- . o
cnn) \ University of Pennsylvania

Libraries ,_
O UNIVERSITY 0f PENNSYLVANIA 4 ScholarlyCOmmonS
Technical Reports (CIS) Department of Computer & Information Science
May 1988

Range Image Segmentation for 3-D Object Recognition

Alok Gupta
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Alok Gupta, "Range Image Segmentation for 3-D Object Recognition”, . May 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-32.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/736
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/736
mailto:repository@pobox.upenn.edu

Range Image Segmentation for 3-D Object Recognition

Abstract

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the ultimate goal
of computer vision. Explicit depth information about the scene is of tremendous help in segmentation and
recognition of objects. Range image interpretation with a view of obtaining low-level features to guide
mid-level and high-level segmentation and recognition processes is described. No assumptions about the
scene are made and algorithms are applicable to any general single viewpoint range image. Low-level
features like step edges and surface characteristics are extracted from the images and segmentation is
performed based on individual features as well as combination of features. A high level recognition
process based on superquadric fitting is described to demonstrate the usefulness of initial segmentation
based on edges. A classification algorithm based on surface curvatures is used to obtain initial
segmentation of the scene. Objects segmented using edge information are then classified using surface
curvatures. Various applications of surface curvatures in mid and high level recognition processes are
discussed. These include surface reconstruction, segmentation into convex patches and detection of
smooth edges. Algorithms are run on real range images and results are discussed in detail.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-32.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/736

https://repository.upenn.edu/cis_reports/736

RANGE IMAGE SEGMENTATION
FOR 3-D OBJECT RECOGNITION

Alok Gupta

MS-CIS-88-32
GRASP LAB 141

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104

May 1988

Acknowledgements: The work reported herein was supported in part by NSF grant
DCR-8410771, Airforce grant AFOSR F49620-85-K-0018, Army/DAAG-29-84-K-0061, NSF-

CER/DCR82-19196 Ao2, DARPA/ONR N{J014-85-K-0807, U.S. Postal Service contract
104230-87-M-0195.

UNIVERSITY OF PENNSYLVANIA
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

RANGE IMAGE SEGMENTATION FOR
3-D OBJECT RECOGNITION

Alok Gupta

Philadelphia, Pennsylvania
May 1988

A thesis presented to the Faculty of Engineering and Applied Science of the University of
Pennsylvania in partial fulfillment of the requirements for the degree of Master of Science

in Engineering for graduate work in Computer and Information Science.

e

/\/x/b_\ %//t—)

Ruzena Bajcsy/ /
(Advisor)

U S/

Richard Paul
(Graduate Group Chair)

Abstract

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the
ultimate goal of computer vision. Explicit depth information about the scene is of tremen-
dous help in segmentation and recognition of objects. Range image interpretation with
a view of obtaining low-level features to guide mid-level and high-level segmentation and
recognition processes is described. No assumptions about the scene are made and algorithms
are applicable to any general single viewpoint range image. Low-level features like step edges
and surface characteristics are extracted from the images and segmentation is performed
based on individual features as well as combination of features. A high level recognition
process based on superquadric fitting is described to demonstrate the usefulness of initial
segmentation based on edges. A classification algorithm based on surface curvatures is used
to obtain initial segmentation of the scene. Objects segmented using edge information are
then classified using surface curvatures. Various applications of surface curvatures in mid
and high level recognition processes are discussed. These include surface reconstruction,
segmentation into convex patches and detection of smooth edges. Algorithms are run on

real range images and results are discussed in detail.

ii

Acknowledgements

I would like to thank my advisor Dr. Ruzena Bajcsy for the guidance and encouragement. I
am grateful to Dr. Kwangyoen Wohn for motivating me to work in the field of range image
interpretation. Prof. Wohn also guided me in initial stages of this thesis and furnished
programs for least squares fitting. Thanks to Franc Solina for many ideas and suggestions
and for superquadrics software. Finally, thanks to Gus Tsikos for help with the range image
scanner.

The support of the following contract and grants is gratefully acknowledged : NSF grant
DCR-8410771, Airforce grant AFOSR F49620-85-K-0018, Army /DA AG-29-84-K-0061, NSF-

CER/DCR82-19196 Ao2, DARPA /ONR N0014-85-K-0807, US Postal Service contract 104230-
87-M-0195.

Contents

Abstract
Acknowledgements
1 Introduction
2 Acquisition and Preprocessing of Range Images
2.1 Range Image Acquisition 0oL
2.2 Scalingof RangeImages i e
2.3 Smoothing of RangeImages 0.
3 3-D Edges and Segmentation based on edges
3.1 Edge detection using V2G(X,¥) -+« « v v v e vt e e e e
3.2 Segmentation of Range Images using edge information
3.3 Segmentation Results
3.4 Recognition of segmented objects using Superquadrics
3.5 Results of Superquadric Fitting and Classification
4 Surface Characterization and Segmentation
4.1 Differential Geometry of Surfaces
4.2 Computing Surface Characteristics of Range Images
4.2.1 Estimation of partial derivatives of Depth Maps
4.2.2 Results of Initial Segmentation
4.3 Post processing of Labeledscenes
4.3.1 Obtaining Convex patches«
4.3.2 Object Surface Classification
5 Discussion

A 2nd order Least squares fitting in symmetric neighborhood

Source Code Listing

i

il

Chapter 1

Introduction

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the
ultimate goal of computer vision. Most of the effort in this regard has gone in extracting
three dimensional information from intensity images and arriving at a meaningful and suf-
ficiently unambiguous interpretation of the scene. However, the problem with monocular
vision is the loss of 3-D information thereby making the interpretation process undercon-
strained. Shape from X methods have been widely studied in last two decades to extract
depth of the scene using texture,shading,color,contour and motion. Depth extraction from
stereo images is computationally expensive and results in sparse depth maps requiring re-
construction techniques for further interpretation. Range images on the other hand are
obtained by realtime depth sensors and provide dense 3-D information of the visible sur-
faces.

Range images are dense depth maps measuring the distance of the physical surface from
a known reference plane. Different types of ranging methods are available to obtain range
information according to the application. Magnetic resonance imaging systems give true
3-D images, i.e, all the points in 3-D space are specified. Visible surfaces can be scanned by
time of flight laser range finders and amplitude-modulated laser range finders. The most
common and cheapest are the triangulation-based scanners. Structured lighting systems

scan the scene with a laser stripe to obtain depth information of the visible surface in a

calibrated workspace. Research interest in range image processing has grown tremendously
in recent years due to increasing availability of structured lighting range sensors. While
these sensors can be employed in closed environment only and suffer from other drawbacks
(like shadows, inability to sense highly reflective surfaces and some colors) they are useful
for real-time scanning of good quality at low cost.

The range images dealt with in this work are of 2(z, y) type, (i.e., monge-patch surfaces)
where each pixel gives the Z-depth at the coordinate z and y. Since range images (or
depth maps) contain explicit 3-D information about the scene it is expected that surface
description and object recognition should be easier to handle with range images. However
if the scene is quite complicated, then the problem cannot be solved that easily by using
range images as one might think. Intensity information can be used to complement range
information where ambiguity arises in interpretation, but this involves registration and
correspondence problems and may even complicate the analysis.

Representation of range images is just like that of reflectance images. A two dimensional
array of depth values specifying (x,y,z) coordinates with respect to a known coordinate frame
is enough for most applications. This allows many low level intensity image processing
techniques to be directly used to process range images by interpreting the pixel value as
‘depth’ instead of ‘reflectance value’. Contrast and brightness however have to be interpreted
as surfaces of varying depths.

We have addressed the problem of object and surface segmentation in this report. Seg-
mentation is essentially goal oriented. It can be conveniently divided into two processes :
initial segmentation and final segmentation. Initial segmentation process is a result of local
computations done in a known neighborhood of every pixel in the image. The final segmen-
tation process does refinement of the initial segmentation using global constraints to arrive
at a global interpretation of the scene. We have not assumed any domain knowledge or lim-
ited the objects to be of certain type. Our goal is to study boundary based segmentation,
surface based segmentation and integration of the two methods. It is possible to segment
the scene in flat, convex and concave subparts with detailed description of individual parts

using boundary and surface based techniques.

An important aspect of the object recognition problem is the robustness of the recogni-
tion approach. It is essential that algorithm be size-invariant, position invariant, orientation
invariant and be able to recognize partially occluded objects. As observed by Besl and Jain
[9] it is known from the results in differential geometry that Gaussian and mean curva-
ture are visible-invariant features of a surface region in the sense that they do not change
under viewpoint transformations that do not affect the visibility of that region. When a
surface region is visible, its curvature measurements are invariant to changes in surface
parametrization and to translations and rotations. The invariant property is important for
3-D object recognition. Since our final segmentation process will be dependent on the local
computations it is necessary that the low-level features be invariant.

While these two approaches are domain independent, any high level recognition approach
like model based interpretation makes use of domain specific knowledge. We use a high
level volumetric approach using superquadrics described in [23] to illustrate the usefulness
of initial segmentation in high level vision. Figure 1 presents the paradigm explored in this
work.

It is clear that processing of range images can be divided into three major stages : low
level, intermediate level and high level. After range image is acquired from the sensor, it
needs to be smoothed before any useful operations can be performed on it. Though it creates
localization problems, it reduces the effect of quantization which is important for surface
fitting. Low level processing is data-driven with the objective of obtaining useful local
features that can be used by higher processing stages. Three dimensional edges constitute
important features. We have used the Laplacian of Gaussian operator of [24] to detect step
edges. Smooth edges have a different significance in case of range images and are more
difficult to detect. This will be discussed in chapter 3 in detail.

Computation of curvature involves computing first and second order derivatives at every
pixel in the image. Based on curvature signs, initial segmentation of the scene is performed.
This is further improved by region growing done with global constraints. Haralick et al [6]

have described a mathematical treatment for describing the topographic primal sketch of the

Range Image from
scanner.
v

Preprocessing :
1) Scaling.
2) Smoothing.

./\

Edge detection using Computation of second
Laplacian of Gaussmn order derivatives by
least squares fitting.
Segmentatlon Segmentation :
Region growing based Pixel labeling using
on Edges. Segment Gaussian and Mean
scene into objects Curvature.
Model fitting using Surface Classification :
superquadncs 1) region growing by least
squares fitting.
2) Classification by
Classmcatlon based Histogramming
on superquadric '
parameters
Object Cassiiifﬁed. Object surface Classified.

Figure 1: A paradigm for Range Image Segmentation and 3-D object recognition

underlying gray tone intensity surface of a digital image. They use first and second direc-
tional derivatives to classify each picture element as one of peak,pit,ridge,ravine,saddle,flat,
and hillside. Michael Brady etal [4, 5, 7] describe a study of classes of curves as a source of
constraint on the surface on which they lie, and as a basis for describing it. Their approach
gives a curvature primal sketch of the surface. Tracing lines of curvature in real range
images is very unreliable due to the low x-y resolution of the scanner and quantization and
other sensing errors. Besides it is noise sensitive and computationally expensive. Besl and
Jain [25, 9, 13] have done a comprehensive study of invariant surface characteristics and
presented an algorithm for variable order surface fitting for image segmentation. They have
summarized the field of 3-D object recognition in their excellent survey [3]

A scale-space based algorithm for extraction and representation of physical properties of
a surface, using curvature properties of the surface is discussed in Fan,Medioni and Nevatia
[14]. Nackman [19] has described the two dimensional critical point configuration graphs
for describing the behavior of smooth functions of two variables by extracting peaks (local
maxima), pits(local minima) and passes (saddle points) of a surface. Qur approach is to not
to go into too much detail of the surface but to label the surface as flat,convex and concave
accurately. Thus local variations are ignored in favour of a more global interpretation. Yang
and Kak [33] describe an algorithm to analyze the topmost object in a pile. They compute
derivatives by fitting B-splines and use local curvature information to label the object as
flat and curved. Their method can only handle one type of surface for the topmost object in
the scene and has other problems in assuming that step edges form a closed contour, which
is not true in a general range image as described in chapter 3. A new approach for surface
classification using characteristic contours is proposed by Sethi and Jayaramamurthy [20].
Characteristic contours are defined as the loci of the points where the surface normals are at
a constant inclination to a selected reference vector. However it requires segmented surface
and normal vector at every point, which limit its usefulness to surface classification in final
stage of recognition process.

Their are specific methods available to process images acquired using a light-stripe

rangefinder. Smith and Kanade [34] have done contour classification of light-stripes to pro-
duce object centered 3-dimensional descriptions. Another method by Martin Herman [35]
extracts detailed, complete descriptions of polyhedral objects from light-stripe rangefinder
data. :

Segmentation of scene into surface primitives is useful in many applications. Most of
the techniques discussed above involve curvature determination. Hebert and Ponce [8] have
used surface normals (the Extended Gaussian Images) to classify surfaces into three simple
primitive surfaces: planar,cylindrical, and conic regions. Duda, Nitzan and Barrett [36] have
presented an algorithm for detecting planar regions using registered range and reflectance
data.

Most of the high level recognition approaches include model matching. Kuan and Dra-
zovich [37] have represented the objects as viewpoint-independent volumetric model based
on generalized cylinders. They perform feature-to-model matching based on low-level fea-
tures derived from range imagery. Constructing the 3-D model of an object involves in-
tegrating data or descriptions of an object obtained from multiple views and representing
this intergrated data in a coherent manner. Vemuri and Aggarwal [38] have presented an
algorithm for automatic construction of models by determining the orientation of the object
in the calibrated workspace and representing the object in cylindrical coordinates. Their
method does not require correspondence to be established but requires registered intensity
and range data of the scene while building the model. We have used superquadric models
to recognize segmented objects. The classification procedure matches superquadric param-
eters with the parameters of the identifiable models. Since models are well defined by eleven

superquadric parameters, there is no need to build models of the objects in advance.

Chapter 2

Acquisition and Preprocessing of

Range Images

Range images obtained by different scanners differ in the format of the output. In order to
apply low level techniques to the image it is necessary that the image points be quantized
in Z-depth format with equal resolution factor in X and Y direction. Once converted into
Z-depth format the image is smoothed.This chapter discusses some practical aspects of real

range image processing which are important if any useful results are desired.

2.1 Range Image Acquisition

The test images used in this work were acquired by structured lighting triangulation based
scanners. Figure 2 shows the ranging geometry of a typical range sensor. The trigonometry
of a sensor will not be described here.

Either the laser stripe moves and scans the scene or the workspace moves under a vertical
laser stripe. If the viewpoint of the sensing camera is not the same as the laser then shadows
(regions with missing data) are obtained. In order to discriminate between shadows and

background, (region of known depth on which object is sitting) background is assigned a

nonzero depth.

Laser Source

% Laser Plane

Workspace

Direction of scanning ——»

(a) Ranging using structured 1lighting.

44— ydim —>

(b) Z-depth format of range images

Figure 2: Ranging geometry of a structured lighting scanner and Z-depth format

Contrary to the popular assumption made by researchers, it may not always be possible
to represent the visible surface in Z-depth format, viewing perpendicular to the background.
To be able to represent all the scanned points in Z-depth format, it is necessary to digitize
the scene watching parallel to camera’s line of sight. This may require rotating the scene
to align the Z axis along the line of sight of camera thereby rotating the background which
is no longer of constant depth. The segmentation procedure should take this into account.
Also, this makes the processing viewpoint dependent. To avoid the trouble arising due to
this, it is often convenient to fix the viewpoint at the cost of losing some scanned points.
This problem is acute with images obtained from white scanner where f(z,y) is not unique.
The solution is to segment the scene from background and then rotate the scene to obtain

the Z-depth image.

2.2 Scaling of Range Images

Sampling interval of the scanners depends on the thickness of the laser stripe, value of laser
stripe increment and resolution of the camera. More often than not vertical resolution (along
Y axis) is different from horizontal resolution (along X axis). Thus the sampled points are
not spaced uniformly in X and Y direction. Since we apply neighborhood operators during
low level processing of images, it is necessary to rescale the images uniformly in both
directions. 'We have rescaled the Z-depth image by fitting a plane on three neighborhood

points. Figure 3 illustrates the difference between unscaled and uniformly scaled images.

2.3 Smoothing of Range Images

Depth resolution of a range image is an important parameter in low level processing. Range
scanners usually have depth resolution good enough for most applications. In fact a res-
olution of 0.01 inch/pixel is too fine and noise sensitive for surface fitting purposes. The
problem comes in quantization of z values. If entire scan depth is quantized within 8 bits

(most convenient representation), effective depth resolution is drastically reduced thereby

Figure 3: Z-depth format images. left :original resolution. right : uniformly scaled

increasing the quantization error. Since surface fitting is very sensitive to quantization

error, we have minimized it by following two step procedure :

1. Original depth resolution is preserved by storing the depth value unscaled in 2 bytes.
This allows 64k possible quantization levels. Scaling along Z axis is done only when

needed.

2. Image is smoothed using a Gaussian operator and smoothed values are stored in

floating point buffers so as not to lose any precision.

One way to reduce noise is to perform median filtering of the image. It ensures that
isolated noise is reduced and edges are not smoothed.
Our approach is to study the scale-space behavior of range images. We have used

Gaussian operator to smooth images. The Gaussian function in two dimensions is given

by :

e
Ge,y) = e 5

10

Since it is separable in X and Y directions, one dimensional Gaussian operator is applied
separably on the image. Smoothing is controlled by the size of the operator, which is
determined by ¢. Gaussian operator has some nice properties that make it a unique operator
for our purposes.

Yuille and Poggio [39] have proved that the Gaussian low-pass filter is the only filter
with a nice-scaling behavior for linear derivative operators like the laplacian operator. It

also satisfies the following conditions :

1. Filtering is shift-invariant and therefore, a convolution.
F x I(z)= /F(z - a)l(a)dz)

2. The filter has no preferred scale. The filter is properly normalized at all the scales.

3. The filter recovers the whole image at sufficiently small scales.
lin%) F(z,0) = 6(z)

where §(x) is the Dirac delta function.

4. The position of the center of the filter is independent of scale of the filter. Otherwise

zero crossings of a step edge would change their position with change of scale.

5. The filter goes to zero as |z| — oo and as ¢ — oo.

We have studied the behavior of increasing sigma value on edge detection, surface char-
acterization and segmentation. As o value increases, window size of the Gaussian operator
increases and details are lost. Figure 4 and figure 5 show the perspective plots of a range
image before and after smoothing respectively.

Minor surface perturbations are smoothed easily. But the undesirable effect of uniform
application of Gaussian operator is smoothing of all types of edges. Step edges (chapter 3)
are smoothed to form roughly convex and concave subparts (chapter 4).This complicates

edge detection, specially detection of smooth edges (concave and convex edges) that are

11

image

3-D perspective plot of original

Figure 4

(o=1)

image

3-D perspective plot of smoothed i

Figure 5

12

further smoothed. Thin objects tend to merge into the underlying objects, making seg-
mentation difficult. As will be discussed in chapter 3, as we go up the scale objects start
merging. We have found sigma value of 1 (window size 5x 5) to be best suited for our
experiments. In surface based segmentation technique, smoothing alters the local behavior
of the surface, but makes the result more reliable, specially away from the edges. Step
edges are shown as adjacent convex and concave regions. Segmentation using these effects

of smoothing is discussed in chapter 4 in detail.

13

7,

. '///////////'2

Step Concave roof Convex roof Convex ramp Concave ramp
Figure 6: Edges in range images

allows boundaries to be read off as zero crossings of the LOG operated image. We’ll discuss
the significance of the LOG operator in view of range images. While step edges pose no
particular problem, smooth edges are difficult to detect by local operations. In range image
segmentation it is of particular interest that the a pile of objects be segmented into convex
subparts. This requires detection of concave edges that will delimit the convex subparts.
Mitiche and Aggarwal [28] have presented a probabilistic approach of detecting the convex
and concave edges by using domain specific constraints.

Though 3-D edges are quite useful for object recognition, there are some inherent limita-
tions in edge information that make their use limited to aiding the higher level recognition
processes along with a host of invariant features. Edge classification depends on the orienta-
tion of object in 3-D space and is therefore not an invariant feature. Thus edge information
cannot be the only feature used by the recognizer and it has to be used in conjunction with
other features. However, as will be seen later, edge information is good enough for early
segmentation of range images because the requirement of invariant features does not apply
to the initial-segmentation process.

In case intensity information is available range data can be complemented by reflectance
data to pick up weak 3-D edges like the step edges created by overlapping thin objects. Wong
and Hayrapetian [32] used range information to segment intensity images. Gil, Mitiche
and Aggarwal [27] have described experiments in combining intensity and range edges.
While intensity images are certainly useful in detecting edges in the scene, they need to be

registered in the same way as range images to avoid correspondence problem. This may

15

Vertical section
of a range image.

»
X

A l\ sir§t
erivative.
NN

Second
Derivative.

N
B R A
Figure 7: Derivatives of a cross-section of a range image

possibility of extracting smooth edges using the V2G operator.

The Gaussian distribution in one dimension is defined as :

1 —z?
G(z) = e;;f
2o
The first and second derivatives are :
’ ’2
G'(z) = \/__0‘3

" z? "—’52-
(':}(:7:)—\/—03 —? ez

The cross-section of a range image and the profiles of first and second order derivative
are shown in figure 7.

In two dimensions the LOG operator becomes :

z? + y2) e—f—ﬂ'—l‘ 224y?

" _ ==
G (.Tv y) ’——27[0’4 (2 72 2

17

-~

Figure 8: 3-D edges detected in a synthetic range image. : upperleft original im-
age. upperright thresholded step edges. lowerleft thresholded convex edges. lowerright
thresholded concave edges.

It is clear that behavior of second order derivatives is unique at every type of change in
surface. There are positive spikes at concave ramp edge, negative spikes at convex roof and
ramp edges and zero crossings at jump edges. However there are serious practical limitations
in using this response to detect concave and convex edges. The response at these edges is
dependent on the convexity or concavity of the edge which is roughly the measure of angle
at which the two surfaces meet. If the angle is too small and change in depth is gradual
as in most situations, the response would be below or same as that due to local surface
changes. See figure 8 for the step, convex and concave responses obtained in a synthetic
range image having planar regions. Even in synthetic range image the responses deteriorate
as image was smoothed and smooth concave and convex edges virtually disappeared.

Thresholding of zero crossings is necessary in case of range images to avoid local surface
perturbations. Responses due to weak concave and convex edges would then be filtered.

Zero-crossings generated by weak step edges may also lie below the thresholding value. In

18

range images, Value of zero-crossing has direct relationship with the magnitude of depth

discontinuity. Thus selection of a threshold effecfively restricts the minimum detectable

depth. An object with less than acceptable height would be invisible in the edge image.
As observed in the previous chapter, it is absolutely necessary to smooth an image before

attempting any local operation it. LOG operator gives following image :
f(z,y) = (V2G) *I(z,y)
which can be written as :
f(z,y) = VI(G *1(z,y))

Degree of smoothing depends on the value of sigma, which controls the size of the
window. Larger the sigma, greater is smoothing. While this effect is interpreted in intensity
images as blurring and hence reduction of details, In range images it is seen in terms of
smoothing the surface at the boundaries in addition to reduction of details. This results in
all types of boundaries to become smoothed and can have undesirable effects on boundary
detection and surface based segmentation. We have observed that with increasing scale
value, range images loose vital boundary information presenting difficuities in edge based
segmentation. Empirically determined window size of 5 (sigma value = 1) is chosen for
processing all the images.

The algorithm for edge detection is given below.
1. Read in the range image.

2. Convolve the image with Gaussian operator separably in X and Y direction.

3. Convolve the G(x,y) * I(x,y) image with Laplacian operator:

19

4. Label the Zero-crossing (with maximum value) at every pixel in the V2G(z, y)*I(z, y)

image. Also mark the direction along which maximum crossing value is found.

5. Threshold the image at a predetermined value to label pixels as belonging to step
edges.

Figures 11(b),12(b) and other figures show the magnitude of zero-crossings detected in
range images.

It is observed that threshold selection is important in defining the acceptable depth,
which in turn is determined by the amount of detail seen in the filtered image. Also the
thresholding value is different at different scales. Threshold value varies inversely with
smoothing parameter (¢).As we go up the scale-space the need for thresholding decreases.

Next we discuss a segmentation technique based on the step edges detected by the LOG

operator.

3.2 Segmentation of Range Images using edge information

Segmentation of objects in a ra.hge image depends on actual requirements. One should
therefore define the problem of segmentation clearly in the relevant context. In order to
recognize an object it is necessary to isolate the object, which is not a trivial task. In a
practical environment where objects can be of any size and shape, segmentation of individual
objects can be a difficult task. Objects in a range image will always be partially occluded
making the problem of segmentation and recognition difficult. If the scene consists of a
heap of objects and we have to recognize one object then our problem can be simplified by
considering the object of immediate importance, the one on the top of the heap. But this
method has only specific applications like picking parts out of a bin etc. and is not useful
as a general segmentation strategy.

Another approach to a complete segmentation is to segment the picture according to

the requirement. Sometimes image segmentation into different surface types may be useful

20

and at other times convex objects need to be segmented. Whatever the method, a seg-
mentation process working on local information cannot always give requisite results. In
fact, segmentation at lower-level of processing can at best give locally valid results which
may be conflicting from global point of view. Thus a robust segmentation process has to
work with higher stages of processing to yield globally valid results. This introduces the
concept of feedback from higher stages so as to work in a closed loop with the goal of object
recognition. Then segmentation can be considered as a part of object recognition stage.

As discussed before, 2nd order derivatives give enough information to delineate ob jects
at the step boundaries. We will develop an algorithm for segmenting the topmost object in
a heap of arbitrary objects.

First stage of segmentation process involving isolation of objects from background can
be easily accomplished by thresholding the image at known background depth. The diffi-
cult part is to identify an individual object from the heap of objects. At this point it is
essential to define what is meant by an ’individual object’. An object can be a complex
combination of various ’primitive objects’ like cube, sphere, cylinder etc.Some important
questions need answering here before any further progress can be made : What are the end
boundaries(edges) of the object and what are the internal boundaries of the object and how
to distinguish betweén them ?

Different types of 3-D edges are jump edges, concave roof edges, concave ramp edges,
convex roof edges and convex ramp edges. Considering any of these edges as the internal
or external boundary of the object is going to put restrictions on the object types that
can be segmented. For example, a jump edge (Unless it is an occluding edge against the
background) need not be the end boundary of the actual object. Since the segmentation
process is essentially a local operation and no other knowledge is used this problem cannot

be solved at this segmentation level. There are following solutions to this problem :

1. Make assumptions about the type of the objects. For example, assume the topmost
object to be convex. This is a very strong assumption and requires convex infernal

boundary information. As noted before, this information is difficult to derive using

21

second order derivatives. We will see in next chapter, how surface characterization
techniques can be used to approximate the presence of smooth internal boundaries of

an object.

2. a priori knowledge about the scene. But this is against our approach towards a general

and robust segmentation algorithm.

3. Feedback from higher stages of object recognition to eliminate need for a priori knowl-
edge and to relax the strong assumptions made at low-level segmentation stage. Since
higher levels of object recognition are global processes and may have knowledge about
the domain, a closed loop segmentation procedure is bound to perform better than

one having no feedback.

Thus to achieve a reliable segmentation of the initial scene, we will assume that the top-
most object is delineated by jump boundaries. This may not always be true as two objects
can join at convex or concave edges or one object may merge into next one due to negligible
thickness of the object at the point of contact. This means that local information cannot
give perfect segmentation in all the cases. In such cases we need higher level processing to
figure out the right segmentation of the scene. The segmentation based on external bound-
ary information will give only an initial estimate of segmentation. This estimate is reliable
to the point that it can distinguish between objects of predetermined depth.

In the context of invariant ob ject recognition it is important to note that step boundaries
may vary with orientation of the object. Thus they are used only to segment the object
and not to recognize the object. We will discuss the results of recognition and classification
of the segmented object using the superquadric technique developed by Franc [23].

The block diagram of segmentation and classification process is shown in figure 9

A practical problem with using zero-crossing as step boundaries is that they do not form
closed contours. The boundaries delineating the object may not be completely enclosing
the object, resulting in region growing process to overflow from the object and include the
neighboring object as part of the object. This drawback renders the final segmentation

result very unreliable. Yang and Kak [33] use a priori knowledge about the width of the

22

Smoothed range Range Image
image Edges

T~ Al objects

Segmentation
by region growing.

t°gg?e°§;‘ segmented. Given
J Supporting surface tc; su_rff.acet_
information classilication
procedure

horizontally/

Generate list of
points \ ,
l \ Add points.

vertically.
Superquadric
fitting. *
model.orig Superquadric
fitting.

model.add

[Model selection.

[Model Classificatiorﬂ

Figure 9: Flow chart of segmentation and recognition process

23

object and contour tracking to extract the closed contour surrounding the object. Their
method does not guarantee success in all the cases. David Heeger [26] has proposed a
computational approach to gap filling. It is computationally expensive and not suited for
our purpose since we want to avoid explicit contour tracing in the entire image and want
the region growing method to take care of it. Peter Allen [29] has used gap filling method
based on contour growing proposed by Nevatia and Babu [30]. They perform gap filling on
the entire scene using the predecessor-successor graph of all connected contours.See Peter
Allen’s Ph.D. thesis for details. Contours are then merged based on the requirement of
merging N pixel gaps. This approach is again computationally expensive. Peter Allen
observes that filling of at most two pixel gaps is acceptable because of the ambiguities
resulting with three or more pixel gap-filling requirement. We have implemented two pixel
gap filling by constraining the region growing process near the boundaries, thus avoiding
the explicit gap filling stage.

One and two pixel gap filling is accomplished by simply requiring that a pixel having a
boundary pixel in its 8-neighborhood be not grown recursively. Instead, the pixel and the
boundary pixel are marked as grown. Figure 10 illustrates gap filling in one instance.

Thus we are able to avoid the contour tracing explicitly to fill gaps. Three or more pixel
gaps cannot be adequately handled by gap-fillers. Some sort of post processing is necessary
to further segment the segmented object in this case. One way is to trace all the boundary
pixels of the segmented object aﬁd use concavity information to segment the object into
parts. This approach is being implemented and will not be discussed here.

The algorithm for segmentation is given below :

1. Read in the original range image I(x,y) and V2G * I(x,y) image.

label_val = 0

2. Segment the objects from background by thresholding at background depth (supplied
by the user). In case background is not of uniform depth, a plane can be fitted to

represent the background and threshold the objects from the scene.

3. Locate the 3x3 window with maximum height by averaging the pixel values in 3x3

24

o

s

+
0
o,

S BT

E (i
TSR]
ey -,

Hatet
by
P e
'00“0‘0&0&@..-
f LD 00

Sttty
5eSeiSehee]
Sttty
(5050505050505

R d
s

RS

T
LIS

-
¥,

>

" e
S

e
Bt o
et
e

)

(a

region.

in

2
)
lm
o

c
3
o
L ot
O
o
=
]
m
[
.m
o

s
()]
25
o
e
2
o
L
o
c
>

®
-m
o
',
©
o
c
2
o
m

ing

An example of gap filli

.

Figure 10

25

window at every pixel in the range image.This gives the seed region for region growing.
Clearly the window lies on the topmost object. If there are more than one heap, then

also only one seed region is obtained.
4. label_val = label_val + 1

5. Grow the seed region recursively in all 8 directions. For gap filling procedure to work
it is necessary to grow pixels in 8-neighborhood. Let p;; be the pixel being grown . A
pixel p;; in 8-connected neighborhood of p;; is not grown under one of the following

conditions :
(a) depth(p;;) <=background_threshold
(b) pi; is already labeled.
(¢) If §;j, any pixel in 8-connected neighborhood of f;; satisfies :
laplacian(§g;;) >= edge_threshold
Then p;; is 1-pixel distance from an edge pixel and likely to be in a gap. Make :
label(p;;) = label(p;;) and
label(§;;) = label(p;;).

6. If number of pixels in the extracted region < acceptable size then region is invalid else

it is valid.
7. If region is valid then determine supporting points of the region.

8. The region extracted in the first pass is topmost region. Subsequent regions are grown
from top to bottom, left to right. If any more pixels are left to be processed then pick

up any unprocessed pixel and go back to step 5 to grow region.

9. Output topmost region, all valid regions and supporting points in separate image files.

3.3 Segmentation Results

26

Figure 11: Segmentation: (a) original image from RCA. (b) Edges detected. (c) topmost
object. (d) all segmented objects

27

Figure 12: Segmentation:(a) original image from RCA. (b) Edges detected. (c) topmost
object. (d) all segmented object

28

Figure 13: Segmentation: (a) original image from grasp lab scanner. (b) Edges detected.
(c) topmost object. (d) all segmented objects

29

Figure 14: Segmentation: (a) original image from RCA. (b) Edges detected at & = 1. (c)
segmented parts of one object at o = 1. (d) Segmentation at o = 2, for the same threshold
value.

30

Figure 15: Segmentation at different scales: (a) image smoothed at ¢ = 2.0. (b)
objects segmented. (c) : image smoothed at o = 3.0. (d) objects segmented

31

The programs are written in C and implemented on a VAX-785 running UNIX . Ikonas
graphics and PM format for images are used in all programs. Images are acquired from
two sources. Most of the images used as examples are from RCA range image database
and remaining are scanned by Grasp lab’s range scanner. All the images are digitized in
Z-depth format. RCA images have better (12 bits/pixel) resolution than Grasplab images
(8 bits/pixel). Hence more detail is seen in the former. It makes difference in detection of
thin objects. Due to different Z resolution of two scanners, we have used different threshold
values for the two sets of images. All the images are smoothed uniformly with Gaussian of
o = 1 (window size = 5 x 5). Zero-crossings of LOG operator are thresholded to remove
response due to minor surface perturbations. The threshold at a given o value also limits the
thickness of objects that can be segmented. Threshold values are determined empirically,
since histogram of zero-crossings cannot be used in determining threshold automatically
as is done in intensity images. However threshold value remains same for all the images
acquired from the same source. This is true for all the empirically determined parameters
reported in this thesis. Background value is also known to the program and is constant given
a scanner. Results of processing the images are in figures 11, 12,13 and 14. In figure 11 all
the objects are segmented correctly. The topmost object is a Cylindrical object. Figure 12
shows merging of objects because of very weak step boundary information. Figure 13 shows
results of segmentation on the image obtained from grasp lab scanner. A constant offset of
100 is added to original image depth values and zero-crossings are enhanced for displaying
purposes. Figure 14 exhibits different results at two scales for the same edge threshold.
The scene has single object, a box with string tied around it, so that the box is divided
into 4 partitions. Because of the high depth resolution of the image, edge information due
to string is enough to segment the box into three parts at o = 1 (figure 14(c)). Increasing
the o value to 2, removes the details of the string and whole visible surface is recovered
(figure 14(d)).

To study the effect of increasing sigma value on zero-crossing, one of the multiple object
images is processed for ¢ = 1,2,3. Note that objects start to merge as sigma increases,

with thin objects undetectable at ¢ = 2.(Figures 11, 15)

32

3.4 Recognition of segmented objects using Superquadrics

The surfaces extracted by the previous algorithm can be classified as one of the eight basic
surface types. We will discuss this classification approach in detail in next chapter. In this
section we will describe a high level recognition and classification method that classifies the
segmented object into four broad categories.

We have used superquadric model recovery method implemented by Franc (23] to recog-
nize the segmented object in a range image. Details of the procedure for superquadric fitting
are discussed in Franc’s Ph.D. thesis. Superquadrics are a family of parametric shapes that
can be used as primitives for shape representation in computer vision [31]. Superquadrics
are like lumps of clay that can be deformed and glued together into realistic looking models.
However, we will consider only non-deformed superquadric models for classification of the

object into one of the categories :

1. flat : Object with negligible height compared to length and width;
2. roll : A Cylindrical object.
3. box : An object with comparable height length and width.

4. Irregular : Any object not falling in any of the above three categories.

Superquadric implicit equation is given by :

)+ ()] +[2) -

Parameters a;, a3, and a3 define the superquadric size in x,y and z direction respectively.
€1 is the squareness parameter in the latitude plane and ¢; is the squareness parameter in
the longitude plane. Based on these parameter values superquadrics can model a large set
of standard building blocks, like spheres, cylinders, parallelopipeds and shapes in between.
Figure 16 illustrates the various types of shapes obtainable by changing two shape param-
eters. If both £, and €5 are 1, the surface defines an ellipsoid. Cylindrical shapes are

obtained for ¢ < 1 and £ = 1. Parallelopipeds are obtained for both £; and g5 are < 1.

33

Figure 16: Superquadric models as function of shape parameters (£;,22) for given size
paremeters (a,.az,a3)

34

‘We have restricted the model recovery procedure to fit the models with 0 < eg;,e5 < 1. We
will not discuss the details of model recovery here.

The Criteria used for classification are three size parameters, two shape parameters and
the goodness of fit (GOF) measure. The superquadric procedure returns a GOF measure

using the following equation :

1 N
GOF =]—V’-Z[ala2a3 (F (z,y,2;01,02,03,51,52,¢', 03 ¢’px,py1pz) - 1)]2

i=1

Where F is the superquadric inside-outside fuction described in Franc [23]. ¢, 8,1 define
the orientation and p.,p,,p, define position of superquadric in space.

The object given by the segmentation procedure has only the points visible to the
scanner. Much of the volumetric information is lost in the Z-depth format of representation.
While this is not a serious problem in case of curved objects like cylinder or segmented
surfaces having volumetric information (like a tilted box viewed from above), model
fitting becomes ambiguous if the visible surface is flat. If it is known that the original scene
had only one object, then the supporting surface can be assumed to be the plane parallel
to the known background. The problem complicates in the multiple object scenes, where
it becomes impossible to assign correct depth to the segmented object. Given no prior
knowledge about the surface type, we need to add points in every case to give volumetric

information to the superquadric procedure. Points can be added in two ways :

1. Background is assumed to be the supporting surface of the object. Points are added on
the background by backprojecting the visible surface on the background (figure 17(c).
While this is desirable in case of flat surfaces, it is not right for surfaces with volumetric

information.

2. Supporting points of the segmented ob ject are used to determine the immediate sup-
porting surface(s) of the object. Points are added vertically (figure 17(e)) to the
object. This technique is more flexible since it can handle objects not lying on the

background. But it results in more points to be added in addition to assuming that

35

(b) (d) C))

Figure 17: Horizontal and vertical addition of points.(a) object. (b) original points.
(c) horizontal addition of points. (d) fit with horizontal addition. (e) vertical addition of
poins. (f) fit with vertical addition.

the object is actually touching the neighboring objects, which may not be true in

general.

In general it is not possible to extract correct supporting surface information from a
single viewpoint. We have used horizontal addition of points in our experiments as it is
faster than vertical addition and recovers the desired model.

The algorithm for model fitting,selection and classification is following :

1. Read the segmented object in Z-depth format.

2. Format conversion and point addition : Generate a list of points in 3-D space

representing the object. Call it points.orig. For every point on the visible surface add

36

a point at the same (z,y) coordinates on the background. Output the list of original

and added points in points.add.

3. Superquadric fitting : Run Superquadric model fitting procedure on points.orig.
Model obtained is model.orig. Run Superquadric model fitting procedure on points.add.
Model obtained is model.add. Iterative superquadric fitting is stopped if one of the

following conditions is met :

(a) Number of iterations > 15.

(b) Goodness of fit of ith iteration (¢ < 15) is < Acceptable measure. This measure

is empirically determined.

(c) I for the jth (j > 5) iteration :

, . 2
-4 1—4

% Z (GOF(i) - E GOF(k)) < Acceptable_deviation.
i=j k=j

Condition (a) assumes that model recovery is complete by 15th iteration. Con-
dition (b) stops the procedure if an acceptable model is obtained early in the
process. Condition (c) monitors the rate convergence of fitting procedure. It
terminates the fitting procedure if the GOF measures of last five iterations do
not vary much. All the values used in the above three conditions are empirically

determined.
4. Model selection :
IF (GOF(model.add) AND GOF(model.orig) < Acceptable_fit)
THEN GOTO volume_criterion
ELSE IF (GOF(model.add) < Acceptable_fit)
THEN model = model.add GoTO classify.

ELSE IF (G’OF(model.orié) < Acceptable.fit)

THEN model = model.orig GOTO classify.

37

ELSE

OBJECT = Irregular. coTo Done.

5. Volumec_criterion : Volume can be approximated as a; X a2 X a3.

IF(volume.add < volume.orig)
THEN model = model.orig

ELSE model = model.add.
6. classify : Classify model using a,, a2, a3 and £1,é3:

(a) IF ((as < a1) AND (a3 < a3)AND
(e1 < 0.5) AND (g3 < 0.5))
THEN OBJECT = FLAT.
(b) ELSE IF ((a; < a3) AND (az < a3) AND
(e1 < 0.5) AND (&3 < 0.5))
THEN OBJECT = FLAT.
(c) ELSE IF ((a; > THRESH_BOX) AND (a; > THRESH.BOX) AND
(a3 > THRESH_BOX) AND (g1 < 0.5) AND (g2 < 0.5))
THEN OBJECT = BOX.
(d) ELSE IF ((a1 > THRESH_1_ROLL) AND (as > THRES'H-I-ROLL) AND
(a3 > THRESH2 ROLL) AND
(e1 < 0.5) AND (g2 > 0.5))
THEN OBJECT = ROLL.

(e) ELSE OBJECT = Irregular

THRESH_.BOX is the minimum acceptable dimension of the box.
THRESH.1_.ROLL is the minimum acceptable width and height of the roll.

THRESH_2_ROLL is the minimum acceptable length of roll.

38

OBJECT Llodel al a2 a3 el e2 Error
Orig| 16.30 | 8.65 | 75.70 | 0.24| 0.95]56.21
Cylinder
Add|{| 16.07 35.29{ 72.16| 0.10] 0.14} 393.28
orig| 3.47 33.6 45,291 0.10| 0.81] 1274.40
Box
Add 38.11 51.14] 39.47] 0.10| 0.10) 441.16
Orig 7.46 46.76] 57.72}1 0.10| 0.52] 319.32
Flat
Add 8.86 45,75 57.52) 0.10| 0.17) 245.34
Oorig 4.928 50.41 76.79] 0.10} 0.43] 4083.61
Others
Add 9.38 53.00 82.44| 0.10] 0.10] 4178.83

Figure 18: Parameter values of the recovered models

7. Done : Qutput classified model with parameters. Determine Orientation and position

of the model in world coordinate system.

3.5 Results of Superquadric Fitting and Classification

The superquadric fitting procedure and classifier were run on the objects segmented pre-
viously. The superquadric parameters for the four types of recovered objects are shown in
figure 18.

Figure 19 shows model recovery on topmost object segmented in figure 14. The model
selection process rejected model.orig due to large fit-error and accepted model.add. Even

if model.orig had an acceptable error measure, model.add would have been selected due

39

RCA 21

Figure 19: Superquadric fitting and Model selection (a box) : (a) original points. (b)
fitted model on original points. (c) original and added points. (d) fitted model on original
and added points.

to larger volume. The acceptable error magnitude was empirically determined to be 500.
In figure 20 model.orig is selected and classified as roll because of the tremendous error
difference between the two acceptable models. model.add is accepted and classified as flat
in figure 22 because of volume consideration, although both the models have acceptable
error measures. Finally, the film mailer in figure 23 is classified as irregular as the fit-errors
of both the models is more than acceptable error measure.

The results are shown for the four classes of ob jects. Tapered , bent or concave objects
cannot be represented by these models and hence will be classified as irregular. Franc

Solina’s superquadric method also allows for tapering and bending along with segmentation

40

RCA 19

(b)

Figure 20: Superquadric fitting and Model selection (a Cylindrical object) : (a)

original points. (b) fitted model on original points. (c) original and added points. (d) fitted
model on original and added points.

41

Figure 21: .Segmentation: upperleft : original image from grasp lab scanner (aletter)
upperright:Edges detected. lowerleft : topmost object. lowerright : all segmented objects

42

(¢) (¢)

Figure 22: Superquadric fitting and Model selection (a letter) {a) original points. (b)
fitted model on original points. (c) original and added points. (d) fitted model on original
and added points.

43

RCA 24

Figure 23: Superquadric fitting and Model selection (a film-mailer) : (a) original
points. (b) fitted model on original points. (c) original and added points. (d) fitted model
on original and added points.

14

of the complex objects into parts. In the next chapter we will describe a surface classification

scheme that uses the output of segmentation routines described in this chapter.

45

Chapter 4

Surface Characterization and

Segmentation

Surface characterization refers to the computational process of partitioning the surfaces into
regions with equal characteristics. Since our ultimate goal is object recognition, classifica-
tion of the surfaces by the characteristics of the surface functions is very useful. Classical
differential geometry provides a complete surface description of analytic surfaces so as to
obtain a complete set of surface characteristics. Surface characterization can be successfully
used in intermediate and high level processing of the object recognition problem.

Important surface characteristics, that are visible-invariant are Gaussian curvature and
the mean curvature. They are invariant to changes in surface parametrization and to trans-
lations and rorations of object surfaces. Guassian curvature is an intrinsic property of the
surface while mean curvature is an extrinsic property of the curvature.

From differential geometry it is well known that curvature, speed, and torsion uniquely
determine the shape of 3-D surfaces. The surface characteristics of our interest are the
ones with one-to-one relationship with curve shapes. The mathematics of a general surface
representation scheme and calculation of Guassian and mean curvatures is described in

following section.

46

4.1 Differential Geometry of Surfaces

Parametric form of equation for a regular surface S with respect to a known coordinate

system is :

S = (z,y,2) : ¢ = 71(u,v),y = z2(%,v), 2 = 23(u,v),(u,v) € D C R?

The surface is a locus of points in Euclidean three-space defined by the end points of
the vector X(u,v) with z;(u,v) the components of the vector. These real functions are
assumed to be defined over an open connected domain of a Cartesian u,v plane and to
have continuous second partial derivatives there. In our analysis of range images we are

assuming that this condition is satisfied.

The second condition for a regular surface is automatically satisfied by Z-depth format

images. It requires that the coordinate vectors X, = X, = %, X, =X, = %J;(are linearly

independent :

X oX
%XE—)QXXg#O.

The surface in range images is given by :

X = (21,22, f(21,22))

and coordinate vectors become :

_ of
Xl - (1’07 6131)]

Xi= (0.1, 2L),

’ 8:1:2
These vectors are linearly independent given the first condition.

It can be shown using differential geometry techniques that first and second fundamental
forms(which exist only if the surface is analytic) uniquely characterize a general smooth

surface. The first fundamental form I of a surface is defined as :

47

>
X

Figure 24: Coordinate frame at the Neighborhood of a point

g11 12 du

I(u,v,du,dv) = dX.dX = [du dv] = du”[g]du

9 922 dv

where [g] matrix elements are given by :

gm=E=X,X, g22=G=X,X, gu=9n1=F =X, X,

The two tangent vectors x, and x, lie in the tangent plane T(u,v) of the surface at the
point (u,v). [g] matrix is symmetric for an analytic surface.

figure 24 shows the coordinate frame at the Neighborhood of a point.

The first fundamental form J(%, v, du, dv) measures the small amount of movement in the
parameter space (du, sv). The first fundamental form is invariant to surface parametrization
changes and to translations and rotations in the surface. Therefore it depends on the
surface itself and not on how it is embedded in the 3-D space. The metric functions E, F,G
determine all the intrinsic properties of the surface. In addition they define the area of a

surface :

48

A=//R\/EG—deudv

The second fundamental form of the surface is given by :

bi1 b12 du

II(u,v, du, dv) = — dx.dn = [du do] = du”[b}du

ba1 b2z dv

Where [b] matrix elements are defined as :
b11 =L = qu.n bgz =N = X,,,,,.n b12 = bz]_ =M= Xm,.n

X, X Xy
| Xu X x4 |

n(u,v) = = unit_normal_vector

Where the double subscript denotes second partial derivatives

9%*x 9%x 9%*x
Xuu(¥,v) = W Xou(u,v) = 5_”_2 Xuu(U, V) = Xou(u,v) = dudv

The second fundamental form measures the correlation between the change in the normal
vector dn and the change in the surface position at a point (u,?v) as a function of small
movement (du,dv) in the parametric space. Besl and Jain [9] have discussed the properties
of first and second fundamental forms in detail. We will consider some of the important
properties of Gaussian and Mean curvature in the following paragraphs.

It can be shown that the [g] matrix and the [b] matrix elements are the continuous
functions with continuous second and first partial derivatives respectively and that they
uniquely determine the surface type. From the [g] and [b] matrices calculated above surface
shape and intrinsic surface geometry can be uniquely determined.

The Gaussian curvature function K of a surface can be defined in terms of the two

matrices as :

-1

b b
K = det g1 912 det 11 012

921 922 ba1 g2z

49

<0
2>0 v G >0
M<O M>0
G=0 G=0
M<O snonus M >0 M: Mean
G< o vALLEY Y G<o G : Gaussian
M=0
= FLAT

NINIFAL

Figure 25: Basic surface types in range images (2) surface types (b) table of surface types.

and the mean curvature of a surface is defined as :
-1
1 g11 912 buy 612
= Etr det
g21 022 ba g2
The two tyvpes of curvatures are together referred to as surface curvature functions.
They exhibit very important properties that enable them to be used as features for higher

level of processing. For detailed discussion on the properties of surface curvature functions

see Bes] and Jain [9]. Some of the relevant properties are summarized below :

1. Surface types can be determined by the sign of surface curvatures. They are shown

in figure 25

o

Gaussian curvature exhibits isometric invariance properties.
3. Mean curvature is slightly less sensitive to noise than Gaussian curvature.
4. Gaussian curvature function of a convex surface uniquely determines the surface.

5. Mean curvature function of a graph surface taken together with the boundary curve

of a graph surface uniquely determines the graph surface from which it was computed.

30

10.

. Gaussian and mean curvature are invariant to arbitrary transformations of the (u,v)

parameters of a surface as long as the Jacobian of the transformation is always non-

Zero.

. Gaussian and mean curvatures are invariant to rotations and translations of a surface.

This property enables us to obtain view-independent characteristics.

. Gaussian curvature is an isometric invariant of a surface. Therefore it is an intrinsic

surface quantity. It is independent of the the way the surface is embedded in the 3-D

space.

. Gaussian and mean curvature are local surface properties.

Another important property of surface curvatures is that Gaussian curvature indicates
the surface shape at individual surface points.When surface is shaped like an ellipsoid
in the Neighborhood of(u,v), K(u,v) > 0. It is < 0 for locally saddle-shaped surface
and is = 0 if the surface is flat,rdge-shaped or valley-shaped locally. Mean curvature

also indicates surface shapes at individual points when considered together with the

Gaussian curvature.

The above observations are very important for surface classification and have been widely

studied and used in range image processing.In fact surface characteristics constitute an

important part in the realization of the ultimate goal of three dimensional ob ject recognition.

4.2

Computing Surface Characteristics of Range Images

Given a range image, our objective is to calculate the Gaussian and mean curvature. To

compute surface curvature we need to know the estimates of the first and second partial

derivatives of the depth map. Equations to get the partial derivatives can be simplified in

the case of the Z-depth format range image. Parameterization takes a very simple form:
T

Xy = [u v f(u,v)] . The T superscript indicates the transpose. This gives following

formulas for the surface partial derivative and the surface normal.

51

xw=[10 A]T x =0 1.&]T xw=[0 0 nur‘

T T

xml=[0 0 fuv] xutJ:[O 0 fuv]

1 [T

Il = —Ju " Jv 1] .

sl
and the six fundamental form coefficients :
=1+ f2 gu=1+ f2 gu=fuf
fuu fuu fU‘U

WmET AT R T AT R BT ATAET R

The expression for Gaussian curvature is given by :

= fuuf'uv - f.fu
1+ f2+ 52

And the expression for mean curvature is given by:

H = f““ + fw + fu'uf3 + fv‘uf3 _ 2fufufuu
2(1 + f2 + f2)°?

Thus if we are given a depth map function f(u,v) that possesses first and second partial

derivatives, Gaussian and mean curvature can be computed directly.

4.2.1 Estimation of partial derivatives of Depth Maps

Partial derivatives of the range image can be obtained by fitting a continuous differentiable
function that best fits the data. There are various techniques available in mathematics that
have been used by computer vision researchers to determine partial derivatives of depth

maps.

52

Using Discrete Orthogonal Polynomials

Besl and Jain [9] used discrete quadratic orthogonal polynomial fitting at each pixel to
estimate derivatives. It is possible to control Neighborhood size for making local estimates
which is important in case of actual range images.

A quadratic surface is fit at each pixel in the image, using a window convolution operator
of size desired by the user.

Each point in the given window is associated with a position (u,v) from the set UXU
where N is odd :

N ELEO RTINS |

The following discrete orthogonal polynomials provide the quadratic surface fit :

~ M(zv.;+ 1))

bolw) = 1 41(0) = v a(w) = (o
Where M = (n —1)/2. The b;(u) functions are normalized orthogonal polynomials :

3u

bo(w) = 1N b(v) = g5 T @M 7 D)

by(u) = -P(_EJ_)- (uz _ M(M3+ 1))

Where P(M) is a fifth - order polynomial in M :

8 4 2
P(M) = 4—5-M5 + §M“ + §M3 -

9M - 15M'

b;(u) vectors are computed according to the window size. First the surface estimate
function f(u,v) is calculated :

2

Fuv) = 37 aiii(u)e;(v)
t,7=0
that minimizes the mean square term :

e= Y (fwv)-fuw)

(u,v)EU?

53

Coefficients are given by :

ai; = 3 f(u,)bi(u)bi(v)

u,vGU2

The first and second partial derivatives can then be directly read from the a;; coeffi-

cients :

fu=0a10 fo=00n fuw =011 fuu=2020 [=200
After the first and second partial derivatives are determined, surface characteristics at
each pixel are calculated.
Using Difference Operators

Brady etal [4] have used 3 x 3 difference operators to locally compute first and second
derivatives of the Gaussian smoothed surface. Neighborhood size cannot be increased in

this method. The operators are :

-1 01 1 1 1 -1 0 1
-1 01 0 0 0 0 0 0
-1 0 1 -1 -1 -1 1 0 -1

1 -2 1 1 1 1

1 -2 1 -2 -2 -2

1 -2 1 1 1 1

Using B-Spline fitting

Yang and Kak [33] have derived 3 X 3 operators using B-splines for computing partial
derivatives of a range map. These can be combined with Gaussian operator to increase the
window size and reduce sensitivity to noise. The operators give partial derivatives at the

center pixel of each operator.

54

q
-1 -4 -1 -1 01
1 1
xu-12 0 0 0 xu-12 -4 0 4
1 4 1 | -1 01
1 4 1 1 -2 1 1 0 -1
X l 2 8 2 X, ']; 4 8 4 X l 0 0 O
welE| = - - v g - wo 17
1 4 1 1 -2 1| “10 1

Least Squares Polynomial Fitting

We have used a fast least squares fitting method to derive partial derivatives in the symmetric
Neighborhood of a pixel. This method allows the Neighborhood size to be controlled.
A surface fit of order n can be written as :
i+j<n o
flz,y)= D e’y
1,j=0
We have used second (n = 2) order fitting in the Neighborhood of every pixel to compute

first and second order derivatives. Clearly, since the pixel at which derivatives are computed
is at the origin, we get :
z=0andy=10

ao1

3f(1,?!)_a af(z,y) _
or T gy

& f(z,y) »f(z,y)
g2 = 2a20 “op - 2a02

B izy) _ Pfzy)
9zdy 0Oydz

Thus derivatives are read off directly from the coefficients. We have also used the general

least squares fitting procedure for fitting polynomial on surface patches. For the purpose of

55

steg con;ex concave
\ QOriginal
crosssection.

smoothed
~] crosssection.

N

f

concave convex concave

Figure 26: Effect of uniform Gaussian Smoothing

computing derivatives it is observed that we always have symmetric Neighborhood around
the pixel. This fact simplifies the least squares equations. See appendix B for the simpli-

fied least square fitting equations for second order bivariate approximation in a symmetric

Neighborhood.

4.2.2 Results of Initial Segmentation

The above mentioned process is applied to actual range images and results are shown in
figures 27,28,29, 30,31,32,33.

The smoothing behavior of Gaussian operator was briefly discussed in chapter 2. It is
observed that step edges in range images are actually adjacent convex and concave edges.
This is further amplified after smoothing the image with any size of Gaussian operator.
Brady etal. [4] have restricted the Gaussian application to inside of the region. We have
used Gaussian uniformly in the range image with the intention of uniformly smoothing the

image for the purpose of obtaining reliable curvature estimates (see figure 26)

56

Figure 27: curvature estimation (a) original image. 192 X 256 12 bits/pixel image (b)
smoothed image. (c) regions. (d) error in fitting

o
|

Figure 28: curvature estimation left to right.from top; original image.150 x 150 8
bits/pixel image; error in fitting; segmented regions; flat regions; convex regions; concave
regions.

Figure 29: Initial labeling of scene with different threshold values (a) 0.01 (b) 0.02
(c) 0.03 (d) 0.04 .

Figure 31: Thresholded left : gauss. right : mean. black indicates zero, gray is positive
and white is negative value

60

Histogram

: ‘
d
40000 |]
30000 - N
f i]
r]
20000 |-]
1 1
10000 -
ﬂ
OLJ..,I...JILA,.I...1_'

~-0.4 -0.2 0 0.2 0.4

{-- values -->
Figure 32: Histogram of Gaussian Curvature
Histogram
DOD0 —£eall mean curvature 9=2:
i 3
1500 + . -
l :
f . -
r r

e 1000 - 7]
q |)
500 -
r 1
L)
0 { l - |
-1.5 -1 -0.5 0 0.5 1 1.5

{-- values -->

Figure 33: Histogram of Mean curvature

61

For surface characterization purpose we use higher sigma value (= 1.5) and for post
segmentation processing we work at lower level in scale. Step Edges detected at sigma
= 1.0 are used to detect region boundaries in higher level processing stage discussed in next
section. \

Although the response of Gaussian and Mean curvature is reliable it is necessary to
threshold the values around zero. 1% of maximum was used as threshold in all examples.
Figures 27 and 28 show the labeled regions and error in fitting second order polynomial at the
Neighborhood of each pixel, in images with 12 bits/pixel and 8 bits/pixel respectively. The
fit-error is appreciable at boundaries including smooth edges. This means that curvature
estimates at the edges are not reliable. At such points curvature magnitude may not be
reliable though sign of curvatures is reliable. Further results are shown only for image in
figure 27.

Figure 29 shows the effect of threshold values on curvature signs. As threshold values
for Gaussian and mean curvature is changed, pixel labeling may change if the curvature
magnitude is not appreciable. image thresholded at 1% of maximum curvature magnitude
(see figure 29(c)) has correct labelings. Further results are shown only for this threshold
value. Pixels are classified as one of the eight basic types. We can classify the entire im-
age into concave, convex, and flat regions by simply merging all neighboring pixels having
similar type of surface, i.e, flat,concave or convex (see figure 30. Thresholded values of
Gaussian and mean curvature are shown in figure 31. White patches indicate zero magni-

tude, gray indicate positive magnitude and black indicates negative curvature magnitude.
It is observed that Gaussian curvature is mostly zero except for isolated patches, since the
image has no spherical object. Non-zero mean curvature values are obtained at step edges
and on a cylindrical object. Histogram of the magnitude of Gaussian and mean curvature
(figure 32 and 33) for the entire image show appreciable mean curvature magnitude in the

image and no significant Gaussian curvature. It can therefore be inferred that the scene has

flat and possibly cylindrical objects.

62

4.3 Post processing of Labeled scenes

The segmentation done by labeling the individual pixels using sign of Gaussian and mean
curvature is local in nature and threshold dependent. In order to interpret these labelings
globally, we need to process the the labeled image with globl constraints. Besl and Jain [25]
have proposed a variable order surface fitting algorithm. Surface patches are described as
linear,quadric or cubic.

Our approach depends on the actual requirements. We describe two methods, (both are
preliminary) to obtain useful segmentation given labeled image. The first method simply
groups convex patches to form connected convex subparts of the scene. Second method uses

the segmented objects obtained from algorithm described in chapter 3.

4.3.1 Obtaining Convex patches

As noted in third chapter, detection of smooth edges is difficult to extract using only local
information. Curvature information at the all types of edges is easy to record. From figure 26
it is clear that edges in smoothed images can be recorded as thin convex and concave regions.
In particular, convex edges are of convex cylinder type, with zero Gaussian curvature but
appreciable negative mean curvature. Similarly, concave edges are of concave cylinder type,
with zero Gaussian curvature but appreciable positive mean curvature. Thus all types of
edges give either convex or concave cylindrical response. But the edge response is obtained
over wider region due to smoothing and large window size during derivative computation.
It is therefore not possible to have exact localization of patches obtained by merging convex
regions.

A simple algorithm for obtaining convex patches is given below :
1. Read the labeled image.
2. Label each patch as a region.

3. Initialize the region data structure to record surface type, number of pixels, topmost

pixel in the region,neighbours of the region,extremities of the region and the label

63

Figure 35: Convex patches

64

assigned to the region.

4. For the next unprocessed topmost region of the type flat or peak(convex sphere) or

ridge (convex cylinder) with acceptable number of pixels do:

(a) Extend the original region to include all neighboring regions of type flat or
ridge. Other types of regions are considered concave or part of other convex
subpart. peak patches are not included because they will be selected as seed

region.

(b) Repeat the above step to extend the region, till it is not possible to grow any

more.
5. Output the convex subparts. End.

Figures 34 and 35 show convex patches obtained from labeled image obtained in figure27
and in figure 28(a) respectively. Majority of objects in figure 34 are merged into one convex

patch while they are separated in figure 35

4.3.2 Object Surface Classification

Surfaces on the segmented objects can be classified as one of basic surface type using the
initial labeling based on sign of curvatures. Yang and Kak [33] have used extended Gaussian
images to identify surface type on isolated surfaces. Histogram of labels in an isolated ob ject
can give some idea about the surface and guide the surface fitting process.

The classification algorithm is as follows :
1. Read in the segmented objects image and labeled surface image.
2. For each object in the image do :

(a) Erode the object in labeled image so as to remove points within 5 pixel distance of
the object boundary. This reduces the effect of smoothing and window size during
curvature estimation which is mainly contributed by pixels near the boundary,

and does not reflect the nature of region.

65

Figure 36: Classified surfaces

(b) Histogram the remaining pixel-label values.
(¢) If more than 90 % pixels are of one type,either flat or cylinder or sphere then
the surface can be classified as such. If there are two or more peaks in the

histogram, object has more than one surface type.

(d) In single surface cases fit the best fitting surface on the points. Output the

description of surface.

(e) Further processing by region growing by surface fitting is necessary to smoothen
the surface patches. Fit surfaces on individual patches and merge them by region

growing.

This algorithm is being implemented. Initial classification process will classify the sur-
faces in figure 11 as 5 plane surfaces, 1 cylindrical and 1 irregular surface (the film mailer).
See figure 36.

First and second order polynomials were fitted on flat and non-flat surface patches

respectively in image of figure 11. The reconstructed image is shown in figure 37. Besl

66

Figure 37: Original and reconstructed Images. left: original images right: recon-
structed images obtained by fitting 1st and 2nd order surfaces on patches labeled by seg-
mentation process.

and Jain {13, 25] have used initial labeling to obtain seed regions in the final region growing
process. They perform variable order surface fitting to approximate the scene as a collection

of piece-wise continuous functions.

67

Chapter 5

Discussion

Though results of running the various algorithms described in previous chapters on im-
ages acquired from different scanners are consistent, there is scope for refinement of all the
approaches. We will discuss the merits and demerits of each method and suggest improve-
ments.

We need to study the scale-space behavior of range images in detail. This would lead to a
better understanding of the scale at which range images should be handled. We have noticed
that thresholding of zero-crossings makes the entire segmentation procedure dependent on
the threshold value. Though we have obtained consistent results with a fixed empirically
determined value for all the images obtained from a particular scanner, threshold selection is
not automatic. Secondly, even with right threshold value the region may not be completely
bounded by the zero-crossings (in case of overlaps by thin objects or sensor noise) To
make the whole process less sensitive to threshold, following post-processing steps (region

splitting) are suggested :
1. Read in the segmented object.

2. Trace the contours around the object as it is defined now and also any other boundaries
that are now lying inside the object. Except for the bounding contours, other contours
may not be closed. They may simply lie within the region and actually are boundary

of the real object. In such a case mark the beginning and end of the contour. If the

68

contour touches the closed contour then mark the point of contact as end of inner

contour.

3. In all the contours mark the concavities.

Now split the region by connecting two contours (gap filling) or connecting two points

of concavity (gap filling or region splitting) or connecting an end point of contour

with a concavity, based on predetermined gap filling distance.

5. The output is the segmented object.

The above method should be indifferent to threshold values on higher side as it splits the
region consisting of more than one regions. To reduce the sensitivity to low threshold values
(which will result too many small regions) some sort of merging is required. Merging is a
much difficult task, so it is better to keep the threshold high and have the post-segmentation
process perform the splitting, rather than initial segmentation performing splitting due to
low threshold value.

Another solution to splitting is to let higher level recognition process make globally valid
observations to split the region. The higher level procedure may use a priori information or
may make some assumptions or apply global constraints to split the region. Franc Solina’s
(see [23]) superquadric procedure can split the regions into identifiable parts by performing
model fitting on individual part of the object.

In chapter 4 we noticed that labeling of the scene based on curvature sign is threshold
sensitive. While thresholding around zero is necessary to obtain meaningful results, it is
not clear how that value can be automatically determined. Curvature determination being

local, the labeling is sensitive to noise and surface tezture. It is not well understood how to

generate a global interpretation of such surfaces.

69

Bibliography

[1] R.M.Bolle and D.B. Cooper,Bayesian recognition of local 3-D shape by approzimating
image intensily functions with quddric polynomials, IEEE Trans. Pattern Analysis and
Machine Intelligence. PAMI-6,N0.4,1984,418-429.

[2] R.Bajcsy;Three dimensional scene analysis;Proc. Pattern Recognition Conf. ; Mi-

ami,Florida,pp. 1064-1074,1980.

[3] P.J.Besl and R.C.Jain,Three dimensional object recognition, ACM Computing surveys
17,No.(1),1985,pp. 75-145.

[4] Brady,M.,Ponce,J.,Yuille,A.,and Asada,H.,Describing surfaces, MIT Al lab memo
822,January 1985.

[6] Haruo Asada and Michael Brady ;The curvature Curvature Primal Sketch, IEEE Pat-
tern Analysis and Machine Intelligence, PAMI-8,No.1, January 1986.

[6] Robert Haralick,Layne Watson and Thomas Laffey ;The Topographic Primal Sketch,
International Journal of Robotics Research, vol 2,No 1,Spring 1983,pp 50-72.

(7] Jean Ponce and Michael Brady ;Zoward a Surface Primal Sketch, IEEE Conference on
Robotics and Automation, March 1984, pp 420-425.

[8] M.Hebert and J. PonceA new method for segmenting 3-D scenes into primitives Proc.

of the 6th int conf. on pattern recognition. 1982

70

[9] P.J.Besl and R.C.Jain,Invariant surface characteristics for 3d Object Recognition in

Range Images,Computer vision,Graphics, Image Processing No.(1),1986,pp 33-80.

[10] R.M.Haralick Digital step edges from zero crossings of second directonal
derivatives, PAMI-6,No. 1,1984,58-68.

[11] Ballard and Brown Computer Vision,1982, Prentice Hall,New Jersey.
[12] B.K.P. Horn Machine Vision

[13] P.J.Besl and R.C. Jain Segmentation through symbolic surface descriptions,Proc on
Computer Vision and Pattern Recognition,1986.

[14) T.J.Fan,G.Medioni and R.NevatiaDescriptions of surfaces from Range data using cur-

vature properties, Proc. on Computer Vision and Pattern Recognition,1986.

[15] T.C.Henderson efficient segmentation method for range data. Proc. of the society for

photo-optical Instrumentation Engineers conference on Robot Vision. 1982.

[16] A. Heurtas and R. Nevatia ;Edge detection in Aerial Images Using V2G(z,y), in Semi-

annual Technical Report on Image Understanding Research, University of Southern

California,1981,pp 16-26.

[17] S.Inokuchi etal ,A three dimensional edge region operator for range pictures. Proc. of

6th international Conference on pattern recognition. 1982.

[18] D.L. Milgrim and C.M. Bjorklund Range image processing : Planar surface ertraction.

Proc of the 5th International Conference on Pattern Recognition. 1980.

[19] L.R.Nackman Two-dimensional critical point configuration graphs. IEEE PAMI-6,July
1984

[20] I.K.Sethi and Jayaramamurthy Surface classtfication using characteristic contours.

Proc. of the 7th International Conference on Pattern Recognition.IEEE,1984

71

[21] O.D.Faugeras and M.Hebert;The Representation,Recognition and Positioning of 3-D
Shapes from range data;in Techniques for 3-D Machine Perception Edited by A. Rosen-
feld;Published by North-Holand,1986, pp. 13-51.

[22] B.K.P. Horn;Eztended Gaussian Images;Proc. of the IEEE,vol. 72,No. 12, pp. 1671-
1686,December 1984.

[23] Franc Solina; Shape Recovery and Segmentation with Deformable Part Models; Ph.D.
thesis, Grasp laboratory, University of Pennsylvania. MS-CIS-87-111.

[24] D. Marr and E. Hildreth; Theory of Edge Detection; Proc. of Royal Society of
London,B-207,pp 187-217,1980.

[25] P.J. Besl and Ramesh Jain; Segmentation Through Variable-Order Surface fitting, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1988.

[26] David J. Heeger; Filling in the Gaps: A Computational Theory of Contour Generation,
University of Pennsylvania, Grasp Lab, Technical report MS-CIS-84-64

~

[27] B. Gil, A. Mitiche and J.K. Aggarwal ;Ezperiments in combining intensity and range
edge maps,Computer Vision, Graphics and Image Processing 21, 1983, pp 395-411.

[28] A. Mitiche and J.K Aggarwal Detection of Edges Using Range Information, IEEE
Trans. Pattern Analysis and Machine Intelligence,PAMI-5,No. 2,pp 174-178.

[29] Peter Allen; Object Recognition Using Vision and Touch; Ph.D. Thesis, Grasp
Lab.,University of Pennsylvania. 1985.

[30] R. Nevatia and K.R. Babu; Linear feature extractor and Description, Computer Graph-
ics and Image Processing,vol13,pp. 257-269,1980.

[31] A. P. Pentland; Perceptual Organization and the Representation of Natural
Form,Artificial Intelligence 28(3),pp 293-331. |

72

(32]

(33]

34]

(35]

[36]

[37]

(38]

(39]

R.Y. Wong and Hayrepetian ;Image Processing with Intensity and Range Data, Pro-
ceedings of the IEEE Pattern Recognition and Image Processing Conference, Las Ve-

gas,June 1982,pp 518-520.

H. S. Yang and A. C. Kak; Determination of the Identity, Position and Orientation
of the Topmost Object in a Pile, Computer Vision, Graphics and Image Processing
36,1986,pp 229-255.

David Smith and Takeo Kanade; Autonomous Scene Description with Range Imagery,

Computer Vision, Graphics and Image Processing, Vol 31,No. 3,Sept 1985,pp 322-334.

Martin Herman; Generating Detailed Scene Descriptions from Range Images, IEEE
conference on Robotics and Automation, March 1984, pp 426-431.

Richard Duda, David Nitzan and Phyllis Barrett ;Use of Range and Reflectance Data
to Find Planar Surface Regions, IEEE Pattern Analysis and Machine Intelligence,
PAMI-1, No 3, July 1979.

Darwin Kuan and Robert Drazovich ;Model-based Interpretationof Range Im-

agery,Proc. of the National Conference on Artificial Intelligence, Austin, August 6-10,
AAAILpp 210-215.

B.C. Vemuri and J.K.Aggarwal;3-D Model Construction from Multiple Views Using
Range and Intensity Data, IEEE conference on Computer Vision and Pattern Recog-

nition,1986,pp 435-437.

Alan Yuille and Tomaso Poggio ;Scaling Theorems for Zero Crossings, IEEE Pattern
Analysis and Machine Intelligence, PAMI-8,No 1, January 1986.

73

Appendix A

2nd order Least squares fitting in

symmetric neighborhood

The approximating polynomial is written as :

I(z,y) = 0201?2 + anzy + 0-02'5/2 + ajo + ap1y + ago

The square error term is :

N
2= Z(Z; - I;)2

=1

N
=) (27 - 220 + 1Y)

i=1

To minimize the least squares term, let 282 — 0.

axX; —
which is :
22
aaa = —2Z;z? + 22, =0
20
9x? '
Doy = —2Ziziy; + 22y = 0
ax?
P00 -2Z;y? + 2L =0

74

a%?

==2Z;x;+22;1; =0

dayo
ax?
==2Z;yi+ 2y:Li = 0
ao 2Z:yi + 2y
2
22 =-2Z;4+2I; =0
daoo
Writing :
Site = wlylzf
we get :
S400 S310 S220 S300 S210 Szool azo
S310 S220 Size S210 S120 S0 ay
S220 S130 Soso S120 Sozo So2 ao2
S300 S210 S120 S200 S110 S100 aio
S210 S120 Sozo Sii0 So20 Soio aoy
| S200 S10 Soz0 S0 Sowo Sooo | | aco

In a symmetric neighborhood :
Spe0 =0 for odd p or q and

Speo = quO

The above system of equations reduces to :

Ss0 0 S220 O 0 Swo | [ax
0 Sy O 0 0 0 a11
S220 0 Soso O 0 Soz ao2
0 0 0 Sx O 0 aio

0 0 0 0 So O ao1

| S200 0 Sozo 0 0 Sooo | | @00

75

S201
S11
Soz1
S101
So11

Soo1

5201
S
So21
S101
So11

Soot |

Which can be written as :

1110=m 001=m an=m~
S200 S200 S220
and
S0 S220 Sa00 azo S201
S220 Sos0 So20 az | = | Son
S200 Soz0 Sooo ago Soo1

76

Appendix B

Source Code Listing

Listings of source programs is included in following pages.

1. space.c : Performs smoothing,median filtering,Gaussian filtering, Laplacian, marking
zero-crossings and graphics display of histogram etc. in interactive manner.

2. segment.c : Segments all objects and topmost object in the scene, given original

image and zero-crossings of LOG image. Also outputs supporting points of topmost
object. ‘

3. rca_calib.c : Generates a list of points for Z-depfh format image. Originally written
by Franc, modified to read PM files and add points horizontally and vertically.

4. classify.c : Procedure used to select and classify the superquadric models.

5. spline.c : Computes various surface characteristics of the image. Interactively dis-

plays results and histograms using quickdraw routines. Outputs labeled image and
other characteristic as desired by the user.

6. grad.c : Has code for fast least squares fitting. Polynomial is fitted in the symmetric
neighborhood of the pixel.

7. merge.c : Performs processing on the image labeled according to signs of Gaussian
and mean curvature. It computes convex parts of the image, fits polynomials on

patches using general least squares routines in solver.c.

8. solver.c : Has code for a general least squares fitting procedure.

There are other supporting programs that are vital to the algorithms. Superquadric
fitting programs are developed by Franc Solina and are not listed here.

77

space.c Mon Apr 18 18:07:36 1988 1

/t***t********i****i**i***i**

Program for computing scale - space description of the Input imag
and lots of other things in interactive manner. Later will overri
scale.c.

Modifications for display of histogram done on Feb 18, 1988.

March 24 1988 : To read/write in both PM_C and PM S formats.
April 1 1988 : All buffers made floating pt. Computation of lapla

and zerocrossing made floating pt.
kKKK kR KRR KR AKX R KRR RK KRRk A kR KRR KA AR AR AR AR AR KR KRR AR R ARk XA Rk kX

#include <stdio.h>

#include <math.h>

#include <local/pm.h>

#include <ik.h>

/* #include <local/gkopt.h> */

#define BUFSIZE 256 /* Image buffer size */
#define BUF_NUM 4 /* # of buffers available for manipulation */

float result[BUFSIZE] [BUFSIZE]);
float buffer [BUF NUM] [BUFSIZE] [BUFSIZE]; /* 0 stores original image *
int temp_buf[BUFSIZE]; /* temporarily store a buffer

float x[BUFSIZE]), y[BUFSIZE]; /* to store points */

int threshold;

int booll,bool2,bool3;
char *cmt;

char input_filename{50];
int sizex,slzey;

pmpic *pmi;

u_int image format;

/* Threshold for detecting zero-xings */

/* size of the image */
/* stores the format of the last image read

float min();

float get median():
float abszz();
float squarezz();

/t**ti***************tttt*************MAIN**********t****************

maln(argc,argv)
int argc:
char **argv;

{

space.c Mon Apr 18 18:07:36 1988 2

FILE *infile,*out; /* pointers to input image and output image
FILE *out2;

FILE *infs,*out_pmsmooth, *output_pm;

char *smooth_cmt;

char lkonas_disp({10];

char *out_cmt;

int count;
unsigned char c;
static int nhb_x[8)
static int nhb_y(8]
float nbd[8],temp;
int i,3,k,1,m,n,b;
float nbr{10];

int gsize;

float sigma; /* size and sigma of the gaussian operator */
float sum;

float gauss[60];

float gsum;

int offset;

char input{20];

int offx = 0,offy = 0; /* offset coordinates , intiali
char outfile([30]; /* name of the output file */
int bl,b2,b3;

unsigned char *pm point;

int disp row;

fi1

zed

short int *pms_point; /* pointer to short integer to hand

PM S format */
int factor; /* & by which PM S image pixel
for display on IKONAS */

printf(*argc : %d\n",argc);
1f (argc != 2)
{

printf(*usage : scale <input-image-file-pmpic>\n");
exit (0);
}

printf(*want to display on ikonas 2 “);
scanf ("%s*, &élkonas_disp{0]);

printf(*read\n®);
/* open the ikonas display. value of env. variable 1s taken */
if (stremp (“y™,1konas_disp) == 0)
if (ikopen (NULL) == -1)
{
printf(“can’t open ikonas. exiting\n"};
exit (0);

to b

space.c Mon Apr 18 18:07:36 1988 3 spacs.c Mon Apr 18 1B:07:36 1988 4

} count++;

}
/* get comment line */ result{i][]j] = get_iedian(nbr);
}

for(i=1;i<(sizex-1);1i++)

/* open input pm file */ for(j=1;3<(sizey-1); J++)
buffer{b] [1][]] = result([1][3}];

cmt = pm_cmt (argc,argv):

read picture(argv(1],0);

read picture(argv(1],1); } /* end of median filtering */
printf ("Rows : %d Columns : $d\n*,sizex,slzey); else if ((strcmp(input,*gauss”) == 0) || (strcmp(input,*g"”) == 0
{
/* procesing of the commands starts now : b = readbuffer();
various avallable commands are :

1. gauss : convolves the image with gaussian filter.

2. cross : computes zero and other types of crossings in the gi printf(*sigma :");
buffer. scanf ("%f",&sigma);

3. save : saves indicated buffer in a file.

4. disp : displays indicated buffer on the 1konas. printf("size of window :");

5. add : adds the two buffers.result is put in buffer 1 scanf (*%d",&gsize);

6. sub : subtracts two buffers. result is put in buffer 1

7. buffer: selects the current buffer. /* compute the gaussian array */

8. offset: offset the picture on ikonas.

9. original : indicated buffer gets original picture. gsum = 0;

10.read : Reads a flle in the designated buffer. for(i= -gsize/2,3=0;i<= gsiza/2;1++, j++)

11.hist : Computes and displays the historam using quickdraw. {

12.1kpm : saves the image displayed on ikonas in the a file in gauss{]j] = (1.0/(sqrt((double) (2.0%3.1415926)) *sigma))*

gsum += gauss([]3];
five active buffers are maintained to manipulate the original ima printf("gauss{%d] = $f*,1,gauss(j]):
*x/ }

printf (">");
if (gsum == 0) gsum = 1;

while(scanf ("$s*,input) != EOF) printf(*\n gsum = %f \n“,gsum);
1f((strcmp(input, *median”) == 0) || {(strcmp(input,*m") == 0}) /* seperably convolve x-axis */
/* do median filtering of the image */ for(3=0;j<sizey; j++)
b = readbuffer(); for(i=gsize/2;i<=(sizex-gsize/2);1++)
{
for(i=1;i<(sizex-1);1++) sum = 0;
for(4=1; j<(sizey=-1);3++) for(k= —gsize/2;k<= gsize/2;k++)
{ {
count = 0; sum += buffer(b] [1+k][]}]*gauss[k+gsize/2];
for{m=1-1;m<=1+1;m++)
for(n=j-1;n<=3+1:n++) resultf{i] [§] = sum/gsum;

{ }
nbr{count] = buffer(b]{m] {n];

space.c

}

else if((strcmp(*lap”,input) == 0) ||

{

else if((strcmp(*cross™,input) == 0) ||

{

Hon Apr 18 18:07:36 1588 5
/* seperably convolve y-axis */

for(i=0;1<sizex;1i++)
for(i=gsize/2;j<=(slzey-gsize/2);}++)
{

sum = 07 .
for{k= -gsize/2;k<= gsize/2;k++)
{

sum += result(1][j+k]*qauss(k+gsize/2];

}
buffer[b] [1]) [J] = sum/gsum;

(strcmp(®*1",input) == 0))
b = readbuffer();
/* apply laplacian operator */
for{i=1:1<(sizex~1);1++)
for(j=1;3<(sizay~1); J++)
result[1}[j] = —-4*buffer(b] (1] [J]+buffer(b] [i-1][]]
+buffer(b] [(1+1] (]
+buffer (bl [1] (J~1]+buffer(b]l [1][J+1];
for(i=1;i<(silzex-1);1i++)
for(j=1;3j<(sizey~1);j++)
buffer(b] [1]1[]] = result([i]1(]];
(stremp ("c*,input) == 0
b = readbuffer();

printf("step edge magnitude desired 2 enter 1 if yes >*);
scanf (*%d", ¢booll) ;

printf("concave edge magnitude desired ? enter 1 if yes >")
scanf (*%d", &bool2) ;

printf(*convex edge magnitude desired ? enter 1 if yes >%);
scanf (*%¥d*, sbool3);

/* trace zeros */

for{l=1;i<(sizex-1);1++)
for(3=1;3i<(sizey-~1); j++)
{

space.c Mon Apr 18 18:07:36 1988 [

for{n= 0;n<B;n++)
nbd[n] = buffer{b] [i+nhb_x[n]][j+nhb_y([nl];

}
edge_p(buffer(b] (1] [J],nbd, stemp) ;
result[i]{3] = temp;

for(1=0:1<(slizex) ;1++)
for(1=0;j<(sizey);j++)
buffer(b] [1] [J] = result(i][]j];

}

else {f{(strcmp(*offset™, input) == Q) || (strcmp(*off",input) =
{
printf (*coordinates :");
scanf (*%d*, soffx) ;
scanf (*$d*, soffy);
}

else if(strcmp(“robert¥,input) == 0)
{
bl = readbuffer():

for(i=0;1i<(sizex-1);1i++)
for(3j=0;j<(sizey =1);3j++)
result[1]1[j] = (float) sqrt((double)
{squarezz (buffer{bl] [1][J] - buffer(bl] (i
squarezz (buffer(bi] (1] {§+1]=-buffer[bl] (1

for(i=0;i<(sizex-1);1++)
for(3=0;j<(slzey -1);3++)
buffer(bl] [1]1[]j] = result(i][]]:
} /* robert */

else 1f((stramp("subtract”,input) == 0) || (strcmp(”sub%, input)
{
/* subtract two images */

printf(*b3 = bl - b2\n*);

bl = readbuffer():
b2 = readbuffer();
b3 = readbuffer():

for(i=0;1i<sizex;1++)
for (3=0; j<sizey; j++)
{

buffer[b3] [1]1[]] = abszz (buffer(bl][1][]j] - buffer[b

space.c Mon Apr 18 18:07:26 1988 7

else if((strcmp(“disp®,input) == 0) || (strcmp(~d”,input) == 0}

{
/* display the indicated buffer on ikonas */

b = readbuffer();
printf(¥offx : %d ; offy : %d \n",offx,offy);

1f (image_format == PM_s)

{
printf(*factor to divide each pixel by : *);

scanf (*%d", &factor);
}

for(1=0;i<slzex;i++)

1f (image_format == PM S)
{
for(3=0; j<sizey; j++)
temp_buf([]j] = bufferfb] (i} (j]/factor;
lwr_n(offx, i+offy, satemp buf{0],sizey);
}

else

for(3=0;j<sizey; 3++)
temp buf([j] = buffer([b](1]1(3];
lwr_n{offx, i+offy,&temp_buf(0],slzey);
}
}

} /* end of disp; display on IKONAS */

else if (stremp(*ikclose®,input) == 0)
ikclose();

else 1f(strcmp(”ikopen®, input) == Q)
ikopen (NULL) ;

else if((strcmp(“save”,input) == 0) || (strcmp(*s*,input) == 0}

{
/* save the indicated buffer in a file in ikonas format */

b = readbuffer():;

printf ("enter outputfilename :%);
scanf ("$s"”,outfile);

space.c

Mon Apr 18 18:07:36 1988 8

/% open output file */

if{(out = fopen(outfile,”w")) == NULL)
{
printf(“file open error :%s \n",outfile);
exit (0);

}
printf(“row : %d col : %d \n",sizex,sizey};
pm_addcmt (pml,cmt) ;

if (image_format == PM C)
{
pm_point = (unsigned char *) pml->pm_image;
for(i=0;1i<sizex;1++)
for (=0; j<sizey; J++)
{
* (pm_point) = buffer(bl i} (3i}:
pm_polnt++;
}

}
else /* format is PM_S */
{
pms_point = (short int *) pml->pm_image;
for(1=0;1<sizex;i++)
for(3=0;3<sizey; J++)
{
* (pms_point) = buffer(b][1]1([3i];
pms_point++;
}

}
pm_write(out,pml);

fclose (out);
} /* end of save */

else if {(strcmp{*orig*,input) == 0) || (strcmp(™o®,input)

{
b = readbuffer();

/* load the input file in buffer b */
for(i=0;i<slzex;1++)

for(j=0;j<sizey; J++)
buffer[b) [1][]j] = buffer[0]1{1][3):

space.c Mon Apr 18 18:07:36 1988 9
else if((strcmp(”read”,input) == 0) || (strcmp(*r*,input) == 0)
{
b = readbuffer():;
printf(“enter inputfilename :");
scanf ("¥s”, input _filename);
read_picture (input_filename,b);
}
else if((strcmp(™ikpm®,input) == 0) || (strcmp(”ikpm*,input) ==
{

}

}

printf (*Nothing happened\n”);
}

else 1f((strcmp(*hist*,input) == 0) || (strcmp(*h*,input) == 0)

{
b = readbuffer();

display histogram(b);

}

else if((strcmp("row"”,input) == 0) || (strcmp("rowscan”,input)
{
b= readbuffer();
printf(“row : *);
scanf (“%d", &disp row);
while((disp row < sizey) && (disp row >= 0))
{
display row_histogram(disp row,b):;
printf(*row : “);
scanf (*td", adisp row):
}

printf(">");

/* compute edge strength and direction */

/*

mask is like this :

space.c Hon Apr 18 18:07:36 1988 10

*/

edge_p(intensity,nbd,p_es)
float intensity,nbd(8],
*p_es;
{
static double delta{8] = (1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

static unsigned char tbl(9] = {0,1,8,7,6,5,4,3,2};
float *p_ed;
int {4, j,ed,halfgray,maxgray;

float res,slope;

res = 0.0;
ed = -1;
halfgray = 0;
maxgray =255;

1f (booll ==1)
: if (intensity > halfgray)
for (i=0;1<8;1++)
1f:nbd[i]<halfgray)

slope = (float) (intensity - nbd[1i])/deltaf{i]:
if(slope >res)
{
res =slope;
ed = opposite(l);
}

}

}
else if(intensity == halfgray)
for (1=0;1<8;1++)
{
j=opposite(l);
if ((nbd(1])<halfgray) && (nbd[3]}>halfgray))
{
slope = (float) (nbd{Jj}-nbd[1i])/(delta[i])):
1f (slope > res)
{
res =slope;
ed =J3;

space.c Mon Apr 18 18:07:36 1988 11

}

}
1f (bool2 == 1)
if (intensity > halfgray)

/* if required check for 0+0
type of crossings because they are generated by
concave surfaces
x/
for (1=0;1<8;1++)
{
J=opposite(1);
1f({({nbd{i) == halfgray) && (nbd[j) >= halfgray)}
{
slope = (float) (intensity - nbd[1])/deltali]);
if (slope > res)
{
res = slope;
ed = J;
}

}

if (bool3d == 1)
{
1f (intensity < halfgray)
{
/* if required check for 0-- or 0-0
types of crossings because they are generated by
concave surfaces
x/
for(i=0;1<8;1++)
{
j=opposite (1)’
1£((nbd{1] == halfgray) && (nbd{]J] <= halfgray))
{
slope = (float) (nbd[i] ~ intensity)/delta[i];
if(slope > res)
{
res = slope;
ed = J;

space.¢ Mon Apxr 18 18:07:36 1988 12

}

}

if (image_format == PM C) res = res * 5;
*p_es = min(res, (float) (maxgray));
*p ed = tbl{ed+1];

}

opposite (i)
int 1;
{
int opps

1f (1<4)

opp = 1i+4;
else

opp = i-4;

return{opp):
}

float min(i,3)
float 1,73:
{

if (1<j) return(i);
else return(j);

}

readbuffer ()

{
int b;

printf (*buffer :%);
scanf ("%d”,¢b) ;
1f((b < 0) |l (b > 5)) (b=readbuffer();return(b);}
else return(b);
}

float abszz (num)
float num;
{

float 1;

1f(num < 0) 1 = —num; else i = num;

space.c Mon Apr 18 18:07:36 1988
return{i);

}

float get median(nbr)
float nbr[l10];

{
float nbrl[5);

sort (nbr,nbrl);
return{nbrl{4]);
}

sort {nbr,nbrl)
float nbr{10],nbrli{5];
{

int 1,m;

float large;

int index;

for (m=0;m<5;m++)
{
large = -100;
for(i=0;1<9;1++)
{
if(large < nbr{i])
{
large = nbr[i];
index = 1i;
}
}
nbrl{m] = large;
nbr(index] = 0;
}

read picture (filename,b)
char filename(]:
int b;
{
int 1,3;
FILE *infs;
unsigned char *pm point;
short int *pms point;
int offset;

/% open input pm file #*/

13

space.c Mon Apr 18 18:07:36 1968 14

1f ((infs = fopen(filename,%“r")) == NULL)
{
printf(*file open error :%s \n*,filename);
exit (0);
}

/* read inputfile into the pmpic buffer */

if((pml = pm _read(infs,0)) == NULL)
{
printf(“error in reading the pmfile %s",filename);
exit (0);
}

{pml->pm _nrow); /* § of rows */
(pml->pm_ncol) ; /* # of columns */

sizex
sizey

[}

image_format = pml->pm form;

if (pml->pm form == PM C)
{
pm_point = (unsigned char *} pml->pm_image;
for(i=0;1<sizex;i++)
for(3=0;j<sizey; j++)

buffer[b] {11{Jj] = *pm_point;
pm_polnt++;
}

}
else if (pml->pm form == PM §)
{
pms_point = (short int *) pml->pm_ image;
for(i=0;i<sizex;i++)
for (3=0;j<sizey; J++)

buffer{b]) {1} [1] = *pms_point;
pms_polnt++;
}
else fprintf(stderr,*”Image in unrecognized format. Buffer not initi
} /* end of read picture */
display_histogram(buff)

int buff;

{
int 1,3;

space.c Mon Apr 18 18:07:36 1988 15

float xmin, xmax, ymin, ymax;
int iopt:

int npts;

int max;

int value;

for(1=0;1<256;1++)
{
x{i] = 1;
yli] =
}

qterm(4);

max = -1000;
for(i=0;1<sizex;i++)
for (J=0;)<sizey; j++)
{
value = absyy((int) (buffer(buff] (1]1[3])):
yi{value] = yivalue) + 1;
if (max < y[value]) max = y[value];

}
printf(* max : $d*,max);
iopt = 0;
npts = 256;
xmin = 0.0;
xmax = 255.0;
ymin = 0.0;

printf(*ymax : ");
scanf (“§f*", symax) ;

gkdraw (npts, x,y, iopt, &xmin, &xmax, &ymin, symax) ;
qdtitl(* R H *);

gxlabl (*Range");

qgylabl (*Values®);

qdone () ;
}

absyy (value)
int value;

if(value < 0) value = -value;

if(value > 255) return(255);

space.Q Mon Apr 18 18:07:36 1988 16

else return(value);

}

display row _histogram(row,buff)
int row;
int buff;

int 1,3;

float xmin,xmax,ymin,ymax;
int lopt;

int npts;

int max;

int value;

int row_num;

for(i=0;1i<sizey;i++)
{

x[1] = 1;
}
for(i=0;1<sizey;i++)
y[i) = 0;

qterm(4);

max = -1000;

for ()=0;j<slzey; J++)
{

value = absyy((int)buffer[buff] (row](3])};
y[]j] = value;

}
iopt = 0;
npts = slzey;
xmin = 0.0;
xmax = slzey;
ymin = 0.0;
ymax = 255;

gkdraw (npts, x,y,lopt, &xmin, &xmax, éymin, &ymax) ;

qdtitl(* R H ¥);
gxlabl ("Range");
qylabl (*Values"®);

space.c Mon Apr 18 18:07:36 19848 17
qdone () ;
}

float squarezz (number)
float number;
{

return (number*number) ;

}

segnent.c

Tue Apr

19 18:21:08 1988 1

VARER RS R A R R g2t Rt RO s i st R e s st i i bttt]

This program performs segmentation on the laplacian edge oper
image and marks the topmost object in the range image.

Modified on Augl2, 1987 .

Modified on Jan28,1988 to-extract supporting surface information
for the segmented obiject.

Feb 1,1988

: Recursive call to grow regin modified to incorporate

control over the #of pending recursive calls at given time. This
requires malntaining a FIFO queue of open nodes.

March 24,1988 :

Modifled to accept PM C and PM_S format images. Ou
images in respective format.

reglon label 1 is reserved for unaccpted regions.
max reglons allowed is determined by MAX REGION
= MAX_REGION-1 to 2.

LR RS R s R Rt Rt s st s 2 s s a2 s s 22 2 2]

#in
#in
#in
#in

#define MIN_VALUE 0

tde
#de
#de

#de

#de
#de

int
int
int
int
int

int
int

int
int

clude <stdio.h>
clude <math.h>
clude <ik.h>
clude <local/pm.

fine MIN ACCEPTABLE 300

fine BUF 256

h>

/* =0 1f background > shadows (non-zero backgro

else if background = 0 = shadows then = -1 */
/* Minimum § of pixels in a valid region
/* Buffer size in one dimension */

fine MAX NUM CALL 500 /* Maximum # of pending recursive calls

fine MAX REGION

at a glven time.To avold segmentation
2550 /* Maximum#é of regions allowed */

fine UNACCEPT REGION 1 /* Label of rejected regions */

fine PIXEL_STACK SIZE 10000

range image_buffer (BUF] [BUF];

/* slze of the pixel stack used for
recursive-iterative region growing */

/* input image buffer */

lap image buffer{BUF] [BUF); /* laplacian image buffer */

third image_buffer BUF] [BUF];
cutput_buffer [BUF] [BUF];
support_image buffer(2] [BUF] [BUF];

average_image(BUF] [BUF];

vector (65000];

edge_threshold;
nrow,ncoel;

/* temporary buffer for marking
visited points */

/* segmented image buffer wit
labeled object */
/* supported surface */

/* average 2x2 stored */
/* threshold for edge strengt

/* global variables to store
and column values */

sogment.c

long int count;
int distance;

int seedrow, seedcol;
int back_threshold;
int a_depth;

float squarezz();

char accept_reglon(};
ikword value = 255;

char ikonas_disp(10];
pmpic *pml, *pm2, *pm3;

int label;

int pixels;

int region_count;

int invalid region_count;

struct region_type ({
int number;
int wvalid;
int size;
int max;
int min;
} region[MAX REGION];

int row_max;
int column_max:
int max;

struct p stack {
int row;
int col:

Tue Apr 19 18:21:08 1988

/%
/*
/%

/*

} pixel stack{PIXEL STACK SIZE};

int rownum;
int colnum;

int num call;
int stack_length;

int current_element;

int
int
int
int
int

nextrow, nextcol;
top_reglon_label;
max_plixel_ region;
min pixel region;
gaprow,gapcol;

/* (rownum, colnum)

/*

/%
/*

/*

/*
/*
/*
/*
/*

/%

maximum allowable distance
the seed region */

/* seed reglon coordinates */
/* threshold for background *
/* average depth */

/*

Run time display on Ikonas

/* Pointers to PM-picture st

/*
/*
/*
/*

label value to identify re
of pixels in the current
§ of valid reglons found *
counts only invalid region

Label of the region */

=0 if not valid. =1 if val
of pixels in the region
maximum pixel of the regio
minumum pixel of the reglo

row number of max depth pixel */
column number of max depth pixel *
depth value of the max depth pixel

stores the open pixels in circular

is the next pixel *

popped from the stack */

number of calls pending at a given
=current_element 1f queue is empty
points to the taill of the queue */
polnts to head of the queue */

nextcol and nextcol for the
label of the topmost region
maximum pixel of the region
minimum pixel of the region

seed re
x/
x/
*/

the nbd edge pixel found, returned

segment.c Tue Apr 19 18:21:08 1988 3
gapfiller(), if point lies one dist
from the edge */

pmpic *read pmpic_int();

/t**t*ttti*itt*tttﬁttttttti*t**t*MAIN****t****ttﬁ*********t*****tt***

main{argc,argv)
int arge:

char *argv(]:

{

FILE *range, *laplacian, *outfile, *outfile2, *outfile3;
int i,3,k,1,m,n;
char output[50];
int row,column;
int offset;

char *cmt;

int done, found; /* used as booleans */
unsigned char *pm point, *pm point2, *pm point3;

short int *pms_point, *pms_pointZ2, *pms_point3;

u_int image_format; /* stores image format PM C o

/* generated output file name
/* # of row and columns in in

if (argc t= 3)
{
printf (”segment : usage : segment <range file> <lap_ edge
exit(l);
}

cmt = pm_cmt (argc,argv):

printf(*Want to display on IKONAS 2 *);
scanf (*¥s", &ilkonas_disp[0]);

/* open the TKONAS display. value of env. variable is taken *
if (stremp(*y*,ikonas_disp) == 0)
if (1kopen (NULL) == -1)

printf(“Can’t open IKONAS. Exiting\n”):
exit (0);
}
1f((range = fopen{argv{l),"r")) == NULL)
{

printf(“segment : Cannot open %s\n*,argv(l]):;
exit (0);

segment..c

Tue Apr 19 18:21:08 1988 4

if((laplacian = fopen{argv{2],*r*)) == NULL)
{

printf (*segment : Cannot open %s\n”,argv(2]);

exit (0);
}

if((pml = pm read(range,0)) == NULL)
{

printf (“Error in reading PM file : $s\n“,argvi[1]);

exit (0);
}

1if((pm2 = pm read(laplacian,0)) == NULL})
{

printf (*Error in reading PM file : %s\n",argv(2]);

exit (0);
}

/* open output files */

strcpy (output,argv(l]);
strcat (output, *.label");
if((outfile = fopen(output,"w")) == NULL)
{
printf (*segment : Cannot open output file
exit (0);
}

strepy (output,argv(l]);
strcat (output, *.top");
1f{(outfiled = fopen{output,”w")) == NULL)
{
printf (*segment : Cannot open output file
exit (0);
}

strcpy (output,argvi{l]);
strcat (output, ».support®);
1f ((outfile2 = fopen(output,*w”)) == NULL)
{
printf(“segment : Cannot open output file
exit (0);
}

row = pml->pm nrow;
column = pml->pm ncol;
image format = pml->pm_form;

%s\n”,out

$s\n",out

$s\n*,out

segment.c

Tue Apr 19 18:21:08 1988 5
if((row != pm2->pm nrow) || (column != pm2->pm ncol))

printf (“Input images are not of same size. Exiting \n"});
exit(0);
}

Nrow = IrOwW; /* initialize global variables nrow and ncol *

ncol column;

printf (*Edge threshold :*);
scanf (*%d", &edge_threshold);

printf (*Background threshold :%);
scanf (*%d”, ¢éback_threshold);

printf(*Max. distance from seed region :");
scanf (*%d", &distance) ;

/* read the input image and laplacian edge operated image */

/* first read the range image */
if (pml->pm_form == PM C)
{
pm_polnt = (unsigned char *) pml->pm_image;
for(1=0;1i<row; i++)
for(3=0; j<column; j++)

range_image buffer(i]({j]l = *(pm_point):
pm_polint++;
}

}
else if (pml->pm_form == PM_S)
{
pms_point = (short int *) pml->pm image;
for(1=0;i<row;i++)
for (J=0; j<column; J++)

range_image buffer(i][]j] = *(pms_point):
pms_point++;
}
}

/* Now read laplacian operated image */
if (pm2->pm form == PM C)
{
pm point = (unsigned char *) pm2->pm image;

for(1=0;1<row; i++)
for (J=0; j<column; j++)

segment.c

/*

x/

Tue Apr 19 18:21:08 1988 6

{
lap image_buffer[i]([j] = *(pm point);
pm_point++;
}

}
else 1f(pm2->pm form == PM S)
{

pms_point = (short int *} pm2->pm image;
for(1=0;1<row;i++) .
for(3=0;j<column; j++)
{
lap_image buffer(i] (]] = *(pms_point};
pms_point++;

}

/* Initlalize output and temporary buffers */
for(1=0;i<row;1++)
for (3=0;j<column; j++)
{

third image buffer[i]([]] =0;
output buffer(i](j] = 0;
support_image buffer(0](1]([]]
support_1image buffer(1] (1] (]}

4

(=M=
e o~

}

bzero((char *) &third image buffer(0](0],sizeof (int)*row*colu
bzero((char *) &output buffer(0](0],sizeof (int)*row*column);

bzero((char *} &support_image buffer{0]{0]{0],sizeof {int)*row
bzero((char *) &support_image buffer[1][0][0]),sizeof (int)*row

/* open files for output and initialize buffers */
pm_addcmt (pml, cmt) ;
pm2 = pm alloc(); /* supporting points image */
pm2->pm_nrow row;

pm2->pm_ncol column;

pm2->pm_form = image_ format;

pm2->pm_1image = (char *) malloc({pm psize(pm2));

pm3= pm_alloc(); /* top most segmented object */
pm3->pm _nrow = row;

pm3->pm _ncol = column;

pm3->pm_form = image format;

pm3->pm_image = (char *) malloc(pm psize(pm3)});

pml = pm alloc(); /* labeled image */

pml->pm nrow = row;

segment .c

Tue Apr 19 18:21:08 1588 7

pml->pm _ncol = column;
pml->pm form = image format;
pml->pm_image = (char *) malloc(pm psize(pml));

if (image format == PM S)
{
pms_point = (short int *) pml->pm_image;
pms_point2 = (short int *) pm2->pm image;
pms_point3 = (short int *) pm3->pm_ image;

}
else /* lmage format 1s PM C */
pm_point = (unsigned char *) pml->pm image;
pm_point2 = (unsigned char *) pm2->pm_image;
pm point3 = (unsigned char *) pm3->pm_image;
}
/* initialize the buffers */
bzero(pml->pm_image,pm isize(pml)):
bzero (pm2->pm_image,pm 1isize(pm2));
bzero(pm3—>pm_1mage,pm_1size(pm3));
VAL Segmentation of the plcture starts *xkx/

max = -1000;
if (image format == PM_S)

label = MAX REGION; /* starting label+l; for unlabeled

else
label = MAX REGION;

region _count = 0; /* counts only valid regions */

invalid region count

0; /* Counts only invalid regions */

nextrow = nextcol = 1; /* initialize the seed region star

/*k*xxxxx%*x* Loop for segmenting all the objects
do
{
region_count++;
label--;

1f (reglon_count == 1) find_seed region();
else
seed region();

if (max > 0)

in the rang

/* call grow_region for recursive region growing */

segment.c

Tue Apxr 19 18:21:08 1988 8

seedrow = row_max;/* seed region coordinates in globa
seedcol = column_max;

third image buffer[seedrow] [seedcol] = 1;

plixels=0;

num call = 1;
stack_length = 0;
current_element = 0;
max_pixel region = -1000;
min pixel region = 1000;

grow_region(row_max,column _max);

while(stack_length != current_element)
{
get_pixel(); /* returns the pixel */
num _call = 1;
/*printf (*"ARAAA®) ;*/
1f (output_buffer{rownum] [colnum] != label)

/*printf(* BBBBB *); */
grow_reglon (rownum, colnum);

}
smooth_region(label);
i1f (accept_region{label) == 'n’)
{
region_count~-;
invalid region count++;
reglion[label] .number = label;
reglon[label].valid = 0;
reglon([region_count].size = plxels;

else
{
printf(*label = %d *,label});
printf(“Top :(%d,%d) = %d “,row max,column_max,ma
printf (“pixels : $%d ACCEPT ",pixels);
printf(*Max : %d Min %d \n*,max_pixel_ reglon,min_
reglon{label].number = label;
region[label] .valid 1;
region([label].size plxels;
region[label] .max = max_pixel region;
region(label].min = min_pixel region;
determine support (label);

}

else printf(*\n No more valid regions \n"};

segment.c

Tue Apr 19 18:21:08 1988 9

} while((max > 0));

/* Label all the unwanted reglons as UNACCEPT REGION */
label++; /* label of the last region */

for{i=0;i<row;i++)
for(3=0; j<column; j++)
1f(third image_buffer(i][]] == 0)
output | buffer[i][j] UNACCEPT _REGION;
region [UNACCEPT REGION].valid = 0; /* unaccept region is inv

max = -1000;
for(i= (MAX REGION -1);i >= label;i--)
if(region[i].valid == 1)
if(region[i] .max > max)
{
max = reglon{i].max;
top region_label region[i] .number;
max_pixel region = region{i].max;
min_pixel region region(i].min;
}

printf(*\nTotal # of Valid regions : %d\n",regilon_count-1);
printf(“Total # of Invalid regions : %d\n%,invalid region_cou
printf("Topmost region : Label = %d Max = %d Min %d \n%,top r

W

/* output the segmented edge image */

for{i=0;i<row;1++)
{
output_buffer(i] [0] = 0;
output_buffer(i} (column-1] = 0;
}

for(i=0;1<column;i++)}
{
output_buffer[0][1] = 0;
output_buffer[row-1] [i] = 0;
}

if (image_format == PM_C)
for{i=0;i<row;i++)
for(3=0;j<column; j++)
{
label = output buffer({i][j]:

1f(j<(column-1))
if (output buffer(i]([]] != output buffer(i][]j+1])
1f((region[output buffer(il(jl]l.valid == 1) (|

segment.c

/*

| VA

Tue Apr 19 18:21:08 1988 10
(reglon[output buffer(i](j+1]].valld == 1))
*pm_point = 255;
if (i<(row-1))
if (output_buffer([i][j] != output buffer[i+1]1([]])
if((region[output_buffer(i](j]].valid == 1) ||
(reglonfoutput buffer(i+1] (j]].valid == 1))
*pm _point = 255;
i1f (output buffer(i](]j] == top_region label)
*pm_point3 = range image buffer[i]}{Jj); /*top */
if (region[support image buffer([l]({1](j]].valid == 1)*
1f (support_image buffer{1][1i][j] == top_region_label)
*pm_point2 = support_image buffer{0)[1){j]: /*sup*/
pm_point++;
pm_point2++;
pm_point3++;
}
else /* image format == PM S */
for(1=0;1i<row;i++)
for (3)=0; j<column; J++)
label = output buffer(i](3];
if (j<{column-1))
if (output_buffer(i][j] != output buffer([i][]+1])
if((region[output_buffer(i][]j]].valid == 1) ||
(reglon(output buffer{i]{i+1]].valid == 1))
*pms_point = 255;
if (i< (row-1))
if (output buffer[i][j] != output_] buffer[1+1][j])
1f ((regionfoutput_| buffer[i][j]] valid == 1) ||
(region[output_buffer[i+1]([j]]. valid == 1))
*pms_point = 255; .
1f (output_buffer[i][Jj] == top_region label)
*pms_point3 = range image buffer(i][j]; /*top */
if (support_image buffer{i}{i)}{j} == top region_label)
1f(region[support image buffer([1][1](]J]].valld == 1)*

*pms_point2 = support_image_buffer[O][1][j], /*sup*

pms_polnt++;

pms_point2++;

pms_polint3++;

}

pm_write(outfile,pml);
pm write(outfile2,pm2);
pm write(outfile3,pm3);

end of main program */

segment.c Tue Apr 19 18:21:08 1988 3
gapfiller(), if point lies one dist
from the edge */

pmpic *read pmpic_int();

/t**t*ttti*itt*tttﬁttttttti*t**t*MAIN****t****ttﬁ*********t*****tt***

main{argc,argv)
int arge:

char *argv(]:

{

FILE *range, *laplacian, *outfile, *outfile2, *outfile3;
int i,3,k,1,m,n;
char output[50];
int row,column;
int offset;

char *cmt;

int done, found; /* used as booleans */
unsigned char *pm point, *pm point2, *pm point3;

short int *pms_point, *pms_pointZ2, *pms_point3;

u_int image_format; /* stores image format PM C o

/* generated output file name
/* # of row and columns in in

if (argc t= 3)
{
printf (”segment : usage : segment <range file> <lap_ edge
exit(l);
}

cmt = pm_cmt (argc,argv):

printf(*Want to display on IKONAS 2 *);
scanf (*¥s", &ilkonas_disp[0]);

/* open the TKONAS display. value of env. variable is taken *
if (stremp(*y*,ikonas_disp) == 0)
if (1kopen (NULL) == -1)

printf(“Can’t open IKONAS. Exiting\n”):
exit (0);
}
1f((range = fopen{argv{l),"r")) == NULL)
{

printf(“segment : Cannot open %s\n*,argv(l]):;
exit (0);

segment..c

Tue Apr 19 18:21:08 1988 4

if((laplacian = fopen{argv{2],*r*)) == NULL)
{

printf (*segment : Cannot open %s\n”,argv(2]);

exit (0);
}

if((pml = pm read(range,0)) == NULL)
{

printf (“Error in reading PM file : $s\n“,argvi[1]);

exit (0);
}

1if((pm2 = pm read(laplacian,0)) == NULL})
{

printf (*Error in reading PM file : %s\n",argv(2]);

exit (0);
}

/* open output files */

strcpy (output,argv(l]);
strcat (output, *.label");
if((outfile = fopen(output,"w")) == NULL)
{
printf (*segment : Cannot open output file
exit (0);
}

strepy (output,argv(l]);
strcat (output, *.top");
1f{(outfiled = fopen{output,”w")) == NULL)
{
printf (*segment : Cannot open output file
exit (0);
}

strcpy (output,argvi{l]);
strcat (output, ».support®);
1f ((outfile2 = fopen(output,*w”)) == NULL)
{
printf(“segment : Cannot open output file
exit (0);
}

row = pml->pm nrow;
column = pml->pm ncol;
image format = pml->pm_form;

%s\n”,out

$s\n",out

$s\n*,out

segment.c

Tue Apr 19 18:21:08 1988 5
if((row != pm2->pm nrow) || (column != pm2->pm ncol))

printf (“Input images are not of same size. Exiting \n"});
exit(0);
}

Nrow = IrOwW; /* initialize global variables nrow and ncol *

ncol column;

printf (*Edge threshold :*);
scanf (*%d", &edge_threshold);

printf (*Background threshold :%);
scanf (*%d”, ¢éback_threshold);

printf(*Max. distance from seed region :");
scanf (*%d", &distance) ;

/* read the input image and laplacian edge operated image */

/* first read the range image */
if (pml->pm_form == PM C)
{
pm_polnt = (unsigned char *) pml->pm_image;
for(1=0;1i<row; i++)
for(3=0; j<column; j++)

range_image buffer(i]({j]l = *(pm_point):
pm_polint++;
}

}
else if (pml->pm_form == PM_S)
{
pms_point = (short int *) pml->pm image;
for(1=0;i<row;i++)
for (J=0; j<column; J++)

range_image buffer(i][]j] = *(pms_point):
pms_point++;
}
}

/* Now read laplacian operated image */
if (pm2->pm form == PM C)
{
pm point = (unsigned char *) pm2->pm image;

for(1=0;1<row; i++)
for (J=0; j<column; j++)

segment.c

/*

x/

Tue Apr 19 18:21:08 1988 6

{
lap image_buffer[i]([j] = *(pm point);
pm_point++;
}

}
else 1f(pm2->pm form == PM S)
{

pms_point = (short int *} pm2->pm image;
for(1=0;1<row;i++) .
for(3=0;j<column; j++)
{
lap_image buffer(i] (]] = *(pms_point};
pms_point++;

}

/* Initlalize output and temporary buffers */
for(1=0;i<row;1++)
for (3=0;j<column; j++)
{

third image buffer[i]([]] =0;
output buffer(i](j] = 0;
support_image buffer(0](1]([]]
support_1image buffer(1] (1] (]}

4

(=M=
e o~

}

bzero((char *) &third image buffer(0](0],sizeof (int)*row*colu
bzero((char *) &output buffer(0](0],sizeof (int)*row*column);

bzero((char *} &support_image buffer{0]{0]{0],sizeof {int)*row
bzero((char *) &support_image buffer[1][0][0]),sizeof (int)*row

/* open files for output and initialize buffers */
pm_addcmt (pml, cmt) ;
pm2 = pm alloc(); /* supporting points image */
pm2->pm_nrow row;

pm2->pm_ncol column;

pm2->pm_form = image_ format;

pm2->pm_1image = (char *) malloc({pm psize(pm2));

pm3= pm_alloc(); /* top most segmented object */
pm3->pm _nrow = row;

pm3->pm _ncol = column;

pm3->pm_form = image format;

pm3->pm_image = (char *) malloc(pm psize(pm3)});

pml = pm alloc(); /* labeled image */

pml->pm nrow = row;

segment .c

Tue Apr 19 18:21:08 1588 7

pml->pm _ncol = column;
pml->pm form = image format;
pml->pm_image = (char *) malloc(pm psize(pml));

if (image format == PM S)
{
pms_point = (short int *) pml->pm_image;
pms_point2 = (short int *) pm2->pm image;
pms_point3 = (short int *) pm3->pm_ image;

}
else /* lmage format 1s PM C */
pm_point = (unsigned char *) pml->pm image;
pm_point2 = (unsigned char *) pm2->pm_image;
pm point3 = (unsigned char *) pm3->pm_image;
}
/* initialize the buffers */
bzero(pml->pm_image,pm isize(pml)):
bzero (pm2->pm_image,pm 1isize(pm2));
bzero(pm3—>pm_1mage,pm_1size(pm3));
VAL Segmentation of the plcture starts *xkx/

max = -1000;
if (image format == PM_S)

label = MAX REGION; /* starting label+l; for unlabeled

else
label = MAX REGION;

region _count = 0; /* counts only valid regions */

invalid region count

0; /* Counts only invalid regions */

nextrow = nextcol = 1; /* initialize the seed region star

/*k*xxxxx%*x* Loop for segmenting all the objects
do
{
region_count++;
label--;

1f (reglon_count == 1) find_seed region();
else
seed region();

if (max > 0)

in the rang

/* call grow_region for recursive region growing */

segment.c

Tue Apxr 19 18:21:08 1988 8

seedrow = row_max;/* seed region coordinates in globa
seedcol = column_max;

third image buffer[seedrow] [seedcol] = 1;

plixels=0;

num call = 1;
stack_length = 0;
current_element = 0;
max_pixel region = -1000;
min pixel region = 1000;

grow_region(row_max,column _max);

while(stack_length != current_element)
{
get_pixel(); /* returns the pixel */
num _call = 1;
/*printf (*"ARAAA®) ;*/
1f (output_buffer{rownum] [colnum] != label)

/*printf(* BBBBB *); */
grow_reglon (rownum, colnum);

}
smooth_region(label);
i1f (accept_region{label) == 'n’)
{
region_count~-;
invalid region count++;
reglion[label] .number = label;
reglon[label].valid = 0;
reglon([region_count].size = plxels;

else
{
printf(*label = %d *,label});
printf(“Top :(%d,%d) = %d “,row max,column_max,ma
printf (“pixels : $%d ACCEPT ",pixels);
printf(*Max : %d Min %d \n*,max_pixel_ reglon,min_
reglon{label].number = label;
region[label] .valid 1;
region([label].size plxels;
region[label] .max = max_pixel region;
region(label].min = min_pixel region;
determine support (label);

}

else printf(*\n No more valid regions \n"};

segment.c

Tue Apr 19 18:21:08 1988 9

} while((max > 0));

/* Label all the unwanted reglons as UNACCEPT REGION */
label++; /* label of the last region */

for{i=0;i<row;i++)
for(3=0; j<column; j++)
1f(third image_buffer(i][]] == 0)
output | buffer[i][j] UNACCEPT _REGION;
region [UNACCEPT REGION].valid = 0; /* unaccept region is inv

max = -1000;
for(i= (MAX REGION -1);i >= label;i--)
if(region[i].valid == 1)
if(region[i] .max > max)
{
max = reglon{i].max;
top region_label region[i] .number;
max_pixel region = region{i].max;
min_pixel region region(i].min;
}

printf(*\nTotal # of Valid regions : %d\n",regilon_count-1);
printf(“Total # of Invalid regions : %d\n%,invalid region_cou
printf("Topmost region : Label = %d Max = %d Min %d \n%,top r

W

/* output the segmented edge image */

for{i=0;i<row;1++)
{
output_buffer(i] [0] = 0;
output_buffer(i} (column-1] = 0;
}

for(i=0;1<column;i++)}
{
output_buffer[0][1] = 0;
output_buffer[row-1] [i] = 0;
}

if (image_format == PM_C)
for{i=0;i<row;i++)
for(3=0;j<column; j++)
{
label = output buffer({i][j]:

1f(j<(column-1))
if (output buffer(i]([]] != output buffer(i][]j+1])
1f((region[output buffer(il(jl]l.valid == 1) (|

segment.c

/*

| VA

Tue Apr 19 18:21:08 1988 10
(reglon[output buffer(i](j+1]].valld == 1))
*pm_point = 255;
if (i<(row-1))
if (output_buffer([i][j] != output buffer[i+1]1([]])
if((region[output_buffer(i](j]].valid == 1) ||
(reglonfoutput buffer(i+1] (j]].valid == 1))
*pm _point = 255;
i1f (output buffer(i](]j] == top_region label)
*pm_point3 = range image buffer[i]}{Jj); /*top */
if (region[support image buffer([l]({1](j]].valid == 1)*
1f (support_image buffer{1][1i][j] == top_region_label)
*pm_point2 = support_image buffer{0)[1){j]: /*sup*/
pm_point++;
pm_point2++;
pm_point3++;
}
else /* image format == PM S */
for(1=0;1i<row;i++)
for (3)=0; j<column; J++)
label = output buffer(i](3];
if (j<{column-1))
if (output_buffer(i][j] != output buffer([i][]+1])
if((region[output_buffer(i][]j]].valid == 1) ||
(reglon(output buffer{i]{i+1]].valid == 1))
*pms_point = 255;
if (i< (row-1))
if (output buffer[i][j] != output_] buffer[1+1][j])
1f ((regionfoutput_| buffer[i][j]] valid == 1) ||
(region[output_buffer[i+1]([j]]. valid == 1))
*pms_point = 255; .
1f (output_buffer[i][Jj] == top_region label)
*pms_point3 = range image buffer(i][j]; /*top */
if (support_image buffer{i}{i)}{j} == top region_label)
1f(region[support image buffer([1][1](]J]].valld == 1)*

*pms_point2 = support_image_buffer[O][1][j], /*sup*

pms_polnt++;

pms_point2++;

pms_polint3++;

}

pm_write(outfile,pml);
pm write(outfile2,pm2);
pm write(outfile3,pm3);

end of main program */

segment .c

Tue Apr 19 18:21:08 1588 7

pml->pm _ncol = column;
pml->pm form = image format;
pml->pm_image = (char *) malloc(pm psize(pml));

if (image format == PM S)
{
pms_point = (short int *) pml->pm_image;
pms_point2 = (short int *) pm2->pm image;
pms_point3 = (short int *) pm3->pm_ image;

}
else /* lmage format 1s PM C */
pm_point = (unsigned char *) pml->pm image;
pm_point2 = (unsigned char *) pm2->pm_image;
pm point3 = (unsigned char *) pm3->pm_image;
}
/* initialize the buffers */
bzero(pml->pm_image,pm isize(pml)):
bzero (pm2->pm_image,pm 1isize(pm2));
bzero(pm3—>pm_1mage,pm_1size(pm3));
VAL Segmentation of the plcture starts *xkx/

max = -1000;
if (image format == PM_S)

label = MAX REGION; /* starting label+l; for unlabeled

else
label = MAX REGION;

region _count = 0; /* counts only valid regions */

invalid region count

0; /* Counts only invalid regions */

nextrow = nextcol = 1; /* initialize the seed region star

/*k*xxxxx%*x* Loop for segmenting all the objects
do
{
region_count++;
label--;

1f (reglon_count == 1) find_seed region();
else
seed region();

if (max > 0)

in the rang

/* call grow_region for recursive region growing */

segment.c

Tue Apxr 19 18:21:08 1988 8

seedrow = row_max;/* seed region coordinates in globa
seedcol = column_max;

third image buffer[seedrow] [seedcol] = 1;

plixels=0;

num call = 1;
stack_length = 0;
current_element = 0;
max_pixel region = -1000;
min pixel region = 1000;

grow_region(row_max,column _max);

while(stack_length != current_element)
{
get_pixel(); /* returns the pixel */
num _call = 1;
/*printf (*"ARAAA®) ;*/
1f (output_buffer{rownum] [colnum] != label)

/*printf(* BBBBB *); */
grow_reglon (rownum, colnum);

}
smooth_region(label);
i1f (accept_region{label) == 'n’)
{
region_count~-;
invalid region count++;
reglion[label] .number = label;
reglon[label].valid = 0;
reglon([region_count].size = plxels;

else
{
printf(*label = %d *,label});
printf(“Top :(%d,%d) = %d “,row max,column_max,ma
printf (“pixels : $%d ACCEPT ",pixels);
printf(*Max : %d Min %d \n*,max_pixel_ reglon,min_
reglon{label].number = label;
region[label] .valid 1;
region([label].size plxels;
region[label] .max = max_pixel region;
region(label].min = min_pixel region;
determine support (label);

}

else printf(*\n No more valid regions \n"};

segment.c

Tue Apr 19 18:21:08 1988 9

} while((max > 0));

/* Label all the unwanted reglons as UNACCEPT REGION */
label++; /* label of the last region */

for{i=0;i<row;i++)
for(3=0; j<column; j++)
1f(third image_buffer(i][]] == 0)
output | buffer[i][j] UNACCEPT _REGION;
region [UNACCEPT REGION].valid = 0; /* unaccept region is inv

max = -1000;
for(i= (MAX REGION -1);i >= label;i--)
if(region[i].valid == 1)
if(region[i] .max > max)
{
max = reglon{i].max;
top region_label region[i] .number;
max_pixel region = region{i].max;
min_pixel region region(i].min;
}

printf(*\nTotal # of Valid regions : %d\n",regilon_count-1);
printf(“Total # of Invalid regions : %d\n%,invalid region_cou
printf("Topmost region : Label = %d Max = %d Min %d \n%,top r

W

/* output the segmented edge image */

for{i=0;i<row;1++)
{
output_buffer(i] [0] = 0;
output_buffer(i} (column-1] = 0;
}

for(i=0;1<column;i++)}
{
output_buffer[0][1] = 0;
output_buffer[row-1] [i] = 0;
}

if (image_format == PM_C)
for{i=0;i<row;i++)
for(3=0;j<column; j++)
{
label = output buffer({i][j]:

1f(j<(column-1))
if (output buffer(i]([]] != output buffer(i][]j+1])
1f((region[output buffer(il(jl]l.valid == 1) (|

segment.c

/*

| VA

Tue Apr 19 18:21:08 1988 10
(reglon[output buffer(i](j+1]].valld == 1))
*pm_point = 255;
if (i<(row-1))
if (output_buffer([i][j] != output buffer[i+1]1([]])
if((region[output_buffer(i](j]].valid == 1) ||
(reglonfoutput buffer(i+1] (j]].valid == 1))
*pm _point = 255;
i1f (output buffer(i](]j] == top_region label)
*pm_point3 = range image buffer[i]}{Jj); /*top */
if (region[support image buffer([l]({1](j]].valid == 1)*
1f (support_image buffer{1][1i][j] == top_region_label)
*pm_point2 = support_image buffer{0)[1){j]: /*sup*/
pm_point++;
pm_point2++;
pm_point3++;
}
else /* image format == PM S */
for(1=0;1i<row;i++)
for (3)=0; j<column; J++)
label = output buffer(i](3];
if (j<{column-1))
if (output_buffer(i][j] != output buffer([i][]+1])
if((region[output_buffer(i][]j]].valid == 1) ||
(reglon(output buffer{i]{i+1]].valid == 1))
*pms_point = 255;
if (i< (row-1))
if (output buffer[i][j] != output_] buffer[1+1][j])
1f ((regionfoutput_| buffer[i][j]] valid == 1) ||
(region[output_buffer[i+1]([j]]. valid == 1))
*pms_point = 255; .
1f (output_buffer[i][Jj] == top_region label)
*pms_point3 = range image buffer(i][j]; /*top */
if (support_image buffer{i}{i)}{j} == top region_label)
1f(region[support image buffer([1][1](]J]].valld == 1)*

*pms_point2 = support_image_buffer[O][1][j], /*sup*

pms_polnt++;

pms_point2++;

pms_polint3++;

}

pm_write(outfile,pml);
pm write(outfile2,pm2);
pm write(outfile3,pm3);

end of main program */

seguent.c Tue Apr 19 18:21:08 1988 11

/***t*tttt******************** GROW REGION AAKKNKRRKAAAARRA AR ARR R AA Rk
/* following 1s the modified recursive call for the segmentation.
now a pixel 1s examined before routine is called rather than callin
the routine and then checking the pixel type. this was done to opti
the stack-space which overflows in the case of large objects.
even after this modification stack overflows if the object is
therefore recursive region growing 1s not possible 1f the object is
x/

grow_region(row, col)
int row;
int col;
{
int 1,3: /* loop control variables */
int dist:
int cross_grad;

1f (strcmp(“y”,1konas_disp) == 0)
1wr (col, row, &value);
output buffer[row] [coll = label;

if (max_pixel region < range_image buffer[row] [col])
max_pixel_region = range_image_buffer[row] [col];
if (min_pixel reglon > range_image buffer([rowl [col])

min_pixel region = range image buffer[row] [col]:
plxels++;
/% if ((row < (nrow -1)) && (col < (ncol -1)))

cross_grad =sgrt((double)
(squarezz (range_image_buffer[row} [col] -
range_image buffer[row+1][col+l])
squarezz (range_image buffer[row] [col+l] -
range_1image buffer[row+l] [col]))
else */
cross_grad = 0;
1f (cross_grad !=0} cross_grad += 0;
1f (cross_grad < edge_threshold)
{
for(i=row-1;i<row+2;1++)
for(j=col~-1;j<col+2; j++)
if((1 != row) || (J != col))
1f((1 > 0) && (1 < (nrow-1)) && (3 > 0) && (J < (nc

segment.c

Tue Apr 19 18:21:08 1988 12

/*if((1 == row) || (J == col))*/
if (third image_buffer(i] (§] == 0)
{

dist = (int) (sqrt((double) ((seedrow — 1)*(s
{seedcol - J)*(seedcol -
if (dist <= distance)
{
1f ((lap_image buffer[1](]] < edge_thres
(output_buffer(1][j] != label) &&
(range_image_buffer[1i]{j] > back_thr

{
1f(gap_filler(i,3) == 0)
{
third image_buffer([i][]] = 1;
/* check for number of pending c
num_call++;
if (num call >= MAX_NUM_CALL)
store_pixel(i,]j):
else
grow_reglon(i,}):

}
else /* point 1s actually one dista
from an edge pixel*/
{ /* first mark the pixels visted
output_buffer(i] (]] = label;
pixels++;
third image buffer[i] (]3] = 1;
1f (strcmp("y“,ikonas_disp) ==
lwr(j, 1, &value);
/* now mark the edge pixel visit
output buffer[gaprow] [gapcol] =
pixels++;
third_image_buffer[gaprow] [gapco
1f (strcmp(*y", ikonas_disp) == 0)
1lwr{gapcol, gaprow, §value);

0)

}

}
else if(lap image buffer{1][j] >= edge_

{
output buffer([i][]j] = label;
pixels++;
third image buffer[i)[]] =
1f(stremp(*y”,1konas_disp)

iwr(j,1,&value);

1;

0)
}
}
else /* distance exceeded */

{

saegment.. ¢ Tus Apr 19 18:21:08 1988 13

output_buffer{i}(j} = label;

pixels++;

third image buffer(i]1{jl =1

if(strcmp(*y*,1lkonas_disp) =
lwr(j,1,&value);

= 0)

}
}/* acceptable pixel */
}/* cross_grad acceptable */
num_call--;
} /* end of grow_reglon */

JRKKXEKXRX kKX Kkkhkkk* STORE PIXEL & GET PIXEL *X* ¥k kdxadakxkkkhh¥&xxx

store_plxel (rrow,ccol)
int rrow;
int ccol;
{
num call--;
/* printf (" FFFF "); */

pixel stack([stack length}.row
pixel stack(stack_length].col

rrow;
ccol;

L'l

stack_length++;
if (stack_length == PIXEL STACK_SIZE) stack_length = 0;
if (stack_length == current_element)
printf{"\n segment : Stack Collision While region growing \n

}

get_pixel()
{

rownum = pixel stack[current_element].row;
colnum = pixel stack{current_element].col;

current element++;
1f (current_element == PIXEL STACK SIZ2E) current element = 0;

}

float squarezz{n)
int n;
{ float £;
f = (float) (n);
return{f*f);

}

segmant.c Tue Apr 19 18:21:08 1988 14

/**+%%x gap filler checks if the pixel can be considered as the part
the edge . This 1s done by checking if the 8-connected neighbou
has any edge pixel. If yes, it is considered a neighbour of edg
and coordinates of edge pixel 1s returned in gaprow,gapcol. The
pixel is not further grown. This procedure fills in 2-pixel gap
without undergoing the pain of gap-filling using contour tracin
which 1s computationally expensive. See peter allen’s thesis fo
performance of gap-filler (due to Nevatla & Babu). He observes
that filling of at most 2-pixel gaps 1s acceptable in most case

Kkk%/

gap_filler(rrow, ccol)
int rrow,ccol;

int 1,3;

for(i=rrow-1;i<=(rrow+l});i++)
for {j=ccol-1;3<=(ccol+l);)++)
if(lap_image buffer[i][]] >= edge threshold)
{ /* edge pixel in 8-connected nbd 1s found */
gaprow = 1;
gapcol = 3;
return(l);

}
/* no edge pixel in B-connected neighbourhood is found */

return{0);

}

smooth_region(label value)
int label value;

int i,3;

/* for(1=0;1i<nrow;i++)
for {j=0;j<ncol;j++)
{
if {output_buffer{i} {3} == label value)
{
}

*/

min(x,y)
int x,y;

seguent.c Tue Apr 19 18:21:08 1988 11

/***t*tttt******************** GROW REGION AAKKNKRRKAAAARRA AR ARR R AA Rk
/* following 1s the modified recursive call for the segmentation.
now a pixel 1s examined before routine is called rather than callin
the routine and then checking the pixel type. this was done to opti
the stack-space which overflows in the case of large objects.
even after this modification stack overflows if the object is
therefore recursive region growing 1s not possible 1f the object is
x/

grow_region(row, col)
int row;
int col;
{
int 1,3: /* loop control variables */
int dist:
int cross_grad;

1f (strcmp(“y”,1konas_disp) == 0)
1wr (col, row, &value);
output buffer[row] [coll = label;

if (max_pixel region < range_image buffer[row] [col])
max_pixel_region = range_image_buffer[row] [col];
if (min_pixel reglon > range_image buffer([rowl [col])

min_pixel region = range image buffer[row] [col]:
plxels++;
/% if ((row < (nrow -1)) && (col < (ncol -1)))

cross_grad =sgrt((double)
(squarezz (range_image_buffer[row} [col] -
range_image buffer[row+1][col+l])
squarezz (range_image buffer[row] [col+l] -
range_1image buffer[row+l] [col]))
else */
cross_grad = 0;
1f (cross_grad !=0} cross_grad += 0;
1f (cross_grad < edge_threshold)
{
for(i=row-1;i<row+2;1++)
for(j=col~-1;j<col+2; j++)
if((1 != row) || (J != col))
1f((1 > 0) && (1 < (nrow-1)) && (3 > 0) && (J < (nc

segment.c

Tue Apr 19 18:21:08 1988 12

/*if((1 == row) || (J == col))*/
if (third image_buffer(i] (§] == 0)
{

dist = (int) (sqrt((double) ((seedrow — 1)*(s
{seedcol - J)*(seedcol -
if (dist <= distance)
{
1f ((lap_image buffer[1](]] < edge_thres
(output_buffer(1][j] != label) &&
(range_image_buffer[1i]{j] > back_thr

{
1f(gap_filler(i,3) == 0)
{
third image_buffer([i][]] = 1;
/* check for number of pending c
num_call++;
if (num call >= MAX_NUM_CALL)
store_pixel(i,]j):
else
grow_reglon(i,}):

}
else /* point 1s actually one dista
from an edge pixel*/
{ /* first mark the pixels visted
output_buffer(i] (]] = label;
pixels++;
third image buffer[i] (]3] = 1;
1f (strcmp("y“,ikonas_disp) ==
lwr(j, 1, &value);
/* now mark the edge pixel visit
output buffer[gaprow] [gapcol] =
pixels++;
third_image_buffer[gaprow] [gapco
1f (strcmp(*y", ikonas_disp) == 0)
1lwr{gapcol, gaprow, §value);

0)

}

}
else if(lap image buffer{1][j] >= edge_

{
output buffer([i][]j] = label;
pixels++;
third image buffer[i)[]] =
1f(stremp(*y”,1konas_disp)

iwr(j,1,&value);

1;

0)
}
}
else /* distance exceeded */

{

saegment.. ¢ Tus Apr 19 18:21:08 1988 13

output_buffer{i}(j} = label;

pixels++;

third image buffer(i]1{jl =1

if(strcmp(*y*,1lkonas_disp) =
lwr(j,1,&value);

= 0)

}
}/* acceptable pixel */
}/* cross_grad acceptable */
num_call--;
} /* end of grow_reglon */

JRKKXEKXRX kKX Kkkhkkk* STORE PIXEL & GET PIXEL *X* ¥k kdxadakxkkkhh¥&xxx

store_plxel (rrow,ccol)
int rrow;
int ccol;
{
num call--;
/* printf (" FFFF "); */

pixel stack([stack length}.row
pixel stack(stack_length].col

rrow;
ccol;

L'l

stack_length++;
if (stack_length == PIXEL STACK_SIZE) stack_length = 0;
if (stack_length == current_element)
printf{"\n segment : Stack Collision While region growing \n

}

get_pixel()
{

rownum = pixel stack[current_element].row;
colnum = pixel stack{current_element].col;

current element++;
1f (current_element == PIXEL STACK SIZ2E) current element = 0;

}

float squarezz{n)
int n;
{ float £;
f = (float) (n);
return{f*f);

}

segmant.c Tue Apr 19 18:21:08 1988 14

/**+%%x gap filler checks if the pixel can be considered as the part
the edge . This 1s done by checking if the 8-connected neighbou
has any edge pixel. If yes, it is considered a neighbour of edg
and coordinates of edge pixel 1s returned in gaprow,gapcol. The
pixel is not further grown. This procedure fills in 2-pixel gap
without undergoing the pain of gap-filling using contour tracin
which 1s computationally expensive. See peter allen’s thesis fo
performance of gap-filler (due to Nevatla & Babu). He observes
that filling of at most 2-pixel gaps 1s acceptable in most case

Kkk%/

gap_filler(rrow, ccol)
int rrow,ccol;

int 1,3;

for(i=rrow-1;i<=(rrow+l});i++)
for {j=ccol-1;3<=(ccol+l);)++)
if(lap_image buffer[i][]] >= edge threshold)
{ /* edge pixel in 8-connected nbd 1s found */
gaprow = 1;
gapcol = 3;
return(l);

}
/* no edge pixel in B-connected neighbourhood is found */

return{0);

}

smooth_region(label value)
int label value;

int i,3;

/* for(1=0;1i<nrow;i++)
for {j=0;j<ncol;j++)
{
if {output_buffer{i} {3} == label value)
{
}

*/

min(x,y)
int x,y;

segment .c Tue Apr 19 18:21:08 1988 15

if (x<y) return(x);
else return(y);

}

/***********ii**i*ii****i*** ACCEPT REGION KKKk hRAAAKAAN A AR R AkA Rk kK
char accept_region(lab)
int lab;

{
int 1,3,k;

1f (pixels < MIN_ACCEPTABLE) return(‘n’);
else return(’y’});

}

/*****************ii*it**i**** DETERMINE SUPPORT kRKAAKARKRKKAR KAk hhk

determine support (lab)
int lab;

{
int 1,3,k;

/* determine boundary polnts for all rows first */

for (1i=0;i<nrow;i++)
for(J=0;3<(ncol-1); j++)
{

if ((output_buffer(i][]] != lab) && (output buffer[i][j+1] ==
det_med_support (lab,1,]j+1);
else if((output_buffer[1][]J] == lab) && (output_buffer([i] []+1
det_med: support (lab,1,]):
}

/* determine boundary points for all columns */

for (3=0; j<ncol;j++)
for(i=0;1<(nrow-1) ;i++)

if ((output _buffer(i)[j] != lab) && (ocutput buffer[1+1][]] ==
det_med_support (lab,1+1,3);

else if((output buffer[i][]j] == lab) && (output buffer([i+1][]
det_med support(lab,i,]);

[Xkkkkxkkkkkkkhkkhkhkkkkkx DET MED SUPPORT KRKKKKARRA KKK khkhhhkdkhk

det_med support (lab, row, col)
int lab;

segment.c Tue Apr 19 18:21:08 1988 16

int row;
int col;

int 1,3,k;
int count = 0;
int num;
int wsize =3;
/* printf("det_med support for lab = %d row %d col %d called *,lab,r

for(1=0;1<256;1++) vector([i] =0;

for (1= (row-wsize);l<=(row+wslze);i++)
for (j=(col-wsize);j<=(col+wsize);J++)
if((1>=0) && (i<nrow) && (jJ >= 0) && (J< ncol))
if (output_buffer (1] []] != lab)

{
count++;
vector [range_image_buffer[i] [j]]++;
}
/* num = count/2; THis is for median */
num = 1; /* This picks up the smallest depth */

/* printf(*num = $d count = %d",num,count);*/

1f (num == 0)
{

support_image buffer[0] [row] (col] range_image buffer[row] [col

support_image buffer[l] [row] [col] lab;
}
else
{
for(i=0;num >0;1i++)
{ num=num-vector([i];
1f (vector[i] > 0) j=1.
}
support_image buffer([0] [row] [col] = JI;
support_1image_buffer([1l] [row] [col] = lab;

}
}

/*t*******ii*t**k*k******* FINISHED AAKKAKARNRXKARNKK R AR AR KAKKRA AR AN KK

finished()
{
int 1,3,k;
int finish = 1;

segment.c Tue Apr 19 18:21:08 1988 17

for{i=1;i<nrow;i++)
for{j=1;j<ncol; J++}
1f((third image buffer(i]

[4] == 0) s&&
(range_image buffer(i] (]

> back_threshold)) finish = 0;

return(finish);
}

JRRXKRXXKKXKXAKRkkXk% FIND SEED REGION KX k*XAXKXXXX*KAKkAXXXXRXNXK/

find_seed region()
{
int 1,73, k,m,n;
int ok _point;
int average_depth;
int acount;

/* Boolean */
/* average depth of the 3x3 window */

max = =-1000;
for(i=2:1<nrow-2;1++)
for(§=2;J<ncol~2; j++)
if {{range_image buffer[1][]]
(third_image buffer(i] []]
{
acount = 0;
average depth = 0;
ok point = 1;
1f{region_count == 1)
{

> back_threshold) &&
== 0))

/* do it only the first time */

for (m=1-1;m<i+2;m++)
for(n=3~1;n<j+2;n++)
if((lap_image_ bufferim]in] < edge_threshold) &&
(range_image buffer(m] [n] > back_threshold) &&
(third image buffer([m] [n] == 0))
{
acount++;
average_depth += range_image buffer(m](nl;

}
else ok _point = 0;
1f {acount > B) average image[1][Jj] = average_depth/acou
else average_image[i][]] = 0;

}

if (ok_point == 1)
{
if({lap_image buffer([i][]] < edge_threshold) &&
(range image buffer[i][3j] > back_threshold) &&
(third image buffer([i][]] == 0) &&

segment.c Tue Apr 19 18:21:08 1988 18

(average_image(1][]] > max))
{

max = average image[1]([3]:

row_max = i;

column_max = j3;

}

} /* end of find seed region */

JEARIKAKRRRKKAKARKKANKARKAX® SEED REGION AXXAARARARKARKAKKRKARKKAKR XK

seed_regioni{)
{
int i, 3j,done,end;
int m,n;
int acount;
int cross_grad;

done = 0;
end = 0;

while((done == 0) && (end == 0})
{

if ((third image buffer[nextrow) [nextcol] == 0) &&
{lap_image bufferinextrow) [nextcol] < edge_threshold) &&
(range_image_buffer[nextrow][nextcol] > back_threshold))
{
acount = 0;
for {(m=next row-1;m<nextrow+2;m++)
for (n=nextcol~1l;n<nextcol+2;n++)
{
/% cross_grad =sqrt ((double)
(squarezz(range_image_buffer(m] (n] -
range_image_buffer([m+1l] [n+1])+
squarezz(range_ image buffer(m](n+l] -

range_image buffer(m+l](n])}); */

cross_grad = 0;

1f((lap_image_buffer(m] [n] < edge_threshold) &&
(range_1image buffer(m] [n] > back_threshold) &&
(cross_grad < edge_threshold) &&
{third image bufferim]in] == 0))
acount++;

}
if (acount > 8)

segment . c Tue Apr 19 18:21:08 1988 19

{
done = 1;
max = range_image buffer[nextrow] [nextcoll;
}
}
row_max = nextrow;
column_max = nextcol;

nextcol++;
if (nextcol > (ncol-2))
{
nextrow++;
nextcol = 0;
if (nextrow > (nrow - 2))

1;
-1000;

o
=
Qo
([}

} /* end of seed_region */

JRhkkkkxhkkkkkkkkhkhkkkhkkkkkkkkkx FIL], THE GAPS kKA ARRKAARR KRR RARAK Rk kA &

fill gaps()
{
int 1,3,k,1;

}/*£111 gaps */

JREXXKKKRRKKKRKRKARKRRKKAXKAX® CONTOUR TRACING *XAKAAAXK*XKAXAXKAX K&K

../trial/rca_calib.c Thu May 5 17:07:25 1988 1

[Rk KKK AR KKK KA IR KR KRR AR AR AR KRR AR AR KRR R AR AR AR RN AR AR KUK

program for reading 2 and a 1/2 D range images
removing supporting surface,
calibrating the points,
adding vertical points,
adding horizontal points,
selecting the density of grid,
outputing the points.

Jan 1988 : Modified to read PM C format files.
Jan 1988 : Modified to add the horizontal points.
Jan 1988 : Fille reading procedure replaced to read as unsigned
Jan 1988 : Buffer declarations moved out of the program to avo
run time segmentation fault.
Feb 11,1988 : To read in supporting surface image and to add poin
vertically instead of horizontally.
Feb 26,1988 : Changed to read rca range image files.
Output points in seperate files.
points.orig
peints.add
Mar 24,1988 : Modified to read both PM C and PM S formats.

I1/0 : run the program as:
%rca calib grid density _range_image file {_support_points f

if support image file is not specified then vertical point addi
is disabled. Otherwise user is given choice to add vertical points o
Input images can be either in PM S or PM C format. Two files are out
one having just the original points : points.orig
one having all the desired added points (background , vertical ,
and horizontal) : points.add

Notes :
1. support point image should not have depth values = 255. It is r
for the program.
2. Backgound points are thresholded at BACK_DEPTH + TRESH.

AERKR KRR R R R AR AR R R R KRR R A AN R AR AR R AR A RN AR R KA A AR KR AR AR AR AR AR AR R Ak kA K

#include <math.h>

#include <stdio.h>

#include <local/pm.h>

/*** ginclude “/usr/users/franc/local/pic.h* */
#include "/usr/users/alok/trial/pic.h"

#define POINTS PICDIM X * PICDIM Y
#include "/usr/users/franc/local/frio.h"

../trial/rca calib.c Thu May 5 17:07:25 1988 2

/*** Following values are Range-image scanner dependent. These corres
to the SRI- test database ***/

/*$define VERTICAL 1.531 */
/*#define HORIZONTAL 1.531 */
/*$#define HEIGHT 0.245 */
/*#define BACK DEPTH 5.0 */

/* Following are for RCA range 1image scanner.
measured in mm/pixel
*/

#define VERTICAL 1.8796
#define HORIZONTAL 1.8796
#define HEIGHT 0.0254

/* X , varying rows 0.060
/* ¥ , varying cols 0.074
/* 2 , depth 0.001

/*#define VERTICAL 1.5240%/
/*#define HORIZONTAL 1.8796%*/
/*$define HEIGHT 0.0254*/

/* Range image scanner dependent */

#define BACK DEPTH 320 /* background depth */

#define TRESH 0 /* original value = 5 */

#define BORDER 10

/*** Blg array declarations are moved out of the main program body to
avoid run time memory fault. ***/

/*** Important to have the image read in as unsigned char so that pix

values are from 0 to 255 and not from -127 to +127 **%/

int picture{PICDIM X] [PICDIM Y];
int sup_points[PICDIMLX][PICDIM_Y];

double point{POINTS) (3]}, support[POINTS] (3], T{4)[4], newpoint(3], ve
/**% additional declarations for adding hidden points **x/

double vect{3], addpoint [POINTS][3], vectpoint([3]; /* horizontal
double sup_vect (3], side_add points([POINTS] (3], sup_point[3];/*vertic

pmpic *pml; /*%* Input file 1s in PM-format */
int sizex; /**% § of rows in input picture */
int sizey; /**% § of columns in input picture */

main (argc, argv}

../trial/xca calib.c Thu May 5 17:07:25 1988 3

int arge:
char *argv(];

../trial/

a

rca calib.c Thu May 5 17:07:25 1988 4

= (=1 - c*z1 - b*yl)/x}l;

{

Iz
*/

/*

/%

int 1, j, k, k2, k3, m, n, grid;

double x1, yl, 21, x2, y2, z2, x3, y3, 23, a, b, c;
double sqrt(), sq(), distance;

char g[10],h[10],sup[10},0rig[10];

int sup count = 0;

int cause;

FILE *orig_file,*add file;

if ((argc < 3) || (argc > 4))
printf(“usage: rca_calib grid density inpic (sup_pic} \n"):
else
{
grid = atol(argv(1l]);
read picture(argv(2]), picture);
if (argc == 4) read picture(argv[3], sup_points):;

make_matrix(T);

compute the supporting plane from three polnts
x1 = 15.0;
yl = 5.0;
z1 = BACK_DEPTH;
z1 = (double)picture[(int)x1][(int)yl];*/
fprintf(stderr,”z1 = §f »,zl);
x2 = 230.0;
y2 = 5.0;
z2 = BACK_DEPTH;
z2 = (double)plcture[(int)x2] [{int)y2];*/
fprintf(stderr,"z2 = §f *,z2);
x3 = 30.0;
y3 = 165.0;
z3 = BACK DEPTH;
/* z3 = (double)picture[(int)x3][(int)y3];*/

fprintf(stderr,z3 = $f \n*,z3);

c = ((x3 —x1)*(x3*y2 - x2*y3) - (x3 - x2)*(x3*yl - x1*y3))/(
(x3*%22 = x2%z3) *(x3*yl - xl*y3) - (x3*zl -x1*z3)*(x3*y2 - x2
)

b = (-c * (x3*z1 ~ x1*z3) - (x3 - x1))/(x3*yl - xl*y3);

fprintf(stderr,”a = $f b = %f ¢ = %f\n",a,b,c);

fprintf(stderr, *Add hidden points horizontally (y/n)?2?*);
scanf (*%$s*,h);

1f(argc == 4){ /* supporting polints file present */
fprintf(stderr,*Add hidden points vertically (y/n)2%);
scanf ("§s", sup) ;

} else
sprintf (sup,*%¥s", "no");

k = 0;
k2 =0;
k3 =0;

for (j = BORDER; 3 < sizey — BORDER; j = j + grid)
{ for (1 = BORDER; 1 < sizex - BORDER; 1 = 1 + grid)

{
vector{0] = 3} * HORIZONTAL;
vector([1] = (239 - 1) * VERTICAL;
vector([2] = picture[1][3j] * HEIGHT;

matrix_mult {vector, T, newpoint):
1£(h{0] == fy’)
{

vect[0] = vector[0];

vect[l] = vector(l];

vect{2] = ((-1.0-a*i-b*7j)/c)*HEIGHT;
matrix_mult(vect, T, vectpoint);

}

distance = (a * 1 + b * 3 + ¢ * (double) (picture[1][]j]) +1
sqrt (sq(a) + sq(b} + sqlc));

/% fprintf(stderr,”l = %d } = % d z = %d distance = %f \n",i,

if (distance < -TRESH)

{ point([k][0] = newpoint[0

point[k] [1]
point[k] [2]
1£(h(0] == 'y’)
{
addpoint [k] [0]
addpoint (k] (1]
addpoint [k] [2]

—

k=k+1;

1;
newpolint([1];
newpeint[2];

vectpoint [0];
vectpoint[1];
vectpoint[2];

../trial/rca_calib.c

}

else if (distance
{ support([k2] ([0}
support (k2] [1]
support [k2][2])

Thu May 5 17:07:25 1988 5

TRESH)

newpoint[0];
newpoint(1];
newpoint [2];

A

k2 = k2 + 1;

}

else {} /* points 1s in shadow */

}
}

1f (sup[D] == "

y')

for () = BORDER; j < sizey - BORDER; J++)

{ for (i = BORDER; i < slzex -~ BORDER; i++)

{

if(sup_points[i][]] > 0)

}

{

sup_count++;
cause = 0;
for(m=i-grid/2;m<=1+grid/2:m++)

for (n=j-grid/2;n<=3+grid/2;n++)

1f((sup_pointsm] [n] == 255)) cause++;

if (cause == 0)
{

for (m=sup_points{1i][}]; m <= picture(i](]]); m=

{
sup_vect (0]
sup vect([1]
sup vect[2]

oo

m*HEIGHT;

matrix mult (sup_vect, T,

side_add points(k3][0]
side_add points(k3](1]
side_add points{k3][2]
k3++;

}
sup points(i][j] = 255;
}

3 * HORIZONTAL;
(239 - 1) * VERTICAL;

sup_point);

sup_point{0];
sup_point(1l];
sup_point[2];

fprintf (stderr,“Remove supporting surface (y/n)? *);
scanf (*%s*, g):

fprintf (stderr,*Add original points 2(y/n}"“}):
scanf (*%s", orig):

../trial/rca_calib.c Thu May 5 17:07:25 1988 [

1f (orig[0) == ’y’)
{

if((orig_file = fopen("points.orig*,"w"*)) == NULL)
{fprintf(stderr,*Can’t open output file : %s\n®,*points.or
exit (0);}
for{i = 0; 1 < k; 1i++)
fprintf(orig file,*$%f $f $f \n*, point[i]([0], peoint[i][1],
}

1E((h[0] == ry’) || (g[O] == fy’) || (sup(0] = ‘y’))
if({add file = fopen(*points.add”,*"w")) == NULL)
{printf(*Can’t open output file : %s\n¥,"points.add");
exit (0);}

1£(h[0] == 7y') /*** hidden points to be added horizontally ?
(forf{i = 0; 1 < k; 1i++)
fprintf (add file,*$f %f $f \n*, addpoint[1][0], addpoint(i]|
}

if(g[0] == 'n") /* background to be removed */
{ for(i = 0; 1 < k2; i++)
fprintf(add file,"$f %f %f \n", support[i]([0], support(i][1]
}

1f (sup(0]) == 'y’) /% vertical points to be added */

for(i = 0; 1 < k3; 1++)
fprintf(add file,"$f %f %f \n", side add points[1][0], side_
}

}

JREK KKK RK KRR IR AR AR RA Rk R Rhkkhkhh kR Xk kAR hkk Ak khhhhhhk kA kA AR AX KA kK

function for multiplying matrix with a vector
A AR AR A AR AR R AR AR A AR R R AR KA A R R KA AR AR AR AR R AR AR A AR AR AR R AR AR AR AR AR R AR AKX

matrix mult(vector, matrix, result)
double vector([3], matrix(4]([4], result(3];
{
result[0] = matrix{0][0] * vector[0] +
matrix{0])[1] * vector{l] +
matrix([0] [2] * vector(2] + matrix([0])[3];

result{l] = matrix[1][0] * vector([0] +
matrix(1][1] * vector{l] +
matrix[1][2]) * vector([2] + matrix[1](3];

../trial/xca_calib.e Thu May 5 17:07:25 1988 7

result (2] = matrix(2](0] * vector[0] +
matrix(2] (1] * vector(1l] +
matrix{2] (2] * vector(2] + matrix([2](3];
}

/*tt*tt**i*i*****ii*******i***t**t***t***t***************************

function for making a T matrix
1222232223 2232232 2322222233222 2332222322232t Rsssis s s sty

make_matrix(TR)
double TR[41(41];

{ double rx, ry, rz, x, y, z;

x = 80.0;
y = -180.0;
z = 0;
rx = 90.0;
ry = 45.0;
rz = -15.0;
rx = rx * P1/180;
ry = ry * PI1/180;
rz = rz * P1/180;
/%
homogenous transformation : Euler angles
*/
TR[0][0] = cos{rx)*cos(ry)*cos(rz) - sin(rx)*sin(rz);
TR{0] [1] = —cos(rx)*cos(ry)*sin(rz) - sin(rx)*cos(rz);
TR[0]1[2] = cos(rx)*sin(ry);
TR(0] [3] = x;
TR{1][0] = sin{rx)*cos(ry)*cos{rz) + cos{rx)*sin(rz);
TR(1]1[1] = - sin(rx)*cos(ry)*sin{(rz) + cos(rx)*cos(rz);
TR[1]1[2] = sin(rx)*sin(ry);
TR[1] (3] = y;
TR{2] [0] = -sin(ry)*cos(rz);
TR(2] [1] = sin{ry)*sin(rz);
TR[2]{2] = cos(ry);
TR[2] [3] = z;
TR([3]1[0] = 0;
TR{3][1] = 0;
TR{3]({2} = O;
TR{3] (3] = 1;

../trial/xca calib.c Thu May 5 17:07:25 1988 8

double sq(x)
double x;
{ return(x*x);

}

read plcture(filaname,buffer)
char filename([50];
int buffer{PICDIM X] (PICDIM Y];
{
int i,9;
FILE *infs;
unsigned char *pm point;
short int *pms_point;

/* open input pm file */
if ((infs = fopen(filename,*r")) == NULL)
{
printf(*file open error :%s \n%,fllename);

exit(0);
}

/* read inputfile into the pmpic buffer */
if((pml = pm read(infs,0)) == NULL)
{
printf (*error in reading the pmfile %s*,filename);
exit (0);
}

sizex = (pml->pm nrow); /* # of rows */
sizey = (pml->pm ncol); /* # of columns */

fprintf(stderr,"rows : %d ; columns : $d\n”,sizex,sizey):
if (pml->pm_form == PM C)
{
pm point = (unsigned char *) pml->pm image;
for(i1=0;i<sizex;i++)

for(j=0;j<sizey;3++)
{

buffer[i][]j] = *(pm point);
pm_point++;

}
else if (pml->pm form == PM S)

../trial/rca calib.c Thu May 5 17:07:25 1988 9

pms_point = (short int *) pml->pm image;
for(i=0;1<sizex;i++)
for(3=0;j<sizey;)++)
{
buffer{i] []]) = *(pms_point);
pms_point++;
}

else

{
printf(*Image file in unrecognized format.Exiting.\n%);
exit (0);

}

}/* end of read picture */

classify.c Wed Mar 9 14:00:45 1988 1

/***t****i*ii***t*********i*t**it*****itt**ti******ti*t********t*it**

Program to classify the superquadric model into one of the four
broad categories :
flat,
box,
roll,
IPP.

Format of the input file is as output from the rec9.out program.
Run as:
$classify fit_ *.originalpoints fit *.addedpoints

0.00 <= el,e2 <= 1.00
ARk R AR KRR AR KR AR AR R AR R AR AR AR R KRR AR KK R RN AR AR KRR AR R R AR R AR AR KA AR A KKK

#include <stdio.h>
#include <math.h>
#define TIM 3 /* to implement << or >> */
#define FLAT 1

#define BOX 2

#define ROLL 3

#define IPP 4

/* to store al, a2 and a3 */
/* to store el and e2 x/
/* goodness of fit */

double al[3],a2[3],a3[3];
double el(3],e2([3];
double measured goodnessl,goodness;
double measured goodness2;

char dummy([100]),0rig(50],add[50];

/* type determined by looking at the al
and a3 values and el and e2 values of
fitted model */

int typel,type2;

double dum;

double k_box = 10.0 ,
k1l _roll=10.0 ,
k2_roll=15.0 ;

FILE *infs, *addfile, *outfile;
main(argc,argv)
int argc;

char *argv(]:

int 1,3,k,1;
int goedl, good2;

classify.c Wed Mar 9 14:00:45 1988 2

strepy{orig,argvi(l]);
strcpy(add,argv(2]);

if((infs = fopen({argv[l],”r*)) == NULL)
{

printf(®classify : File open error : %s\n",argv[l]);

exit (0);
}

if((addfile = fopen{argv([2],%r*)) == NULL)
{

printf(“classify : File open error : %s\n",argv[2]);

exit (0);
}

if({outfile = fopen({argv([3],*w”)) == NULL)
{

printf(*classify : File open error : $s\n",argv[3]);

exit (0);
}

fscanf (infs, *$s",dummy) ;

fscanf (infs,"%f &f $f~,&al(l),&a2([1),&a3[1]);
fscanf (infs,"%f &%f $f",&al(l],&a2([1]),&a3[1]):
fscanf (infs,*$f &f $f%,&al(l],&a2[1],&a3([1]);

fscanf (infs, *$Sf $f*,sel[1],&e2[1

1}
fscanf (infs,“$f %f“,&el[l],&se2(1])

fscanf (infs,“%d $%d $d”, &dum, &dum, &dum) ;
fscanf (infs, *$s”, dummy) ;

fscanf (infs, “$f", smeasured goodnessl);

printf (*$£,8f,%f\n",a1(1],a2(1],a3(1]});
printf (*s$f, $f\n",el(1],e2(1]);
printf (*$£\n*,measured goodnessl);

fscanf (addfile, "%s",dummy);

fscanf (addfile, "$f §f $f*,sal(2],&a2[2],8a3(2
fscanf (addfile,$f $f %f",cal(2]),&a2([2],&8a3[2
fscanf (addfile, *8f $f %f",cal{2]),&a2(2],s8a3[2

fscanf (addfile, "$f $f",&el[2],&e2(2])
fscanf (addfile, *$f $f",sel[2],8e2(2])

1):
1):
1):

classify.c Wed Mar 9 14:00:45 1988 3
fscanf (addfile,"$d %d %d", sdum, &édum, &dum) ;
fscanf (addfile, "$s”, dummy) ;
fscanf (addfile, "$f*, emeasured goodness2);
printf ("&£, $f,$f\n",al1(2],a2(2],a3(2]});
printf (*%f, $f\n”,el(2],e2(2]);
printf (*%f\n*,measured_goodness2);

/* Readin the Threshold values */

printf(*K for Box : ");
scanf ("$£f*, &k_box);

printf (*K1 and K2 for Roll : *);
scanf ("%f $f*, &kl _roll, &k2_roll);

printf (*Goodness of fit measure : *);
scanf {"$f", sgoodness) ;

/* FIRST classify the object according to the al,a2,a3,el,e2 values

classified(1);
classified(2);

typel
type2

L'}

goodl = good enough (measured goodnessl):
good2 = good enough (measured_goodness2);

1f((goodl == 1) && (good2 == 0))
{ /* first fit is better than second fit */
classification(1,typel);

}
else 1f((goodl == 0) && (good2 == 1))
{ /* second fit 1s better than the first fit */
classification(2,type2);
}
else 1f((goodl == 1)} && (good2 == 1))
{ /* both the fits are acceptable */
volume_criterion():
}
else
{ /* Both the fits are unacceptable */
classification(3, 1PP);
}

}

classified(num)

classify.c Wed Max 9 14:00:45 1988 4

int num;

{
int 1,3,k;

1f((TIM*a3[num] < alfnum]) && (TIM*a3[{num] < a2(num]) &&
{e2[num] < 0.5) && (el[num] < 0.5))
return (FLAT) ;

else 1f(((al[num]*TIM < a3[{num]) || (a2[num]*TIM < a3[num])) &&
(el[num] < 0.5) && (e2[num] < 0.5))
return (FLAT);

else if((al[num] > k_box) && (a2[num] > k_box) && (a3(num] > k_box)
(el[num] < 0.5) && (e2[num] < 0.5))
return (BOX) ;

else if((al(num] > kl_roll) && (a2(num] > kl_roll) && (a3fnum] > k2
(el{num] < 0.5) && (e2[num] > 0.5))
return(ROLL) ;

else
return(IPP);

}

classification (num, type)
int num;
int type:;
{
char str(50];
char string[10];

switch(type)
{
case FLAT : sprintf(string,*$s*,“Flat%);break;
case BOX : sprintf(string,“$s*,"Box");break;
case ROLL : sprintf(string,“%s",*Roll") ;break;
case IPP : sprintf(string, *%s*,“Ipp*);break;
}

if({(num == 1))
{

printf ("Points not added in the fit.\n");
printf(“Object classified as %s \n*",string);
fprintf (outfile,*$s%,string);

sprintf(str,"%s %s %s","cp “,orig,” fit.final *);
system(str);

classify.c Wad Mar 9 14:00:45 1988 S

else if((num == 2))
{
printf (*Points added to obtain the fit.\n");
printf (“Object classified as %s \n",string);
fprintf (outfile,“%s”,string);
sprintf(str,”%s %s %s","cp “,add,* fit.final *);
system(str);

else

printf (*Object Classified as %s \n",string):;
fprintf(outfile,*%$s",string);

sprintf(str,"$s %s %s%,“cp ",oriqg," fit.final *);
system(str);

}

volume criterion()

{
double voll,vol2;

voll
vol2

al(l)*a2(1]*a3[1];
al[2]*a2([2]*a3[2];

printf("Following volume criterion \n");

1f(voll <= vol2)
classification(2,type2);

else
classification(l,typel);

}

good_enough (goodn)
double goodn;
{

1f (goodn < goodness)
return(1);

else
return(0);

../trial/xca_calib.e Thu May 5 17:07:25 1988 7

result (2] = matrix(2](0] * vector[0] +
matrix(2] (1] * vector(1l] +
matrix{2] (2] * vector(2] + matrix([2](3];
}

/*tt*tt**i*i*****ii*******i***t**t***t***t***************************

function for making a T matrix
1222232223 2232232 2322222233222 2332222322232t Rsssis s s sty

make_matrix(TR)
double TR[41(41];

{ double rx, ry, rz, x, y, z;

x = 80.0;
y = -180.0;
z = 0;
rx = 90.0;
ry = 45.0;
rz = -15.0;
rx = rx * P1/180;
ry = ry * PI1/180;
rz = rz * P1/180;
/%
homogenous transformation : Euler angles
*/
TR[0][0] = cos{rx)*cos(ry)*cos(rz) - sin(rx)*sin(rz);
TR{0] [1] = —cos(rx)*cos(ry)*sin(rz) - sin(rx)*cos(rz);
TR[0]1[2] = cos(rx)*sin(ry);
TR(0] [3] = x;
TR{1][0] = sin{rx)*cos(ry)*cos{rz) + cos{rx)*sin(rz);
TR(1]1[1] = - sin(rx)*cos(ry)*sin{(rz) + cos(rx)*cos(rz);
TR[1]1[2] = sin(rx)*sin(ry);
TR[1] (3] = y;
TR{2] [0] = -sin(ry)*cos(rz);
TR(2] [1] = sin{ry)*sin(rz);
TR[2]{2] = cos(ry);
TR[2] [3] = z;
TR([3]1[0] = 0;
TR{3][1] = 0;
TR{3]({2} = O;
TR{3] (3] = 1;

../trial/xca calib.c Thu May 5 17:07:25 1988 8

double sq(x)
double x;
{ return(x*x);

}

read plcture(filaname,buffer)
char filename([50];
int buffer{PICDIM X] (PICDIM Y];
{
int i,9;
FILE *infs;
unsigned char *pm point;
short int *pms_point;

/* open input pm file */
if ((infs = fopen(filename,*r")) == NULL)
{
printf(*file open error :%s \n%,fllename);

exit(0);
}

/* read inputfile into the pmpic buffer */
if((pml = pm read(infs,0)) == NULL)
{
printf (*error in reading the pmfile %s*,filename);
exit (0);
}

sizex = (pml->pm nrow); /* # of rows */
sizey = (pml->pm ncol); /* # of columns */

fprintf(stderr,"rows : %d ; columns : $d\n”,sizex,sizey):
if (pml->pm_form == PM C)
{
pm point = (unsigned char *) pml->pm image;
for(i1=0;i<sizex;i++)

for(j=0;j<sizey;3++)
{

buffer[i][]j] = *(pm point);
pm_point++;

}
else if (pml->pm form == PM S)

../trial/rca calib.c Thu May 5 17:07:25 1988 9

pms_point = (short int *) pml->pm image;
for(i=0;1<sizex;i++)
for(3=0;j<sizey;)++)
{
buffer{i] []]) = *(pms_point);
pms_point++;
}

else

{
printf(*Image file in unrecognized format.Exiting.\n%);
exit (0);

}

}/* end of read picture */

classify.c Wed Mar 9 14:00:45 1988 1

/***t****i*ii***t*********i*t**it*****itt**ti******ti*t********t*it**

Program to classify the superquadric model into one of the four
broad categories :
flat,
box,
roll,
IPP.

Format of the input file is as output from the rec9.out program.
Run as:
$classify fit_ *.originalpoints fit *.addedpoints

0.00 <= el,e2 <= 1.00
ARk R AR KRR AR KR AR AR R AR R AR AR AR R KRR AR KK R RN AR AR KRR AR R R AR R AR AR KA AR A KKK

#include <stdio.h>
#include <math.h>
#define TIM 3 /* to implement << or >> */
#define FLAT 1

#define BOX 2

#define ROLL 3

#define IPP 4

/* to store al, a2 and a3 */
/* to store el and e2 x/
/* goodness of fit */

double al[3],a2[3],a3[3];
double el(3],e2([3];
double measured goodnessl,goodness;
double measured goodness2;

char dummy([100]),0rig(50],add[50];

/* type determined by looking at the al
and a3 values and el and e2 values of
fitted model */

int typel,type2;

double dum;

double k_box = 10.0 ,
k1l _roll=10.0 ,
k2_roll=15.0 ;

FILE *infs, *addfile, *outfile;
main(argc,argv)
int argc;

char *argv(]:

int 1,3,k,1;
int goedl, good2;

classify.c Wed Mar 9 14:00:45 1988 2

strepy{orig,argvi(l]);
strcpy(add,argv(2]);

if((infs = fopen({argv[l],”r*)) == NULL)
{

printf(®classify : File open error : %s\n",argv[l]);

exit (0);
}

if((addfile = fopen{argv([2],%r*)) == NULL)
{

printf(“classify : File open error : %s\n",argv[2]);

exit (0);
}

if({outfile = fopen({argv([3],*w”)) == NULL)
{

printf(*classify : File open error : $s\n",argv[3]);

exit (0);
}

fscanf (infs, *$s",dummy) ;

fscanf (infs,"%f &f $f~,&al(l),&a2([1),&a3[1]);
fscanf (infs,"%f &%f $f",&al(l],&a2([1]),&a3[1]):
fscanf (infs,*$f &f $f%,&al(l],&a2[1],&a3([1]);

fscanf (infs, *$Sf $f*,sel[1],&e2[1

1}
fscanf (infs,“$f %f“,&el[l],&se2(1])

fscanf (infs,“%d $%d $d”, &dum, &dum, &dum) ;
fscanf (infs, *$s”, dummy) ;

fscanf (infs, “$f", smeasured goodnessl);

printf (*$£,8f,%f\n",a1(1],a2(1],a3(1]});
printf (*s$f, $f\n",el(1],e2(1]);
printf (*$£\n*,measured goodnessl);

fscanf (addfile, "%s",dummy);

fscanf (addfile, "$f §f $f*,sal(2],&a2[2],8a3(2
fscanf (addfile,$f $f %f",cal(2]),&a2([2],&8a3[2
fscanf (addfile, *8f $f %f",cal{2]),&a2(2],s8a3[2

fscanf (addfile, "$f $f",&el[2],&e2(2])
fscanf (addfile, *$f $f",sel[2],8e2(2])

1):
1):
1):

classify.c Wed Mar 9 14:00:45 1988 3
fscanf (addfile,"$d %d %d", sdum, &édum, &dum) ;
fscanf (addfile, "$s”, dummy) ;
fscanf (addfile, "$f*, emeasured goodness2);
printf ("&£, $f,$f\n",al1(2],a2(2],a3(2]});
printf (*%f, $f\n”,el(2],e2(2]);
printf (*%f\n*,measured_goodness2);

/* Readin the Threshold values */

printf(*K for Box : ");
scanf ("$£f*, &k_box);

printf (*K1 and K2 for Roll : *);
scanf ("%f $f*, &kl _roll, &k2_roll);

printf (*Goodness of fit measure : *);
scanf {"$f", sgoodness) ;

/* FIRST classify the object according to the al,a2,a3,el,e2 values

classified(1);
classified(2);

typel
type2

L'}

goodl = good enough (measured goodnessl):
good2 = good enough (measured_goodness2);

1f((goodl == 1) && (good2 == 0))
{ /* first fit is better than second fit */
classification(1,typel);

}
else 1f((goodl == 0) && (good2 == 1))
{ /* second fit 1s better than the first fit */
classification(2,type2);
}
else 1f((goodl == 1)} && (good2 == 1))
{ /* both the fits are acceptable */
volume_criterion():
}
else
{ /* Both the fits are unacceptable */
classification(3, 1PP);
}

}

classified(num)

classify.c Wed Max 9 14:00:45 1988 4

int num;

{
int 1,3,k;

1f((TIM*a3[num] < alfnum]) && (TIM*a3[{num] < a2(num]) &&
{e2[num] < 0.5) && (el[num] < 0.5))
return (FLAT) ;

else 1f(((al[num]*TIM < a3[{num]) || (a2[num]*TIM < a3[num])) &&
(el[num] < 0.5) && (e2[num] < 0.5))
return (FLAT);

else if((al[num] > k_box) && (a2[num] > k_box) && (a3(num] > k_box)
(el[num] < 0.5) && (e2[num] < 0.5))
return (BOX) ;

else if((al(num] > kl_roll) && (a2(num] > kl_roll) && (a3fnum] > k2
(el{num] < 0.5) && (e2[num] > 0.5))
return(ROLL) ;

else
return(IPP);

}

classification (num, type)
int num;
int type:;
{
char str(50];
char string[10];

switch(type)
{
case FLAT : sprintf(string,*$s*,“Flat%);break;
case BOX : sprintf(string,“$s*,"Box");break;
case ROLL : sprintf(string,“%s",*Roll") ;break;
case IPP : sprintf(string, *%s*,“Ipp*);break;
}

if({(num == 1))
{

printf ("Points not added in the fit.\n");
printf(“Object classified as %s \n*",string);
fprintf (outfile,*$s%,string);

sprintf(str,"%s %s %s","cp “,orig,” fit.final *);
system(str);

classify.c Wad Mar 9 14:00:45 1988 S

else if((num == 2))
{
printf (*Points added to obtain the fit.\n");
printf (“Object classified as %s \n",string);
fprintf (outfile,“%s”,string);
sprintf(str,”%s %s %s","cp “,add,* fit.final *);
system(str);

else

printf (*Object Classified as %s \n",string):;
fprintf(outfile,*%$s",string);

sprintf(str,"$s %s %s%,“cp ",oriqg," fit.final *);
system(str);

}

volume criterion()

{
double voll,vol2;

voll
vol2

al(l)*a2(1]*a3[1];
al[2]*a2([2]*a3[2];

printf("Following volume criterion \n");

1f(voll <= vol2)
classification(2,type2);

else
classification(l,typel);

}

good_enough (goodn)
double goodn;
{

1f (goodn < goodness)
return(1);

else
return(0);

spline.c Wed Mar 30 11:54:33 19848 1

VARE RS2 SR AR AR AR RS Rl s i e Rt Rt)

Program to compute the first and second order derivatives of the r
image and finally the Gaussian and Mean curvature at all the image po
is given below. The program outputs the sign map of gaussian and mean
curvature.

Mar 17, 1988 Interactlve processing.

Can handle PM S and PM C images. Outputs only PM C im

Mar 25, 1988 Display histogram of arbitrary parameter on IKONAS

using quickdraw.

AR AR A AR AR AR A R A AR A A A AR AR A A A AR A AR AR R AR AR R AR AR AR AR AR R AR R AR R KA A Ak Ak kkk k&

#include <stdio.h>

#include <math.h>

#include <local/pm.h>

#include <ik.h>

#include "/usr/users/alok/advanced/spline_include.h*

/* should be same as xscale and yscale
as mm/pixel ;for Gus’ scanner < \/*
/* zscale in the digitized image */

#define SCALE 1.978

#define ZSCALE 1.500
§define REGION SIZE 1000

#define NSYS 25
#define NDATA 1000

struct region_type {

int order; /* order of the surface fitted */

int surf_type: /* classifiacation of the region surface
float fit_error; /* surface fit error */

int label; /* identifying label of the region */
int size; /* & of pixels in the region */

float normal vector{3}:; /* unit normal to the surface */
} regions[REGION SIZE];

struct _image{
float xu,Xxv, Xxuu,Xxvv,xuv;
float fit_error;
float gauss,mean;
int label;
int th_mean;
int th_gauss;
float gq;
float sqrtgqg;

spline.c Wed Max 30 11:54:33 1988 2

float cosphi;
} image,parm(BUFSIZE] (BUFSIZE]; /* for parameters of pixels *
float ri[BUFSIZE] (BUFSIZE]; /* range image */

int buffer[BUFSI2E] [BUFSIZE];
int line[BUFSIZE];
float linef[BUFSIZE]:

int offx,offy;

struct mxval{
float fit_error;
float gauss;
float mean;
float q;
float sqrtg:;
float cosphi;
float depth;
int label;
int th_gauss;
int th_mean;

}maxv,minv; /* stores the maximum and minumum of value

float x{1024];

float y[1024]);

float value;

float xmin,xmax,ymin,ymax;
int iopt;

int npts;

/* followind parameters are returned by the least square fitting pr

double 1ix, iy, ixx, 1iyy, dixy, 1yx, ixxx, 1lyyy. ixyy, 1ixxy ;
double a30, a2l, al2, ab3, a20, all, a2, al0, a0l, a00d ;
double xu, xVv, Xuu, Xvv, xuv;

double fit _error; /* the surface fit error */

int s_order; /* the order of the surface fitted in the nbd */

/* following are global to this file */
int csize, rsize ;
int offsetl ;
int approx
int s_order:
double lsqgerr():
FILE *dumpfile;
int todump;

/* fitted surface order */

spline.c Wed Mar 30 11:54:33 1988 3

char name_ext(16][20] = { v, /* name—extensions to be appe
“.fit-error", /* to the input file-name to
.quad=-var®, / output-file-name
*.zero—-mean",
*.zZero-gauss",
*.zero~ccf",
*.ccaf"”,
*.sign-mean”,
*.sign-gauss",
*.mag-pcd",
*.pda",
*.mgc”,

¥ .mmc”,
*.n-critical”,
".critical”,
».region"};

int mask_u[5][5] = {
(-1,-6,-10,-6,-1},
{-2,-20,-52,-20,-2},
{0,0,0,0,0},
{2,20,52,20,2},
{1,6,10,6,1}}:

int mask_v[5][5] = {
{-1,-2,0,2,1},
{-6,-20,0,20,6},
{-10,~-52,0,52,10},
(-6.,-20,0,20,6},
{-1,-2,0,2,1}};

int mask_uu[5] 5] = {
(1,6,10,6,1},
{o,8,32,8,0},
(-2,-28,-84,-28,-2},
(0,8,32,8,0},
{1,6,10,6,1}};

int mask_vv[5][5] = {
{1,0,-2,0,1},
{6,8,-28,8,6},
{10,32,-84,32,10},
{6,8,-28,8,6},
{1,0,-2,0,1}};

int mask _uv({5][5] = {
{i,2,0,-2,-1},

spline.c ¥ad Mar 30 11:54:33 1988

(2,12,0,-12,-2},
{o,0,0,0,0},
{-2,-12,0,12,2},
(-11_2101211)};

int op ul3){3]
{0,0,0},
{1,4,1}}:

{ (-1,-4,-1},

int op v{3}[3]
(-1,0,1},
{-4,0,4},

{(-1,0, 1)};

]
-—

int op_uu(3]{3] = {
{1,4,1},
{-2,-8,-2},
(1,4,1}};

int op_wv([3]([3] = (
(1,-2,1},
{4I_BI4}'
f1,-2,11};

int op uv{3}[3] = {
(1101_1)1
{o,0,0},
{(-1,0,1}};

float weight u = 288.0;
float weight v = 288.0;
float weight uu =144.0;
float weight_vv =144.0;
float weight_uv =96.0;

(]

float convo({):
float convo_1l();
float abszz():

float div u =1
float div. v =1
float div_uu= 6
float div_vv= 6
float div _uv= 4

~s % Sa Se ws

float max_mean = -1000.0;
float max_gauss= -1000.0;

spline.c Wed Mar 30 11:54:33 1988 5

float min _mean = 1000.0;
float min_gauss= 1000.0;

main({argc,argv)
int argc;
char *argv([];
{
int i,3,k,1,m,n; /* Loop control variables */
pmpic *pml, *pm2;
FILE *infile, *outfile;
int row,col;
char *cmt;
unsigned char *pm point_uchar;
short int *pm point_short;
int option;
float gauss,mean;
char temp[40];
int offset;
propic *pmp[l6];
unsigned char *uchar_point{16];
int temp_ value;
int mean_val,gauss_val;
int boolfl7}:;
FILE *fp[16]);
float th mean, th_gauss;
float tl1,t2,t3;
float q;
char c¢;
char smooth;
int back_threshold;
int to smooth;
int to_print_files; /* =1, 1f all outputs desired in a flle */
char string(30];
float sf;
pmpic *pm;
FILE *fpl;
double scale,zscale; /* scale = yscale = xscale; zscale is for d
u_int image_format;
int subs;

if(largec > 3) (| (arge < 2))

{
printf(*Usage : spline input fillename output_diagonistics_file\

exit (0);
}

if((infile=fopen(argv[1l},”r"}) == NULL})

spline.c Rod Mar 30 11:54:33 1988 6

{
printf(*Can’t open %s\n",argv(1l]):

exit(0);
}
todump = 0;
if (argc == 3)

1f ((dumpfile=fopen(argv[2],"w"*)) == NULL)
{
printf(*can’t open %s\n",argv{2]);
exlit (0);
}
todump = 1;
}

/* 1if (1kopen(NULL) == -1)
printf (" Can’t open IKONAS \n");*/

init_structure(); /* initializes the structures */

cmt = (char *)pm_cmt (argc,argv); /* get the command line */

if ({pml = pm _read(infile,0)) == NULL)
{

printf("Error in reading PM-Format file : %s\n",argv[l]):;
exit (0);
}

row = pml->pm_nrow;
col = pml->pm_ncol;
rsize = row;

csize = col;

offx = offy =0;

/* copy the input image into the image */

1f (pml->pm_form == PM_C) /* one byte per pixel picture */
{
pm_point_uchar = (unsigned char *) pml->pm image;
image_format = PM C; .
zscale = ZSCALE; /* for Gus’ scanner */
scale = SCALE;
printf(*initializing buffer \n%);
for(i=0;1i<row;1++)
for (J=0;j<col; J++)
{

ri[1]{]J] = ((float) *pm point uchar)*((float) (zscale/scal
1f (maxv.depth < ri[i][J])} maxv.depth = ri[i][]j]:

spline.c Wed Mar 30 11:54:33 1988 7

if (minv.depth > ri[i](]]) minv.depth = ri{11(3];
pm_point_uchar++;

}

else 1f(pml->pm form == PM §) /* short integer picture */
{

pm_point short = (short int *} pml->pm_image;
image _format = PM S;
zscale = 1.00;
scale = 74.20;
printf(*initializing buffer \n");
for(i=0;1<row;i++)

for (3=0; j<col; j++)

{

ri(1]1j] = ((float) *pm_point_short)*((float) (zscale/scal
1f (maxv.depth < ri[1][3]) maxv.depth ri(i) (3]~
1f (minv.depth > ri[1]{3)) minv.depth = ri[i]1[]]):
pm_point_short++;

}

else {fprintf(stderr,"unrecognized PM format in image®):
exit(0):
}

/* background threshold is the background value in image as it is r
and not in uniformly scaled (in Z direction) image */

printf(* Background Threshold : *);
scanf ("%d", &back_threshold);

back threshold = (back_threshold * zscale)/scale;
read_specs{}; /% read specifications */

printf (*Gaussian-smooth the picture 2(1 if yes) :%);
scanf (*%d", &to_smooth);

if (to smooth == 1) gaussian(ri,row,col};

to _print_files = 0:
if(to_print files == 1)
{

printf(* Following outputs can be obtained :\n");
printf(* Indicate your choice by entering integers in a lin
printf(* 1. Square root of metric determinant (edge magnitude)
printf(* 2. Quadratic variation (flatness measure image Q.\n"}
printf(* 3. Zeros of the mean curvature : H = 0\n"};

spline.c Weod Mar 30 11:54:33 1986 8

printf(* 4. Zeros of the Gausslan curvature :k = 0\n™);
printf(* 5. Zeros of the cosine-of-the-coordinate-function cos
printf(* 6. Cosine of the Coordinate angle Function :cos 0\n™)
printf(* 7. Sign regions of mean curvature sgn(H)\n");
printf(* 8. Sign reglons of Gaussian curvature ,sgn(K)\n");
printf(* 9.Magnitude of principal curvatures difference :sqrt(
printf(* 10.Principal direction angle \n");

printf(* 11.Magnitude of Gaussian curvature K\n“);

printf(* 12.Magnitude of Mean curvature H\n");

printf(* 13.Non degenerate critical peints image :fu=fv=0<>Q\n
printf(* 14.Critical points image\n*);

printf(* 15.Labeled regions\n");

printf(* 16.ALL OF THE ABOVE\n");

/* read in user requirements and set boolean corresponding to t

/* for(i=0;i<17;1i++) bool[i] = 0;
i=20;
while (1 == 0)
{
scanf (*$d", &n);
getchar(); '
1f ((n>0)&&(n<17)) {bool(n] = 1;}
else {1 = 1;}
}
1 =1;
if (bool[l16] == 1)
for(1=0;1<17;i++) bool[i] = 1;
printf(*\n Outputs are:\n\n");*/

/* generate output filenames */

/* for (1=1;1<16;1++)
1f (bool (1] == 1)

{
strcpy (temp,argv(l]);
strcat (temp, name_ext [1]);
printf(* %s \n*,temp);
fp(i] = fopen(temp, *w");
pmp{i] = pm_alloc();
pmp{i]->pm_nrow = row;
npmp [1]->pm ncol = col;
pmp[i]->pm_image = (char *) malloc({pm psize(pmp[i]));
uchar_point[i] = (unsigned char *)pmp(i])->pm_ image;

}

}*/ /* segment for output file initialization */

/* Now compute the derivatives and Gaussian and Mean curvature at e
image peoint

spline.c Wod Mar 30 11:54:33 1988 9
*/

printf(*row : %d column %d offsetl $d\n",row,col,offsetl);
printf(*rsize : %d csize : %d approx : %d\n*,rsize,csize, approx)

compute amatrix();
for (1=offsetl;i<row-offsetl;i++)
: for{j=offsetl;j<col-offsetl;j++)
1f(ri[1]1[]j] > back_threshold)
iff(approx == 1) || (approx == 2} || (approx == 3})

poly2(1,3j);

xu = ix;
xv = 1y;
xuu = ixx;
xvv = 1iyy;
xuv = ixy;

}
else
if(approx == 5) /* B-spline fitting using Kak-Hwang mask
{
Xu convo(1, j,mask_u,weight_u, 5);
XV convo(i, j,mask_v,welght_v,5);
xuu= convo(l,), mask_uu,weight_uu,5);
xvv= convo(i, j,mask_vv,weight_vv,5);
xuv= convo (i, j,mask_uv,welght uv,5);

) .

else /*without smoothing B-spline fitting using Kak-Hwan
{

xu = convo_1(i,j,op u,div_u,3);

xv = convo_1(1,J,0p v,div_v,3);

xuu= convo_l(i,j,op_uu,div_uu,3);

xvv= convo_1(1,J,op vv,div_vv,3);

xuv= convo_1(1i,J,op uv,div uv, 3};

}

(parm(1] (]3] .xu) = xu;
parm[i] [J] .xv = xv;

parm([1}[]j].xuu = xuu;
parm([i][]).xvv = xvv;
parm[1][}] .xuv = xuv;

gauss = {xuu*xvv-xuv#*xuv)/
((float) (pow ((double) (l+xu*xu+xv*xv), (double) (2})));
mean = (XUU+XVV+XUUXXVAXV+XVVA¥Xu*xu-2.0*xu*xv*xuv)/

splina.c Wed Mar 30 11:54:33 1988 10

((float) (pow ((double) (1+xu*xu+xv*xv), (double) (1.5)))):

if (gauss > maxv.gauss) maxv.gauss = gauss;
if (mean > maxv.mean) maxv.mean = mean;
if (gauss < minv.gauss) minv.gauss = gauss;
1f(mean < minv.mean) minv.mean = mean;

if (fit_error >255) fit_error = 255;

if (fit_error > maxv.fit_error) maxv.fit error = fit error;
1f(fit_error < minv.fit error) minv.fit error = fit_error;

parm{i]} {1).fit_error = fit error;
parm[1][j].gauss = gauss;
parm[1] [J] .mean = mean;

}

} /* End of loop to compute derivatives and curvature values */

/* open ikonas display */
1f(ikopen(NULL) == 1)
printf(“Can’t open IKONAS \n");

printf ("ENTER > *);
scanf ("%s",string);

while((strcmp(®exit”,string) != 0) && (strcmp(“quit",string) != 0))
{/* interactive loop to do things starts here */

1f (strcmp (*comp*,string) == 0)
{ /* compute general things */

for{i=offsetl;i<row—offsetl;i++)
for (j=offsetl; j<col~offsetl;j++)
if(ri[1](Jj) > back_threshold)
{
/*%% sqrt g *kx/
parm(i](]]l.sqrtg = (float)sqrt((double) (l+parm{i] (3].
parm[i] [j] .xu+parm[i] [J].xv*parm[i] [
if(parm(i) [j].sqrtg > maxv.sqrtqg)
maxv.sqrtg = parm(1i][Jj).sqrtg;
if (parm{i][j].sqrtg < minv.sqrtg)
minv.sqrtg = parm[i] (j].sqrtg;

/*x%%x Q kX f
parm(1]1{3jl.q = (float) (parm[i] [{].xuu*parm{1]{]].xuu

spline.c Wed Mar 30 11:54:33 1988 11

2*parm(1][J].xuv*parm[1i] [}].xu
parm[1][3]).xvv*parm(i] [J].xvV)
if(parm[1] (3] .q > maxv.q)
maxv.q = parm(i][3j].q;
if(parm[1](3].q < minv.q)
minv.q = parm[1i] [J].q;

/%** zeros of cos phl **%/

parm[i] [j].cosphi = (float) (parm(i](}].xu*parm(i]([]].
((float) (sqrt ((double) (l+parm[i] [J] .xu*parm[i][}].x
parm[i]1[J].xv*parm(1i] []].xv +
parm[1] [J] .xu*parm(1] [(J] .xu*parm(1] [J]
parm{i] [3].xv}))):
1f (parm[i] (] .cosphl > maxv.cosphi)
maxv.cosphl = parm[i}([]].cosphi ;
if(parm(1] [J] .cosphi < minv.cosphi)
minv.cosphl = parm([i]([]j}.cosphi ;

}

else if(strcmp(*ikclose”,string) == 0)
ikclose();

else if(strcmp(*ikopen”,string) == 0)
ikopen (NULL) ;

else if(strcmp(*thresh*,string) == 0)
{
printf(“threshold for Gaussian curvature > ");
scanf (*$f", &th_gauss);
printf(“threshold for Mean curvature > *);
scanf ("$f*,&th_mean);

for(i=offsetl;i<row-offsetl;i++)
for (j=offsetl; j<col-offsetl;j++)
if(ri[(i]1{J] > back_threshold)

if (fabs((double)parm[i] [}].gauss) <= th_gauss)
parm[1][]].th _gauss = 0; /* gaussian curv = 0 *
else if(parm(1](3j].gauss < 0)
parm(i] [j].th_gauss = 2; /* gaussian curv is -ve
else parm([i] (j].th_gauss = 1;/* gaussian curv is +v

if(parm(i][3].th_gauss > maxv.th_gauss)
maxv.th_gauss = parm[i] [}].th_gauss;

spline.c Wed Mar 30 11:54:33 1988 12

if(parm[1][3}].th_gauss < minv.th gauss)
minv.th _gauss = parm[i][]].th_gauss;

if (fabs ((double)parm(i] [J].mean) <= th_mean)
parm[i][1].th_mean = 0; *© /* mean curv = 0 */
else if(parm[1i)[3].mean < 0)
parm[i] [}].th_mean = 2; /* mean curv is -ve */
else parm[i][3j].th_mean = 1; /* mean curv is +ve */

i1f(parm{1]{3].th_mean > maxv.th mean)
maxv.th_mean = parm[i](]].th_mean;
if(parm[i] [4] .th_mean < minv.th mean)
minv.th_mean = parm[i][]].th_mean;

}

}
else if(strcmp(string,*label™) == 0)
{
for(i=offsetl;i<row-offsetl;i++)
for(j=offsetl;j<col~offsetl; J++)
if(ri[11(3J1 > back_threshold)
{

switch(parm[1] [}].th_gauss)
{

case 0 : switch(parm(1i][]].th_mean)
{
case 0 : parm(i][]j].label
case 1 : parm(i][3].label
case 2 : parm([i][]].label
} break;

case 1 : switch(parm[i] []].th_mean)
{
case 0 : parm[1][]].label = 255;break;/* spurio
case 1 : parm[i]([]j].label = 63;break; /* pit */
case 2 : parm[i][j].label = 95;break; /* peak *
} break;

case 2 : switch(parm(1i][]].th_mean)
{
case 0 : parm([i](}].label = 31;break; /* minima
case 1 : parm[i][j].label = 191;break;/* saddle
case 2 : parm[i][}j].label = 127;break;/* saddle
}

}
if(parm(i] (3] .label > maxv.label)
maxv.label = parm[i][]].label ;
1f(parm(1](3].label < minv.label)
minv.label = parm[i][]].label;
}

1;break;/* flat */
223;break;/* valley
159;break;/* ridge

|

spline.c Wod Mar 30 11:54:33 1988 13

} /* end of label */

else if{(strcmp(string,”temp"”) == 0)
{
/* put th eindicated parameter in the buffer */
for(i=0;i<row;i++)
for(j=0;Jj<col; j++)
buffer[1]) (3] = parm(1][]j].gauss;

}
else 1f(stremp(string,*disp®) == 0)
{
scanf (*%d*, soption);

printf(*scale factor >");
scanf (*¢f", &sf) ;

for(1=0;1i<row;i++)

for(34=0;j<col; j++)
{

switch (option)
{
case 1: line[]J] = sf*parm(i)[]].fit_error;break
case 2: line(]j] = sf*parm(1i][]].gauss; break
case 3: line[]j] = sf*parm[i][]].mean; break
case 4: line[j) = sf*parm([i][]j].label; break
case 5: line[]] = sf*parm(i)(j].th_gauss; break
case 6: line[3j] = sf*parm{i][]].th_mean; break
case 7: line(Jj] = sf*parm(i](]j].q: break
case 8: line[j] = sf*parm(i][]j].sqrtg; break
case 9: line[]j] = sf*parm[1]){]j].cosphi; break
case 10:1inef[]j] = sf*ri(1](]]; break

}

}
lwr_n({offx,i+offy,&line{0],col);
}
}

else if(strcmp(string,“ocffset®) == 0)
{

scanf (*$f $f%,s0ffx,s0ffy);
}

else if(strcmp(string,*hist") == 0)
{/* display histogram using gkdraw */

spline.c

Wed Mar 30 11:54:33 1988 14

scanf (

printf

switch
{
case
case
case
case
case
case
case
case
case
case

}
printf
scanf {

printf
scanf (

for(i=
{

x[

vl

%d, soption);
(*xmax , xmin : ");
(option)
: printf("%f ; %f',maxv.fit_error,minv.fit_error);b
: printf(*%f ; %f",maxv.gauss,mlinv.gauss}; b
3: printf("%f ; $f*,maxv.mean,minv.mean); b
4: printf(*%d ; %d",maxv.label,minv.label); b
5: printf(*%d ; %d*,maxv.th_gauss,minv.th gauss); b
: printf(*%d ; %d",maxv.th_mean,minv.th_mean); b
7: printf(*%f ; $f",maxv.q,minv.q); b
: printf("sf ; $f“,maxv.sqrtg,minv.sqrtg); b
9: printf("$f ; $f*,maxv.cosphi,minv.cosphi); b
10:printf(*%f ; $£*,maxv.depth,minv.depth); b
(*xmin : xmax :"):
“$f &f"*, &xmin, &xmax);
{*# of points desired >");
“%d", &npts);
0;1<npts;i++)
1] = xmin + ({(float) (1) * (xmax —-xmin))/(float) (npts})
i] = 0;

}
for(1=offsetl;i<row-offsetl;i++)

for(

{

ymin =
ymax =

j=offsetl;j<col-offsetl;j++)

switch (option)
{

case 1: value = parm(i][]]).fit_error;break;

case 2: value parm(i]({]].gauss; break;
case 3: value parm[i][]].mean; break;
case 4: value parm{i] [j].label; break;

parm{i] [}].th_gauss; break;
parm(i) (j].th_mean; break;

case 5: value
case 6: value

L2 S {1 A (|

case 7: value = parm(i](3].q: break;
case 8: value = parm{i][]}].sqrtg; break;
case 9: value parm(i] (j].cosphi; break;
case 10:value ri(i1](3]; break;

subs =({int) {({value - xmin) * npts}/(xmax - xmin)));
if((subs < 1000} && (subs >= 0)) yl[subs] = y[subs] +

1000;
-1000;

spline.c Wod Mar 30 11:54:33 1988 15
for (1=0;i<npts;i++)
{ 1f(ymin > y[i]) ymin
1f (ymax < y[1i]) ymax
}
printf (*ymin : $f ; ymax :
scanf ("$f $f*,&ymin, &ymax);

ylil:
yiil:

$f\n", ymin, ymax) ;

lopt = 0;

qterm(4);

qgkdraw (npts,x,y,lopt, exmin, §xmax, &ymin, &ymax) ;
qdtitl (* Histogram*);

gxlabl ("<—— values -->");

qylabl(*freq”):

qdone () ;

} .

else 1f(stremp(string, *row™) == 0)
{ /* row histogram display using gkdraw */
scanf (*%d", soption);

printf(*row :%);
scanf (*%d%,&i);
while((1 < row) && (1 >= 0))
{
ymin = 1000;ymax = -1000;
for (3=0;j<col; j++)
{
switch(option)
{

case 1: linef[]]
case 2: linef[]]
case 3: linef[]]
case 4: linef[]j]
case 5: linef[])
case 6: linef[]j]
case 7: linef[]j]
case 8: linef[]]
case 9: linef[]]
case 10:1inef[]]
}
if(linef(j) < ymin) ymin = linef[]];
if(linef[Jj] > ymax) ymax = linef[]];
}
xmin
xmax

parm(i] (4] .gauss;
parm(i] []] .mean;
parm(1) [}).1label;

parm[1][j].th_mean;
parm[i][]].q:
parm[i](]].sqrtg;
parm[1}[]].cosphi;
ri[1]103]1:

L A A | | N (1

0.0;
col;

parm[i) [].th_gauss;

parm[i] []].fi1t_error;break;

break;
break;
break:
break;
break;
break;
break;
break;
break;

spline.c Wed Mar 30 11:54:33 1988 16

printf(*ymin : $f ; ymax : $f\n”,ymin, ymax)’

scanf("$f %f”,&ymin, aymax);
iopt = 0;

npts = col;
for(i=0;i<col;i++) x(i] = i;

gterm{4);

qgkdraw (npts, x, linef, iopt, &xmin, &xmax, eymin, &ymax) ;

qdtitl(* ROW *);
gxlabl (“col-->*);
gylabl (*Values*®);

qdone () ;
printf("row :");
scanf ("%d”,&1);

}

else if(strcmp(string,™save™) == 0)
{ /* save in a file */

printf(*save what 2 “);
scanf (*%d", soption);

printf(*scale factor : ");
scanf ("%f",&sf);

printf("outputfilename :*);
scanf ("4s",string);

fpl = fopen(string, "w")};

pm = pm alloc();
pm->pm_NIrow = row;

pm->pm_ncol = col;
pm—>pm_form = PM C;
pm->pm_image = (char *) malloc(pm isize(pm));

pm_point uchar = (unsigned char *) pm->pm image:

for(1=0; i<row; i++)
for(3=0; j<col; j++)

switch (option)
{
case 1: *(pm point_uchar)
case 2: *(pm point_uchar)
case 3: *{pm point_ uchar)

(unsigned char) sf*
(unsigned char) sf*
(unsigned char) sf*

spline.c Wod Mar 30 11:54:33 1988 17
case 4: *(pm point uchar)
case 5: *(pm point uchar)
case 6: *(pm point_uchar)
case 7: *(pm point_uchar)
case 8: *(pm point uchar)
case 9: *(pm point_uchar)
case 10:*(pm point uchar)

pm_point uchar++;
}
pm_write(fpl,pm);
fclose (fpl);
}

printf ("ENTER > *);
scanf (*$s",string);

} /* interactive processing loop ends */

/* put the outputs in respective files */

LU (N IR N | NS | I

(unsigned
(unsigned
{(unsigned
(unsigned
(unsigned
{(unsigned
{(unsigned

/* printf(*\n Putting results in output files \n"};

for(i=1;1<i6;1++)
{
1f((1 != 10) && (bool[i] == 1))
{

1f(pm_write(fp(il,pmp(i]}) == NULL)
{

printf(* Can’t write output files \n"});

exit (0);
}
}

*x/

/* End of maln program */

float convo(indi,indj, mask,base,size)
int indi,indj;

int mask[5])([5];

float base;

int size;

int 1,3,k,1;
float sum;

char)
char)
char)
char)
char)
char)
char)

sfx
sf*
sf*
sfx
sf*
sf*
sfx

spline.c Wed Mar 30 11:54:33 1988 19

float final;
sum = 0.0;

for(k=0,1=1ndi-2;1<=indi+2; 1++, k++)
for(1=0, 3=1ndj-2; J<=indj+2; J++, 1++)
sum += (float)mask(k] [1l]*(float)ri[i][]j];

final = sum/base;
return(final);

}

float convo_l{indi,ind),mask, base,size)
int indi, indj;

int mask([3]([3];

float base;

int size;

{
int 4,3,k,1;
float sum;
float final;

sum = 0.0;
for(k=0,1=indi-1;1<=1indi+1;1++, k++)

for(1=0,3=1nd3-1; J<=indj+1; J++, 1++)
sum += (float)mask(k][1l]*(float)ri[i][]];

final = sum/base;
return(final);

float abszz (num)
float num;

{
float b;

if {num >0} b=num; else b= -num;
return(b);
}

init structure()

{
int 1,3;

/* initialize the parm structure first */

spline.c Wed Mar 30 11:54:33 1988 19
bzero (&parm[0] [0], sizeof (image) *BUFSIZE*BUFSIZE) ;

/* initialize maxv and minv structures */

maxv.fit error = -1000.00;
maxv.gauss = -1000.00;
maxv.mean = -1000.00;

maxv.q = -=1000.00;
maxv.sqrtg = -1000.00;
maxv.cosphi = -1000.00;
maxv.label = -1000;
maxv.th_gauss = -1000;
maxv.th mean = -1000;
maxv.depth = -1000.00;

minv.fit error = 1000.00;
minv.gauss = 1000.00;
minv.mean = 1000.00;
minv.q = 1000.00;
minv.sqrtg = 1000.00;
minv.cosphi = 1000.00;
minv.label = 1000;
minv.th_gauss = 1000;
minv.th mean = 1000;
minv.depth = 1000.00;

} /* end of init */

grad.c

#define
#define
#define
#define
tdefine
#define
#define

#include
#include
#include
#include
#include

Wed Mar 30 12:46:58 1988 1

RTD (180.0/3.14159)
MAXGRAY 255
WINDOW 5
LFLOAT 4
NARGS 2
MAXORDER 3
NSYs 10

/* maximum # of coefficients possible */

<stdio.h>

<math.h>

<strings.h>

<local/pm.h>
“/usr/users/alok/advanced/spline_include.h*

char *malloc(), *strcpy() :
int getline(), body() :
double sqrt(), atan2() ;
double lsgerrl();

double al[200] [NSYS),a2[200] [NSYS],a3[300] [NSYS];
/* matrices to store A of Ax=b ; for 1st,2nd and 3rd order fitti

extern double 1ix, iy, ixx, 1yy, ixy, iyx,

ixxx, iyyy., 1ixyy,

extern double a30, a21, al2, a03, a20, all, a02, al0, a0l, a
extern double fit error;

extern int s_order;

extern int csize, rsize ;

extern int offsetl;

extern int approx ;

extern float ri[BUFSIZE] (BUFSIZE];

extern FILE *dumpfile;

extern int todump;

read specs ()

{
pmplc

*area, *(newarea(4]) ;

FILE *fdin, *fdout(3] ;

char

int

buffer [BUFSIZE],

nargs,

*cmt, *cmd,

*ptr, window ;

i, 3.,

ncol, nrow,

count, nflles, nf,

grad, mingrad, maxgrad ;

grad.c Wed Mar 30 12:46:58 1988 2

float *fptr;

double e, theta,
scalel;

printf(*intensity is approximated locally by a polynomial.\n")

printf(*type 1 for bi-linear approximation.\n") ;

printf(* 2 for quadric \n*) ;
printf (" 3 for bi-cubic \n®) :
printf ("~ 4 for b-spline \n");

printf (* 5 for smooth-b-spline\n®);

printf(*value = ") ;

scanf (*%d%, &approx) ;

1f ((approx<l) || (approx>5)) {
fprintf (stderr,“value must be 1,2,3,4 or 5.\n") ;
exit (0) ;

}

getchar();
printf (*window size = %) ;
if (getline(buffer)==0) {
if (approx==1) window = 2 ;
else 1f (approx==2) window 3.
else if (approx==3) window 5 ;
fprintf(stderr,*window size = %d\n”, window) ;
}
else {
window = atoil(buffer) ;
if ((window/2*2==window) && (approx!=1)) {
fprintf (stderr, *window size must be an odd number.\n")
exit(0) :

}

if ((approx==1) && (window<2)) {
fprintf (stderr, *window must be >= 2.\n") ;
exit (0) »

}
if ((approx==2) && (window<3)) ({
fprintf (stderr, *window must be >= 3.\n") ;
exit(0) ;
}
if ((approx==3) && (window<5)) {
fprintf (stderr, *window must be >= 5.\n%) ;
exit (0)
}

}
offsetl = window/2 ;

‘

grad.c Wed Mar 30 12:46:58 1988 3
printf ("offsetl $d\n",offsetl);

nfiles
scalel

©

1
1.

compute amatrix()
int 1,3,k

k=0;
for(l= -offsetl;i<=offsetl;i++)
for(}= -offsetl; j<=offsetl; j++)
{

a3(k] (7]=a2(k] [3])=al[k] [0]=i;
a3[k](8]=a2(k}[4]1=al(k][1]=];
a3 (k] [9)=a2([k] [S]=al[k] [2]=1;
a3(k] [4])=a2(k] [0]=1i*i;
a3 (k] [5]=a2(k] (1)=3*];
a3(k][6]=a2[k] [2])=1*]:
a3[k}[0]=1*ix1;
a3(k][1]=3*4*3;
a3[k] [2]=1*ix];
a3(k] [3)=4%3*3;
k++;

}/* end of compute_amatrix */

/* polyl
*/

polyl(row, col)

int row, col ;

{

double z, 21, z2 ;

z = (double)ri[row]{col] ;

z1 = (double)ri[body(rsize, row)] (body(csize,col+l)]) ;
22 = (double)ri(body(rsize,row+l)] [body(csize,col)] ;
ix = z1 - z ;

iy = z2 - 2 ;

}

grad.c Wed Mar 30 12:46:58 1988 4

/* poly2
poly2 (row,col)

int row, col ;

{
int x, y
int r, ¢ :
int x1, yl1 ;
int k;

double z ;

double s000, s200, s400, s220, s600, s420 ;

double s001, s011, s021, s031, s101, sil1, sl121, s201, s211,
double coeffl[NSYS],b mat{100},coeff2[NSYS],coeff3(NSYS]:
double *p_averb;

double x2, x4, y2 ;

double detl, det2 ;

double inv1[10], inv2[10]

double determ() ;

double errorl,error2,error3;

k=0;
s000 = 5200 = s400 = s220 = 5420 = 5600 = 0 ;
s001 = s011 = s021 = s031 = s101 = sl1l11 = s121 = s201 = s211
for(y = -offsetl ; y <= offsetl ; y++)
for(x -offsetl ; x <= offsetl ; x++) {

r =
c =col + x;

r = row + Yy ;

if(c<0)c=0;

else 1f (c >= cslze) ¢ = csize - 1;
if(r<0)r=20;

else 1f (r >= rsize) r = rsize - 1;
b mat[k] = z = (double)ri(r]ic] ;

k++;

s000 = s000 + 1 ;
X2 =x * x;

x4 = x2 * X2 ;

y2 =y *y:

5200 = s200 + x2 ;
5400 = 5400 + x4 ;

*/

5301

= 530

grad.c Wed Mar 30 12:46:58 1988 H
5220 = 5220 + x2 * y2 ;
5600 = s600 + x4 * x2 ;
5420 = 5420 + x4 * y2 ;
s001 = s001 + z ;
s011 = s011 + y * z ;
5021 = s021 + y2 * z ;
s031 = s031 + y2 *x y *x z ;
s101 = 5101 + x * z ;
slll = 5111 + x * y * z ;
5121 = s121 + x * y2 * z ;
5201 = s201 + x2 * z ;
5211 = 5211 + X2 *y * z ;
s301 = s301 + x2 * x * z ;
}
if (approx==1) {
coeffl[0] = al0 = s101 / s200 ;
coeffl[l] = a0l = s011 / s200 ;
coeffl[2] = a00 = s001 / s000 ;
a30 = a2l = al2 = a03 = 0.0 ;
a20 = all = a02 = 0.0 ;
fit error = errorl = lsqerrl(al,coeffl,b mat,k,3,&p_averb):;

}

else 1f (approx==
coeff2[3] = alo0
coeff2(4] = a0l
coeff2[5] = a00

2) |

s101 / s200
s011 / s200
s001 / s000 ;

I

det2 = determ(s400, s220, s200, s400, s200, s000) ;
inverse (5400, s220, s200, s400, s200, s000, det2, inv2) ;

coeff2{0] = a20 =
coeff2([l] = a02 =
coeff2[5] = a00 =
a30 = a2l = al2 =
coeff2[2) = all =
fit error = error2

}
else If (approx==
detl
det?2

[]

inverse(s600, s420, s400, s420, s220, s200, detl, invl)
inverse(s400, s220, s200, s400, s200, s000, det2, inv2)

coeff3(1l) = a03
coeff3[2] = a2l
coeff3[8] = a0l

3)
determ(s600, s420, s400, s420, s220, s200) ;
determ(s400, s220, s200, s400, s200, s000) ;

nonon

inv2[1] * 5201 + inv2([2] * s021 + 1inv2[3]
inv2([4] * s201 + inv2[5] * s021 + inv2(6]
inv2([7] * s201 + inv2(8] * s021 + 1inv2([9]
a03 = 0.0 ;

s111 / s220 ;

= 1lsgerrl(a2,coeff2,b mat,k,6,&p averb);

{

'
B

invl(1l] * s031 + inv1([2] * s211 + invl([3]
inv1(4] * s031 + invl(5] * s211 + invl1(6]
invl[7] * s031 + inv1[8] * s211 + inv1[9]

/* ¢

* s0
* s0
* 50

* 50
* s0
* s0

grad.c Wed Mar 30 12:46:58 1988 6

/*

coeff3(0] = a30 = invl([1l] * s301 + invl1([2] * 5121 + inv1[3] * sl
coeff3(3] = al2 = invl([4] * s301 + invl1[5] * s121 + invl[6] * sl
coeff3[7] = al0 = invl[7] * s301 + invl(8] * s121 + 1inv1([9] * sl
coeff3(4] = a20 = inv2[1l] * $201 + inv2([2] * s021 + inv2([3] * s0
coeff3(5] = a02 = inv2[4] * s201 + inv2([S5S] * s021 + inv2[6] * sO
coeff3[9] = a00 = inv2(7] * s201 + inv2[8] * s021 + inv2([9) * s0O
coeff3[6] = all = sll1 / s220 ;

fit_error = error3 = lsqgerrl(a3,coeff3,b mat,k,10,&p averb);

}

/* the program computes the least square fitting error by calling t
lsqgerrl() routine in the source file solver.c. the calling parame
a: the n*m matrix.
x: m*1 matrix having the values of coefficilents.
b: observed values at the n points.
p_averb : value returned = average value at n points.

all the variables are doble except for n and m which a
integers.
called as : double lsgerrl(a,x,b,n,m,p averb)
double a[)[nsys),x[),b(],*p_averb;
int m,n;

returns lsq error (double). */

i1f ((errorl <= error2) && (errorl <= error3))
{

s_order = 1;

fit_error = errorl;

a0l = coeffl(l];
al0 = coeffl(0];
a00 = coeffl[2];
a30 = a2l = al2 = a03 = 0.0 ;
a20 = all = a02 = 0.0 ;
}
else if (error2 <= error3)
{
s_order = 2;
fit_error = error2;
a00 = coeff2(5];
a0l = coeff2[4];
al0 = coeff2(3];
all = coeff2[2];
a02 = coeff2(l);
a20 = coeff2(0];

grad.c Wad Mar 30 12:46:58 1988 7
else
{
s_order = 3;
fit_error = error3;
}
*/

if (todump == 1) printf(dumpfile,”x = %d y= %d error = %f \n“,row,c
/* if (todump == 1) printf(dumpfile,*x = %d y= %d errorl = %f error?
*/

ix = alo ;

iy = a0l ;

ixx = 2.0 * a20 ;

iyy = 2.0 * a02 ;

ixy = all ;

iyx = all ;

ixxx = 6.0 * a30 ;

iyyy = 6.0 * a03 ;

ixyy = 2.0 * al2 ;

ixxy = 2.0 * a21 ;
/* printf(“ix $f iy %f ixx $f 1yy $f ixy $f\n",ix,1ly,ixx,iyy,ixy);*

return(0)
} /% Main */

compute determinant of symmetric 3 x 3 matrix.

double determ(bll, bl2, bl3, b22, b23, b33)
double bil, bl2, bl3, b22, b23, b33 ;

{

double templ, temp2 ;

templ = bll * b22 * b33 + bl2 * b23 * bl3 + bl2 * b23 * bl3 ;
temp2 = bl3 * b22 * bl3 + bl2 * bl2 * b33 + b23 * b23 * bll ;
return(templ - temp2) ;

}

get inverse of symmetric matrix.

inverse(bll, bl2, bl3, b22, b23, b33, det, inv)
double bll, bl2, bl3, b22, b23, b33 ;

grad.c

double det ;
double inv[] ;

Wed Mar 30 12:46:58 1988

{
inv([0] = 0.0 ;
inv([1l] = (b22 * b33 - b23
inv[2] = -(bl2 * b33 - bl3
inv(3] = (bl2 * b23 ~ b22
inv(4] = 1inv[2] ;
inv[5] = (bll * b33 - bl3
inv[é] = -(bll * b23 - bl2
inv{7] = 1inv([3] ;
inv{8] = 1inv[é] ;
inv(9] = (bll * b22 - bl2
return(0) ;
}
int body(size, x)
int size, x;
{
1f (x<0) return(0) ;
else if (x>=size)
return(size-1) ;
else
return(x) ;
}
getline(s)
char s(]
{
int ¢, 1 ;
1=0;
while((c=getchar()) != 7\n’

s[i++] = ¢ ;
s[i] = *\0O° ;
return(i) ;
}

b23)
b23)
bl13)

bl13)
b13)

bl2)

det
det
det

det
det

det

~ we

~ %

e

&& ¢ 1= '\0')

/*

1sqgerrl

grad.c Wed Mar 30 12:46:58 1988 9
double lsgerrl(A, x, b, m, n, p averb)

double A(]([NSYS], x[], b[],
*p_averb ;
int m, n;

{
int 1, 3 ;
double sum,errsum,bsum ;

errsum=bsum=0.0;
for (i1=0; 1i<m; i++) {
sum = 0.0 ;
for (3=0; Jj<n; J++)
sum = sum + A[1](31*x{]j] :
sum = sum - b{i];
errsum = errsum + fabs(sum);
bsum = bsum + fabs(b[1]) ;
}

*p averb = bsum / (double)m ;
return(errsum);

} /* lsqgerr */

merge.c Wod Apr 20 21:59:01 1588 1
/*

Program for further segmentation of the scene obtained after label
using the sign of mean and gaussian curvatures.

The program calls routines in solver.c to fit the surface on specif
data.

March 30, 1988

April 4 , 1988 : Initialize neighbour structure. Regions smaller th
size 6 are merged with the best fitting neighbouri
region at the time of initialization. The output i
in the form of labeled convex/concave subparts of
scene seperated by convex/concave/jump edges.

*/

#include <stdio.h>

#include <math.h>

#include <local/pm.h>

#include <ik.h>

#include </usr/users/alok/advanced/spline include.h>

#define REGION SIZE 1000 /* so many regions in the */
#define NPOINTS 10000 /* so many points in a region */
#define NSYS 20 /* so many variables at the most *
#define MIN REGION SIZE 50 /* so many plxels 1n an acceptable

seed region */

/* size of pixel-stack used for rec
-iterative region growing */

/* Maximum # of pending recursive ¢
at a given time, */

#define ACCEPT ERROR 2.00 /* value of acceptable error */

#define THRESH ERROR 0.20 /* threshold error that is accepta

while reglon growing */

#define PIXEL STACK_SIZE 8000

#define MAX NUM CALL 400

#define FLAT 1

#define PEAK 95 /* spherical */
#define RIDGE 159 /* cylinderical */
#define MIN 31 /* minimal */
#define SADRID 127 /* Saddle ridge */

float buffer [BUFSIZE] [BUFSIZE]:;
int label [BUFSIZE] [BUFSIZE];
short int lap[BUFSIZE] [BUFSIZE];
short int rec image[BUFSIZE] [BUFSIZE]:
char attempt [BUFSIZE] [BUFSIZE];

/* stores input image */
/* stores labeled image */
/* stores laplaclan image *
/* reconstructed image */
/* used to keep track of pixels
region grow() */

nerge.c Wed Apr 20 21:59:01 1988

double lsgerr():

int congrowlab;

ikword ikvalue = 255;
int row,col;

int seedr, seedc;

int seedrow, seedcol;

int num points;

double avect [NPOINTS] [NSYS];
double bvect [NPOINTS];
double result[NSYS]:

int region label;

int surf type;

int cmin, rmin, cmax, rmax;
int curr;

int tr;

int edge threshold:

int to merge;

struct reglon_type {
int valiqd;
int label;
int order;
double fit_error;
int surf type:;
int size;
int done;
int center[2];
float coeffs[6];
int neighbour[500];
int num_neigh;
int rmin, rmax, cmin,cmax;
int dmax;
} reglons[REGION SIZE],reg:;

int dmax;

int con_label [REGION SIZE];
int color[REGION SIZE];

int convex_label;

float error_in_fit();

int to_disp;
char ikonas_disp(2];

/* for stack management during

struct p_stack {

/*

/*

rows and columns in image */

of points in the region */

/* array to store the least sq m

/*

vector to store b in Ax = b */

/* x in Ax = b */

/* extremeties of the region */
/* used to indicate attempt (][]
/* total # of regions */

/*

label of the region */

order of fit */

surface fit error */
classification of the surface
of pixels in the region */
boolean used by pick_up seed()
origin of the region */

extremeties of the region */

/* maximum depth of the region *

/*
/*
/*
/%

keeps track of max depth of r
stores convex region label */

store color for the convex reg
for labeling convex regions */

/* == 1 1f to be displayed on IK

final region growing */

/* stores the open pixels in clrcular

merge.c Wed Apr 20 21:59:01 1988 3

int row;

int col;
} pixel stack[PIXEL STACK SIZE]:;
int rownum; /* (rownum, colnum) 1is the next pixel *
int colnum; /* popped from the stack */
int num call; /* number of calls pending at a given
int stack length; /* =current_element 1f queue is empty

points to the tall of the queue */

int current_ element; /* points to head of the queue */

[REERRA AR KAk K KRR R KA KAk KKK KRRk AMATNA ARk kA khhk Ak kkkkkkhk kA kkhkhkkk %

main(arge,argv)
int arge;
char *argv(];

{

int 1,3,k,1,m,n; /* local varlables */

pmpic *pml, *pm2, *pm3; /* pmpic pointers to range and labeled im
double scale, zscale; /* scale of the input image */

int image format; /* stores input image format */

unsigned char *uchar point;

float *float point; /* original image is scaled and smoothed

short int *short_point;

FILE *imagefile,*labelfile;

FILE *loc_file,*rec file, *outputfile, *outfile, *lab_file, *lapfile, *c
int want; -

double x,y,averb;

int valid = 0,invalid = 0;

int imageformat;

int region_num;

int pixel_val;

float fit error,min error;

int found;

int lab;

int surface fit; /* =1 ; if surface fit is to be done

if(argc = 4)
{
fprintf(stderr,"Usage : merge {scaled & smoothed input PM F ima
exit (0);
}

printf("Want to display region growing on IKONAS. y if yes > ");
scanf ("$s",&ikonas_disp{0}};

marge.c Wed Apr 20 21:59:01 19688 4

printf (“Edge threshold : “);
scanf (*%¥d", sedge threshold);

if ((imagefile = fopen(argv[l],*r")) == NULL)
{
fprintf (stderr,“Cannot open input range image file : %s \n",arg
exit (0);
}

1f((labelfile = fopen{argv{2],"r")) == NULL)
{
fprintf (stderr, *Cannot open image label file : %s \n",argvi{2]):
exit (0);
}

if ((lapfile = fopen(argv([3],"r")) == NULL)
{
fprintf(stderr,"Cannot open laplaclan operated file : %s \n",ar
exit(0);
}

outputfile = fopen(*log",*w");
if((pml = pm_read(imagefile,0)) == NULL)
{

fprintf (stderr,"Error in reading PM-format range image file : %
exit (0);
}

if ((pm2 = pm_read(labelfile,0)) == NULL)
{

fprintf (stderr,"Error in reading PM-format range image file : &
exit (0);
}

if ((pm3 = pm _read(lapfile,0)) == NULL)
{
fprintf (stderr,"Error in reading PM-format range image file : %
exit (0);
}

row = pml->pm nrow;
col = pml->pm_ncol;

1f((row !'= pm2->pm nrow) || (col != pm2->pm ncol) || (row != pm3->p
Il (col != pm3->pm ncol))

fprintf (stderr, "Rows and/or columns not same in range and label

marge.c Wed Apr 20 21:59:01 1988 5

exit (0);
}

if (pm2->pm_form != PM C)
{
fprintf (stderr, “Label image is not in PM C format \n");
exit (0);
}

if (pml->pm form == PM F)({
float point = (float *) pml->pm_image;
imageformat = PM F;
scale = 74.20;
zscale = 1.00;
for(1=0; i<row;1++)
for(3=0; j<col; j++)
{buffer(1] [j] = *(float_point);float point++;}

/* for RCA images */

}

else
if (pml->pm form == PM S)({
imageformat ="PM S;
short_point = (short int *) pml->pm image;

scale = 74.20;

zscale = 1.00;

for(i=0;1i<row;i++)
for(3=0;j<col; j++)

/* for RCA images */
/* for RCA images */

{buffer[1]1[j] = ((float)*(short point))*zscale/scale;short_

}

else
if (pml->pm form == PM C) {
imageformat = PM C;
uchar _point = (unsigned char *) pml->pm image:;

zscale = 1.5;

scale = 1.978;

for (i=0;i<row;i++)
for(j=0;j<col;j++)

/* for Gus’ images */
/* for Gus’ images */

{buffer[i1][j] = ((float)*(uchar_point))*zscale/scale;uchar
}
else {
printf ("unrecognized format in the input image \n"});
exitc (0);
}
uchar_point = (unsigned char *) pm2->pm image;

for(i=0;i<row;i++)
for (3=0; j<col; j++)
label[1](]] = 0 - (*(uchar_point++));

short point = (short int *) pm3->pm_image:;

merga.c Wed Apr 20 21:59:01 1988 6

for (1=0;i<row;i++)
for(3=0; j<col; j++)
lap(1][3j] = *(short_point++);

1f (pmi->pm_form != PM F)
{
printf("want to smooth 2 (1/0) >¥);
scanf (*%d", awant) ;
if (want == 1) gaussian(buffer,row,col};
}

bzero({(char *)&rec image[0] [0],sizeof (short int)*BUFSIZE*BUFSIZE):
bzero((char *)®ions[0],sizeof (reqg)*REGION_SIZE);

/* initialize the structure ;

fit a second order polynimial on every patch */
fprintf (stderr, "starting surface fitting on individual regions \n")
seedr = 0;
seedc = 0;
region_label = 0;

surface fit =1 /* no surface fitting to be done */

ikvalue = 100;
to disp = 0;
while (next seed() == 0) /* while there are seed regions */

{
surf type = label[seedrow] [seedcol]; /* label of the region */

region_label++;
num _points = 0;

crin = 1000;
rmin = 1000;
cmax = =1000;
rmax = —-1000;
dmax = -1000;
label [seedrow] [seedcol] = reglon_label;

grow_seed(seedrow, seedcol, surf_type,region_label);

if(surface_fit == 1)
1f (num_points < MIN _REGION_SIZE) /* region is invalid 1f 4 of
{
regions(region label].valid = 0;
invalid++;
}
else

{

Terge.c Wed Apr 20 21:59:01 1988 7

1f((0 - surf type) == FLAT)
{

lsquare(avect,bvect,result,num_points,3);
reglons[region label].fit error = lsqgerr(avect, result,bve

else

{

lsquare (avect,bvect, result, num points, 6);

regions(region label].fit error = lsgerr(avect, result,bve '

}
regions{region_label].coeffs[0]
regions(region_label].coeffs[1]
reglons{region_label].coeffs (2]
if((0 - surf type) != FLAT)

{
regions(region_label].coeffs(3] = rasult{3]:
reglons[region_label].coeffs[4] = result(4];
regions(reglon_label].coceffs(5]) = result(5]:;
reglons[region label].order = 2;

result(0];/*a00,a01,al10,a02
result(1}l;
result(21;

I n o

else

{

regions[region label].order = 1;

valid++;
reglons(region_label].valid = 1;

}

regions[region label].label = region_label;
reglons(region_label].slze = num points;

reqglons(region_label].surf_type = -surf_ type;
regions(region_label].center[0] = seedrow;
reglons{region label].center(l] = seedcol;
reglons(region_label].num neigh = 0;

reglons{reglon_label].cmin = cmin;
regions([region_label].cmax = cmax:;
reglons{region_label}l.rmin = rmin;
regions[region_label].rmax = rmax:
reglons({region label].done = 0;

regions{region_label].dmax = dmax;
con_label[region_label] = 0; /* not assigned to any convex re

fprintf{outputfile,” region : %d points : %d surf type %d (row,col)=
if (num points >= MIN REGION SIZE)fprintf(stderr,” region : %d

fprintf (outputfile,™ a20 : %f all : %f a02 : %f al0 : $f a0l

nerge.c Wed Apr 20 21:59:01 1988 8

} /* while loop to fit surfaces */

printf("# of regions found : %d invalid : %d valid %d\n®,region_lab

fclose (outputfile);
tr = reglon_label; /* total # of regions */

fprintf (stderr, *Marking nelghbours \n");
/* initlalize nelghbours */

for(1=0;i<row;1++)
for(3=0;4<col; 3++)
if (label[1][]] > 0)
{
if(label(i){3) != label[i+1](3])
{

):

make_neighbour(label[1] [j],label[1+1][]]
131y

make neighbour (label{i+1]{]],label[i]

[y

}
1f (label (1] [§] != label[i][1+1]}
{

make neighbour(label[1][j],label(1i] (J+1]):
make neighbour (label[1i] (j+1],1label[i](]]};

}

/* SURFACE FITTING / REGION GROWING */
if(surface_fit == 1)
{/* TO BE DONE ONLY IF SURFACE FITTING BASED REGION GROWING DESIRED
fprintf (stderr, "Merging invalid regions into nearest best fitting r
/* merge 1nvalld regions with neighbouring valid region with least
to merge = 0;
if (to_merge == 1)
for(i=1;1<=tr;i++)
{ /* for all reglons do */
if (reglons([i].valid == 0)
{ /* 1if the region 1is invalid then do */
/* returns the list of neighbours */
min_error = 1000.00;
found = 0;
for(j=0;j<regions[i].num_neigh;j++)
{ /* find error in fitting the polynomial of neigh[]j] on
x/
if (reglons[reglons[i] .neighbour([]j]].valid == 1)
{
found = 1;
fit error = error in_fit(regions[i].label, regions[i
1f (min error > fit error) {

marge.c

/*

/*

/*

/*

*/

Wed Apr 20 21:59:01 1988 9

region_num = regions(i].neighbour[j]:
min_error = fit_error;
}
}

}
1f(found == 1)
{/* a sultable region has been found
merge first region into second one */

merge_region(regions[i].label, region num);

else { /* no sultable valid reglon was found in the neighbo
Do nothing for the moment.,*/
fprintf(stderr, "No suitable valid region found in the nei
}
}
} /* end of merging invalid regions */

/* Main Segmentation loop starts. Bigger seed regions are merged wi
selected set of points if the RMS error is acceptable, thatis lo
the acceptable error of the whole region. */

fprintf(stderr, "Main segmentation starts \n");
curr = 1;

if(stremp(*y*,1konas_disp) == 0)
{

if (1kopen (NULL) == -1)
fprintf(stderr,*Can’t open IKONAS \n");
to disp = 1;

}
else to disp = 0;

ikvalue = 200;

while((lab = pick up_seed()) != -1) */ /* returns the next seed r
{
fprintf (stderr, "Growing for %d :\n",lab);
x/ /* curr++;%/
num call = 1;
grow_region(reglions[lab].center([0],reglons[lab].center(1l},lab);

while(stack_length != current_ element)
{
get_pixel():*/
num call = 1;
grow_region (rownum, colnum, lab) ;

}

/* returns the pixel */

merge.c Wed Apr 20 21:59:01 1988 10

} /* END OF THE REGION TO BE DONE ONLY IF SURFACE FITTING BASED REGIO

GROWING IS DESIRED */

/* OUTPUT IMAGES ———=———— x/

/* output the reconstructed and error image */

for(i=1;i<=(row=1);i++)
for (§=1;9<=(col-1);J++)
if (label[1][4] > 0)
{ /* for all pixels do */
/* compute local error at the pixel */
x= 1 - reglons[label[i][]]].center[0];
y= J - regions[label([i][j]].center(1l];
rec_image(i] [j] = x*x*regions[label([i](
x*y*regions[label [1] [
y*y*regions[label[1i] [
x*reqgions[label{i] [
y*regions[label[i] |
[

].
1.
].
}.
l*reqions[label[1] [3]].

}
]
]
1
]
1

(S AN Wy Y

}
/* initialize pm buffers */

printf(*Saving images. Stored as PM S images \n");

rec_file = fopen(*recimage*,"w");
loc_file = fopen("errorimage", "w");
lab_file = fopen("labelimage™,“w");

pml = pm_alloc():

pml->pm _Nrow = row;

pml->pm ncol col;)
pml->pm form = PM S;

pml->pm image = (char *) malloc(pm_ isize(pml));
bzero (pml->pm_image,pm isize(pml));

[

short_point = (short int *) pml->pm_image;
for{(i=0;1<row;i++)
for (3=0;<col; J++)
{ *short point =
short_point++;
}

pm_write(rec_file,pml);
fclose(rec file);

coeffs (5]
coeffs[4]
coeffs([3]
coeffs([2]
coeffs{l]
coeffs[0];

+ o+ 4+

(short int)fabs((double) (rec_image[1] []]*scale

nerge.c Wed Apr 20 21:59:01 1988 1

bzero (pml->prn_image,pm isize(pml));
short_point = (short int *) pml->pm image:;
for (i=0;i<row;i++)
for (3=0; j<col; j++)
{ *short point = (short int)fabs((double) (rec_image(i] []] -
short_point++;
}

pm_write(loc_file,pml);
fclose(loc _file);

/* output new label image */
pml->pm_form = PM_C;

pml->pm image = (char *) malloc(pm isize(pml)):
bzero(pml->pm image,pm 1isize(pml));
uchar point = (unsigned char *) pml->pm image;

for (1=0;i<row;i++)
for(3=0;j<col; j++)
{ *uchar_point = regions[label[i][]]].surf type;
uchar point++;

}
pm_write(lab_file,pml);
fclose(lab_file):

if (imageformat != PM F)
{
pml = pm_alloc():
pmi->pm hrow = row;
pml->pm ncol col;
pml->pm form = PM F;
pmi->pm image = (char *) malloc(pm isize(pml)):
bzero(pml->pm image,pm isize(pml));
float point = (float *) pml->pm image:
for(i=0;i<row;1++)
for (4=0;j<col; j++)
{

*float_polnt = buffer(i][]j];
float point++;
}

outfile = fopen(”image", "w");
pm_write(outfile,pml);
fclose (cutfile);

nerge.c Wed Apr 20 21:59:01 1988 12
/* mark all the regions as undone */

for(i=1;i<=tr;i++)
regions(1i].done = 0;

/* label convex subparts in the image */
fprintf (stderr,”Label convex subparts in the image \n");

convex_label = 0;
pixel val = 100;
while((lab = get_next_reglon()) != -1)
{
pixel val = pixel val + 2;
convex_label++;
color [convex_label]
regions(lab].done =
congrowlab = lab;
extend region(lab):
}

= pixel_val;
1:

/* output the convex/concave image */
con_file = fopen(®confile","w");

fprintf(stderr,*# of convex patches found : %d",convex_label):;

pml = pm_alloc();

pml->pm nrow = row;

pml->pm _ncol col;

pml->pm_form = PM C;

pml->pm _image = (char *) malloc(pm 1size(pml)):
bzero(pml->pm_image,pm isize(pml)):

uchar_peoint = (unsigned char *) pml->pm image;
con_label[0] = 0;

[

for(i=0;1<row;1++)
for(j=0;j<col; j++)
{

if (con_label[label(1i][]])]) != 0)
*uchar_point = color(con_label [label(1][]]]]:
1f((con_labelflabel[i][]]] != con_label[label([i][J}+1]])
(con_label(label(i][]]] != con_label(label({i+1](]11}))
*uchar_point = 255;
uchar_point++;

}

pm write{con_file,pml);
fclose(con_file);

I

nerge.c Wed Apr 20 21:59:01 1988 13

}/* end of main */

JEEKKKKKKKKKRKKKKR KKK KK KRRKXXXXANEXT SEEDX X kA kkkkkhhkkhhkkkkkhkAkkhk &

next seed()
{
int 1,3,k,1;
while ((buffer{seedr][seedc] == 0) || (label[seedr][seedc] >= 0)) {
seedc++;
if{seedc == (col-1)) {
seedr++;
seedc = 0;
if (seedr == (row-1)) return(-1);
}
}
seedrow
seedcol

= seedr;
return(0);

seedc;

[RERKIKKKKKKKKKKKKKKKKKRKKX XX KK XGROW SEED* *Akkkkkkhkkhhkkkkkhkkkk kX kx

grow seed(srow,scol, stype,slabel)
int srow;
int scol;
int stype;
int slabel;
{
int 1,73;
double x,y;

if(to disp == 1) 1lwr(scol,srow,&lkvalue):;

if(rmin > srow) rmin = srow;
1f(rmax < Srow) rmax = SILOW;
if(cmin > sgol) cmin = scol;
1f(cmax < scol) cmax = scol;
if (dmax < buffer(srow][scol]) dmax = buffer[srow] [scol];

num_points++;

X
Y

SYow - seedrow;
scol - seedcol;

avect [num_points] [5] = x*x;

merge.c Wed Apr 20 21:59:01 1988 14
avect [num_points] [4] = x*y;
avect [num points]{3] = y*y;
avect [num points][2] = x;
avect [num_points][1l] = y;
avect [num_points] [0] = 1;

bvect [num points] = buffer(srow]([scol];

for(l=srow~1;i<=srow+1;i++}
for (j=scol~1;j<=scol+l; j++)
1f({(1 > 0) && (1 < (row —~1)) && (J > 0) && (J < (col - 1)}))
1f(label(1i][3}] == stype)

label(i][j] = slabel;
grow_seed (i,], stype,slabel);
}

} /* grow_seed */

JRRERKkhkhkIKKKKK KRR kRkkk k%% MAKE NEIGHBOUR ***kAXXkk kA XXXk kk A XXXk kkkdk
Makes label2 neighbour of labell.
x/

make_neighbour (labell, label2)
int labell;
int label2;

int 1,3.k.1;
int done:;

done = 0;
k = 0;

if(regions{labell].num neigh == 0}
{
regions[labell) .num neigh = 1;
regions([labell].neighbour[0] = label2;
}
else
while (done == 0)
{
if(k == regions[labell].num neigh)

{/* neighbour not yet marked in the structure */
regions[labell] .num neigh = regions[labell].num neigh + 1;
regions[labell].neighbour(k] = label2;
done = 1;

}

else

merge.c Wed Apr 20 21:59:01 1988 15

if (reglons[labell] .neighbour[k] == label2)
{/* nothing to be done */
done = 1;
}
else k++;
}
} /* end of make nelghbour */

JhhkKKKKXKKKKAKAKKKRK KA XXX*k%x ERROR IN FIT XXk kkkkkkhhkkkkhkkkkkk Xk Xk Xk %
computes fit error of fitting labell points using label2 coefficien
*/

float error in fit(labell,label?2)
int labell;
int label2;
{
int 1,4,k,1;
double error;
double averb;
float x,y:

k = 0;

for(i=regions[labell].rmin;1i<=regions(labell].rmax;1i++)
for(j=regions(labell].cmin;j<=regions[labell].cmax; j++)
if(label{i}{3j] == labell)
{
X = 1 - reglons[label2].center[0];
y = J - regions[label?].center[1]:

avect (k] [5] = x*x;

avect (k] [4] = x*y;

avect [k] [3] = y*y:

avect (k] (2] = x;

avect [k][1) = y;

avect (k] [0] = 1;

bvect [k] = buffer(i][]]:

K++;
result[0] = regions[label2].coeffs[0];
result{1l] = reglons(label?].coeffs(1];
result[2] = regions[label2].coeffs[2];
result[3] = regions[label2].coeffs[3];
result[4) = reglons(label2].coeffs(4];
result[5] = regions[label2].coeffs[5];

error = lsqgerr(avect, result,bvect,k, 6, &averb);
return{((float)error);
} /* error in fit */

merge.c 'ied Apr 20 21:59:01 1988 16

JRhkRI KKKk RK KKK XKk Kkkkkkkkkkk&* MERGE REGION **kkkkkkkkkkhkkkkhkhkkkk
merge first region into the second cne .
*/

merge_region(labell,label?)
int labell;
int label2;
{
int 1,1,k,1;

k = 0; /* counting # of points */
for(l=reglons[labell].rmin;i<=regions[labell].rmax;i++)
for (j=regions[labell) .cmin; j<=reglons[labell].cmax; j++)
if (label(i][]j] == labell)
{

label (1] []j] = label2;
k++;

}

regions[label2].size = regions[label2].size + k;
} /* end of merging reglons. that was easy */

JRhkkhkhhkkkkhkhkkkkkkhkkkkkkkxkk® ERODE *kkhtkkhkkhkhhkkkhkhhhhhkkkhkxknk

Grows the parent by removing pixels from the child, only 1if RMS err
criterion is met and the child is of right type.
*/
erode (parent, child)
int parent;
int child;
{
int 1,14,k,1;
int lab;

CUrr++;
switch(regions(parent].surf type)
{
case 1 : /* parent region 1is flat. */
{
/* for all types of neighbours grow the region */
attempt [regions{parent]).center{0]]{regions{parent].center{l}]
grow reglon(regions|[parent].center([0], regions[parent].center]|
} break:;
case 91 : /* peak; sphere; convex */
case 159 :/* ridge, cylinder,convex */
case 31 : /* minimal, */
case 127 :/* saddle ridge */
{
switch(reglons([child].surf_type)

ReIge.c Wad Apr 20 21:59:01 1988 17

{

case 1 = /* flat */

case 63: /* plt , sphere,concave */

case 223:/* valley, cylinder , concave */

case 191: /* saddle valley, concave */
attempt [regions(parent].center(0]] (regionsparent].center{1]]
grow_reglon(regions(parent].center(0], regions[parent].center|

break;

}
}break;
case 63: /* plt , sphere,concave */
case 223:/* valley, cylinder , concave */
case 191: /* saddle valley, concave */
{
switch(regions(child].surf_type)
{
case 1 : /x flat */
case 91 : /* peak; sphere; convex */
case 159 :/* ridge, cylinder,convex */
case 31 : /* minimal, */
case 127 :/* saddle ridge */
attempt [regions[parent] .center[0]] [regions[parent].center[1]]
grow_reglon(regions[parent].center[0], regions(parent].center|(
break;

}

}/* end of switch */
} /* end of erode */

JRRAKKKKKRRRR kA kA AAKKAKAKKAXKGROW REGTIONX Kk kA kKKK Kk kkhkhk kA KKK XXXk kK
grows parent at the expense of the child.
x/

grow_region(nrow,ncol,parent)
int nrow;
int ncol;
int parent;
{
int 1,1:
float x,y:
float value;

if(to disp == 1) lwr(ncol,nrow,sikvalue);

if (label[nrow] [ncol] != parent)

merge.c Wed Apr 20 21:59:01 1988 ie

{ /* pixel to work on */
X = nrow - regions[parent].center(0];

y = ncol - regions|[parent].center(l];

value = x*x*regions[parent].coeffs[5] +
x*y*reglons[parent].coeffs[4] +
y*y*reglons|parent].coeffs({3] +
x*regions[parent].coeffs(2] +
y*regions (parent] .coeffs{1] +
lxregions(parent].coeffs([0]);

1f(fabs({(double) (value - buffer[nrow] [ncol])) <=
(fabs ((double) (regions|[parent] .fit_error)) + THRESH_ERROR))
{/* acceptable pixel */
label [nrow] [ncol] = parent;
reglons[parent).slze = regions[parent].size + 1;
regions[label [nrow] [ncol]].size = regions[label [nrow] [ncol]

for(i=(nrow=1);i<=(nrow+l);i++)
for(j=(ncol-1);Jj<=(ncol+l);j++)
1f((1L >= 0) && (i<row) && (j >= 0) && (J<col})
1f((1 == nrow) || (J == ncol))

if((lap(1] [J] < edge_threshold) &&
(attempt [1] [§] != curr))
{

attempt (1) [J] = curr;

/* check for the # of pending calls */

num_call++;

if(num_call >= MAX NUM CALL)
store_pixel(i,)

else
grow_region(i, j,parent);

}

else

for (i=(nrow-1);i<=(nrow+1j;i++)
for(j=(ncol-1);j<=(ncol+l); j++)
1f((1>=0) && (i<row) && (J >= 0) && (j<col))
1f((L == nrow) [| (J == ncol))
{
if((lap[i) [J] < edge threshold) &s&
(attempt [1]1[]] != curr))
{

attempt{1](}] = curr;
num_call++;
if (num_call >= MAX NUM CALL)

merge.c Wed Apr 20 21:59:01 1988 19

store pixel(i,j);
else
grow_reglon(i, j,parent);

}
num call--;
}/* region_grow */

JrkKKRkKKKKXKKkXXXXkk* STORE PIXEL & GET PIXEL *X XAk kk XXk kXkkKkXkkkkk k&

store_pixel (rrow,ccol)
int rrow;

int ccol;

{

num _call--;

pixel stack[stack_length].row
pixel stack[stack length].col

rrow;
ccol;

o

stack_length++;
if(stack_length == PIXEL_STACK_SIZE) stack length = 0;
if (stack_length == current element)
printf("\n segment : Stack Collision While reglon growing \n

}

get_pixel()
{

rownum = pixel stack([current_element].row;
colnum = pixel stack[current element].col;

current_element++;
if (current_element == PIXEL STACK SIZE) current_element = 0;

JREKKKRKAKKRKAKAKKR KRR KK KK KKKk XDTCKUPSEEDAX KX KX KA Kk KA KA KK KKK KKK KA KKK
returns the seed label.
*/
pick_up seed()
{
int 1,79,k,1;

/* first look for flat,spherical,cylidericalregions */

merge.c Wed Apr 20 21:59:;01 1988 20

for(i=1;i<=tr;i++)
{
if{{((regions(1].surf_type == FLAT) /*|| (reglons{i].surf type =
(regions[i].surf type == RIDGE)*/) &&
(regions{i].done == 0) &&
(reglons{i].fit_error <= ACCEPT ERROR) &&
(regions[i].size > MIN_REGION SIZE))

regions(i] .done = 1;
return(i);

}
}
/* Now look for any type of acceptable region */
for(i=1;1i<=tr;i++)

if((regions([i] .done == 0) && (regions[i].size > MIN REGION SIZE
(regions[i].fit error <= ACCEPT_ ERROR)*/)
{
regions{i].done = 1;
return(i);
}
}

/* No sujtable seed region is available */
return(-1);
} /* pickupseed */

JREKKKKKKKKKKKKKKK* kAKX XX k% kGET NEXT REGIONAA AKX Xk kk kA XX XXk AKX KKK KX
returns the label of next region to be grown as convex region
*/

get_next_region()
{
int 1,3,k,1;
int max;
int tlabel;

max = -1000;

for(i=1;i<=tr;i++)
{

[
[

0) && ((regions[i].surf type == FLAT) |
(regions[1].surf type == PEAK) |
(reglons[i}.surf_type == RIDGE))

(regions[i].size >= MIN REGION_SIZE) &&
(regions[i].dmax > max))
{

max = reglons[i].dmax;

if ((regions{1i].done |
|

nerge.c Wed Apr 20 21:59:01 1988 21

tlabel = i;
}
}

if(max != -1000) return(tlabel):
else return(-1);

}

JhAKKKKKKKkKKKKKKRKKKKKRK KKK XK XAEXTEND REGIONA KX KXk Xk kkkkdkkkkk kXXX KKK X

used to extend a convex region recursively at the region level.
x/

extend region(lab)
int lab;
{

int 1,3

int n;

con_label[lab] = convex_label:
for(i=0:;i<regions(lab].num _neigh;i++)
{
n = reglons[lab].neighbour(i];
if((regions[n].done == 0) &&
/* (regions[congrowlab] .dmax > regions[n].dmax) &&*/
({regions[n].surf type == FLAT) |
/*(regions([n].surf_ type == PEAK)

(regions[n].surf type == RIDGE)/*
(regions[n].surf_type == SADRID) |
(regions[n].surf type == MIN)*/))

{
if(regions(n}.size >= MIN REGION SIZE)
{
regions([n] .done = 1;
extend region(n):;
}
else

regions([n}.done = 1;
con_label{n] = convex_label;

}

solver.c Tue Apr 5 11:52:21 1988 1

/*

Used for calculating the least square fit-error in the grad.c

program.

x/

#in
#in
#in
#de
#de

int

Caution, Warning, Danger:
1) Include the following in the main program.

#define NSYS <n>
#define NDATA <m>

2) If you want to compute least-squares error,
you MUST have the following in the calling program:
double lsqerr():

It returns E = |Ax-b| * 100

Parameters passed to the least square program are:
aflll, x01, b(l, m, n

where
A x = b.

To check the sigularity, small constant ’‘epsilon’ 1s used.
Current value is set to 0.00001.

This is 0.K. for most application, but depending on your
application, you may want to change the value.

clude <stdio.h>
clude <math.h>
clude "/usr/users/alok/advanced/spline_include.h"

fine NSYS 20
fine NDATA 10000

prnt = 1; /* = -1 for printing else no printing */

double epsilon = 0.00001;

solver.c Tue Apr 5 11:52:21 1988 2

/* Lsquare
int 1lsquare (A, b, X, m, n)

double A[][NSYS], bil, x{] :

int m, n ;

{
double ATA[NSYS][NSYS], ATb[NSYS] :

int order ;

if (m<n) {
1f (prnt==-1) fprintf(stderr,“"insufficient # of points.\n") ;
return(l) ;
}

product (A, ATA, m, n) ;

mult (A, b, ATb, m, n) ;

1f ((order=solver (ATA,ATb,x,n)) < n) {
return{order) ;
}

return(0) :

} /* Lsquare */

/* Lsgsol
int 1lsgsol (A, b, x, m, n, nl)

double A(][NSYS], bI[], x[] ;

int m, n, nl ;

{
double ATA[NSYS]{NSYS], ATb([NSYS] ;
int order, 1 ;

1f (m<n} {
if (prnt==-1) fprintf(stderr,”insufficient # of points.\n")
return(l} ;
}

product (A, ATA, m, n) ;

mult (A, b, ATb, m, n) ;

for (1=0; i<n; 1i++) x{1i] = 0.0 ;

order = solver (ATA,ATb,x,n) ;

if (order<n) {
if (order<nl) return{order) ;

solver.c Tue Apr 5§ 11:52:21 1988 3

product (A,ATA,m,nl) ;
mult (A,b,ATb,m,nl)
for (i=0; i<n; 1++) x[i] = 0.0 ;
order = solver (ATA,ATb,x,nl) ;
return(order) ;
}

return(0) ;

} /* Lsquare */

/* lsqerr
double 1lsgerr(A, x, b, m, n, p_averb)

double &[]([NSYS], x[], b[],
*p averb :
int m n ;

{
int i, 3 :
double sum,errsum,bsum ;

errsum=bsum=0.0;
for (1=0; i<m; i++) {
sum = 0.0 ¢
for (3=0:; j<n; J++)
sum = sum + A(1][J])*x[]] :
sum = sum - b[i];
errsum = errsum + fabs(sum);
bsum = bsum + fabs(b[i]) :
}

*p_averb = bsum / (double)m ;
return{errsum/m) ;

} /* lsqerr */

/*- lsgrel
double lsqrel(A, x, b, m, n)

double A([]([NSYS], x[], b[] :

solver.c Tue Apr 5 11:52:21 1988 4

int m, n ;

{
int i, 32

double sum, errsum, err, relerr ;

errsum=0.0;

/*
/*

*x/
in

for (1=0; i<m; 1++) {
sum = 0.0 ;
for (34=0; J<n; J++)
sum = sum + A{1]{31*x[]] :
err = fabs{sum-b[i]) ;
if (fabs(b[i])>epsilon)
relerr = err/fabs(b[i]) ;
else 1f (fabs(sum)>epsilon)
relerr = err/fabs(sum) ;
else
relerr = 0.0 ;
errsum = errsum + relerr ;
}

return(errsum) ;

} /* lsqrel */

Solver
The system is given by : AXx = b
Returns rank of the Matrix.

t solver (A, b, X, n)

double A[][NSYS]), b[], x[] ;

in

{

t n ;

int i, 3, k :
int pINSYs] ;
double AS[NSYS] [NSYS] ;

if (prnt== -1)
for (1=0; i<n; i++) {
for (34=0; ij<n; j++) printf(* %£*, A[(L])[]])
printf (" $f\n", b(1])
}

’

solvaer.c Tue Apr 5 11:52:21 1988

for (i=0; i<n; i++) {

for(3=0; 3j<n; J++) AS[11[3] = A[1]1[]]

AS[i][n] = b[i] ;
x[i] = 0.0 ;
}

if ((k=gauss(AS,p,n)) =0} {

if (prnt==-1) printf(*Sinqular Matrix. Order

}
else

k=n;:
backsub(AS,p,x,n, k) ;

return{k) :
} /* Solver */

/* Gauss
/* Gaussian elimination with full pivoting.

L¥
int gauss (A, p, n)

double A[][NSYS] :
int pll, n;

{
int i, 3, k, row, col ;
int itemp ;
double pivot, ratio, dtemp ;
double epsilen ;
epsilon = 0.0000001 ;

/* 1Initlalize permutation vector.
for (i=0; i<n; 1++) {

pli] =1 ;

}

for (k=0; k<n-=1; k++) {

/* Find the next plvot element.
pivot = A[k] (k] ;

row = col = k ;

for (1=k; i<n; i++)

for (j=k; j<n; J++) {

solver.c Tue Apr 5 11:52:21 1988 6

if (fabs (pivot)<fabs(A[1] []J])) |
pivot = A[i][]3] ;
row = 1 ;
col i
}

}
i1f (fabs (pivot)<epsilon) return(k) ;

/* Exchange row */
if (k !'= row) {
for (1=0; 1<=n; 1++) {
dtemp = A[k] [1]
A[(k][1] = A[row] [1] ;
A(row] [1] = dtemp
}
}

/* Exchange column */
if (k != col) {
itemp = plcol] ;
plcol] = p(k] ;
plk] = itemp ;
for (1=0; i<n; i++) {
dtemp = A[1] [k]
A[1][k] = A[1][col] ;
A[i][col] = dtemp ;
}
}

/* Elimination. */
for (i=k+1; i<n; i++) {
ratio = A[1] [k] / plvot ;
A[1][k] = 0.0 ;
for (i=k+1; j<=n; J++)
A(L1](3] = A(1]1([3] - ratio * A[K]I[3] »
}
}

if (fabs(A[n-1][n-1])<epsilon) return{n-1) ;
return(0) ;
} /* Gauss */

solver.c Tue Apr 5 11:52:21 1988 7
/* Backsub
/* Back substitution.

*x/

backsub (A, p, soln, N, n)

double A[}[NSYS], soln[] ;
int pll, N, n ;

{
int i, 3, k3
double sum, sol[NSYS] ;

for (k=n-1; k>=0; k--) {
sum = 0.0 ;
for (3j=k+1; Jj<n; J++)
sum = sum + A[k][]) * sol[]] ;
sol[k] = (A[k][N] - sum) / A[k][k] ;
}

for (k=0; k<n; k++) {
i = plk] :
soln{i] = sol[k] ;
}

return ;
} /* Backsub */

/* Product
product (B, C, m, n)

double B[][NSYS], C[][NSYS] :

int m, n;

{
int 1, 3, k
double sum ;

solver.c Tue Apr 5 11:52:21 1988

for (1=0; i<n; 1i++)
for {3=0; j<n; J++) |
sum = 0.0 ;
for (k=0; k<m; k++)

sum = sum + B[k][1]1*B[k][]] :
C[1][3] = sum ;
}
return ;
} /* Product */
/* Mult

mult (A, b, ¢, m, n)
double A[][NSYS], b[], c[] :
int m, n;

{
int i, 3¢
double sum ;

for (i=0; i<n; i++) {
sum = 0.0 ;
for (j=0; J<m; J++)
sum = sum + A(J] [(1]*b[]]
c[i] = sum ;
}
return ;
} /% Mult */

’

solvaer.c Tue Apr 5 11:52:21 1988

for (i=0; i<n; i++) {

for(3=0; 3j<n; J++) AS[11[3] = A[1]1[]]

AS[i][n] = b[i] ;
x[i] = 0.0 ;
}

if ((k=gauss(AS,p,n)) =0} {

if (prnt==-1) printf(*Sinqular Matrix. Order

}
else

k=n;:
backsub(AS,p,x,n, k) ;

return{k) :
} /* Solver */

/* Gauss
/* Gaussian elimination with full pivoting.

L¥
int gauss (A, p, n)

double A[][NSYS] :
int pll, n;

{
int i, 3, k, row, col ;
int itemp ;
double pivot, ratio, dtemp ;
double epsilen ;
epsilon = 0.0000001 ;

/* 1Initlalize permutation vector.
for (i=0; i<n; 1++) {

pli] =1 ;

}

for (k=0; k<n-=1; k++) {

/* Find the next plvot element.
pivot = A[k] (k] ;

row = col = k ;

for (1=k; i<n; i++)

for (j=k; j<n; J++) {

solver.c Tue Apr 5 11:52:21 1988 6

if (fabs (pivot)<fabs(A[1] []J])) |
pivot = A[i][]3] ;
row = 1 ;
col i
}

}
i1f (fabs (pivot)<epsilon) return(k) ;

/* Exchange row */
if (k !'= row) {
for (1=0; 1<=n; 1++) {
dtemp = A[k] [1]
A[(k][1] = A[row] [1] ;
A(row] [1] = dtemp
}
}

/* Exchange column */
if (k != col) {
itemp = plcol] ;
plcol] = p(k] ;
plk] = itemp ;
for (1=0; i<n; i++) {
dtemp = A[1] [k]
A[1][k] = A[1][col] ;
A[i][col] = dtemp ;
}
}

/* Elimination. */
for (i=k+1; i<n; i++) {
ratio = A[1] [k] / plvot ;
A[1][k] = 0.0 ;
for (i=k+1; j<=n; J++)
A(L1](3] = A(1]1([3] - ratio * A[K]I[3] »
}
}

if (fabs(A[n-1][n-1])<epsilon) return{n-1) ;
return(0) ;
} /* Gauss */

solver.c Tue Apr 5 11:52:21 1988 7
/* Backsub
/* Back substitution.

*x/

backsub (A, p, soln, N, n)

double A[}[NSYS], soln[] ;
int pll, N, n ;

{
int i, 3, k3
double sum, sol[NSYS] ;

for (k=n-1; k>=0; k--) {
sum = 0.0 ;
for (3j=k+1; Jj<n; J++)
sum = sum + A[k][]) * sol[]] ;
sol[k] = (A[k][N] - sum) / A[k][k] ;
}

for (k=0; k<n; k++) {
i = plk] :
soln{i] = sol[k] ;
}

return ;
} /* Backsub */

/* Product
product (B, C, m, n)

double B[][NSYS], C[][NSYS] :

int m, n;

{
int 1, 3, k
double sum ;

solver.c Tue Apr 5 11:52:21 1988

for (1=0; i<n; 1i++)
for {3=0; j<n; J++) |
sum = 0.0 ;
for (k=0; k<m; k++)

sum = sum + B[k][1]1*B[k][]] :
C[1][3] = sum ;
}
return ;
} /* Product */
/* Mult

mult (A, b, ¢, m, n)
double A[][NSYS], b[], c[] :
int m, n;

{
int i, 3¢
double sum ;

for (i=0; i<n; i++) {
sum = 0.0 ;
for (j=0; J<m; J++)
sum = sum + A(J] [(1]*b[]]
c[i] = sum ;
}
return ;
} /% Mult */

’

solver.a Tue Apr 3 11:52:21 1988

for {1=0; i<n; 1++) {

for{4=0; j<n: 3++) AS[1]1(§] = A[1]1(]]

AS{1)(n] = b[1] :
x{i] = 0.0 ;
}

if ((k=gauss(AS,p,n))!=0) {

if (prnt==-1) printf(*Singular Matrix. Order = %d.\n", k)

}
else

k=n;
backsub(AS,p,x,n,k) ;

return{k) :
} /% Solver */

/% Gauss
/* Gaussian elimination with full pivoting.

*/
int gauss (A, p, n)

double A() [NSYS] :
int pll. n;

{
int i, 3, k, row, col ;
int itemp :
double pivot, ratio, dtemp ;
double epsilon ;
epsilon = 0.0000001 ;

/* 1Initialize permutation vector.
for (1=0; i<n; i++) {

pli] = ¢ ;

}

for (k=0; k<n=1; k++) {

/* Find the next pivot element.
pivot = Alk] (k) :

row = col = k ;

for (i=k; 1<n; i++)

for (J=k; J<n; 3++) {

solver.a Tue Apr 35 11:52:21 1988 [}

if (fabs (pivot)<fabs(A[1) [1]))
pivot = A{1](4] :
row = 1 ;
col = 3 ;
}

)
1f (fabs(pivot)<epsilon) return(k) ;

/* Exchange row */
1f (k != row) {
for (1=0; i<=n; 1++) {
dtemp = A(k][1) ;
A{k] (1) = Al[row][1] :
A(row] [1] = dtemp
}

}

/* Exchange column */
if (k 1= col) {
itemp = plcol) ;
pleol] = p(k] ;
plk] = itemp ;
for (1=0; i<n; 1++) {
dtemp = A(i] (k] :
A[1) [x] = A[1)[col]) ;
A1) (col} = dtemp ;
}
}

/% Elimipation. */
for (l=k+1; 1<n; 1++4) {
ratio = A[i] (k] / pivot ;
Ali)[k) = 0.0 ;
for (j=k+1:; j<=n; J++)
A(L1(3] = A(L1](]] ~ ratio * A(Kk](]]

}

if (fabs{(A[n-1)[n-1]))<epsilon) return{n-1)
return{0) ;
} /* Gauss */

solver.a Tue Apr 3 11:52:21 1988

for {1=0; i<n; 1++) {

for{4=0; j<n: 3++) AS[1]1(§] = A[1]1(]]

AS{1)(n] = b[1] :
x{i] = 0.0 ;
}

if ((k=gauss(AS,p,n))!=0) {

if (prnt==-1) printf(*Singular Matrix. Order = %d.\n", k)

}
else

k=n;
backsub(AS,p,x,n,k) ;

return{k) :
} /% Solver */

/% Gauss
/* Gaussian elimination with full pivoting.

*/
int gauss (A, p, n)

double A() [NSYS] :
int pll. n;

{
int i, 3, k, row, col ;
int itemp :
double pivot, ratio, dtemp ;
double epsilon ;
epsilon = 0.0000001 ;

/* 1Initialize permutation vector.
for (1=0; i<n; i++) {

pli] = ¢ ;

}

for (k=0; k<n=1; k++) {

/* Find the next pivot element.
pivot = Alk] (k) :

row = col = k ;

for (i=k; 1<n; i++)

for (J=k; J<n; 3++) {

solver.a Tue Apr 35 11:52:21 1988 [}

if (fabs (pivot)<fabs(A[1) [1]))
pivot = A{1](4] :
row = 1 ;
col = 3 ;
}

)
1f (fabs(pivot)<epsilon) return(k) ;

/* Exchange row */
1f (k != row) {
for (1=0; i<=n; 1++) {
dtemp = A(k][1) ;
A{k] (1) = Al[row][1] :
A(row] [1] = dtemp
}

}

/* Exchange column */
if (k 1= col) {
itemp = plcol) ;
pleol] = p(k] ;
plk] = itemp ;
for (1=0; i<n; 1++) {
dtemp = A(i] (k] :
A[1) [x] = A[1)[col]) ;
A1) (col} = dtemp ;
}
}

/% Elimipation. */
for (l=k+1; 1<n; 1++4) {
ratio = A[i] (k] / pivot ;
Ali)[k) = 0.0 ;
for (j=k+1:; j<=n; J++)
A(L1(3] = A(L1](]] ~ ratio * A(Kk](]]

}

if (fabs{(A[n-1)[n-1]))<epsilon) return{n-1)
return{0) ;
} /* Gauss */

solver.a Tue Apr 3 11:52:21 1988 7

/% Backsub:
/* Back substitution.
*/

backsub (A, p, soln, N, n)

double A[] [NSYS], soln{) :
int pll. N, n;

{
int i, 3, k;
double sum, sol [NSYS] :

for (k=p-1; k>=0; k--) {
sum = 0.0 ;
for (J=k+1; j<n; J++)
sum = sum + A(k)[]) * sol{]] :
sol (k] = (A(k][N] - sum) / A[k])([Kk] :
}

for (k=0; k<n; k++) {
1 = p(k] ;
soln([i] = sol(k]} ;
}

return ; .
} /* Backsub */

/% Product

product (B, C, m, n)
double B[][NSYS], C[] [NSYS) ;
int m, n;

{
int 1, 3, k;
double sum ;

solver.o Tue Apr 5 11:52:21 1980

for (i=0; i<n; i++)
for (J=0; j<n; J++) {
sum = 0.0 ;
for (k=0; k<m; k++)
sum = sum + B(k](i]1*B(k]{]] :
t,-'(illjl = sum ;

return ;
} /% Product */

/* Mult

mult (A, b, ¢, m, n)
double A[)(NSYS], b(], <[] :
int m n;

{
int i, 3:
double sum ;

for (1=0; i<n; 1++) {
sum = 0.0 ;-
for (4=0; j<m; J++)
sum = sum + A(J){L)*b(]3] ;
cli] = sum ;

return ;
} /% Mult */

	Range Image Segmentation for 3-D Object Recognition
	Recommended Citation

	Range Image Segmentation for 3-D Object Recognition
	Abstract
	Comments

	tmp.1195154828.pdf.Ffkut

