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Abstract

This paper studies randomly spread code-division multiple access (CDMA) and multiuser
detection in the large-system limit using the replica method developed in statistical physics.
Arbitrary input distributions and flat fading are considered. A generic multiuser detector in the
form of the posterior mean estimator is applied before single-user decoding. The generic detector
can be particularized to the matched filter, decorrelator, linear MMSE detector, the jointly or
the individually optimal detector, and others. It is found that the detection output for each
user, although in general asymptotically non-Gaussian conditioned on the transmitted symbol,
converges as the number of users go to infinity to a deterministic function of a “hidden” Gaussian
statistic independent of the interferers. Thus the multiuser channel can be decoupled: Each
user experiences an equivalent single-user Gaussian channel, whose signal-to-noise ratio suffers
a degradation due to the multiple-access interference. The uncoded error performance (e.g., bit-
error-rate) and the mutual information can then be fully characterized by this degradation, also
known as the multiuser efficiency, which can be obtained by solving a pair of coupled fixed-point
equations which we identify in this paper. Based on a general linear vector channel model, the
results are also applicable to MIMO channels such as in multiantenna systems.

Index Terms: Code-division multiple access (CDMA), multiuser detection, channel capacity,
multiuser efficiency, statistical physics, free energy, replica method, multiple-input multiple-output
(MIMO) channel.

1 Introduction

Consider a multidimensional Euclidean space in which each user (or data stream) randomly picks
a “signature vector” and modulates its own information-bearing symbols onto it for transmission.
The received signal is then a superposition of all users’ signals corrupted by Gaussian noise. Such
a multiuser scheme, best described by a vector channel model, is very versatile and is widely used
in applications that include code-division multiple access (CDMA), as well as certain multi-input
multi-output (MIMO) systems. With knowledge of all signature vectors, the goal is to estimate
the transmitted symbols and eventually recover the information intended for all or a subset of the
users.

This paper focuses on a paradigm of multiuser channels, known as randomly spread CDMA. In
such a CDMA system, a number of users share a common media to communicate to a single receiver
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simultaneously over the same bandwidth. Each user employs a pseudo random spreading sequence
(signature waveform) with a large time-bandwidth product that results in many advantages par-
ticularly in wireless communications: frequency diversity, robustness to channel impairments, ease
of resource allocation, etc. The price to pay is multiple-access interference (MAI) due to non-
orthogonal spreading sequences from all users. Numerous multiuser detection techniques have been
proposed to mitigate the MAI to various degrees. This work is concerned with the performance of
such multiuser systems in two aspects: One is the multiuser efficiency, which in general measures
the quality of multiuser detection outputs assuming uncoded transmission; the other is the spectral
efficiency, which is the total information rate normalized by the dimension of the multiuser channel
achievable by coded transmission.

1.1 Gaussian or Non-Gaussian?

The most efficient use of a multiuser channel is through jointly optimal decoding, which is an NP-
complete problem [1]. A common suboptimal strategy is to apply a multiuser detector front end
with polynomial complexity to generate a decision statistic for each user for subsequent independent
single-user decoding. The quality of the detection output fed to decoders is of great interest.

In [2, 3, 4], Verdú first used the concept of multiuser efficiency to refer to the degradation
of the output signal-to-noise ratio (SNR) relative to a single-user channel calibrated at the same
bit-error-rate (BER) in binary (antipodal) uncoded transmission. The multiuser efficiencies of the
matched filter, decorrelator, and linear minimum mean-square error (MMSE) detector were found
as functions of the correlation matrix of the spreading sequences. Particular attention has been
given to the asymptotic multiuser efficiency in the more tractable region of high SNR. Expressions
for the optimum (high-SNR) asymptotic multiuser efficiency were found in [4, 5].

In the large-system limit, where the number of users and the spreading factor both tend to
infinity with a fixed ratio, the dependence of system performance on the sequences vanishes, and
random matrix theory proves to be an excellent tool for analyzing linear detectors. The limiting
multiuser efficiency of the matched filter is trivial [6]. The large-system multiuser efficiency of the
MMSE detector is obtained explicitly in [6] for the equal-power case (perfect power control), and in
[7] for the case with flat fading as the solution to the Tse-Hanly fixed-point equation. The efficiency
of the decorrelator is also known [8, 9]. The success with the wide class of linear detectors hinges
on the fact that 1) the detection output is a sum of independent components: the desired signal,
the MAI and Gaussian background noise, e.g., for user k,

〈Xk〉 = Xk + Ik + Nk; (1)

and 2) the multiple-access interference (Ik) is asymptotically Gaussian (e.g., [10]). As far as linear
multiuser detectors are concerned, regardless of the input distribution, the performance is fully
characterized by the noise enhancement associated with the MAI variance. Indeed, by regarding
the multiuser detector as part of the channel, an individual user experiences essentially a single-user
Gaussian channel with an SNR degradation which is the multiuser efficiency.

The performance of nonlinear detectors such as the optimal ones is a hard problem. The diffi-
culty here is inherent to nonlinear operations. That is, the detection output cannot be decomposed
as a sum of independent components associated with the desired signal, the interferences and the
noise respectively. Moreover, the detection output is in general asymptotically non-Gaussian con-
ditioned on the input. An extreme case is the maximum-likelihood multiuser detector for binary
transmission, the hard decision output of which takes only two values. The difficulty remains if
we consider soft detection outputs. Hence, unlike for a Gaussian output, the conditional variance
of a general detection output does not lead to simple characterization of the multiuser efficiency
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Figure 1: The probability density function obtained from the histogram of an individually optimal
soft detection output conditioned on +1 being transmitted. The system has 8 users, the spreading
factor is 12, and SNR=2 dB.

or error performance. For illustration, Figure 1 plots the probability density function of the soft
output statistic of the individually optimal detector conditioned on +1 being transmitted. The
simulated system has 8 users with binary inputs, a spreading factor of 12, and SNR=2 dB. Note
that negative decision values correspond to decision error; hence the area under the curve on the
negative half plane gives the BER. The distribution shown in Figure 1 is far from Gaussian. Thus
the usual notion of output SNR fails to capture the essence of system performance. In fact, much
literature is devoted to evaluating the error performance by Monte Carlo simulation.

This paper makes a contribution to the understanding of multiuser detection in the large-system
regime. It is found under certain assumptions that the output decision statistic of a nonlinear
detector, such as the one whose distribution is depicted by Figure 1, converges in fact to a very
simple monotone function of a “hidden” conditionally Gaussian random variable, i.e.,

〈Xk〉 → f(Zk) (2)

where Zk = Xk + N ′
k and N ′

k is Gaussian. One may contend that it is always possible to monoton-
ically map a non-Gaussian random variable to a Gaussian one. What is surprisingly simple and
useful here is that 1) the mapping f neither depends on the instantaneous spreading sequences,
nor on the transmitted symbols which we wish to estimate in the first place; and 2) the statistic Zk

consists of the desired signal and an independent Gaussian noise. Indeed, a few parameters of the
system easily determine the function f . By applying an inverse of this function to the detection
output 〈Xk〉, an equivalent conditionally Gaussian statistic Zk is recovered, so that we are back
to the familiar ground where the output SNR (defined for the Gaussian statistic) completely char-
acterizes the system performance. The multiuser efficiency is simply obtained as the ratio of the
output and input SNRs. Since, after applying f−1, each user enjoys asymptotically an equivalent
single-user Gaussian channel with an enhanced Gaussian noise (independent of signals from other
users) in lieu of the MAI, we will refer to this result as the “decoupling principle”.
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Figure 2: The probability density function obtained from the histogram of the hidden equivalent
Gaussian statistic conditioned on +1 being transmitted. The system has 8 users, the spreading
factor is 12, and SNR=2 dB. The asymptotic Gaussian distribution is also plotted for comparison.

Under certain assumptions, we show the decoupling principle to hold for not only optimal de-
tection, but also a broad family of generic multiuser detectors, called the posterior mean estimators
(PME), which compute the mean value of the input conditioned on the observation assuming a
certain postulated posterior probability distribution. In case the postulated posterior is identical
to the one induced by the actual multiuser channel and input, the PME is a soft version of the
individually optimal detector. The postulated posterior, however, can also be chosen such that the
resulting PME becomes one of many other detectors, including but not limited to the matched
filter, decorrelator, linear MMSE detector, as well as the jointly optimal detector. Moreover, the
decoupling principle holds for not only binary inputs, but arbitrary input distributions with finite
power.

For illustration of the new findings, Figure 2 plots the probability density function of the
conditionally Gaussian statistic obtained by applying f−1 to the non-Gaussian detection output in
Figure 1. The theoretically predicted Gaussian density function is also shown for comparison. The
“fit” is good considering that a relatively small system of 8 users with a processing gain of 12 is
considered. Note that in case the multiuser detector is linear, the mapping f is also linear, and (2)
reduces to (1).

By virtue of the decoupling principle, the mutual information between the input and the output
of the generic detector for each user converges to the input-output mutual information of the
equivalent single-user Gaussian channel under the same input, which admits a simple analytical
expression. Hence the large-system spectral efficiency of several well-known linear detectors, first
found in [11] and [12] with and without fading respectively, can be recovered straightforwardly
using the decoupling principle. New results on the spectral efficiency of nonlinear detection and
arbitrary inputs under both joint and separate decoding are also obtained. Furthermore, the
additive decomposition of optimal spectral efficiency as a sum of single-user efficiencies and a joint
decoding gain [12] applies under more general conditions than originally thought.
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It should be pointed out here that the large-system results are close representatives of practical
system of moderate size. As we mentioned, a system with as few as 8 users can often be well
approximated as a large system.

1.2 Random Matrix vs. Spin Glass

Much of the early success in the large-system analysis of linear detectors relies on the fact that the
multiuser efficiency of a finite-size system can be written as an explicit function of the eigenvalues
of the correlation matrix of the random signature waveforms, the empirical distributions of which
converge to a known function in the large-system limit [13, 14]. As a result, the large-system
multiuser efficiency can be obtained as an integral with respect to the limiting eigenvalue distrib-
ution. Indeed, this random matrix technique is applicable to any performance measure that can
be expressed as a function of the eigenvalues. Based on an explicit expression for CDMA channel
capacity in [15], Verdú and Shamai quantified the optimal spectral efficiency in the large-system
limit [11, 12] (see also [16, 17]). The expression found in [11] also solved the capacity of single-user
narrowband multiantenna channels as the number of antennas grows—a problem that was open
since the pioneering work of Foschini [18] and Telatar [19]. Unfortunately, few explicit expressions
of the efficiencies in terms of eigenvalues are available beyond the above cases. Much less success
has been reported in the application of random matrix theory in problems of non-Gaussian input
or nonlinear detection.

A major consequence of random matrix theory is that the dependence of performance measures
on the spreading sequences vanishes as the system size increases without bound. In other words,
the performance measures are “self-averaging.” This property is nothing but a manifestation of a
fundamental law that the fluctuation of macroscopic properties of certain many-body systems van-
ishes in the thermodynamic limit, i.e., when the number of interacting bodies becomes large. This
falls under the general scope of statistical physics, whose principal goal is to study the macroscopic
properties of physical systems starting from knowledge about microscopic interactions. Indeed,
the asymptotic eigenvalue distribution of certain correlation matrices can be derived via statistical
physics (e.g., [20]). Tanaka pioneered statistical physics concepts and methodologies in multiuser
detection and obtained the large-system uncoded minimum BER (hence the optimal multiuser ef-
ficiency) and spectral efficiency with equal-power binary inputs [21, 22, 23, 24]. In [9] we further
elucidated the relationship between CDMA and statistical physics and generalized Tanaka’s results
to the case of unequal powers. Inspired by [24], Müller and Gerstacker [25] studied the channel
capacity under separate decoding and noticed that the additive decomposition of the optimum
spectral efficiency in [12] holds also for binary inputs. Müller thus further conjectured the same
formula to be valid regardless of the input distribution [26].

In this paper, we build upon Tanaka’s ground-breaking contribution [24] and present a uni-
fied treatment of Gaussian CDMA channels and multiuser detection assuming an arbitrary input
distribution and flat fading characteristic. A wide class of multiuser detectors, optimal as well
as suboptimal, are treated under a uniform framework of posterior mean estimation. The central
results are the decoupling principle and the characterization of multiuser efficiency for a generic
multiuser detector via a pair of nonlinear equations.

The key technique in statistical physics, the replica method, has its origin in spin glass theory
[27]. Analogies between statistical physics and neural networks, coding, image processing, and
communications have long been noted (e.g., [28, 29]). There have also been many recent activities
applying statistical physics wisdom to sparse-graph error-correcting codes [30, 31, 32]. The first
application of the replica method to multiuser detection was made by Tanaka [24]. In this paper, we
draw a parallel between the general statistical inference problem in multiuser communications and
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Figure 3: A multiuser system with joint decoding.

the problem of determining the configuration of random spins subject to quenched randomness. For
the purpose of analytical tractability, we will invoke common assumptions in the statistical physics
literature: 1) the self-averaging property applies, 2) the “replica trick” is valid, and 3) replica
symmetry holds. These assumptions have been used successfully in many problems in statistical
physics as well as in neural networks and coding theory, to name a few, while a complete justification
of the replica method is a notoriously difficult challenge in mathematical physics, which has seen
some important progress recently [33]. The results in this paper are based on these assumptions
and therefore the rigorousness is pending on breakthroughs in those problems. In fact, what is not
known is a set of easy-to-check sufficient and necessary conditions under which the assumptions
hold so that the claims in this paper are rigorous. In the cases that the assumptions fail to hold,
results obtained using the replica method may still capture many of the qualitative features of the
system performance. Indeed, such results are often found as good approximations in some cases
where not all of the assumptions are true [34, 35]. Furthermore, the decoupling principle carries
great practicality and may find convenient uses as long as the analytical predictions are close to
the reality even if not exact.

The remainder of this paper is organized as follows. Section 2 gives the model and summarizes
major results. Relevant statistical physics concepts and methodologies are introduced in Section 3.
Calculations based on a real-valued channel are presented in Section 4. Complex-valued channels
are discussed in Section 5, followed by some numerical examples in Section 6.

2 Model and Summary of Results

2.1 System Model

Consider the synchronous K-user CDMA system with spreading factor L as depicted in Figure 3.
Each encoder maps its message into a sequence of channel symbols. All users employ the same
type of signaling so that at each interval the K symbols are independent identically distributed
(i.i.d.) random variables with distribution (probability measure) PX , which has zero mean and
unit variance. Let X = [X1, . . . , XK ]> denote the vector of input symbols from the K users in one
symbol interval. For notational convenience in the analysis, it is assumed that either a probability
density function or a probability mass function of PX exists, and is denoted by pX .1 Let also
pX(x) =

∏K
k=1 pX(xk) denote the joint (product) distribution.

Let user k’s instantaneous SNR be denoted by snrk and Γ = diag{√snr1 , . . . ,
√

snrK }. Denote
the spreading sequence of user k by sk = 1√

L
[S1k, S2k, . . . , SLk]>, where Snk are i.i.d. random

1The results in this paper hold in full generality and do not depend on the existence of a probability density or
mass function.
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variables with zero mean and finite moments. Let the symbols and spreading sequences be randomly
chosen for each user and not dependent on the SNRs. The L×K channel state matrix is denoted
by S = [

√
snr1 s1, . . . ,

√
snrK sK ]. The synchronism CDMA channel with flat fading is described

by:

Y =
K∑

k=1

√
snrk skXk + N (3)

= SX + N (4)

where N is a vector consisting of i.i.d. zero-mean Gaussian random variables. Depending on the
domain that the inputs and spreading chips take values, the input-output relationship (4) describes
either a real-valued or a complex-valued fading channel.

The linear system (4) is quite versatile. In particular, with snrk = snr for all k, it models the
canonical MIMO channel in which all propagation coefficients are i.i.d. An example is single-user
communication with K transmit antennas and L receive antennas, where the channel coefficients
are not known to the transmitter.

2.2 Posterior Mean Estimation

The fundamental problem of communication can be described as follows. The information-bearing
symbol (vector) X is drawn according to the prior distribution pX . The channel response to the
input X is an output Y generated according to a conditional probability distribution pY |X,S where
S is the channel state. Upon receiving Y , the estimator would like to infer the transmitted symbol
X using knowledge about the state S, and eventually reproduce the intended information reliably.

The most efficient use of the multiuser channel (4) in terms of information capacity is achieved
by optimal joint decoding as depicted in Figure 3. The input-output mutual information of the
multiuser channel given the channel state S is I(X;Y |S). Due to the complexity of joint decoding,
one often breaks the process into multiuser detection followed by separate single-user error-control
decoding as shown in Figure 4. A multiuser detector front end with no knowledge of the error-control
codes used by the encoder outputs an estimate of the transmitted symbols given the received signal
and the channel state. Each decoder only takes the decision statistic of a single user of interest to
decoding without awareness of the existence of any other users (in particular, without knowledge of
the spreading sequences). By adopting this separate decoding approach, the channel together with
the multiuser detector front end is viewed as a single-user channel for each user. The detection
output sequence for an individual user is in general not a sufficient statistic for decoding even this
user’s own information.
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To capture the intended suboptimal structure, one has to restrict the capability of the multiuser
detector; otherwise the detector could in principle encode the channel state and the received signal
(S,Y ) into a single real number as its output to each user, which is a sufficient statistic for all
users. A plausible choice is the (canonical) posterior mean estimator, which computes the mean
value of the posterior probability distribution pX|Y ,S , hereafter denoted by angle brackets 〈·〉:

〈X〉 = E {X | Y ,S} . (5)

Also known as the conditional mean estimator, this estimator achieves the minimum mean-square
error for each user. In fact it is also the soft-output version of the individually optimal multiuser
detector (assuming uncoded transmission). The posterior probability distribution pX|Y ,S is induced
from the input distribution pX and the conditional Gaussian density function pY |X,S of the channel
(4) by the Bayes formula:

pX|Y ,S(x|y,S) =
pX(x)pY |X,S(y|x,S)∫

pX(x)pY |X,S(y|x,S) dx
. (6)

The PME can be understood as an “informed” optimal estimator which is supplied with the
posterior pX|Y ,S . A generalization of the canonical PME is conceivable: Instead of informing the
estimator with the actual posterior pX|Y ,S , we can supply at will any other well-defined conditional
distribution qX|Y ,S . Given (Y ,S), the estimator can nonetheless perform “optimal” estimation
based on this postulated measure q. We call this the generalized posterior mean estimation, which
is conveniently denoted as

〈X〉q = Eq {X | Y ,S} (7)

where Eq{·} stands for the expectation with respect to the postulated measure q. For the sake of
brevity, we will also refer to (7) by the name of the posterior mean estimator, or simply the PME.
In view of (5), the subscript in (7) can be dropped if the postulated measure q coincides with the
actual one p.

In general, postulating q 6= p causes degradation in detection performance. Such a strategy
may be either due to lack of knowledge of the true statistics or a particular choice that corresponds
to a certain estimator of interest. In principle, any deterministic estimation can be regarded as a
PME since we can always choose to put a unit mass at the desired estimation output given (Y ,S).
We will see in Section 2.3 that by choosing an appropriate measure q, it is easy to particularize
the PME to many important multiuser detectors. As will also be shown in this paper, the generic
representation (7) allows a uniform treatment of a large family of multiuser detectors which results
in a simple performance characterization for all of them.

It is enlightening to introduce a new concept: the retrochannel, which is defined for a given
channel and input as a companion channel characterized by a posterior distribution. For example,
given the multiuser channel pY |X,S with an input pX , we have a (canonical) retrochannel defined
by pX|Y ,S (6), which, upon an input (Y ,S), generates a random output X according to pX|Y ,S .
A retrochannel in the single-user setting is similarly defined. In general, any valid posterior dis-
tribution qX|Y ,S can be regarded as a retrochannel. Note that the retrochannel samples from the
Bayesian posterior distribution (in general, the postulated one) in such a way that, conditioned on
the observation, the input to the channel and the output of the retrochannel are independent. It
is clear that the PME output 〈X〉q is the expected value of the output of the retrochannel qX|Y ,S

given (Y ,S).
In this paper, the posterior qX|Y ,S supplied to the PME is assumed to be the one that corre-

sponds to a postulated CDMA system, where the input distribution is an arbitrary qX , and the
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input-output relationship of the postulated channel differs from the actual channel (4) by only the
noise variance. Precisely, the postulated channel is characterized by

Y = SX + σN ′ (8)

where the channel state matrix S is identical to that of the actual channel (4), and N ′ is statis-
tically the same as the Gaussian noise N in (4). Easily, qX|Y ,S is determined by qX and qY |X,S

according to the Bayes formula (cf. (6)). Here, σ serves as a control parameter. Also, the postulated
input distribution qX is assumed to have zero-mean and finite moments. In general, the assumed
information about the channel state S could also be different from the actual instances, but this
is out of the scope of this work. In short, this paper studies the family of multiuser detectors that
can be represented as the PME parameterized by the postulated input and noise level (qX , σ).

We note that PME under postulated posterior is known in the Bayes statistics literature. This
technique was introduced to multiuser detection by Tanaka in the special case of equal-power users
with binary or Gaussian inputs under the name of marginal-posterior-mode detectors [21, 22, 24].
In this paper we pursue further that direction to treat arbitrary input, arbitrary power distribution,
and multiuser detection in a general scope.

2.3 Specific Detectors

The rest of this section assumes a real-valued system model. The inputs Xk, the spreading chips
Snk, and all entries of the noise N take real values and have unit variance. The characteristic of
the actual channel is

pY |X,S(y|x,S) = (2π)−
L
2 exp

[
−1

2
‖y − Sx‖2

]
, (9)

and that of the postulated channel is

qY |X,S(y|x,S) =
(
2πσ2

)−L
2 exp

[
− 1

2σ2
‖y − Sx‖2

]
. (10)

We identify specific choices of the postulated input distribution qX and noise level σ under
which the PME is particularized to several well-known multiuser detectors.

2.3.1 Linear Detectors

Let the postulated input be standard Gaussian, qX ∼ N (0, 1). The posterior probability density
function becomes

qX|Y ,S(x|y,S) = [Z(y,S)]−1 exp
[
−1

2
‖x‖2 − 1

2σ2
‖y − Sx‖2

]
(11)

where Z(y,S) is a normalization factor. Since (11) is a conditional Gaussian density, its mean is a
linear filtering of the received signal Y :

〈X〉q =
[
S>S + σ2I

]−1

S>Y . (12)

If σ →∞, the PME estimate (12) is consistent with the matched filter output:

σ2 〈Xk〉q −→ s>k Y , in L2 as σ →∞. (13)

If σ = 1, (12) is exactly the soft output of the linear MMSE detector. If σ → 0, (12) converges to
the soft output of the decorrelator.

In general, the PME represents a linear detector by postulating Gaussian inputs. The control
parameter σ can then be tuned to choose from the matched filter, decorrelator, MMSE detector,
etc.

9



2.3.2 Optimal Detectors

Let the postulated qX be identical to the true one, pX . The posterior is then

qX|Y ,S(x|y,S) = [Z(y,S)]−1 pX(x) exp
[
− 1

2σ2
‖y − Sx‖2

]
(14)

where Z(y,S) is a normalization factor.
Suppose that the postulated noise level σ → 0, then the probability mass of the distribution

qX|Y ,S is concentrated on a vector that minimizes ‖y − Sx‖, which also maximizes the likelihood
function pY |X,S(y|x,S). The PME limσ→0 〈X〉q is thus equivalent to that of jointly optimal (or
maximum-likelihood) detection [6].

Alternatively, if σ = 1, then the postulated measure coincides with the actual measure, i.e.,
q = p. The PME output 〈X〉 is the mean of the marginal of the conditional posterior probability
distribution, and is referred to as the soft output of the individually optimal detector [6]. Indeed,
for m-PSK (resp. binary) inputs, hard decision of the soft output gives the most likely value of the
transmitted symbol (resp. bit).

Also worth mentioning here is that, if σ →∞, the PME reduces to the matched filter. Indeed,
(13) can be shown to hold by noticing from (14) that

qX|Y ,S(x|y,S) = pX(x)
[
1− 1

2σ2
‖y − Sx‖2 +O

(
σ−4

)]
. (15)

2.4 Main Results

This subsection represents the main results of this paper assuming the real-valued system model.
The replica analysis carried out to obtain these results is relegated to Sections 3 and 4. Results for
a complex-valued model will be presented in Section 5.

Consider the multiuser channel pY |X,S given by (9) with input X ∼ pX , and the posterior
mean estimator (7) parameterized by (qX , σ). Section 2.3 illustrated the versatility of the PME en-
compassing many well-known detectors. The goal here is to quantify the optimal spectral efficiency
1
LI(X;Y |S), the quality of the detection output 〈Xk〉q for each user k, as well as the input-output
mutual information I(Xk; 〈Xk〉q |S).

Although these measures are all dependent on the realization of the channel state, such depen-
dence vanishes in the large-system asymptote. A large system refers to the limit that both the
number of users and the spreading factor tend to infinity but with their ratio, known as the system
load, converging to a positive number, i.e., K/L → β, which may or may not be smaller than 1.
It is also assumed that the SNRs of all users, {snrk}K

k=1, are i.i.d. with distribution Psnr, hereafter
referred to as the SNR distribution. All moments of the SNR distribution are assumed to be finite.
Clearly, the empirical distributions of the SNRs converge to the same distribution Psnr as K →∞.
Note that this SNR distribution captures the (flat) fading characteristics of the channel.

Given the parameters (β, Psnr, pX , qX , σ), we express in these parameters the large-system limit
of the multiuser efficiency and spectral efficiency under both separate and joint decoding.

2.4.1 The Decoupling Principle

The multiuser channel pY |X,S and the multiuser posterior mean estimator parameterized by (qX , σ)
are depicted in Figure 5(a), together with the companion (multiuser) retrochannel qX|Y ,S . Here
the input to the multiuser channel is denoted by X0 to distinguish from the output X of the
retrochannel. For an arbitrary user k, the SNR is snrk, and X0k, Xk and 〈Xk〉q denote the input
symbol, the retrochannel output and the PME output, all for user k.

10



-X0

∼ pX

Multiuser channel
pY |X,S

-Y•

-

Multiuser PME
Eq{X| · ,S}

-〈X〉q

retrochannel
qX|Y ,S

- X

(a)

-X0

∼ pX

⊗
√

snr

6

-
⊕?

N
(
0, η−1

)
-Z PME

Eq{X| · , snr; ξ}
〈X〉q

X

•

-

-

-retrochannel
qX|Z,snr;ξ

(b)

Figure 5: (a) The multiuser channel, the (multiuser) PME, and the companion (multiuser)
retrochannel. (b) The equivalent single-user Gaussian channel, PME and retrochannel.

In order to show the decoupling result, let us also consider the composition of a Gaussian
channel, a PME and a companion retrochannel in the single-user setting as depicted in Figure 5(b).
The input and output of the Gaussian channel are related by:

Z =
√

snr X0 +
1
√

η
N (16)

where the input X0 ∼ pX , snr is the input SNR, N ∼ N (0, 1) the noise independent of X0, and
η > 0 the inverse noise variance. The conditional distribution associated with the channel is

pZ|X,snr;η(z|x, snr; η) =
√

η

2π
exp

[
−η

2
(
z −

√
snr x

)2]
. (17)

Let qZ|X,snr;ξ represent a Gaussian channel akin to (16), the only difference being that the inverse
noise variance is ξ instead of η:

qZ|X,snr;ξ(z|x, snr; ξ) =

√
ξ

2π
exp

[
−ξ

2
(
z −

√
snr x

)2]
. (18)

Similar to that in the multiuser setting, by postulating the input distribution to be qX , a poste-
rior probability distribution qX|Z,snr;ξ is induced by the Bayes rule. Thus we have a single-user
retrochannel defined by qX|Z,snr;ξ, which outputs a random variable X given the channel output Z.
A (generalized) single-user PME is defined naturally as:

〈X〉q = Eq {X | Z, snr; ξ} . (19)

The probability law of the composite system is determined by snr and two parameters η and ξ. We
define the mean-square error of the PME as

E(snr; η, ξ) = E

{(
X0 − 〈X〉q

)2
∣∣∣∣ snr; η, ξ

}
, (20)
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and also define the variance of the retrochannel as

V(snr; η, ξ) = E

{(
X − 〈X〉q

)2
∣∣∣∣ snr; η, ξ

}
. (21)

The following is claimed.2

Claim 1 Consider the multiuser channel (4) with input distribution pX and SNR distribution
Psnr. Let its output be fed into the posterior mean estimator (7) and a retrochannel qX|Y ,S, both
parameterized by the postulated input qX and noise level σ. Fix (β, Psnr, pX , qX , σ). Let X0k, Xk,
and 〈Xk〉q be the input, the retrochannel output and the posterior mean estimate for user k with
input signal-to-noise ratio snrk. Then,

(a) The joint distribution of (X0k, Xk, 〈Xk〉q) conditioned on the channel state S converges in
probability as K →∞ and K/L → β to the joint distribution of (X0, X, 〈X〉q), where X0 ∼ pX is
the input to the single-user Gaussian channel (17) with inverse noise variance η, X is the output
of the single-user retrochannel parameterized by (qX , ξ), and 〈X〉q is the corresponding posterior
mean estimate (19), with snr = snrk.

(b) The parameter η, known as the multiuser efficiency, satisfies together with ξ the coupled
equations:

η−1 = 1 + β E {snr · E(snr; η, ξ)} , (22a)
ξ−1 = σ2 + β E {snr · V(snr; η, ξ)} , (22b)

where the expectations are taken over Psnr. In case of multiple solutions to (22), (η, ξ) is chosen to
minimize the free energy expressed as

F =− E

{∫
pZ|snr;η(z|snr; η) log qZ|snr;ξ(z|snr; ξ) d z

}
+

1
2β

[(ξ − 1) log e− log ξ]

− 1
2

log
2π

ξ
− ξ

2η
log e +

σ2ξ(η − ξ)
2βη

log e +
1
2β

log(2π) +
ξ

2βη
log e.

(23)

Claim 1 reveals that, from an individual user’s viewpoint, the input-output relationship of the
multiuser channel, PME and companion retrochannel is increasingly similar to that under a simple
single-user setting in the large-system limit. In other words, given the three (scalar) input and
output statistics, it is not possible to distinguish whether the underlying system is in the (large)
multiuser or the single-user setting as depicted in Figure 5. It is also interesting here that the
(asymptotically) equivalent single-user system takes a similar structure as the multiuser one, but
with different noise levels.

Obtained using the replica method, the coupled equations (22) may have multiple solutions.
This is known as phase coexistence in statistical physics. Among those solutions, the thermody-
namically dominant solution is the one that gives the smallest value of the free energy (23). This is
the solution that carries relevant operational meaning in the communication problem. In general,
as the system parameters (such as the load) change, the dominant solution may switch from one
of the coexisting solutions to another. This is known as phase transition (refer to Section 6 for
numerical examples).

2Since as explained in Section 1, some of the key statistical physics tools (essentially the replica method) are not
rigorously justified, some of the results in this paper are referred to as claims. Proofs are provided in Section 4 based
on those statistical physics tools.
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The single-user PME (19) is merely a decision function applied to the Gaussian channel output,
which can be expressed explicitly as

Eq {X | Z, snr; ξ} =
q1(Z, snr; ξ)
q0(Z, snr; ξ)

(24)

where we define the following important functions:

qi(z, snr; ξ) = Eq

{
Xi qZ|X,snr;ξ(z|X, snr; ξ)

∣∣ snr
}

, i = 0, 1, . . . , (25)

where the expectation is taken over qX . Note that q0(z, snr; ξ) = qZ|snr;ξ(z|snr; ξ). The decision
function (24) is in general nonlinear. Due to Claim 1, although the multiuser PME output 〈Xk〉q
is in general non-Gaussian, it is in fact asymptotically a function (the decision function (24)) of a
conditionally Gaussian random variable Z centered at the actual input Xk scaled by

√
snrk with

a variance of η−1.

Corollary 1 In the large-system limit, the channel between the input X0k and the multiuser pos-
terior mean estimate 〈Xk〉q for user k is equivalent to the Gaussian channel pZ|X,snr;η concatenated
with the one-to-one decision function (24) with snr = snrk, where η is the multiuser efficiency
determined by Claim 1.

As shown in Section 4.2, for fixed snr and ξ, the decision function (24) is strictly monotone
increasing in Z. Therefore, in the large-system limit, given the detection output 〈Xk〉q, one can
apply the inverse of the decision function to recover an equivalent conditionally Gaussian statistic
Z. Note that η ∈ [0, 1] from (22a). It is clear that, in the large-system limit, the multiple-access
interference is consolidated into an enhancement of the thermal noise by η−1, i.e., the effective SNR
is reduced by a factor of η, hence the term multiuser efficiency. Equal for all users, the multiuser
efficiency solves the coupled fixed-point equations (22). In case of multiple solutions, only the
parameters (η, ξ) that minimize the free energy (23) conform with the operational meaning of the
communication system. Indeed, the multiuser channel can be decoupled under the PME front end
into a bank of single-user Gaussian channels with degradation in the SNR. This is referred to as
the decoupling principle.

Since the decision function is one-to-one, it is inconsequential in both detection- and information-
theoretic viewpoints. Hence the following result:

Corollary 2 In the large-system limit, the mutual information between input symbol and the output
of the multiuser posterior mean estimator for a particular user is equal to the input-output mutual
information of the equivalent single-user Gaussian channel with the same input distribution and
SNR, and an inverse noise variance η as the multiuser efficiency given by Claim 1.

According to Corollary 2, the mutual information I (Xk; 〈Xk〉 |S) for a user with signal-to-noise
ratio snrk = snr converges to a special multiuser information function defined as

I(η snr) = D
(
pZ|X,snr;η‖pZ|snr;η|pX

)
, (26)

where D ( · ‖ · | · ) stands for conditional (Kullback-Leibler) divergence, and pZ|snr;η is the marginal
distribution of the output of the channel (16). The overall spectral efficiency under separate de-
coding is the sum of the single-user mutual informations divided by the dimension of the multiuser
channel (spreading factor L), which is simply

Csep(β) = β E {I(η snr)} , (27)
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where the expectation is over Psnr.
In general, it is straightforward to determine the multiuser efficiency η (and the inverse noise

variance ξ) by solving the joint equations (22). Define the following functions akin to (25):

pi(z, snr; η) = E
{

Xi pZ|X,snr;η(z |X, snr; η)
∣∣ snr

}
, i = 0, 1, . . . (28)

Some algebra leads to

E(snr; η, ξ) = 1 +
∫

p0(z, snr; η)
q2
1(z, snr; ξ)

q2
0(z, snr; ξ)

− 2p1(z, snr; η)
q1(z, snr; ξ)
q0(z, snr; ξ)

dz (29)

and

V(snr; η, ξ) =
∫

p0(z, snr; η)
q0(z, snr; ξ)q2(z, snr; ξ)− q2

1(z, snr; ξ)
q2
0(z, snr; ξ)

dz. (30)

Numerical integrations can be applied to evaluate (29) and (30) in general. It is then viable to
find solutions to the joint equations (22) numerically. In case of multiple sets of solutions, the
ambiguity is resolved by choosing the one that minimizes the free energy (23). Note that the
mean-square error and variance often admit simpler expressions than (29) and (30) under certain
practical inputs, which may ease the computation significantly (see examples in Section 2.5).

2.4.2 Optimal Detection and Spectral Efficiency

Among all multiuser detection schemes, the individually optimal detector has particular impor-
tance since it achieves the best error performance. As we shall see, the optimal spectral efficiency
achievable by joint decoding is also tightly related to the multiuser efficiency of optimal detection.

As shown in Section 2.3.2, the individually optimal detector can be regarded as a PME with
a postulated measure that is exactly the same as the actual measure, i.e., q = p. Consider the
channel, PME and retrochannel in the multiuser setting as depicted in Figure 5(a). It is clear that
in case of optimal detection, the input X0 to the multiuser channel and the retrochannel output
X are independent and identically distributed given (Y ,S). In fact the retrochannel becomes
unnecessary. The decoupling principle stated in Claim 1 can be particularized in case of q = p.
Easily, the multiuser efficiency and the postulated inverse noise variance satisfy joint equations:

η−1 = 1 + β E {snr · E(snr; η, ξ)} , (31a)
ξ−1 = 1 + β E {snr · V(snr; η, ξ)} . (31b)

Due to the replica symmetry assumption, and noting that E(snr;x, x) = V(snr;x, x) for all x, we
take the solution η = ξ. It should be cautioned that (31) may have other solutions with η 6= ξ in
the unlikely case that replica symmetry does not hold for the optimal detection.

In the equivalent single-user setting (Figure 5(b)), the above arguments imply that the postu-
lated channel is also identical to the actual channel, and X and X0 are i.i.d. given Z. The posterior
mean estimate of X given the output Z is

〈X〉 = E {X|Z, snr; η} . (32)

Clearly, 〈X〉 is also the (nonlinear) MMSE estimate, since it achieves the minimum mean-square
error:

mmse(η snr) = E
{

(X − 〈X〉)2
∣∣ snr; η

}
. (33)

Indeed,

E(snr;x, x) = V(snr;x, x) = mmse(x snr), ∀x. (34)

The following is a special case of Corollary 1 for the individually optimal detector.

14



Claim 2 In the large-system limit, the distribution of the output 〈Xk〉 of the individually optimal
detector for the multiuser channel (4) conditioned on Xk = x being transmitted with signal-to-
noise ratio snrk is identical to the distribution of the posterior mean estimate 〈X〉 of the single-user
Gaussian channel (16) conditioned on X0 = x being transmitted with snr = snrk, where the optimal
multiuser efficiency η satisfies a fixed-point equation:

η−1 = 1 + β E {snr ·mmse(η snr)} . (35)

The single-user PME (32) is a (nonlinear) decision function that admits an expression as (24)
with q replaced by p. The MMSE can be computed as

mmse(η snr) = 1−
∫

p2
1(z, snr; η)

p0(z, snr; η)
dz. (36)

Solutions to the fixed-point equation (35) can be found without much difficulty. There are cases
that (35) has more than one solution. The ambiguity is resolved by taking the one that gives the
minimum of the free energy (23) with ξ = η, or equivalently, as we shall see next, the optimal
spectral efficiency.

The single-user mutual information is given by (27) due to Corollary 2, where the multiuser
efficiency is now given by Claim 2. The optimal spectral efficiency under joint decoding is greater
than (27), where the increase is given by the following:

Claim 3 The spectral efficiency gain of optimal joint decoding over individually optimal detection
followed by separate decoding of the multiuser channel (4) is determined, in the large-system limit,
by the optimal multiuser efficiency η as

Cjoint(β)− Csep(β) =
1
2
[(η − 1) log e− log η] = D (N (0, η)‖N (0, 1)) . (37)

In other words, the spectral efficiency under joint decoding is

Cjoint(β) = β E {I(η snr)}+
1
2
[(η − 1) log e− log η]. (38)

In case of multiple solutions to (35), the optimal multiuser efficiency η is the one that gives the
smallest Cjoint.

Indeed, Müller’s conjecture on the mutual information loss [26] is true for arbitrary inputs and
SNRs. Incidentally, the loss is identified as a divergence between two Gaussian distributions in
(37).

Equal-power Gaussian input is the first known case that admits a closed-form solution for the
multiuser efficiency [6] and thus also the spectral efficiencies. The spectral efficiencies under joint
and separate decoding were found for Gaussian inputs with fading in [12], and then found implicitly
in [24] and later explicitly [25] for equal-power users with binary inputs. Formulas (27) and (38)
are the first general results for arbitrary input distributions and received powers.

Interestingly, the spectral efficiencies under joint and separate decoding are also related by an
integral equation.

Theorem 1 For every load β > 0, every input and power distribution,

Cjoint(β) =
∫ β

0

1
β′

Csep(β′) dβ′. (39)
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Proof: Since Cjoint(0) = 0 trivially, it suffices to show

β
d
dβ

Cjoint(β) = Csep(β). (40)

By (37) and (38), it is enough to show

β
d
dβ

E {I(η snr)}+
1
2

d
dβ

[(η − 1) log e− log η] = 0. (41)

Noticing that the multiuser efficiency η is a function of the system load β, (41) is equivalent to

d
dη

E {I(η snr)}+
1
2β

(
1− η−1

)
log e = 0. (42)

By a recent formula that links the mutual information and MMSE in Gaussian channels [36, 37],

1
log e

d
dη

I(ηsnr) =
snr

2
mmse(η snr). (43)

Thus (42) holds as η satisfies the fixed-point equation (35).

Theorem 1 is an outcome of the chain rule of mutual information, which holds for all inputs
and arbitrary number of users:

I(X;Y |S) =
K∑

k=1

I(Xk;Y |S, Xk+1, . . . , XK). (44)

The left hand side of (44) is the total mutual information of the multiuser channel. Each mutual
information in the right hand side of (44) is a single-user mutual information over the multiuser
channel conditioned on the symbols of previously decoded users. As argued in the following, the
limit of (44) as K →∞ becomes the integral equation (39).

Consider an interference canceler with PME front ends against yet undecoded users that decodes
the users successively in which reliably decoded symbols are used to reconstruct the interference for
cancellation. Since the error probability of intermediate decisions vanishes with code block-length,
the interference from decoded users are asymptotically completely removed. Assume without loss
of generality that the users are decoded in reverse order, then the PME for user k sees only k − 1
interfering users. Hence the performance for user k under such successive decoding is identical to
that under multiuser detection with separate decoding in a multiuser system with k instead of K
users. Nonetheless, the equivalent single-user channel for each user is Gaussian by Corollary 1. The
multiuser efficiency experienced by user k, η(k/L), is a function of the load k/L seen by the PME
for user k. By Corollary 2, the single-user mutual information for user k is therefore

I (η(k/L) snrk) . (45)

Since snrk are i.i.d., the overall spectral efficiency under successive decoding converges almost surely:

1
L

K∑
k=1

I (η(k/L) snrk) → E

{∫ β

0
I(β′ snr) dβ′

}
. (46)

Note that the above result on successive decoding is true for arbitrary input distribution and
PME detectors. In the special case of the individually optimal detection, for which the postulated
system is identical to the actual one, the right hand side of (46) is equal to Cjoint(β) by Theorem
1. We can summarize this principle as:
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Claim 4 In the large-system limit, successive decoding with an individually optimal detection front
end against yet undecoded users achieves the optimal CDMA channel capacity under arbitrary input
distributions.

Claim 4 is a generalization of the previous result that a successive canceler with a linear MMSE
front end against undecoded users achieves the capacity of the CDMA channel under Gaussian
inputs [38, 39, 11, 40, 41, 42]. In the special case of Gaussian inputs, however, the optimality is
known to hold for any finite number of users [38, 11].

2.5 Recovering Known Results

As shown in 2.3, several well-known multiuser detectors can be regarded as appropriately parame-
terized PMEs. Thus many previously known results can be recovered as special case of the new
findings in Section 2.4.

2.5.1 Linear Detectors

Let the postulated prior qX be standard Gaussian so that the PME represents a linear multiuser
detector. Since the input Z and output X of the retrochannel are jointly Gaussian (refer to Figure
5(b)), the single-user PME is simply a linear attenuator:

〈X〉q =
ξ
√

snr

1 + ξsnr
Z. (47)

¿From (20), the mean-square error is

E(snr; η, ξ) = E

{[
X0 −

ξ
√

snr

1 + ξsnr

(√
snrX0 +

1
√

η
N

)]2
}

(48)

=
η + ξ2snr

η(1 + ξsnr)2
. (49)

Meanwhile, the variance of X conditioned on Z is independent of Z. Hence the variance (21) of
the retrochannel output is independent of η:

V(snr; η, ξ) =
1

1 + ξsnr
. (50)

¿From Claim 1, one finds that ξ is the solution to

ξ−1 = σ2 + β E

{
snr

1 + ξsnr

}
, (51)

and the multiuser efficiency is determined as

η = ξ + ξ (σ2 − 1)
[
1 + β E

{
snr

(1 + ξsnr)2

}]−1

. (52)

Clearly, the large-system multiuser efficiency of such a linear detector is independent of the input
distribution.

Suppose also that the postulated noise level σ → ∞. The PME becomes the matched filter.
One finds ξσ2 → 1 by (51) and consequently, the multiuser efficiency of the matched filter is [6]

η(mf) =
1

1 + β E {snr}
. (53)
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In case σ = 1, one has the linear MMSE detector. By (52), η = ξ and by (51), the multiuser
efficiency η(mmse) satisfies

η−1 = 1 + β E

{
snr

1 + ηsnr

}
, (54)

which is exactly the Tse-Hanly equation [7, 11]. The fixed-point equation (54) has a unique positive
solution.

By letting σ → 0 one obtains the decorrelator. If β < 1, then (51) gives ξ →∞ and ξσ2 → 1−β,
and the multiuser efficiency is found as η = 1 − β by (52) regardless of the SNR distribution (as
shown in [6]). If β > 1, and assuming the generalized form of the decorrelator as the Moore-Penrose
inverse of the correlation matrix [6], then ξ is the unique solution to

ξ−1 = β E

{
snr

1 + ξsnr

}
(55)

and the multiuser efficiency is found by (52) with σ = 0. In the special case of identical SNRs, an
explicit expression can be found [8, 9]

η(dec) =
β − 1

β + snr(β − 1)2
, β > 1. (56)

By Corollary 1, the mutual information with input distribution pX for a user with snr under lin-
ear multiuser detection is the input-output mutual information of the single-user Gaussian channel
(16) with the same input:

I(X; 〈X〉q |snr) = I(η snr), (57)

where η depends on which type of linear detector is in use. Gaussian priors are known to achieve
the capacity:

C(snr) =
1
2

log(1 + η snr). (58)

By Corollary 3, the total spectral efficiency under Gaussian inputs is expressed in terms of the
linear MMSE multiuser efficiency:

C
(Gaussian)
joint =

β

2
E
{

log
(
1 + η(mmse)snr

)}
+

1
2

[(
η(mmse) − 1

)
log e− log η(mmse)

]
. (59)

This is exactly Shamai and Verdú’s result for fading channels [12].

2.5.2 Optimal Detectors

Using the actual input distribution pX as the postulated prior of the PME results in optimum
multiuser detectors. In case of the jointly optimal detector, the postulated noise level σ = 0, and
(22) becomes

η−1 = 1 + β E {snr · E(snr; η, ξ)} , (60a)
ξ−1 = β E {snr · V(snr; η, ξ)} , (60b)

where E(·) and V(·) are given by (29) and (30) respectively with qi(z, snr;x) = pi(z, snr;x), ∀x. The
parameters can then be solved numerically.

In case of the individually optimal detector, one sets σ = 1 so that q = p. The optimal multiuser
efficiency η is the solution to the fixed-point equation (35) given in Claim 2.

18



It is of practical interest to find the spectral efficiency under the constraint that the input
symbols are antipodally modulated as in the popular BPSK. In this case, the probability mass
function pX(x) = 1/2, x = ±1, maximizes the mutual information. It is not difficult to show that

mmse(η snr) = 1−
∫

1√
2π

e−
z2

2 tanh (ηsnr − z
√

ηsnr) dz. (61)

By Claim 2, The multiuser efficiency, η(b), where the superscript (b) stands for binary inputs, is a
solution to the fixed-point equation [9]:

η−1 = 1 + β E

{
snr

[
1−

∫
1√
2π

e−
z2

2 tanh (ηsnr − z
√

ηsnr) dz

]}
, (62)

which is a generalization of an earlier result assuming equal-power users due to Tanaka [24]. The
single-user channel capacity for a user with signal-to-noise ratio snr is the same as that obtained
by Müller and Gerstacker [25] and is given by

C(b)(snr) = η(b) snr log e−
∫

1√
2π

e−
z2

2 log cosh
(

η(b)snr − z

√
η(b)snr

)
dz. (63)

The total spectral efficiency of the CDMA channel subject to binary inputs is thus

C
(b)
joint =β E

{
η(b) snr log e−

∫
1√
2π

e−
z2

2 log cosh
(

η(b)snr − z

√
η(b)snr

)
dz

}
+

1
2

[(
η(b) − 1

)
log e− log η(b)

]
,

(64)

which is also a generalization of Tanaka’s implicit result in [24].

3 Multiuser Communications and Statistical Physics

This section prepares the reader with concepts and methodologies that will be needed to prove the
results summarized in Section 2.4. Although one can work with the mathematical framework only
and avoid foreign concepts, we believe it is more enlightening to draw an equivalence in between
multiuser communications and many-body problems in statistical physics. Such an analogy is first
seen in a primitive form in [24] and will be developed to a full generality here.

3.1 A Note on Statistical Physics

Let the microscopic state of a system be described by the configuration of some K variables as a
vector x. The Hamiltonian is a function of the configuration, denoted by H(x) . The state of the
system evolves over time according to some physical laws, and after long enough time it reaches
thermal equilibrium. The time average of an observable quantity can be obtained by averaging
over the ensemble of the states. In particular, the energy of the system is

E =
∑
x

p(x)H(x) (65)

where p(x) is the probability of the system being found in configuration x. In other words, as far
as the macroscopic properties are concerned, it suffices to describe the system statistically instead
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of solving the exact dynamic trajectories. The disorder of the thermodynamic system is measured
by the notion of entropy, which is defined as

S = −
∑
x

p(x) log p(x). (66)

One particularly useful macroscopic quantity of the thermodynamic system is the free energy:

F = E − T S (67)

where T ≥ 0 is the temperature.
It is assumed that the system is not isolated and may interact with the surroundings. As a

result, at thermal equilibrium, the temperature and energy of the system remain constant, the
entropy is the maximum possible, and the free energy is at its minimum. It can be shown using
the Lagrange multiplier method that the equilibrium probability distribution that maximizes the
entropy is the Boltzmann distribution:

p(x) = Z−1 exp
[
− 1

T
H(x)

]
(68)

where

Z =
∑
x

exp
[
− 1

T
H(x)

]
(69)

is the partition function, and the temperature T is determined by the energy constraint (65).
Hence the system is found in each configuration with a probability that is negative exponential
in the Hamiltonian associated with the configuration, and the most probable configuration is the
ground state which has the minimum Hamiltonian. Using (65)–(69), one finds that the free energy
at equilibrium can also be expressed as

F = −T log Z. (70)

The free energy is often the starting point for calculating macroscopic properties of a thermody-
namic system.

3.2 Multiuser Communications and Spin Glasses

The communication problem faced by the detector is to infer statistically the information-bearing
symbols given the received signal and knowledge about the channel state. Naturally, the posterior
probability distribution plays a central role. In the multiple-access channel (4), the channel state
consists of the spreading sequences and the SNRs, collectively represented by the matrix S. The
channel is described by the Gaussian density pY |X,S given by (9). By postulating an input qX and
a channel (10) which differs from the actual one only in the noise level, the postulated posterior
distribution can be obtained by using the Bayes formula (cf. (6)) as

qX|Y ,S(x|y,S) =
[
qY |S(y|S)

]−1
qX(x)

(
2πσ2

)−L
2 exp

[
− 1

2σ2
‖y − Sx‖2

]
(71)

where

qY |S(y|S) =
(
2πσ2

)−L
2 Eq

{
exp

[
− 1

2σ2
‖y − SX‖2

] ∣∣∣∣ S

}
(72)

and the expectation in (72) is taken conditioned on S over X with distribution qX .
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Interestingly, one can associate the posterior probability distribution (71) with the characteris-
tics of a thermodynamic system called spin glass. In certain special cases, this connection is found
in Tanaka’s important paper [24], but we believe this work is the first to draw this analogy in
the general setting. A spin glass is a system consisting of many directional spins, in which the
interaction of the spins is determined by the so-called quenched random variables whose values are
determined by the realization of the spin glass.3 Let the microscopic state of a spin glass be denoted
by a K-dimensional vector x, and the quenched random variables by (y,S). The system can be
understood as K random spins sitting in quenched randomness (y,S), and its statistical physics
described as in Section 3.1 with a parameterized Hamiltonian Hy,S(x).

Indeed, if the temperature T = 1 and that the Hamiltonian is defined as

Hy,S(x) =
L

2
log
(
2πσ2

)
+

1
2σ2

‖y − Sx‖2 − log qX(x), (73)

then qX|Y ,S is a Boltzmann distribution and qY |S the corresponding partition function (cf. (68)
and (69)). In other words, by defining an appropriate Hamiltonian, the posterior probability
distribution associated with a multiuser communication system is identical to the configuration
distribution of the spin glass at equilibrium. Precisely, the probability that the transmitted symbol
is X = x under the postulated model, given the observation Y and the channel state S, is equal
to the probability that the spin glass is at configuration x, given the quenched random variables
(Y ,S). It is interesting to note that Gaussian distribution is a natural Boltzmann distribution
with squared Euclidean norm as the Hamiltonian.

The quenched randomness (Y ,S) takes a specific distribution in our problem, i.e., (Y ,S) is a
realization of the received signal and channel state matrix according to the prior and conditional
distributions that underlie the “original” spins. Indeed, the communication system depicted in
Figure 5(a) can be also understood as a spin glass X subject to physical law q sitting in the
quenched randomness caused by another spin glass X0 subject to physical law p. The channel
corresponds to the random mapping from a given spin glass configuration to an induced quenched
randomness. Conversely, the retrochannel corresponds to the random mechanism that maps some
quenched randomness into an induced spin glass configuration distribution.

The free energy of the thermodynamic (or communication) system normalized by the number
of users is

− T

K
log Z(Y ,S) = − 1

K
log qY |S(Y |S). (74)

Due to the self-averaging assumption, the randomness of (74) vanishes as K → ∞. As a result,
the free energy per user converges in probability to its expected value over the distribution of the
quenched random variables (Y ,S) in the large-system limit, which is denoted by F ,

F = − lim
K→∞

E

{
1
K

log qY |S(Y |S)
}

. (75)

Hereafter, by the free energy we refer to the large-system limit (75), which will be calculated in
Section 4.

The reader should be cautioned that for disordered systems, thermodynamic quantities may or
may not be self-averaging [43]. The self-averaging property remains to be proved or disproved in the
CDMA context. This is a challenging problem on its own. Buttressed by numerical examples and

3An example is a system consisting molecules with magnetic spins that evolve over time, while the positions of
the molecules that determine the amount of interactions are random (disordered) but remain fixed for each concrete
instance as in a piece of glass (hence the name of spin glass).
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associated results using random matrix theory, in this work the self-averaging property is assumed
to hold.

The self-averaging property resembles the asymptotic equipartition property (AEP) in infor-
mation theory [44]. An important consequence is that a macroscopic quantity of a thermodynamic
system, which is a function of a large number of random variables, may become increasingly pre-
dictable from merely a few parameters independent of the realization of the random variables as
the system size grows without bound. Indeed, such a macroscopic quantity converges in probability
to its ensemble average in the thermodynamic limit.

In the CDMA context, the self-averaging property leads to the strong consequence that for
almost all realizations of the received signal and the spreading sequences, macroscopic quantities
such as the BER, the output SNR and the spectral efficiency, averaged over data, converge to deter-
ministic quantities in the large-system limit. Previous work (e.g. [11, 7, 10]) has shown convergence
of performance measures for almost all spreading sequences. The self-averaging property results in
convergence of certain empirical performance measures, which holds for almost all realizations of
the data and noise as well.

3.3 Spectral Efficiency and Detection Performance

Consider the multiuser channel, the multiuser PME and the companion retrochannel as depicted in
Figure 5(a). Equipped with the statistical physics concepts introduced in the above, this subsection
associates the spectral efficiency and detection performance of such a system with more tangible
quantities for calculation.

3.3.1 Spectral Efficiency and Free Energy

For a fixed input distribution pX , the total input-output mutual information of the multiuser
channel is

I(X;Y |S) = E

{
log

pY |X,S(Y |X,S)
pY |S(Y |S)

∣∣∣∣ S

}
(76)

= E
{

log pY |S(Y |S)
∣∣ S
}
− L

2
log(2πe). (77)

where the simplification to (77) is because pY |X,S given by (9) is an L-dimensional Gaussian density.
To calculate (77) is formidable for an arbitrary realization of S. However, due to the self-averaging
property, it suffices to evaluate its expectation over the spreading sequences. In view of (75), the
large-system spectral efficiency is affine in the free energy with a postulated measure q identical to
the actual measure p:

C =
1
L

I(X;Y |S) (78)

= −β E

{
1
K

log pY |S(Y |S)
∣∣∣∣ S

}
− 1

2
log(2πe) (79)

→ β F|q=p −
1
2

log(2πe). (80)

The relationship (80) is a full generalization of a previous observation [24] in some special cases.
In fact, the analogy between free energy and information-theoretic quantities has also been noticed
in belief propagation [45], coding [46] and optimization problems [47].
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Figure 6: The replicas of the retrochannel.

3.3.2 Detection Performance and Moments

In case of a multiuser detector front end, one is interested in the quality of the detection output for
each user, which is completely described by the distribution of the detection output conditioned
on the input. Let us focus on an arbitrary user k, and let X0k, 〈Xk〉q and Xk be the input, the
PME output, and the retrochannel output in the multiuser setting (cf. Figure 5(a)). Instead of
the conditional distribution P〈Xk〉q |X0k

, we solve a more ambitious problem: What is the joint
distribution of (X0k, 〈Xk〉q , Xk) conditioned on the channel state S in the large-system limit?

Our approach is to calculate the joint moments

E
{

Xi
0k Xj

k 〈Xk〉lq
∣∣∣ S
}

, i, j, l = 0, 1, . . . (81)

By the self-averaging property, the moments converge to the same values for almost all realizations
of the channel state. Thus it suffices to calculate

E
{

Xi
0k Xj

k 〈Xk〉lq
}

(82)

as K → ∞, which is viable by studying the free energy associated with a modified version of the
partition function (72). More on this later.

The joint distribution becomes clear once all the moments (82) are determined, so does the
relationship between the detection output 〈Xk〉q and the input X0k. It turns out the large-system
joint distribution of (X0k, 〈Xk〉q , Xk) is exactly the same as that of the input, PME output and
retrochannel output associated with a single-user Gaussian channel with the same input distribution
but a degradation in the SNR. In short, a CDMA channel with a multiuser detector front end can
be decoupled into a bank of equivalent single-user channels in the large-system limit. The mutual
information between the input and the detection output for user k is given by

I(X0k; 〈Xk〉q |S), (83)

which can be derived once the input-output relationship is known. It will be shown that conditioning
on the channel state S becomes superfluous as K →∞.

We have distilled our problems under both joint and separate decoding to finding some ensemble
averages, namely, the free energy (75) and the joint moments (82). In order to calculate these
quantities, we resort to a powerful technique developed in the theory of spin glass, the heart of
which is sketched in the following subsection.

3.4 Replica Method

The replica method, originally developed in spin glass theory [27], was introduced to the field of
multiuser detection by Tanaka [24] to analyze the optimal detectors under equal-power Gaussian
or binary input (see also [48]). We now outline the method in a general setting.
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The expected value of the logarithm in (75) can be reformulated as

F = − lim
K→∞

1
K

lim
u→0

∂

∂u
log E {Zu(Y ,S)} (84)

where Z(Y ,S) = qY |S(Y |S). The equivalence of (75) and (84) can be easily verified by noticing
that

lim
u→0

∂

∂u
log E {Θu} = lim

u→0

E {Θu log Θ}
E {Θu}

= E {log Θ} , ∀Θ > 0. (85)

For an arbitrary integer replica number u, we introduce u independent replicas of the retrochannel
(or the spin glass) with the same received signal Y and channel state S as depicted in Figure 6.
The partition function of the replicated system is

Zu(y,S) = Eq

{
u∏

a=1

qY |X,S(y|Xa,S)

∣∣∣∣∣ S

}
(86)

where the expectation is taken over the replicas {Xak|a = 1, . . . , u, k = 1, . . . ,K}. Here, Xak are
i.i.d. (with distribution qX) since (Y ,S) are given. Hence we can evaluate

− lim
K→∞

1
K

log E {Zu(Y ,S)} (87)

as a function of the integer u. The replica trick assumes that the resulting expression is also valid for
an arbitrary real number u at the vicinity of 0 and finds the derivative at u = 0 as the free energy.
Besides validity of continuing to non-integer values of the replica number u, it is also necessary to
assume that the two limits in (84) can be interchanged.

It remains to calculate (87). Note that (Y ,S) is induced by the transmitted symbols X0. By
taking expectation over Y first and then averaging over the spreading sequences, but conditioned
on X0 and Xa, one finds that

1
K

log E {Zu(Y ,S)} =
1
K

log E
{

exp
[
β−1K G

(u)
K (Γ,X)

]}
(88)

where G
(u)
K is some function of the SNRs and the transmitted symbols and their replicas, collectively

denoted by a K×(u+1) matrix X = [X0, . . . ,Xu]. By first conditioning on the correlation matrix
Q of (ΓX), the central limit theorem helps to reduce (88) to

1
K

log
∫

exp
[
β−1K G(u)(Q)

]
µ

(u)
K ( dQ) + O

(
1
K

)
(89)

where G(u) is some function (independent of K) of the (u + 1)× (u + 1) correlation matrix Q, and
µ

(u)
K is the probability measure of the random matrix Q. Large deviations can be invoked to show

that there exists a rate function I(u) such that the measure µ
(u)
K satisfies

− lim
K→∞

1
K

log µ
(u)
K (A) = inf

Q∈A
I(u)(Q) log e (90)

for all measurable set A of (u+1)× (u+1) matrices. Using Varadhan’s theorem [49], (89) is found
to converge as K →∞ to

sup
Q

[
β−1 G(u)(Q)− I(u)(Q)

]
log e. (91)
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Seeking the extremum over a (u + 1)2-dimensional space is a hard problem. The technique to
circumvent this is to assume replica symmetry, namely, that the supremum in Q is symmetric over
all replicated dimensions. The resulting supremum is then over merely a few parameters, and the
free energy can be obtained.

The replica method is also used to calculate the moments (82). Clearly, X0—(Y ,S)—[X1, . . . ,Xu]
is a Markov chain. The moments (82) are equivalent to some moments under the replicated system:

lim
K→∞

E

{
Xi

0k Xj
mk

l∏
a=1

Xak

}
(92)

where we choose m > l, which can be readily evaluated by working with a modified partition
function akin to (86).

Following the replica recipe outlined in the above, a more detailed analysis of the real-valued
channel is carried out in Section 4. The complex-valued counterpart is discussed in Section 5. As
previously mentioned, while the replica trick and replica symmetry are assumed to be valid as well
as the self-averaging property, their rigorous justification is still an open problem in mathematical
physics.

4 Proofs Using the Replica Method

This section proves Claims 1–3 using the replica method. The free energy (75) is calculated first so
that the spectral efficiency under joint decoding is derived. The joint moments (82) are then found
and it is demonstrated that the multiuser channel can be effectively decoupled into single-user
Gaussian channels.

For notational convenience, natural logarithms are assumed throughout this section. All results
on information measures can be converted to indefinite unit by multiplying the logarithm of e for
statement in other sections.

4.1 Free Energy

We will find the free energy by (84) and then the spectral efficiency is trivial by (80). From (9),
(10) and (86),

E {Zu(Y ,S)} = E

{∫
pY |X,S(y|X0,S)

u∏
a=1

qY |X,S(y|Xa,S) dy

}
(93)

= E

{∫
(2π)−

L
2 (2πσ2)−

uL
2 exp

[
−1

2
‖y − SX0‖2

]
×

u∏
a=1

exp
[
− 1

2σ2
‖y − SXa‖2

]
dy

}
. (94)

where the expectations are taken over the channel state matrix S, the original symbol vector X0

(i.i.d. entries with distribution pX), and the replicated symbols Xa, a = 1, . . . , u (i.i.d. entries
with distribution qX). Note that S, X0 and Xa are independent. Let X = [X0, . . . ,Xu]. We
glean from the fact that the L dimensions of the CDMA channel are independent and statistically
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identical, and write (94) as

E {Zu(Y ,S)} =E


[(

2πσ2
)−u

2

∫
E

{
exp

[
−1

2

(
y − S̃ΓX0

)2
]

×
u∏

a=1

exp
[
− 1

2σ2

(
y − S̃ΓXa

)2
]∣∣∣∣Γ,X

}
dy√
2π

]L
} (95)

where the inner expectation in (95) is taken over S̃ = [S1, . . . , SK ], a vector of i.i.d. random variables
each taking the same distribution as the random spreading chips Snk. Define the following variables:

Va =
1√
K

K∑
k=1

√
snrk SkXak, a = 0, 1, . . . , u. (96)

Clearly, (95) can be rewritten as

E {Zu(Y ,S)} = E
{

exp
[
LG

(u)
K (Γ,X)

]}
(97)

where

G
(u)
K (Γ,X) =− u

2
log
(
2πσ2

)
+ log

∫
E

{
exp

[
−1

2

(
y −

√
β V0

)2
]

×
u∏

a=1

exp
[
− 1

2σ2

(
y −

√
β Va

)2
]∣∣∣∣Γ,X

}
dy√
2π

.

(98)

Note that given Γ and X, each Va is a sum of K weighted i.i.d. random chips. Due to a generalization
of the central limit theorem, V converges to a zero-mean Gaussian random vector with covariance
matrix Q where

Qab = E {VaVb | Γ,X} =
1
K

K∑
k=1

snrkXakXbk, a, b = 0, . . . , u. (99)

Note that although inexplicit in notation, Qab is a function of {snrk, Xak, Xbk}K
k=1. The reader is

referred to [24, Appendix B] or [50] for a justification of the asymptotic normality of V through
the Edgeworth expansion. As a result,

exp
[
G

(u)
K (Γ,X)

]
= exp

[
G(u)(Q) +O(K−1)

]
(100)

where the integral of the Gaussian density in (98) can be simplified to obtain (refer to [50] for
details)

G(u)(Q) = −1
2

log det(I + ΣQ)− 1
2

log
(
1 +

u

σ2

)
− u

2
log
(
2πσ2

)
(101)

where Σ is a (u + 1)× (u + 1) matrix:4

Σ =
β

σ2 + u

 u −e>

−e
(
1 + u

σ2

)
I − 1

σ2 ee>

 (102)

4For convenience, the index number of all (u + 1)× (u + 1) matrices in this paper starts from 0.
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where e is a u×1 column vector whose entries are all 1. It is clear that Σ is invariant if two nonzero
indexes are interchanged, i.e., Σ is symmetric in the replicas.

By (97) and (100),

1
K

log E {Zu(Y ,S)} =
1
K

log E
{

exp
[
L
(
G(u)(Q) +O

(
K−1

))]}
(103)

=
1
K

log
∫

exp
[
K β−1 G(u)(Q)

]
dµ

(u)
K (Q) +O(K−1) (104)

where the expectation over the replicated symbols is rewritten as an integral over the probability
measure of the correlation matrix Q, which is expressed as

µ
(u)
K (Q) = E


u∏

0≤a≤b

δ

(
1
K

K∑
k=1

snrkXakXbk −Qab

) (105)

where δ(·) is the Dirac function. Note that the limit in K and the expectation can be exchanged
from (103) to (104) by dominated convergence theorem since exp

[
G(u)(Q)

]
is bounded by a function

in u independent of Q. By Cramér’s theorem, the probability measure of the empirical means Qab

defined by (99) satisfies, as K →∞, the large deviations property with some rate function I(u)(Q)
[49]. Note the factor K in the exponent in the integral in (104). As K → ∞, the integral is
dominated by the maximum of the overall effect of the exponent and the rate of the measure on
which the integral takes place. Precisely, by Varadhan’s theorem [49],

lim
K→∞

1
K

log E {Zu(Y ,S)} = sup
Q

[
β−1 G(u)(Q)− I(u)(Q)

]
(106)

where the supremum is over all possible Q that can be obtained from varying Xak in (99).
Let the moment generating function be defined as

M (u)(Q̃) = E
{

exp
[
snrX>Q̃X

]}
(107)

where Q̃ is a (u + 1) × (u + 1) symmetric matrix, X = [X0, X1, . . . , Xu]>, and the expectation in
(107) is taken over independent random variables snr ∼ Psnr, X0 ∼ pX and X1, . . . , Xu ∼ qX . The
rate of the measure µ

(u)
K is given by the Legendre-Fenchel transform of the cumulant generating

function (logarithm of the moment generating function) [49]:

I(u)(Q) = sup
Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)

]
(108)

where the supremum is taken with respect to the symmetric matrix Q̃.
By (106), (108) and (101), one has

lim
K→∞

1
K

log E {Zu(Y ,S)} = sup
Q

{
β−1 G(u)(Q)− sup

Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)

]}
(109)

= sup
Q

inf
Q̃

T (u)(Q, Q̃) (110)

where

T (u)(Q, Q̃) =− 1
2β

log det(I + ΣQ)− tr
{

Q̃Q
}

+ log E
{

exp
[
snrX>Q̃X

]}
− 1

2β
log
(
1 +

u

σ2

)
− u

2β
log
(
2πσ2

)
.

(111)
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For an arbitrary Q, we first seek the point of zero gradient with respect to Q̃ and find that for any
given Q, the extremum in Q̃ satisfies

Q =
E
{

snrXX>exp
[
snrX>Q̃X

]}
E
{

exp
[
snrX>Q̃X

]} . (112)

Let Q̃
∗
(Q) be a sufficiently smooth function that solves (112). We then seek the point of zero

gradient of T (u)
(
Q, Q̃

∗
(Q)

)
with respect to Q.5 By virtue of the relationship (112), one finds that

the derivative of Q̃
∗

with respect to Q is multiplied by 0 and hence inconsequential. Therefore, the
extremum in Q satisfies

Q̃ = − 1
β

(Σ−1 + Q)−1 . (113)

It is interesting to note from the resulting joint equations (112)–(113) that the order in which the
supremum and infimum are taken in (110) can be exchanged (i.e., minimax is equal to max-min).
The solution

(
Q∗, Q̃

∗)
is in fact a saddle point of T (u). Notice that (112) can also be expressed as

Q = E
{

snrXX>
∣∣∣ Q̃
}

(114)

where the expectation is over an appropriately defined Gaussian measure pX,snr|Q̃ dependent on Q̃.
Solving joint equations (112) and (113) directly is prohibitive except in the simplest cases such

as qX being Gaussian. In the general case, because of symmetry in the matrix Σ (102), we postulate
that the solution to the joint equations satisfies replica symmetry, namely, both Q∗ and Q̃

∗
are

invariant if two (nonzero) replica indexes are interchanged. In other words, the extremum can be
written as

Q∗ =

 r m e>

m e (p− q)I + q ee>

 , Q̃
∗

=

 c d e>

d e (g − f)I + f ee>

 (115)

where r, m, p, q, c, d, f, g are some real numbers.
Note that replica symmetry is a reasonable assumption here rather than a proved fact. It can

be shown that replica symmetry holds in certain cases, e.g., if the postulated prior qX is Gaussian.
Under equal-power binary input and individually optimal detection, Tanaka showed also that if
the system parameters satisfy certain condition, the replica-symmetric solution is stable against
replica-symmetry-breaking (RSB), i.e., it is at least a local maximum [24]. In some other cases,
replica symmetry can be broken [51]. Unfortunately, there is no known general condition for replica
symmetry to hold. The replica-symmetric solution, assumed for analytical tractability in this paper,
is consistent with numerical results in the experiments shown in Section 6.

Under replica symmetry, (101) is evaluated to obtain

G(u) (Q∗) =− u

2
log
(
2πσ2

)
− u− 1

2
log
[
1 +

β

σ2
(p− q)

]
− 1

2
log
[
1 +

β

σ2
(p− q) +

u

σ2
(1 + β(r − 2m + q))

]
.

(116)

5The following identities are useful:

∂ log det Q

∂x
= tr

�
Q−1 ∂Q

∂x

�
,

∂Q−1

∂x
= −Q−1 ∂Q

∂x
Q−1.
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The moment generating function (107) is evaluated as

M (u)(Q̃
∗
)

= E

{
exp

[
snr

(
2d

u∑
a=1

X0Xa + 2f

u∑
0<a<b

XaXb + cX2
0 + g

u∑
a=1

X2
a

)]}
(117)

= E

exp

snr

(
d√
f

X0 +
√

f

u∑
a=1

Xa

)2

+
(

c− d2

f

)
snrX2

0 + (g − f)snr
u∑

a=1

X2
a

 , (118)

where X0 ∼ pX while Xa ∼ qX are all independent. The expectation (118) with respect to the
symbols can be decoupled using a property of Gaussian density, which is also a variant of the
so-called Hubbard-Stratonovich transform [52]:

ex2
=
√

η

2π

∫
exp

[
−η

2
z2 +

√
2η xz

]
dz, ∀x, η. (119)

Using (119) with η = 2d2/f , (118) becomes

M (u)(Q̃
∗
) =E

{√
d2

fπ

∫
exp

[
−d2

f
z2 + 2

√
snr

(
d2

f
X0 + d

u∑
a=1

Xa

)
z

+
(

c− d2

f

)
snrX2

0 + (g − f)snr
u∑

a=1

X2
a

]
dz

}
.

(120)

Since X0, . . . , Xu and snr are independent, the rate of the measure (108) under replica symmetry
is obtained from (120) as

I(u) (Q∗) =rc + upg + 2umd + u(u− 1)qf

− log E

{∫ √
d2

fπ
E

{
exp

[
−d2

f

(
z −

√
snrX0

)2 + c snrX2
0

] ∣∣∣∣ snr

}

×
[
Eq

{
exp

[
2d
√

snrXz + (g − f)snrX2
] ∣∣ snr

}]u dz

}
.

(121)

The free energy is then found by (84) and (106):

F = − lim
u→0

∂

∂u

[
β−1G(u) (Q∗)− I(u) (Q∗)

]
, (122)

where Q∗ is the replica-symmetric solution to (112)–(113).
The eight parameters (r, m, p, q, c, d, f, g) that define Q∗ and Q̃

∗
are the solution to the joint

equations (112)–(113) under replica symmetry. It is interesting to note that as functions of u, the
derivative of each of the eight parameters with respect to u vanishes as u → 0. Thus for the purpose
of the free energy (122), it suffices to find the extremum of

[
β−1G(u) − I(u)

]
at u = 0. Using (113),

it can be shown that at u = 0,

c = 0, (123a)

d =
1

2[σ2 + β(p− q)]
, (123b)

f =
1 + β(r − 2m + q)
2[σ2 + β(p− q)]2

, (123c)

g = f − d. (123d)
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The parameters r, m, p, q can be determined from (114) by studying the measure pX,snr|Q̃ under
replica symmetry and u → 0. For that purpose, define two useful parameters:

η =
2d2

f
and ξ = 2d. (124)

Noticing that c = 0, g − f = −d, (120) can be written as

M (u)(Q̃
∗
) =E

{√
η

2π

∫
exp

[
−η

2
(
z −

√
snrX0

)2]
×
[
Eq

{
exp

[
−ξ

2
z2 − ξ

2
(
z −

√
snrX

)2] ∣∣∣∣ snr

}]u

dz

}
.

(125)

It is clear that the limit of (125) as u → 0 is 1. Hence by (112), as u → 0,

Q∗
ab = E

{
snrXaXb | Q̃

∗}→ E
{

snrXaXb exp
[
X>Q̃

∗
X
]}

. (126)

We now give a useful representation for the parameters r, m, p, q defined in (115). Note that as
u → 0,

E
{

snrX0X1 exp
[
X>Q̃

∗
X
]}

=E

{
snrX0

∫ √
η

2π
exp

[
−η

2
(
z −

√
snrX0

)2]

×
X1

√
ξ
2π exp

[
− ξ

2

(
z −

√
snrX1

)2]
Eq

{√
ξ
2π exp

[
− ξ

2

(
z −

√
snrX1

)2] ∣∣∣∣ snr

} dz

}
.

(127)

Let two single-user Gaussian channels be defined as in Section 2.4, i.e., pZ|X,snr;η is given by (17) and
qZ|X,snr;ξ by (18). Assuming that the input distribution to the channel qZ|X,snr;ξ is qX , a posterior
probability distribution qX|Z,snr;ξ is induced, which defines a retrochannel. Let X0 be the input
to the channel pZ|X,snr;η and X be the output of the retrochannel qX|Z,snr;ξ. The posterior mean
with respect to the measure q, denoted by 〈X〉q is given by (19). The Gaussian channel pZ|X,snr;η,
the retrochannel qX|Z,snr;ξ and the PME, all in the single-user setting, are depicted in Figure 5(b).
Then, (127) can be understood as an expectation over X0, X and Z to obtain

Q∗
01 = E

{
snrX0X1 exp

[
X>Q̃

∗
X
]}

(128)

= E

{
snrX0

∫
pZ|X,snr;η(z|X0, snr; η) Eq {X | Z = z, snr; ξ} dz

}
(129)

= E
{

snr X0 〈X〉q
}

. (130)

Similarly, (126) can be evaluated for all indexes (a, b) yielding together with (115):

r = Q∗
00 = E

{
snr X2

0

}
= E {snr} , (131a)

m = Q∗
01 = E

{
snr X0 〈X〉q

}
, (131b)

p = Q∗
11 = E

{
snr X2

}
, (131c)

q = Q∗
12 = E

{
snr (〈X〉q)

2
}

. (131d)
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In summary, under replica symmetry, the parameters c, d, f, g are given by (123) as functions
of r, m, p, q, which are in turn determined by the statistics of the two channels (17) and (18)
parameterized by η = 2d2/f and ξ = 2d respectively. It is not difficult to see that

r − 2m + q = E

{
snr

(
X0 − 〈X〉q

)2
}

, (132a)

p− q = E

{
snr

(
X − 〈X〉q

)2
}

. (132b)

Using (123) and (124), it can be checked that

p− q =
1
β

(
1
ξ
− σ2

)
, (133a)

r − 2m + q =
1
β

(
1
η
− 1
)

. (133b)

Thus G(u) and I(u) given by (116) and (121) can be expressed in η and ξ. Using (122) and (133),
the free energy is found as (23), where (η, ξ) satisfies fixed-point equations

η−1 = 1 + β E

{
snr
(
X0 − 〈X〉q

)2
}

, (134a)

ξ−1 = σ2 + β E

{
snr
(
X − 〈X〉q

)2
}

. (134b)

In case of multiple solutions to (134), (η, ξ) is chosen as the solution that gives the minimum free
energy F . By defining E(snr; η, ξ) and V(snr; η, ξ) as in (20) and (21), the coupled equations (123)
and (131) can be summarized to establish the key fixed-point equations (22). It will be shown in
Section 4.2 that, from a single user’s stance, the multiuser PME and the multiuser retrochannel,
parameterized by arbitrary (qX , σ), have an equivalence as a single-user PME and a single-user
retrochannel.

Here, for the purpose of the total spectral efficiency, we set the postulated measure q to be
identical to the actual measure p (i.e., qX = pX and σ = 1). The inverse noise variances (η, ξ)
satisfy joint equations but we choose the replica-symmetric solution η = ξ as argued in Section
2.4.2. Using (80), the total spectral efficiency is

Cjoint = −β E

{∫
pZ|snr;η(z|snr; η) log pZ|snr;η(z|snr; η) d z

}
− β

2
log

2πe

η
+

1
2
(η − 1− log η), (135)

where η satisfies

η + η β E

{
snr

[
1−

∫
[p1(z, snr; η)]2

pZ|snr;η(z|snr; η)
d z

]}
= 1. (136)

The optimal spectral efficiency of the multiuser channel is thus found.

4.2 Joint Moments

Consider again the Gaussian channel, the PME and the retrochannel in the multiuser setting
depicted in Figure 5(a). The joint moments (82) are of interest here. For simplicity, we first
study joint moments of the input symbol and the retrochannel output, which can be obtained as
expectations under the replicated system:

E
{

Xi
0kX

j
k

}
= E

{
Xi

0kX
j
mk

}
, m = 1, . . . , u. (137)
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It is then straightforward to calculate (82) by following the same procedure.
The following lemma allows us to determine the expected value of a function of the symbols

and their replicas by considering a modified partition function akin to (86).

Lemma 1 Given an arbitrary function f(X0,Xa), define

Z(u)(y,S,x0;h) = Eq

{
exp [h f(x0,Xa)]

u∏
a=1

qY |X,S(y|Xa,S)

∣∣∣∣∣ S

}
. (138)

If E {f(X0,Xa) | Y ,S,X0} is not dependent on u, then

E {f(X0,Xa)} = lim
u→0

∂

∂h
log E

{
Z(u)(Y ,S,X0;h)

}∣∣∣
h=0

. (139)

Proof: It is easy to see that

Z(u)(Y ,S,X0;h)
∣∣∣
h=0

= Zu(Y ,S). (140)

By taking the derivative and letting h = 0, the right hand side of (139) is

1
K

lim
u→0

E

{
Eq

{
f(X0,X

′
a)

u∏
a=1

qY |X,S(Y |X ′
a,S)

∣∣∣∣∣ Y ,S,X0

}}
, (141)

where X ′
a has the same statistics as Xa (i.e., contains i.i.d. entries with distribution qX) but

independent of (X0,Y ,S). Also note that

qXa|Y ,S(Xa |Y ,S) = Z−u(Y ,S) qXa
(Xa)

u∏
a=1

qY |X,S(Y |Xa,S). (142)

One can change the expectation over the replicas X ′
a independent of (Y ,S,X0) to an expectation

over Xa conditioned on (Y ,S,X0). Hence (141) can be further written as

1
K

lim
u→0

E {E {f(X0,Xa)|Y ,S,X0} Zu(Y ,S)} =
1
K

E {E {f(X0,Xa)|Y ,S,X0}} (143)

=
1
K

E {f(X0,Xa)} (144)

where Zu(Y ,S) can be dropped as u → 0 in (143) since the conditional expectation is not dependent
on u by the assumption in the lemma.

For the function f(X0,Xa) to have influence on the free energy, it must grow at least linearly
with K. Assume that f(X0,Xa) involves users 1 through K1 = α1K where 0 < α1 < 1 is fixed as
K →∞:

f(X0,Xa) =
K1∑
k=1

Xi
0kX

j
mk (145)

where m is an arbitrary replica number in {1, . . . , u}. Without loss of generality, we calculate (137)
for a user κ ∈ {1, . . . ,K1}. It is also assumed that user 1 through K1 take the same signal-to-noise
ratio snr. We will finally take the limit α1 → 0 so that the equal-power constraint for the first K1

users becomes superfluous.
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Clearly, the moments (137) for user κ can be rewritten as

E
{
Xi

0κXj
mκ

}
=

1
K1

K1∑
k=1

E
{

Xi
0k Xj

mk

}
(146)

=
1

K1
E {f(X0,Xa)} . (147)

Note that

E {f(X0,Xa) | Y ,S,X0} = E

{
K1∑
k=1

Xi
0k Xj

k

∣∣∣∣∣ Y ,S,X0

}
(148)

is not dependent on u. By Lemma 1, the moments (147) can be obtained as

lim
u→0

∂

∂h

1
α1K

log E
{

Z(u)(Y ,S,X0;h)
}∣∣∣

h=0
(149)

where

Z(u)(y,S,x0;h) =
(
2πσ2

)−uL
2 Eq

{
exp

[
h

K1∑
k=1

xj
0kX

i
mk

]
u∏

a=1

exp
[
− 1

2σ2
‖y − SXa‖2

] ∣∣∣∣∣ S

}
. (150)

Regarding (150) as a partition function for some random system allows the same techniques in
Section 4.1 to be used to write

lim
K→∞

1
K

log E
{

Z(u)(Y ,S,X0;h)
}

= sup
Q

{
β−1G(u)(Q)− I(u)(Q;h)

}
(151)

where G(u)(Q) is given by (101) and I(u)(Q;h) is the rate of the following measure

µ
(u)
K (Q;h) = E

exp

[
h

K1∑
k=1

Xi
0kX

j
mk

]
u∏

0≤a≤b

δ

(
K∑

k=1

snrkXakXbk −KQab

) . (152)

By the large deviations property, one finds the rate

I(u)(Q;h) = sup
Q̃

[
tr
{

Q̃Q
}
− log M (u)(Q̃)− α1

(
log M (u)(Q̃, snr;h)− log M (u)(Q̃, snr; 0)

)]
(153)

where M (u)(Q̃) is defined in (107), and

M (u)(Q̃, snr;h) = E
{

exp
[
h Xi

0X
j
m

]
exp

[
snrX>Q̃X

] ∣∣∣ snr
}

. (154)

¿From (151) and (153), taking the derivative in (149) with respect to h at h = 0 leaves only one
term

∂

∂h
log M (u)(Q̃, snr;h)

∣∣∣∣
h=0

=
E
{

Xi
0X

j
m exp

[
snrX>Q̃X

]}
E
{

exp
[
snrX>Q̃X

]} . (155)

Since
Z(u)(Y ,S,X0;h)

∣∣∣
h=0

= Zu(Y ,S), (156)

the Q̃ in (155) that give the supremum in (153) at h → 0 is exactly the Q̃ that gives the supremum
of (108), which is replica-symmetric by assumption. By introducing the parameters (η, ξ) the same
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as in Section 4.1, and by definition of qi and pi in (25) and (28) respectively, (155) can be further
evaluated as ∫ (√

2π
ξ e

ξz2

2

)u

pi(z, snr; η) qu−1
0 (z, snr; ξ) qj(z, snr; ξ) dz∫ (√

2π
ξ e

ξz2

2

)u

p0(z, snr; η)qu
0 (z, snr; ξ) dz

(157)

Taking the limit u → 0, one has from (147)–(157) that as K →∞,

1
K1

K1∑
k=1

E
{

Xi
0k Xj

mk

}
→
∫

pi(z, snr; η)
qj(z, snr; ξ)
q0(z, snr; ξ)

dz. (158)

Let X0 ∼ pX be the input to the single-user Gaussian channel pZ|X,snr;η and Z be its output (see
Figure 5(b)). Let X be the corresponding output of the companion retrochannel with Z as its
input. Then X0–Z–X is a Markov chain. By definition of pi and qi, the right hand side of (158) is∫

p0(z, snr; η)
pi(z, snr; ξ)
p0(z, snr; ξ)

qj(z, snr; ξ)
q0(z, snr; ξ)

dz = E
{
E
{

Xi
0

∣∣ Z
}

E
{

Xj
∣∣ Z
}}

. (159)

Letting K1 → 1 (thus α1 → 0) so that the requirement that the first K1 users take the same
SNR becomes unnecessary, we have proved by (137), (146), (158) and (159) that for every SNR
distribution and every every user k ∈ {1, . . . ,K}

E
{

Xi
0k Xj

k

}
→ E

{
Xi

0X
j
}

as K →∞. (160)

Since the moments (160) are uniformly bounded, the distribution is thus uniquely determined
by the moments due to Carleman’s Theorem [53, p. 227]. Therefore, for every user k, the joint dis-
tribution of the input X0k to the multiuser channel and the output Xk of the multiuser retrochannel
converges to the joint distribution of the input X0 to the single-user Gaussian channel pZ|X,snr;η

and the output X of the single-user retrochannel qX|Z,snr;ξ.
Applying the same methodology as developed thus far in this subsection, one can also calculate

the joint moments (82) by letting

f(X0,Xa) =
K1∑
k=1

Xi
0kX

j
mk

l∏
a=1

Xak (161)

where it is assumed that m > l. The rationale is that X0–(Y ,S)–Xa is a Markov chain and Xa’s
are i.i.d. conditioned on (Y ,S); hence (82) can be calculated as expectations under the replicated
system:

E
{

Xi
0k Xj

k 〈Xk〉lq
}

= E

{
Xi

0k Xj
mk

l∏
a=1

E {Xak | Y ,S}

}
(162)

= E {f(X0,Xa)} . (163)

It is straightforward by Lemma 1 to calculate (163) and obtain that, as K →∞,

E {f(X0,Xa)} →
∫

pi(z, snr; η)
qj(z, snr; ξ)
q0(z, snr; ξ)

(
q1(z, snr; ξ)
q0(z, snr; ξ)

)l

dz. (164)

Let 〈X〉q be the single-user PME output as seen in Figure 5(b), which is a function of the Gaussian
channel output Z. Then the right hand side of (164) represents a joint moment and thus

E
{

Xi
0k Xj

k 〈Xk〉lq
}
→ E

{
Xi

0X
j 〈X〉lq

}
. (165)
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Again, by Carleman’s Theorem, the joint distributions of (X0k, Xk, 〈Xk〉q) converge to that of
(X0, X, 〈X〉q). Indeed, from the viewpoint of user k, the multiuser setting is equivalent to the
single-user setting in which the SNR suffers a degradation η (compare Figures 5(b) and 5(a)).
Hence we have proved the decoupling principle and Claim 1.

In the large-system limit, the transformation from the input X0k to the multiuser detection
output 〈Xk〉q is nothing but a single-user Gaussian channel pZ|X,snr;η concatenated with a decision
function (24). The decision function can be ignored from both detection- and information-theoretic
viewpoints due to its monotonicity:

Proposition 1 The decision function (24) is strictly monotone increasing in z for all snr and ξ.

Proof: Let (·)′ denote derivative with respect to z. One can show that

q′i(z, snr; ξ) = ξ
√

snr qi+1(z, snr; ξ)− ξz qi(z, snr; ξ) i = 0, 1, . . . (166)

Clearly, [
q1(z, snr; ξ)
q0(z, snr; ξ)

]′
= ξ

√
snr

q2(z, snr; ξ)q0(z, snr; ξ)− [q1(z, snr; ξ)]2

[q0(z, snr; ξ)]2
. (167)

The numerator in (167) is positive (≥ 0) by the Cauchy-Schwartz inequality. For the numerator in
(167) to be 0, X must be a constant, which contradicts the assumption that X has zero mean and
unit variance. Therefore, (24) is strictly increasing.

Collecting relevant results in the above, the equivalent single-user channel is then an additive
Gaussian noise channel with input signal-to-noise ratio snr and noise variance η−1 as depicted in
Figure 5(b). Corollaries 1 and 2 are thus proved. In the special case that the postulated measure
q is identical to the actual measure p, Claim 1 reduces to Claim 2.

The single-user mutual information is now simply that of a Gaussian channel with input distri-
bution pX ,

I(η snr) = −1
2

log
2πe

η
−
∫

pZ|snr;η(z|snr; η) log pZ|snr;η(z|snr; η) dz. (168)

The overall spectral efficiency under separate decoding is therefore

Csep = β E {I(η snr)} . (169)

Hence the proof of (27). Claim 3 is proved by comparing (169) to (135).

5 Complex-valued Channels

Until now the discussion is based on a real-valued setting of the multiuser system, namely, both
the inputs Xk and the spreading chips Snk take real values. In practice, particularly in carrier-
modulated communications where spectral efficiency is a major concern, transmission in the com-
plex domain must be addressed. Either the input symbols or the spreading chips or both can
take values in the complex number set. In the complex-valued setting, the channel model (4) is
equivalent to the following real-valued one:[

Y (r)

Y (i)

]
=
[
S(r) −S(i)

S(i) S(r)

] [
X(r)

X(i)

]
+
[
N (r)

N (i)

]
, (170)

where the superscripts (r) and (i) denote real and imaginary components respectively. Note that
the previous analysis does not apply to (170) since the channel state matrix does not contain i.i.d.
entries in this case.
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If the inputs take complex values but the spreading is real-valued (S(i) = 0), the channel can
be considered as two uses of the real-valued channel S = S(r), where the inputs X(r) and X(i)

to the two channels may be dependent. Since independent inputs maximize the channel capacity,
there is little reason to transmit dependent signals in the two subchannels. Thus the analysis of
the real-valued channel in previous sections also applies to the case of independent in-phase and
quadrature components, while the only change is that the spectral efficiency is the sum of that of
the two subchannels.

We can also compare the real-valued and the complex-valued channel assuming the same real-
valued input distribution. Under the complex-valued channel,[

Y (r)

Y (i)

]
=
[
S(r)

S(i)

]
X +

[
N (r)

N (i)

]
, (171)

which is equivalent to transmitting the same X twice over two uses of real-valued channels. This
is equivalent to having a real-valued channel with the load β halved.

If both the symbols and the spreading chips are complex-valued, the analysis in the previous
sections can be modified to take this into account. For convenience it is assumed that the real and
imaginary components of spreading chips, S

(r)
nk , S

(i)
nk are i.i.d. with zero mean and unit variance.

The noise vector has i.i.d. circularly symmetric Gaussian entries, i.e., E {NNH} = 2I. Thus the
conditional probability density function of the actual multiuser channel is

pY |X,S(y|x,S) = (2π)−L exp
[
−1

2
‖y − Sx‖2

]
, (172)

whereas that of the postulated channel is

qY |X,S(y|x,S) =
(
2πσ2

)−L exp
[
− 1

2σ2
‖y − Sx‖2

]
. (173)

Also, the actual and the postulated input distributions pX and qX have both zero-mean and unit
variance, E

{
|X|2

}
= Eq

{
|X|2

}
= 1. Note that the in-phase and the quadrature components are

intertwined due to complex spreading.
The replica analysis can be carried out in parallel as that in Section 4. In the following we

highlight the major differences. Given (Γ,X), the variables Va defined in (96) have asymptotically
independent real and imaginary components. Thus, G

(u)
K can be evaluated to be 2 times that under

real-valued channels with

Qab =
1
K

K∑
k=1

snrkRe {XakX
∗
bk} , a, b = 0, . . . , u. (174)

The rate I(u) of the measure µ
(u)
K of Q is obtained as

I(u)(Q) = sup
Q̃

[
tr
{

Q̃Q
}
− log E

{
exp

[
snrXHQ̃X

]}
/ log e

]
. (175)

As a result, the fixed-point joint equations for Q and Q̃ are

Q̃ = − 2
β

(Σ−1 + Q)−1 , (176a)

Q =
E
{

snrXXHexp
[
snrXHQ̃X

]}
E
{

exp
[
snrXHQ̃X

]} . (176b)
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Under replica symmetry (115), the parameters (c, d, f, g) are found to be 2 times the corresponding
values given in (123), and (r, m, p, q) are found the same as in (131) except that all squares are
replaced by squared norms. By defining two parameters (differ from (124) by a factor of 2):

η =
d2

f
and ξ = d, (177)

we have the following result.

Claim 5 Let the multiuser posterior mean estimate of the complex-valued multiple-access channel
(172) with complex-valued spreading be 〈X〉q parameterized by a postulated input distribution qX

and noise level σ. Then, in the large-system limit, the distribution of the multiuser detection output
〈Xk〉q conditioned on Xk = x being transmitted with signal-to-noise ratio snrk is identical to the
distribution of the estimate 〈X〉q of a single-user complex Gaussian channel

Z =
√

snr X +
1
√

η
N (178)

conditioned on X = x being transmitted with snr = snrk, where N is circularly symmetric Gaussian
with unit variance, E

{
|N |2

}
= 1. The multiuser efficiency η and the inverse noise variance ξ of

the postulated single-user channel (173) satisfy the coupled equations (22), where the mean-square
error E(snr; η, ξ) of the posterior mean estimate and the variance V(snr; η, ξ) of the retrochannel are
defined similarly as that of the real-valued channel, with the squares in (20) and (21) replaced by
squared norms. In case of multiple solutions to (22), (η, ξ) are chosen to minimize the free energy:

F =− E

{∫
pZ|snr;η(z|snr; η) log qZ|snr;ξ(z|snr; ξ) d z

}
+ log

ξ

π
− ξ

η
log e +

σ2ξ(η − ξ)
βη

log e +
1
β

[(ξ − 1) log e− log ξ] +
1
β

log(2π) +
ξ

βη
log e.

(179)

Corollary 3 For the complex-valued channel (172), the mutual information of the single-user chan-
nel seen at the multiuser posterior mean estimator output for a user with signal-to-noise ratio snr
is

I(η snr) = D
(
pZ|X,snr;η‖pZ|snr;η|pX

)
. (180)

where η is the multiuser efficiency given by Claim 5 and pZ|snr;η is the marginal probability dis-
tribution of the output of channel (178). The overall spectral efficiency under suboptimal separate
decoding is

Csep(β) = β E {I(η snr)} . (181)

Claim 6 The optimal spectral efficiency under joint decoding is

Cjoint(β) = β E {I(η snr)}+ (η − 1) log e− log η, (182)

where η is the optimal multiuser efficiency determined by Claim 5 by postulating a measure q that
is identical to p.

It is interesting to compare the performance of the real-valued channel and that of the complex-
valued channel. We assume the in-phase and quadrature components of the input symbols are
independent with identical distribution p′X which has a variance of 1

2 . By Claim 5, the equivalent
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Figure 7: Simulated probability density function of the posterior mean estimates under binary
input conditioned on “+1” being transmitted. Systems with 4, 8, 12 and 16 equal-power users are
simulated with β = 2/3. The SNR is 2 dB.

single-user channel (178) can also be regarded as two independent subchannels. The mean-square
error and the variance in (22) are the sum of those of the subchannels. It can be checked that the
performance of each subchannel is identical to that of the real-valued channel with input distribution
p′X normalized to unit variance. Note, however, that the total transmit energy in case of complex
spreading take twice the energy of their real counterparts. In all, the error performance under
complex-valued spreading is the exactly the same as those under real-valued spreading. This result
simplifies the analysis of complex-valued channels such as those arise in multiantenna systems. On
the other hand, if we have control over the channel state matrix, as in CDMA systems, complex-
valued spreading should be avoided due to higher complexity with no performance gain.

6 Numerical Results

In Figures 7–8 we plot the simulated distribution of the posterior mean estimate and its correspond-
ing “hidden” Gaussian statistic. Equal-power users with binary input are considered. We simulate
CDMA systems of 4, 8, 12 and 16 users respectively. The load is fixed to β = 2/3 and the SNR is
2 dB. Let Xk = 1 be transmitted. We collect the output decision statistics of the posterior mean
estimator (i.e., the soft output of the individually optimal detector, 〈Xk〉) out of several thousand
experiments. A histogram of the statistic is obtained and then scaled to plot an estimate of the
probability density function in Figure 7. We also apply the inverse nonlinear decision function to
recover the “hidden” Gaussian decision statistic (normalized so that its conditional mean is equal
to Xk = 1), which in this case is

Z̃k =
tanh−1(〈Xk〉)

η snrk
. (183)
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Figure 8: Simulated probability density function of the “hidden” Gaussian statistic recovered from
the posterior mean estimates under binary input conditioned on “+1” being transmitted. Systems
with 4, 8, 12 and 16 equal-power users are simulated with β = 2/3. The SNR is 2 dB. The
asymptotic Gaussian distribution predicted by our theory is also plotted for comparison.

The probability density function of Z̃k estimated from its histogram is then compared to the
theoretically predicted Gaussian density function in Figure 8. It is clear that even though the PME
output 〈Xk〉 takes a non-Gaussian distribution, the equivalent statistic Z̃k converges to a Gaussian
distribution centered at Xk as K becomes large. This result is particularly powerful considering
that the “fit” to the Gaussian distribution is quite good even for a system with merely 8 users.

In Figures 9–10, the multiuser efficiency and the spectral efficiency are plotted as functions of
the average SNR. We consider three input distributions, namely, real-valued Gaussian and binary
inputs, and (complex-valued) 8PSK inputs. Under Gaussian and binary inputs, where real-valued
spreading is considered, the multiuser efficiencies are given by (54) and (62) respectively, and the
spectral efficiencies are given by (58)–(59), (63) and (64) respectively. Under 8PSK, where complex-
valued spreading is assumed, the multiuser efficiency and the spectral efficiency are given by Claim
5 and Corollary 3 respectively. We also consider two SNR distributions: 1) identical SNRs for all
users (perfect power control), and 2) two groups of users of equal population with a power difference
of 10 dB. We first assume a system load of β = 1 and then redo the experiments with β = 3.

In Figure 9(a), the multiuser efficiency under Gaussian inputs and linear MMSE detection is
plotted as a function of the average SNR. The load is β = 1. We find the multiuser efficiencies
decrease from 1 to 0 as the SNR increases. The monotonicity can be easily verified by inspecting the
Tse-Hanly equation (54). Transmission with unbalanced power improves the multiuser efficiency.
The corresponding spectral efficiencies of the system are plotted in Figure 9(b). Both joint decoding
and separate decoding are considered. The gain in the spectral efficiency due to joint decoding
is little under low SNR but significant under high SNR. Unbalanced SNR reduces the spectral
efficiency, where under separate decoding the loss is almost negligible.

The multiuser efficiency under binary inputs and nonlinear MMSE (individually optimal) de-
tection is plotted in Figure 9(c). The multiuser efficiency is not monotone. The multiuser efficiency
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Figure 9: Plots of the multiuser efficiency and spectral efficiency as functions of the SNR. The
load is β = 1. (a) The multiuser efficiency, Gaussian inputs. (b) The spectral efficiency, Gaussian
inputs. (c) The multiuser efficiency, binary inputs. (d) The spectral efficiency, binary inputs. (e)
The multiuser efficiency, 8PSK inputs. (f) The spectral efficiency, 8PSK inputs.
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Figure 10: Plots of the multiuser efficiency and spectral efficiency as functions of the SNR. The
load is β = 3. (a) The multiuser efficiency, Gaussian inputs. (b) The spectral efficiency, Gaussian
inputs. (c) The multiuser efficiency, binary inputs. (d) The spectral efficiency, binary inputs. (e)
The multiuser efficiency, 8PSK inputs. (f) The spectral efficiency, 8PSK inputs.
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converges to 1 for both diminishing SNR and infinite SNR. While for diminishing SNR this follows
directly from the definition of multiuser efficiency, the convergence to unity as the SNR goes to
infinity was shown in [54] for the case of binary inputs. A single dip is observed for the case of
identical SNRs while two dips are observed in the case of two SNRs of equal population with 10
dB difference in SNR (the gap is about 10 dB). The corresponding spectral efficiencies are plotted
in Figure 9(d). The spectral efficiencies saturate to 1 bit/s/dimension at high SNR. The difference
between joint decoding and separate decoding is quite small for both very low and very high SNRs
while it can be 25% at around 8 dB.

The multiuser efficiency under 8PSK inputs and nonlinear MMSE detection is plotted in Figure
9(e). The multiuser efficiency curve is slightly better than that for binary inputs. The corresponding
spectral efficiencies are plotted in Figure 9(f). The spectral efficiencies saturate to 3 bit/s/dimension
at hight SNR.

In Figure 10, we redo the previous experiments only with a different system load β = 3. The
results are to be compared with those in Figure 9.

Under Gaussian inputs, the multiuser efficiency curves in Figure 10(a) take a similar shape as in
Figure 9(a), but are significantly lower due to higher load. The corresponding spectral efficiencies
are shown in Figure 10(b). It is clear that higher load results in higher spectrum usage under joint
decoding. Separate decoding, however, is interference limited and saturates under high SNR (cf.
[11, Figure 1]).

In Figure 10(c), we plot the multiuser efficiency under binary inputs. All solutions to the fixed-
point equation (35) of the multiuser efficiency are shown. Under equal SNR, multiple solutions
coexist for an average SNR of 10 dB or higher. If two groups of users with 10 dB difference in SNR,
multiple solutions are seen in between 11 to 13 dB. The solution that minimizes the free energy is
valid and is shown in solid lines, while invalid solutions are plotted using dotted lines. An almost 0
to 1 jump is observed under equal SNR and a much smaller jump is seen under unbalanced SNRs.
This is known as phase transition in statistical physics. The asymptotics under equal SNR can be
shown by taking the limit snr →∞ in (62). Essentially, if ηsnr →∞, then η → 1; while if ηsnr → τ
where τ is the solution to

τ

∫
1√
2π

e−
z2

2 [1− tanh(τ − z
√

τ)] dz =
1
β

, (184)

then η → 0. If β > 2.085, there exists a solution to (184) so that two solutions coexist for large
SNR.

The spectral efficiency under binary inputs and β = 3 is shown in Figure 10(d). As a result
of phase transition, one observes a jump to saturation in the spectral efficiency under equal-power
binary inputs. The gain due to joint decoding can be significant in moderate SNRs. In case of two
groups of users with 10 dB difference in SNR, the spectral efficiency curve also shows one jump and
the loss due to separate decoding is reduced significantly for a small window of SNRs around the
areas of phase transition (11–13 dB). Therefore, perfect power control may not be the best strategy
in such cases.

Under 8PSK inputs, the multiuser efficiency and spectral efficiency curves in Figure 10(e) and
10(f) take similar shape as the curves under binary inputs in Figure 10(c) and 10(d). Phase
transition causes jumps in both the multiuser efficiency and the spectral efficiency. In Figures
10(e)–10(d) a sharp bend upward is observed at the point of phase transition. This is known as
“spinodal” in statistical physics.

A comparison of Figures 10(b), 10(d) and 10(f) shows that under separate decoding, the spec-
tral efficiency under Gaussian inputs saturates well below that of binary and 8PSK inputs. This
implies that the nonlinear MMSE detector with separate decoding is not efficient in case of dense
constellation.
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7 Summary

The main contribution of this paper is a simple characterization of the performance of CDMA multi-
user detection under arbitrary input distribution and SNR (and/or flat fading) in the large-system
limit. A broad family of multiuser detectors is studied under the name of posterior mean estima-
tors, which includes well-known detectors such as the matched filter, decorrelator, linear MMSE
detector, maximum likelihood (jointly optimal) detector, and the individually optimal detector.

A key conclusion is the decoupling of a Gaussian multiuser channel concatenated with a generic
multiuser detector front end. It is found that the multiuser detection output is a deterministic
function of a hidden Gaussian statistic centered at the transmitted symbol. Hence the single-
user channel seen at the multiuser detection output is equivalent to a Gaussian channel in which
the overall effect of multiple-access interference is a degradation factor in the effective signal-to-
interference ratio. This degradation factor, known as the multiuser efficiency, is the solution to a
pair of coupled fixed-point equations, and can be easily computed numerically if not analytically.

Another set of results, tightly related to the decoupling principle, are some general formulas
for the large-system spectral efficiency of multiuser channels expressed in terms of the multiuser
efficiency, both under joint and separate decoding. It is found that the decomposition of optimum
spectral efficiency as a sum of single-user efficiencies and a joint decoding gain applies under more
general conditions than shown in [12], thereby validating Müller’s conjecture [26]. A relationship
between the spectral efficiencies under joint and separate decoding is an outcome of an intriguing
formula that links the mutual information and MMSE [37].

From a practical viewpoint, this paper presents new results on the efficiency of CDMA commu-
nication under arbitrary input signaling such as m-PSK and m-QAM and arbitrary power profile.
More importantly, the results in this paper allow the performance of multiuser detection to be
characterized by a single parameter, the multiuser efficiency. The efficiency of spectrum usage is
also easily quantified by means of this parameter. Thus, the results offer valuable insights in the
design and analysis of CDMA systems, e.g., in power control [55].

The linear system in our study also models multiple-input multiple-output channels under
various circumstances. The results can thus be used to evaluate the output SNR or spectral
efficiency of high-dimensional MIMO channels (such as multiple-antenna systems) with arbitrary
signaling and various detection techniques. Some of the results in this paper have been generalized
to MIMO channels with spatial correlation at both transmitter and receiver sides [56].
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[1] S. Verdú, “Computational complexity of optimum multiuser detection,” Algorithmica, vol. 4, no. 3,
pp. 303–312, 1989.
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