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RANGE-DEPENDENCE OF THE HRTF FOR A SPHERICAL HEAD 

Richard 0. Duda 

Department of Electrical Engineering 
San Jose State University 

San Jose, CA 95192 
email: rod@duda.org 

ABSTRACT 

This paper examines the range dependence of the HRTF for a 
simple spherical model of the head in both the time-domain and 
the frequency domain. The variation of low-frequency ILD 
with range is shown to be significant for ranges smaller than 
five times the sphere radius. The impulse response explains the 
source of the ripples in the frequency response, and provides 
direct evidence that the Interaural Time Delay (ITD) is not a 
strong function of range. Time-delay measurements confbm 
the WoodworthLSchlosberg formula. Numerical analysis 
indicates that the HRTF is minimum phase. Thus, except for 
time delay, the impulse response can be reconstructed from a 
simple principle components analysis of the magnitude 
response. 

1. INTRODUCTION 

The human Head-Related Transfer Function (HRTF) varies with 
range as well as with azimuth and elevation. In particular, the 
low-frequency Interaural Level Difference (ILD), which is 
negligible at large distances, becomes large at close distances. 
This paper, which extends earlier work by Brungart and 
Rabinowitz [l], focuses on the range dependence of the sound 
pressure on an ideal rigid sphere due to a point source. Our 
purpose is to obtain a better understanding of the behavior of 
the head-related transfer function (HRTF) at close ranges. 

It is common experience that sounds from a source that is very 
close to one’s ear are not only louder but also contain more low- 
frequency energy than sounds from a distant source. The 
simplest model that explains these effects approximates the 
source by a point source and approximates the head by a rigid 
sphere. While this idealization is restricted to relatively low 
frequencies and obviously becomes problematic very close to 
the surface of the head, a quantitative understanding of its 
behavior provides insight into the more complex behavior of the 
HRTF for an actual human head and a distributed source. 

We present both theoretical and experimental results. We 
examine the behavior of the theoretical solution in both the 
frequency domain (the HRTF) and the time domain (the head- 
related impulse response, or HRIR). The time-domain solution 
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provides insight into some otherwise puzzling behavior of the 
HRTF. 

2. FREQUENCY-DOMAIN SOLUTION 

Rabinowitz et al. [2] present a formula for the pressure on the 
surface of the sphere due to a sinusoidal point source at any 
range r greater than the sphere radius a. Their solution is 
expressed in the frequency domain as an infinite series for the 
HRTF H(p,n,e), the ratio of the phasor pressure at the surface 
of the sphere to the phasor free-field pressure at the center of 
the sphere. Here p = r/a is the normalized range, F = w a / c is 
the normalized frequency (w is the angular frequency and c is 
the speed of sound), and 0 is the angle of incidence - the angle 
between a ray from the center of the sphere to the sound source 
and a ray from the center of the sphere to the observation point. 

We used the infinite series given in [2] to compute both the 
HRTF and the HRIR. The magnitude of the HRTF for a source 
at infiity is shown in Fig. 1. This classical result shows that 
the pressure on the sphere is the same as the free-field pressure 
at low frequencies. For normal incidence (El = O“), the pressure 
increases with frequency, rising about 6 dB at high frequencies. 
The critical frequency p = 1 corresponds to 624 Hz for the 
traditional “average head radius” of 8.75 cm. The magnitude 
response is roughly flat when 8 = lOO”, and falls off in a rather 
complicated fashion for larger 0. Near the back of the sphere, 
the response exhibits large ripples, and rises to a “bright spot” 
at the contralateral point. 
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Figure 1: Magnitude response for a source at infinity 

Brungart and Rabinowitz [l] assumed that the ears were at 
opposite ends of a diameter, and computed how the ILD and 
ITD vary with range. Following Blauert [3], we placed the ears 
back an additional 10” and computed the ILD surfaces shown in 
Figs. 2-4. The ILD in Fig. 2 for p = 100 is less than 3 dB for l.~ 
c 1. This begins to change significantly when p is less than 5. 
For example, the low-frequency ILD for p = 2 can exceed 10 
dB (Fig. 3), and can exceed 20 dB for p = 1.25 (Fig. 4). 

Figure 2: ILD for p = 100 and the ears at *lOO” 
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Figure 3: ILD for p = 2 

Figure 4: ILD for p = 1.25 

3. IMPULSE RESPONSE 

As we explain ahead, there is good evidence that the HRTF for 
a sphere is minimum-phase, so that the HRIR can be recovered 
from the magnitude response. It can also be obtained directly 
by inverse Fourier transforming the transfer function, 

where r is the normalized time given by T = c t / 2 A a . Fig. 5 
shows the results of evaluating the transform numerically for 
the case p = 100. Note that as the angle of incidence 8 
approaches 180”, the bright spot becomes prominent in the 
HRIR. Moreover, the visual appearance of the graph strongly 
suggests that the impulse “ridge” continues on through the 
bright spot. 
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Figure 5: The HRIR for p = 100 

One can interpret the overall response as being the result of two 
waves - one propagating around the right side of the sphere, 
and the other propagating around the left side, with the bright 
spot emerging where these two waves meet. Although this is a 



very rough approximation, it explains why the responses for 
incidence angles between about 150” and 170” contain two 
prominent pulses in the time domain, and it also explains the 
emergence of a corresponding strong pattern of ripples in the 
frequency domain. 

Fig. 6 shows the HRIR for p = 1.25. As the source is brought 
closer to the sphere, the response becomes stronger on the near 
side and weaker and broader on the far side. In addition, the 
difference between the time of arrival at the near side and at the 
far side is somewhat smaller at long ranges (Fig. 5) than at 
close ranges (Fig. 6). 

When we used the MATLABW rceps function to compute 
minimum-phase reconstructions of the impulse responses in 
Figs. 5 and 6, the only significant change was the expected time 
shift. While we do not have a mathematical proof, we believe 
that this is strong evidence that the impulse response of the 
sphere is minimum phase. 
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Figure 6: The HRIR; range is 1.25 times the sphere radius 

4. TIME DELAY 

With transfer functions, it is common to use the phase and/or 
group delays to define the arrival time of a pulse. The phase 
delay for the sphere is frequency dependent, being 50% greater 
at low frequencies than at high frequencies [4]. With experi- 
mentally measured data, it is convenient to define the arrival 
time by up, the time at which the pulse first exceeds p times 
its maximum amplitude. We used this same definition is used 
to compute the normalized arrival time for the computed 
HRIR,sothatArp=cAtP/2na,withp=0.15. 

The open circles in Fig. 7 show how this normalized arrival 
time varies with the angle of incidence for two different 
normalized ranges, p = 1.25 and p = 100. These two curves 
bound the results at intermediate ranges. Since AT is the 
(normalized) difference between the time of arrival at the 
surface of the sphere and the free-field time of arrival at the 
center of the sphere, when 0 = 0, AT is negative for all ranges. 
At larger azimuths, AT becomes larger as the source approaches 
the sphere. In addition, the interaural time differ-ence (ITD), 

which is given by Ar(@tlOO”) - Ar(@lOO”), also becomes larger 
as the source approaches the sphere. 
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Figure 7: Normalized arrival time for three different ranges 

A formula due to Woodworth and Schloskrg can 
generalized to provide useful approximate equations for 

be 
the 

time delay and lTD [3]. The normalized time difference As 
between the time that the wave reaches the observation point 
and the time that it would reach the center of the sphere in free 
field is given by 

where 

e. = cos-‘(l/p) ) p> 1. (2) 

The solid-line curves in Fig. 7 show the predictions of this 
simple model for p = 1, 1.25, and co, and are within 2.4% of 
the 15%~rise-time results. 

Finally, Fig. 8 shows bounds on the ITD computed from (1) and 
(2) for ears located at 8 = k100”. Bringing the source closer to 
the sphere increases the I’ID as much as 25.7% (0.0908 
normalized units, or 146 p.s for an 8.75-cm head radius). 
Brungart and Rabinowitz (1996) obtained similar results using 
the phase delay. They pointed out that humans are insensitive 
to time delays above 700 us, and the results shown here support 
their conjecture that changes in the ITD probably do not provide 
significant information about range. 
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Figure 8: Upper and lower bounds on the normalized ITD 

5. EXPERIMENTAL MJZASUREMENTS 
We have been using the Crystal River Engineering SnapshoP 
system to measure HRIR’s for human subjects. As an 
experiment, we decided to use this system to repeat Wiener’s 
measurements of a sphere [5]. An Etymotic Research ER-7C 
probe microphone was inserted in a hole drilled through an 3.6- 
kg, 10.9-cm radius bowling ball (for which p = 1 corresponds 
to 500 Hz). The ball was mounted on a 1.3-cm diameter 
vertical rod which supported it 1 m from the floor of the 
anechoic chamber. Measurements were made for p = 1.25, 1.5, 
2, 3, 5, 10 and 20. To reduce perceptually irrelevant fine 
structure, the squared magnitude of the free-field compensated 
HRTF was smoothed with a 10% bandwidth auditory filter. 

An example of the resulting frequency response curves is shown 
in Fig. 9. For comparison, the solid lines show the smoothed 
theoretical results. Similar results were obtained at other angles 
and ranges, although significant discrepancies began to appear 
when p < 2 and the source could no longer be approximated 
well by a point source. Fig. 10 shows the corresponding HRIR. 
Again, the results are remarkably similar to the theoretical 
predictions (cf. Fig. 5). 
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Figure 9: Measured and theoretical HRTF magnitudes, p = 20 
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Figure 10: Measured impulse response, p = 20 

Finally, Fig. 11 shows the time delay computed from the 
experimentally measured HRIlYs using the 15% rise-time 
definition for the cases r = 2 (open circles) and r = 20 (x’s). As 
in Fig. 7, the solid lines are computed using the 
Woodworth/Schlosberg formulas. Once again, these formulas 
provide a very good approximation. 

6. CONCLUSIONS 

Both theory and experiments show that the HRTF of a rigid 
sphere starts becoming sensitive to range when the ratio p of 
the range to the radius is less than 5. The impulse response 
explains the source of the ripples in the frequency response, and 
provides direct information about the ITD. In particular, the 
ITD can be accurately computed by the generalized 
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Figure 11: Measured arrival times compared to theory 

Woodworth/Schlosberg formula, and is not very sensitive to 
range. By contrast, the ILD is very sensitive to range when the 
source is near, and becomes significant at quite low 
frequencies. Numerical analysis indicates that the HRTF is 
minimum phase. Thus, except for time delay, the impulse 



response can be reconstructed from a principle components 
analysis of the magnitude response. 
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