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SOoMMAIRE. — Dans cet article on étudie les vibrations forcées dune
corde soumise a ’action de forces aléatoires extérieures. Dans le cas d’une
corde dont la longueur est infinie on étudie les vibrations stimulées soit
par un bruit blanc plane soit par d’autres forces stationnaires ou non. Au
moyen d’un taux des croisements en montant, conditionné et non condi-
tionné on étudie la forme de la corde a chaque instant dans le cas ou les
vibrations sont dues a la rumeur blanche. On analyse aussi les vibrations
lorsque les forces appliquées a la corde ont la forme F(x, t) = W(x)Z(¢),
W(x) étant une rumeur blanche 4 une dimension et Z(t) étant un processus
stationnaire ou un processus de Wiener. En analysant les vibrations d’une
corde infinie forcée par des forces appliquées 4 un point isolé on donne des
bornes a la probabilité qu’il y ait un point de la corde au-dessus d’un niveau
quelconque.

Enfin on analyse les vibrations d’une corde de longueur finie stimulées
par une rumeur blanche plane. On voit que chaque point de la corde
bouge comme la superposition de deux processus aléatoires indépendantes
dont le premier est formé par des ondes indépendantes avec amplitude a
distribution de Rayleigh et la phase distribuée uniformément dans (0, 27).
On donne des bornes supérieures a la probabilité qu'un point dépasse un
niveau quelconque dans un intervalle (0, t) et que la corde ait des points
au-dessus d’un niveau arbitraire au temps ¢.
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368 E. ORSINGHER

1. INTRODUCTION

This paper deals with vibrations of a perfectly flexible string forced by
random forces F(x, t). These are supposed to be applied either at all points
x of the string or concentrated at some fixed point a.

The case of an infinite string vibrating under the action of diffused
random forces is investigated when F(x, t) is a plane gaussian white noise
and when F(x, t) = Z(t)W(x) with Z(t) being an univariate white noise
and W(x) a stationary gaussian process independent of Z(¢).

It is proved that when F(x, t) is a white noise the string has at any time ¢
the form of an almost surely continuous stationary process.

By means of a suitably defined upcrossing rate it is shown that increasingly
high levels are upcrossed with ever decreasing frequency and that displace-
ments of the string tend to amplify as time passes.

In the case that the acting force is F(x, t) = Z(t)W(x) with W(x) being
a white noise and Z(t) a Wiener process it is shown that the string has the
structure of a stationary process which is less correlated than in the plane
white noise case.

This means that impulses of increasing amplitude make the string swing
more and more abruptly.

Section 3 deals with vibrations of an infinite string which are forced
at some point a by a stochastic force. It is seen that two symmetrical random
wave trains travel the string in opposite directions making progressively
further points vibrate.

If the applied force is a white noise the distribution of the instantaneous
maximal displacement of the string is computed. Analogously the distri-
bution of the maximal displacement undergone by each point x in any
time span (0, t) is evaluated.

The case of a stationary, correlated force is also considered. In particular,

if vibrations are excited by an Ornstein-Uhlenbeck force a lower bound
for the maximal displacement is determined.

The last section is concerned with the case of a finite-length string forced
by diffused white noise impulses.

The displacement of point x at time ¢, denoted throughout by w(x, 1), is
given as a random series with independent gaussian coefficients.

It is seen that the string takes the form of almost surely continuous
processes and that each point moves describing continuous sample paths.

Some upper bound for the probability of the string to exceed any given
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RANDOMLY FORCED VIBRATIONS OF A STRING 369

level is evaluated and is seen to depend essentially on the product Lt, L
being the length and t the time elapsed since vibrations began.

A decomposition of the random process u(x, t), x assumed a fixed point,
into two independent gaussian processes is derived.

The first component of motion is made up by a series of cosine waves
with random amplitude and phase.

The second one is a process which starts off at the last nodal time before ¢,
that is at the last time of the form T = kL/c (k = 1, 2, ...). By ¢ we denote
the velocity at which the wave trains run the string and depending on the
string’s tension and density.

This additional term can be interpreted as the disturbance produced on
vibrations by overlapping waves running in opposite directions.

Thanks to the above representation the exact distribution of the maximal
displacement at nodal times is determined.

If the finite length string is forced to vibrate by a concentrated white
noise it is seen that u(x, t) is given by a series of dependent sine waves.

The case of a finite string vibrating under white noise impulses is tackled
by Cabana [2] by means of completely different techniques than those
of this paper.

Studying physical systems by means of stochastic arguments dates back
to the time when brownian motion, Langevin equation and shot noise
were first introduced.

The idea underlying this paper is that whenever random forces are
assumed classical mathematical physics is still a valid basis for stochastic
analysis of phenomena.

2. RANDOM VIBRATIONS OF AN INFINITE STRING

A perfectly flexible string of unit density directed along the x axis in
equilibrium position is considered.

It is kept stretched by a constant tension T and is forced to vibrate
perpendicularly to the x axis under the action of a randomly varying
external force F(x, t).

It is assumed that vibrations take place in a single plane.

If u(x, t) denotes the displacement of point x at time ¢ it is well-known
that it satisfies the following nonhomogeneous wave equation:

Pu  , u
?zc 6—x2+F(x’t) —w<x<+4+ow, t>0
and where ¢ = ﬁ

(1)
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370 E. ORSINGHER

Assuming the initial conditions:
0
@ W, 0) = = (x, 0) = 0

the solution of (1) can be written in the following manner:

(3) u(x, t) = th OOG(x, t;y, SF(y, s)dyds

0J-w

G(x, t; y, s) being the Green function of the initial-value problem made up
by equation (1) and conditions (2).

The function G(x, t; y, s) is the solution of the problem considered when
at time s and at a point y an impulse of unit intensity is applied. If the
external force is a plane, stationary, gaussian white noise we are lead to
consider by analogy with (3) the following random field:

(39 u(x, t) = j J Glx, £3 y, 5)dp(y, s)

0J—w

The process (3') can be interpreted as the displacement of the string
receiving diffused white noise impulses.
The function G(x, t; y,s) being:

1
G(x,t;y,s)=2—c X—dt—s)<y<x+cdt—s), 0<s<t
0 otherwise

the process (3") can receive the following explicit form:

1 1 ~cstx+tet
) ulx, t) = ZJ j dap(y, s)

0 Jestx—ct

The random field (4) is a plane Wiener integral. A rigorous definition
of such integrals along with their properties can be found in Cabana [/].

We begin by evaluating the covariance of (4).

Let (x4, y;) be a whatever point of the half-strip { x,7:t>0, —co<x< + 00 }
and let the characteristic lines emanating from (x; + ct,, 0)and (x; — ct,, 0)
be drawn.

The upper half-plane is thus subdivided into six regions which will be
denoted as in figure 1.
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RANDOMLY FORCED VIBRATIONS OF A STRING 371

III

II

(X21t2)

Vi

A4

(xl-ctl,o)

o

(Xl*Ctl,O)
Fig. 1

Take now a point (x,, t,) and evaluate Eu(x,, t,)u(x,, t,) when (x,, t,)
is in any of the six regions indicated.

As an example of the calculations involved we suppose (x,, t,) to belong
to region IL

Since Edf(x, t)df(y, s) = 1 iff x =y and ¢t = s and is zero otherwise
it results:

ty "x1tcty—ct ty) "x2+cta—cs
(5)  Eu(xy, tyulxy,ty) = a3 {J f Blx, t)f J dﬁ(y,s)}
(2 ) Xy — ct1+ct x2—ctz+cs

Tty x1+tcty—ct 12 Px2tctz—cs
E(df(x, t)df(y,
(26)2 {J' J;x Ct1+ctJ0 J;Z‘ctz‘*'cs ( ‘B(x ) ﬁ(y S))}

X1—X t+t
1 2+1 2 cttxy oty
— dt dx
(2(3) 0 ct+Xx2—cty
1
16¢3

{xr— 23 + oty + 1) }?
Analogously when (x,, t,) is in region III one obtains:

1 2
(6) Eu(x,, t)ulx,, t,) = T6c® {0 = x) + ety +1))

With simpler calculations the following result can be obtained:

t3 . .
— when (x,, t,) is in region I
M Buley s, 1) = ff
\Zl when (x,, t,) is in region V
¢
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372 E. ORSINGHER

Finally the covariance is zero when (x,, t,) belongs to one of the two
remaining regions.

We start analysing the shape of the vibrating string at any time ¢ > 0.

By setting t; = t, =t in the above formulae one obtains:

Cov {u(xy, ), u(x, 1)) =%C3{20t—|x1—x2|}2 it x; —x, | < 2ct

2

Var u(x,, t) = Var u(x,, t) = 1
c

Cov {ulxy, hulxy, 1) } (1 Cxiex |>2

®) v =) = — e det

if [xi—x,|<2ct
At a fixed time t = t, u(x, t) is therefore a gaussian stationary process
with autocorrelation function (8).

Gaussianity follows from the hypothesis that the external force is a
gaussian white noise.

Formula (8) shows that two points of the string begin to be correlated
when the initial wave train has run half their distance.

We show now that the process u(x, ) has continuous sample paths with
probability one.

We need the following classical theorem due to Kolmogorov (Cramer
and Leadbetter, p. 63).

THeOREM 1. — Let X(t) be a stochastic process defined for te(a, b).
Suppose that for all (¢, t + h) belonging to (a, b) it results that:

©) Prob {|X(t + h) — X(1)| > g(h) } < q(h)

where g(h) and g(h) are even, non decreasing functions of k > 0 such that:

(10) Zg@_") <+ and Zznq(z—") < +

n=1 n=1

In such conditions there always exist an equivalent process Y(¢) having
continuous sample paths with probability one.

COROLLARY 1. — The gaussian stationary process u(x, t), having zero
12

. . . - t .
mean, autocorrelation function (8), variance Eu?(x, t) = o admits an
¢

equivalent process whose sample paths are almost surely continuous.
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RANDOMLY FORCED VIBRATIONS OF A STRING 373

Proof. — Let

-t
6% = Bu®(x, t) = —

- 4c
and observe that being:

rth)y=1 L +— " h [ h 2ct
=1—-— w <
el iyyer enever | c
it results that: L
1 —rh)< u
ct

On supposing for semplicity that h > 0 one obtains:

Prob {|u(x + h, t) — u(x, 1)| = g(h) }

rz I e e P e e
exXpy — — rdw < —— expy — — pdw
2l e 2 2n cg(h)\/% 2

a\ 2(1 —r(h))

x W2 2
exp { — —} dw A=c |-
Ag(h) 2

2 A2 Zh
f {_ g()}zq(h)

3{

<——C

Ag(h) /2m

1
Let g(h) = |h|°with 0 < a < > The function g(h)

1 J2 L, A?
h = — - hz — h2a—1
=3 ﬁ P { 2 }

can straightforwardly be seen to be increasing for & > 0. By denoting by

B 1 /2 has:
—A ; one has:
o o) L A2
(11) Zznq(z—n) = BZz (z+ )exp { _ 72—,.(2{;»1)}
1

n= n=1

By the ratio convergence criterion one has:

ot 1)(3+4) exp{ _ 1A22—(n+ 1)(2a—1)}
2
lim 1
n— 2n(7+a) exp { _ 1A22—n(2a“1)}
2

Lig 1
= lim 22" exp { BT 1)} =0 being2a—1<0

Vol. XVIII, n° 4-1982.



374 E. ORSINGHER

s

Therefore series (11) converges and since Zg(Z_") = 22""‘ < +w
the corollary follows. = =

Remark. — With few changes in the above proof it can be seen that any
stationary gaussian process whose correlation function has the form
r(hy=1—a|hl¥ + o(hyas h -» 0and 0 < f§ < 2 has continuous sample
paths with probability one (cf. [6]).

To gain further insight into the shape of the vibrating string we give the
following definition.

DEFINITION 1. — We define as upcrossing rate of level v by the stationary
process u(x, t) the function u(v) given below:

0 = i PR <otk D > 0

0+ ﬁ

Since definition (12) is an unusual one for the upcrossing rate it needs
some remarks. The process u(x, t) having correlation function (8) is not
differentiable (see Cramer and Leadbetter [3] page 67 for a discussion on
differentiability) and its sample paths appear as extremely jagged curves.

Evaluating the upcrossing rate by the usual Rice’s formula is therefore
impossible, but measuring somehow the upcrossing frequency is anyway
of interest.

Since the probability in formula (12) goes to zero as \/fz definition (12)
becomes the natural one to obtain a sensible result.

The usual definition would give an infinite upcrossing frequency of
any level, which corresponds to the fact that the string has locally a very
kinky form, because of white noise impulses.

We evaluate now the following probability:

v

Prob{u(x,f)<v,u(x+h,f)>v}=J

J\ f(x’ Vs ny)dXdy

where:
1 x%02 + y*oZ = 2xyo,, }
X, Y, 0,) = ————""—€xp<{ —
/53, 02) 2n/olol — a2, p{ Aozo; — 03y)

0. =E{ux 1), ulx + h 1)} o7 = o2 = Eu’(u, 1)

Annales de I'Institut Henri Poincaré-Section B



RANDOMLY FORCED VIBRATIONS OF A STRING 375

Following Cramer and Leadbetter [3] page 26 one obtains:

(13) Prob {u(x, 1) <wv, u(x + h, 1) > v}
= Prob { u(x, t) < v} Prob {u(x + h, t) > v}

| el
o 2m/(a2)* — x? P 0:+x
= Prob {u(x, 1) < v} Prob {u(x + h, 1) > v}
r(h) dx UZ
Tl
o 2m/1 — x? o1 + x)

_ 0y Bulx, u(x + h, 1)
e eS|

where:

The upcrossing rate (12) is therefore:

(14) p(v) =
Prob { u(x, ) < v} Prob {u(x + h, t) > v}

r(h) dx v?
_L /= 2 _xze"p{ ol +x)}
h>0+ \/ﬁ
r'(h) { v? }
2n /1 — r?(h) ol + r(h)
m

h—-0+ 1

2h

_ 1 h vh v?
= lim — |1 - —]————exp{ — 55—
"0+ et 2ct e r2(h) az(1 + r(h)

1 { v? } 1 { 2020}
= €eXp{ —=—— (= ———¢exp<{ —
7/ 2ct 202 /2ct t

Result (14) is somehow similar to Rice’s expression for the upcrossing
rate of gaussian stationary processes having autocorrelation function

1
r(h)=1—§och2+0(h) as h —» 0 (x> 0)

Formula (14) states that the upcrossing frequency decreases as level v
increases.

Vol. XVIII, n° 4-1982.



376 E. ORSINGHER

We give now a conditional zero-crossing rate which we denote by
#(0]0) and is defined as follows:

Prob {u(x, t) < 0, u(x + h, 1) > 0| u(0, 1) = 0}
N

The choice of the conditioning point is immaterial (not of the condi-
tioning level) and the origin is taken for convenience.

Evaluation of the probability in (15) requires some adjustments to the
framework of calculations hinted above in the unconditional case.

We give therefore the result omitting the proof.

(1) §010) = lim

(16) Prob {u(x, 1) <0, u(x + h, ) > 0|u(0, 1) =0}
1 1 r(h) — r(x)r(x + h)

= — — — arcsin

4 2z JA =)L — 2(x + h)

A quick check of result (16) may be obtained by setting = 0 in (13)
and replacing the correlation coefficient r(h) by the correlation coefficient
of the 1. v. (u(x, t), u(x + h, t)| w0, t) = 0).

In the particular case where x = ¢t and x + h = 2ct formula (16) gives:

_ - - 1 1
Prob {u(x, t) < 0, u(x + h,t) > 0|u(0,7)=0} =L—‘——arcsinL
n

T

while in the unconditional case it results:
- _ 1 1 1
Prob {u(x, 1) < 0, u(x + h,t) > 0} =~ — — arcsin -
4 2n 4

After some manipulations in (16) one gets:
1
Jh
V1= ) = P+ ) = () + 2 + h) 1
S =21 — rXx + h)) Jh

(17) sin {27 Prob {u(x, ) < O, u(x + h, t) > 0|u(0, 1) =0} }

2h .
and since r*(h) = 1 — — + o(h) by passing to the limit as h —» 0+ it
turns out that: c

i sin { 2 Prob { u(x, t) < 0, u(x + h, t) > 0|u(0, ) =0} }
im

h—>0+
Vi T
TNl — )
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RANDOMLY FORCED VIBRATIONS OF A STRING 377

For small x sin x ~ x and therefore the above result may be given in
the following form:

. Prob{u(x,f)<0,u(x+h,f)>0|u(0,f)=0}
(13) hl_lgl+ \/ﬁ 1

ny/2et(1 — r3(x))

16
When x = ct (18) gives (0 |0) = G u#(0) that is the information that

u(0, t) = 0 makes the zero upcrossing rate a bit higher than the unconditional
one at x = ct.

Both (14) and (18) show that the zero upcrossing frequency decreases
as ¢ increases, that is an extremely stretched string tends to have a smooth
shape.

Let us now draw our attention on a fixed point of the string, say X.

The process u(x, t) denotes the displacement of point X as time passes.
Its covariance and correlation functions are:

L.
Cov { (X, ty), u(X, t) } = —min {3, 5 }
4c
(19)
- - min {13, 13 }
r(tla t2) = COIT {u(xa t1)9 u(—x9 t2)} =
1ty

The process u(X, t) is therefore a non-stationary one which is mean-
square continuous but not mean-square differentiable. Almost sure conti-
nuity may easily be proved as in corollary one. It is remarkable that the
correlation of displacements at a whatever point X depends only on time
elapsed.

The assumption that vibrations of the string are forced by plane white
noise may appear to be somehow unrealistic. The analysis of vibrations
excited by other types of stochastic forces becomes however extremely
complex.

Take, for example, the case when F(x, t) = Z(t)W(x), where W(x) is
an univariate white noise and Z(t) is a stationary zero-mean, unit variance
gaussian process independent of W(x).

Since W(x) is the formal derivative of a brownian motion f(x), the random
field (4) can be written:

1 t —cstx+ct
(20) u(x, t) = % L Z(s)dsf dp(y)

s+x—ct

Vol. XVIII, n* 4-1982.



378 E. ORSINGHER

Let us now compute the autocovariance function of (20) when (x;, t;)
is chosen as in figure 1 and (x,, ¢,) is a point of region IIL.

(21)  EBu(xy, t))u(x,, t,)

1 151 12 —ct+xq+tcty —cstxy+ety
- —ZJ J EZ(t)Z(s)dtds{ J J E(dB(x)dB( y)}
(26) 0 JO ct+x5—cty cs+x2—cta

For given t and s the inner integral in (21) is non-zero if and only if the

intervals {ct+x; —cty, —ct+x; +ct;) and (cs+ x, — ¢ty — €S+ X5 + Ct5)
overlap.

. . - P C -
This requires that max (t, s) < {xl 3 2 + -2 5 2 } as a quick inspec-
tion on figure 1 shows. ¢

Denoting by #(h) = EZ(t)Z(t + h) one gets from (21):

Eu(x,, tu(x,, t5)

xy=xp 111 X1—X2 Ly 1o
2c

1 2¢ 2 )
= Ht—s)min ( x; —x, +cfy +¢t
WL O (6= 9y min {x, — 2+ clty + 1)
— 2¢t, x1 — Xy + (ty + t5) — 2¢s } dtds
2 x12—6x2+2142~12 x12—6X2+I1+t2
= ——ZJ dt (X1 — Xp + clty + 15} — 2cs)H(t — $)ds
20)" Jo A

Xy — Xy t1+t2
+

To make notations less cumbersome put now: A = 5 5
c

so that Eu(x,, t,)u(x,, t,) becomes:
1 A (A

(22) Eu(xy, tu(x,, t,) = -J J Mt — s(A — s)dsdt
CJo J

1 {° 1A

= —J r(s)NA + s)*ds = *J r(s)A — s)%ds
2¢ —A 2¢ [

No substantial change in (22) is required when (x,, t,) belongs to region 111

so that we can write down explicitely the covariance function of (20) when

(x5, t,) is either a point of region III or II without additional calculations.

ittty |x1=x
1 : = ti+t  |x—x,| 2
(23) EBu(xy, tulx,, ty) = = r(s) — — s ds
0 2 2¢

2¢

Take now t, =t, =t and | x; — x, | < 2¢t. Formula (23) gives in this

case:
_ 2
r(s)(t - ——~‘xl utl — s> ds
2¢

Annales de ' Institut Henri Poincaré-Section B
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RANDOMLY FORCED VIBRATIONS OF A STRING 379

and therefore the process u(x, t), when ¢ is a fixed time, is stationary with
covariance function (24).
If (x5, t,) is a point of region I it readily turns out that:

(25) Eu(x,, tu(x,, ty) = % J ’ JIZ(ZC) min { t,—t,t,—s } EZ(t)Z(s)dtds
o) Jo Jo

1 (2 [t 2
= —f j "t — s\t, — s)dsdt = 1 J r(s)(ty ~ 5)*ds
cJo ) 2c [+}

The shape of the string is stationary even if the process Z(t) is not.

Assume, for example, Z(t) to be a Wiener process with unit variance
parameter.

The covariance function Eu(x,, t)u(x,, t) when |x, — x,| < 2ct is:

(26)  Eu(xy, thu(x,, 1)
,,]%l “1517?—2[

1 .
= 'ZJ J. EZ(w)Z(s) min { 2ct — 2¢s — | x — x, |,
(2¢)* Jo 0
2ct — 2ew — | xy — X, | } dwds
,_%l ,_LG_z—cﬁl

= %J min (s, W)J {2ct — 2ew — | x; — X, | } dwds
C (4] N

_1X1— X2
1= L2 N S I |x1—x21>4
== — S - = = - e
2¢ Jo 2¢ 24c 2¢

The variance is:

(27) Eu’(x, 1) ds mm { s, w}min {2¢(t — ), 2c(t — w) } dw

2 t t 1 t [4
=~ |ds| s(t — wydw = — | s(t — s)%ds = —
2cL S£ St wrdw = o JOS( s = o4

If we denote by r,(| x; — x, |, t) the autocorrelation function of u(x, t)

9p(x)

at time ¢ when F(x, t) = B(t)— p being a Wiener process we have:

N )

Eu?(x, t) 2ct
lf |x1—x2|S26‘t

Vol. XVIII, n° 4-1982.



380 E. ORSINGHER

Comparing (28) with (8) it can be seen that two points of the string | x; — x|

op(x)

units apart are less correlated in the case when F(x, t) = f(t) —— than
. . . Ox
when F(x, t) is a plane white noise.

An intuitive explanation of the above result is the following. On each
point of the string acts a force whose intensity has an increasing variance

with time. Therefore the impulses make the string swing more and more
abruptly.

3. RANDOM VIBRATIONS EXCITED
BY A CONCENTRATED FORCE

Suppose now that the random force F(x, t) is applied at an isolated point
a of the infinite string.

Writing F(y, s) = P(a, s)0(y — a), 6(y — a) being the Dirac delta function
and substituting in (3) one obtains:

(29) u(x,t)= jt J wG(x, t;y,5)P(a, s)0(y—a)dyds= th(x, t;a,s)P(a, s)ds

0J—w 0

The explicit form of G(x, t; a, 5) is:

1 —
Glx, t,a,8) =— for 0<s<t—|x a4
2¢ ¢
0 otherwise
and therefore formula (29) becomes:
,_lx—a
1 ¢ |x —a
(30) wx, t) = — P(a, s)ds t >
2¢ Jo c

We firstly suppose P(q, s) to be a stationary gaussian process with zero
mean and unit variance.

Formula (30) shows that the displacement at a point x begins to be
different from zero as soon as an impulse started at ¢t = 0 from x = a
has travelled the distance | x — a|.

To determine the covariance function of field (30) let us draw the characte-
ristic lines emanating from point (a, 0) of the (x, t) plane (see figure 2 below).
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(x1,t1)

l\ (x2,t2)

/ N A
111 p e 11
4 NS N

Fig. 2

If (x,,t,) is chosen in region I we evaluate Eu(x,, t;)u(x,, t;) when
(x,, t,) is any point of the (x, t) plane. If (x,, ,) is also a point belonging
to region I it results:

1 - xlc—a s — xzc—a
(31) Eu(xy, tyulxy, t) = EP(a, s)P(a, z)dsdz
(2¢)” Jo 0
if t1_|x1_a|2t2_lxz_a|
¢ ¢
1 1o — xzc—a 1 — xzc—a
=__ EP(a, s)P(a, z)dsdz
il L Eeones
ts— xz;a 11— xlc—a
+ J dsj EP(a, s)P(a, z)dz}
0 ta— xzc—a
X2—a

1 S |x —al
:(2_)” ’“"(WT ‘“)d”

PURE> bl | R x1—a
< <

T j J r(s — z)dsdz}
0 _Ix2—a

12 P
| x al .
In the case where t, — ——— <, — ——— a straightforward
¢

change in the integrals gives the covariance Eu(x,, t)u(x;, ty).
As a particular example we assume P(q, s) to be an Ornstein-Uhlenbeck
process with covariance function r(h) =exp { — [h|}.
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In this particular case the random field (30) can be written as follows:

XxX—a

(N . |x —al
(32) u(x, t)y = — e *Ble**)ds if >

2¢ Jo c

0 otherwise

B(s) denotes a Wiener process with zero mean and unit variance parameter
A lower bound for the probability of { max u(x, z) < o} is easily

<z<t

determined by observing that this event is implied by:

ﬁ(ezs) < 2co

max
0<s<r—-lx=dl { < |x — al)}
a 1 —expy — |t —
c

Therefore by known results on the Wiener process it follows that:

2
(33) Prob| max fe¥) < «

0<s<e—1x24l { < |x—a|>}
c I —exp< -t —
¢
=2 Prob Osﬁ<exp{2<t— |x—a|>}>£ 2o
e ()

1

anexp{ —(t— x;a )}

, poelEE
=— €Xpy — 5 ¢dz < Prob{ max u(x,z)<a}
27 Jo 2 bxzal .oy

By similar arguments one obtains a lower bound for the

-
i
i
|
“
!
=

Prob { max u(x ) <o}

Since:
- 2s
(34) a*ctgl)?'sxa-kcl (x t) - On;lezl)él 2CJ‘ ﬁ(e
it results:

(35 Prob{ max u(x,f)<a } = Prob { max ua, z) < o}

a-ct<x<a+tct

2cqet
2co l1-e-t 22
> Prob{ max f(e** _Z
{ 0<z<tﬁ(e ) 1 — e-t} \/—J exp{ 2 }dz
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Equality {34) can be justified by observing that at time ¢ all points of
the interval (a — ct, a + ct) have a non-zero displacement and their
domain of influence intersects a segment of the line x = a (see figure 2).
Each segment corresponds to the displacement that point a has undergone
in some instant of (0, 7).

Let us now consider the case where P(q, s) is a gaussian white noise,

ap(s)

that is P(a, s) = o where f(s) is as usual a Wiener process.
S

The field (30) can be written as a Wiener process.

X—a

1 (7 - -
(36)u(x,t):2‘CL dﬁ(s)=-21~c,8<t—|xca|> for 1>17 ¢

4

0 otherwise

Formula (36) shows that a point x vibrates as a delayed Wiener process.
From (36) it results:

Eu(xl’ t)u(xy, 1) = %Eﬁ<t1 — M>ﬂ<tz - M)
(2¢) ¢ -

1 . x; —al | x; —al
= ——mn{t ———— 1, — ———

(2¢) c c
and:
1 |x, — al
Eu’(x;, t) = 202 <t1 - p >
If min{t — X —d |, t — %2 I} > 0 we can therefore write:
c c

c C

N

. Xy —a Xq —da
mm{t_ll I’t_lz I}

(37) Corr {u(x,,1), u(x,,1) } =r{xy,x;) =

i X, —a X, —
Let now a point x; be fixed. If X1 | < X2 —d formula (37) gives:
¢ ¢
1
_ 2
;- |x; —al
Corr { u(x, t), u(x,, 1) } = ¢
|x; —al
l’ ——
¢
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o

[_|X1 —al
Corr { u(xy, t), u(xy, 1)} = T C—al
fot2 T

c

We evidentiate the above results in figure 3 where the correlation
function (37) is depicted when it is assumed that x, is a fixed point.

-

r{%y,%2)

a-ct - x1+2a a X3 arct

Fig. 3

Figure 3 shows that two symmetrical wave trains are stimulated by the
force acting at point a. The stochastic process u(x, t) is therefore symmetric
with respect to point a at any time ¢. Two points, 2| x; — a| units afar,

are therefore perfectly correlated.
If a white noise acts at point g, the representation (36) makes possible

further considerations.
Since:
B(z)
{ a-ct?)??a*-ct u(x t) } o { On<lzzl)£(t E‘

it can be written that:

(38) Prob { max  ux,t)>a} = Prob{ max @ > oc}

—ct<x<a+tet O<z<t 2C
ﬁ() } w?
= 2 Prob { > o ex d
2C A /27‘[ Zm P "
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If x is a given point of the string it can be written also:

(39) Prob{ max u(x,s)> a} = Prob max Fs) > o
E:JlsSSt Osssth—:‘il 2¢

|x —al 2 [ )
=2Prob{ﬁ<t— >>2coc}=—J‘ { W}
c on) 2 CXP{— 5 pdw
S 2

c

It is possible to analyse the case where a nonstationary force acts at
point a as was done in the previous section with nonconcentrated forces.
We drop this subject for the sake of brevity.

4. THE FINITE STRING

This section is concerned with vibrations of a finite string of length L
stirred by plane white noise.
We are therefore considering the solution of the boundary-value problem:

0*u ou
7= c? w2t F(x, t)
ou
(40) u(x, 0) = Fr (x,00=0

u0,t)=wl,t)=0
The string is supposed at rest at time ¢ = 0 and fixed at both extremities.

As in section 2 the solution of the boundary-value problem (40) can be
written:

41) wx, t) = f J Glx, t; z, 5)F(z, s)ydzds
0 Jo

By physical analogy with the deterministic case we are lead to consider
the following random field when vibrations are forced by plane white
noise:

t ("L
419 ux, t) = j J Glx, t; z, s)df(z, s)
0.J0
The explicit form of the Green function G(x, t; z, s) is:
Glx. t ) C 2 . « ) si nmz . nmNXx nne
; = s — §) sin — sin — = —
(x, t;z, s Lo, n w, s I si T w, 3

n=1
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as an application of the finite Fourier transform to (40) will show (for
details see for example [§] page 149).

Since the Green function can be split up by elementary trigonometric

1 n
formulae into four series of the form z —sin % which are the Fourier
n
n=1
expansions of line functions of w, the integral and the series in (41") can be
exchanged by theorem 13.2 page 107 of [8]. The process u(x, t) can thus

be reset as follows:

N . nmx
(42) u(x, t) = ZTn(t) sin T
n=1
where:
2 (1 . nnz
(43) T,(t) = sin w,(t — s) sin — df(s, z)
L(,L),l 0 J0 L

We begin our analysis by evaluating the covariances of process (43).

(44) ET[(t + k)T, (1)

4 E{ T sin ot + k= 9sin ™ apts, [ [ sin e
— w —_ —_— pu—
Do, ol o 5) sin L B(s, z) sin w,(t — y)

0J0

. omnw d
sin 4 By, w)

4 t+k LJL ) (t N k ) ) (t ) . nmz
= s @, — S} SIn W\t — SIn —
sz,,wm 0 oJo Jo y L

sin @ E { df(s, 2)dB(y, W)}

4 t (L nmz | mnz
= sin m,(t + k — ) sin w,(t — s) sin —- sin — dzds
L?w,w,, jo L ( ) ( ) L L

The last step in (44) follows from the fact that E { dfi(s, 2)df(y, w)} = 1
if z=w and s = y and is zero otherwise.
Since:

sin — sin ——dz =
o L

JL nmz . mnuz 0 if m#n

— otherwise
2
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it results:

0 if m#n
(45) ET,t + kT,(t) = .

sin w,k — sin w,(2t + k) } .
ifm=n

t k
{ cos w,k + 5

2
L(,On n

From (45) it can be seen that the solution of problem (40) appears as a
random series of independent sine waves. The amplitude of each term,
thatis T,(t)is a gaussian process with zero mean and covariance function (45)

The variance of u(x, t) is easily seen to be:

46) Varu(x, 1) = Eil(x, 1) = iz{ j sin? ot — S)ds}sinz ey
< ¥} - S\ — 2 n A S L

Lo 0

n=1
X .
1 sin 2w,t | . , ImX
= 59t — sin® —
Lo; 2w, L
. CHTL |
Since o, = T it results:

N AN/ L
47) Eul(x, t) = ZET,,Z(t) sin? ? <= <+>

L CHT

n=1 n=1

e8]

2tL 1 tL
Ted et
n=1

A classical result states that a random series of independent r. v.’s with
finite variance converges almost surely (see, for example Métivier [5],
page 193).

When ¢ is fixed the process u(x, t) has therefore continuous sample
paths by the so called Billard’s theorem (see Kahane [4], page 49).

The shape of the vibrating string can therefore be thought of as a conti-
nuous curve at any time ¢. An analogous result is needed for the process
u(x, t) when x is fixed.

COROLLARY 2. — When x is fixed the process u(x, t) defined by (42) and
(43) has continuous sample paths with probability one.

Proof. — We apply theorem 1 following the framework of proof of
corollary 1. We evaluate the probability:
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where:

X

o(h) = E(u(x, t + h) —u(x, t))*=E { ET,,(Z + h) sin _n{z — ZT,,(t) sin ?}2

n= n=1

N ., hmx
= 2 sin2 I E(T,(t + h) — T, (1))

= zsinzﬁ 2 2E " Hhsina)(t — %) sinﬂdﬁ(s, 2) ’
L Lwn Q Jt i L
1

It can readily be seen that:

t+h ("L 2
E { J j sin w,(t — s) sin e dp(s, z) }
¢ 0 L

t+h (L L tih L
= sin? 2 sin? Wt — s)dsdz = — J sin® w,(t — s)ds < —h
t 0 L 2 t 2

Therefore:

49 . <2h -l 2T _ 2y . 2 1Sin2nnx< L
(49) G()__f w—fsm = 0ihwhere 6i=2 ) —; . -
n=1

n
n=1

Bearing in mind inequality (49) the probability (48) may be bounded as
follows:

2 (= w2
Prob{lu(x,t+h)—u(x,t)|>g(h)}§\/ij eXp{—T}dW
T J gh)
h

26./h 1 g%h
< /- — =2 > =gq(h
= \/; <(h) eXp{ 26 =40

1
Choosing g(h) = | h|® with 0 < a < 2 the proof of corollary II follows

the same lines of corollary I

As a consequence of this result we can imagine each point of the string

to perform continuous sample paths when its vibrations are stirred by
white noise.

We are now in a position to tackle the problem of finding bounds for
the following probability

Prob { [fnax u(x, s) > o}
We set our first result in theorem II

TreoREM II. — The probability that a point x of a finite string upcrosses
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level o at least once during (0, t) has the following upper bound:

2 © 2
J exp{—w—}dw
V2m 2 2
where:

., 1 N 1 sin 2w,t | . , hmx
(51) oL =— —4t= sin® —
L w; 2w, L
1

Proof. — We first split up the interval (0, ¢) into 2* disjoint subintervals
in such a way that the r. v. T,(t) defined by (43) can be written:

(50) Prob { max u(x, s) > o } <

2K -1
(r+1)2-K
(52) T\(t) = Z sin w,(t —s) sin%dﬁ(z, )= Y, ,
Lwn rt2 - K L ’
r=0
The r. vs Y,, (r=0,1,...,2% — 1) are clearly independent, zero
mean normal variates. If j =1,2,...,2% it results:
r+1)2-K rL nnz
(33) T2 %= ) Y,,= sin ,(t —s) sin —dp(z, s)
LCl)n 2 - K L
jt2 K

L
— J sin w,(t — ) sm —— d,B(z s)

LCU,, 0

By means of (52) the process u(x, t), x being a fixed value, can be set in
the following form:

2K—1 2K—1
. hmx . hmx
(54) u(x, t) = Z Z ,nsm—= Z {ZY""SIHT}: ZZ,
r=0 n=1 r=0

It can easily be checked that the r. v.’s Z, are independent gaussian
variates centered at zero, each defined by almost surely convergent series.
Analogously one can write:

w0 j—1 ©
nwx nmnx
X, 1278 = » T2 % sin — = Y, , sin —
u(x, j ) E G ) sin L Z{Z n Sin L }
1

n= r= n=

r=0
By Lévy’s inequality it can therefore be written:
(55) Prob {1 max u(x, j127%)y > o} <2 Prob {u(x, t) > o}
<j<2K -
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Since inequality (55) holds for whatever large K, we can let K — oo
thus getting the upper bound (50).

It is easy to find an upper bound to the probability that at time ¢ the
displacements of the string exceed a whatever level o.

Since: @
Var {u(x, t) } < Var { ET,,(t) }

it results: n=1

(56) Prob { Jmax lu(x, t)| > a} < Prob { ’ ZT,,(t)

. }
exp{—~w }dw
ﬁ/2n
and where:

, 1 1 sin 2wt
ol=- ) —<t—
L/, w? 2w,

n=

Combining the above results one can obtain the following upper bound:

(57) Prob {OrBaXL lulx, s)| > a} < Prob{ max ZT"(S) > « }
O_Sizt

SZProb{'ZTn(t) >a} J exp{——w }dw
n=1

1\ 1 in 20,1
where, again, ¢2 = — — 9t — S 2O < 4+ ©
Lot 2w,

n=1
For a deeper insight into the behaviour of the randomly vibrating string

we give another representation of process u(x, t), where x, is supposed a
fixed value,

Let T, = — (k= 1,2, ...) be a sequence of times which we call nodal
W,

times of vibrations.
We have now our third theorem.

‘THEOREM 3. — Let T be any nodal time, { ®, } a sequence of independent
r. v.’s with uniform distribution in (0, 27), { A(T) } a sequence of i.i.d. . v.’s
having the following Rayleigh density ¢(s, T):

32
p{—ﬁ} s>90

otherwise

(58) ¢ls, T) =

O»—-]|M
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The process:

. 1 . nmx
(59) idlx,t+T)= ——— A,(T) cos (w,t + ©,) sin —
— \/fwn L

O 2 nmx [TH [T nmy
+ i sin w,(T + ¢t — s) sin — df(s,
Lw,,LTL ( )sin —=df(s. »)
n=1
isequivalent tou(x, t + T)in the sense that both have the same distributions.
The sequences { A(T)} and { ©,} are intended to be mutually inde-
pendent and further, independent from the random series appearing in
the second term of (59).

Proof. — Since A (T) cos (w,t + ©,) is a gaussian r. v. both series of (59)
are gaussian zero-mean processes. To prove equivalency it suffices to
show that variances and covariances of u(x, t + T)and @(x, ¢ + T) coincide.

From independency it results:

(60) Ei(x, T + t)il(x, T + #)

(AXT))E { cos (w,t + ©,) cos (w,r + ©,) }

4 nmx T+r (L
+ sin? —E sin w(T + ¢ —
R o SR
1

n=

T+r L
sin 2 4 ps, w)J sin (T + 7 — 2) sin =2 df(z, y)
L T 0 L

nmx

i 1
= ZLwﬁ sin? T(2T)—cosa)(t —7)

i 4 nTCX J‘T+min(t,r} JL
+ si sin (T + ¢t — s)
szr% T 0

. ., h
sin w,(T + r — s) sin? %y dyds

T ., nnx « " 2
= ——sin? — cos —r —
La)f L ©n Lo}

n= n=1
) nnx T +min{z,r} . )
sin? T sin w,(T + ¢t — s)sin w (T + r — s)ds
T
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Suppose now to speed up calculations that min { ¢, r } = t. By evaluating
the last integral it results:

O T
(61) Ei{x, T + 0)ii(x, T +r) = — sin? mx cos w,(t — 7)
Lw; L

n=1

1 ., nmX Sin @,(r — t) — sin w,(r + t) |
+ ) ——sin? ——< tcos w(t — . - ;

3 L™ L { st =0 20, |
n=1

By simply replacing in (45) ¢ + k with T + r and ¢ by T + ¢ the coinci-
dence of covariances is verified, when the fact that T is a nodal time is
considered.

The check that covariances coincide is carried out by simply setting
r=tin (61).

The representation (59) shows that atany time T + ¢ the process u(x, t + T)
can be thought of as the superposition of two independent processes.

The first one is a series of cosine waves while the second one starts off
at the nodal time T. At any given time ¢ (59) shows that one can take the
displacement at point x as the result of a series of cosine waves plus an
additional random term depending on the time span between the last
nodal time before ¢ and ¢.

It should be pointed out that the motion of point x up to nodal time T
is summed up by the amplitude of waves appearing in the first random
series of (59).

It is intuitive that since the second term in (59) starts from scratch at
each nodal time its contribution to the overall variance of the process
thins out as time passes.

Obviously if ¢t = 0 formula (59) becomes:

il
(62) iy, T) = Z A(T) cos ©, sin =~
— Lo, L

The random series (62) is equivalent to the r. v.:

(63) iix, T) = Z(T)o,

0

1 nmx .
with ¢2 = E Lo? sin? T and Z(T) being a gaussian r. v. centered at
wn
n=1

zero with EZX(T) = T.
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Equivalency must be understood in the sense that #(x, T) and u(x, T)
have the same distribution as can easily be seen.
From (63) it results that:

(64) Prob{ max. |u(x, T)| > o} = Prob { Jmax i(x, T)| > o}

. 1, nax . L ,
The function o% = — sin® — is maximum at x = > where it
Lo; L 2
n=1

takes the value —.
24¢

From the above remarks we obtain the exact distribution of max [u(x, T)
that is: ==

2 @ 1
65) Prob{or<na§L|u(x,T)|>cx}=—J‘ exp{—iwﬂ}dw

NEZR Ny

For growing values of the product LT exceedances over level o become
more and more likely while ever increasing values of ¢ make excursions
more and more rare. This accords both with intuition and results obtained
in the previous section in analysing infinitely long strings.

We add now some remarks on vibrations of a finite string stirred by a
concentrated white noise.

In this case by setting F(z, s) = d(z — a)P(a, s) in (41) one obtains:

(66) u(x, t) = JIG(X, t; a, s)P(a, s)ds
0

In the case P(q, s) is a white noise applied at point a:

t
(67 u(x, t) = JG(x, t; a, s)dp(s)
[¢]
and the processes T,(t) defined by (43) take on the following form:
2 . nma (' .
(68) T(t) = sin — | sin w,(t — s)dfB(s)
L(,On L 0

It can easily be verified that the processes T,(t) are dependent since
their cross-covariances are usually different from zero.

For this reason the investigation of the problem was dropped since the
Fourier approach to the vibrations problem involves random series of
dependent terms.
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