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Motivation

● Software programs mostly use standard 32 and 64 bit 
datatypes to represent variables.

● However, don't need 32 bits for a loop counter that only 
counts to 100!

● Software is over-engineered, which is fine because 
processor datapaths are fixed-width.
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LegUp

● LegUp is an open-source high level synthesis 
framework built within the llvm compiler framework.

● C to Verilog (supports CHStone benchmarks).
● Targets pure HW or processor/accelerator system.
● Automated verification.

● Developed at the University of Toronto.
● Freely downloadable at legup.eecg.utoronto.ca

http://legup.eecg.utoronto.ca/
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Motivation

● High-level-synthesis (HLS) generates hardware from 
software program.

● Unlike with software, efficiency of that hardware is 
dependent on bit-level representation of variables.

● Need bitwidth analysis in HLS to generate minimum 
bit-level representation for each variable.
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This work

● Created a new bitmask analysis approach and 
combined it with existing variable range analysis 
techniques.

● Built bitwidth analysis pass into LegUp HLS.
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Bitwidth Minimization

● Minimize variable bitwidths by propagating constants 
through the program instructions.

● Variables represented in one of two ways:
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Bitwidth Minimization

● Minimize variable bitwidths by propagating constants 
through the program instructions.

● Variables represented in one of two ways:

1)  As a min/max value – e.g. -2 -> 2
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Bitwidth Minimization

● Minimize variable bitwidths by propagating constants 
through the program instructions.

● Variables represented in one of two ways:

1)  As a min/max value – e.g. -2 -> 2

2)  As a bitmask of known values (0 or 1), unknowns (?), or 
sign-extended bits (S). 
e.g. “S?10”
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Bitwidth Minimization

● Minimize variable bitwidths by propagating constants 
through the program instructions.

● Variables represented in one of two ways:

1)  As a min/max value – e.g. -2 -> 2

2)  As a bitmask of known values (0 or 1), unknowns (?), or 
sign-extended bits (S).
e.g. “S?10”

Focus of our work
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Bitwidth Minimization

● Software program represented as a control dataflow 
graph (CDFG) of llvm operators.

● Traverse CDFG in forward and backward directions, 
propagating bitwidths through operators.

● For each llvm operator, we created forward and 
backward transit functions.

● e.g Xor, Shl, Ashr, Mul, Div, etc.
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Range vs. Bitmask analysis
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Range vs. Bitmask analysis
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Range vs. Bitmask analysis
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Experimental Methodology

● Target Altera Cyclone II FPGAs.
● Used 10 CHStone benchmarks

● All circuits were simulated after bitwidth reduction using 
ModelSim and golden inputs provided with CHStone to verify 
correct functionality.
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Experimental Methodology

● Bitwidth analysis llvm pass.
● Result: Sum of instruction widths.
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Experimental Methodology
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Experimental Methodology

● Bitwidth analysis llvm pass.
● Result: Sum of instruction widths.

● LegUp HLS llvm pass uses 
bitwidth analysis to generate
minimized RTL.

● Quartus generates optimized
FPGA implementation.

● It also minimizes bitwidth!
● Results: Area in LUTs and

registers, speed in Fmax.
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Experimental Methodology

● 5 flows
● Bitmask analysis by itself
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Experimental Methodology
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Experimental Methodology
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Experimental Methodology
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Experimental Methodology

● 5 flows
● Bitmask analysis by itself
● Range analysis by itself 

(Campos et. al 2012)
● Range & Bitmask analysis
● Profiling-based dynamic
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Bitwidth Reduction Results
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Bitwidth Reduction Results
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Bitwidth Reduction Results
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Bitwidth Reduction Results
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Bitwidth Reduction Results
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Area Results
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Area Results

Static (average) Static (sha) Dynamic (average) Dynamic (adpcm)
0%

10%

20%

30%

40%

50%

60%

70%

80%

LUTs
FFs

P
e

rc
e

n
ta

g
e

 R
e

d
u

c
ti

o
n



 55

Conclusions and Future work

● Opportunities exist to optimize instruction bitwidths in 
HLS that are not present in RTL synthesis.

● 9% area improvement over Quartus.

● Using range and bitmask analysis approaches 
together yields better results than using either in 
isolation.

● Excellent dynamic range-analysis results show that 
program information can be used to further reduce 
area.

● In hybrid system, minimized HW with SW fallback.
● User hints for variable use.
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Bitwidth minimization will be part of the LegUp 3.0 release.
Soon to be available at:

http://legup.eecg.utoronto.ca

http://legup.eecg.utoronto.ca/
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