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RANDOMNESS FOR NON-COMPUTABLE MEASURES

ADAM R. DAY AND JOSEPH S. MILLER

Abstract. Different approaches have been taken to defining randomness for
non-computable probability measures. We will explain the approach of
Reimann and Slaman, along with the uniform test approach first introduced
by Levin and also used by Gács, Hoyrup and Rojas. We will show that these
approaches are fundamentally equivalent.

Having clarified what it means to be random for a non-computable prob-
ability measure, we turn our attention to Levin’s neutral measures, for which
all sequences are random. We show that every PA degree computes a neutral
measure. We also show that a neutral measure has no least Turing degree
representation and explain why the framework of the continuous degrees (a
substructure of the enumeration degrees studied by Miller) can be used to
determine the computational complexity of neutral measures. This allows us
to show that the Turing ideals below neutral measures are exactly the Scott
ideals. Since X ∈ 2ω is an atom of a neutral measure μ if and only if it is com-
putable from (every representation of) μ, we have a complete understanding
of the possible sets of atoms of a neutral measure. One simple consequence is
that every neutral measure has a Martin-Löf random atom.

1. Defining randomness

Let X be an element of Cantor space and μ a Borel probability measure on
Cantor space. What should it mean for X to be random with respect to μ? In
the case that μ is the Lebesgue measure, then the theory of μ-randomness is well
developed (for recent treatises on the subject the reader is referred to Downey and
Hirschfeldt, and Nies [2, 13]).

In fact if μ is a computable measure, then early work of Levin showed that
μ-randomness can be seen as essentially a variant on randomness for Lebesgue
measure [10]. This leaves the question of how to define randomness if μ is non-
computable. We will show that the two approaches that have previously been
used to define μ-randomness, for non-computable μ, are equivalent. Later, in The-
orem 4.12, we will provide another characterization of μ-randomness using the
enumeration degrees.

For Lebesgue measure, the preeminent definition of randomness was originally
provided by Martin-Löf and is now known as Martin-Löf randomness [11]. We would
like to find a natural generalization of Martin-Löf randomness to non-computable
probability measures. One approach is to generalize Martin-Löf tests. This ap-
proach immediately runs into the difficult question of what sort of oracle access a
test should have. It is reasonable to expect that a test for a measure μ should be able
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3576 ADAM R. DAY AND JOSEPH S. MILLER

to compute the μ measure of any basic clopen set. However, there are continuum
many probability measures on Cantor space, so in order to make these measures
accessible to the techniques of computability theory, we will make use of some basic
concepts of computable analysis. We will define all the concepts we need. For fur-
ther background on computable analysis, the reader is referred to Weihrauch [19],
who gives a modern development of the subject. Classical computability theory
studies Cantor space (2ω) and Baire space (ωω). The main idea behind computable
analysis is to transfer the notions of computability theory to other structures via
representations of those structures. If S is a set, a representation of S is just a
surjective function (possibly partial) ρ : 2ω → S. The representation induces a
computability-theoretic structure on S. We will also use the word “representation”
in another, less standard, sense. If R ∈ 2ω and ρ(R) = x, we call R a representation
of x.

We will take P(2ω) to be the set of all probability measures on Cantor space.
We will let ρ : 2ω → P(2ω) be a representation of P(2ω). In Section 2 we will
give a detailed definition of such a ρ, but for now it is enough to specify that if
ρ(R) = μ, then we can uniformly in R compute the μ-measure of any basic clopen
set in Cantor space.

As we access measures via representations, one approach is to define random-
ness in terms of representations. The following definitions, while not identical, are
equivalent to that of Reimann [14] and Reimann and Slaman [15].

Definition 1.1. Let μ ∈ P(2ω) and let R ∈ 2ω be a representation of μ.

(i) An R-test is a uniform (in R) sequence {Vi}i∈ω of Σ0
1(R) sets such that

μ(Vi) ≤ 2−i.
(ii) X ∈ 2ω passes an R-test if X �∈

⋂
i Vi.

(iii) X ∈ 2ω is R-random if it passes all R-tests.

A universal R-test exists for the same reason that a universal Martin-Löf test
exists. Given R, we would like to enumerate all R-tests by enumerating all (uniform
in R) sequences of R-c.e. sets, halting any enumeration if it would exceed the mea-
sure bound. There is a small technical obstruction, namely that we cannot exactly
compute the μ-measure of a basic clopen set from R. However, we can compute
a sequence approximating it from above. Hence, we can pause an enumeration
until a stage when our approximation from above guarantees that we can add the
next element without exceeding the measure bound. Note that this could cause
a problem if some test {V R

n }n∈ω had V R
i = 2−i for some i. The enumeration of

this test could be paused forever. However, in this case, the test {V R
n+1}n∈ω defines

the same null set and avoids this problem. This shows that we can (essentially)
enumerate all R-tests, uniformly in R, so we can build a universal R-test. Even
better, because the construction is uniform, there is a uniform sequence of c.e. sets
Un such that if UR

n = {[τ ] : 〈τ, σ〉 ∈ Un and σ ≺ R}, then {UR
n }n∈ω is a universal

R-test. Call {Un}n∈ω a universal oracle Martin-Löf test. Our notation is standard:
σ and τ are used for finite binary strings (elements of 2<ω); σX is σ concatenated
with X; [σ] is the basic clopen set {σX : X ∈ 2ω}; σ ≺ X holds if σ is an initial
segment of X.

As noted by Reimann, the problem with Definition 1.1 is that it is dependent
on the representation. Given any measure, it is possible to encode any sequence
into some representation of that measure. Hence for all μ ∈ P(2ω) and all X ∈ 2ω,
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RANDOMNESS FOR NON-COMPUTABLE MEASURES 3577

there is a representation R of μ such that X is not R-random. A natural way to
overcome this problem is with the following definition.

Definition 1.2. A sequence X ∈ 2ω is μ-random if there exists a representation
R of μ such that X is R-random.

Our goal is to show that, at least in Cantor space, this definition gives the same
class of randoms for a measure as does the concept of a uniform test. Uniform tests
are an alternative approach to randomness for non-computable measures. They
were introduced by Levin and developed by Gács, and Hoyrup and Rojas [3, 4, 9].
While uniform tests can be applied to general probability spaces, in this paper, we
will only be concerned with Cantor space.

Definition 1.3. Consider a function t : P(2ω)× 2ω → R≥0 ∪ {∞}.
(i) The under-graph of t is {(μ,X, r) : t(μ,X) > r}. We say that the under-

graph of t is c.e. open if it is equal to
⋃

〈i,σ,q〉∈W Bi × [σ]× [0, q) for some

c.e. set W ⊆ ω × 2<ω ×Q.
(ii) We call t a uniform test if its under-graph is c.e. open and for every μ ∈

P(2ω) we have
∫
t(μ,X) dμ ≤ 1.

(iii) X ∈ 2ω passes a test t for a measure μ if t(μ,X) is bounded.
(iv) X ∈ 2ω is μ-random for uniform tests if it passes all tests for measure μ.

By a straightforward theorem of Gács, later refined by Hoyrup and Rojas, it is
sufficient to consider a single universal uniform test.

Definition 1.4. A uniform test t is universal if for all uniform tests t′ there is a
constant c > 0 such that for all μ ∈ P(2ω) and X ∈ 2ω, we have t(μ,X) ≥ ct′(μ,X).

Theorem 1.5 (Gács; Hoyrup and Rojas [3, 4]). There exists a universal uniform
test.

The following theorem will establish the equivalence of these two approaches.

Theorem 1.6. For any measure μ and X ∈ 2ω we have that X is μ-random if and
only if X is μ-random for uniform tests.

Before proving this theorem, we need to take a more detailed look at P(2ω) and
at representations of probability measures.

2. Non-computable probability measures

In this paper, we will restrict our investigation to Borel probability measures on
Cantor space. Let μ be such a measure. We can identify μ with the values it takes
on the basic clopen sets [σ], where σ ∈ 2<ω. Hence we will often think of μ as a
function μ : 2<ω → R≥0 and write μ(σ) instead of μ([σ]). Take 〈 〉 : 2<ω → ω to be
the standard bijection between 2<ω and ω (i.e., the mapping that takes λ, 0, 1, 00,
and 01 to 0, 1, 2, 3, and 4 respectively). Any measure μ such that

∫
dμ ≤ 1 can be

thought of as an element α ∈ [0, 1]ω, where α(〈σ〉) = μ(σ). We define the following
two subspaces of [0, 1]ω:

(i) M(2ω) = {α ∈ [0, 1]ω : (∀σ ∈ 2<ω) α(〈σ〉) = α(〈σ0〉) + α(〈σ1〉)},
(ii) P(2ω) = {α ∈ M(2ω) : α(〈λ〉) = 1}.

Our primary space of concern is P(2ω), the space of all probability measures on
Cantor space. The space M(2ω), all measures μ such that

∫
dμ ≤ 1, will be of
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interest when we investigate neutral measures. We can regard P(2ω) and M(2ω) as
compact subspaces of the topological vector space Rω with the topology provided
by the metric

(2.1) d(α, β) =
∑

σ∈2<ω

2−〈σ〉|α(〈σ〉)− β(〈σ〉)|.

Additionally, M(2ω) and P(2ω) are both convex subspaces of Rω (where C is convex
if for all μ, ν ∈ C and x ∈ [0, 1], we have xμ+ (1− x)ν ∈ C).

There is an alternative approach to topologizing the space P(2ω). We can topol-
ogize this space so that a sequence of measures {μn}n∈ω has limit μ if and only if
μn(B) → μ(B) for all Borel sets B whose boundary has μ measure 0. This topology
is known as the weak topology.

We can view 2ω as a metric space by using the metric

(2.2) d2ω (A,B) =

{
0 if A = B,

2−i where i = min{A�B} otherwise.

Cantor space is a compact and separable metric space under d2ω . This fact implies
that the weak topology on P(2ω) is compact and further that it is metrizable using
the Prohorov metric [1]. Given μ, ν ∈ P(2ω), the Prohorov metric p(μ, ν) is defined
to be the infimum of those positive ε for which the following two inequalities hold
for all Borel subsets A of 2ω:

μ(A) ≤ ν(Aε) + ε, ν(A) ≤ μ(Aε) + ε,

where Aε = {X ∈ 2ω : (∃Y ∈ A) d(X,Y ) < ε}.
Note that, under the metric d2ω , if A ⊆ 2ω and ε = 2−n, then Aε =

⋃
{[σ] : |σ| =

n ∧ [σ] ∩A �= ∅}. Using this observation, the following lemma is easy to show.

Lemma 2.1. The Prohorov metric and the metric defined in (2.1) induce the same
topologies on P(2ω).

Proof. Let p be the Prohorov metric and d the metric as defined in (2.1). Pick
any μ ∈ P(2ω) and positive real number δ. Now consider the open ball using the
Prohorov metric Bp(μ, δ). Choose n ∈ ω such that 2−n < δ. Choose ε so that for
all ν ∈ Bd(μ, ε) (the open ball using the metric d) we have that for all σ of length
n, |μ(σ)− ν(σ)| < 2−2n. Then if A ⊆ 2ω is Borel we have that

μA ≤ μA2−n

=
∑
|σ|=n

[σ]∩A �=∅

μ(σ) <
∑
|σ|=n

[σ]∩A �=∅

(ν(σ) + 2−2n) = νA2−n

+ 2−n.

Similarly νA < μA2−n

+ 2−n and so p(ν, μ) ≤ 2−n. Thus Bd(μ, ε) ⊆ Bp(μ, δ).
For the other direction, consider Bd(μ, δ). Let ε = 2−n for some n such that

2−n+1 < δ. Now if 〈σ〉 ≤ n we have that |σ| ≤ n so that [σ]ε = [σ]. If ν ∈ Bp(μ, ε)
we have that |μ(σ)− ν(σ)| < ε and so

d(μ, ν) ≤
∑

〈σ〉≤n

2−〈σ〉|μ(σ)− ν(σ)|+ 2−n ≤ 2−n+1.

Thus Bp(μ, ε) ⊆ Bd(μ, δ). �

We will treat the space P(2ω) of probability measures as a computable metric
space. These were introduced by Lacombe [7], though our presentation is influenced
by [19]. A computable metric space is a triple (X ,Q, d), where X is a complete
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separable metric space, Q is an enumeration of a countable dense subset of X ,
and d is a metric computable on the elements of Q. Given a computable metric
space (X ,Q, d), with Q = {q1, q2, . . .}, the standard fast Cauchy representation of
(X ,Q, d) is ρC : 2ω → X and is defined by ρC(0

n(0)10n(1)10n(2)1 . . .) = x if (∀i ∈ ω)
d(x, qn(i)) ≤ 2−i. Note that this representation ρC is a partial function.

In order to work with P(2ω) as a computable metric space, we need an enumer-
ation of a countable dense subset of P(2ω) on which the metric is computable. For
any X ∈ 2ω, we define the Dirac measure δX by

δX(σ) =

{
1 if σ ≺ X,

0 otherwise.

We will take our dense subset Q to be those measures that concentrate on sequences
with finitely many 1s, and take rational values at those points. In other words,
μ ∈ Q if and only if μ =

∑n
i=1 aiδσi0ω , where σ1, . . . , σn ∈ 2<ω and a1, . . . , an are

positive rationals such that
∑n

i=1 ai = 1.
Fix an enumeration of these measures m1,m2, . . . . At times, in order to avoid

subscripts, we will write m(i) for mi. Note that d(mi,mj) is computable in i and j
and that the open balls B(mi, 2

−n) form an enumerable basis for the topology on
P(2ω). We will call these the ideal open balls and take Bi to be the ith such ball in
some fixed enumeration. Let Bi be the closure of the ideal ball Bi.

Instead of using the standard fast Cauchy representation of P(2ω), we want
to use the fact that P(2ω) is compact to define a representation that has some
additional useful properties. Reimann showed that there is a computable surjection
ρ : P → P(2ω), where P is a Π0

1 subset of 2ω [14]. Our approach is similar to that
of Reimann. It can also be seen as a generalization of Turing’s approach to coding
the reals via overlapping intervals [18], for which he acknowledges Brouwer.

To define our representation, we will first define a Turing functional ϕ such that
ϕX is total for all oracles X, and for all n ∈ ω,

d(m(ϕX(n)),m(ϕX(n+ 1))) ≤ 2−n.

Thus for any oracle X, the sequence m(ϕX(0)),m(ϕX(1)), . . . is Cauchy and so
converges (because P(2ω) is complete). Thus we can define a total function ρ : 2ω →
P(2ω) by ρ(X) = lims m(ϕX(s)).

We define ϕX inductively as follows. At stage s we will define ϕX(s) for all
oracles X. At stage 0, we will define φX(0) = 1 for all oracles X. Note that
B(m1, 2

0) = P(2ω).

At stage s + 1, for all strings τ such that ϕτ (s) is defined but ϕτ ′
(s) is not

defined, if τ ′ is a strict initial segment of τ do the following. Let m = m(ϕτ (s)). We
claim that we can uniformly compute a finite open covering {B(m(n1), 2

−s−1), . . . ,

B(m(nk), 2
−s−1)} of B(m, 2−s) with m(ni) ∈ B(m, 2−s). Given this claim, we can

determine a disjoint collection of cylinders {[τ1], . . . , [τk]} that covers 2ω and define
ϕττi(s + 1) = ni. This completes the definition of ϕ. Our representation will be
the continuous function ρ : 2ω → P(2ω) defined by ρ(X) = lims m(ϕX(s)).

To establish the claim, we build a finite set of probability measures (all in Q) by
adding together measures of the form 2−s−4 · δσ0ω , where |σ| = s+ 4. Define

Ss = {mi ∈ Q : mi =
∑

|σ|=s+4

aσ2
−s−4δσ0ω for some aσ ∈ ω}.
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Then we take {B(mi, 2
−s−1) : mi ∈ Ss∧d(m,mi) < 2−s} as our covering. To show

that this is in fact a covering, take any μ ∈ B(m, 2−s). Let ν = (m + 3μ)/4, so
d(m, ν) = 3d(m,μ)/4 and d(μ, ν) = d(m, ν)/4. We can easily find mi ∈ S such
that d(ν,mi) < 2−s−2. Hence the ball B(mi, 2

−s−1) is in our covering and this ball
contains μ.

Lemma 2.2. The function ρ is total, surjective, and for all X ∈ 2ω, ρ−1(ρ(X)) is
a Π0

1(X) class.

Proof. We have already seen that ρ is total. To see that it is surjective, take any
μ ∈ P(2ω). As ρ is continuous, for all n, the set Fn = {X ∈ 2ω : d(ρ(X), μ) ≤ 2−n}
is closed. The construction ensures that it is non-empty, so by compactness there
is an X ∈

⋂
i Fi. Clearly, ρ(X) = μ.

If X ∈ 2ω, then ρ−1(X) is a Π0
1(X) class because Y ∈ ρ−1(X) if and only if, for

all n,
d(m(ϕX(n)),m(ϕY (n))) < 2−n+2. �

Because ρ is surjective, it is a representation of P(2ω). Furthermore, in the sense
of representation theory, it is equivalent to the standard fast Cauchy representation
ρC . Intuitively two representations are equivalent if we can computably convert
between them. If ρ(R) = μ, then ρ(R) is just a fast Cauchy representation of
μ (i.e., the sequence m(ϕR(0)),m(ϕR(1)), . . .). On the other hand if ρC(S) = μ,
then we can determine a sequence R such that ρ(R) = μ by running through the
construction of ϕ. We start with τ0 = λ. At each stage s + 1 we compute a
sufficiently close approximation to μ so that we can choose τs+1 � τs with μ ∈
B(m(ϕτs+1(s+ 1)), 2−s−1).

We will need one additional nice property of ρ: that the inverse image of the
closure of an ideal open ball is also a Π0

1 class.

Lemma 2.3. If B(s, q) is an ideal ball in P(2ω), then ρ−1(B(s, q)) is a Π0
1 subset

of 2ω.

Proof. First we show that X ∈ ρ−1(B(s, q)) if and only if, for all i, j,

ρ(X) ∈ B(si, qj) implies d(si, s) ≤ q + qj .

If for some i, j, ρ(X) ∈ B(si, qj) and d(si, s) > q + qj , then q + qj < d(s, si) ≤
d(s, ρ(X))+d(ρ(X), si) < d(s, ρ(X))+ qj and hence X �∈ ρ−1(B(s, q)). Conversely,
assume that ρ(X) ∈ B(si, qj) implies d(si, s) ≤ q+qj , for all i, j. Then d(ρ(X), s) ≤
d(ρ(X), si)+d(s, si) < q+2qj . As ρ(X) is contained in arbitrarily small ideal balls,
we have d(ρ(X), s) ≤ q. Now the predicate ρ(X) ∈ B(si, qj) implies d(si, s) ≤ q+qj
is Π0

1. This is true as ρ(X) ∈ B(si, qj) and d(si, s) > q + qj are both Σ0
1. �

We are now ready to prove Theorem 1.6. We start with the easier direction.

Lemma 2.4. If X ∈ 2ω is μ-random, then it is μ-random for uniform tests.

Proof. Let W be a c.e. set defining the under-graph of a universal uniform test t.
Assume that X is not μ-random for uniform tests. Let R be any representation of
μ. Build an R-test as follows. Let

Vn = {X ∈ 2ω : t(μ,X) > 2n}.
Immediately we have that if t(μ,X) = ∞, then X ∈

⋂
n∈ω Vn. To show that

{Vn}n∈ω is an R-test, first observe that 2nμ(Vn) ≤
∫
t(μ,X) dμ ≤ 1, so μ(Vn) ≤
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2−n. Secondly, we have X ∈ Vn if and only if t(μ,X) > 2n if and only if, for some
〈i, σ, q〉 ∈ W , we have μ ∈ Bi (which is c.e. in R), X ∈ [σ] and q > 2n. Hence
the Vn are uniformly Σ0

1(R) sets, and X is not R-random. As this holds for any
representation of μ, we have proved that X is not μ-random. �

For the other direction, we have to show that the failure of μ-randomness can be
detected in a uniform way. Not surprisingly, we do this using the universal oracle
Martin-Löf test {Un}n∈ω from above.

Lemma 2.5. If X is not μ-random, then for all n, there exists an m, such that
for all R ∈ ρ−1(B(μ, 2−m)), X ∈ UR

n .

Proof. Take any μ ∈ P(2ω). Assume that for some n, for all m, there is an Rm such
that ρ(Rm) ∈ B(μ, 2−m) and X �∈ URm

n . Consider the tree {σ ∈ 2<ω : (∃m) σ �
Rm � m}. This tree is infinite, so it has an infinite path A. For all i, ρ([A � i])
includes the ρ image of infinitely many Rm. The set ρ([A � i]) is closed because it
is the continuous image of a compact set. Thus μ ∈ ρ([A � i]) and hence ρ(A) = μ.
But note that X �∈ UA

n , or otherwise X ∈ URm
n for some m. Thus X must be

μ-random. �
Proof of Theorem 1.6. Lemma 2.4 shows that if X is not μ-random for uniform
tests, then X is not μ-random. To establish the other direction, we will construct
a test f as follows. For all i, let Ki = ρ−1(Bi). By Lemma 2.3, Ki is a Π0

1 class.
So if X enters UR

n for all R in Ki, compactness ensures that we can determine this
at some finite stage. If this occurs, then we can increase the value on some open
set containing X for all measures in Bi.

Given any c.e. set W , and any s ∈ ω, we will let W [s] be the set obtained by
enumerating W for s steps. If τ is a finite string, we will let Uτ

n be the c.e. set
obtained from UX

n (for any X � τ ) such that the elements enumerated into this set
only make use of the oracle up to |τ |.

Let S1, S2, . . . be an enumeration of all finite sets of finite strings. The under-
graph of our test f will be enumerated by the following c.e. set:

W = {〈i, σ, 2n〉 : (∃j)(∃s) Ki[s] ⊆
⋃

τ∈Sj

[τ ] and [σ] ⊆
⋂

τ∈Sj

Uτ
2n[s]}.

Given any μ ∈ P(2ω) we will show that
∫
f(μ,X) dμ ≤ 1, so f is a uniform test.

Take R ∈ ρ−1(μ). Take any n and any X �∈ UR
2n. Given any i, if μ ∈ Bi, then

R ∈ Ki. So if Sj covers Ki, then for some τ ∈ Sj , τ ≺ R. Thus X �∈
⋂

τ∈Sj
Uτ
2n.

This implies that 〈i, σ, 2n〉 �∈ W for any σ ≺ X, and so f(μ,X) ≤ 2n−1. Hence
f(μ,X) ≤ max{2n : X ∈ UR

2n} and so,∫
f(μ,X) dμ ≤

∞∑
i=1

2iμ(UR
2i) ≤

∞∑
i=1

2i2−2i = 1.

Now assume that X is not μ-random. Fix n. By Lemma 2.5, there is an m
such that if R ∈ ρ−1(B(μ, 2−m)), then X ∈ UR

2n. Let Bi be a closed ideal ball
with μ ∈ Bi ⊆ B(μ, 2−m). Now because for all R ∈ Ki we have X ∈ UR

2n, the
set C = {τ ∈ 2<ω : X ∈ Uτ

2n} is an open covering of Ki. Hence there is a finite
subcovering S of C and a stage s such that S covers Ki[s]. So there is a σ with
X ∈ [σ] ⊆

⋂
τ∈S Uτ

2n[s]. Thus 〈i, σ, 2n〉 ∈ W and consequently f(μ,X) > 2n.
This holds for all n, so f(μ,X) = ∞. Therefore, X is not μ-random for uniform
tests. �
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The anonymous referee has observed that Theorem 1.6 can be adapted to locally
compact metric spaces, provided the compactness is suitably effective.

3. Neutral measures

Our main goal in the remainder of the paper will be to come to a better un-
derstanding of (weakly) neutral measures. The concept of a neutral measure was
introduced by Levin [9], who proved their existence. The term neutral measure was
introduced by Gács [3]. As we will see in Section 4, where we derive several facts
about neutral measures, it is often enough to assume a weaker property.

Definition 3.1. Let μ be a measure.

(i) μ is neutral for a uniform test t if (∀X) t(μ,X) ≤ 1.
(ii) μ is a neutral measure if it is neutral for some universal test.
(iii) μ is weakly neutral if every sequence is μ-random.

Since a constant multiple of a universal test is also a universal test, and any two
universal tests majorize each other up to a multiplicative constant, we can restate
the second definition: μ is a neutral measure iff (∃c)(∀X) t(μ,X) ≤ c, where t is
any universal test.

It is immediate that a neutral measure μ is weakly neutral. Indeed, this is the
property that makes neutral measures seem so unlikely. One might think that it
is impossible for every sequence to be μ-random, since if we have access to μ, we
should be able to build a Martin-Löf μ-test covering something. Indeed, this is the
case; in Lemma 4.1 we will see that for every representation R of μ, there is a non-
R-random sequence. But if μ is weakly neutral, no sequence will be de-randomized
by every representation of μ.

We start by giving a proof that neutral measures exist.

Theorem 3.2 (Levin [9]). For any uniform test, there is a measure neutral for it.

Our proof is fundamentally equivalent to that given by Levin [9] and Gács [3].
However, we will make use of the Kakutani fixed point theorem instead of Sperner’s
Lemma. Our exposition of the proof will also make clear some computability prop-
erties of neutral measures.

Theorem 3.3 (Kakutani [6]). If S is a non-empty compact convex subset of Rn

and φ : S → S a multi-valued map with closed graph and convex non-empty images,
then there is an x ∈ S such that x ∈ φ(x).

A fixed point theorem is useful because a uniform test defines a map from mea-
sures to measures. Given t, we define t̂ : P(2ω) → M(2ω) by letting t̂(μ) (which we
will write as t̂μ) be the measure that takes the following values on the basic clopen
sets:

t̂μ(σ) =
1

2

∫
[σ]

t(μ,X) dμ+
1

2
2−|σ|.

We can partially order M(2ω) by μ ≤ ν if μ(σ) ≤ ν(σ) for all σ. In this case we
will say that ν majorizes μ.

Lemma 3.4. If μ ≥ t̂μ, then μ is neutral for 1
2 · t.
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Proof. Assume μ is not neutral for 1
2 · t. Then for some X ∈ 2ω, t(μ,X) > 2. This

implies that there is a σ ∈ 2<ω with X ∈ [σ] such that t(μ, Y ) > 2 for all Y ∈ [σ].
But this would mean that

t̂μ(σ) ≥ 1

2

∫
[σ]

2 dμ+ 2−|σ|−1 > μ(σ).

This is a contradiction because μ majorizes t̂μ. �

Consider the sets Fn = {μ ∈ P(2ω) : (∀σ) |σ| = n ⇒ t̂μ(σ) ≤ μ(σ)}. Note that
P(2ω) = F0 and Fn+1 ⊆ Fn. Now if we can show that Fn is non-empty and closed,
for all n, then by the finite intersection property, there exists a μ ∈

⋂
i∈ω Fi. Thus

μ has the property that μ ≥ t̂μ; hence it is neutral for t.

Lemma 3.5. For all n, the following is a Π0
1 class:

Mn = {(R1, R2) ∈ 2ω × 2ω : (∀σ) |σ| = n ⇒ [t̂ρ(R1)](σ) ≤ [ρ(R2)](σ)}.

Proof. Take R1, R2 ∈ 2ω and let μ = ρ(R1) and ν = ρ(R2). Now (R1, R2) �∈ Mn if
and only if, for some σ of length n,

(3.1) t̂μ(σ) > ν(σ).

Note that ν(σ) is computable in R2 and t̂μ(σ) is left c.e. in R1. We can assume
that ν(σ) is computed using an approximation from above (i.e., for all s, ν(σ)[s] ≥
ν(σ)[s + 1]) and that ν(σ)[s] depends only on R2 � s. We can also assume that
t̂μ(σ)[s] depends only on R1 � s. Then equation (3.1) holds if and only if for some
σ of length n and stage s, we have t̂μ(σ)[s] > ν(σ)[s], and this allows us to expel
[R1 ⊕R2 � 2s] from Mn. �

Proposition 3.6. There is a measure μ ∈ P(2ω) such that μ majorizes t̂μ.

Proof. As Mn is closed, Fn = ρ({R : (R,R) ∈ Mn}) is closed. The only remaining

task is to show that Fn is non-empty. Let Sn = {x̄ ∈ [0, 1]2
n

:
∑2n

i=1 xi = 1}. Define
a continuous map ψ : Sn → P(2ω) by

ψ(x̄) =

2n∑
i=1

xiδσi0ω ,

where σi is the ith string of length n. Define the multi-valued map φ : Sn → Sn by

φ(x̄) = {ȳ ∈ Sn : (∀i ≤ 2n) yi ≥ [t̂ψ(x̄)](σi)}.
Note that yi = [ψ(ȳ)](σi). So if x̄ is a fixed point of φ, then ψ(x̄) ∈ Fn.

Define the function ρ2 : 2
ω×2ω → P(2ω)×P(2ω) by ρ2(R1, R2) = (ρ(R1), ρ(R2)),

and the function ψ2 : Sn × Sn → P(2ω) × P(2ω) by ψ2(x̄, ȳ) = (ψ(x̄), ψ(ȳ)). Both
ρ2 and ψ2 are continuous mappings. The graph of φ is precisely ψ−1

2 (ρ2(Mn)) and
hence closed. Since Sn is a non-empty compact convex subset of R2n and φ has
non-empty convex images in Sn, Kakutani’s theorem tells us that φ has a fixed
point. Therefore, Fn is non-empty. �

This proposition establishes that the Π0
1 class of Lemma 3.5 is not empty. Fur-

ther if t is a universal uniform test, then any representation in this Π0
1 class is a

representation of a neutral measure. In order to prove Theorem 3.2, we need one
more application of compactness.
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Proof of Theorem 3.2. Given any n ∈ ω, we could redefine t̂μ by

t̂μ(σ) =
n

n+ 1

∫
[σ]

t(μ,X) dμ+
1

n+ 1
2−|σ|.

The argument of Lemma 3.5 and Proposition 3.6 shows there exists a measure
μn which is neutral for n

n+1 t. This implies that if n �= 0, then for all X ∈ 2ω

we have that t(X,μn) ≤ n+1
n . Because the space P(2ω) is compact, the sequence

{μn}n∈ω has a convergent subsequence which converges to some measure μ. If μ
is not neutral for t, then there is some X such that t(μ,X) > 1. This implies that
for some open ball B including μ, and some c > 1 we have that t(ν,X) ≥ c for
all ν ∈ B. This is a contradiction because B must include μn for some n with
n+1
n < c. �

It is interesting that every known proof of the existence of a neutral measure uses
a fixed point theorem or equivalent. Their existence seems to be a fundamentally
topological fact. However, once we know such measures exist, they are relatively
easy to find. There is a Π0

1 class of (representations of) neutral measures, as we can
take the intersection of the diagonals of the Π0

1 classes Mn when t is a universal test.
Recall that a Turing degree is a PA degree if it can compute a member of every
non-empty Π0

1 subclass of 2ω. So every PA degree computes a neutral measure.
This lets us give a simple proof of the following theorem of Reimann and Slaman.

Theorem 3.7 (Reimann and Slaman [15]). For any X ∈ 2ω, X is not computable
if and only if there exists a representation R of a measure such that X is R-random
and ρ(R) does not concentrate on X.

Proof. If X is computable, then consider any measure μ that does not concentrate
on X. If R is a representation of μ, then it is simple to build an R-test that contains
X by finding initial segments of X such that μ(X � n) is sufficiently small.

For the other direction, assume that X is not computable. Then there is a P of
PA degree such that P �≥T X. For example, Jockusch and Soare showed that there
is a set of PA degree which is also of hyperimmune-free degree and another set of
PA degree which is low, and hence these cannot both compute X [5]. As there is
a Π0

1 class of representations of neutral measures, P computes a representation of
some neutral measure μ. Since μ is neutral, X is μ-random. Hence there exists
a representation R of μ (not necessarily computable from P ) such that X is R-
random. Finally as P cannot compute X, and P can compute any atom of μ, we
know that X is not an atom of μ. �

4. Locating neutral measures

In this section we study the computability-theoretic complexity of (weakly) neu-
tral measures. In the previous section we noted that every PA degree computes
a neutral measure. The reverse is true in a strong sense: if μ is a weakly neutral
measure, then some PA degree is computable from every representation of μ. As we
will see, the story is complicated by the fact that weakly neutral measures them-
selves cannot have a Turing degree. We will show that their complexity can be
measured using the continuous degrees, which were introduced by the second au-
thor. That will give us a better understanding of what is computable from (every
representation of) a weakly neutral measure. We will prove that the ideal of Turing
degrees below such a measure is a Scott ideal, and that every Scott ideal arises in
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this way. This, in turn, tells us about the atoms of weakly neutral measures (see
Proposition 4.8).

One reason the existence of a weakly neutral measure may seem counterintuitive
is that such a measure does not exist for representation tests.

Lemma 4.1. For all R ∈ 2ω, there exists an X ∈ 2ω such that X is not R-random.

Proof. Let μ = ρ(R). Construct an R-test as follows. Compute μ(σ) for all σ of
length 2 with precision 2−2. Take σ1 to be the lexicographically least string of
length 2 such that μ(σ1) is within [0, 2−2] for this level of precision. Let V1 = [σ1].
Note that μ(σ1) ≤ 2−2 + 2−2 = 2−1. Once Vi = [σi] has been defined with
μ(σi) ≤ 2−i, compute μ(σiτ ) for all τ of length 2 with precision 2−i−2. Take
the lexicographically least τ such that μ(σiτ ) ≤ 2−i−2 with this precision. Take
σi+1 = σiτ , so μ(σi+1) ≤ 2−i−1. Let Vi+1 = [σi+1]. Thus

⋂
i∈ω Vi is an R-test with

non-empty intersection. �
So for any representation R of a weakly neutral measure μ, there is an X that is

not R-random. However, there must be another representation R′ of μ such that X
is R′-random. The test constructed in the previous lemma cannot be made repre-
sentation independent. The obstruction is that there is no canonical representation
of a weakly neutral measure, and in fact, every representation contains extraneous
information.

Theorem 4.2. A weakly neutral measure has no least Turing degree representation.

Proof. Let μ be a measure with least Turing degree representation R. By Lemma
4.1 there is an R-test that witnesses that some X is not R-random. Let R′ be
any other representation of μ. Since R′ computes R, the R-test is also an R′-test
(as R and R′ represent the same measure). Hence X is not R′-random for any
representation R′ of μ, and thus X is not μ-random. Therefore, μ is not weakly
neutral. �

If weakly neutral measures have no least Turing degree representation, then how
should their computational power be examined? For this we turn to the continuous
degrees introduced by Miller [12].

Definition 4.3. Let M0 and M1 be computable metric spaces and let a ∈ M0

and b ∈ M1. We define a ≤r b (a is representation reducible to b) if there is an
index e such that for every fast Cauchy representation R of b, ϕR

e is a fast Cauchy
representation of a. The continuous degrees are the equivalence classes under ≡r.

Miller showed that the uniformity in the above definition is not required. In
other words, it is equivalent to say that every fast Cauchy representation of b
computes a fast Cauchy representation of a, without fixing the index. This follows
from the natural embedding of the continuous degrees into the enumeration degrees,
see (4.1), and the fact that uniform and non-uniform enumeration reducibility are
equivalent.

The finite sets are a countable dense subset of 2ω under the metric d2ω of Sec-
tion 2. Thus for any A ⊆ ω, we can talk about degr(A). This gives us an embedding
of the Turing degrees into the continuous degrees. The continuous degrees that con-
tain subsets of ω are the total degrees.

Using the fact that a continuous degree a has total degree if and only if it
has a least Turing degree representation [12], we obtain the following corollary to
Theorem 4.2.
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Corollary 4.4. Weakly neutral measures have non-total continuous degree.

This indicates that our study of (weakly) neutral measures can be enhanced
by understanding the non-total continuous degrees. We start with the following
definitions.

Definition 4.5. If a and b are Turing degrees, then a is a PA degree relative to
b (a � b) if every non-empty Π0

1(b) class contains a path computable from a. For
A,B ⊆ ω, we write A � B to mean that degT (A) � degT (B).

Definition 4.6. A non-empty countable class S ⊆ 2ω is called a Scott set if

(i) A,B ∈ S implies that A⊕B ∈ S,
(ii) A ∈ S and B ≤T A implies B ∈ S, and
(iii) for every A ∈ S, there is a B ∈ S such that B � A.

If S is a Scott set, then {degT (A) : A ∈ S} is a Scott ideal.

We summarize some results of Miller. The Hilbert cube [0, 1]ω can be regarded
as a computable metric space by using the metric defined at (2.1) along with the
finitely non-zero sequences of rationals as a countable dense subset.

Theorem 4.7 (Miller [12]).

(i) Every continuous degree contains an element of [0, 1]ω.
(ii) Let a and b be total degrees. Then a � b if and only if there is a non-total

degree v with a <r v <r b.
(iii) The Turing ideal below a non-total continuous degree is a Scott ideal.
(iv) Any Scott ideal is the Turing ideal below some non-total continuous degree.

From Corollary 4.4 and Theorem 4.7(iii), we know that the ideal below any
weakly neutral measure is a Scott ideal. One reason this is interesting is that
understanding what can be computed from a weakly neutral measure is the same
as understanding its atoms.

Proposition 4.8. A ∈ 2ω is an atom of a weakly neutral measure μ if and only if
A ≤r μ (i.e., iff every representation of μ computes A).

Proof. Assume that every representation of μ computes A. If μ does not concentrate
on A, then any representation R of μ can compute an initial segment of A with
arbitrarily small μ-measure, and hence capture A in an R-test. Therefore, A is not
μ-random and μ is not weakly neutral.

For the other direction, assume that A is an atom of μ and let R be any repre-
sentation of μ. Choose σ ≺ A such that μ(σ) < 2μ({A}). Given σ, we can compute
A from R by following the path consisting of all τ � σ such that μ(σ) < 2μ(τ ).
Therefore, A ≤r μ. �

Every Scott ideal contains a PA degree, and hence contains a member of ev-
ery non-empty Π0

1 class. There is a Π0
1 class containing only Martin-Löf random

sequences; hence:

Corollary 4.9. Every weakly neutral measure has a Martin-Löf random atom.

This result allows us to answer a question of Gács [3, Question 1] in the negative.
The question was speculative and, unfortunately, a negative answer does little more
than shut down this speculation. The full context of the question would take too
much space, but briefly, Gács was interested in capturing the mutual information of
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two sequences X,Y ∈ 2ω. Let μ be a neutral measure. Gács asked if it is would be
reasonable to define the mutual information ofX and Y as log t(μ×μ,X⊕Y ). More
specifically, he asked if this could, for the right choice of μ, coincide with another
definition he was considering. To see that this is not the case, let A be a Martin-Löf
random atom of μ. Then A⊕A is an atom of μ×μ; hence log t(μ×μ,A⊕A) must
be finite. But a definition of mutual information that allows a Martin-Löf random
sequence to have finite mutual information with itself is fairly absurd and, more
concretely, behaves quite differently than other proposed definitions.

We have seen that the Turing ideal below a (weakly) neutral measure is always a
Scott ideal. It turns out that the converse holds; the ideals below neutral measures
are exactly the Scott ideals.

Theorem 4.10. Every Scott ideal is the ideal below some neutral measure.

To prove this theorem, we make further use of some prior work of Miller. To prove
the existence of non-total continuous degrees, Miller developed the construction of
a sequence α ∈ [0, 1]ω that could not be diagonalized computably.

Definition 4.11. A sequence α ∈ [0, 1]ω is diagonally non-computably diagonaliz-
able, or d.n.c.d., if for all e, there exists a representation R of α such that α(e) is
an element of the convex closure of Πe(R) or Πe(R) is empty (where Πe(R) is the
eth Π0

1(R) class).

The convex closure of Πe(R) is {x ∈ [0, 1] : inf Πe(R) ≤ x ≤ supΠe(R)}. This
definition of a d.n.c.d. sequence differs from that given in [12], but is equivalent
up to continuous degree. The reason such sequences are referred to as diagonally
non-computably diagonalizable is that if there is a Turing functional ϕ and an x
such that ϕR = x for any representation R of α, then (uniformly in the index of
ϕ) we can find an e such that {x} = Πe(R) for all representations of α. But then
α(e) = x. Thus e witnesses the failure of ϕ to diagonalize α, uniformly in (the
index for) ϕ. The last part of Theorem 4.7 can be strengthened to “any Scott ideal
is the Turing ideal below some d.n.c.d. sequence”.

To prove Theorem 4.10 we will show that any d.n.c.d. sequence is above, in
the sense of ≥r, a neutral measure that bounds the same total degrees. We will
use semi-measures in our construction of this neutral measure. A semi-measure
is a function τ : 2ω → [0, 1] such that τ (σ) ≥ τ (σ0) + τ (σ1). We will identify a
semi-measure τ with the set S(τ ) = {〈σ, q〉 ∈ 2<ω ×Q : τ (σ) > q}.

Semi-measures have been studied as computably enumerable objects; we call a
semi-measure τ c.e. if S(τ ) is c.e. Levin proved the existence of a universal c.e.
semi-measure τ , meaning that for every c.e. semi-measure τ ′ there is a constant c
such that τ ≥ cτ ′ [10]. This proof relativizes to show that for any set A ⊆ ω, there
is a universal c.e. in A semi-measure. However, what does it mean to enumerate
a semi-measure in some sequence α ∈ [0, 1]ω, if α does not have total degree? A
reasonable suggestion would be to define a set to be c.e. in α if it is c.e. in every
representation of α. This can be easily expressed in terms of the enumeration
degrees.

There is an embedding of the continuous degrees into the enumeration degrees.
Given α ∈ [0, 1]ω we define Ξ(α) ⊆ {0, 1} × ω ×Q by

(4.1) Ξ(α) = {〈0, i, q〉 : q < α(i)} ∪ {〈1, i, q〉 : q > α(i)}.
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If R is a representation of α, then Ξ(α) is c.e. in R. Further if Ξ(α) is c.e. in some
set B, then B Turing computes a representation of α.

Now assume that a set A is c.e. in α (i.e., c.e. in any representation of α).
Further, assume that Ξ(α) is c.e. in a set B. Since B computes a representation
of α, it must be that A is also c.e. in B. Hence A ≤e Ξ(α). On the other hand,
if A ≤e Ξ(α), then as Ξ(α) is c.e. in any representation R of α, we have that A is
c.e. in any representation of α. Thus the approach suggested above is equivalent to
defining a semi-measure τ to be c.e. in α if S(τ ) ≤e Ξ(α).

We can now provide a characterization of μ-randomness in terms of the enumer-
ation degrees. This is an extension of a result of Levin who proved the following
theorem for the case that μ is a computable measure [8].

Theorem 4.12. Take any μ ∈ P(2ω). Then X ∈ 2ω is μ-random if and only if for
every semi-measure τ c.e. in μ (i.e., S(τ ) ≤e Ξ(μ)), there exists c ∈ ω such that
τ (σ) ≤ cμ(σ) for all σ ≺ X.

Proof. If X is not μ-random, then for some uniform test, t(μ,X) = ∞. Define a
(semi-)measure τ = t̂μ. Thus τ is c.e. in any representation of μ. Fix c. Since
t(μ,X) = ∞, there is a σ ≺ X such that if Y ∈ [σ], then t(μ, Y ) ≥ c. Thus
τ (σ) =

∫
[σ]

t(μ, Y ) dμ ≥ cμ(σ).

For the other direction, assume that there is a semi-measure τ such that for all
c, there exists a σ ≺ X with τ (σ) > cμ(σ). Given any representation R of μ we can
enumerate τ and define a test {Vi}i∈ω such that Vi = {[σ] : τ (σ) > 2iμ(σ)}. This
test captures X, so X is not R-random. As this is true for any representation of μ,
X is not μ-random. �

This proof makes use of the equivalence between μ-randomness and μ-random-
ness for universal tests established in Theorem 1.6. Techniques developed by
Hoyrup and Rojas can be used to construct a uniform test directly from a semi-
measure providing an alternative proof of one direction [4].

We claim that, relative to a set B, we can enumerate all c.e. in B semi-measures.
Let We(B) be the eth set c.e. in B and let We,i(B) be an enumeration of We(B).
Any set X defines a weighting function fX(σ) = sup{q : 〈q, σ〉 ∈ X}, where we are
viewing X as a subset of Q× 2<ω. Define Te,0(B) = ∅, and

Te,i+1(B) =

{
We,i(B) if fWe,i(B) is a semi-measure,

Te,i(B) otherwise.

By passing from Te(B) to Se(B) = {〈q′, σ〉 : 〈q, σ〉 ∈ Te(B) and q′ ≤ q}, we get an
effective list of exactly the c.e. in B semi-measures.

To prove the following lemma, we use a representation ρ : 2ω → [0, 1]ω with the
same properties as the representation of P(2ω) constructed in Section 2. The same
proof, mutatis mutandis, shows that such a representation exists.

Lemma 4.13. If α ∈ [0, 1]ω, then there is a universal semi-measure τ c.e. in α.

Proof. Define Ŝe =
⋂

R∈ρ−1(α) Se(R). For any R ∈ ρ−1(α), as ρ−1(α) is Π0
1(R)

class, it follows that Ŝe is c.e. in R. Let τe be fŜe
. Note that this is a semi-measure.

Define τ =
∑∞

e=1 2
−eτe. Let S = S(τ ), so S is c.e. in R for all R ∈ ρ−1(α).

Now if τ ′ is a semi-measure c.e. in α, then there is an index e such that τ ′ = Se(R)
for all R ∈ ρ−1(α) (this holds because any reduction in the enumeration degrees
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is uniform, which is implicit in Selman [17] and proved independently by Rozinas
[16]). Thus τ ′ = τe, and so τ majorizes τ ′. �

Lemma 4.14. Let α ∈ [0, 1]ω be a d.n.c.d. sequence. If τ is a semi-measure c.e.
in α, then there exists μ ∈ P(2ω) such that μ ≤r α and (∀σ) μ(σ) ≥ τ (σ).

Proof. We will define μ in such a way that any representation of α will (uniformly)
be able to determine a representation of μ. First define μ(λ) = 1. Hence μ(λ) ≥
τ (λ).

Now assume that we have defined μ(σ) with μ(σ) ≥ τ (σ). Consider the interval
Iσ = [τ (σ0), μ(σ) − τ (σ1)]. Note that Iσ is non-empty because μ(σ) − τ (σ1) −
τ (σ0) ≥ μ(σ) − τ (σ) ≥ 0. Since τ (σ0) and τ (σ1) are left c.e. in R, and μ(σ) is
computable in R, we see that Iσ is a Π0

1(R) class. Further, everything is uniform, so
we can actually compute an index e such that Iσ = Πe(R), for any representation
R of α. Because α is of d.n.c.d. degree, and Iσ is its own convex closure, α(e) ∈ Iσ.
We define μ(σ0) = α(e) and μ(σ1) = μ(σ)− μ(σ0).

As Iσ is non-empty, we have μ(σ0) ≤ μ(σ), and μ(σ0) ≥ τ (σ0). Additionally,
μ(σ1) = μ(σ)− α(e) ≥ μ(σ)− μ(σ) + τ (σ1) = τ (σ1). �

We are finally ready to establish Theorem 4.10.

Proof of Theorem 4.10. Let I be a Scott ideal. Let α be a d.n.c.d. sequence such
that I is the Turing ideal below α. Let τ be a universal semi-measure for α. By
Lemma 4.14, we can take μ ≤r α such that μ majorizes τ and μ ∈ P(2ω). Let t be
a universal test. Since t̂μ is a (semi-)measure c.e. in μ, hence c.e. in α, there is a b
such that t̂μ ≤ bτ ≤ bμ. So by Lemma 3.4, μ is neutral for the universal test 1

b t.
If A ∈ I, then A ≤r α. Any representation of α can compute A, so some semi-

measure τ c.e. in α must concentrate on A. This means A is an atom of μ and so
A ≤r μ. If A ≤r μ, then A ≤r α, so A ∈ I. Hence I is the Turing ideal below
μ. �

The previous theorem appears to give a proof of the existence of neutral mea-
sures without using a fixed point theorem. However, this is not the case. Miller’s
construction of a d.n.c.d. sequence makes use of a generalization of the Kakutani
fixed point theorem, and Lemma 4.14 makes essential use of this underlying fixed
point theorem to construct the measure μ.

5. Open questions

Several questions remain open about the relationship between neutral measures
and the continuous degrees. The most basic is:

Question 5.1. Does every non-total continuous degree contain a neutral measure?

In the proof of Theorem 4.10, we started with a d.n.c.d. sequence α and built
a neutral measure μ ≤r α that bounds the same Turing degrees as α. There is no
reason to assume that μ ≡r α. While μ can list all of the elements of the sequence
α, it cannot necessarily determine the order of those elements. Even if we could
improve the proof to show that μ ≡r α, we would run into another open question
(from [12]):

Question 5.2. Does every non-total continuous degree contain a diagonally non-
computably diagonalizable sequence?
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If both questions are answered in the negative, it is natural to ask:

Question 5.3. Is there any relationship between the degrees of neutral measures
and the degrees of d.n.c.d. sequences?

It is not too difficult to construct a weakly neutral measure that is not a neutral
measure. For example, let μ be a neutral measure. Define ν such that:

(i) For all σ ∈ 2<ω, ν(0n1σ) = 2−nμ(0n1σ).
(ii) ν has an atom at 0ω.

The measure μ is weakly neutral because there is an atom at 0ω and every other
sequence is in an open neighborhood where the measure looks neutral. However,
there is a uniform test t such that t(ν,X) = 2n if X ∈ [0n1] (and of course,
t(ν, 0ω) = 0). So ν is not a neutral measure.

The fact that these properties are different leads to natural questions:

Question 5.4. Is every weakly neutral measure representation equivalent to a
neutral measure? Does every non-total continuous degree contain a weakly neutral
measure?
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