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Randomizing bipartite networks: 

the case of the World Trade Web
Fabio Saracco1, Riccardo Di Clemente1, Andrea Gabrielli1,2,3 & Tiziano Squartini1

Within the last fifteen years, network theory has been successfully applied both to natural sciences 
and to socioeconomic disciplines. In particular, bipartite networks have been recognized to provide a 

particularly insightful representation of many systems, ranging from mutualistic networks in ecology 
to trade networks in economy, whence the need of a pattern detection-oriented analysis in order 
to identify statistically-significant structural properties. Such an analysis rests upon the definition 
of suitable null models, i.e. upon the choice of the portion of network structure to be preserved 

while randomizing everything else. However, quite surprisingly, little work has been done so far 
to define null models for real bipartite networks. The aim of the present work is to fill this gap, 
extending a recently-proposed method to randomize monopartite networks to bipartite networks. 
While the proposed formalism is perfectly general, we apply our method to the binary, undirected, 
bipartite representation of the World Trade Web, comparing the observed values of a number of 

structural quantities of interest with the expected ones, calculated via our randomization procedure. 

Interestingly, the behavior of the World Trade Web in this new representation is strongly different 
from the monopartite analogue, showing highly non-trivial patterns of self-organization.

In the last ��een years network science has exploded, revealing a world composed by interconnected 
systems ubiquitously found both in natural sciences and in socioeconomic disciplines1–3. Since the very 
beginning of network science, many di�erent network representations have been adopted in order to 
study the particular system at hand4. However, the class of networks represented by bipartite networks 
has been recognized to provide a particularly insightful representation of many di�erent systems5: eco-
logical networks6, trade networks7–9, citations and collaboration networks10,11 represent only few exam-
ples.

One could thus expect a relevant amount of work aimed at identifying the statistically-relevant pat-
terns observed in real bipartite networks, at least comparable to the mass of results obtained so far for 
monopartite networks12–21: however, quite surprisingly, little work has been done so far to implement null 
models on real bipartite networks. Generally speaking, null models are statistical models used to make 
inference on a real system on the basis of partial information. �e latter usually corresponds to some 
observable property of interest as the number of trade partners of a country, its exports and imports, the 
total exposure of a bank, etc. In particular, null models for bipartite networks being real-data rooted and 
showing the desirable features of general applicability and analytical character are currently missing. More 
in detail, the algorithms proposed so far show several limitations, ranging from being purely numerical 
(thus lacking the analytical character)6,22,23, to assuming an a priori functional form either for the distri-
bution of the quantities of interest6 or for the model parameters (thus not being real data-rooted)24 or, 
lastly, using approximate analytical models25. Moreover, almost all the aforementioned approaches are 
tailored on ecological networks, thus lacking the character of general applicability.

�e lack of such models is, maybe, also due to the misconception that bipartite networks could be 
analysed by, �rstly, projecting them on one of the layers and, secondly, analysing the projection with 
one of the models currently available for monopartite networks. As we will show in what follows, the 
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monopartite and the bipartite representations enclose di�erent kinds of information, irreducible to each 
other (in the most general case).

�e aim of the present paper is to �ll this gap, proposing a theoretical framework guaranteeing the 
three aforementioned properties. In order to do this, we extend a recently-proposed method to rand-
omize monopartite networks19 to bipartite networks. �e method rests upon the sequential maximiza-
tions of Shannon entropy and the network likelihood function, a combination which has been proven 
to be rather e�ective both for detecting patterns and to reconstruct the structure of several real-world 
networks20,26–30. To the best of our knowledge, the only other paper proposing a method satisfying the 
three requirements above is31: we will comment on the di�erences with the one proposed here in the 
Discussion section.

While the proposed formalism is perfectly general, in this paper we apply our method to the binary, 
undirected, bipartite representation of the World Trade Web (herea�er WTW). We focused on this par-
ticular system precisely because of its popularity among network scientists, who have applied null models 
to all its possible representations26,27,32–35, with the exception of the bipartite one. As we will show in what 
follows, representing the WTW as a bipartite network allows to gain a substantially new insight into an 
already deeply explored system.

�e rest of the paper is organized as follows: Data section is devoted to the description of the data-
set used for the present analysis, Methods section reports the detailed description of our method and 
Results section illustrates the results which are discussed in Discussion section, where conclusions are 
also drawn.

Data
�e WTW can be represented in many di�erent ways, depending on the level of information that we 
want to process. �e most popular ones represent it via an adjacency matrix with nodes playing the role 
of world-countries and links indicating the presence of (any kind) of trade exchange between them. 
�is framework has been recently extended to analyse the WTW as a multiplex, where trade exchanges 
corresponding to di�erent commodities are distinguished35,36.

Here we represent the WTW as a bipartite network, i.e. by considering the set of world-countries 
and the set of products as di�erent entities and linking a given country to a given product if (and only 
if) the former exports the latter above a certain threshold (the so-called RCA8,9). Applying the latter 
rises the probability that the exported commodity is actually produced by the exporting country. In this 
representation, any two countries (as well as any two products) cannot be directly linked (i.e. links con-
necting nodes of the same set are not allowed): thus, any two nodes of the same set can be still thought 
as “interacting” but only indirectly, via a connection with the same nodes of the other family. �is way of 
representing the WTW allows us to analyze the global economy from a di�erent perspective, by making 
the productivity relations between countries explicit (i.e. which country produces which product).

�e dataset we have considered for the present analysis is the NBER database, collecting data for the 
38 years 1963-200037 and categorizing products according to the SITC revision 2 at four-digits level. Data 
have been further processed, building upon the data-mining procedure adopted in38, to produce a dataset 
with 538 products across all years and a number of countries varying from 130 to 151.

Methods
�e distinction between countries and products leads naturally to the de�nition of a biadjacency matrix, 
which will be indicated with M. In the present paper we focus on the binary, undirected representation 
of the WTW: thus, the matrix entries will be either mcp =  1, indicating that country c exports an amount 
of product p above the RCA threshold, or mcp =  0, indicating that the production of p by country c is 
below the RCA threshold and, thus, has been ignored. As a consequence, each row represents the export 
basket of a given country, while each column represents the subset of producers of a given product. A 
pictorial representation of the WTW biadjacency matrix in the year 2000 is shown in Fig.  1, with the 
blue dotsrepresenting the ones and the white dots the zeros.

If we indicate with C the total number of countries and with P the total number of products, the total 
number of elements of the biadjacency matrix (i.e. its volume) is C ⋅  P , also representing the maximum 
observable number of connections. In fact, unlike the usual square representation, the problems arising 
from the presence of self-connections are not encountered here. Moreover, the presence of two di�erent 

subsets (also known as layers) induces a measure of “rectangularity” of our matrix M6, i.e. R
C P

C P
=

−

+
 , 

ranging in R ∈ [0,1), with values closer to 1 indicating a large asymmetry between the number of countries 
and the number of products and values closer to 0 indicating equivalence between the two layers cardinal-
ity (notice that the information on the sign would be based on the arbitrary choice of the layers ordering).

�e de�nitions of other topological quantities of interest easily follow from the usual ones, as the 
number of links (i.e. the total number of connections)
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and the connectance c M
L M

C P
( ) =

( )

⋅
, measuring the percentage of observed connections. Fundamental 

properties are represented by the number of node-speci�c connections, i.e. the degree of countries, also 
named diversi�cation7–9, measuring the number of products exported by each country.
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and the degree of products, also named ubiquity7–9, measuring the number of countries exporting each 
product.
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De�nitions (2) and (3) induce the notions of countries mean degree and products mean degree.
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�e last passage follows from noticing that L M d M u Mc
C

c c
P

p1 1( ) = ∑ ( ) = ∑ ( )= = .
In order to make the connections between nodes of the same family explicit, a bipartite network can 

be projected on its layers, thus recovering two traditional, monopartite representations. �is operation 
can be straightforwardly implemented by considering the matrix products.

C PM M M M 6T T= ⋅ , = ⋅ ( )

where MT is the transpose of the biadjacency matrix M. While the dimensions of M are C ×  P, the dimen-
sions of its transpose are P ×  C. �is implies that  results in a C ×  C matrix whose generic element cc′, 
with c ≠ c′ , counts the number of patterns of length two between countries c and c′ . �e generic, diagonal 
element cc is precisely the degree of country c. Similarly, Р results in a P ×  P matrix whose generic element 
Рpp′, with p ≠ p′ , counts the number of patterns of length two between products P and p′ . As before, the 
generic, diagonal element is the degree of product P. Remarkably, the entries of matrices  and Р have a 
clear macroeconomic interpreation: while cc′ counts the number of products shared by countries c and c′ , 
Рpp′ counts the number of countries exporting both products P and p′ .

Since nodes of the same layer cannot be directly linked, it is enough that a path of length two (i.e. the 
minimum allowed length) connects any two nodes of the same family to directly link them in the cor-
responding monopartite projection. �us, by �rst applying the Heaviside step-function Θ […] to matrices 
 and Р element-wise (i.e.  [ ] { [ ]}cc c c

C

1
Θ = Θ ′ , ′=

, where [ ]ccΘ ′  can be 0 or 1, if  0cc =′  and  0cc >′  

respectively - and similarly for Р) and then subtracting the diagonal elements, the binary, adjacency 
matrices describing the two monopartite projections are recovered, i.e.

C PC I P I[ ] [ ] 7C P= Θ − , = Θ − ( )

where IC and IP are the identity matrices having dimensions C ×  C and P ×  P respectively.

Topological measures for binary, undirected, bipartite networks. Several quantities have 
already been proposed to analyse bipartite networks6. However, here we de�ne di�erent measures by 

Figure 1. �e binary, undirected, bipartite representation of the World Trade Web in the year 2000 37: 

countries are listed along the rows, products along the columns. Blue dots represent the ones, white dots 

represent the zeros. Rows and columns are reordered according to the algorithm introduced in8,9.
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extending some of the most used indicators in network theory, better capturing, in our opinion, the 
particular features of a given bipartite network′ s structure.

a. Assortativity. �e traditional de�nition of assortativity is intended to quantify the degrees correla-
tions, by distinguishing the assortative behavior (signalling positive degrees correlations) from the disas-
sortative behavior (signalling negative degrees correlations). When dealing with bipartite networks, we 
can measure such correlations both with respect to countries and with respect to products, by respec-
tively de�ning the average nearest products ubiquity (or ANPU)

u
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and the average nearest countries diversi�cation (or ANCD) as
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As in the monopartite case, assortativity is quanti�ed by respectively scattering the ANPU and ANCD 
values versus the degree sequences d{ }c c

C

1=
 and u{ }p p

P
1= .

b. Complexity and �tness. As recently pointed out8,9, countries and products can be assigned two purely 
network-based quantities, known as �tness, Fc (to be assigned to countries), and complexity, Qp (to be 
assigned to products), playing the role of non-monetary indicators of the economy development and pro-
viding a highly non-trivial way to rank the world-countries economic health (see also the Supplementary 
Information).

c. Motifs. �e usual clustering coe�cient, measuring the hierarchical structure of a monopartite net-
work, cannot be de�ned for bipartite networks: in fact, since no odd cycles of any length can be observed 
in bipartite networks (precisely because links within the same layer are forbidden) triangles cannot be 
observed as well; similarly, the usual triangular motifs cannot be de�ned3,39.

However, higher-order correlations between nodes can still be captured by de�ning a completely new 
class of motifs. �e �rst examples we provide are the V-motifs and the Λ -motifs (see Fig. 2). �e former 
count how many couples of countries export the same products, quantifying the productivities′  similar-
ity; the latter count how many couples of products are in the basket of the same producer, providing a 
measure of products correlation. Remembering that cc′, with c ≠ c′ , counts the number of products 
exported by both c and c′ , the total number of V-motifs connecting any pair of countries is

Figure 2. Motifs for bipartite networks. Countries are reported in the upper layer, products in the bottom 

layer. �e bottom panel shows motifs belonging to the Vn and Λ n families, with n =  2,3.
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and, remembering the analogous role of , the total number of Λ -motifs connecting any pair of products 
is.
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�e last passages follow from noticing that each V-motif (Λ -motif) is constituted by a pair of links 
having the same product (country) as a common vertex. �e number of countries competing on the 
same product, as well as the number of products in the same basket, can be further risen, leading to the 
following generalizations (with V2 ≡ V and Λ 2 ≡ Λ ):
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Figure 2 shows an example of V3-motifs and Λ 3-motifs. From de�ntions (12) it follows that V1 =  Λ 1 =  L.
Higher-order correlations can be captured by allowing for a higher number of connected nodes in 

the same layers (see X-motifs, M-motifs and W-motifs in the Supplementary Information). Remarkably, 
all the de�ned kinds of motifs:

•	 can be compactly expressed in terms of products of biadjacency matrix entries;
•	 can be de�ned for speci�c subsets of countries and products, thus allowing for a �ner analysis of the 

production dynamics. For example, a measure of correlation of countries a and b production is given 
by the motif N C m m ;V ab p

P
ap bp1a b = = ∑ =,

•	 may have an application also in the analysis of ecological networks, especially mutualistic networks 
(e.g. impollinators-�owers): in fact, measures of co-occurrence can be directly applied to ecosystems 
to quantify the species’ competitiveness for the available resources.

In what follows we will focus on the Vn and Λ n families (a more detailed discussion about all motifs 
is provided in the Supplementary Information).

d. Assortativity coe�cient. Beside our de�nitons, we have also considered the assortativity measure 
proposed in40 and called r. �e latter ranges in the domain r ∈ [− 1,1], with r =  1 indicating the tendency 
of links to connect nodes with similar degrees and r =  − 1 indicating the tendency of links to connect 
nodes with di�erent degrees.

e. Nestedness. On the basis of the two aforementioned measures Fc and Qp, one can reorder the matrix 
rows and columns (i.e. countries and products) by, respectively, decreasing the �tness along rows (from 
top to bottom) and increasing the complexity along columns (from le� to right), thus obtaining the tri-
angular structure shown in Fig. 7. In order to quantify the shape of such a matrix, several measures have 
been recently proposed41–44, under the common name of nestedness. Here we adopt the one proposed in41 
(called NODF - see also the Supplementary Information). Notice that the measure of nestedness adopted 
here doesn’t depend on the rows and columns ordering criterion (in what follows we will adopt the one 
based on Fc and Qp measures)8,9.

Randomizing bipartite networks. In order to implement suitable null models to detect the 
statistically-relevant patterns of real bipartite networks, the lines of the method proposed in19 can be 
followed. In particular, an ensemble   of binary, undirected, bipartite networks must be considered, in 
order to maximize Shannon entropy


S P PM Mln
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under a given set of constraints C M
→
( )16,19. Notice that the probability coe�cient P(M) is assigned to 

every adjacency matrices in the esemble and the constraints are de�ned in terms of the entries of M. �e 
result is the well-known exponential distribution:
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with the hamiltonian H CM Mθ θ( ,
→
) =
→
⋅
→
( ) compactly expressing the imposed set of constraints, 

being the vector of Lagrange multipliers associated to the vector of constraints and Z eG
H

M
M( )θ(

→
) = ∑

θ
∈

− ,
→

 
being the normalization.

In the monopartite case, one of the most insightful null models has been proven to be the so-called 
Con�guration Model (CM)12,14. Let us now implement the bipartite extension of the CM (BiCM, in what 
follows), by constraining the degree sequence of the binary, undirected, bipartite WTW and analyzing 
the system beyond the information contained into it. Since now we have two di�erent layers of nodes, 
the hamiltonian reads.

H d uM MM 15θ α β( ,
→
) =
→ ⋅
→
( ) +

→
⋅ →( ). ( )

Now we can calculate the probability coe�cient (14), associating a probability to each network in the 

ensemble on the basis of the speci�c degree sequences d M
→
( ) and u M→( ):
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Figure 3. Application of our method to the binary, undirected, bipartite World Trade Web in the year 1963 

(le� column) and 2000 (right column). Panels report uc
nn VS dc (a, b) and dp

nn VS up (c, d). Observed points 

are in blue; the black, solid curves are CM-induced ensemble averages; the red, solid lines are RG-induced 

ensemble averages; the gray, dashed curves indicate the ± 1 standard deviation region; the gray, dash-dotted 

curves indicate the ± 2 standard deviations region. Colored areas represent the ensemble density of expected 

points (sampling 5000 matrices). Although the BiCM captures the disassortative trend of the WTW, its 

striking similarity with the BiRG predictions proves that the explanatory power of the degree sequence is far 

more limited in the bipartite representation than in the monopartite one26.
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the notation Π c,p being equivalent to c
C

p
P

1 1Π Π= =  (see the Supplementary Information for the detailed 

calculations). �e coe�cient p
cp

x y

x y1

c p

c p

= ,
+

 with e xc
c =α−  and e y

p
p =β− , is the ensemble probability of 

having a link between country c and product p, as m m M P M pcp M cp cp

x y

x y1

c p

c p

θ
→

= ∑ ( ) ( ) = ≡ ,∈ +
.

Our null model provides the analytical expression of a network probability as a product over all the 
accessible C ×  P pairs of nodes. In other words, the BiCM interprets the links as independent random 
variables, thus de�ning a grandcanonical probability measure where links correlations are discarded. 
Notice also that no probability coe�cients controlling for the presence of links between nodes in the 
same layer appear in the expression (16). �is is a consequence of having considered an ensemble of 
bipartite networks as the support of our probability distribution: in so doing, the forbidden intra-layer 
links are automatically excluded by the choice of the allowable con�gurations volume.

�e probability distribution in (16) depends on C +  P unknown parameters (i.e. the Lagrange mul-
tipliers), also called hidden variables13,24. �e recipe provided by statistical mechanics to estimate the 
hidden variables is summed up by the equations
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However, no indication about the numerical value to be assigned to the ensemble average of con-
straints is provided. �us, in order to estimate the hidden variables from data, let us �rst note that 

P M θ(
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) can be rewritten solely in terms of the observed constraints value, i.e. 
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19. �en, let us consider the log-likelihood function 
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�e recipe provided by statistics to estimate the unknown parameters of a given probability distribu-

tion prescribes to maximize 19. �is means solving the system  x y 0∇
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 of C +  P equations 

in C +  P unknowns19:
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In what follows the vector of solutions satisfying the system (19), for given d M
→
( ) and u M→( ) as degree 

mean values, will be indicated as x y(
→ , → )

⁎ ⁎
. Notice that the coe�cients appearing at the second member 

of the system equations have the same functional form both for countries and products. �is is a conse-
quence of assigning only one Lagrange multiplier to each node but in such a way to distinguish the nodes 
in the �rst layer from the nodes in the second layer.

Expected topological measures for binary, undirected, bipartite networks. In the previous 
subsections several quantities of interest to be measured on binary, undirected, bipartite networks have 
been listed. In this subsection we will show how our method can be implemented to calculate their 
expected value (to be compared with the observed one) and the relative errors (to quantify the discrep-
ancies) in order to assess up to what level our null model is able to explain the higher-order structure 
of the network.

Our method allows us to proceed in a two-fold way. �e �rst one is analytical. Using the link-speci�c 
probability coe�cients pcp and the passages sketched in19, we are able to analytically calculate both the 
expected value and the standard deviation of the (analytically-de�nable) quantities of the previous sub-
sections. However, because of the impossibility to perform analytical evaluation of the average for some 
key quantities, we have adopted a di�erent strategy: we have sampled the grancanonical ensemble of 
binary, undirected, bipartite networks induced by the BiCM according to the probability coe�cients 

P x yM(
→ ,→ )

⁎ ⁎
, measured the aforementioned properties on our sample  and calculated the statistical 

moments, as average and standard deviation, of the generic quantity X as.
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i.e. as sampling moments according to the sampling frequencies 


P M
N M( ) =
  (Nm being the number of 

networks in the ensemble having biadjacency matrix equal to m). Since our method is unbiased19,21], 
numerically sampling   provides a faithful representation of the whole ensemble. We have also calculated 
the probability distribution (induced by P M( ) ) of some of the properties of interest, in order to quantify 
the statistical signi�cance of their observed value (via the z-score, for example).

Nevertheless, the analytical expressions of the expected value and standard deviation of the quantities 
explicitly de�ned in the previous subsections has been derived in the Supplementary Information.

Results
Let us �rst show our results on the temporal snapshot of the WTW corresponding to the year 2000. �e 
number of nodes is C2000 =  151 and P2000 =  538, causing the R index to be R0 0 56.  (see section 
Methods). �e high asymmetry of our network is also pointed out by the di�erent mean degrees, d 70  
and u 20 , indicating that countries are, on average, almost three times more connected than products. 
However, the connectance is c 0 132000 . : thus, our bipartite WTW is much sparser than its monopartite 
counterpart26. Notice that our null model, constraining (on average) the degree sequence, exactly repro-
duces any network’s connectance by de�nition, spanning the domain of applicability of both the sparse 
and the dense network reconstruction algorithms.

Assortativity
Figure 3 shows the comparison between observed and expected values of our coe�cients of assortativity. 
Having plotted uc

nn VS dc and d p
nn VS up, we �rstly observe that the bipartite WTW shows a disassortative 

behavior, signalled by a globally decreasing trend of our measures. More detailedly, two distinct behav-
iors seem to characterize uc

nn as a function of dc: while countries with low diversi�cation are preferentially 
linked to products with high ubiquity (le� side of panels 3a and 3b), countries with high diversi�cation 
are linked to almost all products (right side of panels 3a and 3b). �is is also re�ected in the triangular 
structure of the matrix (see Fig. 1). For products, this distinction is less sharp (panels 3c and 3d): in fact, 
while high-ubiquity products are linked to almost all countries, low-ubiquity products can be found con-
nected to both high- and low-diversi�cation countries.

As can be seen from Fig. 3, the BiCM captures the disassortative behavior of both uc
nn and d p

nn; how-
ever, only part of the observed points lies within the ± 2 standard deviations region. �is means that the 
mechanism shaping the disassortative behavior of the WTW is not completely explained by our null 
model, signalling a non-trivial origin of the WTW degree correlations. What is strikingly surprising is 
the prediction based on the Random Graph model (BiRG): the corresponding trend is closer to the BiCM 
prediction than in the monopartite representation of the WTW26. Moreover, since disassortativity is 
more pronounced in real data, our results indicate that the BiCM performs better than BiRG for small 
values of dc and up, while the BiRG correctly capture their �at behavior at large dc and up (i.e. for com-
petitive countries and ubiquitous products, for which d L Cp

nn

BiRG
/ , u L Pc

nn

BiRG
/ ). �is seems 

to indicate that the explanatory power of the degree sequence is far more limited in the bipartite rep-
resentation than in the monopartite one and that additional information is required to improve the 
agreement between observations and predictions (even at the simplest level of binary, undirected net-
works).

Figure 4 extends our assortativity analysis to the entire dataset. In order to condensate the informa-
tion of 38 scatter plots, we have computed the barycenter and sparseness of both the observed and 
expected clouds of points. In particular, we have calculated the arithmetic mean of both the observed 
values u{ }c

nn

c

C

1=
.


u

u

C C d
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, the expected values u{ }c

nn

c

C

1=
 and { }d p

nn

p

P

1=
 and the corresponding con�dence inter-

vals (CI) at 95% level. As for the motifs, also unn and d nn can be interpreted in macroeconomic terms. 
In fact, C dc

C
cc c1∑ /′= ′  measures the country-speci�c number of competitions, thus quantifying the (aver-

age) presence of a country on the global market. Further averaging over all countries provides a measure 
of the integration of world-countries production.

What emerges is that the evolution of expected points closely follows the evolution of the observed 
ones, pointing out that the BiCM correctly describes the temporal trend of the assortativity measures. 
Notice that, even if observed points are systematically more concentrated on higher levels (as shown in 
panels 4a and 4c), the con�dence intervals are still close enough to let us interpret the BiCM predictions 
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as correct. Moreover, the constancy of the amplitude of the con�dence intervals for both observed and 
expected ANPU values indicates that the corresponding clouds of points maintain the same sparseness 
across our 38 years dataset; on the other hand, the amplitude of the observed ANCD con�dence intervals 
slightly reduces, indicating a shrinkage of the corresponding cloud of points (compare panels 3b and 3d).

�e temporal trends of unn and d nn show interesting di�erences. In fact, while unn keeps increasing 

across the whole dataset, d nn does not (and from 1975 starts decreasing). Since the countries mean degree 
keeps rising as well (d 481963   and d 702000  ), the increasing trend is probably due to the birth of new 
links, indicating that while existing countries have enlarged their production, new-born countries have 
started theirs. �e results seem also to be compatible with the picture of several “appealing” products 
behaving as hubs and attracting links, including the ones of the new-born countries which in turn, hav-
ing a low degree, reduce the value of the d p

nn.

Since unn ranges in the interval [0,C], the e�ect due to the varying number of countries can be washed 
away by further dividing it by C, G u CC

nn= /  (and thus normalizing it to the interval [0,1]). Remarkably, 
our index GC can be now interpreted a “genuine” measure of globalization, not a�ected by any spurious 
e�ect. Very interestingly, the temporal trend of GC a�er 1970 becomes now almost �at. �is means that 
the WTW evolution does not actually a�ect the value of countries integration which organize in such a 
way to maintain the same value of GC, irrespectively of the rising number of countries, their higher 
diversi�cation, etc. �is seems to con�rm the stationary evolution of such network, recently pointed 
out45. A similar reasoning leads us to interpret G d PP

nn= /  as a measure of products homogeneity.
We have also calculated the Pearson correlation coe�cient between the vectors u{ }c

nn

c

C

1=
 and u{ }c

nn

c

C

1=
 

(panel 4b) and between the vectors { }d p
nn

p

P

1=
 and { }d p

nn

p

P

1=
 (panel 4d), in order to quantify the agree-

Figure 4. Temporal evolution of the arithmetic mean of the observed u{ }c
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 (▲) together with the 95% CI (panel b) and between 

{ }dp
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p

P

1=
 and { }dp
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p

P
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 (■) together with the 95% CI (panel d). �e evolution of expected points closely 

follows the evolution of the observed ones, pointing out that the BiCM correctly describes the temporal 
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ment on the “shape” of the clouds of points. �e correlation of the latter is lower than the correlation of 
the former: this is due to the shape of the empirical cloud of ANCD which is less linear than the empir-
ical ANPU, thus worsening the agreement with the corresponding expectations (which show an almost 
perfectly linear trend).

Complexity and fitness
Complexity and �tness can be obtained only numerically, as the result of the convergence of the algo-
rithm proposed in8,9,46. Panels 5a and 5b show the comparison between observed and expected complex-
ity (plotted VS ubiquity) for the years 1963 and 2000; panels 5c and 5d show the comparison between 
observed and expected �tness (plotted VS diversi�cation) for the same years. Our null model capture 
both trends with a larger accuracy than in the measure of assortativity: notice how the expected trend 
under the BiCM reproduces the “beak” of the observed complexity in real data and the vast majority of 
the observed cloud lies within the ± 2 standard deviations region.

Similarly, the expected trend of reconstructed �tness captures the di�erent growth regimes of the 
observed �tness in the WTW data, showing few sparse points outside the same error region (clearly vis-
ible in the log-log plots of Fig. 5). �e regime with lower slope (le� side of panels 5e and 5f) represents 
the so-called “poverty trap”8,9, i.e. the area populated by the group of countries with lowest �tness: notice 
how all such countries lie within the ± 2 standard deviation region (or immediately outside). Similar 
considerations hold for all the remaining years, indicating a constant performance of our method across 
our 38-years dataset.

�e average trends in Fig. 5 are computed di�erently from those in Fig. 3: while the latter represent 

the node-speci�c, ensemble averages d{ }c
nn

c

C

1=
 and { }u p

nn

p

P

1=
, the former represent averages taken 

over ranked nodes, ordered according to their complexity - panels a and b - and �tness - panels c and 
d. Generally speaking, ordering nodes on the basis of such procedure will produce a di�erent ranking 
for di�erent bipartite networks of the ensemble. Moreover, the ranking operation guarantees neither that 
the identity of ranked nodes remains the same (e.g. two di�erent countries can be ranked �rst for two 
di�erent networks), nor that the corresponding complexity and �tness maintain their value across our 
sample (i.e. the nodes ranked �rst will, in general, have di�erent values of Fc and Qp): this in turn implies 
that each ranked node degree may change as well (i.e. the nodes ranked �rst for di�erent networks will, 
in general, have di�erent degrees). From these considerations, the need of quantifying 1) the variation 
of any country diversi�cation as a function of its �tness and 2) the variation of any product ubiquity as 
a function of its complexity follows. �is is in line with the spirit of the research in8,9: trying to establish 
a biunivocal relation both between ubiquity and complexity and between �tness and diversi�cation, in 
order to unambiguously rank countries and products. �is kind of analysis represents a highly non-trivial 
test bench of our model which appear to perform very well.

Motifs. �e motifs analysis has been carried on by calculating two di�erent quantities. �e �rst one 
has been de�ned as

s
N N

N

M

23
m

m m

m

=
( ) −

( )

and named similarity: it quanti�es the goodness of our prediction, measuring the di�erence between 
the observed and expected abundances. Beside similarity, we have also considered the traditional 
z-scores3,28,39, de�ned as the ratio of the di�erence between the observed and expected abundances and 
the corresponding standard deviation

z
N NM

24
m

m m

mσ
=

( ) −

( )

with N Nm m m
2 2

σ = −  and m indicating the particular motif considered. Even if z-scores have 
been recognized to be dependent on the network size 47 (at least for monopartite networks), our dataset 
collects matrices with very similar volume (R ∈ [0.56, 0.61]): thus, we can imagine this e�ect to be very 
small.

Notice that similarity and z-scores provide complementary information: in particular, the latter 
measures the statistical signi�cance of the agreement found by the former, accounting for the role of 
higher-order correlations not included in our constraints. Moreover, their ratio sm/zm =  σm/〈 Nm〉  coin-
cides with the motif-speci�c coe�cient of variation, quantifying to what extent the average sums up 
the relevant information encoded into the corresponding ensemble distribution. Naturally, as for the 
observed abundances, both sm and zm can be de�ned for speci�c subsets of nodes as well.

Figure 6 shows the analysis of the Vn and Λ n motifs. First, we have sampled the V-motifs and Λ -motifs 
abundance on the ensemble, in order to verify their distribution (see the Supplementary Information): 
both follow a gaussian very closely. Since all our motifs are sums of (neither independent nor identi-
cally distributed) random variables, this may be seen as a consequence of the generalized Central Limit 
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Figure 5. Application of our method to the binary, undirected, bipartite World Trade Web in the year 1963 

(le� column) and 2000 (right column). Panels report up VS Qp (a, b) and dc VS Fc (c, d). Observed points 

are in blue; the black solid curves are BiCM-induced ensemble averages; the gray dashed curves indicate 

the ± 1 standard deviation region; the gray dash-dotted curves indicate the ± 2 standard deviations region. 

Colored areas represent the ensemble density of expected points (sampling 5000 matrices). Our null model 

seems to satisfactorily capture both trends. Panels (e, f) show the so-called “poverty trap”, i.e. the group of 

countries with lowest �tness8,9. Notice how all such countries lie within the ± 2 standard deviation region (or 

immediately outside).
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�eorem. z-scores can be thus attributed the correct probabilistic meaning of (gaussian) standardized 
variables39,47 and choosing a threshold z0 for z allows the identi�cation of signi�cantly deviating patterns. 
In what follows we will choose z0 =  ± 1.65 as threshold values for the aggregated Vn and Λ n families 
and z0 =  ± 2 for the subsets-speci�c corresponding ones (see the Supplementary Information for a jus-
ti�cation of such values). Naturally, if the observations were exactly reproduced by our null model, the 
z-scores would be zero49.

�e evolution of both similarity and z-scores across the years in our database point out that the Λ n 
family is better reproduced than the Vn family (showing a similarity and a z-score closer to zero - see 
panels 6a and 6b). In particular, Vn z-scores lie outside the boundary of the signi�cance region, show-
ing values lower than − 1.65. �is indicates that for the binary, bipartite representation of the WTW, 
the degree sequence is far more e�ective in reproducing the products correlations than the correlations 
between countries. In other words, we correctly capture the countries tendency to expand their pro-
duction, which seems to co-exist with a certain superposition of the countries baskets of products (see 
M-motifs in the Supplementary Information). However, the BiCM overestimates the resemblance of the 
di�erent baskets: as z-scores indicate, world-countries tend to form less V-motifs than expected under 
our null model (further con�rmed by the trend of X-motifs and W-motifs - see the Supplementary 
Information). Summing up, world countries show a clear tendency to diversify their production, at the 
same time avoiding to directly compete on the same products.

�e comparison between similarity and z-score clari�es the role of average in characterizing the 
ensemble distribution of Vn and Λ n families: the ratio sm/zm ≤  0.1 justi�es our interest in their ensemble 
average alone.

However, z-scores of Vn and Λ n families result in almost �at trends which allow us to draw only 
general conclusions on the WTW as a whole. �e reason lies in the “aggregated” character of such motifs, 
not distinguishing between di�erent subsets of countries or products. To be more precise, let us consider 
the temporal evolution of our motifs on speci�c subsets of nodes (see panels 6c and 6d): in particular, 
the Asian Tigers (South Korea, Singapore, Taiwan, Hong Kong), the BRICS countries (Brazil, USSR/
Russia, India, China, South Africa), the european countries belonging to G7 (France, Italy, Germany, 
United Kingdom) and a number of eastern-european countries (Hungary, Romania, Bulgaria, Poland, 
USSR/Russia) and let us calculate the temporal evolution of V4 and V5 motifs restricted to them. �e 
european countries show a z-score almost constantly equal to 4, indicating a signi�cant a�nity which is 
maintained over time. An even stronger internal a�nity is shown by the Asian Tigers to which China 
should be added (in fact, its addition to the group rises the z-score). On the other hand, BRICS countries 
show a very limited a�nity8,9,48: their trend becomes more and more consistent with the null model, to 
become negative in the recent years. �e last two examples point out the limitations of the traditional 
economic classi�cation (usually distinguishing China from Asian Tigers and gathering BRICS together), 
not capturing any actual economic likeness.

Eastern-european countries, on the other hand, show a strong correlation before 1989, gradually 
declining as this topical year approaches. Interestingly enough, a�er 1989 such correlation doesn’t 
disappear, remaining statistically signi�cant (and stabilizing around z 2 ): this seems to indicate a 
signi�cant connection still persisting, having Russia replaced USSR as “reference” country. An addi-
tional test is provided by the random choice of four countries (Ghana, China, Mozambique, Austria): 
although close to zero, their trend is constantly negative. In fact, being Ghana and Mozambique 
low-diversi�cation countries, they will be linked only to high-ubiquity products, common to all coun-
tries (see Fig. 3): thus, their basket will be far more limited than China’s and Austria’s, limiting in turn 
their possibility to compete. �e constantly negative sign indicates, in this case, the impossibility to 
compete.

�is kind of analysis can be repeated for Λ n motifs as well, allowing us to gain a substantial insight 
into the products correlations. Panels 6e and 6f show some examples. While the food sector we have 
considered shows a constantly high value of z, indicating the common origin of the chosen dairy prod-
ucts, the pink trend signals a non-trivial positive correlation between the sectors represented by worked 
aluminium artifacts, tractors and fruit. A possible explanation may rest upon the consideration that 
tractors are constituted by parts in aluminium to be, in turn, used to transport the picked fruit. 
Consistently, the last group of products (cheese, rods and locomotives) is characterized by the value 
z 0 .

Notice that while for some groups of nodes the �rst moment encloses great part of the relevant 
information (sm/zm ≤ 0.5), for other groups higher-order moments could provide additional, useful infor-
mation (sm/zm ≃ 1), e.g. the distribution asymmetry. Interestingly, these circumstance are mostly encoun-
tered for countries and products, respectively.

Assortativity coefficient and nestedness. As for the Vn and Λ n motifs, the assortativity coe�cient 
has a gaussian ensemble distribution (see the Supplementary Information). Both the observed value r 
and its z-score signal that we are globally overestimating the network assortativity: more exactly, since 
our expected coe�cient 〈 r〉  is still negative, we are predicting a less disassortative network than observed 
(see Fig.  7). �is is a consequence of our randomization procedure, distributing links between nodes 
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more homogeneously (recall that, consistently, our predicted { }d p
nn

p

P

1=
 and u{ }c

nn

c

C

1=
 show less steeply 

decreasing trends than the observed ones - see Fig. 3).
In order to better understand the concept of nestedness, let us explicitly draw a matrix from the 

BiCM-induced grandcanonical ensemble, ranking its rows and columns according to the Fc and Qp meas-
ures8,9. �e result is shown in Fig. 7. Notice that nestedness cannot be simply reduced to the concept of 

Figure 6. Analysis of motifs. Top panels: z-scores (panel a) and similarity (panel b) evolution across our 

database years of NV (.), NV3 (.), NV4 (.), NV5 (.), NΛ (.), NΛ3 (.), NΛ4 (.), NΛ5 (.). Middle panels: z-

scores (panel c) and similarity (panel d) evolution of Vn-motifs, restricted to subsets of countries - Asian 

Tigers (.), Asian Tigers plus China (.), EU countries in G7 (.), BRICS (.), eastern countries (.), four 

randomly chosen countries (.). Bottom panels: z-scores (panel e) and similarity (panel f) evolution of Λ n-

motifs, restricted to subsets of products - “fruit and parts of plants”, “aluminium and aluminium alloys”, 

“road tractors” (.), “milk and cream”, “butter”, “cheese” (.), four randomly chosen products (.). Right 

column, panel f: similarity evolution across our database years of the same motifs. Our method correctly 

captures the countries tendency to expand their production (Λ n-motifs), even if the resemblance of the 

di�erent baskets of products is overestimated (Vn-motifs). Moreover, our method identi�es statistically 

signi�cative correlations among subsets of countries and products.
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“triangularity” of a matrix. In fact, even if the drawn matrix shows a more curved boundary than the 
observed one, both the nestedness ensemble distribution (see the Supplementary Information) and its 
z-score (Fig. 7) signal that our method reproduces it correctly.

We have also measured the nestedness along rows and the nestedness along columns separately 
(according to the de�nitions in41. While the latter is reproduced and closely follows the trend of the 
global one, the former is, for a few years, signi�cantly underestimated. �is is non-trivially related to the 
way our null model redistributes V-motifs and Λ -motifs. However, as the bottom panel in Fig. 8 suggests, 
a role seems to be played by the asymmetry of our bipartite matrix as well: in other words, the higher 
cardinality of the products layer seems to induce a preferential �lling of the rows, making them more 
homogenenous and lowering their expected nestedness.

It should be also noted that the ensemble coe�cient of variation for both r and NODF show such a 
small value (sm/zm ≃ 10−2 for both, across our temporal dataset) that the ensemble average can be con-
sidered as the only moment carrying relevant information.

Discussion
In this paper we have both proposed a method to randomize binary, undirected, bipartite networks, 
by constraining essential network features as the total number of links and the nodes connectivity, 
and tested it on a real system as the World Trade Web. While, on the one hand, specifying the degree 
sequence allows highly non-trivial properties like countries �tness, products complexity and the matrix 
nestedness to become reproduced across our whole dataset, on the other quantities like assortativity and 
motifs still elude a satisfactorily explanation.

�is is even more surprising, when considering the high level of accuracy achieved by the CM pre-
dictions in the analysis of the monopartite representation of the WTW. Our �ndings suggest that analys-
ing di�erent representations of the same network can indeed convey additional information, as proved 
by the agreement between the observed assortativity and the expected one (see Fig.  3), lower than in 
the corresponding monopartite WTW26. In words, the correlations between countries induced by their 
productivity relations, clearly displayed by the bipartite representation of the WTW, are only partially 
explained by the degree sequence, calling for a higher amount of information to achieve the same level of 
accuracy obtained for the monopartite representation (and analogously for products). Otherwise stated, 
representing the same system via di�erent network models (even belonging to the same class of binary, 
undirected con�gurations) may strongly a�ect the e�ectiveness of the corresponding piece of informa-
tion (as the nodes connectivity) in reproducing the observed structure.

Assortativity provides again the clearest example: as previously pointed out, the bipartite Con�guration 
Model predicts trends quite similar to those expected under the bipartite Random Graph. To better 
quantify this di�erence, we have calculated the Shannon entropy (normalized to the total number of 
nodes pairs, i.e. the network volume) of the probability distributions induced by the BiRG and the BiCM:
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Figure 7. Analysis of the assortativity coe�cient and nestedness. z-scores (panel a) and similarity (panel b) 

evolution across our database years of r (.), NODF (.), nestedness along rows (.) and columns (.). While 

we are predicting a less disassortative network than observed, our method correctly reproduces the matrix 

nestedness.
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 for the BiRG (see Supplementary Information). Results 

are shown in the bottom panel of Fig. 9. As evident from the trends, while specifying the total number 
of links strongly reduces the uncertainty (as signalled by the low value of the connectance, reducing the 
ensemble entropy to half its maximum value), further specifying the degree sequence produces a less 
relevant e�ect one could expect on the basis of the well known, monopartite results26. Comparing the 
analyses of degree correlations for the bipartite and the projected WTW (on both countries and products 
layers - top and middle panels of Fig. 9 for the year 2000), what emerges is quite impressive: while the 
CM prediction correctly overlaps to the observed trend, the RG predicts a �at trend completely missing 
the observed cloud of points (in line with the results already obtained for the monopartite representa-
tion26. In terms of Shannon entropy, when passing from the RG to the CM the reduction of uncertainty 
on the observed, projected WTW amounts to 41%; for the bipartite WTW, this percentage reduces to 
only 16% (see Fig. 9). �is �ndings clearly indicate a future extension of our work: constraining those 
quantities having a signi�cant impact on nodes correlations, as V-motifs, Λ -motifs or nestedness, in 
order to de�ne a more e�ective null model.

However, as the analysis of motifs reveals, the BiCM provides the right benchmark to highlight mean-
ingful correlations between countries and products, representing a purely topological alternative to the 
traditional economic classi�cation, whose limitations have been already pointed out8,9,36. Remarkably, 
this kind of analysis can be repeated for di�erent years, in order to monitor our system over time and 
detect signi�cant temporal trends of the world economies co-evolution.

We stress that our approach is grandcanonical and possible extensions of the method move in the same 
direction. �e paper in31, on the other hand, implements the microcanonical version of a mono-layer 

Figure 8. Upper panel: the real World Trade Web matrix in the year 2000, with rows and columns 

in increasing order of �tness and complexity 8,9]. Lower panel: matrix drawn from the BiCM-induced 

grandcanonical ensemble for the same year and ordered according to the same criterion.
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regular random graph: as for monopartite networks, comparing the performance of the two available 
approaches represents a challenging, future research direction.

Future work moves towards the direction of extending the present framework to directed, as well 
as weighted, networks models, to test the robustness of our �ndings also for con�gurations beyond the 
binary, undirected ones.
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