
DOI: 10.1007/s00454-006-1269-4

Discrete Comput Geom 36:633–655 (2006) Discrete & Computational

Geometry
© 2006 Springer Science+Business Media, Inc.

Range Counting over Multidimensional Data Streams∗

Subhash Suri,1 Csaba D. Tóth,2 and Yunhong Zhou3

1Department of Computer Science, University of California,
Santa Barbara, CA 93106, USA
suri@cs.ucsb.edu

2Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
toth@math.mit.edu

3Hewlett-Packard Laboratories, 1501 Page Mill Road,
Palo Alto, CA 94304, USA
yunhong.zhou@hp.com

Abstract. We consider the problem of approximate range counting over a stream of d-
dimensional points. In the data stream model the algorithm makes a single scan of the data,
which is presented in an arbitrary order, and computes a compact summary data structure.
The summary, whose size depends on the approximation parameter ε, can be used to count
the number of points inside a query range within additive error εn, where n is the size of
the stream seen so far. We present several results, deterministic and randomized, for both
rectangle and halfspace ranges.

1. Introduction

Data streams have emerged as an important paradigm for processing data that arrives and
needs to be processed continuously. For instance, telecom service providers routinely
monitor packet flows through their networks to infer usage patterns and signs of attack,
or to optimize their routing tables. Financial markets, banks, web servers, and news
organizations also generate rapid and continuous data streams.

Many data streams are “geometric” in the sense that each datum is best thought of as a
point in some coordinate space. For example, IP packets with four important header fields
(source address, destination address, protocol, and time stamp) can be mapped uniquely
to points in a four-dimensional space. The growing adoption of GPS-based devices
is making it possible to localize and track users of laptops or PDAs, drivers of cars,
trucks, or emergency vehicles. In other applications, such as environmental monitoring,

∗ The research by the first two authors was partially supported by NSF Grants CCR-9901958 and ANI-
9813723.

634 S. Suri, Cs. D. Tóth, and Y. Zhou

astrophysical or geological measurements, location coordinates are an intrinsic part of
the data.

In the data stream model the goal is to summarize the stream of points seen so far (or re-
cent past) into a compact synopsis, which can answer useful queries approximately [27].
The model is motivated by the reality that in many of the applications mentioned above,
data is too large to store in its entirety or even to scan for real-time query processing. For
instance, a telecom network manager may wish to understand the distribution of network
traffic in the source–destination space. He may want to query the packet log collected
at routers: How much TCP data went across a backbone router R that was sent from a
subnet S to a subnet D between 1 and 4 p.m. yesterday? A quick size estimate of the
packet log shows that a single Internet Service Provider with one hundred 2.4 gigabytes
per second routers will need more than 50 terabytes per day to store just the header
information of all the packets. Similarly, after a nightly scan of the sky, an astrophysicist
may want to obtain, in retrospect, spatial range query estimates of the number of events
that occurred in certain regions of interest. Motivated by these applications, we consider
in this paper the fundamental problem of approximate range counting over streams of
d-dimensional point sets.

1.1. Problem Definition

We assume that the input stream is a sequence of d-dimensional points, p1, p2, . . . ,

pn, . . ., where p1 is the oldest point and pn the most recent point. The total number of
points is not known in advance, and the stream can be potentially infinite. We want to
maintain a data structure that is able to answer range counting queries in the real RAM
model on the set of points seen so far. The size of our data structure should ideally be
independent of n, the number of points seen so far, or at worst it might be polylogarithmic
in n.

Many non-trivial problems, including range counting, are impossible to solve exactly
in the data stream model. In particular, a classical result by Munro and Paterson [26]
shows that any algorithm that computes quantiles of a set of n numbers in at most p passes
over the data requires at least �(n/p) space. Therefore, the data stream algorithms aim
for approximate answers using space that is polynomial in ε−1 and log n. Indeed, one
can compute ε-approximate quantiles of n numbers in one pass using O(ε−1 log(εn))
space [13].

A standard tool for compressing a point set for range counting queries is the ε-
approximation introduced by Vapnik and Chervonenkis [28]. For any range space with
finite VC dimension, a random sample of size O(ε−2 log(εδ)−1) is an ε-approximation
with probability at least 1−δ. An on-line sampling method, such as the reservoir sampling
of Vitter [30], can be used to compute a random sample of the data stream almost linearly
in time and space with respect to the sample size. In our view, two key challenges for
range counting in data streams are: to find deterministic data stream algorithms with
small space complexity, and to find randomized data stream algorithms that improve the
naı̈ve space complexity O(ε−2 log ε−1). To simplify notations and complexity analysis,
throughout the paper, we assume that d, the dimension of the space, is a finite constant,
and the big-O notation hides a constant which only depends on d.

Range Counting over Multidimensional Data Streams 635

1.2. Related Work

Exact Range Counting [1], [21]. Range searching and counting are fundamental prob-
lems in computational geometry, with a long history. The main focus has been on
achieving fast query time with as little space as possible. However, since the entire
input is stored, the space is at least linear, and the data structure construction requires
multiple passes over the data. Among the specific results, Chazelle [9] gives an O(n)
size data structure that can answer axis-parallel rectangle range counting queries in
the plane in O(log n) time, and Matoušek [20] gives an O(n) size data structure that
can answer simplex queries in the plane in O(

√
n) time. An interested reader should

consult one of the surveys [1] or [21] for many related results and extensions to d
dimensions.

ε-Approximations and Geometric Discrepancy [10], [23]. An ε-approximation of a
point set P for a range space Q is a set S ⊂ P such that, for any range Q ∈ Q,

∣∣∣∣ |P||S| · |S ∩ Q| − |P ∩ Q|
∣∣∣∣ ≤ ε|P|.

A range query is answered by counting how many points of the ε-approximation fall in
the query range, and scaling up the answer proportionately.

Matoušek [22], [24] has shown (slightly improving an earlier result of Matoušek et al.
[25]) that there exists an ε-approximation of size O(ε−2d/(d+1)) for halfspace ranges in
R

d , which is the best possible bound apart from constant factors due to discrepancy
results of Beck [5], [7], [10]. No polynomial-time algorithm is known for computing
an ε-approximation of this size. For any constant δ > 0, an ε-approximation of size
O(ε−2d/(d+1)+δ polylog ε−1) can be obtained in O(n+ε−2 log2ε−1) time through random
sampling [28], and iterative halving steps based on randomized partial coloring by Beck
[6], [7], [23] and constructing matchings of low crossing numbers by Matoušek [19].

A random sampling algorithm that picks every point with probability

(ε−2 log ε−1/n) provides an ε-approximation with probability close to one [28]. Cha-
zelle and Matoušek [11], [10] have given a deterministic algorithm for computing an
O(ε−2 log ε−1) size ε-approximation in O(ε−2d logdε−1 ·n) time. Recently, Bagchi et al.
[3] have adapted this algorithm to the data stream model. They have noticed that it can be
implemented so that it reads the input in a single pass, and maintains an ε-approximation
of size O(ε−2 log ε−1). As opposed to the easy-to-implement random sampling of Vit-
ter [30], this deterministic algorithm uses O(log n · s + sd+1/2) working space and
O(log n ·sd+1) per-item processing time, where s = O(ε−2 log2c n(log log n+log ε−1)),
and c > 1 is a constant.

Range Counting over Data Streams. In one dimension Greenwald and Khanna [13]
construct an ε-approximate quatile summary of size O(ε−1 log(εn)) that can also be
used for answering range counting queries with an absolute error of εn. We describe
their algorithm in Section 2.1 because we use it as a building block in some of our
algorithms for axis-aligned box ranges. For a parameter q ∈ [0, 1] given in advance,
Manku et al. [18] can find an ε-approximate q-quantile (an element whose rank is in

636 S. Suri, Cs. D. Tóth, and Y. Zhou

the interval [(q − ε)n, (q + ε)n]) with a randomized algorithm in O(ε−1 log2 ε−1 +
ε−1 log2 log δ−1) space with probability 1− δ.

Finally, Hershberger et al. [16] present a deterministic sketch of size
O(ε−1 log2d−1 R) for the discrete version of the axis-aligned box range queries: they
assume that input points are from the universe {1, 2, . . . , R}d ⊂ Nd . Two recent survey
papers [27], [2] are available on a wide range of data stream problems and models.

1.3. Contribution

We propose several algorithms for computing small size synopses of d-dimensional
streams of points that can give approximate answer to range counting queries.

In Section 2 we consider a deterministic sketching algorithm for axis-aligned box
ranges only. We first present a data stream algorithm that maintains a sketch of size
O(ε−d logd(εn)) in Rd . If we are allowed to make d passes over the data, then we show
a deterministic sketch of size O(ε−1 log(εn) logd(ε−1 log(εn))). Thus, additional passes
can significantly improve the space complexity.

In Section 3 we present a randomized algorithm that maintains a weighted ε-approx-
imation of size O(ε−2d/(d+1) logd(ε2/(d+1)n) log ε−1)with probability 1− o(1) for axis-
aligned box ranges. It is an easy combination of our deterministic algorithm (Section 2.2)
and a new Chernoff bound (Section 3.1).

In Sections 4 and 5 we present randomized one-pass algorithms for computing ε-
approximations that have optimal size, up to logarithmic factors. For halfspace ranges
in Rd , we can maintain an O(ε−2d/(d+1) logd+2 ε−1) size weighted ε-approximation
with constant probability. This result generalizes to any range space whose dual shatter
function is π∗(m) = O(md). For axis-aligned box ranges in Rd , we can maintain
an O(ε−1 log2d+2 ε−1) size ε-approximation with probability greater than 3

4 . In both
cases the probability can be increased to 1 − δ, for any δ ∈ (0, 1), with an additional
O(log δ−1) factor increase in space. The latter two sketching algorithms maintain almost
optimal size ε-approximations at all times. Both use, however, O(ε−1 log ε−1 log(εn))
merge steps that are based on sophisticated techniques and may be computationally
intensive.

1.4. Proof Technique

We use a slight generalization of ε-approximations: a weighted ε-approximation of a set
P for a range space Q is a set S where every s ∈ S also has a weight ws ∈ R such that
for every range Q ∈ Q, ∣∣∣∣∣

∑
s∈S∩Q

ws − |P ∩ Q|
∣∣∣∣∣ ≤ ε|P|.

In our constructions the sum of weights
∑

s∈S ws always equals the total number of
points |P|. Specifically, every weighted ε-approximation S = {si : i ∈ I } corresponds
to a partition {Fi : i ∈ I } of the input set P , such that si ∈ Fi and the weight of si is
wi = |Fi |, i ∈ I .

Range Counting over Multidimensional Data Streams 637

Next, we introduce two key concepts, that of representative systems and deficiency,
that allow us to achieve almost optimal summary sizes in Sections 3–5. For a point set
P ⊂ Rd , we call a system F = ({Fi : i ∈ I }, {ri : i ∈ I }) a representative system (RS,
for short) if {Fi : i ∈ I } is a partition of P and ri ∈ Rd , i ∈ I . Instead of storing the
entire RS in memory, we only store the pairs (|Fi |, ri), i ∈ I , in O(|I |) space.

In our deterministic schemes the weighted ε-approximation S is simply the set of
representatives with the cardinality of the corresponding sets as weights. The error in
our estimate is ||P ∩ Q| −∑

i : ri∈Q |Fi ||, which equals the number of misrepresented
points. We call a data point p misrepresented for a query range Q, if p ∈ Q but the
representative of p is not in Q, or vice versa. Therefore, the representatives give a
weighted ε-approximation for Q if the system F satisfies the following ε-deficiency
property for the range space Q:

A representative system F over a point set P is ε-deficient forQ, if for any range
Q ∈ Q, the total number of points separated from their representative by Q is at
most ε|P|. Formally,∑

i∈I

|{p ∈ Fi : (p ∈ Q) �= (ri ∈ Q)}| ≤ ε|P|.

In our randomized schemes we actually use the representatives only to maintain
the partition. Our weighted ε-approximation is a set of samples S = {si : i ∈ I },
such that each si is a point chosen uniformly at random from Fi . Thus, we maintain
two RSs on the same partition {Fi : i ∈ I }: the system F and a system of samples
({Fi : i ∈ I }, {si : i ∈ I }). We show (in Lemma 3.2 below) that the representatives form
a weighted ε-approximation of |P ∩ Q| with probability close to one if F is O(εα)-
deficient for Q for some α ∈ (0, 2), and |Fi | = O(ε2−α−o(1)n) for every i ∈ I .

The ε-deficiency property for halfspaces inRd is also related to simplicial partitions of
low crossing numbers, a powerful technique developed by Matoušek [19], originally for
exact range searching (and, in turn, related to the so-called ε-cuttings). Such a simplicial
partition of a point set P inRd is a system ({Fi : i = 1, 2, . . . , k}, {Ri : i = 1, 2, . . . , k})
of size k, k ∈ N, where

1. {Fi : i = 1, 2, . . . , k} is a partition of P such that |Fi | =
(n/k) for every
i = 1, 2, . . . k,

2. Fi ⊂ Ri such that Ri is a simplex, and
3. any hyperplane intersects only O(k(d−1)/d) simplices of {Ri : i = 1, 2, . . . , k}.
If we choose an arbitrary representative point from each set Fi of a Matoušek par-

tition in Rd , then we obtain a representative system satisfying the O(k−1/d)-deficiency
property for halfspaces. This forms a weighted O(k−1/d)-approximation [19], since the
approximation error is bounded by the number of points lying in simplices along the
query hyperplane, which totals to O(k(d−1)/d · n/k) = O(k−1/d · n) (see Fig. 1). If
we choose a random sample point from each Fi , i = 1, 2, . . . , k, of a Matoušek par-
tition, then we obtain an O(k−1/d)-deficient RS, again, but it now forms a weighted
O(k−(d+1)/2d)-approximation with large probability (see jittered sampling [7], [10]).

Off-line algorithms for constructing a Matoušek partition use numerous passes over
the input and do not seem to adapt to the data stream model. We maintain, instead, random
samples si ∈ Fi from an O(k−1/d)-deficient representative system F = ({Fi : i ∈ I },

638 S. Suri, Cs. D. Tóth, and Y. Zhou

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Q
Q

Fig. 1. In a simplicial partition the approximation error comes from the simplices pierced by the boundary
of a query Q (left). The right figure shows parts of the sets in a representative system misrepresented for a
halfspace Q.

{ri : i ∈ I }) with weights |Fi | =
(n/k). A hyperplane is allowed to cross the convex
hull of any number of sets Fi . Our key result (Lemma 3.2) guarantees that our samples
achieve the same approximation quality as samples from an equal size simplicial partition
with low crossing number.

2. Deterministic Rectangle Range Counting

2.1. One Dimension: Quantile Summaries

The ε-approximate range counting over one-dimensional data streams is equivalent to the
ε-approximate quantile summaries. Greenwald and Khanna [13] present a deterministic
algorithm for building a data structure of size O(ε−1 log(εn)) that can report the rank of
any query point q ∈ R among the n points seen so far with an error within the interval
[−εn, 0]. We refer to this algorithm as GK(ε) in what follows.

The algorithm GK(ε) maintains a list of triples ((ri , gi ,�i), i = 1, 2, . . . , k), r1 ≤
r2 ≤ · · · ≤ rk , corresponding to a representative system F = ({Fi : i = 1, 2, . . . , k},
{ri : i = 1, 2, . . . , k}) of size k = O(ε−1 log(εn)), where gi = |Fi | and �i is an
error term. Their representative system F satisfies two properties: (1) ri is the rightmost
point of Fi and (2) F is ε-deficient for halfline ranges Q− = {(−∞, q]: q ∈ R}. This
immediately implies that the GK(ε) data structure can answer grounded range counting
queries Q ∈ Q− with an error within the interval [−εn, 0] (there is no over-counting),
therefore it can also answer interval range counting queries with an absolute error of at
most εn.

We point out two more characteristics of the GK(ε) algorithm, as we use it as a
building block below. First, the key operations in the construction of the summary GK(ε)
are (i) inserting a new one-element set Fi , and (ii) forming the union Fi ∪ Fj of two sets
Fi and Fj such that r(Fi ∪ Fj) = max{ri , rj }. Second, the GK(ε) algorithm combines

Range Counting over Multidimensional Data Streams 639

multiple merge operations into one single compress operation which is called periodically
after every 1/2ε input points. The amortized per-item processing time of the algorithm
is O(log(ε−1 log(εn))+ log(εn)).

2.2. Cross Product of Quantile Summaries

In this section we present a deterministic data stream algorithm for axis-parallel box
range counting queries. In the plane it is essentially the cross product of two GK(ε)
summaries. In Section 3 we present more efficient randomized summaries based on this
algorithm.

Theorem 2.1. For a stream of points in the plane, we can deterministically maintain
a weighted ε-approximation of size O(ε−2 log2(εn)) for axis-aligned rectangle ranges.

Proof. We simultaneously run two Greenwald–Khanna algorithms, GKx (ε/2) and
GKy(ε/2), on the x- and the y-coordinates of the data point. Each generates a partition of
the ground set into O((1/ε) log(εn)) subsets, {G1,G2, . . . ,Gkx } and {H1, H2, . . . , Hky }.
We store in memory the cardinalities |Gi | and |Hj |, and r(Gi) ∈ R and r(Hj) ∈ R, which
are the maximal values of each subset according to the x- and y-coordinates, respectively.

We also maintain the partition formed by the cross product of GKx (ε/2) and
GKy(ε/2): {Gi ∩ Hj : i = 1, 2, . . . , kx , j = 1, 2, . . . , ky}. Let the representative of
each set Gi ∩ Hj be the point r(Gi ∩ Hj) := (r(Gi), r(Hj)) ∈ R2. This means that all
points of Gi ∩ Hj lie in a box whose upper right corner is r(Gi ∩ Hj) (since r(Gi) is the
x-coordinate of the rightmost point of Gi and r(Hj) is the y-coordinate of the highest
point of Hj). The two operations of the GK(ε/2) algorithm can be easily represented to
update the cross product: (1) when a new point arrives, it is placed in a one-element set
Gkx in GKx (ε/2) and Hky in GKy(ε/2), so we insert into the cross product the singleton
set Gkx ∩ Hky as well as empty sets Gkx ∩ Hj , Gi ∩ Hky for all j = 1, 2, . . . , ky − 1
and i = 1, 2, . . . , kx − 1; (2) whenever the summary GKx (ε/2) forms the union of two
sets Gi and Gi ′ , we form the union of Gi ∩ Hj and Gi ′ ∩ Hj for every j = 1, 2, . . . , ky .
Similarly, whenever GKy(ε/2) forms the union of Hj and Hj ′ , we form the union of
Gi ∩ Hj and Gi ∩ Hj ′ for every i = 1, 2, . . . , kx .

For a query rectangle Q = [q1, q2]× [q3, q4], we report the sum of the cardinalities
of sets Gi ∩ Hj whose representative r(Gi ∩ Hj) lies in Q.

Due to the (ε/2)-deficiency property of GK(ε/2), there are at most (ε/2)n misrep-
resented points for any axis-parallel slab query. The number of misrepresented points is
at most 2(ε/2)n = εn for any axis-parallel rectangle query Q because if p is misrep-
resented for Q, then it is also misrepresented for at least one of the axis-parallel slabs
spanned by Q. Therefore, the set of representatives r(Gi ∩ Hj) with weights |Gi ∩ Hj |,
∀i, j , forms a weighted ε-approximation for axis-parallel rectangles.

Since every operation of GKx (ε/2) and GKy(ε/2) is followed by ky and kx opera-
tions in the cross product, the amortized per-item processing time of the algorithm is
O(ε−1 log n log(εn)). The above theorem generalizes to arbitrary Euclidean space Rd ,
d ∈ N. The proof is straightforward and is omitted.

640 S. Suri, Cs. D. Tóth, and Y. Zhou

Theorem 2.2. For a stream of points in Rd , we can deterministically maintain a
weighted ε-approximation of size O(ε−d logd(εn)) for axis-parallel box ranges. The
algorithm requires the same working space and O(ε1−d log n logd(εn)) amortized per-
item processing time.

2.3. Range Counting in d Passes

In many data stream applications,�(ε−d) storage can be prohibitive. For instance, with
ε = 10−3 or 10−5, the space requirement may be too large even in two dimensions. In this
section we show that by allowing d passes over the data, we can significantly improve
the space requirement of a deterministic data stream algorithm. Multipass algorithms
are meaningful when the data is stored on some external tape drives, and sequential
access is the only practical approach to the data [15], [27]. Specifically, we describe a
data structure that can answer rectangular range counting queries with εn absolute error
using O(ε−1 polylog(ε−1, εn)) space. Because our algorithm will make multiple passes,
we assume that the size of the data stream is known in advance.

Theorem 2.3. For n points in the plane, we can deterministically construct in two
passes over the data a summary of size

O

(
1

ε
log(εn) · log2

(
1

ε
log(εn)

))

that can answer axis-parallel rectangle range counting queries with an absolute error
of at most εn.

Proof. Let ε1 ∈ (0, ε) be a constant to be specified later. In the first pass we build a
sketch according to the x-coordinates of the points with the algorithm GK(ε1), and obtain
a partition into � = O(ε−1

1 log(ε1n)) subsets. By adding empty subsets, if necessary, we
may assume that � is a power of 2 and � ≥ 2. Let r1, r2, . . . , r� denote the representative
elements in increasing order, and let r0 := −∞. By the ε1-deficiency property, every
interval (ri−1, ri] corresponds to a vertical slab in the plane with at most ε1n data points,
i = 1, 2, . . . , �.

After the first pass over the data is completed, we build a binary tree T of height log �
on the intervals (ri−1, ri], i = 1, 2, . . . , �. Every node of T corresponds to a vertical
slab: Every leaf corresponds to the slabs spanned by one interval (ri−1, ri], every non-leaf
node v corresponds to the union of the slabs spanned by the (consecutive) intervals at the
descendants of v. Thus, at level i of the tree, we have �/2i slabs, which partition the plane.
If we denote by ni, j the number of points in slab j at level i , where j = 1, 2, . . . , �/2i ,
then we have

∑
j ni, j = n, ∀i . Note that after the first pass, we do not know the exact

value of ni, j , but GK(ε1) gives us an estimate n∗i, j such that |n∗i, j − ni, j | ≤ ε1n.
In the second pass we build a sketch using the y-coordinates in each vertical slab

corresponding to a node of T whenever n∗i, j > ε1n, and do nothing otherwise. For a slab
containing ni, j points, we apply the algorithm GK(ε1n/n∗i, j). This ensures that in each
slab, we can answer range counting queries with respect to horizontal query slabs with

Range Counting over Multidimensional Data Streams 641

an absolute error of (ni, j/n∗i, j)ε1n ≤ 2ε1n. The size of the secondary data structure for
a vertical slab of size ni, j is O((n∗i, j/ε1n) · log(ε1n)). At level i of the tree T , the total
size is

�/2i∑
j=1

O

(
n∗i, j

ε1n
· log(ε1n)

)
= O

(
1

ε1
log(ε1n)

)
.

Thus the total size of all secondary data structures is O(log � · (1/ε1) · log(ε1n)).
It remains to show how the primary and secondary data structures are used for answer-

ing a rectangular range counting query Q = [q1, q2]× [q3, q4]. We locate the intervals
(ra−1, ra] and (rb, rb+1] containing q1 and q2, respectively. We can cover the vertical
slab spanned by the interval (ra, rb] with 2 log � disjoint vertical slabs corresponding to
nodes of T . In each vertical slab we query the interval [q3, q4], and report the sum of
approximate answers.

There are two sources of error in our estimate for the range query: (1) we have ignored
the points of Q that lie in the vertical slabs of (ra−1, ra] and (rb, rb+1] and (2) we have
an absolute error of 2ε1n in each of the 2 log � vertical slabs. The total absolute error,
therefore, is bounded by 4 log � · ε1n. Let us choose ε1 such that 4 log � · ε1 = ε, then
the absolute error is at most εn. Given the value of ε1 and �, the total sketch size is thus
bounded by

O

(
log � · 1

ε1
· log(ε1n)

)
= O

(
log2 � · 1

ε
· log(εn)

)

= O

(
1

ε
· log(εn) · log2

(
1

ε
log(εn)

))
.

The total processing time in the first pass is O(n log n). The total processing time for
the second pass is

log �∑
i=0

�/2i∑
j=0

O(ni j log ni j) =
log �∑
i=0

�/2i∑
j=0

O(ni j log n) =
log �∑
i=0

O(n log n) = O(n log n log �).

Thus the amortized per-item processing time of the algorithm is O(log n log(ε−1

log(εn))). Our construction generalizes to Rd in a straightforward manner, and we omit
the details of the proof.

Theorem 2.4. For n points in Rd , we can deterministically construct in d passes over
the data a sketch of size

O

(
1

ε
log(εn) · log2d−2

(
1

ε
log(εn)

))

that can answer axis-parallel rectangle range counting queries with an absolute error
of at most εn. The algorithm requires the same working space and O(log n logd−1(ε−1

log(εn))) amortized per-item processing time.

642 S. Suri, Cs. D. Tóth, and Y. Zhou

3. Randomized Range Counting

In our randomized sketching algorithms, we generate a representative system ({Fi },
{ri }: i ∈ I) over the input and for every i ∈ I we maintain a random sample point
si ∈ Fi . The points ri are used for updating the representative system as new elements
of the data stream arrive, while the sample points si form an ε-approximation to answer
range counting queries. We can bound the approximation quality with the following
Chernoff bound.

3.1. A Chernoff Bound

Our Chernoff bound is independent of the dimension of the space. It is a weighted variant
of a classical Chernoff bound in [14].

Theorem 3.1. For a natural number m, assume that we are given probabilities p1, p2,

. . . , pm , and real-valued weights w1, w2, . . . , wm , where |wi | < W for a fixed con-
stant W > 0. Let X1, X2, . . . , Xm be mutually independent random variables such
that Pr(Xi = −pi) = 1 − pi and Pr(Xi = 1 − pi) = pi . Set X = ∑m

i=1wi Xi and
M =∑m

i=1 |wi | pi . For any δ ∈ (0, 1), we have

Pr(|X | ≥ δM) ≤ 2 e−δ
2 M/3W .

Proof. For any t > 0, we have the following chain of inequalities:

Pr(X ≥ δM) = Pr(et X ≥ etδM) ≤ e−tδM E[et X]

= e−tδM
m∏

i=1

E[etwi Xi] = e−tδM
m∏

i=1

e−twi pi (1+ pi (e
twi − 1))

≤ e−tδM
m∏

i=1

e−twi pi+pi (etwi−1) = e−tδM+�m
i=1 pi (etwi−1−twi).

For |x | ≤ 1, it is easy to verify the following inequality: ex − 1 − x ≤ 3
4 x2. Let

t = 2δ/3W , then |twi | ≤ tW ≤ 1, ∀i . We bound the exponent of the last expression in
the above inequality:

−tδM +
m∑

i=1

pi (e
twi − 1− twi) ≤ −tδM +

m∑
i=1

pi (
3
4 t2w2

i)

= −tδM + 3
4 t2

m∑
i=1

piw
2
i ≤ −tδM + 3

4 t2 MW

= −δ
2 M

3W
.

Thus Pr(X ≥ δM) ≤ e−δ
2 M/3W . Through an almost identical calculation with −X

rather than X , we have Pr(−X ≥ δM) ≤ e−δ
2 M/3W . The combination of the above two

Range Counting over Multidimensional Data Streams 643

inequalities gives the desired result:

Pr(|X | ≥ δM) = Pr(X ≥ δM)+ Pr(−X ≥ δM) ≤ 2e−δ
2 M/3W .

We use this Chernoff bound in the main lemma below, which is the key tool in our
analysis.

Lemma 3.2. Assume we are given a set P of n points in a range space (X,Q) and an
α-deficient representative system ({Fi : i ∈ I }, {ri : i ∈ I }) over P such that |Fi | ≤ βn
for every i ∈ I , where α, β > 0. For every i ∈ I , independently, let si be a sample point
chosen uniformly at random from Fi . Then for any range Q ∈ Q, the sum

∑
i∈I,si∈Q |Fi |

approximates |P ∩ Q| with an absolute error of at most εn with probability at least
1− 2e−ε

2/3αβ .

Proof. Fix a range Q ∈ Q from the range space. For every i ∈ I , we split Fi into two
disjoint subsets Ai and Bi as follows:

Ai = {p ∈ Fi : (p ∈ Q and ri ∈ Q) or (p �∈ Q and ri �∈ Q)} and Bi = Fi\Ai .

That is, ri represents the points in Ai correctly but it misrepresents the points in Bi . Let
ai = |Ai |, bi = |Bi |, and wi = ai + bi . By the α-deficiency property,

∑k
i=1 bi ≤ αn.

For every i ∈ I , we set pi = bi/wi and define a random variable Xi such that
Xi = 1 − pi if si ∈ Bi and Xi = −pi if si ∈ Ai . Observe that Pr(Xi = 1 − pi) = pi

and Pr(Xi = −pi) = 1 − pi . Note that the random variables Xi , i ∈ I , are mutually
independent. The total error of our answer for Q is

|P ∩ Q| −
∑

i∈I,si∈Q

|Fi | =
∑

i : ri∈Q

(∑
si �∈Q

ai −
∑
si∈Q

bi

)
+

∑
i : ri �∈Q

(∑
si �∈Q

bi −
∑
si∈Q

ai

)

=
∑

i : ri∈Q

wi Xi −
∑

i : ri �∈Q

wi Xi .

Let X = ∑k
i=1w

∗
i Xi where w∗i = wi if ri ∈ Q and w∗i = −wi otherwise. Thus

X = |P ∩ Q| −∑
i∈I,si∈Q |Fi | and it denotes the total error of the query answer. Let

M = ∑k
i=1 |w∗i |pi , then M = ∑k

i=1wi pi =
∑k

i=1 bi ≤ αn. We set δ = εn/M and
W = βn, and apply Theorem 3.1 (Chernoff bound):

Pr(|X | ≥ εn) ≤ 2 e−δ
2 M/3W ≤ 2 e−ε

2n2/3MW ≤ 2 e−ε
2/3αβ.

3.2. Randomized Rectangular Range Counting

We apply Lemma 3.2 to guarantee that a random sample drawn from a cross-product
partition of one-dimensional quantile summaries can approximate the number of points
in a query rectangle.

644 S. Suri, Cs. D. Tóth, and Y. Zhou

Theorem 3.3. For a stream of points in R2, we can maintain a summary of size

O(ε−4/3 log2(ε2/3n))

that answers axis-parallel rectangle range counting queries with at most εn absolute
error with probability 1− o(1).

Proof. Let ϕ = ε2/3 and w = ϕ2n/log2(ϕn). Similarly to the proof of Theorem 2.1,
we maintain the cross-product partition of two data structures GKx (ϕ) and GKy(ϕ). By
the ϕ-deficiency property, the size of each set of the partitions Gi and Hj is below ϕn.
We modify the cross-product partition so that if a set Gi ∩Hj with more thanw elements
will be generated by a union operation, then we postpone the union operation and keep
multiple sets to represent Gi ∩Hj . Therefore Gi ∩Hj may contain multiple sets with the
cardinality of each set ≤ w. Since n (and also w) is monotone increasing as new points
are streaming in, we merge two small sets later when their union becomes ≤ w. We
obtain a partition {Fi : i ∈ I }, whose size is still |I | = O(ϕ−2 log2(ϕn)), asymptotically
the same as the size of the cross product partition.

Every Fi is part of a subset Gj ∩ Hh , and so we let ri = r(Gj ∩ Hh). Since at most
ϕn points are misrepresented by the ri ’s with respect to any vertical or horizontal slab,
at most 2ϕn points are misrepresented by the ri ’s with respect to axis-aligned boxes.
That is, ({Fi : i = 1, 2, . . . k}, {ri : i = 1, 2, . . . k}) is (2ϕ)-deficient for axis-aligned
rectangles.

We choose a sample point si ∈ Fi uniformly at random from every Fi . A sample
point can easily be maintained under the insertion and union operation. From every new
one-element set Fi , we choose a unique sample si ∈ Fi , and for a union Fh = Fi ∪Fj , we
choose sh ∈ {si , sj } randomly with probabilities |Fi |/|Fh | and |Fj |/|Fh |, respectively.
For a query rectangle Q, we report

∑
i :si∈Q |Fi |. Observe that the expected value of our

answer is exactly the number of points in Q.
It remains to show that the absolute error is at most εn with high probability. We

apply Lemma 3.2 to our partition {Fi : i ∈ I } with α = 2ϕ and β = ϕ2 · log−2(ϕn).
We conclude, that for every query rectangle Q, the probability that the absolute error
|∑i : si∈Q |Fi | − |P ∩ Q|| is above εn is bounded by

2e−ε
2/6ϕβ = 2e−(ε

2 log2(ϕn))/6ϕ3 = 2e−(log2(ε2/3n))/6 = o(1).

Thus each axis-aligned rectangle range counting query has absolute error bounded by
εn with probability 1− o(1).

The techniques used for R2 readily generalize to any finite-dimensional Euclidean
space. The next theorem is an extension of Theorem 3.3.

Theorem 3.4. For a stream of points in Rd , we can maintain a summary of size

O(ε−2d/(d+1) logd(ε2/(d+1)n))

that answers axis-aligned box range counting queries with εn absolute error with prob-
ability 1− o(1).

Range Counting over Multidimensional Data Streams 645

Proof. Let ϕ = ε2/(d+1) and w = ϕdn/logd(ϕn). As in the proof of Theorem 3.3, we
maintain the cross-product of d data structures GKxi (ϕ), one for each coordinate axis. We
keep the cardinality of each partition set bounded byw by postponing the union operation
if a set size would exceedw. It is easy to verify that the size of the partition is bounded by
O(ϕ−d · logd(ϕn)). It is also easy to check that the cross-product representative system
is (dϕ)-deficient for axis-aligned rectangle ranges. We apply Lemma 3.2 with α = dϕ
and β = ϕd · log−d(ϕn) to the RS and the probability for the absolute error to be over
εn is bounded by

2e−ε
2/(3(dϕ)β) = 2e−(ε

2 logd (ϕn))/3d·ϕd+1 = 2e−(logd (ε2/(d+1)n))/3d = o(1).

Similarly to the scheme in Theorem 2.2, it is easy to verify that the above al-
gorithm takes O(ε−2d/(d+1) logd(ε2/(d+1)n)) working space and O(ε−2(d−1)/(d+1) log n
logd(ε2/(d+1)n)) amortized per-item processing time.

3.3. Extension to ε-Approximations

In Theorem 3.3 we proved that one can maintain a weighted RS that can approximate
any rectangular range with εn error with probability 1− o(n). This is not necessarily an
ε-approximation, which has to approximate all rectangles simultaneously with at most
εn absolute error. Since axis-parallel rectangle ranges have bounded VC-dimension, we
can extend Theorem 3.3 to obtain an ε-approximation with probability close to 1 at the
expense of an O(log ε−1) factor increase in space.

Theorem 3.5. For a stream of points inRd , we can maintain a weighted ε-approximation
of size

O

(
ε−2d/(d+1) logd(ε2/(d+1)n) log

1

ε

)
for axis-aligned box ranges with probability 1− o(1).

Proof. We run the data stream algorithm in the proof of Theorem 3.4 with parameter
ε/2 instead of ε, and ϕ = (ε/2)2/(d+1) log−1/(d+1)(18d2/ε). We obtain an RS of size
O(ϕ−d · logd(ϕn)) such that the probability that it approximates an axis-aligned box
with less than (ε/2)n absolute error is above 1− ε3do(1).

Consider the set Pn of the first n points of the stream. Since the rectangular ranges
have bounded VC-dimensions, there exists an (ε/2)-approximation R of size � =
O(ε−2 log ε−1) by a celebrated result of Vapnik and Chervonenkis [28]. Let QR be
a maximal family of axis-aligned boxes such that the intersection sets Q ∩ R, Q ∈ QR ,
are pairwise disjoint. The cardinality |QR| is bounded by O(�d) = O(ε−2d logdε−1).
(In general, it is bounded by the (primal) shatter function π(�) of the range space.)

The probability that our RS approximates all boxes of QR simultaneously with an
absolute error of at most εn/2 is at least 1 − O(�d)ε3do(1) = 1 − o(1). Since an
(ε/2)-approximation of an (ε/2)-approximation is an ε-approximation, our RS is an
ε-approximation with probability at least 1− o(1) at any time n ∈ N.

646 S. Suri, Cs. D. Tóth, and Y. Zhou

4. Randomized Halfspace Range Counting

Our main result in this section is a weighted ε-approximation of size
O(ε−2d/(d+1) logd+1 ε−1) for halfspace ranges that can be maintained over d-dimen-
sional point streams. Our algorithm crucially depends on merging two summaries of the
same size into one, without significantly worsening the approximation error.

4.1. The Merge Step

To merge two summaries we can apply a result of Chazelle and Welzl [12] (see Theo-
rem 5.17 in [23]) about matchings with low crossing numbers, which is tight apart from
a constant factor.

Lemma 4.1. Given 2k points inRd , there is a matching M of size k such that any hyper-
plane crosses at most c1 · k(d−1)/d edges of M , where c1 > 0 is a constant depending on
d only.

There are deterministic algorithms for constructing a matching described in
Lemma 4.1, based on a de-randomization of a randomized polynomial-time algorithm
[23]. The deterministic merge step, however, requires O(kd) memory in d-dimensions.
A matching satisfying a slightly weaker bound, however, can be computed efficiently by
a result due to Matoušek [19].

Lemma 4.2. We are given 2k points in Rd . For any constant δ > 0, one can compute
in O(k log k) time a matching M of size k such that any hyperplane crosses at most
c1 · k(d−1)/d+δ edges of M , where c1 > 0 is a constant depending on d only.

For simplicity, we use the bound of Lemma 4.1 in our computations. Any implemen-
tation using this merge step must apply an efficient subroutine with the slightly weaker
bound of Lemma 4.2. We next describe how we merge two samples of size k into one
sample of size k.

Lemma 4.3. Assume that we are given a representative system F = ({Fi : i =
1, 2, . . . , 2k}, {ri : i = 1, 2, . . . , 2k}), k ∈ N, over a ground set of size n in Rd . Further-
more, F is α-deficient for halfspaces and |Fi | ≤ βn for every i = 1, 2, . . . , 2k, where
α, β > 0. Then one can construct an (α+ c1 · k(d−1)/dβ)-deficient representative system
of size k for halfspaces.

Proof. We invoke Lemma 4.1 on the set of 2k representatives {ri : i = 1, 2, . . . , 2k}. We
define the representative system G = ({Gh : h = 1, 2, . . . , k}, {qh : h = 1, 2, . . . , k})
as follows. Every matching edge rirj ∈ M determines a set Gh = Fi ∪ Fj , and the
corresponding representative qh is chosen uniformly at random from {ri , rj }.

Fix a halfspace Q ∈ Q, and let Q0 denote the boundary hyperplane of Q. At most αn
points are misrepresented by the representative ri of F . If a line segment rirj ∈ M does
not cross Q0, then qh ∈ {ri , rj } misrepresents the same points in G as ri and rj jointly

Range Counting over Multidimensional Data Streams 647

misrepresent in F . If rirj crosses Q0, however, then qh ∈ {ri , rj } misrepresents at most
βn more points in G than ri and rj jointly misrepresent in F . Since at most c1 · k(d−1)/d

edges of M cross Q0, the system G misrepresents at most αn + c1 · k(d−1)/dβn points
for any Q, as required.

4.2. Summarizing Fixed Size Streams

By a well-known result of Vapnik and Chervonenkis [28], a random sample of size

(ε−2 log ε−1) is an ε-approximation for halfspaces in Rd with probability close to 1.
Since an ε2-approximation of an ε1-approximation is an (ε1 + ε2)-approximation, it is
enough to find an ε2-approximate data stream algorithm whose input is a sequence of

(dε−2

1 log ε−1
1) random samples.

First we show a weak bound where we assume that the total number of points
in the stream is known in advance. We use this algorithm to compress a stream of

(dε−2

1 log ε−1
1) sample points in the next subsection.

Theorem 4.4. For a stream of N points in Rd (where N ≥ 2ε−2d/(d+1) is known in
advance), we can construct a sample of size O(ε−2d/(d+1) logd(ε2d/(d+1)N)) that can
answer halfspace range counting queries such that the absolute error is at most εN with
probability at least 1− 2 exp(−2 log(ε2d/(d+1)N)) ≥ 1

2 .

Proof. Let ϕ = ε2/(d+1) and k = c2 · ϕ−d logd(ϕd N), where c2 > 1 is a sufficiently
large constant. For convenience, we assume that N = 2mk, with m ∈ N (otherwise we
append dummy points to the stream to match this constraint). We divide the input stream
of N points into blocks of size k, and build a balanced binary tree T on the blocks (see
Fig. 2). T has m = log(N/k) levels, where level 0 corresponds to the leaves and the root
is at level m.

For a node v ∈ T at level i , let Pv be the set of 2i · k points in descendant blocks of v.
For every v ∈ T , we compute inductively a representative systemFv and a corresponding
random sample Sv . For every leaf v ∈ T , we let Fv be the trivial partition of Pv into
one-element sets and let Sv = Pv . At every non-leaf node v ∈ T , we construct Fv by
merging the representative systems of its two children by Lemma 4.3. For every Fj ∈ Fv ,
which is generated as Fj = Gi1 ∪ Gi2 from partitions of v’s children, we choose the
sample point s(Fj) uniformly at random from {s(Gi1), s(Gi2)}.

Note that the 2m−i RSs on level i jointly form an RS of the total ground set of size
N . The joint RS on the leaf level is 0-deficient. The deficiency increases by c1 · k−1/d on
each level by Lemma 4.3. By induction, the joint RS at level i is (i · c1 · k−1/d)-deficient
for halfspaces. The root r ∈ T is at level m = log(N/k). So the number of points
misrepresented for halfspaces by Fr is at most

m · c1 · k−1/d · N = c1 · log

(
N

k

)
· N

k1/d
= c1

c1/d
2

·
(

1− log c2 + d log log(ϕd N)

log(ϕd N)

)
· ϕN .

This is less than ϕN , if N ≥ 2ϕ−d and c2 is large enough, and so Fr is ϕ-deficient for
halfspaces.

648 S. Suri, Cs. D. Tóth, and Y. Zhou

Fig. 2. We generate the summary of a stream of size N = 24 · k inductively in four levels.

The size of every set in Fr is 2m = N/k = ϕd N/(c2 logd(ϕd N)). We apply
Lemma 3.2 to Fr with α = ϕ and β = ϕd/(c2 logd(ϕd N)). By choosing c2 ≥ 6,
we conclude that the probability that the approximation error |2m · |Sr ∩ Q| − |P ∩ Q||
is above εN is less than

2e−ε
2/3αβ = 2e−(c2 logd (ϕd N))/3 ≤ 2e−2 log(ϕd N) ≤ 2(ϕd N)−2 ≤ 2 · 2−2 = 1

2 .

Observe that O(k) = O(ε−2d/(d+1) logd(ε2d/(d+1)N)) is only the size of the final
summary. If we construct the summary while reading the input, then we need to keep in
memory at most one summary for each of the log(N/k) different levels of the hierarchy
(see Fig. 2).

Corollary 4.5. For a stream of N points in Rd (where N ≥ 2ε−2d/(d+1) is known in
advance), we can maintain at any time n, 1 ≤ n ≤ N , a summary of size

O(ε−2d/(d+1) logd(ε2d/(d+1)N)max(log(ε2d/(d+1)n), 1))

that can answer halfspace range counting queries such that the absolute error is at most
εn with probability at least 1− 2 exp(−2 log(ε2d/(d+1)N)) ≥ 1

2 .

Proof. At any time n, 1 ≤ n ≤ N , the tree T has at most log(n/k) ≤ log(ϕdn) different
levels.

During the inductive construction, we keep in memory at most one representative
system and corresponding sample of size k from each level: At the leaf level, we feed
points of the data stream into Fv and Sv . The leaf v is complete when all k elements
of Pv have arrived. When two children v and w of a non-leaf node u are complete, we
construct Fu and Su , declare u complete, and delete all information regarding v and w.
This establishes the claimed space bound.

Let Si denote the level i sample. The representative systems in memory jointly give an
RS of the first n points Pn . The joint RS is ϕ-deficient for halfspaces and the maximal set

Range Counting over Multidimensional Data Streams 649

size is max(1, 2�log(n/k)�) ≤ max(1, n/k). We aggregate the samples of different levels
into a weighted sample such that sample points on level i have weight 2i . For n < 2k,
the sample is a 0-approximation. For n ≥ 2k, we can apply Lemma 3.2 with α = ϕ

and β = ϕd/(c2 logd(ϕd N)). We conclude that the weighted sum
∑m

i=0 2i |Si ∩ Q|
approximates |Pn ∩ Q| with an absolute error of at most εn with probability at least
1− 2 exp(−2 log(ϕd N)) ≥ 1

2 .

4.3. Summarizing General Data Streams

In general, the stream size, n, is not known in advance. An algorithm of Vitter [30] can
maintain a uniformly random sample of a fixed size
(ε−2 log ε−1). This algorithm,
however, occasionally deletes sample points (it replaces a randomly chosen old sample
point by a new one), and so it cannot be fed into another insert-only data stream algorithm.

To overcome this difficulty, we deploy a simple idea of Manku et al. [18]: after having
seen n0 points of the stream, we know that the total stream size is at least n0 and we can
choose sample points at a rate�(dε−2 log ε−1)/n. This results in a non-uniform sample,
but we can assign weights to the sample points so that the output data structure has a
uniform error bound.

Theorem 4.6. For a stream of points in Rd , we can maintain a summary of size
O(ε−2d/(d+1) logd+1ε−1) that can answer halfspace range counting queries with an ab-
solute error εn with probability 1

2 .

We first describe a data stream algorithm, and then we prove that this algorithm meets
the required theoretical bounds.

Algorithm halfspace-summary. Let K = c3dε−2 log ε−1, where c3 is a sufficiently
large constant. Assume, for convenience, that K is a power of 2. We partition the input
stream into buckets B0, B1, B2, . . ., etc. The size of B0 is K ; later buckets have exponen-
tially increasing sizes: |Bi | = 2i−1 K for i = 1, 2, From each bucket Bi , we draw
a sample Di of size K . The sampling algorithm of Vitter [29] can choose, if the bucket
size |Bi | is known in advance, the sample Di online in one pass over Bi using only O(1)
working space and an expected O(K) time.

Since we cannot afford to keep the entire Di in memory, we compress it on-line,
while reading the bucket Bi . We feed Di into the algorithm of Theorem 4.4 and prepare
a summary Si of size k = c2 · ε−2d/(d+1) logdε−1 = c2 ·ϕ−d logdε−1, where ϕ = ε2/(d+1)

and c2 is a large enough constant. The summary set Si corresponds to a representative
system Fi over Di . Note that if only an initial portion B ′i of Bi has arrived, then only
an initial portion D′i of Di is selected. We maintain a partial summary S′i of D′i of size
k log(K/k) according to Corollary 4.5. S′i corresponds to a representative system F ′i
over D′i .

A bucket Bi and the sample Di are complete when all points of Bi have arrived and
we have chosen all K elements of Di . At that time, the summary Si of size k is also
complete. Then we prepare a summary (representative system and sample) of size k for
the set

⋃i
j=0 Bj for every i inductively: The base case is F∗0 = F0 and S∗0 = S0. For

650 S. Suri, Cs. D. Tóth, and Y. Zhou

Fig. 3. We merge inductively Si and S∗i−1.

i = 1, 2, . . ., we construct F∗i by merging F∗i−1 and Fi using Lemma 4.3, and generate
the corresponding summary S∗i from S∗i−1 and Si (Fig. 3).

The nth point lies in bucket Bm , m = �log(n/K)�. When n points have arrived,
our current sample set is composed of two parts that jointly form a weighted sample:
(1) S∗m−1, each element with weight 2m−1 · K/k. (2) S′m , which consists of at most
log(K/k) samples of size k coming from different levels of a tree Tm ; the weight of every
sample point at level j is 2 j . The size of our summary is therefore (1+ log(K/k)) · k =
O(ϕ−d logd+1ε−1) = O(ε−2d/(d+1) logd+1ε−1).

Proof of Theorem 4.6. We show now that Algorithm halfspace-summary main-
tains a required summary. If n ≤ K , then Corollary 4.5 with N = K completes the
proof. Otherwise n > K , and the nth point arrives at a bucket Bm with m > 0. At
that time, the first m − 1 buckets containing 2m−1 K points are complete, we have seen
n − 2m−1 K points B ′m ⊂ Bm , and we have selected samples D′m = Dm ∩ B ′m . Let
B = ⋃m−1

i=0 Bi ∪ B ′m be the set of n points seen so far and let D = ⋃m−1
i=0 Di ∪ D′m

be a weighted sample set where elements of D0 have unit weight while the weight of
every a ∈ Di , i = 1, 2, . . . ,m, is wa = 2i−1. Our current summary is S = S∗m−1 ∪ S′m
corresponding to a representative system F = F∗m−1 ∪ F ′m over D.

We focus on the last µ = �log(6/ε)� buckets. The remaining m−µ buckets together
contain no more than 2n/2�log(6/ε)� ≤ εn/3 points. Our approximation error εn will
come from three sources: (1) for i = 0, 1, . . . ,m − µ, we assume that sample Di is
a 1-approximation of Bi ; (2) in the last µ buckets, we assume that Di (and B ′m) is an
ε/3-approximation of Bi (resp., B ′m); (3) the sample S is an (ε/3)-approximation of the
weighted set D. The probability that we err more than εn has, therefore, two sources:
(i) the probability that not all of the lastµ sets Di approximate the lastµ buckets Bi with
at most ε|Bi |/3 absolute error and (ii) the weighted sample S does not approximate D
with at most εn/3 absolute error.

Analysis. Every sample Di is an ε/6-approximation of Bi for halfspaces with proba-
bility at least 1 − ε/4 for i = 0, 1, . . . ,m − 1 if c3 is large enough (see Theorem 4.9

Range Counting over Multidimensional Data Streams 651

of [10]). D′m is not necessarily an ε-approximation of B ′m , but by analogous argument,
|Q ∩ D′m | · 2m−1 approximates |Q ∩ B ′m | with an absolute error of at most (ε/6)|Bm |
with probability at least 1− ε/4. Therefore, assuming this approximation quality for the
last µ buckets with probability at least 1 − µ(ε/4) = 1 − �log(6/ε)�(ε/4) ≥ 3

4 , the
weighted set D is a 2ε/3-approximation of B. That is, for any halfspace query Q,∣∣∣∣∣

∑
a∈Q∩D

wa − |Q ∩ B|
∣∣∣∣∣ ≤

∑
i≤m−µ

|Bi |+
µ−1∑
i=1

ε

6
|Bm−i |+ ε

6
|Bm | ≤ (1

3 + 1
6 + 1

6)εn =
2εn

3

with probability greater than 3
4 .

S∗i is a result of inductive merges of i + 1 sample sets S0, S1, . . . , Si . Following
the proof of Theorem 4.4, each Fi , i = 0, 1, . . . ,m − 1, is ϕ-deficient for halfspaces.
Similarly, F ′m is also ϕ-deficient for halfspaces over the weighted set D′m . This implies
that the union of these RSs is ϕ-deficient over the weighted set D.

The RSs F∗i−1 and Fi together cover the weighted set
⋃i

j=0 Di of total weight 2i K ,
for i = 1, 2, . . . ,m − 1. By Lemma 4.3, merging these two RSs increases the weight of
misrepresented points by at most c1 · k(d−1)/d(2i K/k) = c1 · k−1/d · 2i K ≤ ϕ2i K . The
total weights of misrepresented points atF∗m−1 is thereforeϕ ·(|⋃m−1

j=0 Dj |+2·2m−1 K) ≤
3ϕ · |⋃m−1

j=0 Dj |.
F = F∗m−1 ∪ F ′m is (3ϕ)-deficient RS for halfspaces over the weighted set D. The

total weight of each set in F is at most 2m−1 · K/k ≤ n/k = (ϕd log−d ε−1/c2)n.
We denote the partition in F by {Fs : s ∈ S}, associating a set Fs ⊂ D to every
sample point s ∈ S such that s ∈ Fs . We apply Lemma 3.2 to the representative system
F = ({Fs : s ∈ S}, {s ∈ S}) with α = 3ϕ and β = (ϕd log−d ε−1)/c2. For every query
halfspace Q, the probability that∣∣∣∣∣

∑
s∈S∩Q

∑
b∈Fs

wb −
∑

a∈Q∩D

wa

∣∣∣∣∣ > εn

3

is bounded by

2e−(ε/3)
2/(3·3ϕ·ϕd log−d (1/ε)/c2) = 2e−(c2 logdε−1)/81 ≤ 1

4 (1)

if c2 is sufficiently large.

We next estimate the amortized per-item processing time of Algorithm halfspace-
summary. Since we use the bound of Lemma 4.2 instead of that of Lemma 4.1, we
choose ϕ = ε2/(d+1)−δ/d and k = c2 · ε−2d/(d+1)+δ logdε−1, for a small δ > 0. The
total processing time for Algorithm halfspace-summary is composed of the linear
running time of the sampling algorithm of Vitter [30] and the iterative merge steps.
By Lemma 4.2, one can merge two RSs of size k in O(k log k) time. Compressing a
sample Di of size K into sample Si of size k by the algorithm of Theorem 4.4 requires
(K/k) log(K/k) = O(ε−2/(d+1) log2−d ε−1) merge steps. Merging the samples S∗i−1
and Si , for i = 1, 2, . . . ,m − 1, requires an additional m = O(log(n/K)) merge
steps. For n ≥ K , the total processing time amounts to O(n) + m · (K/k) log(K/k) ·
O(k log k) = O(n+K log(n/K) log(K/k) log k) = O(n+ε−2 log(ε2n) log3 ε−1) time.

652 S. Suri, Cs. D. Tóth, and Y. Zhou

The amortized per-item processing time is, therefore, O(1+ (1/ε2n) log(ε2n) log3 ε−1),
which is O(1) if n→∞.

Similarly to Theorem 3.5, we can extend Theorem 4.6 and maintain an ε-approxima-
tion of size O(ε−2d/(d+1) logd+1ε−1 log(εδ)−1)with at least 1−δ probability for halfspace
ranges inRd . Theorem 4.6 and its extension to ε-approximations also hold for any range
space where the order of magnitude of the dual shatter function is π∗(n) = O(nd): Our
argument made assumptions on the underlying range space only in Lemmas 4.1 and 4.2,
which hold for any range space whose dual shatter function is O(nd) [23]. The argument
of Theorem 3.5 also goes through because the primal shatter function is a bounded degree
polynomial, too. We can summarize our result as follows.

Theorem 4.7. We are given a data stream of points in a range space whose dual shatter
function is of order π∗(m) = O(md). For any constant δ > 0, we can maintain in O(1)
amortized per-item processing time an O(ε−2d/(d+1)+δ logd+2 ε−1) size weighted sample
set which is an ε-approximation with probability 1

2 .

5. Rectangle Range Counting Revisited

The core of the algorithm in Section 4 was a merging step that compressed two rep-
resentative systems for halfspace ranges into one. In the case of axis-aligned rect-
angular ranges, we can use a similar merging step that compresses ε-approximations
directly.

Lemma 5.1. Given a set A of 2k points inRd , we can compute a subset A′ ⊂ A of size
at most k which is a (c4 log2d(2k)/k)-approximation of A,1 where c4 > 0 is a constant
depending on d only.

The proof is based on the combinatorial discrepancy of 2k points for axis-aligned
boxes and on the Beck–Fiala theorem [8] (see Theorem 4.14 and remarks in [23]). The
application of the Beck–Fiala theorem involves solving O(k) linear programs on 2k
variables. Using the interior-point method [17], for example, each linear program can be
solved in O(k3) time and O(k2) space.

Equipped with a merging algorithm for two ε-approximation of equal size, we can
follow the data stream algorithms of the previous section. Instead of a representative
system and sample set, we maintain only one sample set A, which is an ε1-approximation
for some ε1 < ε.

Theorem 5.2. For a stream of N points in Rd (where N ≥ 2/ε is known in advance),
we can deterministically construct an ε-approximation for axis-aligned rectangles of

1 The term log2d (2k)/k is not the optimal bound: the best known upper bound (for which only existence

proofs are known) is O(logd+1/2(2k)
√

log log 2k/k) [23]. The best known lower bound, due to Baker [4], is

�(log(d−1)/2(2k) · (log log(2k)/log log log(2k))1/(2d−1)/k), d ≥ 3.

Range Counting over Multidimensional Data Streams 653

size

O

(
1

ε
log(εN) log2d

(
1

ε
log(εN)

))
.

Proof. We follow the main steps in the proof of Theorem 4.4. Let

k = c5 · 1

ε
log(εN) · log2d

(
1

ε
log(εN)

)
,

where c5 > 1 is a sufficiently large constant depending on the dimension d only. We
divide the input stream into blocks of size k, by adding dummy points if necessary. Also,
we assume that N/k is a power of 2. We build a balanced binary tree T on the blocks.

For every v ∈ T , we compute inductively a sample Av of size at most k. For every
leaf v ∈ T , we set Av = Pv . At every non-leaf node v ∈ T , we construct Av by merging
the samples of its two children by Lemma 5.1.

The union of all samples on level i of T jointly forms an (ic4 log2d(2k)/k)-approx-
imation of the total input. We clearly have a 0-approximation at the leaf level, i = 0.
Then at each level the approximation quality deteriorates by c4 log2d(2k)/k according
to Lemma 5.1. The root is at level log(N/k) ≤ log(εN), so the approximation error of
the sample Ar is

log(εN) · c4 log2d(2k)

k
N = c4

c5
· log2d(2k)

log2d(ε−1 log(εN))
· εN ≤ εN

if c5 is large enough.

Note that k is the size of the final summary only. If we construct the summary while
reading the input, then we need to keep in memory one summary for each of the log(n/k)
different levels of the hierarchy.

Corollary 5.3. For a data stream of N points in Rd (where N ≥ 2/ε is known in
advance), we can maintain a weighted ε-approximation of size

O(ε−1 log(εN) log2d(ε−1 log(εN))max(log(εn), 1))

for axis-aligned rectangles at any time n, 1 ≤ n ≤ N .

Proof. We keep in memory at most one sample from each level: At the leaf level, we
feed points of the data stream directly into our sample Av . The leaf v is complete when
all k elements of Pv have arrived. When two children v and w of a non-leaf node u
are complete, then we construct Au , declare v complete, and delete the samples of u’s
children.

At any time n, 1 ≤ n ≤ N , we keep at most log(n/k) ≤ log(εn) samples in memory.
The size of each sample set is k, which gives the claimed space bound.

These samples are from disjoint subsets of the set Pn of the first n points of the stream.
We aggregate the samples into a weighted sample such that sample points on level i have
weight 2i . Each sample set is an ε-approximation of the corresponding base set, so their
weighted union is also an ε-approximation of the first n points.

654 S. Suri, Cs. D. Tóth, and Y. Zhou

If the stream size n is not known in advance, then we follow a two-phase procedure
similar to the structure of Algorithm halfspace-summary: In a first phase we con-
struct a weighted (2ε/3)-approximation D by a sampling algorithm of Vitter [29], then
in the second phase we compact these samples by applying iteratively the merge step in
Lemma 5.1.

Theorem 5.4. For a stream of points in Rd , we can maintain a weighted ε-approx-
imation of size O((1/ε) log2d+2(1/ε)) for axis-aligned rectangles with probability at
least 3

4 .

Algorithm box-summary. Let K = c3dε−2 log ε−1, where c3 is a sufficiently large
constant. Assume for convenience that K is a power of 2. We partition the input stream
into buckets B0, B1, B2, The size of B0 is K , and then |Bi | = 2i−1 K for i = 1, 2,
From each bucket Bi , we draw a sample Di of size K , exactly as in the first phase of
Algorithm halfspace-summary.

We compress Di by the algorithm of Theorem 5.2 and prepare a sample Ai of size
k = c5ε

−1 log2dε−1, where c5 is a sufficiently large constant depending on d only. On
an initial portion D′i of Di , we maintain a partial sample A′i of D′i of size k log(K/k) =
O(ε−1 log2d+2 ε−1) according to Corollary 5.3.

When bucket Bi is complete, we prepare the sample A∗i of size k for the set
⋃i

j=0 Dj

for every i inductively: The base case is A∗0 = A0. Then for i = 1, 2, . . ., we construct
A∗i by merging A∗i−1 and Ai according to Lemma 5.1.

Proof of Theorem 5.4. We show that Algorithm box-summary maintains a required
summary. Let B = ⋃m−1

i=0 Bi ∪ B ′m and D = ⋃m−1
i=0 Di ∪ D′m similarly to the proof

of Theorem 4.6. We have seen that D is a weighted (2ε/3)-approximation of B with
probability at least 3

4 if c3 is large enough.
Following the steps in the proof of Theorem 5.2, Ai , i = 0, 1, . . . ,m − 1, is an

(ε/6)-approximation of Di with probability at least 1− ε/4 if c3 is sufficiently large. A∗i
is a result of inductive merges of i + 1 sample sets A0, A1, . . . , Ai .

By Lemma 5.1, merging A∗i−1 and Ai increases the approximation error by

(log2d(2k)/2k)·2i K . The total approximation error of A∗m−1 on the weighted set
⋃m−1

i=0 Di

is therefore εn/6+ (log2d(2k)/2k) · 2 · 2m−1 K ≤ εn/6+ (n/k) log2d(2k) ≤ εn/3. To-
gether with A′m , which is a weighted (ε/6)-approximation of D′m , we have a weighted
(ε/3)-approximation of D. This is also a weighted ε-approximation of B with probability
at least 3

4 .

6. Closing Remarks

We have studied the problem of approximate range counting among multidimensional
points in the data stream model, and presented deterministic and randomized summaries.
We have shown that one can maintain almost optimal size summaries for range spaces
whose dual shatter function is a bounded degree polynomial. Our deterministic schemes
in the last section offers almost optimal summary size for axis-aligned box ranges.
However, it relies on a halving step (Lemma 5.1), for which the space complexity of the

Range Counting over Multidimensional Data Streams 655

currently known deterministic or randomized algorithms exceeds the summary size. It is
an open problem to find almost linear-space exact or approximation algorithms for this
subroutine.

References

1. P.K. Agarwal. Range searching. In Handbook of Discrete and Computational Geometry (J. E. Goodman
and J. O’Rourke, eds.), pp. 575–598. CRC Press, Boca Raton, FL, 1997.

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. In
Proc. Conf. on Principles of Database Systems, pp. 1–16. ACM Press, New York, 2002.

3. A. Bagchi, A. Chaudhary, D. Eppstein, and M.T. Goodrich. Deterministic sampling and range counting
in geometric data streams. In Proc. 20th ACM Sympos. on Computational Geometry, 2004, pp. 144–151.

4. R. C. Baker. On irregularities of distribution, II. J. London Math. Soc. (2) 59 (1999), 50–64.
5. J. Beck. Irregularities of distribution, I. Acta Math. 159(1–2) (1987), 1–49.
6. J. Beck. Irregularities of distribution, II. Proc. London Math. Soc. (3) 56 (1988), 1–50.
7. J. Beck and W. Chen. Irregularities of Distributions. Cambridge University Press, Cambridge, 1987.
8. J. Beck and T. Fiala. Integer-making theorems. Discrete Appl. Math. 3 (1981), 1–8.
9. B. Chazelle. A functional approach to data structures and its use in multidimensional searching. SIAM J.

Comput. 17(3) (1988), 427–462.
10. B. Chazelle. The Discrepancy Method. Cambridge University Press, Cambridge, 2000.
11. B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed

dimension. J. Algorithms 21 (1996), 579–597.
12. B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension. Discrete

Comput. Geom. 4(5) (1989), 467–489.
13. M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. ACM SIGMOD

Record 30(2) (2001), 58–66.
14. T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Inform. Process. Lett. 33 (1990), 305–308.
15. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical Note 1998-011,

Digital Systems Research Center, Palo Alto, CA, May 1998.
16. J. Hershberger, N. Shrivastava, S. Suri, and Cs. D. Tóth. Adaptive spatial partitioning for multidimensional

data streams. Algorithmica 46(1) (2006), 97–117.
17. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984), 373–

395.
18. G.S. Manku, S. Rajagopalan, and B.G. Lindsay. Random sampling techniques for space efficient online

computation of order statistics of large datasets. ACM SIGMOD Record 28(2) (1999), 251–262.
19. J. Matoušek. Efficient partition trees. Discrete Comput. Geom. 8 (1992), 315–334.
20. J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10 (1993),

157–182.
21. J. Matoušek. Geometric range searching. ACM Comput. Surveys 26(4) (1994), 422–461.
22. J. Matoušek. Tight upper bounds for the discrepancy of half-spaces. Discrete Comput. Geom. 13 (1995),

593–601.
23. J. Matoušek. Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, Berlin, 1999.
24. J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, 2002.
25. J. Matoušek, E. Welzl, and L. Wernisch. Discrepancy and approximations for bounded VC-dimension.

Combinatorica 13 (1993), 455–466.
26. J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theoret. Comput. Sci. 12 (1980),

315–323.
27. S. Muthukrishnan. Data streams: algorithms and applications. Preprint, 2003.
28. V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to

their probabilities. Theory Probab. Appl. 16 (1971), 264–280.
29. J.S. Vitter. Faster methods for random sampling. Comm. ACM 27 (1984), 703–718.
30. J.S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Software 11 (1985), 37–57.

Received July 19, 2004, and in revised form July 20, 2005. Online publication September 12, 2006.

