
Sensors 2011, 11, 8721-8740; doi:10.3390/s110908721 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Range Camera Self-Calibration Based on Integrated Bundle 

Adjustment via Joint Setup with a 2D Digital Camera 

Mozhdeh Shahbazi 
1,
*, Saeid Homayouni 

1
, Mohammad Saadatseresht 

1
 and Mehran Sattari 

2
  

1
 Department of Geomatics Engineering, University of Tehran, North Amriabad Street, Tehran 

11155-4563, Iran; E-Mails: homayounis@ut.ac.ir (S.H.); msaadat@ut.ac.ir (M.S.)  
2
 Department of Geomatics Engineering, University of Isfahan, HezarJerib Street, Isfahan 81746-

73441, Iran; E-Mail: sattari@eng.ui.ac.ir 

* Author to whom correspondence should be addressed; E-Mail: shahbazi.m@ut.ac.ir; 

Tel.: +98-311-793-4075; Fax: +98-311-793-2675. 

Received: 15 July 2011; in revised form: 12 August 2011 / Accepted: 15 August 2011 /  

Published: 8 September 2011 

 

Abstract: Time-of-flight cameras, based on Photonic Mixer Device (PMD) technology, 

are capable of measuring distances to objects at high frame rates, however, the measured 

ranges and the intensity data contain systematic errors that need to be corrected. In this 

paper, a new integrated range camera self-calibration method via joint setup with a digital 

(RGB) camera is presented. This method can simultaneously estimate the systematic range 

error parameters as well as the interior and external orientation parameters of the camera. 

The calibration approach is based on photogrammetric bundle adjustment of observation 

equations originating from collinearity condition and a range errors model. Addition of a 

digital camera to the calibration process overcomes the limitations of small field of view 

and low pixel resolution of the range camera. The tests are performed on a dataset captured 

by a PMD[vision]-O3 camera from a multi-resolution test field of high contrast targets. An 

average improvement of 83% in RMS of range error and 72% in RMS of coordinate 

residual, over that achieved with basic calibration, was realized in an independent accuracy 

assessment. Our proposed calibration method also achieved 25% and 36% improvement on 

RMS of range error and coordinate residual, respectively, over that obtained by integrated 

calibration of the single PMD camera.  
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1. Introduction 

Providing three-dimensional information about the real environment is an essential factor for 

various applications in industry, computer vision, automation, multimedia, robotics, mobile mapping 

and many more fields. In recent years, Time-of-Flight (ToF) devices, based on Photonic Mixer Device 

(PMD) technology, are becoming increasingly popular solutions in 3D imaging applications [1-4]. 

Known as range cameras, this new generation of active devices can capture range, amplitude and 

intensity images simultaneously with one array sensor at video rates. On the range image, also called 

depth image, each pixel individually measures the distance to the observed point by computing the 

turnaround time of the modulated near infrared light. The amplitude image shows the signal strength of 

the active illumination, while the intensity image represents the gray-scale values of pixels. 

The main advantages of range cameras in comparison with traditional 3D data acquisition systems 

such as laser scanners or stereo cameras are as follows:  

• No scanning mechanism is required, 

• Only one sensor is needed to capture 3D data without getting involved in different stereo 

analysis problems, and 

• Rapid imaging at a high frame rate provides the possibility of real time mapping and 

localization. 

Due to several systematic error sources, however, proper calibration of such cameras is obligatory in 

order to perform reliable range sensing [5-23]. The range error sources will be discussed in Section 3. 

There exist a variety of studies focusing on metric performance of range cameras and developing 

calibration methods. Several works have studied the application of standard camera calibration 

procedures to estimate lateral calibration parameters of range cameras [6-8]. Range systematic errors 

of these devices have also been handled in different ways. Kahlmann et al. applied look-up-tables to 

adjust range measurement errors [9]. Their work involved calibrating the camera using known 

distances. The camera, however, had to be manually fixed at pre-located positions in such works. On 

the other hand, other researches considered parameter modeling of the observed error on measured 

ranges. Lindner and Kolb provided a B-spline approximation for range errors in [10,11], adding a CCD 

camera for the latter. They also improved their results by considering intensity related errors in range 

measurements. Fuchs and Hirzinger utilized a robotic arm to position the range camera as well as a 

higher-accuracy laser scanner to perform the range calibration in [12]. Schiller et al. proposed 

calibration of a PMD camera using a checkerboard pattern together with a multi-camera setup [13]. In 

spite of having various benefits over single camera calibration, their work still performed a two-step 

controlled calibration procedure. Linder et al. also proposed a calibration technique, based on 

Analysis-by-Synthesis [14]. Their method determines the intrinsic and external parameters of a ToF 

camera, combined with CCD cameras to synthesize the depth images. The distance and reflectivity 

related errors on range observations are then estimated one after another. Calibrating a single ToF 
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camera suffers from a high dependency between intrinsic parameters and camera position due to its 

small field of view (FoV), which can be overcome with an additional CCD camera as discussed  

by [11,13,14]. 

Karel was the first to consider self-calibration of range cameras to overcome the problems with 

instability in camera parameters [15]. This method first calibrates the lateral parameters using a  

pre-built photogrammetric program system [16], and then evaluates the different parameters affecting 

the range distortion. Robbins et al. [17], Chiabrando et al. [18] and Pattinson [19] also performed a 

two-step calibration procedure, i.e., photogrammetric calibration of amplitude images followed by 

separate distance error evaluation. Integrated self-calibration of range cameras which allowed 

simultaneous calibration of the camera lens and rangefinder systems was proposed in [20,21]. Neither 

of these works, however, considered the effect of intensity dependent errors on range measurements. In 

their integrated approach [22], Westfeld et al. performed photogrammetric calibration of a range 

camera considering additional distance error terms. Lichti et al. conducted an experiment to compare 

the performance of three range camera self-calibration methods: the one-step integrated; the two-step 

dependent; and the two-step independent [23]. 

This article presents an integrated range camera self-calibration method utilizing a low-cost  

custom-made system, composed of a PMD range camera (PMD[vision]-O3) and a digital camera 

(Canon Power Shot SX1 IS). Rigid combination of cameras and estimation of the PMD camera 

positions relative to the RGB camera along with integration of the range calibration into the 

photogrammetric bundle adjustment of the intrinsic and external parameters are the main 

characteristics of this work. It is suggested that this method can overcome the problems inherent to the 

small FoV and low resolution of the range camera. It is also assumed that the method can provide 

optimum estimates of the model parameters by incorporating the systematic errors and external 

parameters into the bundle adjustment based on weighted least squares criteria.  

The following parameters are simultaneously estimated as the outcomes of the calibration process: 

interior orientation, radial and decentring lens distortion, sensor affinity and shear parameters, and also 

circular distance related error, signal propagation delay error and intensity related error parameters on 

range observations.  

In the following section the operation principles of range imaging sensors based on PMD 

technology are briefly explained. Then, the geometric models are thoroughly described in Section 3. 

The details of calibration experiments including network and test field design are represented in 

Section 4. Section 5 reports the results of calibration method in terms of parameters accuracy and 

correlations, effectiveness of the systematic error models and noticeable impact of joint calibration 

with RBG camera. Finally, conclusions and future work are discussed in Section 6. 

2. Range Imaging Principles 

Range cameras based on PMD technology operate on the Time of Flight (ToF) concept to provide 

distance information. Typically, a PMD camera consists of a PMD chip and its peripheral electronics, 

emitter and receiver optics and other standard camera parts. The emitter, which is an illumination 

source, emits near infrared light. The reflected light is then received to measure the distance to the 

object. In contrast to typical ToF devices, e.g., laser scanners, all pixels in the PMD array 
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simultaneously analyze the received optical signal to measure the depths of the corresponding points in 

space. The PMD chip is based on CMOS technology, which also provides an automatic suppression of 

background light, allowing the device to be utilized outdoor as well as indoor [24]. 

In order to provide range information, a reference electrical signal is applied to the modulation gates 

of each pixel on PMD array. Additionally, the incident light on photo-gates of pixels generates a 

second signal. The received optical signal differs from the reference one by a phase shift proportional 

to the depth of the reflecting target. To calculate the distance, the autocorrelation function of electrical 

and optical signal is analyzed by phase-shift algorithm (Figure 1). Using four samples A1, A2, A3 and 

A4�each shifted by 90 degrees�the phase shift, which is proportional to the distance, can be 

calculated using the following equation: 

 
(1)

In addition to the phase shift, two other values are extracted; signal strength of the received signal 

(amplitude) and the offset b of the samples which represents the gray-scale value of each pixel 

(intensity): 

 
(2)

 (3)

The distance d to the target is therefore given by Equation (4):  

 (4) 

where c is the speed of light and fmod is the modulation frequency of the emitted signal [24]. 

Figure 1. Autocorrelation function, phase shift, amplitude and intensity. 

 

3. Calibration Model 

In the following subsections, the models used to calibrate range and lateral parameters of PMD 

camera in combination with digital camera are described. Initially, the procedures that have to be 
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executed once before the main range camera calibration are explained. This is followed by  

a description of the imaging geometry of two cameras, systematic error models and integrated bundle  

adjustment process.  

3.1. Pre-Calibration Process 

As described in Section 1, a joint setup is used to calibrate the range camera. It contains a digital 

camera and a PMD range camera. In order to get more accurate results, individual photogrammetric 

calibration of the RGB camera has to be performed before the main process. It is worth noting that the 

calibration process of the digital camera is done only once and its results are applied as inputs to the 

main calibration process of the range camera. The specifications of the RGB camera used in this work 

are listed in Section 4. 

Calibration of the digital camera in this study is performed by the conventional photogrammetric 

calibration method, a computational method whereby camera parameters are estimated in a bundle 

adjustment solution [25]. The process uses collinearity equations that have been augmented with 

additional terms to account for adjustment of principal distance, principal point coordinate, systematic 

radial and decentering lens distortion. The equations are more described in Sections 3.2 and 3.3. The 

same test field of range camera calibration in a free network adjustment can be applied. However, 

another test field which is particularly designed for digital camera calibration is utilized. As calibration 

of digital cameras is a well-explored and traditional topic in digital photogrammetry, it is not discussed 

here in details. For more detailed explanation, refer to [25,26]. The calibration parameters of the digital 

camera are reported in Section 5. 

3.2. Imaging Geometry  

In this study, orientation of the PMD camera is estimated relative to the digital camera. This means 

that there would be six parameters of exterior orientation at each imaging station for the digital camera 

and only six parameters of relative orientation at all stations for the range camera. Figure 2 illustrates 

the relationship of the coordinate systems considered in the task: C1 is the perspective center and origin 

of coordinate system of the digital camera, C2 is the perspective center and origin of PMD coordinate 

system and G is the origin of object space coordinate system.  

Figure 2. Coordinate systems and their relationships. 
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Assume that (ω1, φ1, κ1) are orientation angles of the RGB camera system in relation with object 

coordinate system, respectively around x, y and z axis, , ,  are the object space coordinates of 

point C1, (ω2, φ2, κ2) are orientation angles of PMD coordinate system in relation with the digital 

camera system and ∆ ∆ , ∆ , ∆  is coordinate vector of point C2 in the digital camera 

coordinate system.  

Therefore, the object space coordinates of point C2 would be:  

 (5)

where R1, R2 and R3 are the fundamental rotation matrices. 

The observations equations for range camera bundle adjustment logically stem from three kinds  

of observations: 

1. Two image point collinearity equations for each pixel, which is the projection of an observed 

target on the digital camera image. 

2. Two image point collinearity equations for the pixel on the intensity image captured by  

range camera. 

3. One range equation for the pixel on the range image captured by range camera. 

For object point i, observed in image j of digital camera (indexed by “1”), two collinearity equations 

can be written: 

 (6)

where: 

 (7)

in which (xij,1, yij,1) are image coordinates of observations on the digital camera, (Xi, Yi, Zi) are the 

object space coordinates of point i, , , , , , , , , , , ,  are exterior orientation parameters of 

image j, (xp1, yp1, f1) are principal point coordinates and principal distance called interior orientation 

parameters and (Δxij,1, Δyij,1) are systematic errors of the digital camera which are known from its 

single calibration process and will be described in the next subsection.  

There will be two collinearity equations for object point i, observed in image j of PMD camera 

(indexed by “2”): 
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(8)

as well as one range equation as follows: 

 (9)

where , , , , ,  are the perspective centre coordinates of PMD image j and can be derived based 

on Equation (5): 

 (10)

Therefore (Uij,2, Vij,2, Wij,2) are determined via the following equation: 

 (11)

In the above equations, (xij,2, yij,2) are image coordinates of observations on PMD intensity image, 

(ω2, φ2, κ2, ΔX, ΔY, ΔZ) are relative orientation parameters of PMD camera unique to all images,  

(xp2, yp2, f2) are interior orientation parameters, ρij is the measured distance from perspective center to 

object i and (Δxij,2, Δyij,2, Δρij) are systematic errors which are unknown. In all the equations  terms 

indicate respective random errors. 

3.3. Systematic Error Models 

The lateral camera systematic error model used for range camera calibration is same as the standard 

photogrammetric model for digital cameras [26]. Let n be the index of camera, 1 for the digital camera 

and 2 for PMD camera. Therefore the image coordinates systematic errors are: 

 (12)

 (13)
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The range error model for PMD camera used in this study is a combination of models presented by 
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three main systematic range error sources into account; circular distance related error, signal 
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 (14)

In Equation (14), is the rangefinder offset [21] and c1,c2,c3 distance related terms [27]. Instead of 

a sinusoidal-base function, the circular error is modeled by a third order polynomial following the 

approach of [27]. Terms c4,c5 are the signal propagation delay [27] also known as the clock-skew error 

terms [28]. Variables Rij and Cij are row and column of pixel i in image j respectively. Finally, c6,c7,c8 

are intensity related error terms and Iij is the gray scale value of pixel i in intensity image j of PMD 

camera. Since the error of the measured distance is also related to intensity, pixels with lower 

reflectivity tend to drift closer to the camera [14]. Following Lindner et al. proposed model which 

comprised a third order polynomial of normalized intensity [14], a polynomial function of intensity is 

assessed to model this error. In order to avoid over-parameterization, a polynomial of second order is 

used. The results show that the second order term is so small that no more terms are required. The 

effect of adding the intensity related terms to range error model is also investigated in Section 5. 

3.4. Integrated Bundle Adjustment 

All the unknown parameters of integrated self-calibration are simultaneously estimated in combined 

method of least squares sense. Observations comprise the target image coordinates and range 

measurements. The image measurements are made at the corners of the squares on the designed test 

field. However, the corners are not good references to investigate intensity related range measurement 

errors. Therefore, only c0-c5 parameters are inserted into the model and c6,c7,c8 will be estimated 

following the bundle adjustment by using the centers of squares as reference targets. This makes the 

terms more reliable since they have explicit intensity values in spite of the corners. Consequently, the 

unknown parameters in the bundle adjustment include: exterior orientation parameters of each digital 

camera station, six parameters of relative orientation, interior orientation, lateral systematic error terms 

and range error parameters (c0-c5) of the PMD camera.  

Since the number of observations is more than that of the unknowns, a least squares solution is 

used. The mathematical model of observation equations expresses the relationship between 

observation and unknown vectors,  and  [29]: 

 (15)

The vector function F represents equations of observations. Since the equations are nonlinear 

regarding the unknowns and observations, linearization is accomplished by replacing the nonlinear 

functions by their Taylor series approximation [24]. That is: 

  (16)

Renaming the above matrices leads to: 

  (17)

where W is called mis-closure vector and A and B are design matrices. 

The least squares estimation of unknown and residual vectors is obtained by the following equations:  

  (18)
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  (19)

where P is the weight matrix of observations which is initially set equal to the inverse of the 

covariance matrix of the observations, ΣL. 

These solutions,  and , must be added to the initial approximation of unknowns and measured 

observations respectively, to improve the solutions for next iteration. The iterations are repeated 

recursively until a convergent solution is reached. The covariance matrix of unknown parameters is 

defined as follows: 

  (20)

To optimize the weighting of observations with different noise levels, robust estimation by adaptive 

weight determination is applied in this study [30]. Instead of the initial weight matrix P, the equivalent 

weight matrix P
V 

is determined by iterative weight functions. The weight function is based on an a 

posteriori method: 

  (21)

where: 

  (22)

  (23)

and F1-α,1,r is the value of F-test at the given level of confidence α and r is the number of degrees of 

freedom. The parameter  is the estimate of unit weight variance. Since the combined method of least 

squares estimation is a well known process, no more discussion is presented on this issue. For more 

information on the details, readers are referred to [29]. 

4. Experiments 

The following subsections provide essential information on experimental aspects of the study. First, 

the camera specifications and their joint setup are represented. The target field used for the calibration 

procedure and the network designed for the purpose are described accordingly. Finally, the method of 

automatic target extraction from intensity images is explained in the last subsection. 

4.1. Camera Setup 

As mentioned in previous sections, the calibration approach utilizes a PMD[vision]-O3 range 

camera and a Canon Power Shot SX1 IS digital camera. More specifications of each sensor are listed 

in Tables 1 and 2. The PMD camera is allowed to warm up for at least an hour prior to data acquisition 

to ensure it had reached internal temperature stability [21]. 
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Cameras are rigidly mounted on a tripod as shown in Figure 3. For each imaging station, 25 frames 

of the PMD video are averaged to form the final image of that station. Data are acquired by the 

standard software supplied for the PMD camera which automatically removes low amplitude bad 

pixels.  

Table 1. PMD[vision]-O3 camera specifications. 

Sensor Array Size (pixels) 64 (v) × 48 (h) 

 

Field of View (°) 40 (v) × 30 (h) 

Internal Illumination (nm) 850 

Working Range (m) 0.2–4 

Maximum Sampling Rate (Hz) 25 

Pixel Size (mm) 0.1 

Table 2. Canon Power Shot SX1 IS camera specifications. 

Sensor Array Size (pixels) 1,080 (v) × 1,920 (h) 

Pixel Size (mm) 0.005 

Sensor Type CMOS 

Nominal Focal Length (mm) Set to 5 

Shutter Speed (sec) Set to 1/125 

ISO Speed Set to 400 

Figure 3. The joint setup of PMD and RGB cameras. 

 

4.2. Test Field and Network Design 

The test field consists of 24 multi resolution white squares on a black background rigidly attached 

to a flat wall, as indicated in Figure 4. Main targets are the corners of these squares. Considering the 

low resolution range camera, it was decided that the test field be composed of square targets because  it 

would be possible to detect the corners of high contrast squares of proper size on PMD images. The 

test field dimension is 3,000 × 1,860 mm, which contains squares with three different sizes; squares of 

90, 150 and 280 mm length to be detected well on PMD images at distances below 1.2, 2 and 4 m 

respectively. The squares are arranged in a way that there would be enough targets at every image of 

the network with different scales. 
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Figure 4. The self-calibration target field. 

 

The network is configured to include two image sets [21]. It comprises a set of normal images (i.e., 

the range camera’s optical axis is approximately orthogonal to the target plane) at different distances, 

starting at 0.5 m from the test field. It should be pointed out that only the wall on which the test field is 

pasted appears in range images, even at the longest distance of 4 m. This set of images provides a 

redundant set of range observations, unaffected by scattering and multipath reflections. Both image 

point coordinates and range observations of these images are involved in the self-calibration 

adjustment. The network also includes a set of convergent images captured from several stations with 

enough camera rotation diversity. Only the image coordinate observations of this set are included in 

the self-calibration adjustment. Locations of the calibration images and object points are depicted in 

Figure 5. There are totally 35 exposure stations; 12 convergent calibration images, 13 normal 

calibration images and also 10 additional images, also called check ones, used for independent 

accuracy assessment. 

Figure 5. The self-calibration network and check images for independent accuracy assessment. 

 

 

In order to simplify the range camera self calibration process, the object coordinates of the targets 

(corners of the squares) are determined prior to main calibration process. The procedure utilizes a few 
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(11) images of the digital camera, considering that calibration parameters of the digital camera have 

been determined in a pre-calibration process. These image stations are highlighted by magenta color in 

Figure 5. Object space coordinates of the targets are estimated in a parametric-model, network 

adjustment with minimum datum constraints imposed on the object points [25]. The considered right 

handed object coordinate system is drawn in Figure 4. The wall surface is considered as the X,Y plane 

and the Z axis points toward outside the test field plane. The origin of the coordinate system is fixed on 

point 1 while the X axis passes through point 2. The straight distance from point 1 to point 2 is 

measured manually to define the network true scale. The target coordinates and their standard error 

vectors are plotted in Figure 6.  

Figure 6. Target coordinates in object space. 

 

It is important to clarify that after determining the object space coordinates of targets, they are used as 

pseudo observations in the main integrated calibration with their standard deviations as their weights. 

4.3. Automatic Target Detection 

The fundamental step in all the processes mentioned so far is correct detection of observed targets 

in intensity images. The targets are corners of white squares on the black background of the test field. 

In order to accomplish the task automatically and more accurate, the programs developed by  

Rufli et al. are used [31]. Briefly, this is an automatic method for detection of checkerboard corners on 

blurred and distorted images which best suits the PMD images as well as standard digital images. It is 

performed by applying binary thresholding and morphological erosion followed by a binary contour 

finder. Linking the right perpendicular edges leads to find the corners of a square. Since the target field 

of this study is not exactly a checkerboard, all corners have to be identified very approximately once. 

Then a patch of the image around each approximate point is put into the automatic detection program 

and accurate coordinates of the corner is computed. As reported by [31], this method leads to average 

corner inaccuracy of 0.62–1.05 pixel. 
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5. Results and Analysis 

The PMD[vision]-O3 additional parameters and range error terms are determined using the 

procedures described in Sections 3 and 4. The algorithms are executed via the programs written 

particular to this approach. They can be applied to the data acquired with the standard software 

supplied with the PMD camera. The additional parameters of the digital camera are determined at the 

pre-calibration process described in Section 3.1. The results are reported in Table 3. 

Table 3. Digital camera parameters from pre-calibration process. 

Standard Deviation Estimated Value  Parameter

0.000006 0.003658  K1  

0.000000 −0.000057 K2 

0.000005 −0.000215 P1 

0.000005 0.000141 P2 

0.000266 −0.054075 xp (mm)  

0.000208 0.084998 yp (mm) 

0.001152 7.536374 f (mm) 

0.000023 −0.007454  A1  

0.000022 −0.000147 B1  

Through the integrated calibration of range camera based on the joint setup, the internal parameters 

of the camera, including lateral parameters and range error terms, are reported in Table 4. All the 

parameters have already been described in Section 3. The statistic F-test at the confidence level of 95% 

is applied to systematic error parameters to determine their significance in the bundle adjustment and 

ensure that the proposed model is not over parameterized [32].  

Table 4. Range camera calibration parameters from integrated joint calibration. 

Parameter Estimated Value Standard Deviation Parameter Estimated Value Standard Deviation

K1 −0.027688 0.001897 C2 −0.022743 0.003890 

K2 0.007355 0.000137 C3 0.003958 0.000078 

K3 −0.000693 0.000169 C4 0.000074 0.000000 

K4 0.000022 0.000007 C5 −0.000072 0.000000 

P1 0.000635 0.000017 C6 0.003516 0.000985 

P2 0.000627 0.000016 C7 −0.000038 0.000000 

xp (mm) 0.017057 0.001764 C8 0.000000 0.000000 

yp (mm) 0.072515 0.001738 ω2 (rad) 0.011210 0.004765 

f (mm) 8.041601 0.001563 φ2 (rad) 0.083192 0.00547 

A1 0.000785 0.000355 κ2 (rad) 0.001816 0.000535 

B1 0.001542 0.000317 ΔX (m) 0.183448 0.000731 

C0(m) −0.120160 0.008466 ΔY (m) −0.015591 0.000492 

C1 0.032551 0.017607 ΔZ (m) 0.017933 0.000265 

 

In order to evaluate the test results, additional images are captured and the calibration parameters 

are applied to their observations. The check observations are made at the centers of the target squares. 

Differences of the corrected image coordinates and range observations from their true expected values 



Sensors 2011, 11  

 

 

8734

are called residuals henceforth. For point i in image j of the PMD camera, the residuals are computed 

as follows: 

  (24)

  (25)

The first parentheses of both equations correct the observations by the estimated calibration 

parameters. The second parentheses are the true values of the observations that are computed directly 

from object coordinates and camera orientation parameters, as derived in Section 3. Since the object 

coordinates and the PMD camera orientations are determined based on RGB images, therefore the true 

values are independent of the PMD image or range observations. In order to simplify further 

denotations, the following symbols will be used hereafter: 

• [A]: Integrated calibration of range camera in joint setup with digital camera which is the 

proposed method of this study. 

• [B]: Integrated calibration of a single range camera without additional digital camera, i.e., image 

internal camera parameters, external orientations and range error model are simultaneously 

estimated. However the RGB images are not utilized at this calibration scheme. 

• [C]: Basic calibration of a single range camera excluding range observations equations and their 

corresponding error parameters, i.e., only intrinsic and external calibration of the intensity 

images of the range camera is performed. 

In the following analysis, we will evaluate the results of our proposed calibration method,  

scheme [A], against schemes [B] and [C]. The residuals on image observations (dx,dy) and range 

measurements (dρ) of check images after calibration are reported in Table 5. The effect of intensity 

related error on range is also assessed. To do the task, range residuals are once assessed without 

considering intensity terms, (c6-c8), and once by taking these terms into account.  

Table 5. Residuals on observations with calibration schemes [A], [B] and [C]. 

C B A  Calibration Scheme 

RMS STD Mean RMS  STD  Mean  RMS STD  Mean  Residual 

32.9 18.3 27.4 14.2 9.7 10.4 8.6 6.0 8.0 dx (µm) 

33.0 18.1 27.6 15.0 8.7 12.2 10.1 7.6 9.1 dy (µm) 

65.10232.38056.582 
14.637 8.212 12.14710.9636.514 8.844 dρ (mm) [With Intensity] 

16.339 10.25712.76416.71510.48213.067 dρ (mm) [Without Intensity]

 

As an improvement of our method, scheme [A], over schemes [B] and [C] can be investigated as the 

percentage of reduction in RMS of range error and image coordinate residuals after calibration by each 

method. Table 6 indicates the effectiveness of our method from the independent accuracy assessments. 
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Table 6. Improvements achieved by the proposed calibration method. 

 
Improvement of scheme 

[A] over [C] 

Improvement of scheme 

[A] over [B] 

RMS of Image Coordinates Residual 71.6% 36.0% 

RMS of Residual on Range 83.2% 25.1% 

Figure 7 indicates the range error reduction ratios achieved by our calibration method, scheme [A], 

and compares it with scheme [B]. The error reduction ratio is defined as the difference of residual after 

and before range calibration divided to the initial range error. Therefore reduction ratio of zero means 

no improvement has taken place by calibration while unit ratio means that range error is totally 

eliminated and negative ratio indicates degradation. These results are obtained by considering intensity 

related error terms. It can be realized that the proposed calibration method of this study noticeably 

improves correction of range systematic errors in comparison with single integrated calibration of 

PMD camera, especially in ranges longer than two meters. 

Figure 7. Range error reduction ratio provided by calibration schemes [A] and [B]. 

 

As discussed in [21], inclusion of range observations in bundle adjustment model increases the 

numerical stability of calibration. This stems from the fact that adding relevant constraints or 

additional observations ensures stable solutions to additional parameters. In the case of the range 

camera, a planar test field is used for range calibration to avoid scattering and multi-path errors. 

However, locating object points on the same plane causes a great correlation between internal and 

external camera parameters; especially xp, yp and f would be strongly correlated to the X, Y and Z 

coordinates of perspective center, respectively. Adding range observations to bundle adjustment 

equations provides extra information on imaging scale, thus reducing the correlation of these 

parameters [33]. However, the small field of view (FoV) of the PMD camera increases ambiguity 

between focal length, depth deviation and camera pose, which leads to unstable pose estimation  

results [14]. This problem is overcome with our joint calibration method. The fact is that in the joint 

calibration method, 2D digital images handle most of the PMD camera pose estimation. This kind of 
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integrated bundle adjustment for PMD camera calibration provides the conditions similar to the 

calibration of a normal high resolution camera with wide FoV in a stable network along with 

additional range observations. 

The correlation coefficient between parameters Xi and Xj is computed from variance and covariance 

values in the covariance matrix of unknown parameters from the bundle adjustment, ΣX  , by the 

following equation: 

  
(26)

The correlation value of 0 means two parameters are fully de-correlated while 1 means they are 

thoroughly correlated. Figure 8 shows great reduction, almost 75%, in correlations between principal 

distance and perspective center (PC) of the range camera after applying our calibration method in 

comparison with scheme [B].  

Figure 8. Correlations between principal distance and perspective centre of PMD camera vs. range.  

 

Other concerning dependencies may occur between the rangefinder offset (c0) and PC as well as the 

rangefinder offset and the principal distance [21]. The former correlations are depicted in Figure 9. The 

average value of the correlation between c0 and PC is 0.16 by calibration scheme [B], which is reduced 

to −0.013 by our calibration approach. Regarding the latter concern, the correlation between c0 and the 

principal distance is 0.1558 from calibration scheme [B] which is improved to −0.0027 by the 

proposed calibration method [A]. 

There also exists an average correlation of −0.0816 between the parameter c1 and the perspective 

center of the range camera by the approach [B], which is itself a small value. However the mentioned 

correlation is improved to 0.0002 by the calibration scheme [A]. 

According to [23], the correlation between the distance related error terms and the rangefinder 

offset is concerning, especially in an integrated approach. The largest correlation detected among 
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calibration parameters is between the rangefinder offset, c0, and parameter c1; −0.95 by calibration 

scheme [B], which is reduced to −0.71 by the proposed approach [A]. 

Figure 9. Correlations between rangefinder offset and perspective centre of PMD camera vs. range. 

 

6. Conclusions 

ToF cameras, based on PMD technology, provide range images at high frame rates which can be a 

valuable 3D data source for many applications. The errors associated with such measurements cannot 

be fully eliminated, but can be reduced to some extent by means of appropriate calibration procedures. 

In this paper the integrated self-calibration of a range camera via a joint setup with a digital camera 

has been proposed and evaluated. The self-calibration bundle adjustment is performed based on 

observation equations of image point coordinates on intensity images of both cameras as well as range 

measurements of the PMD camera. The calibration results are improved by the presented approach 

regarding that: 

• Most pre-researched systematic error sources affecting the range accuracy are taken into account, 

• Image and range observations are adjusted in an integrated bundle adjustment, 

• Problems coherent to small FoV of range camera such as high correlation between interior and 

exterior orientation parameters are overcome, and 

• Specific equipment such as robot arms or laser scanners are not required. 

Based on independent accuracy assessments, the proposed method achieved an average 

improvement of 83% in RMS of range error and 72% in RMS of coordinate residuals, over that 

achieved with basic calibration, i.e., calibration of a single PMD camera excluding range observation 

equations. The method also introduced 25% and 36% improvement on RMS of range error and 

coordinate residuals respectively, over that obtained by integrated calibration of a single PMD camera. 

The joint system of range and RGB camera, calibrated by the approach of this article, is intended to be 

utilized as imaging sensor of a mobile mapping system. 
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