
Range and Bitmask Analysis for
Hardware Optimization in

High-Level Synthesis

Jan 25, 2013
ASP-DAC

Marcel Gort
Jason Anderson

 2

Motivation

● Software programs mostly use standard 32 and 64 bit
datatypes to represent variables.

● However, don't need 32 bits for a loop counter that only
counts to 100!

● Software is over-engineered, which is fine because
processor datapaths are fixed-width.

 3

LegUp

● LegUp is an open-source high level synthesis
framework built within the llvm compiler framework.

● C to Verilog (supports CHStone benchmarks).
● Targets pure HW or processor/accelerator system.
● Automated verification.

● Developed at the University of Toronto.
● Freely downloadable at legup.eecg.utoronto.ca

http://legup.eecg.utoronto.ca/

 4

Motivation

● High-level-synthesis (HLS) generates hardware from
software program.

● Unlike with software, efficiency of that hardware is
dependent on bit-level representation of variables.

● Need bitwidth analysis in HLS to generate minimum
bit-level representation for each variable.

 5

This work

● Created a new bitmask analysis approach and
combined it with existing variable range analysis
techniques.

● Built bitwidth analysis pass into LegUp HLS.

 6

Bitwidth Minimization

● Minimize variable bitwidths by propagating constants
through the program instructions.

● Variables represented in one of two ways:

 7

Bitwidth Minimization

● Minimize variable bitwidths by propagating constants
through the program instructions.

● Variables represented in one of two ways:

1) As a min/max value – e.g. -2 -> 2

 8

Bitwidth Minimization

● Minimize variable bitwidths by propagating constants
through the program instructions.

● Variables represented in one of two ways:

1) As a min/max value – e.g. -2 -> 2

2) As a bitmask of known values (0 or 1), unknowns (?), or
sign-extended bits (S).
e.g. “S?10”

 9

Bitwidth Minimization

● Minimize variable bitwidths by propagating constants
through the program instructions.

● Variables represented in one of two ways:

1) As a min/max value – e.g. -2 -> 2

2) As a bitmask of known values (0 or 1), unknowns (?), or
sign-extended bits (S).
e.g. “S?10”

Focus of our work

 10

Bitwidth Minimization

● Software program represented as a control dataflow
graph (CDFG) of llvm operators.

● Traverse CDFG in forward and backward directions,
propagating bitwidths through operators.

● For each llvm operator, we created forward and
backward transit functions.

● e.g Xor, Shl, Ashr, Mul, Div, etc.

 11

Examples

LShr

0010????

Forward

 12

Examples

LShr

0010????

Forward

00??

 13

Examples

LShr

0010????

00??

Forward

AShr

0010????

 14

Examples

LShr

0010????

00??

Forward

AShr

0010

SS??

????

 15

Examples

LShr

0010????

00??

AShr

0010

SS??

????

Forward

????

And

0010

 16

Examples

LShr

0010????

00??

AShr

0010

SS??

????

Forward

????

And

0010

00?0

 17

Examples

LShr

0010????

00??

AShr

0010

SS??

???? ????

And

0010

00?0

Forward

Mul

???0????

 18

Examples

LShr

0010????

00??

AShr

0010

SS??

???? ????

And

0010

00?0

Forward

Mul

???0

???????0

????

 19

Examples

LShr

0010????

00??

AShr

0010

SS??

???? ????

And

0010

00?0

Forward

Mul

???0

???0

????

 20

Examples

LShr

0010????

00??

AShr

0010

SS??

???? ????

And

0010

00?0

Backward

Mul

???0

???0

0???

 21

Examples

Backward

Mul

???0

???0

0??????0

 x ????

???0

 22

Examples

Backward

Mul

???0

???0

0??????0

 x ????

???0
???00

 23

Examples

Backward

Mul

???0

???0

0??????0

 x ????

???0
???00

???000

 24

Examples

Backward

Mul

???0

???0

0??????0

 x ????

???0
???00

???000
+ ???0000

 25

Examples

Backward

Mul

???0

???0

0??????0

 x ????

???0
???00

???0

???000
+ ???0000

 26

Examples

Backward

Mul

???0

???0

0??????0

 x 0???

???0
???00

???0

???000
+ 0000000

 27

Examples

Shl

????0010

Xor

????????

Mul

 28

Examples

Shl

????0010

Xor

????

??00

????

Mul

????

 29

Examples

Shl

????0010

Xor

????

??00

????

Mul

????

??00

 30

Examples

Shl

????0010

Xor

????

??00

????

Mul

00??

??00

 31

Examples

Shl

00??0010

Xor

00??

??00

????

Mul

00??

??00

 32

Range vs. Bitmask analysis

Add

0->3

0->7
(3 bits)

0->4

Range

 33

Range vs. Bitmask analysis

Add

0->3

0->7
(3 bits)

0->4

Add

0??

????
(4 bits)

???

Range Bitmask

 34

Range vs. Bitmask analysis

Add

0->3

0->7
(3 bits)

0->4

Add

0??

????
(4 bits)

???

Range Bitmask

WINNER!

 35

Range vs. Bitmask analysis

Shl

2

0->60
(6 bits)

0->15

Range

 36

Range vs. Bitmask analysis

Shl

2

0->60
(6 bits)

0->15

Shl

10

????00
(4 bits)

????

Range Bitmask

 37

Range vs. Bitmask analysis

Shl

2

0->60
(6 bits)

0->15

Shl

10

????00
(4 bits)

????

Range Bitmask

WINNER!

 38

Range vs. Bitmask analysis

Shl

2

0->60
(6 bits)

0->15

Shl

10

????00
(4 bits)

????

Range Bitmask

Range and bitmask analyses
are complementary

 39

Experimental Methodology

● Target Altera Cyclone II FPGAs.
● Used 10 CHStone benchmarks

● All circuits were simulated after bitwidth reduction using
ModelSim and golden inputs provided with CHStone to verify
correct functionality.

 40

Experimental Methodology

● Bitwidth analysis llvm pass.
● Result: Sum of instruction widths.

Bitwidth
Analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 41

Experimental Methodology

● Bitwidth analysis llvm pass.
● Result: Sum of instruction widths.

● LegUp HLS llvm pass uses
bitwidth analysis to generate
minimized RTL.

Bitwidth
Analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 42

Experimental Methodology

● Bitwidth analysis llvm pass.
● Result: Sum of instruction widths.

● LegUp HLS llvm pass uses
bitwidth analysis to generate
minimized RTL.

● Quartus generates optimized
FPGA implementation.

● It also minimizes bitwidth!
● Results: Area in LUTs and

registers, speed in Fmax.

Bitwidth
Analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 43

Experimental Methodology

● 5 flows
● Bitmask analysis by itself

Static
bitmask analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 44

Experimental Methodology

● 5 flows
● Bitmask analysis by itself
● Range analysis by itself

(Campos et. al 2012)
Static

range analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 45

Experimental Methodology

● 5 flows
● Bitmask analysis by itself
● Range analysis by itself

(Campos et. al 2012)
● Range & bitmask analysis

Static
range analysis

Static
bitmask analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 46

Experimental Methodology

● 5 flows
● Bitmask analysis by itself
● Range analysis by itself

(Campos et. al 2012)
● Range & Bitmask analysis
● Profiling-based dynamic

range analysis

Dynamic
range analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 47

Experimental Methodology

● 5 flows
● Bitmask analysis by itself
● Range analysis by itself

(Campos et. al 2012)
● Range & Bitmask analysis
● Profiling-based dynamic

range analysis
● Profiling-based dynamic

range analysis &
bitmask analysis

Dynamic
range analysis

Static
bitmask analysis

LegUp HLS

Altera Quartus

Bitwidth
results

Area and Speed
results

RTL

 48

Bitwidth Reduction Results

Bitmask Range Bitmask+Range Dynamic Dynamic+Bitmask
0%

10%

20%

30%

40%

50%

60%

70%

80%

LSBs
MSBs

P
e

rc
e

n
ta

g
e

 B
it

w
id

th
 M

in
im

iz
a

ti
o

n
 (

a
v

e
ra

g
e

)

 49

Bitwidth Reduction Results

Bitmask Range Bitmask+Range Dynamic Dynamic+Bitmask
0%

10%

20%

30%

40%

50%

60%

70%

80%

LSBs
MSBs

P
e

rc
e

n
ta

g
e

 B
it

w
id

th
 M

in
im

iz
a

ti
o

n
 (

a
v

e
ra

g
e

)

 50

Bitwidth Reduction Results

Bitmask Range Bitmask+Range Dynamic Dynamic+Bitmask
0%

10%

20%

30%

40%

50%

60%

70%

80%

LSBs
MSBs

P
e

rc
e

n
ta

g
e

 B
it

w
id

th
 M

in
im

iz
a

ti
o

n
 (

a
v

e
ra

g
e

)

 51

Bitwidth Reduction Results

Bitmask Range Bitmask+Range Dynamic Dynamic+Bitmask
0%

10%

20%

30%

40%

50%

60%

70%

80%

LSBs
MSBs

P
e

rc
e

n
ta

g
e

 B
it

w
id

th
 M

in
im

iz
a

ti
o

n
 (

a
v

e
ra

g
e

)

 52

Bitwidth Reduction Results

Bitmask Range Bitmask+Range Dynamic Dynamic+Bitmask
0%

10%

20%

30%

40%

50%

60%

70%

80%

LSBs
MSBs

P
e

rc
e

n
ta

g
e

 B
it

w
id

th
 M

in
im

iz
a

ti
o

n
 (

a
v

e
ra

g
e

)

 53

Area Results

Static (average) Static (sha) Dynamic (average) Dynamic (adpcm)
0%

10%

20%

30%

40%

50%

60%

70%

80%

LUTs
FFs

P
e

rc
e

n
ta

g
e

 R
e

d
u

c
ti

o
n

 54

Area Results

Static (average) Static (sha) Dynamic (average) Dynamic (adpcm)
0%

10%

20%

30%

40%

50%

60%

70%

80%

LUTs
FFs

P
e

rc
e

n
ta

g
e

 R
e

d
u

c
ti

o
n

 55

Conclusions and Future work

● Opportunities exist to optimize instruction bitwidths in
HLS that are not present in RTL synthesis.

● 9% area improvement over Quartus.

● Using range and bitmask analysis approaches
together yields better results than using either in
isolation.

● Excellent dynamic range-analysis results show that
program information can be used to further reduce
area.

● In hybrid system, minimized HW with SW fallback.
● User hints for variable use.

 56

Bitwidth minimization will be part of the LegUp 3.0 release.
Soon to be available at:

http://legup.eecg.utoronto.ca

http://legup.eecg.utoronto.ca/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

