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Abstract 

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the 

ultimate goal of computer vision. Explicit depth information about the scene is of tremen- 

dous help in segmentation and recognition of objects. Range image interpretation with 

a view of obtaining low-level features to guide mid-level and high-level segmentation and 

recognition processes is described. No assumptions about the scene are made and algorithms 

are applicable to any general single viewpoint range image. Low-level features like step edges 

and surface characteristics are extracted from the images and segmentation is performed 

based on individual features as well as combination of features. A high level recognition 

process based on superquadric fitting is described to demonstrate the usefulness of initial 

segmentation based on edges. A classification algorithm based on surface curvatures is used 

to obtain initial segmentation of the scene. Objects segmented using edge information are 

then classified using surface curvatures. Various applications of surface curvatures in mid 

and high level recognition processes are discussed. These include surface reconstruction, 

segmentation into convex patches and detection of smooth edges. Algorithms are run on 

real range images and results are discussed in detail. 
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Chapter 1 

Introduction 

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the 

ultimate goal of computer vision. Most of the effort in this regard has gone in extracting 

three dimensional information from intensity images and arriving at a meaningful and suf- 

ficiently unambiguous interpretation of the scene. However, the problem with monocular 

vision is the loss of 3-D information thereby making the interpretation process undercon- 

strained. Shape from X methods have been widely studied in last two decades to extract 

depth of the scene using texture,shading,color,contour and motion. Depth extraction from 

stereo images is computationally expensive and results in sparse depth maps requiring re- 

construction techniques for further interpretation. Range images on the other hand are 

obtained by realtime depth sensors and provide dense 3-D information of the visible sur- 

faces. 

Range images are dense depth maps measuring the distance of the physical surface from 

a known reference plane. Different types of ranging methods are available to obtain range 

information according to the application. Magnetic resonance imaging systems give true 

3-D images, i.e, all the points in 3-D space are specified. Visible surfaces can be scanned by 

time of flight laser range finders and amplitude-modulated laser range finders. The most 

common and cheapest are the triangulation-based scanners. Structured lighting systems 

scan the scene with a laser stripe to obtain depth information of the visible surface in a 



calibrated workspace. Research interest in range image processing has grown tremendously 

in recent years due to increasing availability of structured lighting range sensors. While 

these sensors can be employed in closed environment only and suffer from other drawbacks 

(like shadows, inability to sense highly reflective surfaces and some colors) they are useful 

for real-time scanning of good quality at  low cost. 

The range images dealt with in this work are of z(x, y) type, (i.e., monge-patch surfaces) 

where each pixel gives the Z-depth at the coordinate x and y. Since range images (or 

depth maps) contain explicit 3-D information about the scene it is expected that surface 

description and object recognition should be easier to handle with range images. However 

if the scene is quite complicated, then the problem cannot be solved that easily by using 

range images as one might think. Intensity information can be used to complement range 

information where ambiguity arises in interpretation, but this involves registration and 

correspondence problems and may even complicate the analysis. 

Representation of range images is just like that of reflectance images. A two dimensional 

array of depth values specifying (x,y,z) coordinates with respect to a known coordinate frame 

is enough for most applications. This allows many low level intensity image processing 

techniques to be directly used to process range images by interpreting the pixel value as 

'depth9 instead of 'reflectance value'. Contrast and brightness however have to be interpreted 

as surfaces of varying depths. 

We have addressed the problem of object and surface segmentation in this report. Seg- 

mentation is essentially goal oriented. It can be conveniently divided into two processes : 

initial segmentation and final segmentation. Initial segmentation process is a result of local 

computations done in a known neighborhood of every pixel in the image. The final segmen- 

tation process does refinement of the initial segmentation using global constraints to arrive 

at a global interpretation of the scene. We have not assumed any domain knowledge or lim- 

ited the objects to be of certain type. Our goal is to study boundary based segmentation, 

surface based segmentation and integration of the two methods. It is possible to segment 

the scene in flat, convex and concave subparts with detailed description of individual parts 

using boundary and surface based techniques. 



An important aspect of the object recognition problem is the robustness of the recogni- 

tion approach. It is essential that algorithm be size-invariant, position invariant, orientation 

invariant and be able to recognize par t idy  occluded objects. As observed by Besl and Jain 

[9] it is known from the results in differential geometry that Gaussian and mean curva- 

ture are visible-invariant features of a surface region in the sense that they do not change 

under viewpoint transformations that do not affect the visibility of that region. When a 

surface region is visible, its curvature measurements are invariant to changes in surface 

parametrization and to  translations and rotations. The invariant property is important for 

3-D object recognition. Since our final segmentation process will be dependent on the local 

computations it is necessary that the low-level features be invariant. 

While these two approaches are domain independent, any high level recognition approach 

like model based interpretation makes use of domain specific knowledge. We use a high 

level volumetric approach using superquadrics described in [23] to illustrate the usefulness 

of initial segmentation in high level vision. Figure 1 presents the paradigm explored in this 

work. 

It is clear that processing of range images can be divided into three major stages : low 

level, intermediate level and high level. After range image is acquired from the sensor, it 

needs to be smoothed before any useful operations can be performed on it. Though it creates 

localization problems, it reduces the effect of quantization which is important for surface 

fitting. Low level processing is data-driven with the objective of obtaining useful local 

features that can be used by higher processing stages. Three dimensional edges constitute 

important features. We have used the Laplacian of Gaussian operator of [24] to detect step 

edges. Smooth edges have a different significance in case of range images and are more 

difficult to detect. This will be discussed in chapter 3 in detail. 

Computation of curvature involves computing first and second order derivatives at  every 

pixel in the image. Based on curvature signs, initial segmentation of the scene is performed. 

This is further improved by region growing done with global constraints. Haralick et a1 [6] 

have described a mathematical treatment for describing the topographic primal sketch of the 
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underlying gray tone intensity surface of a digital image. They use first and second direc- 

tional derivatives to classify each picture element as one of peak,pit,ridge,ravine,saddle,flat, 

and hillside. Michael Brady eta1 [4, 5, 71 describe a study of classes of curves as a source of 

constraint on the surface on which they lie, and as a basis for describing it. Their approach 

gives a curvature primal sketch of the surface. Tracing lines of curvature in real range 

images is very unreliable due to the low x-y resolution of the scanner and quantization and 

other sensing errors. Besides it is noise sensitive and computationally expensive. Besl and 

Jain [25, 9, 131 have done a comprehensive study of invariant surface characteristics and 

presented an algorithm for variable order surface fitting for image segmentation. They have 

summarized the field of 3-D object recognition in their excellent survey [3] 

A scale-space based algorithm for extraction and representation of physical properties of 

a surface, using curvature properties of the surface is discussed in Fan,Medioni and Nevatia 

[14]. Nackman [19] has described the two dimensional critical point configuration graphs 

for describing the behavior of smooth functions of two variables by extracting peaks (local 

maxima), pits(1ocal minima) and passes (saddle points) of a surface. Our approach is to not 

to go into too much detail of the surface but to label the surface as flat,convex and concave 

accurately. Thus local variations are ignored in favour of a more global interpretation. Yang 

and Kak [33] describe an algorithm to analyze the topmost object in a pile. They compute 

derivatives by fitting B-splines and use local curvature information to label the object as 

flat and curved. Their method can only handle one type of surface for the topmost object in 

the scene and has other problems in assuming that step edges form a closed contour, which 

is not true in a general range image as described in chapter 3. A new approach for surface 

classification using characteristic contours is proposed by Sethi and Jayaramamurthy [20]. 

Characteristic contours are defined as the loci of the points where the surface nolinals are at 

a constant inclination to a selected reference vector. However it requires segmented surface 

and normal vector at every point, which limit its usefulness to surface classification in final 

stage of recognition process. 

Their are specific methods available to process images acquired using a light-stripe 



rangefinder. Smith and Kanade [34] have done contour classification of light-stripes to pro- 

duce object centered 3-dimensional descriptions. Another method by Martin Herman [35] 

extracts detailed, complete descriptions of polyhedral objects from light-stripe rangefinder 

data. 

Segmentation of scene into surface primitives is useful in many applications. Most of 

the techniques discussed above involve curvature determination. Hebert and Ponce [8] have 

used surface normals (the Extended Gaussian Images) to classify surfaces into three simple 

primitive surfaces: planar,cylindrical, and conic regions. Duda, Nitzan and Barrett 1361 have 

presented an algorithm for detecting planar regions using registered range and reflectance 

data. 

Most of the high level recognition approaches include model matching. Kuan and Dra- 

zovich [37] have represented the objects as viewpoint-independent volumetric model based 

on generalized cylinders. They perform feature-to-model matching based on low-level fea- 

tures derived from range imagery. Constructing the 3-D model of an object involves in- 

tegrating data or descriptions of an object obtained from multiple views and representing 

this intergrated data in a coherent manner. Vemuri and Aggarwal [38] have presented an 

algorithm for automatic construction of models by determining the orientation of the object 

in the calibrated workspace and representing the object in cylindrical coordinates. Their 

method does not require correspondence to be established but requires registered intensity 

and range data of the scene while building the model. We have used superquadric models 

to  recognize segmented objects. The classification procedure matches superquadric param- 

eters with the parameters of the identifiable models. Since models are well defined by eleven 

superquadric parameters, there is no need to build models of the objects in advance. 



Chapter 2 

Acquisition and Preprocessing of 

Range Images 

Range images obtained by different scanners differ in the format of the output. In order to 

apply low level techniques to the image it is necessary that the image points be quantized 

in Z-depth format with equal resolution factor in X and Y direction. Once converted into 

Z-depth format the image is smoothed.This chapter discusses some practical aspects of real 

range image processing which are important if any useful results are desired. 

2.1 Range Image Acquisition 

The test images.used in this work were acquired by structured lighting triangulation based 

scanners. Figure 2 shows the ranging geometry of a typical range sensor. The trigonometry 

of a sensor will not be described here. 

Either the laser stripe moves and scans the scene or the workspace moves under a vertical 

laser stripe. If the viewpoint of the sensing camera is not the same as the laser then shadows 

(regions with missing data) are obtained. In order to discriminate between shadows and 

background, (region of known depth on which object is sitting) background is assigned a 

nonzero depth. 



Laser Source 

Direction of scanning 

(a)  Ranging using structured l i g h t i n g .  

+ ydim 

(b) Z-depth format o f  range images 

Figure 2: Ranging geometry of a structured lighting scanner and Z-depth format 



Contrary to the popular assumption made by researchers, it may not always be possible 

to represent the visible surface in Z-depth format, viewing perpendicular to the background. 

To be able to represent a.ll the scanned points in 2-depth format, it is necessary to digitize 

the scene watching parallel to camera's line of sight. This may require rotating the scene 

to align the Z axis along the line of sight of camera thereby rotating the background which 

is no longer of constant depth. The segmentation procedure should take this into account. 

Also, this makes the processing viewpoint dependent. To avoid the trouble arising due to 

this, it is often convenient to fix the viewpoint at the cost of losing some scanned points. 

This problem is acute with images obtained from white scanner where f (2 ,  y) is not unique. 

The solution is to segment the scene from background and then rotate the scene to obtain 

the Z-depth image. 

2.2 Scaling of Range Images 

Sampling interval of the scanners depends on the thickness of the laser stripe, value of laser 

stripe increment and resolution of the camera. More often than not vertical resolution (along 

Y axis) is different from horizontal resolution (along X axis). Thus the sampled points are 

not spaced uniformly in X and Y direction. Since we apply neighborhood operators during 

low level processing of images, it is necessary to rescale the images uniformly in both 

directions. 'We have rescaled the 2-depth image by fitting a plane on three neighborhood 

points. Figure 3 illustrates the difference between unscaled and uniformly scaled images. 

2.3 Smoothing of Range Images 

Depth resolution of a range image is an important parameter in low level processing. Range 

scanners usually have depth resolution good enough for most applications. In fact a res- 

olution of 0.01 inchlpixel is too fine and noise sensitive for surface fitting purposes. The 

problem comes in quantization of z values. If entire scan depth is quantized within 8 bits 

(most convenient representation), effective depth resolution is drastically reduced thereby 



Figure 3: 2-depth format images. left :original resolution. right : uniformly scaled 

increasing the quantization error. Since surface fitting is very sensitive to quantization 

error, we have minimized it by following two step procedure : 

1. Original depth resolution is preserved by storing the depth value unscaled in 2 bytes. 

This allows 64k possible quantization levels. Scaling along Z axis is done only when 

needed. 

2. Image is smoothed using a Gaussian operator and smoothed values are stored in 

floating point buffers so as not to lose any precision. 

One way to reduce noise is to perform median filtering of the image. It ensures that 

isolated noise is reduced and edges are not smoothed. 

Our approach is to study the scale-space behavior of range images. We have used 

Gaussian operator to smooth images. The Gaussian function in two dimensions is given 

by : 



Since it is separable in X and Y directions, one dimensional Gaussian operator is applied 

separably on the image. Smoothing is controlled by the size of the operator, which is 

determined by a. Gaussian operator has some nice properties that make it a unique operator 

for our purposes. 

Yuille and Poggio [39] have proved that the Gaussian low-pass filter is the only filter 

with a nice-scaling behavior for linear derivative operators like the laplacian operator. It 

also satisfies the following conditions : 

1. Filtering is shift-invariant and therefore, a convolution. 

2. The filter has no preferred scale. The filter is properly normalized at all the scales. 

3. The filter recovers the whole image at sufficiently small scales. 

lim F(z ,  u )  = S(z) 
u-+o 

where S(x) is the Dirac delta function. 

4. The position of the center of the filter is independent of scale of the filter. Otherwise 

zero crossings of a step edge would change their position with change of scale. 

5. The filter goes to zero as 1x1 + oo and as a -, oo. 

We have studied the behavior of increasing sigma value on edge detection, surface char- 

acterization and segmentation. As a value increases, window size of the Gaussian operator 

increases and details are lost. Figure 4 and figure 5 show the perspective plots of a range 

image before and after smoothing respectively. 

Minor surface perturbations are smoothed easily. But the undesirable effect of uniform 

application of Gaussian operator is smoothing of all types of edges. Step edges (chapter 3) 

are smoothed to  form roughly convex and concave subparts (chapter 4).This complicates 

edge detection, specially detection of smooth edges (concave and convex edges) that are 



Figure 4: 3-D perspective plot of original image 

Figure 5: 3-D perspective plot of smoothed image ( a = 1) 

12 



further smoothed. Thin objects tend to merge into the underlying objects, making seg- 

mentation difficult. As will be discussed in chapter 3, as we go up the scale objects start 

merging. We have found sigma value of 1 ( window size 5 x 5 ) to be best suited for our 

experiments. In surface based segmentation technique, smoothing alters the local behavior 

of the surface, but makes the result more reliable, specially away from the edges. Step 

edges are shown as adjacent convex and concave regions. Segmentation using these effects 

of smoothing is discussed in chapter 4 in detail. 



Step Concave roof Convex roof Convex ramp concave ramp 

Figure 6: Edges in range images 

allows boundaries to be read off as zero crossings of the LOG operated image. VTe'll discuss 

the significance of the LOG operator in view of range images. M'hile step edges pose no 

particular problem, smooth edges are difficult to detect by local operations. In range image 

segmentation it is of particular interest that the a pile of objects be segmented into convex 

subparts. This requires detection of concave edges that will delimit the convex subparts. 

Mitiche and Aggarwal [28] have presented a probabilistic approach of detecting the convex 

and concave edges by using domain specific constraints. 

Though 3-D edges are quite useful for object recognition, there are some inherent limita- 

tions in edge information that make their use limited to aiding the higher level recognition 

processes along with a host of invariant features. Edge classification depends on the orienta- 

tion of object in 3-D space and is therefore not an invariant feature. Thus edge information 

cannot be the only feature used by the recognizer and it has to be used in conjunction with 

other features. However, as will be seen later, edge information is good enough for early 

segmentation of range images because the requirement of invariant features does not apply 

to the initial-segmentation process. 

In case intensity information is available range data can be complemented by reflectance 

data to pick up weak 3-D edges like the step edges created by overlapping thin objects. Wong 

and Hayrapetian [32] used range information to segment intensity images. Gil, Mitiche 

and Aggarwal [27] have described experiments in combining intensity and range edges. 

While intensity images are certainly useful in detecting edges in the scene, they need to be 

registered in the same way as range images to avoid correspondence problem. This may 
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Figure 7: Derivatives of a cross-section of a range image 

possibility of extracting smooth edges using the v2G operator. 

The Gaussian distribution in one dimension is defined as : 

The first and second derivatives are : 

The cross-section of a range image and the profiles of first and second order derivative 

are shown in figure 7. 

In two dimensions the LOG operator becomes : 



Figure 8: 3-D edges detected in a synthetic range image. : upperleft original im- 
age. upperright thresholded step edges. lowerleft thresholded convex edges. lowerright 

t hresholded concave edges. 

It is clear that behavior of second order derivatives is unique at every type of change in 

surface. There are positive spikes at concave ramp edge, negative spikes at convex roof and 

ramp edges and zero crossings at jump edges. However there are serious practical limitations 

in using this response to  detect concave and convex edges. The response at these edges is 

dependent on the convexity or concavity of the edge which is roughly the measure of angle 

at which the two surfaces meet. If the angle is too small and change in depth is gradual 

as in most situations, the response would be below or same as that due to local surface 

changes. See figure 8 for the step, convex and concave responses obtained in a synthetic 

range image having planar regions. Even in synthetic range image the responses deteriorate 

as image was smoothed and smooth concave and convex edges virtually disappeared. 

Thresholding of zero crossings is necessary in case of range images to avoid local surface 

perturbations. Responses due to weak concave and convex edges would then be filtered. 

Zero-crossings generated by weak step edges may also lie below the thresholding value. In 



range images, Value of zero-crossing has direct relationship with the magnitude of depth 

discontinuity. Thus selection of a thmshold effectively restricts the minimum detectable 

depth. An object with less than acceptable height would be invisible in the edge image. 

As observed in the previous chapter, it is absolutely necessary to smooth an image before 

attempting any local operation it. LOG operator gives following image : 

which can be written as : 

Degree of smoothing depends on the value of sigma, which controls the size of the 

window. Larger the sigma, greater is smoothing. While this effect is interpreted in intensity 

images as blurring and hence reduction of details, In range images it is seen in terms of 

smoothing the surface at the boundaries in addition to reduction of details. This results in 

all types of boundaries to become smoothed and can have undesirable effects on boundary 

detection and surface based segmentation. We have observed that with increasing scale 

value, range images loose vital boundary information presenting difficulties in edge based 

segmentation. Empirically determined window size of 5 ( sigma value = 1 ) is chosen for 

processing all the images. 

The algorithm for edge detection is given below. 

1. Read in the range image. 

2. Convolve the image with Gaussian operator separably in X and Y direction. 

3. Convolve the G(x,y) * I(x,y) image with Laplacian operator: 



4. Label the Zero-crossing ( with maximum value ) at every pixel in the V2G(x, y)*I(x, y) 

image. Also mark the direction along which maximum crossing value is found. 

5. Threshold the image at a predetermined value to label pixels as belonging to step 

edges. 

Figures ll(b),12(b) and other figures show the magnitude of zero-crossings detected in 

range images. 

It is observed that threshold selection is important in defining the acceptable depth, 

which in turn is determined by the amount of detail seen in the filtered image. Also the 

thresholding value is different at different scales. Threshold value varies inversely with 

smoothing parameter (a).As we go up the scale-space the need for thresholding decreases. 

Next we discuss a segmentation technique based on the step edges detected by the LOG 

operator. 

3.2 Segmentation of Range Images using edge information 

Segmentation of objects in a range image depends on actual requirements. One should 

therefore define the problem of segmentation clearly in the relevant context. In order to 

recognize an object it is necessary to isolate the object, which is not a trivial task. In a 

practical environment where objects can be of any size and shape, segmentation of individual 

objects can be a difficult task. Objects in a range image will always be partially occluded 

making the problem of segmentation and recognition difficult. If the scene consists of a 

heap of objects and we have to recognize one object then our problem can be simplified by 

considering the object of immediate importance, the one on the top of the heap. But this 

method has only specific applications like picking parts out of a bin etc. and is not useful 

as a general segmentation strategy. 

Another approach to a complete segmentation is to segment the picture according to 

the requirement. Sometimes image segmentation into different surface types may be useful 



and at other times convex objects need to be segmented. Whatever the method, a seg- 

mentation process working on local information cannot always give requisite results. In 

fact, segmentation at lower-level of processing can at best give locally valid results which 

may be conflicting from global point of view. Thus a robust segmentation process has to 

work with higher stages of processing to yield globally valid results. This introduces the 

concept of feedback from higher stages so as to work in a closed loop with the goal of object 

recognition. Then segmentation can be considered as a part of object recognition stage. 

As discussed before, 2nd order derivatives give enough information to delineate objects 

at the step boundaries. We will develop an algorithm for segmenting the topmost object in 

a heap of arbitrary objects. 

First stage of segmentation process involving isolation of objects from background can 

be easily accomplished by thresholding the image at known background depth. The diffi- 

cult part is to identify an individual object from the heap of objects. At this point it is 

essential to  define what is meant by an 'individual object'. An object can be a complex 

combination of various 'primitive objects' like cube, sphere, cylinder etc.Some important 

questions need answering here before any further progress can be made : What are the end 

boundaries(edges) of the object and what are the internal boundaries of the object and how 

to  distinguish between them ? 

Different types of 3-D edges are jump edges, concave roof edges, concave ramp edges, 

convex roof edges and convex ramp edges. Considering any of these edges as the internal 

or external boundary of the object is going to put ,restrictions on the object types that 

can be segmented. For example, a jump edge ( Unless it is an occluding edge against the 

background) need not be the end boundary of the actual object. Since the segmentation 

process is essentially a local operation and no other knowledge is used this problem cannot 

be solved at this segmentation level. There are following solutions to this problem : 

1. Make assumptions about the type of the objects. For example, assume the topmost 

object to be convex. This is a very strong assumption and requires convex internal 

boundary information. As noted before, this information is difficult to derive using 



second order derivatives. We will see in next chapter, how surface characterization 

techniques can be used to approximate the presence of smooth internal boundaries of 

an object. 

2. a priori knowledge about the scene. But this is against our approach towards a general 

and robust segmentation algorithm. 

3. Feedback from higher stages of object recognition to eliminate need for a priori knowl- 

edge and to relax the strong assumptions made at low-level segmentation stage. Since 

higher levels of object recognition are global processes and may have knowledge about 

the domain, a closed loop segmentation procedure is bound to perform better than 

one having no feedback. 

Thus to achieve a reliable segmentation of the initial scene, we will assume that the top- 

most object is delineated by jump boundaries. This may not always be true as two objects 

can join at  convex or concave edges or one object may merge into next one due to negligible 

thickness of the object at the point of contact. This means that local information cannot 

give perfect segmentation in all the cases. In such cases we need higher level processing to 

figure out the right segmentation of the scene. The segmentation based on external bound- 

ary information will give only an initial estimate of segmentation. This estimate is reliable 

to the point that it can distinguish between objects of predetermined depth. 

In the context of invariant object recognition it is important to note that step boundaries 

may vary with orientation of the object. Thus they are used only to segment the object 

and not to recognize the object. We will discuss the results of recognition and classification 

of the segmented object using the superquadric technique developed by Franc [23]. 

The block diagram of segmentation and classification process is shown in figure 9 

A practical problem with using zero-crossing as step boundaries is that they do not form 

closed contours. The boundaries delineating the object may not be completely enclosing 

the object, resulting in region growing process to overflow from the object and include the 

neighboring object as part of the object. This drawback renders the final segmentation 

result very unreliable. Yang and Kak [33] use a priori knowledge about the width of the 
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object and contour tracking to extract the closed contour surrounding the object. Their 

method does not guarantee success in all the cases. David Heeger [26] has proposed a 

computational approach to gap filling. It is computationally expensive and not suited for 

our purpose since we want to avoid explicit contour tracing in the entire image and want 

the region growing method to take care of it. Peter Allen [29] has used gap filling method 

based on contour growing proposed by Nevatia and Babu [30]. They perform gap filling on 

the entire scene using the predecessor-successor graph of all connected contours.See Peter 

Allen's Ph.D. thesis for details. Contours are then merged based on the requirement of 

merging N pixel gaps. This approach is again computationally expensive. Peter Allen 

observes that filling of at most two pixel gaps is acceptable because of the ambiguities 

resulting with three or more pixel gap-filling requirement. We have implemented two pixel 

gap f a n g  by constraining the region growing process near the boundaries, thus avoiding 

the explicit gap filling stage. 

One and two pixel gap filling is accomplished by simply requiring that a pixel having a 

boundary pixel in its &neighborhood be not grown recursively. Instead, the pixel and the 

boundary pixel are marked as grown. Figure 10 illustrates gap filling in one instance. 

Thus we are able to avoid the contour tracing explicitly to fill gaps. Three or more pixel 

gaps cannot be adequately handled by gap-fillers. Some sort of post processing is necessary 

to further segment the segmented object in this case. One way is to trace all the boundary 

pixels of the segmented object and use concavity information to segment the object into 

parts. This approach is being implemented and will not be discussed here. 

The algorithm for segmentation is given below : 

1. Read in the original range image I(x,y) and V2G * I(x,y) image. 

label-val = 0 

2. Segment the objects from background by thresholding at background depth ( supplied 

by the user). In case background is not of uniform depth, a plane can be fitted to 

represent the background and threshold the objects from the scene. 

3. Locate the 3x3 window with maximum height by averaging the pixel values in 3x3 
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window at every pixel in the range image.This gives the seed region for region growing. 

Clearly the window lies on the topmost object. If there are more than one heap, then 

also only one seed region is obtained. 

4. label-val = label-val + 1 

5. Grow the seed region recursively in a l l  8 directions. For gap filling procedure to work 

it is necessary to grow pixels in &neighborhood. Let pij be the pixel being grown . A 

pixel pij in &connected neighborhood of pi, is not grown under one of the following 

conditions : 

(a) depth($;,) < =background-t hreshold 

(b) pij is already labeled. 

(c) If Qij, any pixel in &connected neighborhood of fij satisfies : 

l ~ p l a c i a n ( ~ ; ~ )  > = edge-t hreshold 

Then pij is l-pixel distance from an edge pixel and likely to be in a gap. Make : 

label($ij) =  label(^;^) and 

label(Qii) = label(pij). 

6. If number of pixels in the extracted region < acceptable size then region is invalid else 

it is valid. 

7. If region is valid then determine supporting points of the region. 

8. The region extracted in the first pass is topmost region. Subsequent regions are grown 

from top to bottom, left to right. If any more pixels are left to be processed then pick 

up any unprocessed pixel and go back to step 5 to grow region. 

9. Output topmost region, all valid regions and supporting points in separate image files. 

3.3 Segmentation Results 



Figure 11: Segmentation: (a) original image from RCA. (b) Edges detected. (c) topmost 
object. (d) all segmented objects 



Figure 12: Segmentation:(a) original image from RCA. (b) Edges detected. (c) topmost 

object. (d) all segmented object 



Figure 13: Segmentation: (a) original image from grasp lab scanner. (b) Edges detected. 
(c) topmost object. (d) all segmented objects 



Figure 14: Segmentation: (a) original image from RCA. (b) Edges detected at a = 1. (c) 

segmented parts of one object at a = 1. (d) Segmentation at a = 2, for the same threshold 

value. 



Figure 15: Segmentation at different scales: (a) image smoothed at a = 2.0. (b) 

objects segmented. (c) : image smoothed a t - a  = 3.0. (d) objects segmented 



The programs are written in C and implemented on a VAX-785 running UNIX . Ikonas 

graphics and PM format for images are used in all programs. Images are acquired from 

two sources. Most of the images used as examples are from RCA range image database 

and remaining are scanned by Grasp lab's range scanner. All the images are digitized in 

2-depth format. RCA images have better ( 12 bits/pixel ) resolution than Grasplab images 

(8 bits/pixel). Hence more detail is seen in the former. It makes difference in detection of 

thin objects. Due to  different Z resolution of two scanners, we have used different threshold 

values for the two sets of images. All the images are smoothed uniformly with Gaussian of 

a = 1 (window size = 5 x 5). Zero-crossings of LOG operator are thresholded to remove 

response due to minor surface perturbations. The threshold at a given a value also limits the 

thickness of objects that can be segmented. Threshold values are determined empirically, 

since histogram of zero-crossings cannot be used in determining threshold automatically 

as is done in intensity images. However threshold value remains same for all the images 

acquired from the same source. This is true for all the empirically determined parameters 

reported in this thesis. Background value is also known to the program and is constant given 

a scanner. Results of processing the images are in figures 11, 12,13 and 14. In figure 11 all 

the objects are segmented correctly. The topmost object is a Cylindrical object. Figure 12 

shows merging of objects because of very weak step boundary information. Figure 13 shows 

results of segmentation on the image obtained from grasp lab scanner. A constant offset of 

100 is added to  original image depth values and zero-crossings are enhanced for displaying 

purposes. Figure 14 exhibits different results at two scales for the same edge threshold. 

The scene has single object, a box with string tied around it, so that the box is divided 

into 4 partitions. Because of the high depth resolution of the image, edge information due 

to  string is enough to segment the box into three parts at  a = 1 (figure 14(c)). Increasing 

the a value to 2, removes the details of the string and whole visible surface is recovered 

(figure 14(d)). 

To study the effect of increasing sigma value on zero-crossing, one of the multiple object 

images is processed for a = 1,2,3. Note that objects start to merge as sigma increases, 

with thin objects undetectable at a = 2.(Figures 11, 15) 



3.4 Recognition of segmented objects using Superquadrics 

The surfaces extracted by the previous algorithm can be classified as one of the eight basic 

surface types. We will discuss this classification approach in detail in next chapter. In this 

section we will describe a high level recognition and classification method that classifies the 

segmented object into four broad categories. 

We have used superquadric model recovery method implemented by Franc [23] to recog- 

nize the segmented object in a range image. Details of the procedure for superquadric fitting 

are discussed in Franc's Ph.D. thesis. Superquadrics are a family of parametric shapes that 

can be used as primitives for shape representation in computer vision [31]. Superquadrics 

are like lumps of clay that can be deformed and glued together into realistic looking models. 

However, we will consider only non-deformed superquadric models for classification of the 

object into one of the categories : 

1. flat : Object with negligible height compared to length and width; 

2. roll : A Cylindrical object. 

3. box : An object with comparable height Jength and width. 

4. Irregular : Any object not falling in any of the above three categories. 

Superquadric implicit equation is given by : 

Parameters a l ,  a2, and as define the superquadric size in x,y and z direction respectively. 

EI is the squareness parameter in the latitude plane and EZ is the squareness parameter in 

the longitude plane. Based on these parameter values superquadrics can model a large set 

of standard building blocks, like spheres, cylinders, parallelepipeds and shapes in between. 

Figure 16 illustrates the various types of shapes obtainable by changing two shape param- 

eters. If both ~1 and e2 are 1, the surface defines an ellipsoid. Cylindrical shapes are 

obtained for ~1 < 1 and ~2 = 1. Parallelepipeds are obtained for both ~1 and ~2 are < 1. 



Figure 16: Superquadric models as function of shape parameters ( c 1 . z 2 )  for given size 

parcmeters ( a l .  az, a s )  



We have restricted the model recovery procedure to fit the models with 0 < E ~ , E Z  < 1. We 

will not discuss the details of model recovery here. 

The Criteria used for classification are three size parameters, two shape parameters and 

the goodness of fit (GOF) measure. The superquadric procedure returns a GOF measure 

using the following equation : 

1 
N 

G O F  = - ~ [ a 1 a 2 a 3 ( ~ ( ~ , ~ , ~ ; a l , a 2 , a 3 , ~ 1 , ~ 2 ~ # ~ ~ , $ , ~ ~ ~ ~ ~ , ~ ~ )  - 1)12 
N 

i=l 

Where F is the superquadric inside-outside fuction described in Franc [23]. #, 0, $ define 

the orientation and p,, p,, p, define position of superquadric in space. 

The object given by the segmentation procedure has only the points visible to the 

scanner. Much of the volumetric information is lost in the Z-depth format of representation. 

While this is not a serious problem in case of curved objects like cylinder or segmented 

surfaces having volumetric information ( like a tilted box viewed from above ), model 

fitting becomes ambiguous if the visible surface is flat. If it is known that the original scene 

had only one object, then the supporting surface can be assumed to  be the plane parallel 

to the known background. The problem complicates in the multiple object scenes, where 

it becomes impossible to assign correct depth to the segmented object. Given no prior 

knowledge about the surface type, we need to add points in every case to give volumetric 

information to the superquadric procedure. Points can be added in two ways : 

1. Background is assumed to be the supporting surface of the object. Points are added on 

the background by backprojecting the visible surface on the background ( figure 17(c). 

While this is desirable in case of flat surfaces, it is not right for surfaces with volumetric 

information. 

2. Supporting points of the segmented object are used to determine the immediate sup- 

porting surface(s) of the object. Points are added vertically (figure 17(e)) to the 

object. This technique is more flexible since it can handle objects not lying on the 

background. But it results in more points to be added in addition to assuming that 



Figure 17: Horizontal and vertical addition of points.(a) object. (b) original points. 
(c) horizontal addition of points. (d) fit with horizontal addition. (e) vertical addition of 
poins. (f) fit with vertical addition. 

the object is actually touching the neighboring objects, which may not be true in 

general. 

In general it is not possible to extract correct supporting surface information from a 

single viewpoint. We have used horizontal addition of points in our experiments a s  it is 

faster than vertical addition and recovers the desired model. 

The algorithm for model fitting,selection and classification is following : 

1. Read the segmented object in 2-depth format. 

2. Format conversion and point addition : Generate a list of points in 3-D space 

representing the object. Call it points.orig. For every point on the visible surface add 



a point at  the same (s, y) coordinates on the background. Output the list of original 

and added points in points-add. 

3. Superquadric  fitting : Run Superquadric model fitting procedure on points.orig. 

Model obtained is model.or4g. Run Superquadric model fitting procedure on points.add. 

Model obtained is model.add. Iterative superquadric fitting is stopped if one of the 

following conditions is met : 

(a) Number of iterations > 15. 

(b) Goodness of fit of ith iteration ( i  5 15) is 5 Acceptable measure. This measure 

is empirically determined. 

(c) If for the jth (j 2 5) iteration : 

Condition (a) assumes that model recovery is complete by 15th iteration. Con- 

dition (b) stops the procedure if an acceptable model is obtained early in the 

process. Condition (c) monitors the rate convergence of fitting procedure. It 

terminates the fitting procedure if the GOF measures of last five iterations do 

not vary much. All the values used in the above three conditions are empirically 

determined. 

4. Model  selection : 

IF (GOF(model.add) AND GOF(model.orig) 5 Acceptable-fit) 

T H E N  GOTO volume,criterion 

ELSE IF (GOF(model.add) 5 Acceptable- f it)  

T H E N  model = model. add GOTO classify. 

ELSE IF (GOF(model.orig) 5 Acceptable, f it) 

THEN model = model.orig GOTO classify. 



ELSE 

OBJECT = Irregular. GOTO Done. 

5. Volume-criterion : Volume can be approximated as a1 x a2 x as. 

TEEN model = model.orig 

ELSE model = model. add. 

6. classify : Classify model using al, a2, a3 and el, e2: 

(a) IF ((a3 & a l )  AND (a3 & a2)AND 

(el < 0.5) AND (e2 < 0.5)) 

THEN OBJECT = FLAT. 

(b) ELSE I F  ((al & as) AND (a2 & as) AND 

(el < 0.5) AND (ez < 0.5)) 

THEN OBJECT = FLAT. 

(c) ELSE I F  ((al > T H R E S H B O X )  AND (a2 > THRESH-BOX) AND 

(as > THRESH-BOX) AND (el < 0.5) AND (e2 < 0.5)) 

THEN OBJECT = BOX. 

(d) ELSE I F  ((a1 > THRESH-1JlOLL) AND (a2 > THRESH-1-ROLL) AND 

(a3 > THRESHLROLL)  AND 

< 0.5) AND (e2 > 0.5)) 

THEN OBJECT = ROLL. 

(e) ELSE OBJECT = Irregular 

THRESH-BOX is the minimum acceptable dimension of the box. 

THRESH-I-ROLL is the minimum acceptable width and height of the roll. 

THRESH-%ROLL is the minimum acceptable length of roll. 



Figure 18: Parameter values of the recovered models 

7. Done : Output classified model with parameters. Determine Orientation and position 

of the model in world coordinate system. 
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3.5 Results of Superquadric Fitting and Classification 
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The superquadric fitting procedure and classifier were run on the objects segmented pre- 

viously. The superquadric parameters for the four types of recovered objects are shown in 

figure 18. 

Figure 19 shows model recovery on topmost object segmented in figure 14. The model 

selection process rejected model.orig due to large fit-error and accepted model.add. Even 

if model.orig had an acceptable error measure, rnodel.add would have been selected due 
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RCA 21 

Figure 19: Superquadric fitting and Model selection (a box) : (a) original points. (b) 
fitted model on original points. (c) original and added points. (d) fitted model on original 

and added points. 

to larger volume. The acceptable error magnitude was empirically determined to be 500. 

In figure 20 model.orig is selected and classified as roll because of the tremendous error 

difference between the two acceptable models. modeLadd is accepted and classified as flat 

in figure 22 because of volume consideration, although both the models have acceptable 

error measures. Finally, the film mailer in figure 23 is classified as irregular as the fit-errors . 

of both the models is more than acceptable error measure. 

The results are shown for the four classes of objects. Tapered , bent or concave objects 

cannot be represented by these models and hence will be classified as irregular. Franc 

Solina's superquadric method also dows  for tapering and bending along with segmentation 



RCA 19 

Figure 20: Superquadric fitting and Model selection (a Cylindrical object) : (a) 
original points. (b) fitted model on original points. (c) original and added points. (d) fitted 

model on original and added points. 



Figure 21: .Segmentation: upperleft : original image from grasp lab scanner ( aletter ) 
upperright:Edges detected. lowerleft : topmost object. lowerright : all segmented objects 



Figure 22: Superquadric fitting and Model selection (a letter) (a) original points. (b) 

fitted model on original points. (c) original and added points. (d) fitted model on original 

and added points. 



RCA 24 

Figure 23: Superquadric fitting and Model selection (a film-mailer) : (a) original 
points. (b) fitted model on original points. (c) original and added points. (d) fitted model 
on original and added points. 



of the complex objects into parts. In the next chapter we will describe a surface classification 

scheme that uses the output of segmentation routines described in this chapter. 



Chapter 4 

Surface Characterization and 

Segment at ion 

Surface characterization refers to  the computational process of partitioning the surfaces into 

regions with equal characteristics. Since our ultimate goal is object recognition, classifica- 

tion of the surfaces by the characteristics of the surface functions is very useful. Classical 

differential geometry provides a complete surface description of analytic surfaces so as to 

obtain a complete set of surface characteristics. Surface characterization can be successfully 

used in intermediate and high level processing of the object recognition problem. 

Important surface characteristics, that are visible-invariant are Gaussian cumaturt and 

the mean curvature. They are invariant to changes in surface parametrization and to trans- 

lations and rorations of object surfaces. Guassian curvature is an intrinsic property of the 

surface while mean curvature is an extrinsic property of the curvature. 

From differential geometry it is well known that curvature, speed, and torsion uniquely 

determine the shape of 3-D surfaces. The surface characteristics of our interest are the 

ones with one-to-one relationship with curve shapes. The mathematics of a general surface 

representation scheme and calculation of Guassian and mean curvatures is described in 

following section. 



4.1 Differential Geometry of Surfaces 

Parametric form of equation for a regular surface S with respect to a known coordinate 

system is : 

S = (2, y, z )  : z = x1 (u, v), y = x2(u, v), z = x3(u, v), (u, v) E D G R~ 

The surface is a locus of points in Euclidean three-space defined by the end points of 

the vector X(u,v) with xi(u,v) the components of the vector. These red functions are 

assumed to be defined over an open connected domain of a Cartesian u,v plane and to 

have continuous second partial derivatives there. In our analysis of range images we are 

assuming that this condition is satisfied. 

The second condition for a regular surface is automatically satisfied by 2-depth format 

ax images. It requires that the coordinate vectors Xu = XI = a a~ 9 X, = X2 = are linearly 

independent : 

The surface in range images is given by : 

and coordinate vectors become : 

These vectors are linearly independent given the first condition. 

It can be shown using differential geometry techniques that first and second fundamental 

forms(which exist only if the surface is analytic) uniquely characterize a general smooth 

surface. The first fundamental form I of a surface is defined as : 



Figure 24: Coordinate frame at the Neighborhood of a point 

I (u ,  v ,  du, dv) = dX.dX = [ du dv ] [::: [ ::] = d u T k b  

where [g] matrix elements are given by : 

The two tangent vectors x, and x, lie in the tangent plane T(u,v) of the surface at the 

point (u ,  v). [g] matrix is symmetric for an analytic surface. 

figure 24 shows the coordinate frame at the Neighborhood of a point. 

The first fundamental form I(u, v ,  du, dv) measures the small amount of movement in the 

parameter space (du, sv). The first fundamental form is invariant to surface parametrization 

changes and to translations and rotations in the surface. Therefore it depends on the 

surface itself and not on how it is embedded in the 3-D space. The metric functions E, F, G 

determine all the intrinsic properties of the surface. In addition they define the area of a 

surface : 



The second fundamental form of the surface is given by : 

Where [b] matrix elements are defined as : 

Where the double subscript denotes second partial derivatives 

a2x a2x a2x 
xuu(u,v) = W xvv(u, v )  = - xu"(% v )  = xvu(u, v) = - 

dv2 dudv 

The second fundamental form measures the correlation between the change in the normal 

vector dn and the change in the surface position at a point (u , v )  as a function of small 

movement (du, dv) in the parametric space. Besl and Jain [9] have discussed the properties 

of first and second fundamental forms in detail. We will consider some of the important 

properties of Gaussian and Mean curvature in the following paragraphs. 

It can be shown that the [g] matrix and the [b] matrix elements are the continuous 

functions with continuous second and first partial derivatives respectively and that they 

uniquely determine the surface type. From the [g] and [b] matrices calculated above surface 

shape and intrinsic surface geometry can be uniquely determined. 

The Gaussian curvature function K of a surface can be defined in terms of the two 

matrices as : 

K = det 

921 g22 b21 922 
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Figure 25: Basic surface types in range images (a)  surface types (b) table of surface types. 

and the mean curvature of a surface is defined as : 

The two types of curvatures are together referred to as surface curvature functions. 

They exhibit very important properties that enable them to  be used as features for higher 

level of processing. For detailed discussion on the properties of surface curvature functions 

see Besi and Jain [9]. Some of the relevant properties are summarized below : 

1. Surface types can be determined by the sign of surface curvatures. They are shown 

in figure 25 

2. Gaussian curvature e-xhibits isometric invariance properties. 

3. Mean curvature is slightly less sensitive to noise than Gaussian curvature. 

4. Gaussian curvature function of a convex surface uniquely determines the surface. 

5 .  Mean curxature function of a graph surface taken together with the boundary curve 

of a graph surface uniquely determines the graph surface from which it was computed. 



6. Gaussian and mean curvature are invariant to arbitrary transformations of the (u, v) 

parameters of a surface as long as the Jacobian of the transformation is always non- 

zero. 

7. Gaussian and mean curvatures are invariant to rotations and translations of a surface. 

This property enables us to obtain view-independent characteristics. 

8. Gaussian curvature is an isometric invariant of a surface. Therefore it is an intrinsic 

surface quantity. It is independent of the the way the surface is embedded in the 3-D 

space. 

9. Gaussian and mean curvature axe local surface properties. 

10. Another important property of surface curvatures is that Gaussian curvature indicates 

the surface shape at individual surface points.When surface is shaped like an ellipsoid 

in the Neighborhood of(u, v), K(u, v) > 0. It is < 0 for locally saddle-shaped surface 

and is = 0 if the surface is flat,rdge-shaped or valley-shaped locally. Mean curvature 

also indicates surface shapes at  individual points when considered together with the 

Gaussian curvature. 

The above observations are very important for surface classification and have been widely 

studied and used in range image processing.In fact surface characteristics constitute an 

important part in the realization of the ultimate goal of three dimensional object recognition. 

4.2 Computing Surface Characteristics of Range Images 

Given a range image, our objective is to calculate the Gaussian and mean curvature. To 

compute surface curvature we need to know the estimates of the first and second partial 

derivatives of the depth map. Equations to get the partial derivatives can be simplified in 

the case of the 2-depth format range image. Parameterization takes a very simple form: 
T 

XU = [ u v f(u,v) ] . The T superscript indicates the transpose This gives following 

formulas for the surface partial derivative and the surface normal. 



and the six fundamental form coefficients : 

911 = 1 + ft 922 ' 1 + f: 912 = fu fv  

fuu fuv fvv 
bl l  = bl2 = b22 = 

J1 + f," + f Z  J1 + f,2 + f: J1 + f,2 + fv2 

The expression for Gaussian curvature is given by : 

K = 
fuufvv - f:v 

( 1  + f,2 + f v 2 ) 2  

And the expression for mean curvature is given by: 

H = 
fUU + fvv + fuufv2 + fvvf: - 2 f u f v f u v  

2 ( 1  + f,2 + 
Thus if we are given a depth map function f(u,  v) that possesses first and second partial 

derivatives, Gaussian and mean curvature can be computed directly. 

4.2.1 Estimation of partial derivatives of Depth Maps 

Partial derivatives of the range image can be obtained by fitting a continuous differentiable 

function that best fits the data. There are various techniques available in mathematics that 

have been used by computer vision researchers to determine partial derivatives of depth 

maps. 



Using Discrete Orthogonal Polynomials 

Besl and Jain [9] used discrete quadratic orthogonal polynomial fitting at each pixel to 

estimate derivatives. It  is possible to control Neighborhood size for making local estimates 

which is important in case of actual range images. 

A quadratic surface is fit at each pixel in the image, using a window convolution operator 

of size desired by the user. 

Each point in the given window is associated with a position (u, v )  from the set UXU 

where N is odd : 

The following discrete orthogonal polynomials provide the quadratic surface fit : 

Where M = (n - 1)/2.  The b;(u) functions are normalized orthogonal polynomials : 

Where P ( M )  is a fifth - order polynomial in M : 

bi(u) vectors are computed according to  the window size. First the surface estimate 

function f ( u ,  v )  is calculated : 

that minimizes the mean square term : 



Coefficients are given by : 

The first and second partial derivatives can then be directly read from the aij coeffi- 

cients : 

fu = Q I O  f ,  = a01 fuv = all fuu = 2 ~ 2 0  f,, = 2a02 

After the first and second partial derivatives are determined, surface Chara,cteristics at 

each pixel are calculated. 

Using Difference Operators  

Brady etal [4] have used 3 x 3 difference operators to locally compute first and second 

derivatives of the Gaussian smoothed surface. Neighborhood size cannot be increased in 

this method. The operators are : 

Using B-Spline fitting 

Yang and Kak [33] have derived 3 x 3 operators using B-splines for computing partial 

derivatives of a range map. These can be combined with Gaussian operator to increase the 

window size and reduce sensitivity to noise. The operators give partial derivatives at the 

center pixel of each operator. 
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Least Squares Polynomial Fitting 

We have used a fast least squares fitting method to derive partial derivatives in the symmetric 

Neighborhood of a pixel. This method allows the Neighborhood size to be controlled. 

A surface fit of order n can be written as : 

We have used second (n  = 2) order fitting in the Neighborhood of every pixel to compute 

first and second order derivatives. Clearly, since the pixel a t  which derivatives are computed 

is at the origin, we get : 

Thus derivatives are read off directly from the coefficients. We have also used the general 

least squares fitting procedure for fitting polynomial on surface patches. For the purpose of 
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Figure 26: Effect of uniform Gaussian Smoothing 

computing derivatives it is observed that we always have symmetric Neighborhood around 

the pixel. This fact simplifies the least squares equations. See appendix B for the simpli- 

fied least square fitting equations for second order bivariate approximation in a symmetric 

Neighborhood. 

4.2.2 Results of Initial Segmentation 

The above mentioned process is applied to actual range images and results are shown in 

figures 27,28,29, 30,31,32,33. 

The smoothing behavior of Gaussian operator was briefly discussed in chapter 2. It is 

observed that step edges in range images are actually adjacent convex and concave edges. 

This is further amplified after smoothing the image with any size of Gaussian operator. 

Brady etal. [4] have restricted the Gaussian application to inside of the region. We have 

used Gaussian uniformly in the range image with the intention of uniformly smoothing the 

image for the purpose of obtaining reliable curvature estimates (see figure 26) 



Figure 27: curvature estimation (a) original image. 192 x 256 12 bitslpixel image (b) 

smoothed image. (c) regions. (d) error in fitting 



Figure 28: curvature estimation lefi to right?from top; original image.150 x 150 8 
bitslpixel image; error in fitting; segmented regions; flat regions; convex regions; concave 

regions. 



Figure 29: Initial labeling of scene with different threshold values (a) 0.01 (b) 0.02 
(c) 0.03 (d) 0.04 . 



Figure 30: Labeling of scene :(a) a l l  regions (b) convex (c) concave (d) flat. 

Figure 31: Thresholded left : gauss. right : mean. black indicates zero, gray is positive 
and white is negative value 
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Figure 32: Histogram of Gaussian Curvature 
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Figure 33: Histograin of Mean curvature 



For surface characterization purpose we use higher sigma value (= 1.5) and for post 

segmentation processing we work at lower level in scale. Step Edges detected at sigma 

= 1.0 are used to detect region boundaries in higher level processing stage discussed in next 

section. 

Although the response of Gaussian and Mean curvature is reliable it is necessary to 

threshold the values around zero. 1% of maximum was used as threshold in all examples. 

Figures 27 and 28 show the labeled regions and error in fitting second order polynomial at the 

Neighborhood of each pixel, in images with 12 bitslpixel and 8 bitslpixel respectively. The 

fit-error is appreciable at  boundaries including smooth edges. This means that curvature 

estimates at  the edges are not reliable. At such points curvature magnitude may not be 

reliable though sign of curvatures is reliable. Further results are shown only for image in 

figure 27. 

Figure 29 shows the effect of threshold values on curvature signs. As threshold values 

for Gaussian and mean curvature is changed, pixel labeling may change if the curvature 

magnitude is not appreciable. image thresholded at 1% of maximum curvature magnitude 

(see figure 29(c)) has correct labelings. Further results are shown only for this threshold 

value. Pixels are classified as one of the eight basic types. We can classify the entire im- 

age into concave, convex, and flat regions by simply merging all neighboring pixels having 

similar type of surface, i.e, flat,concave or convex (see figure 30. Thresholded values of 

Gaussian and mean curvature are shown in figure 31. White patches indicate zero magni- 

tude, gray indicate positive magnitude and black indicates negative curvature magnitude. 

It is observed that Gaussian curvature is mostly zero except for isolated patches, since the 

image has no spherical object. Non-zero mean curvature values are obtained at step edges 

and on a cylindrical object. Histogram of the magnitude of Gaussian and mean curvature 

(figure 32 and 33) for the entire image show appreciable mean curvature magnitude in the 

image and no significant Gaussian curvature. It can therefore be inferred that the scene has 

flat and possibly cylindrical objects. 



4.3 Post processing of Labeled scenes 

The segmentation done by labeling the individual pixels using sign of Gaussian and mean 

curvature is local in nature and threshold dependent. In order to interpret these labelings 

globally, we need to process the the labeled image with glob1 constraints. Besl and Jain [25] 

have proposed a variable order surface fitting algorithm. Surface patches are described as 

linear,quadric or cubic. 

Our approach depends on the actual requirements. We describe two methods, ( both are 

preliminary ) to obtain useful segmentation given labeled image. The first method simply 

groups convex patches to form connected convex subparts of the scene. Second method uses 

the segmented objects obtained from algorithm described in chapter 3. 

4.3.1 Obtaining Convex patches 

As noted in third chapter, detection of smooth edges is difficult to extract using only local 

information. Curvature information at the d types of edges is easy to record. From figure 26 

it is clear that edges in smoothed images can be recorded as thin convex and concave regions. 

In particular, convex edges are of convex cylinder type, with zero Gaussian curvature but 

appreciable negative mean curvature. Similarly, concave edges are of concave cylinder type, 

with zero Gaussian curvature but appreciable positive mean curvature. Thus all types of 

edges give either convex or concave cylindrical response. But the edge response is obtained 

over wider region due to smoothing and large window size during derivative computation. 

It is therefore not possible to have exact localization of patches obtained by merging convex 

regions. 

A simple algorithm for obtaining convex patches is given below : 

1. Read the labeled image. 

2. Label each patch as a region. 

3. Initialize the region data structure to record surface type, number of pixels, topmost 

pixel in the region,neighbours of the regi~n~extremities of the region and the label 



Figure 34: Convex patches 

Figure 35: convex patches 
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assigned to the region. 

4. For the next unprocessed topmost region of the type flat or peak(convex sphere) or 

ridge (convex cylinder) with acceptable number of pixels do: 

(a) Extend the original region to include all neighboring regions of type flat or 

ridge. Other types of regions are considered concave or part of other convex 

subpart. peak  patches are not included because they will be selected as seed 

region. 

(b) Repeat the above step to extend the region, till it is not possible to grow any 

more. 

5. Output the convex subparts. End. 

Figures 34 and 35 show convex patches obtained from labeled image obtained in figure27 

and in figure 28(a) respectively. Majority of objects in figure 34 are merged into one convex 

patch while they are separated in figure 35 

4.3.2 Object Sur face  Classification 

Surfaces on the segmented objects can be classified as one of basic surface type using the 

initial labeling based on sign of curvatures. Yang and Kak [33] have used extended Gaussian 

images to identify surface type on isolated surfaces. Histogram of labels in an isolated object 

can give some idea about the surface and guide the surface fitting process. 

The classification algorithm is as follows : 

1. Read in the segmented objects image and labeled surface image. 

2. For each object in the image do : 

(a) Erode the object in labeled image so as to remove points within 5 pixel distance of 

the object boundary. This reduces the effect of smoothing and window size during 

curvature estimation which is mainly contributed by pixels near the boundary, 

and does not reflect the nature of region. 



Figure 36: Classified surfaces 

(b) Histogram the remaining pixel-label values. 

(c) If more than 90 % pixels are of one type,either flat or cylinder or sphere  then 

the surface can be classified as such. If there are two or more peaks in the 

histogram, object has more than one surface type. 

(d) In single surface cases fit the best fitting surface on the points. Output the 

description of surface. 

(e) Further processing by region growing by surface fitting is necessary to smoothen 

the surface patches. Fit surfaces on individual patches and merge them by region 

growing. 

This algorithm is being implemented. Initial classification process will classify the sur- 

faces in figure 11 as 5 plane surfaces, 1 cylindrical and 1 irregular surface ( the film mailer). 

See figure 36. 

First and second order polynomials were fitted on flat and non-flat surface patches 

respectively in image of figure 11. The reconstructed image is shown in figure 37. Besl 



Figure 37: Original a n d  reconstructed Images. left: original images right: recon- 
structed images obtained by fitting 1st and 2nd order surfaces on patches labeled by seg- 

mentation process. 

and Jain (13,251 have used initial labeling to obtain seed regions in the final region growing 

process. They perform variable order surface fitting to approximate the scene as a collection 

of piece-wise continuous functions. 



Chapter 5 

Discussion 

Though results of running the various algorithms described in previous chapters on im- 

ages acquired from different scanners are consistent, there is scope for refinement of all the 

approaches. We will discuss the merits and demerits of each method and suggest improve- 

ments. 

We need to study the scale-space behavior of range images in detail. This would lead to a 

better understanding of the scale at which range images should be handled. We have noticed 

that thresholding of zero-crossings makes the entire segmentation procedure dependent on 

the threshold value. Though we have obtained consistent results with a fixed empirically 

determined value for all  the images obtained from a particular scanner, threshold selection is 

not automatic. Secondly, even with right threshold value the region may not be completely 

bounded by the zero-crossings ( in case of overlaps by thin objects or sensor noise) To 

make the whole process less sensitive to threshold, following post-processing steps (region 

splitting ) are suggested : 

1. Read in the segmented object. 

2. Trace the contours around the object as it is defined now and also any other boundaries 

that are now lying inside the object. Except for the bounding contours, other contours 

may not be closed. They may simply lie within the region and actually are boundary 

of the real object. In such a case mark the beginning and end of the contour. If the 



contour touches the closed contour then mark the point of contact as end of inner 

contour. 

3. In all the contours mark the concavities. 

4. Now split the region by connecting two contours (gap filling) or connecting two points 

of concavity ( gap filling or region splitting) or connecting an end point of contour 

with a concavity, based on predetermined gap filling distance. 

5. The output is the segmented object. 

The above method should be indifferent to threshold values on higher side as it splits the 

region consisting of more than one regions. To reduce the sensitivity to low threshold values 

(which will result too many small regions) some sort of merging is required. Merging is a 

much difficult task, so it is better to keep the threshold high and have the post-segmentation 

process perform the splitting, rather than initial segmentation performing splitting due to  

low threshold value. 

Another solution to splitting is to let higher level recognition process make globally valid 

observations to split the region. The higher level procedure may use a priori information or 

may make some assumptions or apply global constraints to split the region. Franc Solina's 

(see 1231) superquadric procedure caa split the regions into identifiable parts by performing 

model fitting on individual part of the object. 

In chapter 4 we noticed that labeling of the scene based on curvature sign is threshold 

sensitive. While thresholding around zero is necessary to obtain meaningful results, it is 

not clear how that value can be automatically determined. Curvature determination being 

local, the labeling is sensitive to noise and surface texture. It is not well understood how to 

generate a global interpretation of such surfaces. 
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Appendix A 

2nd order Least squares fitting in 

symmetric neighborhood 

The approximating polynomial is written as : 

The square error term is : 

To minimize the least squares term, let = 0. 

which is : 



Writing : 

we get : 

In a symmetric neighborhood : 

Sppo = 0 f o r  odd p or q and 

S p q o  = S q p o  

The above system of equations reduces to : 



Which can be written as : 

and 



Appendix B 

Source Code Listing 

Listings of source programs is included in following pages. 

1. space.c : Performs smoothing,median filtering,Gaussian filtering, Laplacian, marking 
zero-crossings and graphics display of histogram etc. in interactive manner. 

2.  segment.^ : Segments all objects and topmost object in the scene, given original 

image and zero-crossings of LOG image. Also outputs supporting points of topmost 

object . 

3. rca-ca1ib.c : Generates a list of points for Z-depth format image. Originally written 
by Franc, modified to read P M  files and add points horizontally and vertically. 

4. c1assify.c : Procedure used to  select and classify the superquadric models. 

5. sp1ine.c : Computes various surface characteristics of the image. Interactively dis- 

plays results and histograms using quickdmw routines. Outputs labeled image and 

other characteristic as desired by the user. 

6. grad.c : Has code for fast least squares fitting. Polynomial is fitted in the symmetric 

neighborhood of the pixel. 

7. merge.c : Performs processing on the image labeled according to signs of Gaussian 

and mean curvature. It computes convex parts of the image, fits polynomials on 

patches using general least squares routines in so1ver.c. 

8. so1ver.c : Has code for a general least squares fitting procedure. 

There are other supporting programs that are vital to the algorithms. Superquadric 
fitting programs are developed by Franc Solina and are not listed here. 



Program for computing scale - space description of the input imag 
and lots of other things in interactive manner. Later will overri 

sca1e.c. 

Modifications for display of histogram done on Feb 18, 1988. 

March 24 1988 : To read/write in both PM-C and PM-S formats. 
April 1 1988 : All buffers made floating pt. Computation of lapla 

and zerocrossing made floating pt. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Yinclude <stdio.h> 
Yinclude <math.h> 
#include <local/pm.h> 
Yinclude <ik.h> 
/ *  Yinclude <local/qkopt.h> * /  

Ydefine BUFSIZE 256 / *  Image buffer size * /  
Ydefine BUF-NUM 4 / *  # of buffers available for manipulation * /  

float result[BUFSIZE][BUFSIZE]; 
float buffer[~U~-N~][BuFSIZE][BUFSIZE]; / *  0 stores original image * 
int temp-buf[BUFSIZE]; / *  temporarily store a buffer 

float x[BUFSIZE], y[BUFSIZE]; / *  to store points * /  

int threshold; / *  Threshold for detecting zero-xings * /  
int booll,bool2,bool3; 
char *cmt; 
char input-filename [50] ; 
int sizex,sizey; / *  size of the image * /  
pmpic *pml; 
u-int image-format; / *  stores the format of the last image read 

float mino ; 
float getmedian() ; 
float abszz ( )  ; 
float squarezz ( )  ; 

main (argc,argv) 
int argc: 
char **argv; 

( 

FILE *infile.*out; / *  pointers to input image and output image fil 
FILE *out2; 
FILE *infs,*outgmsmooth,*outputgm; 
char *smooth-cmt; 
char ikonas-disp [lo1 ; 
char *out-cmt; 
int count; 
unsigned char c; 
static int nhb-x[8] = (0.1.1.1.0,-1,-1,-1); 
static int nhb-y [81 = (1,1,0,-1,-1,-1,O.l); 
float nbd[l],temp; 
int i, j,k,l,m,n,b; 
float nbr [lo] : 
int gsize; 
float sigma; / *  size and sigma of the gaussian operator * /  
float sum; 
float gauss 1601 ; 
float gsum; 
int offset; 
char input [201; 
int offx = 0,offy = 0; / *  offset coordinates , intiallzed 
char outfile[301; / *  name of the output file * /  
int bl,b2,b3; 
unsigned char *pmgoint; 
int disp-row; 
short int *pmsqoint; / *  pointer to short integer to hand 

PM-S format * /  
int factor; / *  # by which PM-S image pixel to b 

for display on IKONAS * /  

if (argc != 2) 
( 

printf("usage : scale cinput-image-file-pmpic>\nN); 
exit (0) ; 

1 

printf("want to display on ikonas ? '); 
scanf (mls",&ikonas-disp[Ol) ; 

printf ("read\nm) ; 
/ *  open the ikonas display. value of env. variable is taken * /  
if (~trcmp(~y",ikonas-disp) == 0) 
if (ikopen (NULL) == -1) 

f 
printf(*cantt open ikonas. exiting\nn); 
exit (0) ; 
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) 

/ *  get comment line * /  

cmt = pm-cmt(argc,argv); 

/ *  open input pm file * /  

readgicture (argv[l] ,0) ; 
readgicture(argv[l], 1); 

printf("Rows : %d Columns : %d\nn.sizex,sizey); 

/ *  procesing of the commands starts now : 
various available commands are : 
1. gauss : convolves the image with gaussian filter. 
2. cross : computes zero and other types of crossings in the gi 

buffer. 
3. save : saves indicated buffer in a file. 
4 .  disp : displays indicated buffer on the ikonas. 
5. add : adds the two buffers.result is put in buffer 1 
6. sub : subtracts two buffers. result is put in buffer 1 
7. buffer: selects the current buffer. 
8. offset: offset the picture on ikonas. 
9. original : indicated buffer gets original picture. 
l0.read : Reads a file in the designated buffer. 
1l.hist : Computes and displays the historam using quickdraw. 
12.ikpm : saves the image displayed on ikonas in the a file in 

five active buffers are maintained to manipulate the original ima 
* / 
printf (">") ; 

while (scanf ("9sY, input) != EOF) 
1 
if ((strcmp(1nput. "median") == 0) I I (strcmp(input8"mm) == 0)) 

( 
/ *  do median filtering of the image * /  
b = readbuffer ( )  ; 

for (i=l;i< (sizex-1) ;it+) 
for(j=l; j<(sizey-1) ;I++) 

{ 

count = 0; 
for(m=i-l;m<=itl;m++) 
for(n=j-l;n<=j+l:n++) 

( 

nbr [count] = buffer[b] [m] [n] ; 

sp.cm.c I(on Apr 18 18:07:36 1980 4 

count++; 

1 
result [il [ jl = get-hedian(nbr) ; 

1 

for(i=l;i<(sizex-l);it+) 
for(j=l;j<(sizey-1): j++) 
bufferibl [il [ jl = result[i] [j]; 

) / *  end of median filtering */  

else if((strcmp(input,"gauss*) == 0) I I (strcmp(input,"g') == 0 

( 

printf("size of window :");  

scanf('5d",hgsize); 

/ *  compute the gaussian array */  

gsum = 0; 
for(i= -gsize/2,j=O;i<= gsize/Z;i++,j++) 

( 
gauss[jl = (l.O/(sqrt((double) (2.0*3.1415926))*sigma))* 
gsum += gauss[j]; 
printf ('gauss[%dl = Of", i,gauss[j]); 

1 

if (gsum == 0) gsum = 1; 
printf(*\n gsum = 9f \nW,gsum); 

/ *  seperably convolve x-axis * /  

for(j=O;jcsizey;j++) 
for(i=gsize/2;i<=(size~-gsize/2):i++) 

( 
sum = 0; 
for(k= -gsize/2;k<= gsize/Z;k++) 

( 

sum += buffer[bl [i+k][jI*gauss[k+gsize/21; 
1 

result [i] [ j] = sum/gS~m; 
1 
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