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Abstract
Understanding the general properties of real social networks has
gained much attention due to the proliferation of networked data.
The nodes in the network are the individuals and the links among
them denote their relationships. Many applications of networks
such as anonymous Web browsing require relationship anonymity
due to the sensitive, stigmatizing, or confidential nature of the re-
lationship. One general approach for this problem is to randomize
the edges in true networks, and only disclose the randomized net-
works. In this paper, we investigate how various properties of net-
works may be affected due to randomization. Specifically, we focus
on the spectrum since the eigenvalues of a network are intimately
connected to many important topological features. We also con-
duct theoretical analysis on the extent to which edge anonymity can
be achieved. A spectrum preserving graph randomization method,
which can better preserve network properties while protecting edge
anonymity, is then presented and empirically evaluated.

1 Introduction
Many natural and social systems develop complex networks,
e.g., the Internet, the World-Wide Web, networks of collab-
orating movie actors and those of collaborating authors, etc.
The nodes in the social network are the individuals and the
links among them denote their relationships. Many applica-
tions of networks such as anonymous Web browsing require
relationship anonymity due to the sensitive, stigmatizing, or
confidential nature of relationship. For example, most people
prefer to conceal the truth regarding their illegal or unethical
behaviors which are customarily disapproved of by society.

Naturally, graph randomization techniques can be ap-
plied here. For example, we can remove some true edges
and/or add some false edges. Two natural edge-based graph
perturbation strategies are shown below.

• Rand Add/Del, we randomly add one edge followed
by deleting another edge and repeat this process for k
times. This strategy preserves the total number of edges
in the original graph.

• Rand Switch, we randomly switch a pair of existing
edges (t, w) and (u, v) (satisfying that edge (t, v) and
(u,w) does not exist in G) to (t, v) and (u,w) and
repeat it for k times. This strategy preserves the degree
of each vertex.
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After the randomization, the randomized graph is ex-
pected to be different from the original one. As a result,
the true sensitive or confidential relationship will not be dis-
closed. We need to know how well the randomization can
protect those sensitive links.

On the other hand, the released randomized graph
should also keep some properties not much changed or at
least some properties can be reconstructed from the random-
ized graph. Understanding the general properties of real
networks has gained much attention due to the proliferation
of networked data. Most analysis [11] has been confined
to real-space characteristics, e.g., degree sequences, shortest
connecting paths, and clustering coefficients.

Since there are numerous characteristics related to net-
works, it is tedious to evaluate how those characteristics are
affected by the randomization process. In this paper, we in-
vestigate this problem by focusing on the spectrum of net-
works since it has been shown the spectrum has close re-
lation with the many graph characteristics and can provide
global measures for some network properties. The spec-
trum of a graph is usually defined as the set of eigenvalues
of the graph’s adjacency matrix or other derived matrices.
The eigenvalues of a network are connected to important
topological properties such as diameter, presence of cohe-
sive clusters, long paths and bottlenecks, and randomness of
the graph. The associated eigenvectors can also guide to dis-
cover clusters. In Section 2, we summarize the properties of
the spectrum and associated eigenvectors of graph matrices
and their relation to structures of network.

1.1 Contribution Our contributions are as follows.

• We show theoretically and empirically how the real
characteristics of graphes are related with spectral char-
acteristics and how the two edge based pure randomiza-
tion strategies affect both real and spectral characteris-
tics.

• We develop spectrum preserving randomization meth-
ods, Spctr Add/Del and Spctr Switch, which can better
preserve graph characteristics without sacrificing much
privacy protection during randomization.



• Our proposed spectrum preserving randomization
methods consider the change of both the λ1 and µ2 due
to randomization. In graph perturbation, researchers
have only investigated the problem of comparing the
largest eigenvalue of the original and perturbed eigen-
values.

• We conduct privacy analysis for edge based pure ran-
domization strategies and show formally how the ran-
domized graph may be exploited by attackers to im-
prove their a-priori belief on sensitive links.

1.2 Organization The remaining of paper is outlined as
follows. In Section 2, we revisit the relationship between
the real characteristics and the spectral characteristics (e.g.,
λ1 and µ2). We theoretically show how randomization af-
fects those spectral characteristics and especially we give the
bounds of those changes due to randomization in Section 3.
In Section 4, we present our spectrum preserving edge ran-
domization approach. We focus on Spctr Switch and give de-
tailed theoretical analysis and empirical evaluation. In Sec-
tion 5, we first show why the edge randomization is resilient
to subgraph based attacks and then theoretically show how
the randomized graph may be exploited by attackers to im-
prove their a-priori belief on sensitive links. We conclude
and discuss our future work in Section 6.

2 Graph Characteristics
2.1 Notation A network or graph G(V, E) is a set of n
nodes V connected by a set of m links E. The network con-
sidered here is binary, symmetric, connected, and without
self-loops. It can be represented as the symmetric adjacency
matrix An×n with aij = 1 if node i is connected to node j
and aij = 0 otherwise. Associated with A is the degree dis-
tribution Dn×n, a diagonal matrix with row-sums of A along
the diagonal, and 0’s elsewhere. Recall that the degree of a
vertex in a network is the number of edges connected to that
vertex.

Let λi be the eigenvalues of A and ei the corresponding
eigenvectors, and λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral
decomposition of A is A =

∑
i λieieT

i . Since A is
irreducible, from the theory of non-negative matrices, the
largest eigenvalue λ1 of A is simple and there exits a unique
positive unit eigenvector e1 such that Ae1 = λe1. We call
λ1 the index of G, and call e1 = (x1, · · · , xn)T the principal
eigenvector of the graph G where xi is the ith component of
the principal eigenvector.

Another matrix related to A is the Laplacian matrix
defined as L = D − A. Similarly, let µi be the eigenvalues
of A and ui the corresponding eigenvectors. We have 0 =
µ1 ≤ µ2 ≤ · · · ≤ µm ≤ m. µ2 is an important eigenvalue of
the Laplacian matrix and can be used to show how good the
communities separate, with smaller values corresponding to

better community structures. Let u2 = (y1, · · · , yn)T where
yi is the ith component of the eigenvector u2.

2.2 Spectral vs. Real Characteristics To understand
and utilize the information in a network, researches have
developed various measures to indicate the structure and
characteristics of the network from different perspectives [5].
In this paper, we focus on four real space characteristics of
a graph. The first one is the harmonic mean of the shortest
distance, h, which is defined in [10] as:

(2.1) h = { 1
n(n− 1)

∑

i 6=j

1
dij
}−1

The inverse of the harmonic mean of the shortest distance,
also known as the global efficiency, varies between 0 and 1,
with h−1 = 0 when all vertices are isolated and h−1 = 1
when the graph is complete.

The second one is the modularity measure, Q, which in-
dicates the goodness of the community structure [5]. It is
defined as the fraction of all edges that lie within commu-
nities minus the expected value of the same quantity in a
graph in which the vertices have the same degrees but edges
are placed at random without regard for the communities. A
value Q = 0 indicates that the community structure is no
stronger than would be expected by random chance and val-
ues other than zero represent deviations from randomness.

The third one is the transitivity measure, C, which is one
type of clustering coefficient measure and characterizes the
presence of local loops near a vertex. It is formally defined
as

(2.2) C =
3N∆

N3

where N∆ is the number of triangles and N3 is the number
of connected triples.

The fourth one is the subgraph centrality, SC, which is
used to quantify the centrality of vertex i based the subgraphs
[6].

(2.3) SC =
1
n

n∑

i=1

SCi =
1
n

n∑

i=1

∞∑

k=0

P k
i

k!

where P k
i is the number of paths that start with i and end in

i with length of k.
Throughout this paper, we also focus on two important

eigenvalues of the graph spectrum. The first one is the largest
eigenvalue (λ1) of the adjacency matrix A. The eigenvalues
of A encode information about the cycles of a network as
well as its diameter. Since A contains no self-loops, the sum
over all eigenvalues (

∑n
i=1 λi) is zero. The sum of product

pairs (
∑

i 6=j λiλj) is equal to minus the number of edges.
And

∑
i 6=j 6=k λiλjλk is twice the number of triangles in G.

The maximum degree, chromatic number, clique number,



and extend of branching in a connected graph are all related
to λ1. In [12], the authors studied how a virus propagates
in a real work and proved that the epidemic threshold for
a network is closely related to λ1. The global subgraph
centrality measure can be calculated through eigenvalues of
the graph:

(2.4) SC =
1
n

n∑

i=1

eλi .

The second one is the second eigenvalue (µ2) of the
Laplacian matrix L, which is also called the algebraic con-
nectivity of the graph. The eigenvalues of L encode informa-
tion about the tree-structure of G. The spectrum of L con-
tains a 0 for every connected component. The multiplicity
of 0 as an eigenvalue is equal to the number of components
in G. 1

m

∏n
i=2 µi equals the number of spanning trees of G.

The diameter of a general graph is related to µm and µ2 and
bounded by

Diam(G) ≤



cosh−1(m− 1)

cosh−1
(

µm+µ2
µm−µ2

)



Note that if µ2 is close to zero, the graph is almost discon-
nected. Its diameter is small if the eigenvalue gap is large
(i.e., µ2 >> µ1). Refer to [11] for more relationships be-
tween the spectral and real characteristics of graphs.

3 Spectral Analysis of Graph Perturbation
We are concerned with the connection between the structure
of a graph G and the spectrum of a 0-1 adjacency matrix
A and Laplacian matrix L of graph G. Intuitively, a local
modification of G, such as the addition of an edge between
non-adjacent vertices, can be regarded as a perturbation of
G.

In Section 3.1, we first empirically show how the spec-
trum of a graph and some real space characteristics are af-
fected by the random perturbation strategies. In Section 3.2,
we conduct the theoretical analysis on how randomization
affects the spectrum of a graph and give bounds of the spec-
trum change.

3.1 Graph Characteristics vs. Perturbation: An Illus-
trating Example In this section, we empirically show how
the graph characteristics (including two spectral, λ1, µ2 and
four real, harmonic mean of geodesic path, modularity, tran-
sitivity, and subgraph centrality) vary when Rand Add/Del
and Rand Switch perturbation strategies are applied. This
experiment was conducted on the US politics book data [9],
which contains 105 vertices and 441 edges. In this graph,
nodes represent books about US politics sold by the online
bookseller Amazon.com while edges represent frequent co-
purchasing of books by the same buyers on Amazon. Nodes
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Figure 1: Graph characteristic vs. perturbation with varying
k for Rand Add/Del and Rand Switch

are separated into groups according to their political views:
“liberal”, “neutral”, or “conservative”.

We can observe from Figure 1 that the changes of
spectral measures display similar trends as those of real
graph characteristics while applying the two perturbation
strategies. Especially, as shown in Figures 1(b), 1(c), 1(d),
and 1(e), the µ2 of the Laplacian matrix displays the very
similar pattern as the harmonic mean of geodesic path,
modularity, and transitivity. Similarly, as shown in Figures
1(a) and 1(f), the λ1 of the adjacency matrix displays the
similar pattern as the subgraph centrality measure for both
Rand Add/Del and Rand Switch strategies. Networks with
community structures is not resilient to random perturbation
strategy. This is intuitively reasonable as shown in Figure



1(d). Average vertex-vertex distance may change sharply
when edges across communities are switched with edges
within communities.

We can also observe neither Rand Add/Del nor Rand
Switch can well preserve the graph characteristics when we
increase k to more than 100. Since we have 441 edges in
this graph, even the medium randomization (k = 100) sig-
nificantly decreases the utility of the released graph. Gen-
erally more perturbation can lead to stronger privacy protec-
tion, but it also greatly changes many features of the network,
decreasing the information utility. For example, network re-
silience and community structure are of particular impor-
tance in epidemiology where removal of vertices or edges
in a contact network may correspond to vaccination of indi-
viduals against a disease. Then the epidemiological solution
developed from the randomly perturbed graph may not be
applicable to the real graph. In Section 4 we shall investi-
gate how to perturb graphs without changing much network
structural features, such as resilience and community struc-
ture.

3.2 Theoretical Analysis on Spectral Perturbation The
theory of graph perturbations is concerned primarily with
changes in eigenvalues which result from local modifications
of a graph such as adding or deleting an edge. In the
following, we let A and Ã be the adjacency matrices of the
original graph G and the perturbed graph G′ with spectra
λ1 ≥ λ2 ≥ · · · ≥ λn and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n respectively.

LEMMA 3.1. [4] λ̃1 < λ1 whenever G′ is obtained from G
by deleting an edge or vertex. Similarly, λ̃1 > λ1 whenever
G′ is obtained from G by adding an edge or a non-isolated
vertex.

Lemma 3.1 shows any proper subgraph of G has smaller
index value λ1 and any supgraph of G has larger index
value λ1. This is also one reason why we only focus on
the perturbation strategies which keep the number of edges
unchanged. Otherwise, the index of the graph λ1 may be
significantly changed, which will affect many real space
graph characteristics.

THEOREM 1. Weyl’s Theorem [8]. Given two n × n sym-
metric matrices A and E, assume λ1 ≥ λ2 ≥ · · · ≥ λn and
ε1 ≥ ε2 ≥ · · · ≥ εn are their eigenvalues respectively. Let
Ã = A + E, and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n are its eigenvalues.
Then the Weyl’s inequalities are

(3.5) λ̃i+j−1 ≤ λi + εj ≤ λ̃i+j−n

for 1 ≤ i, j, i + j − 1, i + j − n ≤ n.

Weyl’s theorem states that the eigenvalues of a matrix
are perfectly conditioned, i.e., no eigenvalue can move more
than the range specified by Equation 3.5.

Some graph features (e.g., the number of vertices n, the
number of edges m) remain unchanged after randomization
and are assumed to be available to attackers. We also assume
the number of perturbations k is available to both data miners
and attackers. The reason is that k denotes the magnitude of
perturbation which may be needed to analyze the perturbed
graph by data miners. In this section, we present to what
extent the graph spectrum may change with respect to those
graph invariants, specifically, k and n for Rand Add/Del and
k, n and di for Rand Switch where di is the degree of vertex
i.

When k = 1, we call the perturbation matrix as the el-
ementary perturbation matrix (EPM). Obviously, the pertur-
bation matrix E when k > 1 is the sum of EPMs along the
perturbation.

For Rand Add/Del, we have two different cases. One is
that we add the edge (i, p) and delete an existing edge (i, q).
In this case, the EPM has the form as below:

(3.6) E(i,p,q) = Ã−A =




0 1 −1
1 0 0

−1 0 0


⊕ 0n−3.

Specifically, eip = epi = 1, and eiq = eqi = −1, where
eij denotes the component of E. The other case is that we
add the edge (i, j) and then remove one existing edge (p, q)
where i, j, p, q are distinct. Then,

(3.7) E(i,j,p,q) =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


⊕ 0n−4.

Specifically, eij = eji = 1, and epq = eqp = −1.
For Rand Switch, when we switch one pair of edges,

(t, w), (u, v) to (t, v) and (u,w), the EPM is:

(3.8) E(t,w,u,v) =




0 1 −1 0
1 0 0 −1

−1 0 0 1
0 −1 1 0


⊕ 0n−4

Specifically, etw = ewt = euv = evu = −1, and
etv = evt = euw = ewu = 1. We can easily derive
ε1 = 2,εn = −2, and εi = 0 (2 ≤ i ≤ n− 1).

However, when k > 1, it is hard to derive directly the
eigenvalues of E based on the released k. In the following,
we show our result based on the Gershgorin Circle Theorem
[8].

THEOREM 2. Gershgorin Circle Theorem. For an n × n
matrix A, define

Ri =
n∑

j=1,j 6=i

|aij | .



Then each eigenvalue of A must be in at least one of the disks
in the complex plane:

Ci(A) = {z : |z − aii| ≤ Ri} .

RESULT 1. Let ε1 ≥ ε2 ≥ · · · ≥ εn be the eigenvalues of
E. For all i(1 ≤ i ≤ n), we have

(3.9) εn ≤
∣∣∣λi − λ̃i

∣∣∣ ≤ ε1

or more loosely

(3.10)
∣∣∣λi − λ̃i

∣∣∣ ≤ ‖E‖2 ,

where for Rand Add/Del,

(3.11) ‖E‖2 ≤ min{2k, n− 1},

and for Rand Switch,

(3.12) ‖E‖2 ≤ 2min
{

k,max
i

(min{di, n− 1− di})
}

PROOF. Equation 3.9 and Equation 3.10 can be easily
derived from the Weyl’s theorem.

Notice that the diagonal elements of E are always 0.
Hence,

Ci(E) = {z : |z − eii| ≤ Ri} = {z : |z| ≤ Ri} .

All these circles are concentric, and all the eigenvalues of A
are thus in the circle of the largest radius:

‖E‖2 ≤ max
i
{Ri}.

and Ri =
∑

j 6=i |eij | is actually the totaly number of added
and deleted edges of vertex i.

Hence, for Rand Add/Del, when k < n/2, the worst
case is that all the perturbations involve the same vertex;
when k ≥ n/2, the worst case happens when a certain vertex
is removed all original edges to its neighbors and adds new
edges to all the rest vertices. In this case,

max
i
{Ri} ≤ min{2k, n− 1}.

and Equation 3.11 follows.
For Rand Switch, if one edge is deleted, there must be

an edge added to the same vertex. Therefore

1
2
Ri ≤ min{di, n− 1− di},

through which we immediately get

max
i

Ri ≤ 2min
{

k,max
i

(min{di, n− 1− di})
}

,

and Equation 3.12 follows.

Actually, the bound given in Equation 3.12 is the loose
bound in the worst case. It may not accurately reflect the
magnitude of spectrum change. In Section 4, we develop our
spectrum preserving randomization approach which can con-
trol the change of spectrum during the randomization pro-
cess. Note that all the above results can be easily extended
to the Laplacian matrix with some simple adjustment since
L̃− L = A− Ã = −E.

4 Spectrum Preserving Randomization
Since many graph structures are shown to have strong associ-
ation with the spectrum, a very nature idea is whether we can
figure out a perturbation strategy such that one or some par-
ticular eigenvalues will not significantly change. Hence the
new strategy is more probable to better preserve structural
characteristics without much scarifying the privacy protec-
tion.

Table 1: Conditions on adjusting λ1 and µ2 for Spctr
Add/Del

Condition Action
xixj − xpxq > 0 λ̃1 > λ1

xixj − xpxq < 0, and

λ1 − λ2 >
x2

i +x2
j+x2

p+x2
q

2(xpxq−xixj)

λ̃1 < λ1

yiyj − ypyq > 0 µ̃2 < µ2

yiyj − ypyq < 0, and

µ3 − µ2 >
y2

i +y2
j +y2

p+y2
q

2(ypyq−yiyj)

µ̃2 > µ2

Table 2: Conditions on adjusting λ1 and µ2 for Spctr Switch

Condition Action
(xt − xu)(xv − xw) > 0 λ̃1 > λ1

(xt − xu)(xv − xw) < 0, and
λ1 − λ2 > xt−xu

xw−xv
+ xw−xv

xt−xu

λ̃1 < λ1

(yt − yu)(yv − yw) > 0 µ̃2 < µ2

(yt − yu)(yv − yw) < 0, and
µ3 − µ2 > yt−yu

yw−yv
+ yw−yv

yt−yu

µ̃2 > µ2

4.1 Algorithm From matrix perturbation community, re-
searchers have achieved results on the intermediate eigen-
value problem of the second type, i.e., how to determine E
such that the eigenvalue λ1 of A + E can be greater or less
than that of A. Specifically, Cvetkovic et al.[4] gave results
on how to increase or decrease λ1 of the adjacency matrix
by constructing the noise matrix E based on the principal
eigenvector values of the adjacency matrix. We list their re-



sults in the first two rows of Table 1 and Table 2. For exam-
ple, according to row 1 in Table 1, if we add edge (i, j) and
delete edge (p, q) and xixj − xpxq > 0 stands, λ1 necessar-
ily increases. Note that xi denotes the ith component in the
principal eigenvector of λ1.

In this paper, we also need to know whether the eigen-
value µ2 of the Laplacian matrix L of a particular graph G
increases or decreases when an edge is relocated. We derive
sufficient conditions on how to adjust µ2 of the Laplacian
matrix for two random strategies Add/Del and Switch. We
summarize our results in the last two rows of Table 1 and 2,
leaving the detailed proof in Appendix. Note that µ2 is the
important eigenvalue of the Laplacian matrix L. We use µi

and µ̃i to denote the ith smallest eigenvalue of L and L̃ re-
spectively, and u2 denotes the eigenvector of µ2. yi is the ith
component of u2.

Based on the derived conditions, we propose our spec-
trum preserving approach which can improve the simple
edge randomization by considering the change of spectrum
in the randomization process. Here we can determine which
edges we should add/remove or switch so that we can control
the move of target eigenvalues. As a result, real graph char-
acteristics (or graph utility) are expected to be better pre-
served. We show our Spctr Switch algorithm in Algorithm
4.1.

ALGORITHM 4.1. Spectrum Preserving Graph Randomiza-
tion through Edge Switch

Input: graph data G, protection threshold ε

1. Derive the adjacency matrix A and the Laplacian matrix
L.

2. Calculate the eigenvalues and eigenvectors (λ1, λ2, e1)
of A and (µ2, µ3,u2) of L respectively.

3. k = 0
4. While J2(k) ≤ 1− ε

5. From graph G, randomly pick one edge (t, w);
6. If k/2 == 0
7. Find all the edge combinations such that λ̃1 > λ1

and µ̃2 > µ2;
8. Randomly pick one (u, v), switch (t, w) and

(u, v) to (t, v) and (u,w) ;
9. otherwise

10. Find all the edge combinations such that λ̃1 < λ1

and µ̃2 < µ2;
11. Randomly pick one (u, v), switch (t, w) and

(u, v) to (t, v) and (u,w) ;
12. k=k+1

In Row 2 of Algorithm 4.1, we only calculate the first
one or two eigenvalues of the corresponding graph matrices.
It is not necessary or desirable to calculate the entire eigen-
decomposition. Note that calculation of the eigenvectors of

an n × n matrix takes in general a number of operations
O(n3). An efficient Lanczos method [3] can be applied to
find the second eigenvector of a sparse matrix with m/(λ3−
λ2), where m is the number of edges in the graph. Row 4
gives the loop condition of repeated switch operations (we
will discuss details on J2(k) and the input privacy protection
threshold ε in Section 5.2). Rows from 6 to 11 present
how to switch based on the sufficient conditions listed in
Table 2. Algorithm can be modified to Spctr Add/Del with
some minor changes: replacing J2(k) with J1(k) in Row
4; replacing the switch process with the Add/Del process in
Row 8 and 11; and finally, in Row 7 and 10 referring to Table
1 for the conditions under which the eigenvalues increase or
decrease.

It is ideal to derive the sufficient conditions on how
much one or some particular eigenvalues will change. This
is the problem of estimating changes in eigenvalues under
a wide range of perturbations. The eigenvalues of the
perturbed graph can be determined as implicit functions of
algebraic and geometric invariants of the original graph.
However, this problem has not been solved in the matrix
perturbation field.

4.2 Empirical Evaluation Figure 2 shows spectral ran-
domization can significantly better preserve both graph spec-
trum and real space characteristics of the political book graph
data set than the previous random perturbation which does
not consider spectrum preserving during the perturbation
process. Due to space limitations, we only include compari-
son between Spctr Switch and Rand Switch. We can see that
Spctr Switch can significantly better keep both spectral char-
acteristics and real characteristics close to those computed
from the original graph even when we increase the number
of switches k to 180. Note that the spectrum preserving ap-
proach adjusts both λ1 and µ2. The intuition here is that
the more eigenvalues we control in perturbation, the more
real space characteristics we can preserve in the randomized
graph.

We also conducted evaluation on a relatively large data
set, political blogosphere data [1]. It compiles the data on
the links among US political blogs, containing over 1,000
vertices and 15,000 edges. The blogs were labeled as either
liberal or conservative, based on incoming and outgoing
links and posts around the time of the 2004 presidential
election. The original data is a directed graph. Here we
simply consider aij = 1 if the two blogs have a link between
them.

Table 3 shows the relative change of the spectrum λ1, µ2

and the real characteristics (including the harmonic mean of
geodesic path h, modularity Q, transitivity C, and subgraph
centrality SC) between Spctr Switch and Rand Switch when
we vary k from 300 to 3000. It is easy to observe that
Spctr Switch preserve both spectrum and real characteristics
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Figure 2: Graph characteristic vs. varying k between Spctr
Switch and Rand Switch

of the graph much better than Rand Switch. In Section 5,
we shall show our spectrum preserving randomization can
achieve almost the same level of privacy protection as the
random perturbation approach. In other words, the proposed
approach can better preserve the utility without sacrificing
much the privacy protection.

5 Privacy Analysis of Edge Randomization
When it comes to a randomization strategy, we are interested
in how well it can preserve the privacy and whether it is re-
silient to some known attacks. In this section we focus on
this issue for Rand Add/Del and Rand Switch methods, leav-
ing Spctr Add/Del and Spctr Switch for future work. This
is because, first, the process of spectrum preserving strate-

gies are more complicated than that of random strategies;
and we believe that the outline of the analysis for random
strategies can provide a basis for analyzing the spectrum
preserving strategies. Section 5.1 briefly discusses how ran-
dom strategies are resilient to known subgraph based attacks,
followed by our formal analysis on privacy preservation for
Rand Add/Del and Rand Switch, including to what extent the
edge randomization can protect the privacy.

5.1 Resilient to Subgraph Attacks When it comes to
anonymized graph, the attackers may have some a-prior
knowledge of the graph such as some topological features
or a subgraph. In [2] the authors describe a family of at-
tacks such that an adversary can learn whether edges exist
or not between specific targeted pairs of nodes from node-
anonymized social networks. The adversary can construct a
highly distinguishable subgraph with edges to a set of tar-
geted nodes, and then to re-identify the subgraph and con-
sequently the targets in the released anonymized network.
Similarly in [7], the authors show by applying subgraph
queries the identification of the vertices can be seriously
jeopardized. They suggest and empirically evaluate edge
based randomization (the same as Rand Add/Del) can well
protect the identification of the vertices since the adversary
cannot simply exclude from the candidate set nodes that do
not match the structural properties of the target.

For Rand Add/Del strategy, since each link is re-
allocated independently, knowing the subgraph cannot en-
hance the attacker’s confidence about the link outside the
subgraph. Herein we assume that at least a medium perturba-
tion is applied to the graph, i.e., k is not too small, otherwise
the randomized perturbation is not much different from the
original one.

For Rand Switch, will a subgraph prior known to the
attackers disclose more beyond the subgraph? In the scenario
of [2], the attackers know a subset of vertices X ⊂ V and
all the edges associated to X (denoted by G(X)). Although
[7] shows that graph randomization can greatly reduce the
chance for the attackers to re-identify the subgraph known
to them, we here still assume that, in G′, the attackers have
identified the subgraph corresponding to G(X), denoted by
G′(X). Then, from matrix perspective, they know the ith
row or column of matrix A, Ã and thus E if i ∈ X .
Therefore, among the four vertices involved in a switch, if
more than three of them are in X , this switch is actually
within G(X); and if none of them are in X , the attackers
can not utilize the known subgraph. Figure 3 shows a case
under which two of the switched vertices are in X . In G′,
the attackers observe that vertex t, w, u, v form a pattern
shown in Figure 3(b). Comparing with the known G(X)
shown in Figure 3(a), the attackers know that edge (t, w) is
switched to (t, v) and (w, u) must be switched from another
edge, probably the unknown (u, v). Then can they be sure



Table 3: Change of the measures for the US political blogs graph where the values in bold font denote the relative change
from Spctr Switch while those in regular font denote the relative change from Rand Switch

k λ1(%) µ2(%) h(%) Q(%) C(%) SC(%)
300 0.35, 0.33 15.24, 15.68 1.24, 1.13 4.25, 3.87 4.83, 4.55 22.59, 21.67
600 0.55, 0.51 25.75, 22.81 1.94, 1.70 8.31, 6.91 9.07, 7.69 33.05, 30.77
900 0.68, 0.58 28.66, 29.83 2.44, 2.01 12.16, 9.33 12.73, 9.88 39.42, 34.06
1200 0.77, 0.60 32.01, 35.18 2.81, 2.17 15.82, 11.26 15.91, 11.49 43.23, 34.57
1500 0.83, 0.58 37.78, 47.38 3.09, 2.26 19.31, 12.94 18.69, 12.65 45.36, 33.04
1800 0.85, 0.49 28.93, 38.11 3.31, 2.27 22.61, 14.22 21.12, 13.35 46.50, 27.76
2100 0.82, 0.41 37.89, 30.05 3.46, 2.25 25.78, 15.49 23.12, 13.89 45.13, 22.58
2400 0.79, 0.31 50.45, 33.37 3.59, 2.25 28.82, 16.72 24.88, 14.35 43.68, 15.90
2700 0.75, 0.23 50.55, 20.22 3.70, 2.24 31.77, 17.92 26.44, 14.78 42.00, 10.55
3000 0.69, 0.14 54.27, 20.35 3.77, 2.19 34.53, 19.01 27.66, 15.07 39.32, 2.48
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Figure 3: Resilient to subgraph attacks

of the existence of edge (u, v)? If the total perturbation
times k is so small that the attackers are very confident that
t, w, u, v are involved in perturbation at most once, definitely
they are sure about the existence of edge (u, v). However
when k is large, (u, v) can be a false edge switched from
elsewhere. Moreover, it is more complicated if there are
more than one false edges associated with t or w, for the
attackers must guess where (t, w) is switched to. In this case,
the attackers have the probability of 1/(ctcw) to be correct,
where ci denotes the number of false edges associated to
vertex i. Similarly, the attackers can not learn beyond the
subgraph if only one of the four switched vertices is in X . In
summary, switch based randomization is robust to subgraph
attack when k is not too small.

5.2 Privacy Analysis When it comes to privacy, we as-
sume it is aij = 1 that people may want to hide, not aij = 0
and attackers are capable of calculating posterior probabil-
ities. We use P (aij = 1) to denote the users’ prior belief
about the event of aij = 1 and use P (aij = 1 | ãij) to denote
its posterior belief after attackers observe the randomized
data ãij . The released data ãij is regarded as jeopardizing
with respect to aij = 1 if P (aij = 1 | ãij) > P (aij = 1).

To calculate the posteriori probabilities, we need to know
how many false edges exist in the perturbed graph. We give
in Appendix details on how to compute the expectation value
of false edges with Rand Add/Del and Rand Switch strategy.

We define the absolute measure of protection as
(5.13)
τa(i, j) = 1−max{P (aij = 1 | ãij = 0), P (aij = 1 | ãij = 1)}

Note that the second term in Equation 5.13 can be
considered as the maximal suspicion of existing aij = 1.
The relative measure of protection is defined as

(5.14) τr(i, j) =
τa(i, j)

1− P (aij = 1)

Our following result shows how to calculate the privacy
measure.

RESULT 2. For Rand Switch, after k switches, for vertex i,
let ci denote the number of false edges associated to vertex
i in graph G̃, i.e. ci = 1

2

∑n
j=1 |ãij − aij |, and E(ci) is its

expectation. Then,

τa(i, j) = (1− Pi)(1− Pj),(5.15)

τr(i, j) =
1− Pi

1− Si
· 1− Pj

1− Sj
,(5.16)

where Pi = 1 − E(ci)
di

, and Si = di

n−1 . E(ci) is shown in
Result 5 in the appendix.

Proof. We here assume that the attacker has no other
information except each vertex’s degree which is kept un-
changed in the perturbed data for the Rand Switch strategy.
Intuitively, Si = di

n−1 is the probability that a randomly se-
lected vertex turns out an neighbor of vertex i’s. Therefore,
the prior probability can be shown as

(5.17) P (aij = 1) = Si + Sj − SiSj .



The posterior probability P (aij = 1|ãij = 1) is the
probability that an edge (i, j) in G̃ is a true edge in G.
Pi = 1− E(ci)

di
is vertex i’s proportion of true edges. Hence,

(5.18) P (aij = 1|ãij = 1) = Pi + Pj − PiPj

Similarly, Qi = E(ci)
n−1−di

is vertex i’s proportion of false
edges,

(5.19) P (aij = 1|ãij = 0) = Qi + Qj −QiQj

Notice that Pi is a decreasing function of k and Qi is an
increasing with k, and

lim
k→∞

Pi = lim
k→∞

Qi =
di

n− 1
.

We thus have, Pi ≥ Qi. As a result

Pi + Pj − PiPj ≥ Qi + Qj −QiQj .

Equation 5.15 and 5.16 is then derived by incorporating
Equation 5.18 and 5.17 in Equation 5.14.

For the Rand Add/Del strategy, we give the result with-
out proof.

RESULT 3. For the Rand Add/Del, let b be the number of
false edges in G̃, i.e. b = 1

4

∑
i,j |ãij − aij |, and E(b) is its

expectation. Then,

τa(i, j) = E(b)/m,

τr(i, j) =
E(b)/m

1−m/N
,

where m is the number of edges and N = n(n− 1)/2. E(b)
is shown in Result 6 in the appendix.

In the following we show how much the spectrum pre-
serving randomization approach can achieve privacy pro-
tection. One problem here is that we currently cannot de-
rive the formula of the protection measure τr(i, j) for either
Spctr Add/Del or Spctr Switch since it is hard to calculate
the number of false edges in the randomization. Our fol-
lowing explanation show the spectrum preserving approach
can achieve similar privacy protection as the random pertur-
bation approach. Consider a simple case in which we only
control λ1. In G, a switch moves λ1 either up or down. Let
ρ be the proportion of up pairs in the graph. Along the per-
turbation, consider ∆k times of perturbation out of total k
times. When ∆k is small, the graph structure and ρ do not
change much. Then, Rand Switch produces ρ∆k times of
up switch and (1 − ρ)∆k down switch, while Spctr Switch
produces exactly ∆k

2 up switch and down switch. Hence only∣∣ 1
2 − ρ

∣∣ ∆k switch in Spctr Switch may not produce the same
privacy protection as Rand Switch does. When k is large, G′

under Rand Switch tends to be a random graph whose λ1

does not change much along the perturbation and the switch-
ing pair tends to play an equivalent role to the global struc-
ture. Hence, ρ tends to be 1

2 when k increases, which means
that Rand Switch and Spctr Switch do not differ much in pro-
tecting the privacy.

5.3 Privacy vs. k The measures of protection (τa and
τr) are defined in terms of one individual edge. In the
privacy preserving data mining, one natural question is how
many perturbations we need such that we can guarantee the
protection for all individual edges are above some threshold.
Formally, we expect

• For Rand Add/Del strategy,

J1(k) := min
i,j

τr(i, j) =
E(b)/m

1−m/N
> 1− ε.

• For Rand Switch strategy,

J2(k) := min
i,j

τr(i, j)

= min
i,j

{
1− Pi

1− Si
· 1− Pj

1− Sj

}
> 1− ε.

It is easy to check that the protection for all individual
edges remains the same with Rand Add/Del strategy. The
relative measure in Rand Switch is a function of k, di, and
dj . Our next result shows we only need to consider the
protection of the edges that connect the two vertices with
the smallest degrees.

RESULT 4. We re-numerate the vertices by their degree in
ascending order: d1 ≤ d2 ≤ · · · ≤ dn,

(5.20) J2(k) =
1− P1

1− S1
· 1− P2

1− S2
,

PROOF. We first prove that given a fixed k, if two
vertices i and j, di ≤ dj , then

(5.21)
1− Pi

1− Si
≤ 1− Pj

1− Sj
.

To a single vertex i, Rand Switch strategy actually rearranges
the position of 1 and 0 on the ith row of the adjacency matrix.
A false edge of vertex i corresponds to a 1 reallocated
elsewhere in the ith row of the adjacency matrix. Hence,
to produce the same proportion of false edges, the number of
0’s in j-th row of adjacency matrix should at least increase
to dj

di
(n− 1− di):

E(ci)
n− 1− di

≤ E(cj)
dj

di
(n− 1− di)

≤ E(cj)
dj

di
(n− 1− dj)

,



Table 4: τr vs. k for two strategies on Political Book data

1− ε Rand Add/Del Rand Switch
0.1 48 54
0.2 96 84
0.3 150 114
0.4 210 141
0.5 282 174
0.6 372 210
0.7 492 258
0.8 654 318
0.9 936 420

and with some simple deduction Equation 5.21 follows.
Since d1 ≤ d2 ≤ · · · ≤ dn, then by the above property,
Equation 5.20 stands.

Table 4 shows the number of perturbations we need for
Rand Add/Del strategy and Rand Switch when we aim to
achieve different levels of privacy protection (1−ε). Similary
Figure 4 shows how graph characteristics vary with different
privacy protection thresholds for both Rand Add/Del and
Rand Switch strategies. We can see the higher the privacy
protection we aim, the more perturbation we need, and the
less the utility of the graph we can achieve.

6 Conclusion and Future Work
In this paper, we have developed one spectrum preserving
randomization approach which can significantly improve the
edge based graph randomization methods (Rand Add/Del
and Rand Switch) by increasing the utility of the perturbed
graph without sacrificing much the privacy protection. We
have also given a bound of graph spectrum changes for
pure randomization strategies (i.e., reallocating or switching
edges randomly). Since the graph spectrum is closely re-
lated to many real graph characteristics, this bound provides
a perspective on the extent to which the edge randomization
affects the graph structure. Note that the bound derived in
this paper can serve as a loose bound for spectrum preserv-
ing strategies. In future, we are interested in deriving some
(tight) bound of graph spectrum changes for spectrum pre-
serving randomization strategies. We have conducted pri-
vacy analysis for pure randomization strategies and will in-
vestigate thoroughly how spectrum preserving randomiza-
tion strategies protect edge privacy.

There are some other aspects of this work that merit
further research. Among them, We would conduct, more
systematically, empirical evaluation on large social networks
from various domains. We would explore potential attacks
on randomized social networks especially in the scenario
when attackers know additional information. We are trying
to figure out the solution for the intermediate eigenvalue
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Figure 4: Graph characteristic vs. varying privacy protection
on Political Book data

problem aiming to derive conditions to adjust any eigenvalue
(in addition to λ1 and µ2) that may indicate certain structure
character of the graph. We are also interested in studying
more about the relation between real graph characteristic
and graph spectrum. Hence more flexible algorithms can
be designed when data owners a-priori know which graph
characteristics they would like to preserve.
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A Proof of The Results
A.1 Results on Adjusting µ2 Let ui and ũi be the eigen-
vector corresponding to µi and µ̃i. Consider the minimum
problem:

min
x∈S

{
xT L̃x

}
,

where S =
{
x : xT ũ1 = 0, and ‖x‖2 = 1

}
.

Since u1 = ũ1, u2 ∈ S. Then

min
x∈S

{
xT L̃x

}
≤ uT

2 L̃u2 = µ2 − uT
2 Eu2

On the other hand, take x to be ũ2,

µ̃2 = min
x∈S

{
xT L̃x

}
,

hence
µ̃2 ≤ µ2 − uT

2 Eu2.

When uT
2 Eu2 > 0, µ̃2 < µ2 always holds. With the

concrete form of EPM, in Add/Del strategy:

uT
2 Eu2 = 2(yiyj − ypyq),

and in Switch:

uT
2 Eu2 = 2(yt − yu)(yv − yw).

For the rest part of the table, we focus on the Switch
strategy. and Add/Del strategy can be proved similarly by
using the corresponding perturbation matrix E.

Denote λi(M) for ith eigenvalues of matrix M sorted in
non-decreasing order: λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M).
We take t = 1, v = 2, u = 3, w = 4 without loss of
generality. Then, with the second part of the theorem,

(y1 − y3)(y2 − y4) < 0,

E =




0 1 0 −1

1 0 −1 0
...

0 −1 0 1
−1 0 1 0

· · · 0(n−4)×(n−4)




,

Based on Laplacian matrix, we construct our own Ē and L̄
needed in the proof: Ē = (δ+2)I−E, and L̄ = L−(δ+2)I ,
where δ > 0 is a parameter. Then,

• Ē is positive definite;

• λi(L̄) = λi(L) − (δ + 2), and λi(L̄) and λi(L) have
the same eigenvector;

• L̄ + Ē = L − E = L̃, and therefore µ2 =
λ2(L̃) = λ2(L̄ + Ē) ≥ λ2(L̄ + ĒP2) where P2 is
the orthogonal projection onto the subspace spanned by
{Ē−1u1, Ē

−1u2}. (see [4] for more details).

With the similar deduction outlined in [4], we can calculate
λ2(L̄ + ĒP2) and thus get a lower bound of µ̃2:

(1.22) µ̃2 ≥ min{µ2 − 2− δ + γ, µ3 − 2− δ},

where

(1.23) γ =
δ(2 + δ)(4 + δ)

δ(δ + 4)− 2bδ + 2a

and a = (y1 + y2 − y3 − y4)2, b = (y1 − y3)(y4 − y2) > 0.
γ is an increasing function of δ with range (0,∞). We thus
can always choose δ > 0 such that γ = µ3 − µ2, then we
rewrite (Equation 1.22) as

µ̃2 ≥ µ3 − 2− δ.

Next we deduct the condition under which this lower
bound is always greater than µ2, or equivalently the follow-
ing inequalities and equation always stands:

(1.24)





µ̃2 ≥ µ3 − 2− δ > µ2

γ =
δ(2 + δ)(4 + δ)

δ(δ + 4)− 2bδ + 2a

γ = µ3 − µ2



It is not difficult to show that when

γ = µ3 − µ2 > 2 +
a

b
,

(Equation 1.24) stands. Since

2 +
a

b
=

(y1 − y3)
(y4 − y2)

+
(y4 − y2)
(y1 − y3)

,

when µ3 − µ2 > (y1−y3)
(y4−y2)

+ (y4−y2)
(y1−y3)

, µ̃2 > µ2 stands. The
rest parts of the result are proved.

A.2 The Number of False Edges

RESULT 5. For Rand Switch, denote

(1.25) ci =
1
2

∑

j 6=i

|ãij − aij | ,

0 ≤ ci ≤ Ci := min{di, n− 1− di}.
Denote qi as the probability that a switching occurs to

vertex i. It can be approximated as

(1.26) qi ≈ di

m
+

∑

k 6=i

dk

m
· di − aik

m− dk

The expectation of ci is shown as

E(ci) = (0, 1, 2, . . . , Ci) ((1− qi)I + qiPi)
k e1.

where e1 = (1, 0, 0, . . . , 0)T , Pi = (p(i)
st )(Ci+1)×(Ci+1) and

(1.27)

p
(i)
st =





t2

di(n− 1− di)
, (s = t− 1)

t(n− 1− 2t)
di(n− 1− di)

, (s = t)

(di − t)(n− 1− di − t)
di(n− 1− di)

, (s = t + 1)

0, (otherwise).

PROOF. The probability that a switching occurs to
vertex is a constant. By saying a switch occurs to vertex
i, we mean that one of the two switched edges connects
to vertex i. Suppose one switch occurs to vertex i. In the
ith row of the adjacency matrix ai = (ai1, ai2, . . . , ai,n),
one component, say aip, changes from 1 to 0 and another
component aiq change from 0 to 1. Equivalently, we replace
a 1 in ai. Since we select the edges uniformly, every 1
(0) has same possibility to become 0 (1). Given r of the
k times of switch to vertex i, we first calculate E(ci|r). The
change of ci follows the Markov chain with the stationary
probabilities, and ci has finite states: 0, 1, . . . , Ci. Then, it
is easy to establish the transition matrix Pi whose elements

p
(i)
st = P (c(n+1)

i = s|c(n)
i = t) is shown in Equation 1.27.

The initial probability distribution vector is e1. Hence,

E(ci|r) =
Ci∑

x=0

xP (ci = x) = (0, 1, 2, . . . , Ci)P r
i e1.

E(ci) =
k∑

x=0

E(ci|r = x)P (r = x)

=
k∑

x=0

(
k

x

)
qx
i (1− qi)k−xE(ci|r = x)

= (0, 1, 2, . . . , Ci) ((1− qi)I + qiPi)
k e1.

RESULT 6. For Rand Add/Del, denote

b =
1
4

∑

i,j

|ãij − aij |,

0 ≤ b ≤ B := min{m,N −m}, where N = n(n− 1)/2 is
the number of all the possible edges.

(1.28) E(b) = (0, 1, 2, . . . , B)P ke1,

where P = (pst)(B+1)×(B+1) and

pst =





t2

m(N −m)
, (s = t− 1)

t(N − 2t)
m(N −m)

, (s = t)

(m− t)(N −m− t)
m(N −m)

, (s = t + 1)

0, (otherwise).


