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ABSTRACT

We propose using the price range in the estimation of stochastic volatility models.
We show theoretically, numerically, and empirically that range-based volatility prox-
ies are not only highly efficient, but also approximately Gaussian and robust to mi-
crostructure noise. Hence range-based Gaussian quasi-maximum likelihood estimation
produces highly efficient estimates of stochastic volatility models and extractions of
latent volatility. We use our method to examine the dynamics of daily exchange rate
volatility and find the evidence points strongly toward two-factor models with one
highly persistent factor and one quickly mean-reverting factor.

VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio
choice, or risk management. Not long ago, theoretical models routinely as-
sumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!.
Today, however, we widely acknowledge that volatility is both time varying
and predictable ~e.g., Andersen and Bollerslev ~1997!!, and stochastic vola-
tility models are commonplace. Discrete- and continuous-time stochastic vol-
atility models are extensively used in theoretical finance, empirical finance,
and financial econometrics, both in academe and industry ~e.g., Hull and
White ~1987!, Heston ~1993!, Bates ~1996!, Ghysels, Harvey, and Renault
~1996!, Jarrow ~1998!, Duffie, Pan, and Singleton ~2000!!.

Unfortunately, the estimation of stochastic volatility models has proved quite
difficult. The Gaussian quasi-maximum likelihood estimation ~QMLE! ap-
proach of Harvey, Ruiz, and Shephard ~1994!, which initially seemed appeal-
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ing because of its simplicity, fell by the wayside as it became apparent that
stochastic volatility models are highly non-Gaussian. The problem is that stan-
dard volatility proxies such as log absolute or squared returns are contami-
nated by highly non-Gaussian measurement error ~e.g., Andersen and Sorensen
~1997!!, which produces highly inefficient Gaussian quasi-maximum likeli-
hood estimators and similarly inefficient inferences about latent volatility.

The literature therefore turned toward alternative estimators. In particu-
lar, attention turned to variants of the generalized method of moments ~GMM!
that use model moments obtained either through simulations ~e.g., Duffie and
Singleton ~1993!! or analytically ~e.g., Singleton ~2001!!. Those estimators, how-
ever, can also be highly inefficient, depending on the choice of moment con-
ditions and weighting matrix.Although recent GMM work has tried to maximize
efficiency through the optimal choice of moment conditions, empirical imple-
mentation remains challenging ~e.g., Gallant, Hsieh, and Tauchen ~1997!, Gal-
lant, Hsu, and Tauchen ~1999!, Chernov and Ghysels ~2000!!.

Another literature focuses on likelihood-based estimation and evaluates
the likelihood function either through numerical integration ~e.g., Fridman
and Harris ~1998!! or Monte Carlo integration using either importance sam-
pling ~e.g., Danielsson ~1994!, Pitt and Shephard ~1997!, Durbin and Koop-
man ~2001!! or Markov Chain methods ~e.g., Jacquier, Polson, and Rossi,
~1994!, Kim, Shephard, and Chib ~1998!!. In principle, both numerical and
Monte Carlo integration can deliver highly accurate approximations to the
exact maximum likelihood estimator, but practical considerations have im-
peded their widespread use. In particular, the methods are computationally
intensive and rely on assumptions that are hard to check in practice, such as
the accuracy of numerical integrals and the convergence of simulated Mar-
kov chains to their steady state.

Motivated both by the popularity and appeal of stochastic volatility models
and by the difficulties associated with their estimation, we propose a simple
yet highly efficient estimation method based on the range. The range, defined
as the difference between the highest and lowest log security prices over a fixed
sampling interval, is a volatility proxy with a long and colorful history in fi-
nance ~e.g., Garman and Klass ~1980!, Parkinson ~1980!, Beckers ~1983!, Ball
and Torous ~1984!, Rogers and Satchell ~1991!, Anderson and Bollerslev ~1998!,
Yang and Zhang ~2000!!. Data on the range are widely available for individual
stocks and exchange-traded futures contracts ~including stock indices, Trea-
sury securities, commodities, and currencies!, not only at present but also over
long historical spans. In fact, the range has been reported for many years in
major business newspapers through so-called “candlestick plots,” showing the
daily high, low, and close. The range is also a popular technical indicator ~e.g.,
Edwards and Magee ~1997!!. Curiously, however, the range has been ne-
glected in the recent stochastic volatility literature.1

1 Schwert ~1990! and Gallant et al. ~1999! also make use of the range, albeit with a very
different estimator. Although they are aware of the efficiency of the range as a volatility mea-
sure, they are unaware of and do not exploit its log-normality, just as in the earlier Garman–
Klass–Parkinson literature.
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The methodological contribution of the paper unfolds in Sections I through
III. We set the stage in Section I, in which we describe a general class of
continuous-time stochastic volatility models and the particular discretiza-
tion that we exploit. In Section II, we use both analytical and numerical
methods to motivate and establish the remarkable near-normality of the log
range. We also note that the log range is a highly efficient volatility mea-
sure, a fact known at least since Parkinson ~1980! and recently formalized
by Andersen and Bollerslev ~1998!. The approximate normality and high
efficiency of the log range suggest its use in Gaussian quasi-maximum like-
lihood estimation. We pursue this idea in the Monte Carlo study of Sec-
tion III, which reveals not only huge efficiency gains from our approach
relative to traditional methods, but also robustness to microstructure noise.

In Section IV, we use the new range-based methods to perform a detailed
empirical analysis of volatility dynamics in five major U.S. dollar exchange
rates, which delivers sharp results. In particular, we find that two-factor
models are clearly required to explain both the autocorrelation of volatility
and the volatility of volatility, a result that is consistent with both economic
theories and empirical studies of volatility dynamics in other markets. Fi-
nally, in Section V we summarize, conclude, and sketch directions for future
research.

I. Stochastic Volatility

A. Continuous-Time Stochastic Volatility Model

In a generic continuous-time stochastic volatility model, the price S of a
security evolves as a diffusion with instantaneous drift m and volatility s.
Both the drift and volatility depend on a latent state variable n, which itself
evolves as a diffusion. Formally, we write:

dSt � m~St ,nt !dt � s~St ,nt !dWSt

dnt � a~St ,nt !dt � b~St ,nt !dWnt ,
~1!

where WSt and Wnt are two Wiener processes with correlation dWSt dWnt �
u~St ,nt !dt. The functions a and b govern the drift and volatility of the state
variable process.

The stochastic volatility literature contains numerous variations on the
generic model ~1!. In this paper, we work with a first-order parameteriza-
tion, which is rich enough to be interesting, yet simple enough to permit a
streamlined exposition:

dSt

St
� mdt � st dWSt

d ln st � a~ln Ts� ln st !dt � bdWnt .

~2!
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The simple stochastic volatility model ~2! emerges from the general model
~1! when s~St ,nt ! � st St , st � exp~nt !, a~St ,nt ! � a~ln Ts � nt !, b~St ,nt ! � b,
and u~St ,nt ! � 0. In this parameterization, the log volatility ln s of returns
dS0S is the latent state variable. It evolves as a mean-reverting Ornstein–
Uhlenbeck process, with mean ln Ts and mean reversion parameter a . 0.
The instantaneous drift of returns and the instantaneous drift and standard
deviation of log volatility are assumed constant, and the return innovations
are assumed independent of the log volatility innovations.2

B. Discretization of the Continuous-Time Model

In practice, we have to rely on N discrete-time price realizations to draw
inference about the continuous-time model. Thus, we divide the sample pe-
riod @0,T # into N intervals, each of length H � T0N, corresponding to the
discrete-time data.3 We then replace the continuous volatility dynamics with
a piecewise-constant process, where within each interval i, that is between
times iH and ~i � 1!H, for i � 1,2, . . . , N, volatility is assumed constant at
st � siH , but from one interval to the next, volatility is stochastic.

This piecewise-constant approximation implies that within each interval i
the security price evolves as a geometric Brownian motion:

dSt

St
� mdt � siH dWSt , for iH � t � ~i � 1!H, ~3!

and, by Ito’s lemma, that the log security price st � ln St evolves as a Brown-
ian motion:

dst � �m�
1

2
siH

2 �dt � siH dWSt , for iH � t � ~i � 1!H. ~4!

Log volatility varies from one interval to the next according to its Ornstein–
Uhlenbeck dynamics. For small interval lengths H, the conditional distribu-
tion of log volatility is approximately:4,5

ln s~i�1!H 6ln siH ; N @ln Ts� rH ~ln siH � ln Ts!, b2H # . ~5!

2 The zero correlation assumption, which we maintain for tractability, rules out a leverage
effect ~e.g., Schwert ~1989!, Nelson ~1991!, Engle and Ng ~1993!, Jacquier, Polson, and Rossi
~1999!!. Our estimator can be extended to allow for nonzero correlation; see Alizadeh ~1998!.

3 The assumption of equally spaced observations is made for notational convenience and can
be relaxed.

4 This conditional distribution is an approximation for small H. The exact conditional dis-
tribution of ln s~i�1!H is normal with mean ln Ts � exp~�aH !~ln siH � ln Ts! and variance b2 @1 �
exp~�2aH !#0~2a!. The approximation follows from Taylor series expansions of exp~�aH ! and
exp~�2aH ! around H � 0.

5 A number of authors postulate the discretized volatility dynamics ~5! from the onset ~e.g.,
Jacquier et al. ~1999!!. We could do the same without loss of generality, except that we need the
continuous-time price dynamics ~3! and ~4! to derive the properties of the volatility proxies in
Section II.
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In words, the discretized log volatility follows a Gaussian first-order auto-
regressive process with mean ln Ts, autoregressive parameter rH � 1 � aH,
and variance b2H.

II. Econometric Approach

A. Measuring Volatility

Even the discretized stochastic volatility model is difficult to estimate be-
cause the sample path of the asset price within each interval is not fully
observed. If it were observed, we could infer the diffusion coefficients siH
with arbitrary precision.6 In practice, we are forced to use discretely ob-
served statistics of the sample paths, such as the absolute or squared re-
turns over each interval, to draw inferences about the discretized log volatilities
and their dynamics.

To formalize this idea, consider a volatility proxy that is a statistic
f ~siH, ~i�1!H ! of the continuous sample path siH, ~i�1!H of the log asset price
between times iH and ~i � 1!H. If the statistic is homogeneous in some
power g of volatility, then we can write it as

f ~siH, ~i�1!H ! � siH
g f ~siH, ~i�1!H

* !, ~6!

which implies that

ln6 f ~siH, ~i�1!H !6 � g ln siH � ln6 f ~siH, ~i�1!H
* !6, ~7!

where siH, ~i�1!H
* denotes the continuous sample path of a standardized dif-

fusion generated by the same innovations as siH, ~i�1!H , but with volatility
siH
* � 1.
Equation ~7! makes clear that the statistic f ~{! is a noisy volatility proxy:

the first term is proportional to log volatility and the second term is a mea-
surement error. Other things the same, the measurement error reduces the
informational content of the volatility proxy. The more variable the mea-
surement error, the less precise are our inferences about log volatility and
its dynamics.

B. Linear State Space Representation

Following Harvey et al. ~1994!, we recognize that equations ~5! and ~7!
form a linear state space system:

ln s~i�1!H � ln Ts� rH ~ln siH � ln Ts!� b!Hn~i�1!H ~8a!

ln6 f ~siH, ~i�1!H !6 � g ln siH � E@ln6 f ~siH, ~i�1!H
* !6#� e~i�1!H . ~8b!

6 See, for example, Merton ~1980!.
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The transition equation ~8a! follows from the conditional distribution of log
volatility. It describes the dynamics of the unobserved log volatility. The
transition errors n are i.i.d. N@0,1# , which follows from equation ~5!. The
measurement equation ~8b! makes precise the way in which the log vola-
tility proxy ln6 f ~{!6 is related to the true log volatility ln siH ; it follows
from equation ~7! with the projection ln6 f ~{!6 [ E@ln6 f ~{!6# � e. The expec-
tation of ln6 f ~siH, ~i�1!H

* !6 depends on siH
* , the functional form of f ~{!, and

interval length H, but it is by construction independent of the log volatility
ln siH . The projection errors e have a zero mean, but are not necessarily
Gaussian.

C. Quasi-Maximum Likelihood Estimation

If the measurement equation errors are Gaussian, exact maximum likeli-
hood estimation of the stochastic volatility model is straightforward. One
simply maximizes the Gaussian log likelihood:

ln L~ln6 f ~s0, H !6, ln6 f ~sH,2H !6, . . . , ln6 f ~s~N�1!H, NH !6;u!

� c �
1

2 (i�1

N

ln hi �
1

2 (i�1

N ei
2

hi
,

~9!

where the one-step-ahead forecast errors:

ei � ln6 f ~s~i�1!H, iH !6� Ei�1 @ln6 f ~s~i�1!H, iH !6# , ~10!

and their conditional variances:

hi � Vari�1 @ei # , ~11!

are readily evaluated using the Kalman filter.7 When the measurement equa-
tion errors are not Gaussian, maximum likelihood estimation is more in-
volved because a tidy closed-form expression for the likelihood, such as equation
~9!, does not exist in general. Therefore, the evaluation and maximization of
the likelihood is much more challenging. Related, in the non-Gaussian case,
the prediction errors ei produced by the Kalman filter are merely linear
projection errors, not conditional expectation errors, because in non-
Gaussian settings, the linear projections produced by the Kalman filter do
not in general coincide with the conditional expectations.

Nevertheless, maximizing the Gaussian likelihood function ~9! can yield
consistent parameter estimates even when the projection errors are not Gauss-
ian. This approach is called Gaussian quasi-maximum likelihood estimation
~QMLE!. The benefits of Gaussian quasi-maximum likelihood estimation are
its simplicity and consistency. Its drawbacks are that the estimates are in-
efficient, even asymptotically, and more importantly that its small-sample

7 For a good overview of the Kalman filter, see Hamilton ~1994!.
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properties are suspect.8 Intuitively, the further the distribution of the pro-
jection errors e is from normality, the more severe are the problems with
Gaussian quasi-maximum likelihood estimation. Of course, the distribution
of the projection errors is application specific, which means that the quality
of the Gaussian quasi-maximum likelihood approach can ultimately only be
assessed through Monte Carlo experiments.

D. Properties of Log Absolute or Squared Returns as Volatility Proxies

The stochastic volatility literature primarily uses absolute or squared re-
turns as volatility proxies.9 The continuously compounded return over the ith
interval is just the difference between the log asset prices at times ~i � 1!H
and iH. Thus, the traditional log volatility proxy is

ln6 f ~siH, ~i�1!H !6 � g ln6s~i�1!H � siH 6� g ln siH � g ln6s~i�1!H
* � siH

* 6, ~12!

where g� 1 or g� 2, depending on whether we consider absolute or squared
returns. Because g only scales the volatility proxy, and hence does not affect
the distribution of the measurement equation errors, we focus exclusively,
but without loss of generality, on absolute returns. That is, throughout the
remainder of the paper, we set g � 1

The second equality of equation ~12! formally requires that the log secu-
rity price is a martingale, so that it is homogeneous in volatility. However,
this assumption is not too troubling because, over sufficiently small sam-
pling intervals H such as a day or even a week, the price drift of most
securities is negligible. In fact, from a statistical perspective, the assump-
tion is likely to be helpful. By using a drift estimator that always takes the
value zero, we inject only a small bias, to the extent that the true drift
differs slightly from zero, but we greatly reduce the variance relative to
other estimators.

It is by now well known that the conditional distribution of log absolute or
squared returns is far from Gaussian. Jacquier et al. ~1994!, Andersen and
Sorensen ~1997!, and Kim et al. ~1998! argue that, as a result, Gaussian
quasi-maximum likelihood estimation with these traditional volatility prox-
ies is highly inefficient and often severely biased in finite samples. Indeed,
the relevant parts of our own Monte Carlo results, which we present in the
next section, confirm their conclusions.

To deepen our theoretical understanding of why the conditional normality
assumption for log absolute or squared returns fails, we examine the distri-
bution of the log absolute value of a driftless Brownian motion x, with origin

8 Note also that, quite apart from whether the model parameters are efficiently estimated,
in non-Gaussian state-space models, the Kalman filter generally produces inefficient filtered
and smoothed extractions of the latent state vector. In particular, in non-Gaussian stochastic
volatility applications, the Kalman filter delivers volatility inferences that are merely best lin-
ear unbiased, not minimum variance unbiased. The two sets of inferred volatilities can diverge
greatly even when the true parameters of the model are known.

9 For a good survey, see Ghysels et al. ~1996!.
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x0 � 0 and constant diffusion coefficient s, over an interval of finite length
t.10 Karatzas and Shreve ~1991! characterize the distribution of the absolute
value of a Brownian motion. A simple transformation of their result reveals
that the distribution of the log absolute value is

Prob@ ln6xt 6� dy#�
2ey

s!t
w� ey

s!t�dy, ~13!

where w denotes a standard normal density.
From this distribution, we can compute the mean, standard deviation, skew-

ness, and kurtosis of ln6xt6, which we present in the first row of Table I.
Notice that different values of s and t affect only the mean, not the vari-
ance, skewness, or kurtosis of log absolute returns. In other words, those
parameters determine the location, but not the shape, of the distribution.
Without loss of generality then, we graph in Figure 1a the distribution of
ln6xt6 with both s and t set to one. For comparison, we also plot a Gaussian
density with matching mean and variance.

Table I and Figure 1a clearly demonstrate that the distribution of log
absolute returns is far from Gaussian. The skewness and kurtosis of ln6xt6
are �1.5 and 6.9, in sharp contrast to the values of 0.0 and 3.0 correspond-
ing to normality. The intuition of this result is that tiny positive and tiny
negative returns, both of which are common and are “inliers” of the return
distribution, become large negative outliers of the distribution of log abso-
lute returns.11

10 The assumption x0 � 0 allows us to interpret xt directly as a continuously compounded
return.

11 The use of log absolute returns is even more problematic in empirical work on high-
frequency data, because returns are exactly zero with positive probability, due to the discrete-
ness in prices. In that case, which arises not infrequently in practice, the logarithm of absolute
returns is undefined and the quasi-maximum likelihood approach fails. Various ad hoc proce-
dures, such as adding a small constant to the absolute returns, have been devised to skirt this
problem ~e.g., Breidt and Carriquiry ~1996!!.

Table I

Moments of Alternative Volatility Proxies
We consider a driftless Brownian motion x, with origin x0 � 0 and constant diffusion coefficient
s, over an interval of finite length t. The table shows the first four moments of two volatility
proxies: the log absolute return ln6xt6 and the log range ln6sup xt � inf xt 6

Volatility Proxy Mean
Standard
Deviation Skewness Kurtosis

Log absolute return �0.64 � 102 ln t � ln s 1.11 �1.53 6.93
Log range 0.43 � 102 ln t � ln s 0.29 0.17 2.80
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E. Properties of the Log Range as Volatility Proxy

Now consider using the range as volatility proxy, where the range over the
ith interval is defined as the difference between the security’s highest and

Figure 1. Distribution of log absolute return (a) and distribution of log range (b). We
consider a driftless Brownian motion, with zero origin and unit diffusion coefficient, over an
interval of unit length. In panel ~a! we plot the distribution of the log absolute return, with the
best-fitting normal distribution superimposed for visual reference. In panel ~b! we plot the
distribution of the log range, with the best-fitting normal distribution superimposed for visual
reference.
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lowest log prices between times iH and ~i � 1!H. Formally, consider use of
the following log volatility proxy:

ln 6 f ~siH, ~i�1!H !6 � ln� sup
iH�t�~i�1!H

st � inf
iH�t�~i�1!H

st�
� ln siH � ln� sup

iH�t�~i�1!H
st
*� inf

iH�t�~i�1!H
st
*�.

~14!

For the second equality, we require again that the log price is homogeneous
in volatility ~i.e., that it is a martingale!.12 We drop the absolute value signs
because the range cannot be negative.

The log range is superior as a volatility proxy to log absolute or squared
returns for two reasons. First, it is more efficient, in the sense that the
variance of the measurement errors associated with the daily log range is
far less than the variance of the measurement errors associated with daily
log absolute or squared returns, due to the intraday sample path informa-
tion contained in the range. Second, the log range is very well approximated
as Gaussian. On both counts, the log range is an attractive volatility proxy
for Gaussian quasi-maximum likelihood estimation of stochastic volatility
models.

Let us first discuss in more detail the superior efficiency of the log range.
The intuition is simple: On days when the security price f luctuates substan-
tially throughout the day but, by chance, the closing price is close to the
opening price, the absolute or squared return indicates low volatility despite
the large intraday price f luctuations. The range, in contrast, ref lects the
intraday price f luctuations and therefore indicates correctly that the vola-
tility is high.

The mathematics underlying the superior efficiency of the log range is
less simple, but nevertheless standard. Specifically, consider again a drift-
less Brownian motion x, with origin x0 � 0 and constant diffusion coefficient
s, over an interval of finite length t. Feller ~1951! derives the distribution of
the range, and a simple transformation of his result reveals that the distri-
bution of the log range is

Prob�ln� sup
0�t�t

xt � inf
0�t�t

xt� � dy� � 8 (
k�1

`

~�1!k�1
k2ey

s!t
w� key

s!t�dy. ~15!

Although this distribution is expressed as an infinite series, it is straight-
forward to compute its moments after suitably truncating the infinite sum.
In the second row of Table I, we report the mean and standard deviation.

12 Instead of assuming a zero drift, we can perform a change of variable from the Brownian
motion to a Brownian bridge ~e.g., Doob ~1949!, Feller ~1951!!. The distribution of the log range
of the Brownian bridge is nearly identical to that of the log range of the corresponding Brown-
ian motion. However, the Brownian bridge is by construction independent of the drift. See
Alizadeh ~1998! for details.
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The superior efficiency of the log range, relative to the log absolute return,
emerges clearly. Both proxies move one-for-one with log volatility on aver-
age, but the standard deviation of the log range is approximately one-fourth
the standard deviation of the log absolute return.

The efficiency of the range as a volatility measure has been appreciated
implicitly for decades in the business press, which routinely reports high
and low prices and sometimes displays high-low-close or candlestick plots.
Range-based volatility estimation has also featured in the academic litera-
ture at least since Parkinson ~1980!, who proposes and rigorously analyzes
the use of the range for estimating volatility in a constant volatility setting.
Since then, Parkinson’s estimator has been improved in several ways, in-
cluding combining the range with opening and closing prices ~e.g., Garman
and Klass ~1980!, Beckers ~1983!, Ball and Torous ~1984!, Rogers and Satch-
ell ~1991!, Yang and Zhang ~2000!!.13

Let us now discuss in more detail the approximate normality of the log
range, or equivalently, the approximate log-normality of the range. This as-
pect of the range is not particularly intuitive, and it is certainly not widely
appreciated. Nevertheless, it is a fact. The second row of Table I shows that
the skewness and kurtosis of the log range are 0.17 and 2.80, respectively.
These values are very close to the corresponding values of 0 and 3 for a
normal random variable, and they represent a sharp contrast to the earlier-
presented skewness and kurtosis of the log absolute return. In Figure 1b we
plot the density of the log range ~15!, with s and t set to one, together with
a Gaussian density with matching mean and variance, which makes visually
clear the remarkable near-normality of the distribution of the log range.

F. Robustness of the Range to Market Microstructure Noise

Thus far we have emphasized the desirable efficiency and normality prop-
erties of the range. Here we investigate a third and intriguing property of
the range, which is of independent interest and which links nicely to a cen-
tral literature in high-frequency finance: robustness to certain types of mar-
ket microstructure effects.14 To illustrate the robustness of the range to market
microstructure effects, we compare the properties of the range to those of
realized volatility, another highly efficient volatility proxy, in the presence of
bid-ask bounce, a well-known and important source of market microstruc-
ture noise. Both the daily range and daily realized volatility use intraday
data, but they process this information in very different ways and ultimately
exhibit different degrees of robustness to market microstructure noise.

13 Although including the opening and closing prices can improve the estimation of volatility
in principle, the gains are not necessarily realized in practice. In particular, Brown ~1990!
argues against the inclusion of the opening and closing prices on the grounds that they are
highly inf luenced by microstructure effects, such as the lack of trading at the close or “market
on the close” orders that have a disproportionate effect on the closing price. Furthermore,
experimentation by Alizadeh ~1998! reveals little theoretical efficiency gain from combining the
range with the opening and closing prices. Thus, we do not pursue the idea in this paper.

14 For a good empirically oriented overview of market microstructure effects in security prices
and returns, see Hasbrouck ~1996!.
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The concept of realized volatility has been used productively by French,
Schwert, and Stambaugh ~1987!, Schwert ~1989!, and Andersen et al. ~2001a!.
It has been formally justified, moreover, by Andersen et al. ~2001b, 2001c!.
Realized volatility is nothing more than the sum of squared high-frequency
returns over a given sampling period. For example, we calculate a daily
realized variance series by summing over each day a sequence of squared
intraday returns ~e.g., five-minute returns!. If log security prices evolve as a
diffusion and if returns are sampled sufficiently frequently, then the real-
ized volatility is a more efficient volatility proxy than the range, because it
becomes arbitrarily close to the true volatility as the sampling frequency
increases. In particular, Andersen and Bollerslev ~1998! show that, under
such ideal conditions, the daily range is about as efficient a volatility proxy
as the realized volatility based on returns sampled every four hours.

However, market microstructure can have a large impact on observed high-
frequency prices and returns. For example, in the presence of a bid-ask spread,
the observed price is a noisy version of the true price because it effectively
equals the true price plus or minus half the spread, depending on whether a
trade is buyer or seller initiated. Because transactions tend to bounce be-
tween buys and sells, the induced bid-ask bounce in observed prices in-
creases the measured volatility of high-frequency returns.

In particular, bid-ask bounce increases the volatility of high-frequency re-
turns and hence the average size of squared high-frequency returns. By sum-
ming the squared high-frequency returns, each of which is biased upward,
the realized volatility contains a cumulated and therefore potentially large
bias, which becomes more severe as returns are sampled more frequently.
The range, in contrast, is less likely to be seriously contaminated by bid-ask
bounce. The observed daily maximum is likely to be at the ask and hence
“too high” by half the spread, whereas the observed minimum is likely to be
at the bid and hence “too low” by half the spread. On average, then, the
range is inf lated only by the average spread, which is small in liquid mar-
kets.15 The upshot is obvious: Despite the fact that the range is a less effi-
cient volatility proxy than realized volatility under ideal conditions, it may
nevertheless prove superior in real-world situations in which market micro-
structure biases contaminate high-frequency prices and returns.

Let us illustrate matters with a simple example in the spirit of Hasbrouck
~1999!. Suppose that the true log price st evolves as a random walk, st �
st�1 � ut , with ut ;NID@0,su

2# . Let the bid price be Bt � f loor@St � ticksize# ,
and let the ask price be At � ceiling@St � ticksize# , where St � exp~st ! is the
true price. We then take the observed price as St

obs � Bt qt � At ~1 � qt !,
where qt � Bernoulli@102# . Hence the observed price f luctuates randomly
between the bid and the ask.16

15 Moreover, one could readily perform a bias correction by subtracting the average spread
from the range. We thank Joel Hasbrouck for this observation.

16 We could go even farther and induce negative autocorrelation in qt by taking qt � Ber-
noulli@102 � u0# if qt�1 � 0 and qt � Bernoulli@102 � u1# if qt�1 � 1, for u0,u1 � 0. Doing so,
however, would only strengthen the results.
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In Figure 2, we show a typical one-day sample path of 289 simulated
five-minute true and observed prices. Following Hasbrouck ~1999!, we use
S0 � $25, ticksize � $1016, and su � 0.0011, which implies an annualized
30 percent return volatility ~standard deviation!, assuming 250 trading days
per year. The population daily return volatility is 1.87 percent ~i.e., 100 �

!288su
2!, and the realized volatility calculated using the true returns is a

close 1.81 percent. In contrast, the realized volatility based on the much
noisier observed returns is an inf lated 6.70 percent! The market micro-
structure noise in the observed returns also affects the range-based vola-
tility estimator insofar as the observed daily maximum and minimum differ
from their true counterparts, resulting in an observed range that is greater
than the true range, but the effect is comparatively minor relative to the
overall daily movement of the true and observed prices. For the true and
observed price paths on this “day,” the range-based volatility estimates are
1.54 percent and 1.79 percent, respectively.17

III. Monte Carlo Analysis

The diffusion theory sketched above shows that the log range is a less noisy
volatility proxy than log absolute or squared returns and that the distribution

17 We use Parkinson’s ~1980! variance estimator of 0.361 times the squared range.

Figure 2. True and observed prices for a simulated one-day sample path. We simulate one
day of five-minute log prices ~289 observations! from the Gaussian logarithmic random walk, st �
st�1 � ut , with ut;NID@0,su

2# . Let the bid price be Bt � f loor@St � ticksize# , and let the ask price
be At � ceiling@St � ticksize# , where St � exp~st ! is the true price. We then take the observed price
as St

obs � Bt qt � At ~1 � qt !, where qt � Bernoulli@102# . Hence, the observed price f luctuates ran-
domly between the bid and the ask. We take S0 � $25, ticksize � $1016, and su � 0.0011, which
implies an annualized 30 percent return volatility, assuming 250 trading days per year.
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of the log range is approximately Gaussian, in stark contrast to the skewed and
leptokurtic distribution of the traditional return-based volatility proxies. Both
of these findings suggest that Gaussian quasi-maximum likelihood estima-
tion with the log range as volatility proxy is highly efficient, not only relative
to quasi-maximum likelihood estimation with the traditional return based vol-
atility proxies, but also relative to exact maximum likelihood estimation.

We now use a Monte Carlo experiment to compare quasi-maximum like-
lihood estimation with the log range as volatility proxy to both quasi- and
exact maximum likelihood estimation with the log absolute return as vola-
tility proxy. In particular, we generate 5,000 samples of T � 1,000 or 500
daily observations of the two volatility proxies, where each daily price path
is generated by N � 1,000, 100, or 50 intraday price moves. For every sam-
ple, we then perform quasi-maximum likelihood estimation of the stochastic
volatility model ~2! with either the log range or the log absolute return as
volatility proxy. For comparison, we also perform exact maximum likelihood
estimation with the log absolute return, where we evaluate the likelihood
function using the importance sampling approach of Pitt and Shephard ~1997!
and Durbin and Koopman ~2000!.

We simulate the daily price paths from the following Euler approximation
of the discretized stochastic volatility model ~4!–~5!:

st � st��t � siH est!�t

ln s~i�1!H � ln Ts� rH ~ln siH � ln Ts!� beni!H,
~16!

for iH � t � ~i � 1!H, where est and eni are independent N@0,1# innovations.
The discrete time increment �t, a small fraction of the discrete sampling
interval H, approximates the continuous time dt. We set H � 10257 and �t �
H0N, which corresponds to daily data generated by N trades per day, and we
set a � 3.855, ln Ts � �2.5, and b � 0.75, which implies a volatility process
with a daily autocorrelation of rH � 0.985, an annualized average volatility
of 8.51 percent, and a coefficient of variation of 0.28.18 These volatility dy-
namics are broadly consistent with our subsequent empirical results for five
major currencies as well as with the literature on stochastic volatility.

A. Parameter Estimates

Tables II and III summarize the sampling distributions of the three esti-
mators of rH , b, and ln Ts for T � 1,000 and T � 500 daily observations of the
volatility proxies, respectively. Each table is made up of three parts corre-
sponding to N � 1,000, N � 100, and N � 50 trades per day.

Consider first the case T � 1,000 and N � 1,000 in Table II, Panel A. Using
the absolute return as volatility proxy, the average quasi-maximum likeli-
hood estimate of rH is 0.95, compared to an average estimate of 0.98 using
the range as volatility proxy and the true value of 0.985. Even more strik-

18 Following Jacquier et al. ~1994!, we interpret the volatility of log volatility parameter b
through the coefficient of variation, ~Var@st #0E

2@st # !
102.
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ingly, the root mean squared errors ~RMSE! of the estimates are 0.14 and
0.01, respectively. Clearly, using the range instead of the absolute return as
volatility proxy produces quasi-maximum likelihood estimates that are both
less biased and less variable.

The performance difference between the two quasi-maximum likelihood
estimators is even more impressive for the volatility of log volatility param-
eter, b. The average estimate using the log absolute return is 1.08 with an
RMSE of 1.18. In contrast, the average estimate using the log range is 0.8,
close to the true value of 0.75, with an RMSE of only 0.12.

In contrast, the results for the mean log volatility ln Ts are basically iden-
tical. Intuitively, this is because the average level of volatility is directly
identified by the unconditional mean of the volatility proxies. The estimates
of the average level of volatility are thus relatively insensitive to the statis-
tical properties of the measurement equation errors.

In Figure 3, we illustrate graphically the very different finite-sample prop-
erties of the two quasi-maximum likelihood estimators. The first three plots
of the first two rows show the sampling distributions of the parameter es-
timates using the log absolute return and the log range as volatility proxy,
respectively. The drastic efficiency gains from using the range are immedi-
ately apparent.19 Furthermore, the sampling distributions of the estimates
of r and b for the log absolute return are severely skewed, which implies
that the usual Gaussian inferences based on asymptotic standard errors are
not trustworthy. In contrast, the distributions of the corresponding esti-
mates using the log range are very close to Gaussian.

The results thus far indicate that quasi-maximum likelihood estimation
with the log range as volatility proxy is far more efficient than with the log
absolute return as volatility proxy. This efficiency gain stems from the range
being a much less noisy volatility measure as well as from the log range
being approximately Gaussian. To separate these two effects, we now com-
pare the range-based quasi-maximum likelihood estimator to the exact max-
imum likelihood estimator for absolute returns. If the only benefit from using
the range is its approximate normality, the results for the range-based quasi-
maximum likelihood estimator should be very similar to the results for the
exact maximum likelihood estimator for absolute returns. If, however, the
information about intraday volatility revealed by the range but not by ab-
solute or squared returns is useful in the estimation of the model, the sam-
pling properties of the range-based quasi-maximum likelihood estimator could
well dominate the sampling properties of the exact maximum likelihood es-
timator for absolute returns.20

19 Notice the different scales of the second plot in each row. The horizontal axes of the second
plot in the second and third rows correspond to the region between the two vertical lines in the
second plot of the first row.

20 Alternatively, we could compare the properties of the range-based quasi-maximum likeli-
hood estimator to those of the exact maximum likelihood estimator for the range. However,
given the near-normality of the log range, the difference in performance between these two
estimators would be minimal.
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Table III

Sampling Distribution with T = 500 Observations
We report statistics summarizing the sampling distribution of three estimators of the param-
eters and the latent volatilities of the stochastic volatility model:

st � st��t � siH est!�t

ln s~i�1!H � ln Ts� rH ~ln siH � ln Ts!� beni!H,

iH � t � ~i � 1!H, where est and eni are independent N@0,1# variates. We set H � 10257 and �t �
H0N, which corresponds to using daily data generated by N trades per day. We consider N �
1,000 ~Panel A!, N � 100 ~Panel B!, and N � 50 ~Panel C!. We set a � 3.855, ln Ts � �2.5 and
b � 0.75, which implies a volatility process with daily autocorrelation of rH � 0.985, an annu-
alized average volatility of 8.51 percent, and a coefficient of variation of 0.28. “QML with ab-
solute return” denotes Gaussian quasi-maximum likelihood estimation with the log absolute
return as volatility proxy. “QML with range” denotes Gaussian quasi-maximum likelihood es-
timation with the log range as volatility proxy. “Exact ML with absolute return” denotes a
simulation-based estimator that maximizes the exact likelihood of log absolute returns. All
results are based on 5,000 replications.

Parameter Estimates
Prediction Errors with
Estimated Parameters

r � 0.985 b � 0.750 ln Ts � �2.5 Mean RMS Mean % RMS %

Panel A: Sampling Distribution with T � 500 Observations and N � 1,000 Trades

QML with absolute return
Mean 0.862 1.604 �2.496 �0.0033 0.0200 0.028 0.233
RMSE 0.288 2.153 0.138 0.0121 0.0084 0.130 0.067
5% 0.095 0.295 �2.712 �0.0259 0.0125 �0.172 0.159
25% 0.917 0.629 �2.590 �0.0090 0.0148 �0.061 0.186
50% 0.969 0.918 �2.497 �0.0007 0.0172 0.023 0.217
75% 0.984 1.523 �2.403 0.0053 0.0220 0.113 0.262
95% 0.993 6.293 �2.261 0.0120 0.0372 0.249 0.367

QML with range
Mean 0.972 0.817 �2.531 �0.0023 0.0135 0.014 0.157
RMSE 0.023 0.180 0.129 0.0113 0.0071 0.125 0.058
5% 0.936 0.554 �2.731 �0.0242 0.0082 �0.185 0.102
25% 0.967 0.701 �2.623 �0.0080 0.0093 �0.071 0.116
50% 0.977 0.804 �2.533 �0.0001 0.0110 0.008 0.138
75% 0.985 0.918 �2.448 0.0060 0.0145 0.100 0.181
95% 0.991 1.092 �2.318 0.0116 0.0283 0.228 0.273

Exact ML with absolute return
Mean 0.964 0.863 �2.504 �0.0036 0.0157 0.007 0.176
RMSE 0.052 0.407 0.132 0.0120 0.0079 0.126 0.056
5% 0.898 0.399 �2.714 �0.0260 0.0093 �0.190 0.117
25% 0.960 0.634 �2.591 �0.0091 0.0110 �0.079 0.137
50% 0.977 0.805 �2.507 �0.0013 0.0130 �0.001 0.161
75% 0.985 1.029 �2.417 0.0049 0.0169 0.090 0.200
95% 0.993 1.475 �2.283 0.0115 0.0323 0.225 0.292
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Comparing the second and third panel of Table IIA reveals that much but
not all of the efficiency gain from using the log range as volatility proxy is
attributed to the approximate normality of the log range ~see also the second
and third rows of Figure 3 for a graphical representation of the results!. In
terms of bias, the range-based quasi-maximum likelihood estimator and the
exact maximum likelihood estimator for absolute returns perform equally
well. However, the RMSEs of the range-based estimates of r and b are sig-
nificantly smaller than for the corresponding exact maximum likelihood es-
timates ~0.012 vs. 0.016 for r and 0.122 vs. 0.207 for b!. This demonstrates
that the information about intraday volatility contained in the range is a
crucial ingredient to the success of the range-based estimator.

Because the return-based estimators do not utilize intraday data, their
sampling distributions are independent of the number of trades per day N.
The properties of the range-based estimator, in contrast, depend on the level
of trading activity. In particular, when there are only a few trades per day,
the observed range can be far from the true range of the underlying price
process and, as a result, range-based volatility estimates can substantially
deviate from the true volatility. To examine the robustness of the range-
based estimator to less frequent trading, we show in Panels B and C of
Table II results for N � 100 and N � 50 trades per day, respectively.

Table III—Continued

Parameter Estimates
Prediction Errors with
Estimated Parameters

r � 0.985 b � 0.750 ln Ts � �2.5 Mean RMS Mean % RMS %

Panel B. Sampling Distribution with T � 500 Observations and N � 100 Trades

QML with range
Mean 0.964 0.936 �2.590 �0.0024 0.0135 0.016 0.167
RMSE 0.039 0.294 0.162 0.0114 0.0071 0.136 0.065
5% 0.915 0.630 �2.810 �0.0247 0.0081 �0.193 0.107
25% 0.956 0.784 �2.682 �0.0084 0.0094 �0.080 0.122
50% 0.971 0.911 �2.593 �0.0002 0.0109 0.009 0.147
75% 0.981 1.046 �2.499 0.0058 0.0146 0.102 0.193
95% 0.990 1.326 �2.365 0.0118 0.0291 0.251 0.295

Panel C: Sampling Distribution with T � 500 Observations and N � 50 Trades

QML with range
Mean 0.949 1.093 �2.628 �0.0021 0.0127 0.013 0.165
RMSE 0.070 0.490 0.178 0.0099 0.0059 0.126 0.058
5% 0.873 0.681 �2.833 �0.0207 0.0079 �0.177 0.110
25% 0.944 0.873 �2.711 �0.0073 0.0093 �0.073 0.124
50% 0.964 1.033 �2.628 �0.0004 0.0107 0.007 0.146
75% 0.977 1.231 �2.546 0.0052 0.0138 0.092 0.187
95% 0.988 1.652 �2.429 0.0106 0.0248 0.222 0.271
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The general pattern is that as N decreases the range-based estimators of
both r and b become more biased ~ r is downward biased while b is upward
biased! and less precise. More specifically, with 100 trades per day, the per-
formance of the range-based quasi-maximum likelihood estimator is compa-
rable to that of the exact maximum likelihood estimator with log absolute
returns. Even with only 50 trades per day, it still dominates the quasi-
maximum likelihood estimator with log absolute returns, in terms of both
bias and RMSE. Further experimentation with the trading frequency re-
veals that range-based estimation is inferior to return-based estimation only
when there are less than 10 trades per day.

Table III presents the Monte Carlo results for T � 500 daily observations
of the volatility proxy. It appears from the table that the range-based esti-
mator is less sensitive to the reduction in the sample size than the return-
based estimators. The RMSEs of the range-based estimators of r and b increase
by 97 percent ~from 0.012 to 0.023! and 48 percent ~from 0.122 to 0.180!,
respectively. The corresponding percentage increases in the RMSEs for the
quasi- and exact maximum likelihood estimators using absolute returns are
significantly larger, with 102 and 225 percent for r and 83 and 96 percent
for b.

The basic results described here are robust to a number of variations that
we performed but do not present in detail in order to conserve space. First,
increasing the sample size to T � 5,000 or even 10,000 does not dramatically
improve the performance of the quasi-maximum likelihood estimator with
log absolute returns. In particular, the estimator of b remains severely bi-
ased and extremely imprecise. Second, repeating the Monte Carlo analysis,
but allowing the volatility to vary throughout the day, shows that the dis-
cretization ~4!–~5! of the continuous time model ~2! does not substantially
affect the estimator. The results are virtually identical to those in Tables II
and III, which confirms that, at least for the parameterization of the model
we consider, the effect of the discretization is negligible.

B. Volatility Extraction

Once the model has been estimated, the Kalman filter can be used to
extract the latent stochastic volatility series.21 The Kalman filter produces
linear projections, which coincide with conditional expectations only under
the assumption of joint normality. Therefore, the extraction of the latent
volatilities is best unbiased when using a Gaussian volatility proxy, whereas
the extraction is merely best linear unbiased when using a non-Gaussian
volatility proxy. This implies that there are two reasons to expect the vola-
tility extraction with the log range to dominate the extraction with the log
absolute return. First, the range-based parameter estimates are more accu-
rate. Second, even for the same parameter values, the efficiency of the range

21 The Kalman filter produces one-step-ahead forecasts E@ln st 6It�1# , concurrent estimates
E@ln st 6It # , and smoothed extractions E@ln st 6IT # . Throughout this section, we report on the
smoothed extractions, but we checked that our results are not changed significantly if instead
we use one-step-ahead forecasts.
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as a volatility proxy and the approximate normality of the log range yield
more accurate volatility extractions.

With this in mind, we summarize in the middle and right sections of Tables II
and III the sampling distributions of the mean extraction error E@ [st � st #
and the root mean squared ~RMS! extraction error E@~ [st � st !

2 #102. Because
the volatility can take on quite different values in a given sample as well
as across samples, we also report the distributions of the mean percent ex-
traction error E @~ [st � st !0st # and the RMS percent extraction error
E@~~ [st � st !0st !

2 #102. In each table, we compute the volatility extractions
using the estimated parameters.22 In addition, we show in Table II results
where we feed the Kalman filter the true parameters.

Not surprisingly, among the quasi-maximum likelihood estimators the range-
based estimator is superior. Consider, for example, the results for T � 1,000
and N � 1,000 in Table II, Panel A. Both volatility extractions appear un-
biased, but the range-based extraction is much more efficient. With esti-
mated parameters, the log absolute return produces a RMS extraction error
of 1.8 percent or 22 percent relative to the level of volatility ~the average
level of volatility is 8.2 percent!. Using the log range as volatility proxy, the
RMS extraction error is only 1.2 percent or 14 percent in relative terms.
With the true parameters, both estimators become more accurate, but their
relative performance remains the same.

Comparing the range-based quasi-maximum likelihood extractions to the
results for the exact maximum likelihood estimator for absolute returns, we
again notice that the information about intraday volatility contained in the
range is important. The exact maximum likelihood estimates are based on a
non-Gaussian filter, meaning that the extractions are actually conditional
expectations and not just linear projections produced by the Kalman filter.
Therefore, the differences between the range-based quasi-maximum likeli-
hood extractions with known parameters and the corresponding exact max-
imum likelihood results for absolute returns are not induced by problems
with the estimator ~such as suboptimal filtering!, but are simply due to the
superior informational efficiency of the range.

Comparing the range-based extraction errors across the three panels of
Table II reveals an interesting pattern. With estimated parameters, the dis-
tribution of the RMS extraction error is relatively unaffected by the number
of trades per day. With the true parameters, in contrast, the average RMS
extraction error increases from 1 percent with N � 1,000 trades per day to
1.25 percent with N � 50 trades per day.

Finally, putting Tables II and III side-by-side shows that as the number of
observations decreases and, as a result, the small sample biases of the pa-
rameter estimates become more severe, the extraction errors with estimated
parameters obviously increase. Because, as we discovered above, the return-
based parameter estimates are more sensitive to the smaller sample size,
the return-based volatility extractions also become relatively more noisy.

22 Notice that the volatility extractions with the true parameters do not depend on the sam-
ple size T. Therefore, we omit from Table III the extraction errors with known parameters.
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C. Robustness of the Range to Market Microstructure Noise

In Section II.F above, we conjectured that the range-based volatility esti-
mator is robust to microstructure noise, in contrast to other popular volatil-
ity estimators such as realized volatility, and we substantiated this conjecture
with an example based on a single day of simulated prices. We now perform
a more systematic analysis based on repeated samples. Using the same
parameter values as before, we simulate one day of five-minute true and
observed prices ~289 observations!, and we calculate both realized and range-
based daily volatility estimates, based upon both true and observed prices,
using a variety of underlying sampling frequencies ~5-minute, 10-minute,
20-minute, 40-minute, 1-hour-and-20-minute, 3-hour, 6-hour, and 12-hour!.
We repeat this 100,000 times, and we report means, standard deviations and
root mean squared errors of the corresponding distributions in Table IV. For
subsequent reference, recall that our design implies that the population vol-
atility ~standard deviation! of true daily returns is, in fact, fixed at 1.87
percent, which implies an annualized volatility of 30 percent.

First, consider estimating volatility using the true underlying price series.
In this case, realized volatility is unbiased regardless of the return interval,
and its standard deviation decreases monotonically toward zero as the re-
turn interval shrinks. In contrast, range-based volatility is biased down-
ward, regardless of the return interval, because the range on a discrete grid
can only be less than the range of the true continuous sample path. As the
sampling interval shrinks, this bias decreases monotonically. Interestingly,
however, the standard deviation of the range-based estimator increases mono-
tonically as the sampling interval shrinks. By the time we arrive at 5-minute
sampling, the efficiency ~RMSE! of range-based volatility is between that of
realized volatility computed using 3-hour and 6-hour returns, which accords
with the results of Andersen and Bollerslev ~1998!.

All told, realized volatility clearly dominates range-based volatility when
based on the true underlying price. The efficiency of realized volatility is
superior regardless of the sampling interval, and the efficiency of realized
volatility relative to that of range-based volatility increases without bound
as the return interval shrinks.

Now we consider the effects of the market microstructure noise. The bid-
ask bounce biases realized volatility upward, and the bias increases mono-
tonically as the underlying return interval shrinks. To make matters worse,
the variability of realized volatility stays high as the return interval shrinks,
because the benefits of using high-frequency data are eventually overpow-
ered by the harmful effects of market microstructure noise. All of these ef-
fects are distilled in the RMSE of realized volatility, which spikes sharply
upward as the return interval shrinks.

Bid-ask bounce affects range-based volatility differently. In particular, the
discreteness associated with long return intervals biases range-based vola-
tility downward slightly, but the bid-ask bounce tends to bias it upward
slightly. The two biases trade off against each other, often partly canceling,
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typically producing very good performance of range-based volatility in the
presence of microstructure noise.

In summary, the tables are clearly turned when calculations are based on
observed rather than true underlying returns: range-based volatility per-
forms admirably relative to realized volatility, and the efficiency of range-
based volatility relative to that of realized volatility increases as the return
interval shrinks. We highlight certain aspects of the results in Figures 4 and
5, which show the distributions of realized volatility and range-based vola-
tility for the true and observed price paths, for sampling intervals of 5, 20,
and 80 minutes. In the case of true prices, the performance of range-based
volatility is approximately unchanged as we move from 80-minute to 5-minute

Table IV

Sampling Distributions Realized and Range-Based
Volatility Estimates

We simulate one day of five-minute log prices ~289 observations! from the Gaussian logarithmic
random walk, st � st�1 � ut , with ut ; NID@0,su

2# . Let the bid price be Bt � f loor@St � ticksize#,
and let the ask price be At � ceiling@St � ticksize# , where St � exp~st ! is the true price. We then
take the observed price as St

obs � Bt qt � At ~1 � qt !, where qt � Bernoulli@102# . Hence, the
observed price f luctuates randomly between the bid and the ask. We take S0 � $25, ticksize �
$1016, and su � 0.0011, which implies a fixed daily return volatility of 1.87 percent, and an
annualized return volatility of 30 percent, assuming 250 trading days per year. For each day’s
data we calculate both realized and range-based volatility estimates ~see text for details!, based
upon both true and observed returns, using a variety of underlying return intervals ~5-minute,
10-minute, 20-minute, 40-minute, 1-hour-and-20-minute, 3-hour, 6-hour, and 12-hour!. We re-
peat this 100,000 times, and we report moments of the corresponding distributions below, all of
which are expressed as percentages.

Realized Volatility Range-Based Volatility

Return Interval Mean Std RMSE Mean Std RMSE

True returns
5-min 1.87 0.08 0.08 1.71 0.53 0.55
10-min 1.86 0.11 0.11 1.68 0.53 0.56
20-min 1.86 0.16 0.16 1.63 0.53 0.58
40-min 1.85 0.22 0.22 1.56 0.53 0.61
1-hr 20-min 1.84 0.31 0.31 1.45 0.53 0.67
3-hr 1.81 0.46 0.46 1.27 0.52 0.79
6-hr 1.80 0.64 0.65 1.02 0.51 0.99
12-hr 1.79 0.87 0.89 0.63 0.48 1.32

Observed returns
5-min 9.35 0.32 7.49 2.11 0.53 0.59
10-min 6.74 0.32 4.88 2.06 0.53 0.57
20-min 4.94 0.34 3.09 1.98 0.53 0.54
40-min 3.72 0.39 1.89 1.87 0.53 0.53
1-hr 20-min 2.92 0.45 1.15 1.71 0.53 0.55
3-hr 2.34 0.58 0.75 1.44 0.53 0.68
6-hr 2.03 0.73 0.75 1.13 0.54 0.91
12-hr 1.79 0.93 0.94 0.68 0.52 1.29
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sampling, whereas the performance of realized volatility improves sharply.
In the case of observed prices, the performance of range-based volatility de-
teriorates moderately as we move from 80-minute to 5-minute sampling,
whereas the performance of realized volatility deteriorates sharply.

IV. Exchange Rate Volatility Dynamics

The nature of exchange rate volatility dynamics has important implica-
tions for currency derivative pricing, portfolio allocation, and risk manage-
ment. Here we use our simple range-based maximum likelihood approach to
shed light on the nature of those volatility dynamics, with an eye toward the
number and interpretation of the latent factors that drive volatility. We es-
timate stochastic volatility models for the U.S. dollar price of five actively
traded currencies: the British pound, Canadian dollar, Deutsche mark, Jap-
anese yen, and Swiss franc. We construct the volatility proxies from daily
high and low futures prices. Before we turn to the estimates of the model, we
first tabulate some statistics describing the salient aspects of the volatility
proxies.

A. Data

We use daily high, low, and closing ~3 p.m. EST! prices of currency futures
contracts traded on the International Monetary Market, a subsidiary of the
Chicago Mercantile Exchange, from January 1978 through December 1998
~5,284 observations!.23 A currency futures contract represents delivery of the
currency on the second Wednesday of the following March, June, September,
or December. Each day there are at least three futures contracts with dif-
ferent quarterly delivery dates traded on each currency. We use futures prices
from the front-month contract, which is the contract closest to delivery and
with at least 10 days to delivery, which is typically the most actively traded.

There are several advantages to using futures, as opposed to spot, ex-
change rates. First, all futures prices ~including the daily high and low!
result from open outcry, so that all transactions are open to the market and
orders are filled at the best price. Currency spot market trading, in contrast,
is based on bilateral negotiation between banks, and any particular ex-
ecuted price is not necessarily representative of overall market conditions.
Second, the closing, or “settlement,” futures price is based on the best sen-
timent of the market at the time of close ~3 p.m. EST, after which spot
market trading declines! and is widely scrutinized, because it is used for
marking to market all account balances. Therefore, the futures closing price
is likely to be a very accurate measure of the “true” market price at that
time. Finally, futures returns are the actual returns from investing in a
foreign currency, whereas spot “returns” are less meaningful unless one ac-
counts for the interest rate differential between the two countries.

23 The data source is FAME Information Services.
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A potential disadvantage of using futures prices is that the futures vol-
atility may differ from the spot volatility and, furthermore, that the differ-
ence between the two volatilities may depend on the time to maturity of
the contract. For exchange rates, the cash-and-carry relationship Ft

t �
St exp~�rt

t t!, where Ft
t is the t-period futures price and �rt

t is the t-period
interest rate differential between the two countries, implies the approxi-
mate daily variance decomposition Var@ f~i�1!H

t�H � fiH
t # � Var@s~i�1!H � siH # �

t2 Var@�r~i�1!H
t�H � �riH

t # , where we ignore the covariance between the daily
spot returns and the daily changes in the interest rate differential. Sup-
pose the annualized spot volatility is 10 percent and the annualized vola-
tility of changes in the interest rate differential is 4 percent, which are
both realistic numbers. Then, for a 45-day contract ~the average maturity
in our sample!, the difference between the annualized futures and spot
volatility is less than one basis point. We conclude therefore that at least
for relatively short-dated contracts, the difference between the futures and
spot volatility is in theory negligible.

To verify this conclusion empirically, we perform two robustness checks,
the details of which are omitted to conserve space. First, we use five-minute
samples of the spot rate for the British pound, Deutsche mark, Japanese
yen, and Swiss franc from December 3, 1986 to December 1, 1998 to con-
struct a series of spot ranges, and we regress the futures ranges on the
corresponding spot ranges and a constant. All of the resulting regression
slope estimates are very close to one ~within 0.05!, all intercept estimates
are very close to zero ~within 0.05!, and all R2s are high ~above 0.85!. Sec-
ond, we estimate stochastic volatility models with polynomial terms in the
time-to-maturity of the futures contract included as exogenous regressors in
the measurement equation to capture any biases induced by rolling the fu-
tures every three months to the current front-month contract. The coeffi-
cients on these time-to-maturity terms are both statistically and economically
negligible.

In light of the above arguments in favor of using futures prices to calcu-
late daily ranges and returns, we do so from this point onward. In Table V
we present statistics summarizing the distributions of log absolute returns
and the log range for each of the five currencies. The superior efficiency of
the log range as a volatility proxy emerges not only in terms of its smaller
standard deviation stressed thus far, but also in terms of its time-series
dynamics. In particular, the large and slowly decaying autocorrelations of
the log range clearly reveal strong volatility persistence for each exchange
rate, in sharp contrast to the spuriously small autocorrelations of log abso-
lute returns, whose measurement error masks the volatility persistence.

B. One-Factor Stochastic Volatility Model Estimates
and Residual Diagnostics

The left part of Table VI reports estimates of the traditional one-factor
stochastic volatility model ~4!–~5! for the five currencies. The absolute return-
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based estimates closely accord with other estimates of this model in the
literature. The range-based estimates, in contrast, are at odds with both the
absolute return-based estimates and the results in the literature. In partic-
ular, the estimated volatility persistence parameter r ranges from 0.62 to
0.85, with four of the five estimates below 0.75, compared to typical esti-
mates in the range of 0.80 to 0.99. Equally puzzling at first sight, the range-
based estimate of the volatility of log volatility parameter b is about three to
five times larger than the corresponding absolute return-based estimates
~implying coefficients of variation that range from 0.40 to 0.96 vs. from 0.20
to 0.42!.

Because the differences between the return- and range-based estimates of
r and b are exactly opposite in sign to the relative small-sample biases of
the quasi-maximum likelihood estimators in our Monte Carlo analysis ~in
small samples, the absolute return-based estimate of r is more downward
biased and that of b is more upward biased!, we speculate that these differ-
ences are not attributed to a problem with the estimators, but are rather due
to the two estimators reacting differently to model misspecification.

Table V

Distributions and Dynamics of Volatility Proxies
for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
two volatility proxies for five dollar exchange rates, measured daily from January 1, 1978
through December 31, 1998 ~5,284 observations!. The underlying data used to compute the log
absolute return and the log range are daily high, low, and settlement prices of front-month
futures contracts traded on the International Monetary Market.

Unconditional Moments Autocorrelations

Volatility Proxy Mean Std Dev Skew Kurt 1st 2nd 5th 10th 20th

British pound
Absolute return �5.82 1.19 �0.86 3.64 0.09 0.06 0.10 0.07 0.05
Range �4.87 0.53 0.09 3.10 0.39 0.33 0.30 0.27 0.22

Canadian dollar
Absolute return �6.67 1.10 �0.62 2.89 0.11 0.09 0.12 0.08 0.05
Range �5.70 0.53 �0.02 3.39 0.49 0.46 0.41 0.35 0.31

Deutsche mark
Absolute return �5.77 1.17 �0.88 3.62 0.06 0.06 0.09 0.07 0.05
Range �4.83 0.52 �0.07 3.12 0.40 0.37 0.35 0.30 0.23

Japanese yen
Absolute return �5.77 1.17 �0.88 3.62 0.10 0.05 0.08 0.07 0.07
Range �4.88 0.58 0.03 3.19 0.41 0.34 0.32 0.26 0.20

Swiss franc
Absolute return �5.60 1.16 �0.95 3.77 0.05 0.02 0.06 0.05 0.04
Range �4.67 0.48 0.04 3.13 0.32 0.29 0.30 0.25 0.19
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To assess model misspecification more carefully, in Table VII we present
diagnostics for the measurement equation residuals, e, for the one-factor
model.24 Indeed, the residual diagnostics for the range-based estimator in-
dicate serious problems with the one-factor model specification. While the
residuals are clearly less persistent than the log range itself ~compare the
autocorrelations in Tables VII and V!, substantial residual serial correlation
remains. Effectively, the one-factor stochastic volatility model adequately ac-

24 The measurement equation residual diagnostics are the same statistics computed earlier
for the observed log absolute returns and log ranges.

Table VI

Quasi-Maximum Likelihood Estimates of One-Factor
and Two-Factor Stochastic Volatility Models

for Five Dollar Exchange Rates
We report estimates of one-factor and two-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978 through December 31, 1998. Asymptotic
standard errors appear in parentheses. See text for model descriptions.

One-Factor Model Two-Factor Model

Volatility Proxy ln Ts r b ln Ts r1 b1 r2 b2

British pound
Absolute return �2.42 0.99 0.91 �2.42 0.99 0.60 0.06 7.44

~0.06! ~0.01! ~0.18! ~0.08! ~0.00! ~0.12! ~0.07! ~0.51!
Range �2.51 0.65 5.33 �2.50 0.98 0.94 0.19 5.14

~0.01! ~0.02! ~0.12! ~0.04! ~0.00! ~0.09! ~0.03! ~0.10!
Canadian dollar

Absolute return �3.29 0.98 1.12 �3.29 0.98 1.03 0.24 3.26
~0.06! ~0.01! ~0.16! ~0.06! ~0.00! ~0.15! ~0.39! ~0.93!

Range �3.34 0.85 3.69 �3.34 0.98 1.20 0.16 4.26
~0.02! ~0.01! ~0.14! ~0.05! ~0.00! ~0.10! ~0.04! ~0.11!

Deutsche mark
Absolute return �2.38 0.97 1.37 �2.38 0.98 1.07 �0.11 6.57

~0.04! ~0.01! ~0.25! ~0.05! ~0.01! ~0.21! ~0.16! ~0.61!
Range �2.47 0.72 4.77 �2.47 0.97 1.23 0.05 4.64

~0.02! ~0.02! ~0.14! ~0.04! ~0.01! ~0.09! ~0.04! ~0.11!
Japanese yen

Absolute return �2.37 0.97 1.47 �2.38 0.98 0.94 0.17 7.31
~0.04! ~0.01! ~0.28! ~0.05! ~0.01! ~0.21! ~0.10! ~0.53!

Range �2.53 0.62 6.20 �2.53 0.97 1.43 0.15 5.68
~0.02! ~0.02! ~0.12! ~0.04! ~0.01! ~0.13! ~0.03! ~0.12!

Swiss franc
Absolute return �2.22 0.98 0.74 �2.22 0.99 0.59 0.02 6.29

~0.04! ~0.10! ~0.15! ~0.05! ~0.00! ~0.13! ~0.02! ~0.58!
Range �2.32 0.63 4.78 �2.32 0.97 1.05 0.03 4.50

~0.01! ~0.02! ~0.13! ~0.03! ~0.01! ~0.08! ~0.03! ~0.11!

Range-Based Estimation of Stochastic Volatility Models 1079



counts for the volatility correlation at lag one, but not at longer lags, which
results in a humped-shaped residual autocorrelation function.

The misspecification of the one-factor model can be seen in another way.
To obtain the estimates in Table VI, we set the standard deviation of the
measurement equation disturbance to 0.29, following the results in Table I.
Alternatively, however, we can estimate the standard deviation of the mea-
surement equation disturbance along with the other parameters, and when
we do so, we typically obtain a much larger estimate of r. Consider, for
example, the British pound. When we set the standard deviation of the mea-
surement error to 0.29, we obtain [r � 0.66, as recorded in Table VI, but
when we estimate the standard deviation of the measurement errors along
with the other parameters, we obtain [r � 0.97 and an estimate of the stan-
dard deviation of 0.42. The difference in maximized log likelihoods, more-
over, is greater than 200. Hence, the measurement errors of the one-factor
model are much more variable than expected if the one-factor model were
correct, which again suggests that the one-factor model is not correct.25

25 In fact, the sum of the unconditional variance of the measurement errors and the uncondi-
tional variance of the latent log volatility process exceeds the unconditional variance of the log
range ~from Table V!, which suggests a negative correlation between log volatility and the mea-
surement errors. In theory, of course, the measurement errors are uncorrelated with log volatility.

Table VII

Residual Diagnostics for One-Factor Stochastic Volatility
Models for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from one-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978 through December 31, 1998.

Unconditional Moments Autocorrelations

Volatility Proxy Std Dev Skew Kurt 1st 2nd 5th 10th 20th

British pound
Absolute return 1.17 �1.29 5.87 �0.00 �0.02 0.02 �0.00 �0.02
Range 0.30 0.15 3.06 0.18 0.20 0.22 0.20 0.16

Canadian dollar
Absolute return 1.10 �1.19 5.46 0.10 �0.01 0.02 �0.02 �0.03
Range 0.26 0.17 3.25 �0.02 0.07 0.12 �0.10 0.09

Deutsche mark
Absolute return 1.16 �1.46 7.53 �0.03 �0.02 0.02 0.00 0.00
Range 0.28 0.06 3.07 0.10 0.16 0.21 0.18 0.15

Japanese yen
Absolute return 1.14 �1.08 4.67 0.02 �0.03 0.01 0.12 0.03
Range 0.32 0.09 3.15 0.23 0.23 0.25 0.20 0.16

Swiss franc
Absolute return 1.15 �1.25 5.59 �0.00 �0.04 0.01 0.01 �0.00
Range 0.19 0.12 3.08 0.12 0.16 0.21 0.18 0.15
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C. Two-Factor Stochastic Volatility Model Estimates
and Residual Diagnostics

In light of the severe deficiencies of the one-factor stochastic volatility
model revealed by our range-based estimation and analysis, we move to a
two-factor model, with transition equation:

ln s~i�1!H � ln Ts� ln s1, ~i�1!H � ln s2, ~i�1!H , ~17!

where

ln s1, ~i�1!H � r1, H ln s1, iH � b1!Hn1, ~i�1!H

ln s2, ~i�1!H � r2, H ln s2, iH � b2!Hn2, ~i�1!H ,
~18!

and where the volatility component innovations n1 and n2 are contempora-
neously and serially independent N@0,1# variates. Notice that the means of
ln s1, ~i�1!H and ln s2, ~i�1!H are not separately identifiable. Hence we include
a mean ln Ts in ~17!, but not in the individual volatility factor equations ~18!.

When we estimate the two-factor stochastic volatility model, the results of
which we report in the right panel of Table VI, we find that one factor has
highly persistent dynamics and the other has transient dynamics. Each fac-
tor is responsible for approximately half the long-run ~unconditional! vari-
ance of log volatility, but the transient factor is responsible for much more of
the short-run variance.26 This result is intuitively appealing and in line with
properties of volatilities estimated using very different procedures, such as
the component GARCH volatilities of Engle and Lee ~1999! or the realized
volatilities of Andersen et al. ~20001a, 2001b!, which seem to display slow
persistent movement, with high-frequency noise superimposed. The residual
diagnostics for the two-factor models, reported in Table VIII, indicate that
the two-factor models are adequate. In particular, the measurement equa-
tion residuals for the two-factor model are serially uncorrelated, in sharp
contrast to those for the one-factor model.

An interesting feature of our results is that the estimated one-factor vol-
atility persistence parameter is an average of the estimated persistence pa-
rameters from the two-factor model. To understand this finding, consider
the two-factor stochastic volatility model ~17!–~18!. Suppose, however, that
although the two-factor model is true, we fit a one-factor model, which cap-

26 By independence of the volatility factors, the unconditional variance of volatility is the
sum of the unconditional variances of the two volatility factors. The unconditional variance of
each volatility factor, in turn, is its respective innovation variance divided by one minus its
squared serial correlation coefficient. The unconditional variances of the volatility factors tend
to be roughly equal, although for different reasons. The high serial correlation underlying the
first volatility factor is responsible for relatively more of its unconditional variation than is its
innovation variance, whereas the situation for the second volatility factor is just the opposite.
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tures only the sum of the components, ln s~i�1!H , instead of the individual
components, ln s1, ~i�1!H and ln s2, ~i�1!H . Then the first autocovariance of
ln s~i�1!H is

Cov@ln s~i�1!H , lniH #

� Cov@ln s1, ~i�1!H � ln s2, ~i�1!H , ln s1, iH � ln s2, iH #

� Cov@ln s1, ~i�1!H , ln s1, iH #� Cov@ln s2, ~i�1!H , ln s2, iH #
~19!

� r1 Var @ln s1, ~i�1!H #� r2 Var @ln s2, ~i�1!H # ,

where, of course, the variances are unconditional. Hence the first autocor-
relation of ln s~i�1!H in the one-factor model is simply

r �
Cov@ln s~i�1!H , ln siH #

Var @ln s~i�1!H #
�
r1 Var @ln s1, ~i�1!H #� r2 Var @ln s2, ~i�1!H #

Var @ln s1, ~i�1!H #� Var @ln s2, ~i�1!H #
,

~20!

Table VIII

Residual Diagnostics for Two-Factor Stochastic Volatility
Models for Five Dollar Exchange Rates

We report statistics summarizing both the unconditional moments and the autocorrelations of
measurement equation residuals from two-factor stochastic volatility models fit to five dollar
exchange rates, using daily data from January 1, 1978, through December 31, 1998.

Unconditional Moments Autocorrelations

Volatility Proxy Std Dev Skew Kurt 1st 2nd 5th 10th 20th

British pound
Absolute return 1.18 �1.26 5.72 0.01 �0.01 0.03 0.00 �0.01
Range 0.37 0.24 3.17 0.11 0.03 0.02 0.02 0.01

Canadian dollar
Absolute return 1.09 �1.17 5.39 0.01 �0.01 0.02 �0.01 �0.03
Range 0.33 0.23 3.38 0.07 0.05 0.01 �0.01 0.01

Deutsche mark
Absolute return 1.17 �1.28 5.88 �0.02 �0.01 0.03 0.01 0.00
Range 0.37 0.19 3.09 0.04 0.00 0.02 0.02 0.02

Japanese yen
Absolute return 1.16 �1.34 6.72 0.03 �0.01 0.02 0.02 0.02
Range 0.39 0.26 3.27 0.09 0.01 0.03 0.01 0.02

Swiss franc
Absolute return 1.16 �1.30 5.91 0.01 �0.03 0.02 0.01 0.00
Range 0.37 0.27 3.17 0.02 �0.01 0.03 0.02 0.03
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which is a relative variance-weighted average of the first autocorrelations of
the two factors. This is approximately true in the estimates. The fact that we
can successfully predict the outcome of estimating a one-factor model on the
basis of our estimates of the two-factor model is further evidence in favor of
the two-factor model.

The range-based estimates of the one- and two-factor models are also con-
sistent in terms of implied unconditional variances of log volatility. Given
the independence of ln s1 and ln s2, the unconditional variance of ln s in the
one-factor model should be equal to the sum of the variances of the two
factors in the two-factor model. This is approximately true.

D. Empirical Normality of the Log Range

Thus far we have used measurement equation residual autocorrelations to
ascertain that one-factor volatility structure is inadequate and that a two-
factor structure appears adequate. The residual autocorrelations from range-
based estimation clearly reveal the defects of the one-factor model, whereas
the residual autocorrelations from estimation based on absolute returns do
not. The superior ability to discriminate among models when using the range-
based volatility proxy stems from its high efficiency.

We have argued throughout this paper, however, that range-based vola-
tility estimation is powerful and convenient not only because of the effi-
ciency of the range, but also because of the near-normality of the range.
Hence it is of interest to check whether our earlier theoretical and Monte
Carlo assertions on normality of the log range are verified empirically.
Both the moments reported in Tables VII and VIII and the histograms
and quantile-quantile ~QQ! plots in Figure 6 provide striking verification
of the theory: The measurement equation residuals for the two-factor mod-
els are virtually indistinguishable from Gaussian when we use the range-
based volatility proxy.27 When volatility is proxied by absolute returns, in
contrast, the measurement equation residuals are highly skewed and
leptokurtic.

The empirical normality of the log range is important, because it means
that the Gaussian quasi-likelihood that we maximize is in fact not a quasi-
likelihood, but the true likelihood. Hence, the large parameter estimation
efficiency gains achievable in theory are realized in practice. Ultimately,
both the efficiency and normality of the log range are important, and they
interact in valuable ways. Operating in tandem, the two enable us to quickly
detect and discard inadequate specifications, to settle upon a preferred spec-
if ication, and to obtain easily computed yet highly precise maximum-
likelihood estimates of its underlying parameters.

27 A Gaussian QQ plot is simply a graph of the quantiles of a standardized distribution
against the corresponding quantiles of a N@0,1# distribution. Hence if a variable is normally
distributed, its Gaussian QQ plot is a straight line with a unit slope, which enables simple
visual assessment of closeness to normality.
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E. What Do We Learn from the Range, and Why Two Factors?

We have emphasized repeatedly that efficiency and normality of the range
lead to simple yet highly efficient methods of estimating stochastic volatility
models. Here, we delve more deeply into the reasons for the success of range-
based procedures. First, we consider what we learn from the range quite
generally, regardless of the specific application. Second, we consider what
we learn from the range specifically about exchange rate volatility dynamics.

The key to the general success of range-based estimation in both model
specification and estimation is its superior information about the volatility
of volatility, relative to traditional proxies such as absolute returns. A vola-
tility model must explain two things: the autocorrelation of volatility, and
the volatility of volatility. Because it is difficult to assess the volatility of
volatility using traditional proxies, due to the large amount of measurement
error, estimation using traditional proxies emphasizes explaining the auto-
correlation of volatility and, hence, tends to produce models that appear well
specified in terms of small residual autocorrelations. Range-based volatility
proxies, on the other hand, are much less contaminated by measurement
error, and range-based estimation therefore appropriately attempts to ex-
plain not only the autocorrelation of volatility, but also the volatility of volatility.

In the context of our investigation of exchange rate volatility dynamics,
the range-based analysis points sharply toward a two-factor volatility spec-
ification. It is natural to ask why the range-based analysis clearly reveals
misspecification of the one-factor model via obvious patterns in residual auto-
correlations, whereas analysis based on absolute returns seems to indicate
adequacy of the one-factor model. The explanation is that the large amount
of noise in the absolute returns masks the presence of the second, less per-
sistent, factor. Upon closer inspection, we notice that both sets of one-factor
models are equally misspecified, but that the misspecification is revealed
along different dimensions. Range-based analysis reveals misspecification
immediately apparent via residual autocorrelations. Analysis based on ab-
solute returns, in contrast, reveals misspecification in a more subtle way, via
violation of the adding-up constraint, Var @ln6 ft 6# � Var @ln st # � Var@et # .

Both range-based estimation and absolute returns-based estimation choose
the parameters ln Ts, rH , and b to match two features of the data: the auto-
correlation of the volatility proxy and the difference between the uncondi-
tional variance of the volatility proxy and the corresponding unconditional
variance of the measurement errors from Table I. The relative importance of
those features, however, differs across the volatility proxies. Specifically, the
latent volatility dynamics explain less than 10 percent of the unconditional
variance of log absolute returns, but more than 70 percent of the variance of
the log range, which is just another manifestation of the informational effi-
ciency of the log range. The quasi-maximum likelihood estimator using log
absolute returns therefore chooses parameters that explain entirely the auto-
correlation of the volatility proxy, but leave unexplained half of the variance
of log absolute returns that is attributed to the volatility dynamics ~which is
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very little relative to the total variance of log absolute returns!. In contrast,
the estimator using the log range chooses parameters that explain all of
the variance of the volatility proxy, but leave a significant amount of auto-
correlation ~about half ! unexplained.

It is interesting to note that the misspecification of the one-factor model is
also readily revealed in a different way, by simulating data from a two-factor
model and then estimating a one-factor model. Here we describe the results
but skip the details, to conserve space. The estimates of the one-factor model
based on absolute returns appear reasonable, whereas the range-based es-
timates appear bizarre. In particular, just as in the real data, the range-
based estimate of r is too low and that of b is too high. Furthermore, again
just as in the real data, the residuals from the one-factor model based on
absolute returns appear white, whereas the residuals from range-based es-
timation are highly serially correlated.

The upshot: Range-based exchange rate volatility analysis makes clear
that two volatility factors ~one with persistent dynamics and one with tran-
sient dynamics! are needed to explain exchange rate volatility, as one-factor
models are incapable of simultaneously fitting the persistence of volatility
and the volatility of volatility. Situations of partially persistent and partially
transient dynamics arise in many areas, and perhaps it is not surprising,
and in fact economically appealing, that our two-factor exchange rate vola-
tility dynamics are of that form, consistent with the idea that some news is
easily interpreted by the market and hence readily and unambiguously in-
corporated into prices, while other news is not.28 The transient volatility
component may also be indicative of important intraday volatility dynamics,
which could perhaps be studied using ultra-high-frequency data.

F. Links to Long Memory: Structural versus Reduced-Form Approaches

Interestingly, our two-factor volatility structure is related to the repeated
findings of long-memory fractionally integrated volatility dynamics, as re-
ported prominently for example in Andersen and Bollerslev ~1997!. In
particular, as emphasized by Barndorff-Nielsen and Shephard ~2001b,
2001a!, fractionally integrated dynamics can be built up by superimposing
Ornstein–Uhlenbeck or AR~1! processes. It seems clear, however, that multi-
factor volatility “structures” are more readily interpreted and learned from
than their fractionally integrated “reduced forms.” For example, in the
previous section, it emerged that one of the factors was highly persistent
and responsible for the autocorrelation in volatility, while the other was
much less persistent and, hence, contributed mostly to the volatility of
volatility. This interpretability stands in sharp contrast to that of long-
memory fractionally integrated volatility, which often appears mysterious
and nonintuitive.

28 Multiple exchange rate volatility factors are also predicted by modern financial economic
theory, as, for example, in Bansal ~1997!.
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The two-factor component structure may also produce volatility forecasts su-
perior to those from fractionally integrated reduced-form specifications. Sup-
pose, for example, that volatility today is very high. The forecast of tomorrow’s
volatility produced by our two-factor model would then differ markedly de-
pending on why today’s volatility is high. If, for example, today’s persistent vol-
atility component is high and the transient component is not, then the forecast
would be for continued high volatility. If, on the other hand, today’s transient
volatility component is high and the persistent volatility component is not, then
the forecast would be for quick reversion of volatility to its mean. The ability
to disentangle these effects is lost when one uses a reduced-form representa-
tion, which effectively attributes average persistence to all shocks.

V. Concluding Remarks and Directions for Future Research

The range has a long history in finance, from the stock charts in business
newspapers to highbrow academics. We have clarified the properties of the
log range as a volatility proxy, and we have used it to implement simple yet
highly efficient maximum likelihood estimation of stochastic volatility mod-
els, facilitating a detailed examination of the volatility dynamics of five ma-
jor U.S. dollar exchange rates. Our empirical results are sharp, strongly
indicating two volatility factors operative in each exchange rate, with one
reverting slowly to its mean and controlling volatility persistence, and one
reverting quickly to its mean and hence contributing mostly to the volatility
of volatility but not the persistence of volatility.

Our empirical work is built on a foundation of both theoretical and Monte
Carlo analysis establishing that the log range is nearly Gaussian, much less
noisy than popular alternative volatility proxies such as log absolute or squared
returns, and robust to bid-ask bounce and related microstructure noise. Those
properties of the range translate into a simple range-based Gaussian quasi-
maximum likelihood estimator that is highly efficient, in small as well as
large samples, and widely applicable for studying stochastic volatility dy-
namics in financial asset returns.

We look forward to pursuing future research in several directions. On the
empirical side, more work is needed on the number, nature, and determi-
nants of the factors underlying stochastic volatility. It is striking that only a
few years ago, the possibility of multiple volatility factors was rarely, if ever,
entertained, as one-factor models appeared adequate. Presently, however, it
appears that a consensus is emerging for two-factor stochastic volatility dy-
namics, whether in equity or foreign exchange, despite the different natures
of the assets and the different market microstructures. Much of the most
relevant research has been done very recently; particularly noteworthy con-
tributions include Jacquier et al. ~1994, 1999!, Gallant et al. ~1999!, Jacquier
and Polson ~2000!, Chernov et al. ~2001!, Barndorff-Nielsen and Shephard
~2001a, 2001b! and Bollerslev and Zhou ~2001!.29

29 Lo and Wang ~2000! provide interesting related evidence, finding two factors in equity
trading volume.
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Further empirical advances will require further financial econometric de-
velopments, including multivariate extensions of range-based volatility prox-
ies ~see Brandt and Diebold ~2002!! and more thorough comparison of the
range to another highly efficient volatility proxy that has received recent
attention, namely, realized volatility constructed from high-frequency intra-
day data. Recent work by Barndorff-Nielsen and Shephard ~2001b! has made
clear, for example, how realized volatility may be used as a volatility proxy
in a state space framework for the efficient estimation of stochastic volatil-
ity models, in a fashion that closely parallels the range-based analysis de-
veloped here. Hence, it will be of interest to learn more about the comparative
properties of range-based volatility and realized volatility. We have noted,
for example, the intriguing robustness of the range to a common source of
microstructure noise, but a more extensive exploration and comparison of
range-based volatility to realized volatility is needed, particularly as ongo-
ing work develops methods for helping make realized volatility robust to
microstructure noise, including the “volatility signature plots” of Andersen
et al. ~2000! and the filtering methods of Corsi et al. ~2001!.
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