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The international trade network (ITN) has received renewed multidisciplinary interest due to recent advances in

network theory. However, it is still unclear whether a network approach conveys additional, nontrivial information

with respect to traditional international-economics analyses that describe world trade only in terms of local

(first-order) properties. In this and in a companion paper, we employ a recently proposed randomization method

to assess in detail the role that local properties have in shaping higher-order patterns of the ITN in all its possible

representations (binary or weighted, directed or undirected, aggregated or disaggregated by commodity) and

across several years. Here we show that, remarkably, the properties of all binary projections of the network can

be completely traced back to the degree sequence, which is therefore maximally informative. Our results imply

that explaining the observed degree sequence of the ITN, which has not received particular attention in economic

theory, should instead become one the main focuses of models of trade.
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I. INTRODUCTION

The network of import-export trade relationships among

all world countries, known in the literature as the International

Trade Network (ITN) or the World Trade Web (WTW), has

received a renewed multidisciplinary interest in recent years

[1–13], due to impressive advances in both empirical and the-

oretical approaches to the study of complex networks [14–16].

A number of robust patterns in the structure of this network

have been empirically observed, in both its binary (when only

the presence of a trade interaction is considered, irrespective

of its intensity) and weighted (when also the magnitude of

trade flows is taken into account) description. These stylized

facts include local properties as well as higher-order patterns.

Local properties involve direct (first-order) interactions alone,

resulting in simple quantities such as node degree (the number

of trade partners of a country), node strength (total trade

volume of a country), and their directed-network analogues

(i.e., when these statistics are computed taking into account

edge [trade] directionality). Higher-order characteristics are

more complicated structural properties that also involve indi-

rect interactions, i.e., topological paths connecting a country

to the neighbors of its neighbors, or to countries farther

apart. Examples include degree-degree correlations, average

nearest-neighbor indicators, and clustering coefficients, to

name just a few of them.

In general, local and higher-order topological properties

are not independent of each other. In particular, even if

one assumes that the network is formed as the result of

local constraints alone, with higher-order properties being

only the mere outcome of a specification of these con-

straints, it turns out that so-called structural correlations are

automatically generated. Structural correlations sometimes

appear as complicated patterns that might be confused with

genuine correlations involving higher-order statistics, and

interpreted as the presence of an additional level of topological

organization. Therefore, in any real network it is important to

characterize structural correlations and filter them out in order

to assess whether nontrivial effects due to indirect interactions

are indeed present.

In the specific case of the ITN, this problem is particularly

important to assess whether the network formalism is really

conveying additional, nontrivial information with respect to

traditional international-economics analyses, which instead

explain the empirical properties of trade in terms of country-

specific macroeconomic variables alone. Indeed, the standard

economic approach to the empirics of international trade

[17] has traditionally focused its analyses on the statistical

properties of country-specific indicators like total trade, trade

openness (ratio of total trade to GDP [gross domestic product]),

number of trade partners, etc., that can be easily mapped

to what, in the jargon of network analysis, one denotes as

local properties or first-order node characteristics. Ultimately,

understanding whether network analyses go a step beyond with

respect to standard trade theory amounts to assess the effects

of indirect interactions in the world trade system. Indeed,

a wealth of results about the analysis of international trade

have already been derived in the macroeconomics literature

[17] without making explicit use of the network description,

and focusing on the above country-specific quantities alone.

Whether more recent analyses of trade, directly inspired by

the network paradigm [1–12], are indeed conveying additional

and nontrivial information about the structure of international
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import-export flows crucially depends on the answer to the

above question. Some network-inspired studies have already

tried to address this problem, but with ambiguous results.

In some cases, it was suggested that local properties are

enough to explain higher-order patterns [3,6,18], while in

others the opposite conclusion was reached [19]. However,

previous analyses of the ITN focused on heterogeneous rep-

resentations (either binary [2,3] or weighted [6,10,19], either

directed [4,5,20] or undirected [2,3], either aggregated [2,3,10]

or disaggregated [13] in separate commodities) and using

different data sets, making consistent conclusions impossible.

In this and in a companion paper [21], we explicitly

address this problem and exploit a recently proposed analytical

method [22] to obtain, for any given topological property

of interest, the value of the corresponding quantity averaged

over the family of all randomized variants of the ITN that

preserve the observed local properties. This allows us to

identify empirical deviations from locally induced structural

correlations. Null models are used in our exercises to uncover

significant features of the network and to understand to which

extent some network statistics are sufficient to explain other

network statistics. Our analysis is not, however, involved in

explaining the underlying causal mechanisms shaping the

network. Therefore, throughout this and its companion paper,

we shall use the term “explaining” in a weak sense. For

example, finding that a local network statistics X “explains” a

higher-order network statistics Y in our null model will signal

the presence of a strong correlation between the two statistics,

so that X can be sufficient to fully reproduce Y in the network.

Of course, we do not aim at using our null model to identify

subtle causal links between X and Y, which in the real-world

may be caused, e.g., by some omitted variables that cause in a

proper way the high observed correlation between X and Y.

In this first paper, we focus on the ITN as a binary

network. We find that higher-order patterns of all binary

(either directed or undirected) projections of the ITN are

remarkably well explained by local properties alone (the

degree sequences). This result is robust to different levels of

commodity aggregation: Even if with an increasing scatter,

the degree sequence preserves its complete informativeness as

more disaggregated and sparser commodity-specific networks

are considered. Moreover, we perform a temporal analysis and

check the robustness of these results over time. Therefore we

obtain, for the first time in this type of study, a detailed and

homogeneous assessment of the role of local properties across

different representations of the trade network, using various

levels of commodity aggregation, and over several years.

From an international-trade perspective, our results indicate

that binary network descriptions of trade can be significantly

simplified by considering the degree sequence(s) only. In other

words, in any binary representation of the ITN, the degree

sequence turns out to be maximally informative, since its

knowledge conveys almost the entire information about the

topology of the network.

In the companion paper [21], we show that the picture

changes completely when considering the ITN as a weighted

network. We find that the ITN is an excellent example of a

network whose local topological properties cannot be deduced

from its local weighted properties. These results highlight

an important limitation of current economic models of trade,

which do not aim at explaining or reproducing the observed

degree sequence but focus more on the structure of weights

[23]. In other words, standard models of trade in economics

have been focusing only on explaining the (positive) flow

between any two countries, disregarding to a great extent

theories that are able to account for the determinants of the

creation of a link (i.e., the transition from a zero trade flow to

a positive trade flow). The observed extreme informativeness

of the degree sequence leads us to conclude that such models

should be substantially revised in order to explicitly include

the degree sequence of the ITN among the key properties to

reproduce.

II. DATA AND METHODS

This section describes the data we use to construct the vari-

ous representations of the network in this and in the following

paper [21], discusses how the country-specific properties that

are usually considered in world-trade economics translate into

local topological properties of the ITN, and discusses how

these properties should be kept as constraints of our analysis

using an appropriate network randomization method.

A. The International Trade Network

We use yearly bilateral data on exports and imports

from the United Nations Commodity Trade Database (UN

COMTRADE)1 from year 1992 to 2002. We have chosen

this database because, despite its relatively short time interval

(11 years), it contains trade data between countries disaggre-

gated across commodity categories. This allows us to perform

our analyses both at the aggregate level (total trade flows) and

at the commodity-specific level, e.g., investigating whether

local properties are sufficient to explain higher-order ones in

commodity-specific networks of trade.

In order to perform a temporal analysis and allow com-

parisons across different years, we restrict ourselves to a

balanced panel of N = 162 countries that are present in the

data throughout the time interval considered. As to the level of

disaggregation, we choose the classification of trade values

into C = 97 possible commodities listed according to the

Harmonized System 1996 (HS1996).2 Accordingly, for a given

year t we consider the trade value ec
ij (t) corresponding to

exports of the particular commodity c (c = 1, . . . ,C). Since,

for every commodity, exports from country i to country j are

reported twice (by both the importer and the exporter) and

the two figures do not always match, we follow Ref. [13]

and employ the flow only as reported by the importer. Besides

commodity-specific data, we also compute the total value e0
ij (t)

of exports from country i to country j as the sum over the

exports of all C = 97 commodity classes:

e0
ij (t) ≡

C
∑

c=1

ec
ij (t). (1)

The particular aggregation procedure described above, which

coincides with the one performed in Ref. [13], allows us to

1http://comtrade.un.org/.
2http://unstats.un.org/.
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compare our analysis of the C commodity-specific networks

with a (C + 1)-th aggregate network, avoiding possible incon-

sistencies between aggregated and disaggregated trade data.

We stress that the resulting aggregated network data are in

general different from those used in other analyses [3,4,12]

of the same network. Nonetheless, as we show below, when

we analyze network properties that have also been studied in

previous studies of aggregate trade, we find perfect agreement.

The quantities {ec
ij (t)} (where c = 0, . . . ,C) defined above

are the fundamental data that allow us to obtain different

possible representations of the trade network, as well as the

corresponding randomized counterparts (see below for the

units of measure we adopted). When we regard the ITN as

a weighted directed network, we define the weight of the link

from country i to country j in year t for commodity c as

wc
ij (t) ≡

⌊

ec
ij (t)

⌉

c = 0, . . . ,C, (2)

where ⌊x⌉ ∈ N denotes the nearest integer to the non-negative

real number x. When we adopt a weighted but undirected

(symmetrized) description, we define the weight of the link

between countries i and j in year t for commodity c as

wc
ij (t) ≡ wc

ji(t) ≡

⌊

ec
ij (t) + ec

ji(t)

2

⌉

c = 0, . . . ,C. (3)

Therefore, in both the directed and undirected case, wc
ij (t) is

an integer quantity. Since in both cases we shall be interested

in tracking the temporal evolution of most quantities, we also

define rescaled weights (relative to the total yearly trade flow)

as

w̃c
ij (t) ≡

wc
ij (t)

wc
tot(t)

c = 0, . . . ,C, (4)

where in the directed case wc
ij (t) is given by Eq. (2)

and wc
tot(t) ≡

∑

i

∑

j �=i wc
ij (t) [the double sum runs over all

N (N − 1) ordered pairs of vertices], while in the undirected

case wc
ij (t) is given by Eq. (3) and wc

[ (t) ≡
∑

i

∑

j<i wc
ij (t)

[the double sum runs over all the N (N − 1)/2 unordered

pairs]. In such a way, trend effects are washed away, and we

obtain adimensional weights that are automatically deflated,

allowing consistent comparisons across different years and

different commodities.

In the binary representations of the network, we draw a link

from i to j whenever the corresponding weight wc
ij is strictly

positive. If �(x) denotes the step function (equal to 1 if x > 0

and 0 otherwise), the adjacency matrix of the binary projection

of the network in year t for commodity c is

ac
ij (t) ≡ �

[

wc
ij (t)

]

c = 0, . . . ,C, (5)

where wc
ij (t) is given either by Eq. (2) or by Eq. (3), depending

on whether one is interested in a directed or undirected binary

projection of the network, respectively.

For each of the C + 1 commodity categories, we can

consider four network representations (binary undirected, bi-

nary directed, weighted undirected, weighted directed). When

reporting our results, we will first describe the aggregated

networks (c = 0) and then the disaggregated (commodity-

specific) ones. In particular, among the 97 commodity classes,

we will focus on the 14 particularly relevant commodities

identified in Ref. [13], which are reported in Table I. These 14

commodities include the 10 most traded commodities (c =

84,85,27,87,90,39,29,30,72,71 according to the HS1996)

in terms of total trade value (following the ranking in year

2003 [13]), plus four classes (c = 10,52,9,93 according to the

HS1996) that are less traded but more relevant in economic

terms. Taken together, the 10 most traded commodities account

for 56% of total world trade in 2003; moreover, they also

feature the largest values of trade value per link (also shown

in the table). The 14 commodities considered account together

for 57% of world trade in 2003. As an intermediate level of

aggregation, we shall also consider the networks formed by

the sum of these 14 commodities. The original data {ec
ij (t)}

are available in current US dollars (USD) for all commodities;

however, due to the different trade volumes involved, we use

different units of measure for different levels of aggregation.3

B. Controlling for local properties

As we mentioned, our main interest in the present work

is assessing whether higher-order properties of the ITN can

be simply traced back to local properties, which are the main

focus of traditional macroeconomic analyses of international

trade. Such standard country-specific properties include: total

exports, total imports, total trade (sum of total exports and

total imports), trade openness (ratio of total trade to GDP), the

number of countries whom a country exports to and imports

from, and the total number of trade partners (irrespective

of whether they are importers or exporters, or both). All

these quantities can be simply obtained as local sums over

direct interactions (countries one step apart) in a suitable

representation of the network.

For instance, the number of trade partners of country i

is simply the number of neighbors of node i in the binary

undirected projection, i.e., the degree

ki ≡
∑

j �=i

aij . (6)

In the above equation and in what follows, we drop the

dependence of topological quantities on the particular year

t for simplicity. We also drop the superscript c specifying

a particular commodity, as all the formulas hold for any c.

This means that, if the aggregated network of total trade is

considered, then aij and wij represent the aggregate quantities

a0
ij and w0

ij , where the commodity c = 0 formally represents

the sum over all commodities, as in Eq. (1). Otherwise, if the

commodity-specific network involving only the trade of the

particular commodity c (with c > 0) is considered, then aij

and wij represent the values ac
ij and wc

ij for that commodity.

The number of countries whom a country exports to and

imports from are simply the two directed analogues (the

3We left {e9
ij (t)} and {e93

ij (t)} in current US dollars (USD); we divided

{e39
ij (t)} and {e90

ij (t)} by 10; we divided {e84
ij (t)} and the sum of the

top 14 commodities by 100; we divided aggregate data ({e0
ij (t)}) by

1000. Accordingly, after the rounding defined by Eqs. (2) and (3), we

obtained trade flows {wc
ij (t)} expressed in integer multiples of either

1 USD, 10 USD, 100 USD, or 1000 USD.
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TABLE I. The 14 most relevant commodity classes (plus aggregate trade) in year 2003 and the corresponding total trade value (USD), trade

value per link (USD), and share of world aggregate trade. From Ref. [13].

HS code Commodity Value (USD) Value per link (USD) % of aggregate trade

84 Nuclear reactors, boilers 5.67 × 1011 6.17 × 107 11.37%

machinery and mechanical appliances; parts

thereof

85 Electric machinery, equipment and parts; 5.58 × 1011 6.37 × 107 11.18%

parts; sound equipment; television

equipment

27 Mineral fuels, mineral oils and products 4.45 × 1011 9.91 × 107 8.92%

of their distillation; bitumin

substances; mineral wax

87 Vehicles (not railway, tramway, 3.09 × 1011 4.76 × 107 6.19%

rolling stock); parts and accessories

90 Optical, photographic, cinematographic, 1.78 × 1011 2.48 × 107 3.58%

measuring, checking, precision,

medical, or surgical instruments

and apparatus; parts and accessories

39 Plastics and articles thereof 1.71 × 1011 2.33 × 107 3.44%

29 Organic chemicals 1.67 × 1011 3.29 × 107 3.35%

30 Pharmaceutical products 1.4 × 1011 2.59 × 107 2.81%

72 Iron and steel 1.35 × 1011 2.77 × 107 2.70%

71 Pearls, precious stones, metals, 1.01 × 1011 2.41 × 107 2.02%

coins, etc.

10 Cereals 3.63 × 1010 1.28 × 107 0.73%

52 Cotton, including yarn and woven 3.29 × 1010 6.96 × 106 0.66%

fabric thereof

9 Coffee, tea, and spices 1.28 × 1010 2.56 × 106 0.26%

93 Arms and ammunition, parts and 4.31 × 109 2.46 × 106 0.09%

accessories thereof

All Aggregate (all 97 commodities) 4.99 × 1012 3.54 × 108 100.00%

out-degree kout
i and the in-degree kin

i , respectively) of the above

quantity in the binary directed description:

kout
i ≡

∑

j �=i

aij , (7)

kin
i ≡

∑

j �=i

aji . (8)

Similarly, as evident from Eq. (3), country i’s total trade

coincides with twice the sum of weights reaching node i in the

weighted undirected representation, i.e., the strength

si ≡
∑

j �=i

wij . (9)

Finally, total exports (imports) of country i are simply the

sum of out-going (in-coming) weights in the weighted directed

representation of the ITN. These quantities are known as the

out-strength sout
i and in-strength s in

i of node i:

sout
i ≡

∑

j �=i

wij , (10)

s in
i ≡

∑

j �=i

wji . (11)

Another country-specific property that is widely used as an

explanatory variable of trade patterns is the GDP or the per
capita GDP (i.e., the ratio of GDP to population). This property

is sometimes used to rescale trade values, as in the case of trade

openness, which is defined as a country’s ratio of total trade

to GDP. Unlike the quantities discussed above, the GDP is not

a topological entity. Nonetheless, it is empirically observed

to be positively (and strongly) correlated with the degree [3]

and with node strength [12] (we will comment more on this

in Sec. III). Therefore, even if this is not the main aim of the

present work, one should be aware that assessing the role of

local topological properties also indirectly implies, to a large

extent, assessing the role of the GDP of countries.

C. Rewiring the ITN

We showed that, in a network language, the standard

country-specific properties used to characterize world trade

translate into simple local topological properties of the ITN.

This naturally implies that, in our analysis, it is important to

consider a null model of the ITN where such properties are en-

forced as constraints, and the topology is otherwise maximally

random. Different methods that produce randomized ensem-

bles of networks with given constraints exist [22,24–33]. As we

mentioned, we aim at studying many topological properties of

several different representations and temporal snapshots of the

ITN. Therefore, we need a fast method that can deal with many

networks in a relatively short time and treat binary, weighted,

directed, and undirected graphs in a consistent fashion. To this

end, we employ the maximum-likelihood method introduced
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in Ref. [22], which provides the expectation values (over the

randomized ensemble) of the desired topological properties

analytically, in contrast with alternative methods [31,32],

which require one to explicitly generate many randomized

variants of the real network computationally. Moreover, the

method is density-independent and works for both sparse and

dense networks. By contrast, other (analytical or computa-

tional) approaches are density-dependent and not optimized

for dense networks: The Chung-Lu (analytical) approach [33]

works only for sparse networks, and the Maslov-Sneppen

(computational) algorithm [31,32] becomes too time consum-

ing for dense networks. Since the ITN is an unusually dense

network, the maximum-likelihood method is the natural choice

that allows us to perform a detailed analysis, covering all

possible representations across several years, which would

otherwise require an impressive amount of time.

In the Appendix A, B and C we describe the maximum-

likelihood method in some detail, in particular its application to

the topological properties of interest for the present case study.

Given any topological property X, the method provides the

average value 〈X〉 of X across the ensemble of random graphs

with the same average (across the ensemble itself) constraints

as the real network. For simplicity, in this and in the companion

paper we sometimes denote 〈X〉 as a randomized property, and

its value as the randomized value of X, even if technically no

randomization process has been required (all the results have

been obtained analytically). Similarly, we imagine the graph

ensemble as a rewired version of the original network, even if

no rewiring has taken place explicitly.

III. THE ITN AS A BINARY UNDIRECTED NETWORK

As we mentioned in Sec. II A, in its binary representation

the ITN is defined as a graph whose edges report the presence

of trade relationships among world countries, irrespective of

the intensity of these relationships. The binary representation

of the ITN can be either undirected or directed, depending

on whether one is interested in specifying the orientation of

trade flows. In both cases, the complete information about the

topology of the network is encoded in the adjacency matrix A,

whose entries {aij } are defined as in Eq. (5).

In the simplest case, the presence of at least one of the

two possible trade relationships between any two countries

i and j (either from i to j or from j to i) is represented

as one undirected edge between nodes i and j . Therefore

aij = aji and A is a symmetric matrix. In this binary undirected

description, as shown in Eq. (6), the local constraints {Ca}

are the degrees of all vertices, i.e., the degree sequence {ki}.

Therefore, the maximum-likelihood randomization method

[22] (see Appendix B) works by specifying the constraints

{Ca} ≡ {ki} and allows us to write the probability of any

graph G in the grandcanonical ensemble, which is uniquely

specified by its generic adjacency matrix A. As summarized in

Appendix B, this allows us to easily obtain the expectation

value 〈X〉, formally defined in Eq. (A7), of any property

X across the ensemble of binary undirected graphs whose

expected degree sequence is equal to the empirical one. Note

that, among the possible properties, the degree of vertices

plays a special role, as its expectation value 〈ki〉 is exactly

equal to the empirical value ki , as required by the method.

Therefore the values {ki} are useful control parameters and

can be efficiently used as independent variables in terms of

which other properties X can be visualized.

For the sake of simplicity, in Secs. III A and III B we first

report the results of this analysis on a single snapshot of the

commodity-aggregated network (the last year in our temporal

window, i.e., 2002). Then we discuss the robustness of our

results through time by tracking them backward in Sec. III C.

We finally consider the disaggregated analysis of commodity-

specific networks in Sec. III D.

A. Average nearest-neighbor degree

We start with the analysis of the aggregated version of the

ITN, representing the trade of all commodities (c = 0 in our

notation). In the following formulas, the matrix A therefore

denotes the aggregate matrix A0, where we drop the superscript

for brevity. As a first quantity, we consider the average nearest-
neighbor degree (ANND) of vertex i, defined as

knn
i ≡

∑

j �=i aijkj

ki

=

∑

j �=i

∑

k �=j aijajk
∑

j �=i aij

(12)

and measuring the average number of partners of the neighbors

of a given node i. The above quantity involves indirect

interactions of length two, as evidenced from the presence of

terms of the type aijajk in the definition. Whether these 2-paths

are a simple outcome of the concatenation of two independent

edges can be inspected by considering the correlation structure

of the network, and in particular by plotting knn
i versus ki .

The result is shown in Fig. 1. We observe a decreasing trend,

confirming what already found in previous studies employing

different data sets [2,4,12]. This means that countries trading

with highly connected countries have a few trade partners,

whereas countries trading with poorly connected countries

have many trade partners. This correlation profile, known

as disassortativity, might signal an interesting pattern in the

trade network. However, if we compare this trend with the one

followed by the corresponding randomized quantity 〈knn
i 〉 (see

Appendix B for its expression), we find that the two behaviors

coincide. This is an important effect of structural constraints in

a dense network [34]: Contrary to what naively expected [35],

even in a network where links are drawn randomly between

vertices with given heterogeneous degrees, the ANND is not

constant. This means that the degree sequence constrains the

correlation structure, and that it is impossible to have a flat

profile (knn
i independent of ki) unless one forces the system

to display it by introducing additional mechanisms (hence

additional correlations of opposite sign).

B. Clustering coefficient

A similar result is found for the behavior of the clustering
coefficient ci , representing the fraction of pairs of neighbors

of vertex i that are also neighbors of each other:

ci ≡

∑

j �=i

∑

k �=i,j aijajkaki

ki(ki − 1)

=

∑

j �=i

∑

k �=i,j aijajkaki
∑

j �=i

∑

k �=i,j aijaik

. (13)
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FIG. 1. (Color online) Average nearest-neighbor degree knn
i ver-

sus degree ki in the 2002 snapshot of the real binary undirected ITN

(red points), and corresponding average over the maximum-entropy

ensemble with specified degrees (blue solid curve).

The clustering coefficient is a measure of the fraction of

potential triangles attached to i that are actually realized. This

means that indirect interactions of length three, corresponding

to products of the type aijajkaki entering Eq. (13), now

come into play. Again, we find a decreasing trend of ci as

a function of ki (Fig. 2). This means that trade partners

of highly connected countries are poorly interconnected,

whereas partners of poorly connected countries are highly

interconnected. However, if this trend is compared with the one

displayed by the randomized quantity 〈ci〉 (see Appendix B),

we again find a very close agreement. This signals that in the

ITN also the profile of the clustering coefficient is completely

explained by the constraint on the degree sequence, and does

not imply the presence of meaningful indirect interactions on

top of a concatenation of direct interactions alone.

The above results show that the patterns observed in the

binary undirected description of the ITN do not require, besides

the fact that different countries have specific numbers of

trade partners, the presence of higher-order mechanisms as

an additional explanation. On the other hand, the fact that

the degrees alone are enough to explain higher-order network

properties means that the degree sequence is an important

structural pattern in its own. This highlights the importance of

reproducing the observed degree sequence in models of trade.

We will comment more about this point later.

C. Evolution of binary undirected properties

We now check the robustness of the previous results through

time. This amounts to performing the same analysis on each

of the 11 years in our time window ranging from 1992 to

2002. For each of these snapshots, we specify the degree

sequence and evaluate the maximally random ensemble of

binary undirected graphs. We then compare each observed

property X with the corresponding average 〈X〉 (repeating

the procedure described in Appendix B) over the null model

for that specific year. We systematically find the same results

described above for each and every snapshot. For visual

purposes, rather than replicating the same plots shown above

for all the years considered, we choose a more compact

description of the observed patterns and portray its temporal

evolution in a simple way. As we now show, this also provides

us with a characterization of various temporal trends displayed

FIG. 2. (Color online) Clustering coefficient ci versus degree ki

in the 2002 snapshot of the real binary undirected ITN (red points),

and corresponding average over the maximum-entropy ensemble with

specified degrees (blue solid curve).

by each topological property, conveying more information than

a fixed-year description of the trade system.

We first consider the average nearest-neighbor degree. For

a given year, we focus on the two lists of vertex-specific

values {knn
i } and {〈knn

i 〉} for the real and randomized network,

respectively. We compute the average (mknn and m〈knn〉) and the

associated 95% confidence interval of both lists and plot them

together as in Fig. 3(a). We repeat this for all years and obtain a

plot that informs us about the temporal evolution of the ANND

in the real and randomized network separately. We find that

the average value of the empirical ANND has been increasing

steadily during the time period considered. However, the same

is true for its randomized value, which is always consistent

with the real one within the confidence intervals. This means

that the null model completely reproduces the temporal trend

of degree-degree correlations.

In principle, the increase of the ANND could be simply

due to an overall increase in link density. To further study

this possibility, we have compared the yearly growth rate

(Xt/Xt−1 − 1) of the average ANND and of the link density in

the period considered. We found two regimes: Initially (from

1993 to 1997) the density has a larger (but decreasing) growth

rate than the ANND, while from 1998 to 2002 onwards the

two rates converge. Therefore it is useful to keep in mind that

the evolution of the average ANND, as well as that of other

average properties we consider below, is in general not merely

reflecting the evolution of the overall link density.

In Fig. 3(b) we also plot the temporal evolution of the

standard deviations sknn and s〈knn〉 (with associated 95%

confidence intervals) of the two lists of values {knn
i } and

{〈knn
i 〉}. We find that the variance of the empirical average

nearest-neighbor degree has been decreasing in time, but once

more this behavior is completely reproduced by the null model

and therefore fully explained by the evolution of the degree

sequence alone. Moreover, in Fig. 3(c) we show the Pearson

(product-moment) correlation coefficient rknn,k (with 95%

confidence interval) between {knn
i } and {ki}, and similarly

the correlation coefficient r〈knn〉,k between the randomized

quantities {〈knn
i 〉} and {ki} (recall that {〈ki〉} = {ki} by

construction). This informs us in a compact way about the

evolution of the dependence of the ANND on the degree, i.e.,

of the change in the structure of the scatter plot we showed
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(a) (b)

(c) (d)

FIG. 3. (Color online) Temporal evolution of the properties of

the nearest-neighbor degree knn
i in the 1992–2002 snapshots of the

real binary undirected ITN and of the corresponding maximum-

entropy null model with specified degrees. (a) Average of knn
i

across all vertices (red: real data; blue: null model, indistinguishable

from real data). (b) Standard deviation of knn
i across all vertices

(red: real data; blue: null model, indistinguishable from real data).

(c) Correlation coefficient between knn
i and ki (red, upper symbols:

real data; blue, lower symbols: null model). (d) Correlation coefficient

between knn
i and 〈knn

i 〉. The 95% confidence intervals of all quantities

are represented as vertical bars.

previously in Fig. 1. We find that the disassortative character

of the scatter plot results in a correlation coefficient close to

−1, which has remained remarkably stable in time across the

interval considered, and always very close to the randomized

value.

The complete accordance between the real and randomized

ANND in each and every snapshot is confirmed by Fig. 3(d),

where we show the correlation coefficient rknn,〈knn〉 (with 95%

confidence interval) between the empirical ANND, {knn
i }, and

the randomized one, {〈knn
i 〉}. We observe an approximately

constant value close to 1, signaling perfect correlation between

the two quantities. This exhaustively explains the accordance

between the real and randomized ANND for all vertices,

while the other three panels of Fig. 3 also inform about

various overall temporal trends of the ANND, as we discussed

above.

In Fig. 4 we show the same analysis for the values {ci}

and {〈ci〉} of the clustering coefficient. In this case we observe

an almost constant trend of the average clustering coefficient

[Fig. 4(a)], a decreasing standard deviation [Fig. 4(b)], and

a stable strong anticorrelation between clustering and degree

[Fig. 4(c)]. Again, we find that the real and randomized values

are always consistent with each other, so that the evolution of

the empirical values is fully reproduced by the null model. This

is confirmed by Fig. 4(d), which shows that the correlation

between {ci} and {〈ci〉} is always very close to 1. As for

the ANND, these results clearly indicate that the real and

randomized values of the clustering coefficient of all vertices

are always in perfect agreement, and that the temporal trends

displayed by this quantity are completely explained by the

evolution of the degree sequence.

(a) (b)

(c) (d)

FIG. 4. (Color online) Temporal evolution of the properties of

the clustering coefficient ci in the 1992–2002 snapshots of the real

binary undirected ITN and of the corresponding maximum-entropy

null model with specified degrees. (a) Average of ci across all vertices

(red: real data; blue: null model, indistinguishable from real data).

(b) Standard deviation of ci across all vertices (red: real data; blue: null

model, indistinguishable from real data). (c) Correlation coefficient

between ci and ki (red, upper symbols: real data; blue, lower symbols:

null model). (d) Correlation coefficient between ci and 〈ci〉. The 95%

confidence intervals of all quantities are represented as vertical bars.

D. Commodity-specific binary undirected networks

We complete our analysis of the ITN as a binary undirected

network by studying whether the picture changes when one

considers, rather than the network aggregating the trade of

all types of commodities, the individual networks formed by

imports and exports of single commodities. To this end, we

focus on the disaggregated data described in Sec. II A, and we

repeat the analysis reported above, by identifying the matrix

A with various disaggregated matrices Ac (with c > 0).

We find that the results obtained in our aggregated study also

hold for individual commodities. For brevity, we report only

the scatter plots of the average nearest-neighbor degree (Fig. 5)

and clustering coefficient (Fig. 6) for the 2002 snapshots of

six commodity-specific networks. The six commodities are

chosen among the top 14 reported in Table I. In particular,

we select the two least traded commodities in the set (c =

93,9), two intermediate ones (c = 39,90), the most traded

one (c = 84), plus the network formed by combining all the

top 14 commodities, i.e., an intermediate level of aggregation

between single commodities and the completely aggregated

data (c = 0), which we already considered in the previous

analysis (Figs. 1 and 2). With the addition of the latter, the

results shown span seven different cases ordered by increasing

trade intensity and level of commodity aggregation. Similar

results hold also for the other commodities not shown.

If we compare Fig. 5 with Fig. 1, we see that the trend

displayed by ANND in the aggregated network is preserved,

even if with a slightly increasing scatter, as sparser and less

disaggregated commodity classes are considered. Importantly,

the accordance between real and randomized values is also pre-

served. The same is true for the clustering coefficient; cf. Fig. 6

and its comparison with Fig. 2. These results indicate that the
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. (Color online) Average nearest-neighbor degree knn
i

versus degree ki in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the real binary undirected ITN (red

points), and corresponding average over the maximum-entropy

ensemble with specified degrees (blue solid curves). (a) Commodity

93; (b) commodity 09; (c) commodity 39; (d) commodity 90;

(e) commodity 84; (f) aggregation of the top 14 commodities (see

Table I for details). From (a) to (f), the intensity of trade and level of

aggregation increases.

degree sequence maintains its complete informativeness across

different levels of commodity resolution, and irrespective of

the corresponding intensity of trade. Thus, remarkably, the

knowledge of the number of trade partners involving only a

specific commodity still allows to reproduce the properties of

the corresponding commodity-specific network.

As a summary of our binary undirected analysis we

conclude that, in order to explain the evolution of the ANND

and clustering of the ITN, it is unnecessary to invoke additional

mechanisms besides those accounting for the evolution of

the degree sequence alone. Since the ANND and clustering

already probe the effects of indirect interactions of length two

and three, respectively, and since higher-order correlations

involving longer topological paths are built on these lower-

level ones, the null model we considered here is very likely to

fully reproduce the properties of the ITN at all orders. In other

words, we found that in the binary undirected representation

of the ITN the degree sequence is maximally informative, as

its knowledge allows to predict the higher-order topological

properties of the network that we have explored in this and in

the companion paper. An interesting question is whether the

degree sequence is also able to reproduce other higher-order

network properties, such as path lengths, node centrality, etc.

Whereas this study does not explicitly address this question,

(a) (b)

(c) (d)

(e) (f)

FIG. 6. (Color online) Clustering coefficient ci versus degree ki

in the 2002 snapshots of the commodity-specific (disaggregated)

versions of the real binary undirected ITN (red points), and corre-

sponding average over the maximum-entropy ensemble with specified

degrees (blue solid curves). (a) Commodity 93; (b) commodity 09;

(c) commodity 39; (d) commodity 90; (e) commodity 84; (f)

aggregation of the top 14 commodities (see Table I for details). From

(a) to (f), the intensity of trade and level of aggregation increases.

we argue that the answer will be positive in the light of the

very nature of the ITN. Its high density indeed implies that

path lengths are almost never larger than 3. As a consequence,

network properties of order larger than three are typically

well proxied by local properties. An example is the extremely

high correlation between country centrality (measured, e.g.,

in terms of betweenness centrality) and node degree, typically

found in previous studies. The robustness of this result across

several years and different commodity classes strengthens our

previous discussion about the importance of including the

degree sequence among the focuses of theories and models

of trade, which are instead currently oriented mainly at

reproducing the weighted structure, rather than the topology

of the ITN.

IV. THE ITN AS A BINARY DIRECTED NETWORK

We now consider the binary directed description of the ITN,

with an interest in understanding whether the introduction

of directionality changes the picture we have described so

far. In the directed binary case, a graph G is completely

specified by its adjacency matrix A, which is in general not

symmetric, and whose entries are aij = 1 if a directed link

from vertex i to vertex j is there, and aij = 0 otherwise. The

local constraints {Ca} are now the two sets of out-degrees and
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FIG. 7. (Color online) Total average nearest-neighbor degree

ktot/tot
i versus total degree ktot

i in the 2002 snapshot of the real

binary directed ITN (red points), and corresponding average over

the maximum-entropy ensemble with specified out-degrees and

in-degrees (blue solid curve).

in-degrees of all vertices defined in Eqs. (7) and (8), i.e., the

out-degree sequence {kout
i } and the in-degree sequence {kin

i }. In

Appendix C we show how the randomization method enables

in this case to obtain the expectation value 〈X〉 of a property

X across the maximally random ensemble of binary directed

graphs with in-degree and out-degree sequences equal to the

observed ones. When inspecting the properties of the ITN and

its randomized variants, the useful independent variables are

now the values {kout
i } and {kin

i } (or combinations of them), since

they are the special quantities X whose expected value 〈X〉

coincides with the observed one by construction. Again, we

first consider the 2002 snapshot of the completely aggregated

ITN (Secs. IV A and IV B), then track the temporal evolution

of the results backward (Sec. IV C), and finally perform a

disaggregated analysis in Sec. IV D.

A. Directed average nearest-neighbor degrees

We start with the analysis of the binary directed trade

network aggregated over all commodities (c = 0). Therefore,

in the following formulas, we set A ≡ A0. The average

nearest-neighbor degree of a vertex in a directed graph can

be generalized in four ways from its undirected analog. We

thus obtain the following quantities:

kin/in
i ≡

∑

j �=i ajik
in
j

kin
i

=

∑

j �=i

∑

k �=j ajiakj
∑

j �=i aji

, (14)

kin/out
i ≡

∑

j �=i ajik
out
j

kin
i

=

∑

j �=i

∑

k �=j ajiajk
∑

j �=i aji

, (15)

kout/in
i ≡

∑

j �=i aijk
in
j

kout
i

=

∑

j �=i

∑

k �=j aijakj
∑

j �=i aij

, (16)

kout/out
i ≡

∑

j �=i aijk
out
j

kout
i

=

∑

j �=i

∑

k �=j aijajk
∑

j �=i aij

. (17)

In the above expressions, indirect interactions due to the

concatenation of pairs of edges are taken into account

according to their directionality, as clear from the presence of

products of the type aijakl . A fifth possibility is an aggregated

measure based on the total degree ktot
i ≡ kin

i + kout
i of vertices:

k
tot/tot

i ≡

∑

j �=i(aij + aji)k
tot
j

ktot
i

. (18)

(a) (b)

(c) (d)

FIG. 8. (Color online) Directed average nearest-neighbor degrees

versus vertex degrees in the 2002 snapshot of the real binary directed

ITN (red points), and corresponding averages over the maximum-

entropy ensemble with specified out-degrees and in-degrees (blue

solid curves). (a) kin/in
i versus kin

i ; (b) kin/out
i versus kin

i ; (c) kout/in
i versus

kout
i ; (d) kout/out

i versus kout
i .

The latter is a useful one to start with, as it provides a simpler

analog to the undirected quantity knn
i we have already studied.

At the same time, it must be noted that the two quantities

are not trivially related since the total directed properties ktot
i

and ktot/tot
i carry more information than the corresponding

undirected ones ki and knn
i , the difference being the local

reciprocity structure of the network [20]. To see this, note

that ktot
i = ki + k↔

i , where k↔
i ≡

∑

j �=i aijaji (if aij is the

adjacency matrix of the directed network) is the reciprocated
degree of vertex i, defined as the number of bidirectional links

reaching i [20,36,37]. This quantity represents the number

of trade partners, acting simultaneously as importers and

exporters, of country i. Therefore, studying total directed

quantities also allows us to assess whether the reciprocity

structure of the directed network changes the results obtained

in the undirected case (similar considerations apply to the

directed clustering coefficients we introduce below).

In Fig. 7 we plot ktot/tot
i as a function of ktot

i for the

2002 snapshot of the binary directed ITN. The trend shown

does not differ substantially from its undirected counterpart

we observed in Fig. 1. In particular, we obtain a similar

disassortative character of the correlation profile. Importantly,

we find again a good agreement between the empirical quantity

and its expected value 〈ktot/tot
i 〉 under the null model (obtained

as in Appendix C). In Fig. 8 we show a more refined analysis

by considering all the four directed versions of the ANND

defined in Eqs. (14)–(17), as well as their expected values

under the null model (see Appendix C). We immediately see

that all quantities still display a disassortative trend, with

some differences in the ranges of observed values. Again,

all the four empirical behaviors are in striking accordance

with the null model, as the randomized curves (obtained as in

Appendix C) show. This means that both the decreasing trends

and the ranges of values displayed by all quantities are well

reproduced by a collection of random graphs with the same

average in-degrees and out-degrees as the real network.
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FIG. 9. (Color online) Total clustering coefficient ctot
i versus total

degree ktot
i in the 2002 snapshot of the real binary directed ITN

(red points), and corresponding average over the maximum-entropy

ensemble with specified out-degrees and in-degrees (blue solid

curve).

B. Directed clustering coefficients

We now consider the directed counterparts of the clustering

coefficient defined in Eq. (13). Again, there are four possible

generalizations depending on whether the directed triangles

involved are of the inward, outward, cyclic, or middleman
type [38]:

cin
i ≡

∑

j �=i

∑

k �=i,j akiajiajk

kin
i

(

kin
i − 1

) , (19)

cout
i ≡

∑

j �=i

∑

k �=i,j aikajkaij

kout
i

(

kout
i − 1

) , (20)

c
cyc

i ≡

∑

j �=i

∑

k �=i,j aijajkaki

kin
i kout

i − k↔
i

, (21)

cmid
i ≡

∑

j �=i

∑

k �=i,j aikajiajk

kin
i kout

i − k↔
i

. (22)

The directed clustering coefficients are determined by indirect

interactions of length 3 according to their directionality,

appearing as products of the type aijaklamn in the above

formulas. At the same time, since they always focus on three

vertices only, they capture the local occurrence of particular

network motifs [39] of order 3. A fifth aggregated measure,

based on all possible directions, is

ctot
i ≡

∑

j �=i

∑

k �=i,j (aij + aji)(ajk + akj )(aki + aik)

2
[

ktot
i

(

ktot
i − 1

)

− 2k↔
i

] . (23)

As for ktot/tot
i , the latter definition is a good starting point for a

comparison with the undirected case. In Fig. 9 we show ctot
i and

〈ctot
i 〉 (see Appendix C) as a function ktot

i for our usual snapshot.

We see no fundamental difference with respect to Fig. 2. Again,

the randomized quantity does not deviate significantly from the

empirical one.

We now turn to the four directed clustering coefficients

defined in Eqs. (19)–(22). We show these quantities in

Fig. 10 as functions of different combinations of kin
i and kout

i ,

depending on the particular definition. As for the directed

ANND, we observe some variability in the range of observed

clustering values. However, all the quantities are again in

accordance with the expected ones under the null model (see

Appendix C).

(a) (b)

(c) (d)

FIG. 10. (Color online) Directed clustering coefficients versus

vertex degrees in the 2002 snapshot of the real binary directed ITN

(red points), and corresponding averages over the maximum-entropy

ensemble with specified out-degrees and in-degrees (blue solid

curves). (a) cin
i versus kin

i ; (b) cout
i versus kout

i ; (c) c
cyc

i versus kin
i kout

i ;

(d) cmid
i versus kin

i kout
i .

C. Evolution of binary directed properties

We now track the temporal evolution of the above results

by performing, for each year in our time window, an analysis

similar to that reported in Sec. III C for the undirected case.

We start by showing the evolution of the total average

nearest-neighbor degree ktot/tot
i in the four panels of Fig. 11,

where we plot the same properties considered previously for

the undirected ANND in Fig. 3. We find that the temporal

evolution of the average [Fig. 11(a)] and standard deviation

[Fig. 11(b)] of ktot/tot
i is essentially the same as that of the

undirected knn
i , apart from differences in the range of values.

Similarly, the correlation coefficients between ktot/tot
i and ktot

i

[Fig. 11(c)], 〈ktot/tot
i 〉 and 〈ktot

i 〉 = ktot
i [Fig. 11(c)], ktot/tot

i and

〈ktot/tot
i 〉 [Fig. 11(d)] mimic their undirected counterparts,

confirming that the perfect accordance between ktot/tot
i and

〈ktot/tot
i 〉 is stable over time, and that the disassortative trend

of ktot/tot
i as a function of ktot

i (Fig. 7) is always completely

explained by the null model.

We now consider the four directed variants kin/in
i , kin/out

i ,

kout/in
i , kout/out

i . For brevity, for these quantities we show only

the evolution of the average values, which are reported in

Fig. 12. We find that the overall behavior previously reported

for the average of ktot/tot
i [Fig. 11(a)] is not reflected in the

individual trends of the four directed versions of the ANND. In

particular, the averages of kin/in
i [Fig. 12(a)], kin/out

i [Fig. 12(b)],

and kout/out
i [Fig. 12(d)] increase over a downward-shifted

but wider range of values than that of ktot/tot
i , whereas the

average of kout/in
i [Fig. 12(c)] is almost constant in time. The

moderately increasing average of ktot/tot
i is therefore the overall

result of a combination of different trends followed by the

underlying directed quantities, some of these trends being

strongly increasing and some being almost constant. Therefore

we find the important result that there is a substantial loss of
information in passing from the inherently directed quantities
to the undirected or symmetrized ones. Still, when we compare
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(a) (b)

(c) (d)

FIG. 11. (Color online) Temporal evolution of the properties of

the total average nearest-neighbor degree ktot/tot
i in the 1992–2002

snapshots of the real binary directed ITN and of the corresponding null

model with specified out-degrees and in-degrees. (a) Average of ktot/tot
i

across all vertices (red: real data; blue: null model, indistinguishable

from real data). (b) Standard deviation of ktot/tot
i across all vertices

(red: real data; blue: null model, overlapping with real data).

(c) Correlation coefficient between ktot/tot
i and ktot

i (red: real data; blue:

null model, overlapping with real data). (d) Correlation coefficient

between ktot/tot
i and 〈ktot/tot

i 〉. The 95% confidence intervals of all

quantities are represented as vertical bars.

the empirical trends of the directed quantities with the random-

ized ones, we find an almost perfect agreement. This implies

that even the finer structure of directed correlation profiles,

as well as their evolution, is reproduced in great detail by

controlling for the local directed topological properties alone.

The same analysis is shown for the total clustering coef-

ficient ctot
i in Fig. 13, and for the four directed variants cin

i ,

cout
i , c

cyc

i , cmid
i in Fig. 14. Again, we find that the four temporal

trends involving the overall quantity ctot
i (Fig. 13) replicate

what we have found for its undirected counterpart ci (shown

previously in Fig. 4). When we consider the four inherently

directed quantities (Fig. 14), we find that the averages of cin
i

[Fig. 14(a)] and c
cyc

i [Fig. 14(c)] display an increasing trend,

whereas the average of cmid
i [Fig. 14(d)] is constant and that of

cout
i [Fig. 14(b)] is even decreasing. When aggregated, these

different trends give rise to the constant behavior of the average

ctot
i , which is therefore not representative of the four underlying

directed quantities. This also means that, similarly to what we

found for the ANND, there is a substantial loss of information

in passing from the directed to the undirected description of the

binary ITN. However, even the fine-level differences among

the directed clustering patterns are still completely reproduced

by the null model.

D. Commodity-specific binary directed networks

We now study the binary directed ITN when disaggregated

(commodity-specific) representations are considered. We re-

peat the analysis described above by setting A ≡ Ac with

c > 0. For brevity, we report our analysis of the 6 commodities

described in Sec. III D and selected from the top 14 categories

listed in Table I (again, we found similar results for all

(a) (b)

(c) (d)

FIG. 12. (Color online) Averages and their 95% confidence

intervals (across all vertices) of the directed average nearest-neighbor

degrees in the 1992–2002 snapshots of the real binary directed ITN

(red), and corresponding averages over the null model with specified

out-degrees and in-degrees (blue, indistinguishable from real data).

(a) Average of kin/in
i ; (b) average of kin/out

i ; (c) average of kout/in
i ;

(d) average of kout/out
i .

commodities). Together with the aggregated binary directed

ITN already described, these commodity classes form a set of

seven different cases ordered by increasing trade intensity and

level of commodity aggregation.

In Figs. 15 and 16 we show the behavior of the total average

nearest-neighbor degree and total clustering coefficient for

the 2002 snapshots of the six selected commodity-specific

networks. When compared with Figs. 7 and 9, the plots confirm

what we have found in Sec. III D for the binary undirected

case. In particular, the behavior displayed by the ANND and

clustering in the commodity-specific networks becomes less

and less noisy as more intensely traded commodities, and

higher levels of aggregation, are considered. Accordingly, the

agreement between real and randomized networks increases,

but the accordance is already remarkable in commodity-

specific networks, even the sparsest and least aggregated

ones. These results confirm that, irrespective of the level of

commodity resolution and trade volume, the directed degree

sequences completely characterize the topology of the binary

directed representations of the ITN.

V. CONCLUSIONS

All the above results clearly imply that, in the undirected

as well as the directed case, for all the years considered, and

across different commodity classes, the disassortativity and

clustering profiles observed in the real binary ITN arise as

natural outcomes rather than genuine correlations, once the

local topological properties are fixed to their observed values.

Therefore we can conclude that the higher-order patterns

observed in all the binary representations of the ITN, as well

as their temporal evolution, are completely explained by local

constraints alone. This means that the (undirected or directed)

degree sequence of the ITN is maximally informative, since

its knowledge systematically conveys a full picture of the

binary topology of the network. These results have important
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(a) (b)

(c) (d)

FIG. 13. (Color online) Temporal evolution of the properties

of the total clustering coefficient ctot
i in the 1992–2002 snapshots

of the real binary directed ITN and of the corresponding null

model with specified out-degrees and in-degrees. (a) Average of ctot
i

across all vertices (red: real data; blue: null model, indistinguishable

from real data). (b) Standard deviation of ctot
i across all vertices

(red: real data; blue: null model, indistinguishable from real data).

(c) Correlation coefficient between ctot
i and ktot

i (red, upper symbols:

real data; blue, lower symbols: null model). (d) Correlation coefficient

between ctot
i and 〈ctot

i 〉. The 95% confidence intervals of all quantities

are represented as vertical bars.

consequences for economic models of trade. In particular,

they suggest that the ITN topology should become one of

the main focuses of international-trade theories. While most

of the literature concerned with modeling international trade

has focused on the problem of reproducing the magnitude of

nonzero trade volumes (the most important example being

gravity models [40]), much less emphasis has been put on

correctly replicating the binary topology of the ITN, i.e., under-

standing the determinants of the process governing the creation

of a link. However, our results clearly show that the purely

topological structural properties (and in particular the degree

sequence) of the ITN carry a significant amount of information.

A first step in reproducing the ITN topology is the model

in Ref. [3], where the probability pij of a trade relationship

between two countries i and j was modeled as a function

of the GDP values of the countries themselves, and all

the topological properties of the network were successfully

replicated. Interestingly, the form of that function coincides

with the connection probability of the null model considered

here, shown in Appendix B in Eq. (B3), where the role of

the Lagrange multiplier xi associated with ki is played by

the GDP of country i. Indeed, an approximately monotonic

relationship between GDP and degree has been observed

[3], providing a connection between these two results. From

another perspective, the above remark also means that the

accordance between the real ITN as a binary undirected

network and its randomized counterpart is replicated under

an alternative null model, which controls for the empirical

values of the GDP rather than for the degree sequence. The

importance of reproducing the binary topology of trade is

reinforced by the analysis of the ITN as a weighted network

with local constraints, as we show in the following paper [21].

(a) (b)

(c) (d)

FIG. 14. (Color online) Averages and their 95% confidence

intervals (across all vertices) of the directed clustering coefficients

in the 1992–2002 snapshots of the real binary directed ITN (red),

and corresponding averages over the null model with specified

out-degrees and in-degrees (blue, indistinguishable from real data).

(a) cin
i ; (b) cout

i ; (c) c
cyc

i ; (d) cmid
i .
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APPENDIX A: THE RANDOMIZATION METHOD

Given a real network with N vertices, there are various ways

to generate a family of randomized variants of it [22,24–33].

The most popular one is the local rewiring algorithm proposed

by Maslov and Sneppen [31,32]. In this method, one starts

with the real network and generates a series of randomized

graphs by iterating a fundamental rewiring step that preserves

the desired properties. In the binary undirected case, where

one wants to preserve the degree of every vertex, the steps

are as follows: choose two edges, say, (i,j ) and (k,l); rewire

these connections by swapping the end-point vertices and

producing two new candidate edges, say, (i,l) and (k,j ); if

these two new edges are not already present, accept them and

delete the initial ones. After many iterations, this procedure

generates a randomized variant of the original network, and

by repeating this exercise a sufficiently large number of times,

many randomized variants are obtained. By construction, all

these variants have exactly the same degree sequence as

the real-world network, but are otherwise random. In the

directed and/or weighted case, extensions of the rewiring

steps defined above can be introduced, even if with some

caution [5,41]. Maslov and Sneppen’s method allows one to

check whether the enforced properties are partially responsible

for the topological organization of the network. For instance,

one can measure the degree correlations, or the clustering
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(a) (b)

(c) (d)

(e) (f)

FIG. 15. (Color online) Total average nearest-neighbor degree

ktot/tot
i versus total degree ktot

i in the 2002 snapshots of the commodity-

specific (disaggregated) versions of the real binary directed ITN

(red points), and corresponding average over the maximum-entropy

ensemble with specified out-degrees and in-degrees (blue solid

curves). (a) Commodity 93; (b) commodity 09; (c) commodity 39;

(d) commodity 90; (e) commodity 84; (f) aggregation of the top 14

commodities (see Table I for details). From (a) to (f), the intensity of

trade and level of aggregation increases.

coefficient, across the randomized graphs and compare them

with the empirical values measured on the real network. This

method has been applied to various networks, including the

Internet and protein networks [31,32]. Different webs have

been found to be affected in very different ways by local

constraints, making the problem interesting and not solvable

a priori.
The main drawback of the local rewiring algorithm is

its computational requirements. Since the method is entirely

computational, and analytical expressions for its results are not

available, one needs to explicitly generate several randomized

graphs, measure the properties of interest on each of them

(and store their values), and finally perform an average. This

average is an approximation for the actual expectation value

over the entire set of allowed graphs. In order to have a

good approximation, one needs to generate a large number

M of network variants. Thus, the time required to analyze

the impact of local constraints on any structural property is M

times the time required to measure that property on the original

network, plus the time required to perform many rewiring steps

producing each of the M randomized networks. The number of

rewiring steps required to obtain a single randomized network

is O(L), where L is the number of links [22,31,32], and

O(L) = O(N ) for sparse networks while O(L) = O(N2) for

(a) (b)

(c) (d)

(e) (f)

FIG. 16. (Color online) Total clustering coefficient ctot
i versus

total degree ktot
i in the 2002 snapshots of the commodity-specific

(disaggregated) versions of the real binary directed ITN (red points),

and corresponding average over the maximum-entropy ensemble

with specified out-degrees and in-degrees (blue solid curves).

(a) Commodity 93; (b) commodity 09; (c) commodity 39; (d)

commodity 90; (e) commodity 84; (f) aggregation of the top 14

commodities (see Table I for details). From (a) to (f), the intensity of

trade and level of aggregation increases.

dense networks.4 Thus, if the time required to measure a given

topological property on the original network is O(N τ ), the time

required to measure the randomized value of the same property

is O(ML) + O(MN τ ), which is O(MN τ ) as soon as τ � 2.

A recently proposed alternative method, which is remark-

ably faster due to its analytical character, is based on the

maximum-likelihood estimation of maximum-entropy models

of graphs [22]. In this method one first specifies the desired set

of local constraints {Ca}. Second, one writes the analytical

expression for the probability P (G) that, subject to the

constraints {Ca}, maximizes the entropy

S ≡ −
∑

G

P (G) ln P (G), (A1)

where G denotes a particular graph in the ensemble, and P (G)

is the probability of occurrence of that graph. This probability

4It must be noted that the ITN is an unusually dense network.

Density in the aggregate directed network indeed ranges from 0.23 in

year 1992 to 0.56 in year 2001. Also product-specific networks are

relatively dense. Density attains its maximum value for commodity

84 and its minimum for commodity 93. As a result, in the case of the

ITN, applying the local rewiring algorithm computationally would

have been extremely time consuming.
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defines the ensemble featuring the desired properties, and be-

ing maximally random otherwise. Depending on the particular

description adopted, the graphs G can be either binary or

weighted, and either directed or undirected. Accordingly, the

sum in Eq. (A1), and in similar expressions shown later, runs

over all graphs of the type specified. The formal solution to the

entropy maximization problem can be written in terms of the

so-called Hamiltonian H (G), representing the energy (or cost)

associated to a given graph G. The Hamiltonian is defined as

a linear combination of the specified constraints {Ca}:

H (G) ≡
∑

a

θaCa(G), (A2)

where {θa} are free parameters, acting as Lagrange multipliers

controlling the expected values {〈Ca〉} of the constraints across

the ensemble. The notation Ca(G) denotes the particular value

of the quantity Ca when the latter is measured on the graph

G. In terms of H (G), the maximum-entropy graph probability

P (G) can be shown to be

P (G) =
e−H (G)

Z
, (A3)

where the normalizing quantity Z is the partition function,

defined as

Z ≡
∑

G

e−H (G). (A4)

Third, one maximizes the likelihood P (G∗) to obtain the

particular graph G∗, which is the real-world network that

one wants to randomize. This steps fixes the values of the

Lagrange multipliers that finally allow to obtain the numerical

values of the expected topological properties averaged over the

randomized ensemble of graphs. The particular values of the

parameters {θa} that enforce the local constraints, as observed

on the particular real network G∗, are found by maximizing

the log-likelihood

λ ≡ ln P (G∗) = −H (G∗) − ln Z (A5)

to obtain the real network G∗. It can be shown [18] that this is

equivalent to the requirement that the ensemble average 〈Ca〉

of each constraint Ca equals the empirical value measured on

the real network:

〈Ca〉 = Ca(G∗) ∀a. (A6)

Note that we generally adopted a simplified notation by writing

C∗
a (or even only Ca) instead of Ca(G∗) for the empirically

observed values of the constraints (see, e.g., Secs. II A

and II B). Once the parameter values are found, they are in-

serted into the formal expressions yielding the expected value

〈X〉 ≡
∑

G

X(G)P (G) (A7)

of any (higher-order) property of interest X. The quantity

〈X〉 represents the average value of the property X across the

ensemble of random graphs with the same average (across

the ensemble itself) constraints as the real network. In what

follows we provide a detailed account of the expressions for

the randomized properties appearing in our analysis.

Technically, while the local rewiring algorithm generates

a microcanonical ensemble of graphs, containing only those

graphs for which the value of each constraint Ca is exactly

equal to the observed value Ca(G∗), the maximum-likelihood

method generates an expanded grandcanonical ensemble

where all possible graphs with N vertices are present, but

where the ensemble average of each constraint Ca is equal

to the observed value Ca(G∗). One can show that the micro-

canonical approach converges to the grand-canonical one as

the number of microcanonical randomization steps increases

[22]. However, the maximum-likelihood one is significantly

faster. Importantly, enforcing only local constraints implies

that P (G) factorizes as a simple product over pairs of vertices.

This has the nice consequence that the expression for 〈X〉 is

generally only as complicated as that for X. In other words,

after the preliminary maximum-likelihood estimation of the

parameters {θa}, in this method the time required to obtain

the exact expectation value of an O(N τ ) property across the

entire randomized graph ensemble is the same as that required

to measure the same property on the original real network,

i.e., still O(N τ ). Therefore, as compared to the local rewiring

algorithm, which requires a time O(MN τ ), the maximum-

likelihood method is O(M) times faster, for arbitrarily large M .

APPENDIX B: BINARY UNDIRECTED PROPERTIES

In the binary undirected case, each graph G is completely

specified by its (symmetric) Boolean adjacency matrix A. The

randomization method described above proceeds by

(1) Specifying the degree sequence as the constraint:
{Ca} = {ki}. The Hamiltonian therefore reads

H (A) =
∑

i

θiki(A) =
∑

i

∑

j<i

(θi + θj )aij , (B1)

and one can show [42] that this allows to write the graph

probability as

P (A) =
∏

i

∏

j<i

p
aij

ij (1 − pij )1−aij , (B2)

where

pij =
xixj

1 + xixj

(B3)

(with xi ≡ e−θi ) is the probability that a link exists between

vertices i and j in the maximum-entropy ensemble of binary

undirected graphs, subject to specifying a given degree

sequence as the constraint.

(2) Solving the maximum-likelihood equations, by setting

the parameters {xi} to the values that maximize the likelihood

P (A∗) to obtain the real network A∗ [18,22]. These values can

be found as the solution to the following set of N coupled

nonlinear equations [18]:

〈ki〉 =
∑

j �=i

xixj

1 + xixj

= ki(A
∗) ∀i, (B4)

where {ki(A
∗)} is the empirical degree sequence of the real

network A∗. For a detailed analysis about solving such system

see Ref. [43] (for a discussion about the existence of solutions)

and [22] (for a discussion about the convergence of the

algorithm). In principle, dimensionality and memory problems

can arise when N is too large (luckily, this is not the case of

the ITN considered here). In such a case, the system can be

rewritten with a lower number of equation to solve. In fact,

the hidden variables of the vertices with the same degree have
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TABLE II. Expressions for the empirical and expected properties in the binary (undirected and directed) representations of the network.

Empirical undirected properties Expected undirected properties

aij 〈aij 〉 = pij =
xixj

1+xixj

ki =
∑

j �=i aij 〈ki〉 =
∑

j �=i pij

knn
i =

∑

j �=i aij kj

ki
〈knn

i 〉 =

∑

j �=i pij kj

〈ki 〉

ci =

∑

j �=i

∑

k �=i,j aij ajkaki
∑

j �=i

∑

k �=i,j aij aik
〈ci〉 =

∑

j �=i

∑

k �=i,j pij pjkpki
∑

j �=i

∑

k �=i,j pij pik

Empirical directed properties Expected directed properties

aij 〈aij 〉 = pij =
xiyj

1+xiyj

kin
i =

∑

j �=i aji 〈kin
i 〉 =

∑

j �=i pji

kout
i =

∑

j �=i aij 〈kout
i 〉 =

∑

j �=i pij

ktot
i = kin

i + kout
i 〈ktot

i 〉 = 〈kin
i 〉 + 〈kout

i 〉 = ktot
i

k↔
i =

∑

j �=i aijaji 〈k↔
i 〉 =

∑

j �=i pijpji

kin/in
i =

∑

j �=i ajik
in
j

kin
i

〈kin/in
i 〉 =

∑

j �=i pjik
in
j

〈kin
i

〉

kin/out
i =

∑

j �=i ajik
out
j

kin
i

〈kin/out
i 〉 =

∑

j �=i pjik
out
j

〈kin
i

〉

kout/in
i =

∑

j �=i aij kin
j

kout
i

〈kout/in
i 〉 =

∑

j �=i pij kin
j

〈kout
i

〉

kout/out
i =

∑

j �=i aij kout
j

kout
i

〈kout/out
i 〉 =

∑

j �=i pij kout
j

〈kout
i

〉

ktot/tot
i =

∑

j �=i (aij +aji )ktot
j

ktot
i

〈ktot/tot
i 〉 =

∑

j �=i (pij +pji )ktot
j

〈ktot
i

〉

cin
i =

∑

j �=i

∑

k �=i,j ajkajiaki

kin
i

(kin
i

−1)
〈cin

i 〉 =

∑

j �=i

∑

k �=i,j pjkpjipki
∑

j �=i

∑

k �=i,j pjipki

cout
i =

∑

j �=i

∑

k �=i,j aikaij ajk

kout
i

(kout
i

−1)
〈cout

i 〉 =

∑

j �=i

∑

k �=i,j pikpij pjk
∑

j �=i

∑

k �=i,j pij pik

c
cyc

i =

∑

j �=i

∑

k �=i,j aij ajkaki

kin
i

kout
i

−k↔
i

〈c
cyc

i 〉 =

∑

j �=i

∑

k �=i,j pij pjkpki

〈kin
i

〉〈kout
i

〉−
∑

j �=i pij pji

cmid
i =

∑

j �=i

∑

k �=i,j aikajkaji

kin
i

kout
i

−k↔
i

〈cmid
i 〉 =

∑

j �=i

∑

k �=i,j pikpjkpji

kin
i

kout
i

−
∑

j �=i pij pji

ctot
i =

∑

j �=i

∑

k �=i,j (aij +aji )(ajk+akj )(aki+aik )

2

[

ktot
i

(

ktot
i

−1

)

−2k↔
i

] 〈ctot
i 〉 =

∑

j �=i

∑

k �=i,j (pij +pji )(pjk+pkj )(pki+pik )

2

[

∑

j �=i

∑

k �=i,j (pjipki+pij pik )+2(kin
i

kout
i

)−2
∑

j �=i pij pji

]

the same value. So, one can straightforwardly solve the system

only for them [18].

(3) Computing the probability coefficients pij , by inserting

the values {xi} into Eq. (B3), which allows to easily compute

the expectation value 〈X〉 of any topological property X

analytically, without generating the randomized networks

explicitly [22]. With this choice, Eq. (B3) yields the exact value

of the connection probability in the ensemble of randomized

networks with the same average degree sequence as the

empirical one. Note that pij is the probability of a link between

vertex i and vertex j in the grand-canonical ensemble (which

is directly obtained analytically), and not the frequency of such

a link in the corresponding microcanonical ensemble (which

would require the explicit generation of artificially rewired

networks). In Ref. [22], it was shown that the microcanonical

frequency converges to pij asymptotically as the number

of randomization steps in the microcanonical algorithm in-

creases. Equation (B4) shows that, by construction, the degrees

of all vertices are special local quantities whose expected

and empirical values are exactly equal: 〈ki〉 = ki . It follows

that the pij coefficients can be calculated by using any of

the networks in the corresponding microcanonical ensemble

with constrained degree sequence: The expected values of the

high-order properties will be the same.

(4) Computing the expectation values of higher-order topo-
logical properties, as in Table II. The expressions are derived

exploiting the fact that 〈aij 〉 = pij , and that different pairs of

vertices are statistically independent, which implies 〈aijakl〉 =

pijpkl if (i − j ) and (k − l) are distinct pairs of vertices,

whereas 〈aijakl〉 = 〈a2
ij 〉 = 〈aij 〉 = pij if (i − j ) and (k − l)

are the same pair of vertices. Also, the expected value of the

ratio of two quantities is approximated with the ratio of the

expected values: 〈n/d〉 ≈ 〈n〉/〈d〉.

APPENDIX C: BINARY DIRECTED PROPERTIES

In the binary directed case, the above results can be

generalized as follows. Each graph G is completely specified

by its Boolean adjacency matrix A, which now is in general not

symmetric. The maximum-likelihood randomization method

[22] proceeds in this case by

(1) Specifying both the in-degree and the out-degree
sequences as the constraints: {Ca} = {kin

i ,kout
i }. The

Hamiltonian takes the form

H (A) =
∑

i

[

θ in
i kin

i (A) + θout
i kout

i (A)
]

=
∑

i

∑

j �=i

(

θ in
i + θout

j

)

aij . (C1)
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The above choice leads to the graph probability [22]

P (A) =
∏

i

∏

j �=i

p
aij

ij (1 − pij )1−aij , (C2)

where

pij =
xiyj

1 + xiyj

(C3)

(with xi ≡ e−θout
i and yi ≡ e−θ in

i ) is the probability that a link

exists from vertex i to vertex j in the maximum-entropy

ensemble of binary directed graphs with specified in- and

out-degree sequences.

(2) Solving the maximum-likelihood equations, by setting

the parameters {xi} and {yi} to the values that maximize the

likelihood P (A∗) to obtain the real network A∗ [18,22]. These

values can be found as the solution to the following set of 2N

coupled nonlinear equations [18]:

〈

kout
i

〉

=
∑

j �=i

xiyj

1 + xiyj

= kout
i (A∗) ∀i, (C4)

〈

kin
i

〉

=
∑

j �=i

xjyi

1 + xjyi

= kin
i (A∗) ∀i, (C5)

where {kin
i (A∗)} and {kout

i (A∗)} are the empirical degree

sequences of the real network A∗. Again, for a detailed analysis

about solving such system see Refs. [22,43].

(3) Computing the probability coefficients pij , by inserting

the values {xi} and {yi} into Eq. (C3), which allows us to

easily compute the expectation value 〈X〉 of any topological

property X analytically, without generating the randomized

networks explicitly [22]. So Eq. (C3) yields the exact value

of the connection probability in the ensemble of randomized

directed graphs with the same average degree sequences as the

empirical ones, and Eqs. (C4)–(C5) show that, by construction,

the in-degrees and out-degrees of all vertices are special local

quantities whose expected and empirical values are exactly

equal: 〈kin
i 〉 = kin

i and 〈kout
i 〉 = kout

i . It follows that the pij

coefficients can be calculated by using any of the networks in

the corresponding microcanonical ensemble with constrained

in-degree and out-degree sequences: The expected values of

the high-order properties will be the same.

(4) Computing the expectation values of the higher-order
topological properties, as in Table II, by using the same

prescription as in the undirected case plus the additional care

that now (i − j ) and (j − i) are different (and statistically

independent) directed pairs of vertices. Therefore 〈aijaji〉 =

pijpji .
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