robust to detect objects appearing in the cluttered back-

grounds; and 2) it should not rely on the image segmenta-

tion or region detection, thus it can be efficiently extracted

and indexed to support fast search.

To address these requirements, we propose a novel visu-

al phrase selection approach based on random partition of

images [21]. After extracting local invariant features, we

randomly partition the image for multiple times to form a

pool of overlapping image patches. Each patch bundles the

local features inside it and is characterized by a group of vi-

sual words, i.e., a visual phrase. Essentially, for each local

feature, we generate a number of randomized visual phras-

es (RVP) in varying sizes and shapes as its spatial contexts

(see Fig. 1(c)). For each RVP, we independently calculate

the similarity score between it and the query object, and

treat it as the voting weight of the corresponding patch. The

final confidence score of each pixel is calculated as the ex-
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Figure 1: Comparison among different ways to compose the visual phrase. The similarity between two visual phrase regions are calculated

as the number of matched points (including the center point) of them, denoted by ∩.

pectation of the voting weights of all patches that contain

this pixel. By establishing the pixel-wise voting map, the

matched object can finally be identified.

Our randomized visual phrase approach provides sever-

al benefits. First it is robust to the cluttered backgrounds

as well as the variations of the objects. Second, our spa-

tial random partition-based patch voting scheme indirectly

solves the object localization problem, as the object can be

segmented out directly from the voting map. This largely

reduces the computational cost compared with the subim-

age search methods for object localization [8, 9]. Third, our

approach allows the user to make a trade-off between effec-

tiveness and efficiency by adjusting the number of partition

times on-line without re-indexing the database. This is im-

portant for a practical retrieval system. In addition, the de-

sign of the algorithm makes it ready for parallelization and

thus suitable for large-scale image search. To evaluate our

approach, we conduct visual object search on a benchmark

movie database, and a challenging logo database with one

million images from Flickr as distractors. The experimental

results highlight both the effectiveness and the efficiency of

the proposed algorithm.

2. Related Work

Visual object search can be viewed as two combined

tasks: object matching and object localization. For object

matching, to avoid the quantization error incurred by the

bag-of-visual-words (BoVW) scheme [21, 3, 4, 5, 17, 7],

the Naive-Bayes Nearest Neighbor (NBNN) classifiers are

adopted in [1, 2, 13] by assuming that each feature point

is independent from the others. However, NBNN may fail

when the Naive-Bayes assumption is violated. Another

way to mitigate the quantization error is to consider spatial

context instead of using individual point. By bundling co-

occurring visual words within a constrained spatial distance

into a visual phrase [22, 24] or feature group [23] as the ba-

sic unit for object matching, the spatial context information

is incorporated to enhance the discriminative power of visu-

al words. In [17], each local feature is combined with its k
spatial nearest neighbors to generate a k-NN visual phrase.

And in [6], each image is partitioned into non-overlapping

grid cells which bundle the local features into grid features.

However, such fixed-scale visual phrases or feature groups

are not capable of handling large variations, and thereby can

not provide robust object matching.

For object localization, in most previous work the rele-

vant images are retrieved firstly and then the object location

is determined as the bounding box of the matched regions

in the post-processing step through a geometric verification,

such as RANSAC [15]. Alternatively, efficient subimage re-

trieval (ESR) [8] and efficient subwindow search (ESS) [9]

are proposed to find the subimage with maximum similarity

to the query. In addition, spatial random partition is pro-

posed in [21] to discover and locate visual common objects.
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Figure 2: Illustration of object search via spatial random partition

(M×N×K = 3×3×3). The input includes a query object and an

image containing the object, while the output is the segmentation

of the object (highlighted in green).

3. Randomized Visual Phrase via Random Par-

tition

Given a database D = {Ii} of I images, our objective is

to retrieve all the images {Ig} that contain the query object

Q, and identify the object’s locations {Lg}, where Lg ⊂ Ig
is a segmentation or sub-region of Ig . An overview of our

proposed algorithm is illustrated in Fig. 2.

3.1. Image Description

We first represent each image Ii ∈ D as a collection of

local interest points, denoted by {fi,j}. Follow the BoVW

scheme, each local descriptor f is quantized to a visual

word using a vocabulary of V words, represented as w =
(x, y, v), where (x, y) is the location and v ∈ {1, . . . , V } is

the corresponding index of the visual word. Using a stop list

analogy, the most frequent visual words that occur in almost

all images are discarded. All feature points are indexed by

an inverted file so that only words that appear in the queries

will be checked.

3.2. Spatial Random Partition

We randomly partition each image Ii into M ×N non-

overlapping rectangular patches and perform such partition

K times independently. This results in a pool of M×N×K
image patches for each Ii, denoted as: Pi = {Pi,m,n,k}.

Note that for a given partition k ∈ {1, 2, . . . ,K} the M×N
patches are non-overlapping, while the patches from differ-

ent partition rounds may overlap. Since in the kth partition,

each pixel t falls into a single patch Pt,k, in total there are

K patches containing t after K rounds of partitions, formu-

lated as:

{Pt,k} = {Pi,m,n,k|t ∈ Pi,m,n,k} k = 1, . . . ,K. (1)

Then each patch P is represented as the set of visual words

which fall inside it, denoted as a visual phrase P : {w|w ∈
P}, and is further characterized as a V -dimensional his-

togram hP recording the word frequency of P .

Given a pixel t we consider the collection of all visual

phrases (i.e., patches) containing it, denoted by Ωt = {Pt}.

Then after K times of partitions, we essentially sampled

the collection K times and obtained a subset Ωt,K =
{Pt,k}Kk=1

⊂ Ωt. The sizes and shapes of the visual phras-

es in the subset Ωt,K are random since these visual phras-

es result from K independent random partitions. Hence

for pixel t, its spatial context at different scales has been

taken into consideration by matching the randomized visu-

al phrase (RVP) set Ωt,K against the query. To simplify

the problem, we assume the probability that each RVP will

be sampled in the kth partition is the same, which means

p(Pt,k) =
1

|Ωt,K | =
1

K
is a constant.

3.3. RVP Matching and Voting

Given each pixel t, its confidence score s(t) is defined as

the expectation of similarity scores of all visual phrases that

contain it, denoted as:

s(t) = E(s(Pt)) =
∑

Pt∈Ωt

p(Pt)s(Pt)

≈
∑

Pt,k∈Ωt,K

p(Pt,k)s(Pt,k) =
1

K

K
∑

k=1

s(Pt,k),(2)

where the expectation is calculated approximately on the

subset Ωt,K instead of Ωt. Now our problem becomes how

to define the similarity score s(Pt,k) for each RVP. In fact

we can adopt any an vector distance listed in Tab. 1 as the

matching kernel, and match each RVP against the query just

like a whole image. Here we use the normalized histogram

intersection NHI(·) as an example:

s(t) =
1

K

K
∑

k=1

s(Pt,k) =
1

K

K
∑

k=1

NHI(hPt,k
, hQ). (3)

From Eq. 3 we can see that because of the independence

of each round of partition, the RVP from different partition

rounds can be processed in parallel.

The correctness of our spatial random partition and vot-

ing strategy is based on the following theorem that justifies

the asymptotic property of our algorithm.

Theorem 1. Asymptotic property:

We consider two pixels i, j ∈ I, where i ∈ G ⊂ I is

located inside the groundtruth region G while j /∈ G is lo-

cated outside. Suppose sK(i) and sK(j) are the confidence
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symbol similarity function

Bin(hQ, hP )
∑

v min(hv
Qh

v
P , 1)

HI(hQ, hP )
∑

v min(hv
Q, h

v
P )

NHI(hQ, hP )
∑

vmin(hv
Q, h

v
P )/

∑

vmax(hv
Q, h

v
P )

dot(hQ, hP )
∑

vh
v
Qh

v
P

ρbhatt(hQ, hP )
1√

||hQ||1||hR||1

∑

k

√

hv
Qh

v
P

Table 1: Several vector distances for visual phrase matching.

scores for i and j, respectively, considering K times of ran-

dom partitions and voting, we have:

limK→∞(sK(i)− sK(j)) > 0. (4)

The above theorem states that after enough rounds of parti-

tions for each image, the pixels in the groundtruth region G
will receive more votes than the pixels in the background,

so that the groundtruth can be easily discovered and locat-

ed. The proof of Theorem 1 is given in the supplementary

material because of space limit.

3.4. Object Localization

After assigning each pixel t ∈ Ii a confidence score, we

obtain a voting map for each image Ii. Object localization

then becomes an easy task since we do not need to search

in the large collection of subimages of Ii. Instead, we just

need to segment out the dominant region Li from Ii as the

object location:

Li = {t|s(t) > thres, ∀t ∈ Ii}. (5)

In our paper the threshold thres is set adaptively in propor-

tion to the average confidence score of each image Ii:

thresi =
α

|Ii|
∑

t∈Ii

s(t), (6)

where |Ii| is the number of pixels in Ii and α is the parame-

ter coefficient. This adaptive localization strategy indicates

that the matched points in an image should be distributed

densely so that the dominant region will be salient enough

to be segmented out; otherwise, if the matched points are

distributed sparsely in the image, the threshold is the same

but there may be no dominant region segmented out. The

property of our algorithm is important for object search

task, since an object, especially a small object, always has

the dense matched points within a compact structure, while

the noisy points in the background are usually distributed

sparely. Thus our algorithm can reduce the number of false

alarms and be robust to background clutter. Fig. 3 illustrates

the object localization process.

Figure 3: Examples for object localization. The query logo is the

same as in Fig. 2. The 1st column are the original images. The 2nd

column are the voting maps after 200 random partitions. The 3rd
column are the segmentation results with the coefficient α = 5.0.

By comparing the 3rd row with the first two rows, we can see that

this localization strategy is robust to the noisy points which are

sparsely distributed in the background.

4. Experiments

In this section, our randomized visual phrase approach is

compared with previous object retrieval algorithms in terms

of both speed and performance. We compare our approach

with two categories of methods: the first is the fixed-scale

visual phrase approaches, i.e., the k-NN phrase [17] and the

grid feature [6]; and the second is the state-of-the-art subim-

age search algorithms, i.e., ESR [8] and ESS [9]. All these

algorithms are implemented in C++ and performed on a 16-

thread Dell workstation with 2.67 GHz Intel CPU and 16

GB of RAM. The algorithms are implemented without par-

allelization unless emphasized. Three challenging databas-

es are used as the testbed:

Groundhog Day database The database consists of 5640

keyframes extracted from the entire movie Groundhog

Day [17], from which 6 visual objects are chosen as queries.

As in [17], local interest points are extracted by the Harris-

Affine detector and the MSER detector respectively, and de-

scribed by 128-dimensional SIFT descriptors [12]. To re-

duce noise and reject unstable local features, we follow the

local feature refinement method in [23]: all the keyframes

are stretched vertically and horizontally, and local interest

points are extracted from the stretched keyframes. Local

features that have survived image stretching are supposed

to be affine invariant and hence are kept as refined features.

All the refined features, over 5 million, are clustered into a

vocabulary of 20K visual words using the Hierarchical K-

Means (HKM) method [15].

Belgalogo Belgalogo is a very challenging logo database
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containing 10, 000 images covering various aspects of life

and current affairs. As in [6], all images are re-sized with

a maximum value of height and width equal to 800 pix-

els, while preserving the original aspect ratio. Since the

database is larger and the image backgrounds are more clut-

tered, more than 24 million SIFTs are extracted and then

clustered into a large vocabulary of 1M visual words to en-

sure the discriminative power of visual words. A total of 6

external logos from Google are selected as the queries.

Belgalogo + Flickr database To further verify the scalabil-

ity and effectiveness of our approach, we build a 1M image

database by adding crawled Flickr images to the Belgalogo

database as distractors. In total about 2 billion SIFTs (2,000

points per image on average) are extracted. We randomly

pick 1% points from the feature pool to generate a vocabu-

lary of 1M visual words. All feature points are indexed by

an inverted file costing about 12G RAM .

For all the databases above, a stop list is made to remove

the top 10 percent most frequent visual words. In this way,

the most frequent but meaningless visual words that occur

in almost all images are suppressed. To evaluate the re-

trieval performance, we adopt the Average Precision (AP)

and mean Average Precision (mAP) as the measures.

4.1. Sensitivity of Parameters

First of all, the sensitivity of parameters in the random

partition method are tested on the Groundhog Day database.

We first test vector matching kernels and segment coeffi-

cient α. The random partition approach is implemented

with the partition parameters K ×M ×N = 200× 16× 8,

where M × N is set according to the aspect ratio of the

keyframes empirically. The results are evaluated by mAP

over 6 query objects. All the vector matching kernels in

Tab. 1 are tested, and the results are showed in Tab. 2.

NHI(·) performs sightly better than the others although it

is slower. Also, we test the impact of the segment coeffi-

cient α, as shown in Tab. 3, from which we can see that α
has marginal influence on the retrieval performance.

Next, we study how the partition parameters affect the

retrieval performance in both accuracy and efficiency. We

first fix K = 200 and test different M × N , from 8 × 4 to

32× 16, and compare their performance in Tab. 4; then we

fix M × N = 16 × 8 and increase the number of partition

times K from 10 to 200, and record their mAP and average

time cost, as shown in Fig. 5. It shows that as the number

of partition times increases, the retrieval results improve in

accuracy while cost more time. And the retrieval accura-

Bin HI NHI Dot ρbhatt

mAP 0.435 0.444 0.449 0.397 0.406

Table 2: mAP for different vector distances with α = 3.0.

α 1.0 2.0 3.0 4.0 5.0

mAP 0.403 0.422 0.435 0.434 0.420

Table 3: mAP for different segment coefficient α using Bin(·).

cy tends to convergence when the number of partition times

is large enough. Therefore the approach based on random

partition allows the user to easily make a trade-off between

accuracy and speed since he can adjust the partition time on-

line without re-indexing the database. Increasing the num-

ber of partition times leads to a more salient voting map and

better object localization, as showed in Fig. 4.

M ×N 8 × 4 16 × 8 24 × 12 32 × 16

mAP 0.395 0.435 0.432 0.425

Table 4: mAP for different partition parameters M ×N .

(a) (b)

Figure 5: Performance of different number of partition times, from

10 to 200: a) the mAP curve as the number of partition times in-

creases; b) the time cost for different number of partition times,

including patch matching, voting and object segmentation.

4.2. Comparison with Fixed­Scale Visual Phrase
Methods

First, we compare our RVP approach with the k-NN

phrase method [17]. Here we set k = 5, 10, 15, 20 to test

the retrieval performance when considering spatial context

at different scales. As in [17], Bin(·) is selected as the

matching kernel; and the RVPs or k-NN phrases are reject-

ed if they have less than two visual words matched with the

query, which means no spatial support. We fix partition pa-

rameters α = 3.0 and K × M × N = 200 × 16 × 8 for

all images in this database. The experimental results are

shown in Fig. 6, from which we can see that: 1) the optimal

scale of spatial context differs for different query objects.

As k increases, the retrieval performance improves for most

queries while it drops for the Frames Sign. The reason is

that the Frames Sign objects in groundtruth frames are much

smaller than the query so that it is easier to introduce noise

with a larger context scale; 2) although the optimal scale

is unknown, our RVP is stable and robust to object varia-

tions, thereby achieves a better performance over the k-NN

phrase.

Further, the RVP approach is compared with the grid-

based algorithm [6] on the Belgalogo database consist-

ing of 10K images. The partition parameters are set to

K × M × N = 200 × 16 × 16 for this database and the

segment coefficient α = 5.0 is fixed for all queries. Similar

to the k-NN visual phrases, 4 different grid sizes, from 8×8

to 32×32, are tested. Normalized histogram intersection

NHI(·) is chosen as the similarity function. The top 100
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Figure 4: The influence of the number of partition times. The 1st row lists three pairs of the query object (denoted by yellow box on the

left) and an example image containing the object (denoted by blue box on the right). The output includes a voting map on the left and a

segmentation result on the right. The 2nd, 3rd, 4th row are associated with the number of partition times K = 25, K = 50, K = 100,

respectively. As the number of partition times increases, the voting map becomes more salient and the object is located more accurately.

Figure 6: Precision/Recall curves and AP scores for the six query

objects in the movie Groundhog Day. In the bottom table, the red

number in each row is the best result for the query object while the

blue one is the second.

G-8 G-16 G-24 G-32 ESR [8] RVP

Base 0.079 0.093 0.099 0.116 0.179 0.208

Dexia 0.144 0.143 0.151 0.145 0.117 0.153

Ferrari 0.023 0.015 0.011 0.010 0.052 0.013

Kia 0.365 0.355 0.358 0.364 0.497 0.506

Mercedes 0.185 0.184 0.183 0.181 0.180 0.215

President 0.346 0.368 0.353 0.424 0.446 0.675

mAP 0.190 0.193 0.192 0.207 0.245 0.295

Table 5: AP scores of grid-based approach with different grid sizes

(8×8, 16×16, 24×24 and 32×32), ESR [8], and RVP approach

for the 6 query logos on the BelgaLogos database.

retrieval results are used for evaluation. The comparison re-

sults are given in the 2nd to 5th columns and 7th column of

Tab. 5, which show that the mAP of random partition ap-

proach is improved by more than 40% over that of the grid-

based approach using the same local features and matching

kernel. It validates that the randomized visual phrase is su-

perior to fixed-scale visual phrase bundled by grid.

4.3. Comparison with Subimage Search Methods

Subimage search algorithms employing the branch-and-

bound scheme are the state-of-the-arts for object search,

e.g., the efficient subimage retrieval (ESR) [8] and the ef-

ficient subwindow search (ESS) [9]. The advantage of this

category of algorithms is that it can find the global optimal

subimage very quickly and return this subimage as the ob-

ject’s location. In this section we compare our approach

with ESR on the Belgalogo database and with ESS on the

Belgalogo+Flickr database in both accuracy and speed.

The implement details of ESR and ESS are as follows:

for both ESR and ESS, we relax the size and shape con-

straints on the candidate subimages, to ensure that the re-

turned subimage is global optimal; NHI(·) is adopted as

the quality function f , and for a set of regions R, the region-

level quality bound f̂ is defined as: f̂ =
|hR∩hQ|
|h

R
∪hQ| , where
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hR and hR are the histograms of the union and intersection

of all regions in R; for ESR, given a set of images I, the

image-level quality bound f̃ is defined as: f̃ =
|hI∩hQ|
|h

I
∪hQ| ;

the inverted files are used for fast computation.

First we compare our approach with ESR on the Belgalo-

go database. We set the partition parameters K×M×N =
200 × 16 × 16 and α = 5.0, and choose NHI(·) as the

matching kernel. The retrieval performance is given in the

6th and 7th columns of Tab. 5. We can see that our approach

leads to a better retrieval performance compared with the

ESR algorithm, although ESR could return the top 100 op-

timal subimages with highest NHI scores as detections.

The reason is that ESR only searches for the subimage of

the most similar word-frequency histogram with the query,

but does not require these matched visual words fall in a s-

patial neighborhood. In other words, as long as an image

has several matched visual words, even if these words may

be distributed very dispersedly, it is likely to be retrieved by

ESR. On the contrary, our approach bundles the local fea-

tures into the RVPs by random patches. It favors matched

points that are distributed compactly, otherwise the voting

map will not produce a salient enough region. Therefore,

compared with the RVP approach, ESR leads to more false

alarms, especially when the background is noisy. Moreover,

our approach could more easily handle the case in which

one image contains multiple target objects. Fig. 7 com-

pares ESR and our approach by several examples. Next,

our RVP algorithm is implemented in parallel and compared

with ESR in retrieval speed. All algorithms are re-run for

3 times to calculate the average retrieval time, as shown in

Tab. 6. As we can see, without parallel implementation our

approach is comparable with ESR in speed; and the parallel

implementation achieves about 7 times speedup.

ESR [8] RVP RVP (parallelized)

Time (s) 2.97 2.84 0.44

Table 6: Retrieval time comparison on the Belgalogo database.

Finally to verify the scalability of our algorithm, we fur-

ther perform the RVP approach on the Belgalogo+Flickr

database consisting of 1M images. Both HI(·) and NHI(·)
are tested with parallel implementation. Since ESR is es-

sentially an extension of ESS to improve efficiency and we

have compared RVP with ESR on the Belgalogo database,

here we compare our RVP approach with ESS on this 1M

database. The speed of the algorithms is evaluated by the

average processing time per retrieved image. Tab.7 shows

the comparison results between ESS and RVP on this 1M

database, in which our RVP algorithm beats ESS in both ac-

curacy and speed. This experimental result shows that: 1)

employing either HI(·) or NHI(·) as the matching kernel,

our RVP approach produces a more than 120% improve-

ment of mAP over ESS. It highlights the effectiveness of our

approach; 2) compared to the results on the pure Belgalogo

Figure 7: Examples of the search results by ESR and our approach.

The images in the first column are retrieved by ESR, in which the

red bounding boxes are returned as the object location; the sec-

ond column are the voting maps generated by the RVP approach,

and the third column are the segmentation results (highlighted in

green). Note that each row stands for a specific case (from top

to bottom): multiple target objects, noisy background and discrete

matched points (false alarm by ESR).

ESS [9] RVP (HI) RVP (NHI)

Base 0.050 0.165 0.189

Dexia 0.029 0.105 0.118

Ferrari 0.017 0.020 0.023

Kia 0.244 0.406 0.418

Mercedes 0.032 0.115 0.148

President 0.165 0.386 0.543

mAP 0.090 0.200 0.240

Time cost per

retrieved image (ms) 25.4 1.8 7.8

Table 7: Comparison on the Belgalogo + Flickr database.

database consisting of only 10K images, the retrieval per-

formances of both RVP and ESS/ESR become worse. How-

ever, the mAP of ESS/ESR decreases much more sharply

than that of RVP. It verifies the analysis we made above

that compared with our approach, ESR is not robust to a

cluttered database and leads to more false alarms; 3) HI(·)
kernel is much faster (about 4 times) than NHI(·) but has a

lower mAP. With the parallel implementation our RVP ap-

proach adopting HI(·) kernel could process more than 500

images in one second, therefore it has a great potential for

large-scale object search application.

5. Conclusions

We propose a scalable visual object search system based

on randomized visual phrase (RVP) for robust object match-

ing and localization. We validate its advantages on three

challenging databases in comparison with the state-of-the-

art systems for object retrieval. It is shown that compared

with systems using fixed-scale visual phrase or subimage

search method, our randomized approach achieves better

7



Figure 8: Examples of our search results in the movie Groundhog Day for 6 query objects: Black Clock, Digital Clock, Frames Sign,

Microphone, Phil Sign and Red Clock (from top to bottom). Queries are denoted in yellow in 1st column. The correct detections selected

from different shots are denoted in green in the right columns.

search results in terms of accuracy and efficiency. It can also

handle object variations in scale, shape and orientation, as

well as cluttered backgrounds and occlusions. Furthermore,

the design of the algorithm makes it ready for paralleliza-

tion and thus well suited for large-scale applications. We

believe that as a novel way to define visual phrases, random

partition can be applied to other image-related applications

as well.

References

[1] R. Behmo, P. Marcombes, A. Dalalyan, and V. Prinet. Towards optimal naive

bayes nearest neighbor. In Proc. European Conf. on Computer Vision, 2010.

[2] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based

image classification. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2008.

[3] O. Chum, M. Perdoch, and J. Matas. Geometric min-hashing: finding a (thick)

needle in a haystack. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2009.

[4] J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Compact hashing with

joint optimization of search accuracy and time. In Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition, 2011.

[5] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating local descriptors

into a compact image representation. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, 2010.

[6] Y. Jiang, J. Meng, and J. Yuan. Grid-based local feature bundling for efficient

object search and localization. In Proc. IEEE Conf. on Image Processing, 2011.

[7] Y.-H. Kuo, H.-T. Lin, W.-H. Cheng, Y.-H. Yang, and W. H. Hsu. Unsupervised

auxiliary visualwords discovery for large-scale image object retrieval. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, 2011.

[8] C. H. Lampert. Detecting objects in large image collections and videos by

efficient subimage retrieval. In Proc. IEEE Intl. Conf. on Computer Vision,

2009.

[9] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows:

Object localization by efficient subwindow search. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 2008.

[10] T. Li, T. Mei, I. Kweon, and X. Hua. Contextual bag-of-words for visual cate-

gorization. IEEE Transactions on Circuits and Systems for Video Technology.,

2010.

[11] W. Liu, Y.-G. Jiang, J. Luo, and S.-F. Chang. Compact hashing with joint

optimization of search accuracy and time. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, 2011.

[12] D. Lowe. Distinctive image features from scale-invariant keypoints. Intl. Jour-

nal of Computer Vision, 2004.

[13] J. Meng, J. Yuan, Y. Jiang, N. Narasimhan, V. Vasudevan, and Y. Wu. Inter-

active visual object search through mutual information maximization. In Proc.

ACM Multimedia, 2010.

[14] M. Perdoch, O. Chum, and J. Matas. Efficient representation of local geometry

for large scale object retrieval. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, 2009.

[15] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with

large vocabularies and fast spatial matching. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, 2007.

[16] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using

multiple segmentation to discover objects and their extent in image collections.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2006.

[17] J. Sivic and A. Zisserman. Efficient visual search of videos cast as text retrieval.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009.

[18] X. Wang, M. Yang, T. Cour, S. Zhu, K. Yu, and T. X. Han. Contextual weighting

for vocabulary tree based image retrieval. In ICCV’11: IEEE International

Conference on Computer Vision, Barcelona, Spain, Nov. 6-13, 2011.

[19] J. Winn and N.Jojic. Locus: Learning object classes with unsupervised seg-

mentation. In Proc. IEEE Intl. Conf. on Computer Vision, 2005.

[20] Z. Wu, Q. Ke, and J. Sun. Bundling features for large-scale partialduplicate web

image search. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, 2009.

[21] J. Yuan and Y. Wu. Spatial random partition for common visual pattern discov-

ery. In Proc. IEEE Intl. Conf. on Computer Vision, 2007.

[22] J. Yuan, Y. Wu, and M. Yang. Discovery of collocation patterns: from visual

words to visual phrases. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2007.

[23] S. Zhang, Q. Huang, G. Hua, S. Jiang, W. Gao, and Q. Tian. Building contextual

visual vocabulary for large-scale image applications. In Proc. ACM Multimedia,

2010.

[24] Y. Zhang, Z. Jia, and T. Chen. Image retrieval with geometry-preserving visual

phrases. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

2011.

8


