
Discrete Comput Geom 10:157-182 (1993)

Gb ii try
1993 Springcr-Verlag New York Inc.

Range Searching with Efficient Hierarchical Cuttings*

Jifi Matou~ek

Department of Applied Mathematics, Charles University,
Malostransk6 nhm. 25, 118 00 Praha 1, Czechoslovakia
matousek@cspgukl 1.bitnet

Abstract. We present an improved space/query-time tradeoff for the general simplex
range searching problem, matching known lower bounds up to small polylogarithmic
factors. In particular, we construct a linear-space simplex range searching data
structure with O(n z- 1/,t) query time, which is optimal for d = 2 and probably also
for d > 2. Further, we show that multilevel range searching data structures can be
built with only a polylogarithmic overhead in space and query time per level (the
previous solutions require at least a small fixed power of n). We show that Hopcroft's
problem (detecting an incidence among n lines and n points) can be solved in time
n*/32~176176 In all these algorithms we apply Chazelle's results on computing optimal
cuttings.

1. Introduction

Building on the works of Agarwal [A] and of the author (e.g., [M2] and [M1]),

Chazelle recently found a new approach to the computa t ion of so-called cuttings

[C2], and also gave some applications of this result. In this paper we present

several results which use his construction in a substantial way.

Mainly we consider geometric range searching problems, whose prototype is

the following simplex range searching problem: preprocess a set P of n points in

E d so that, given any query simplex a, the points in P n a can be counted or

reported efficiently. Usually this problem is investigated in a more general setting,

when a weight function on the points is assumed and a cumulative weight of the

points in P ra tr is requested. The weights are assumed to belong to a semigroup,

i.e., subtractions should not be used when computing the answer.

* Part of this research was done during the First Utrecht Computational Geometry Workshop,
supported by the Dutch Organization for Scientific Research (NWO).

158 J. Matougek

This problem has a rich literature, which we do not try to survey here; we only
recall the current best bounds. Chazelle I-C1J derived lower bounds for this
problem: under certain reasonable assumptions on the model of computation, if

a simplex range searching algorithm is allowed to use storage at most m, the

worst-case query time is no better than f~(n/(m TM log n)) (resp. f~(n/x/~) for d = 2;
it seems that the logarithmic factor in the denominator of the lower bound for
higher dimensions might be only a product of the proof technique). Chazelle et
al. [CSW] gave an algorithm whose performance matches this lower bound quite
closely, and another (simpler and slightly more efficient) solution for the case of
roughly linear space was given in I-M4].

In this paper we improve the current upper bounds in the full range of the
space/query-time tradeoff (Theorem 6.2), further approaching the lower bounds.
In particular, we present a linear-space data structure for the simplex range
searching problem with query time O(n 1-1/d) (Theorem 4.1); in view of the

above-mentioned lower bounds, this is optimal for d = 2, and quite likely also for

d > 2 .
The previously known and new bounds are summarized in Table 1. In each

section of the table we first give the general space/query-time tradeoff (the best

query time achievable with given space m), and then various special cases and/or
improvements for particular values of m. In the table, as well as in the whole
paper, 6 denotes an arbitrarily small positive constant; the constants hidden in
the big-Oh notation may depend on 6. The O() notation is omitted in the table.

We also obtain results concerning the construction of so-called multilevel range

searching structures. This idea has been widely used, e.g., in orthogonal range
searching problems. In the context of partition trees and similar range searching
structures, it appears in the paper by Dobkin and Edelsbrunner [DE], and it has
been elaborated in various directions in [CSW], lOSS-l, [M4], [AS], and other
papers. The currently most efficient known method for constructing such struc-

tures is based on the results of [CSW-J. Let us remark that while the results of
I'M4] improved the simplex range searching with a linear space and simplified the

multilevel structures to some extent, they did not increase the asymptotic efficiency
for the multilevel structures. Without going into technical details here, let us
indicate the main result about multilevel range searching structures: we show that
for the full range of space/query-time tradeoffs, such structures can be built with
only a polylogarithmic overhead in space and query time per level of the structure.

This improves previous solutions, where an extra factor n 6 was necessary.
We also consider Hopcroft's problem: given n lines and n points in the plane,

decide whether some point lies on some of the lines. Understanding this problem

seems to be one of the major challenges in computational geometry. Many
algorithms were published, the most efficient one in Chazelle's paper [C4], with
time complexity O(n 4/3 log 1/3 n). It is suspected that n 4/3 might be the true

computational complexity of this problem, although nothing even approaching a
proof is known. We show that the running time can be improved to n4/32 ~176
(here log* x is the function defined by log* x = 1 for x < 1,

log* x = log*(log 2 x) + 1 for x > 1).

Range Sea rch ing wi th Efficient H ie ra rch i ca l Cu t t ings

Tab le 1. Results o n the s implex r ange sea rch ing p r o b l e m with s e m i g r o u p

weights .

Space Q u e r y t ime Preprocess ing Source

L o w e r bounds

m (n < m < n a) (d = 2)

f~ n

n D.(x/-n) (d = 2)

\ l o g n] (d > 2)

Prev ious upper bounds

n l +6

m (n < rn < n a)
r o l l d

n a+o log a+ ~ n

n n 1 - l/a(log n) ~

n n 1 - 1/a(log log n) ~

N e w upper bounds

n m
m (n < m <_ n a) - - log a+l - -

m TM n

n d l o g d + 1 n

n n I -- l id

If1]

[c1]

m I +6 [C S W]

n d + 6 [C S W]

n log n [M 4]

n 1 +6 [M 4]

n 1+6 + re(log n) 6

ha(log n) ~

n 1 +6

159

The paper is structured as follows: In Section 2 we recall the definition of

cuttings and explain Chazelle's result. In Section 3 we discuss Hopcroft 's problem

as the most direct application. Section 4 describes a simplex range searching

structure with linear space. In Section 5 we introduce a tool for building multilevel

data structures, so-called half-space decomposition schemes, and we construct two

types of these. In Section 6 we describe a simplex range searching structure with

polylogarithmic query time and a combination of data structures which yields a

space/query-time tradeoff. We mention various open problems in Section 7.

2. Efficient Hierarchical Cuttings

In many randomized computational geometry algorithms of divide-and-conquer

type, as well as in their deterministic counterparts, the following notion of a
(1/r)-cutting turned out to be crucial. A cutting is a collection E of closed

d-dimensional simplices 1 with disjoint interiors, which cover all E a. Let H be a

i By a s implex we m e a n a n in te rsec t ion o f a t m o s t d + 1 c losed half-spaces, so we a lso a d m i t

u n b o u n d e d simplices.

160 J. Matougek

collection of n hyperplanes in E d. For a simplex s, let Hs denote the collection of

hyperplanes of H intersecting its interior. A (1/r)-cutting for H is a cutting g

satisfying I n~l < h/r for every s e g (here r is a parameter, 1 < r < n). The size of

a (1/r)-cutting is the number of its simplices.

Chazelle and Friedman [CF] proved that, for every H and r < n, there exists

a (1/r)-cutting of size O(r ~) for H (which is asymptotically the best possible size),

and that such a (1/r)-cutting can be computed by a randomized algorithm in

expected O(nr a- 1) time. This running time is optimal if, together with the (1/r)-

cutting, the collections H, should also be output, since the sum of the sizes of these
collections is f~(nr a - l) (at least if the hyperplanes are in a general position). After

several previous works on deterministic computation of cuttings (see, e.g., [M1]

and references therein), Chazelle [C2] was able to match this performance by a

deterministic algorithm for the full range of the values of r. The main novel feature

in Chazelle's solution is that, together with the required (1/r)-cutting, he also

computes a certain hierarchy of coarser cuttings. This is usually important in

applications of his results; so we introduce a name for it.

We say that a cutting g ' refines a cutting g if every simplex of g ' is completely

contained in a single simplex of g. We say that g ' C-refines g if it refines g and

every simplex of g contains at most C simplices of g' . Let H, r be as in the

definition of the (1/r)-cutting, and let C, p > 1 be constants. Let go, El ~'~k

be cuttings such that go is the cutting consisting of the single "simplex" E d, and

every g~ (1 < i < k) is a (1/p ~) cutting of size O(p ~d) which C-refines g i - 1, and

pk- 1 < r < pk (thus k = | r)). Then we call the sequence :~o gk an efficient
hierarchical (1/r)-cutting (for H). 2

If s is a simplex of g~ and s' is a simplex of g~_ ~ containing it, we call s' the

father of s and s a son of s'.
In one of our subsequent constructions, we will need the following stronger

(and natural) property:

For every i, j, 0 < j < i < k, and s e gj , s contains at most O(p (i-j~a) (2.1)
simplices of g~.

Chazelle's method implies the following:

T h e o r e m 2.1 [C2] (Hierarchical Cutting Lemma). For every fixed dimension d,
there exist constants C, p > 1, such that, for any H and r, an efficient hierarchical
(1/r)-cutting for H satisfying the additional condition (2.1) exists 3 and can be
computed deterministically in time O(nr d- 1) (together with the collections H s for
every simplex s e gk).

Let us remark that we can always choose p larger than any prescribed constant.

2 This notion of course depends on the values of C, p, so, in order to be quite rigorous, we should
say something like a "(C, p)-efficient hierarchical (l/r)-cutting," hut since the values of C, p are not
essential as long as they do not depend on n, we do not use such a cumbersome term.

3 Condition (2.1) is not explicitly established in [C2], but it follows easily from the construction.

Range Searching with Efficient Hierarchical Cuttings 161

Using the method of [M4] in a straightforward way, we obtain the following

corollary (we omit the proof, since the method is explained in I-M4] on a very
similar case of the computation of a (1/0-cutting):

Corollary 2.2. There exists a constant �9 > 0 (dependent on the dimension d), such

that the following holds: for r < n ~, an efficient hierarchical (1/r)-cutting can be
computed in time O(n log r) (without computing the Hs's).

Usually the main point of interest in an efficient hierarchical (1/r)-cutting is the

finest cutting E k, but the hierarchy supplies a useful tree-like "access structure"

for E~. For example, given a query point p, a simplex of E k containing it can be

located by a straightforward descent through the hierarchy, in O(log r) time.

In one of our applications, we also need to consider a weighted collection of

hyperplanes, which is a pair H, w, where H is a set of hyperplanes and w: H ~ R §

is a (nonnegative) weight function. For X _ H, we write w(X) for ~.h~x w(h). The

notions of a (1/r)-cutting and of an efficient hierarchical (1/r)-cutting can be

naturally generalized for the weighted case (each simplex in a (1/0-cutting for H,

w should be intersected by hyperplanes of total weight at most w(H)/r). By a

method described in [M2] (using a simple trick and the simulation of simplicity),

an algorithm computing an efficient hierarchical (1/r)-cutting extends also to the

weighted case (with only a constant factor overhead).

For our simplex range searching construction, we need one more concept
(originating in [M3] and [CSW]). Let P be a set of n points in E d, and let r < n

be a parameter. Let G be a set of d + 1 hyperplanes. We call G a guarding set for

a hyperplane h (with respect to P and r) if the zone of h in the arrangement of G

contains less than n/r l/a points of P.

The following lemma immediately follows from [M4-1:

Lemma 2.3 (Guarding Set Lemma). Given P and r, one can compute (in polynomial

time) a set (~ of O(r) (d + 1)-tuples o f hyperplanes plus an additional data structure

(requiring O(r) space), such that (~ contains a guarding set for every hyperplane h,

and such a set can be found for given h in O(log r) time. For r < n ~ for a suitable

constant ~ > O, (~ can be constructed in O(n log r) time.

3. Hopcroft's Problem

In this section we prove the following improved upper bound for Hopcroft 's

problem:

Theorem 3.1. Given n points and n lines in the plane, the existence of a line/point

incidence can be decided in time n4/32 ~176176

The algorithm can be easily modified for counting or reporting all the incidences

within the same time bound, only the details are slightly more complicated. Also,

162 J. Matougek

there is an obvious generalization of the problem into higher dimensions (detecting

or counting hyperplane/point incidences), and our solution can be generalized as
well. These generalizations are not presented here.

Our algorithm for Hopcroft 's problem is similar in spirit to previous ones (e.g.,

in [C2]), we only use a more complicated recursion. By an (n, m)-problem, we

mean the problem of detecting a line/point incidence for at most n points and at

most m lines. By the well-known line/point duality, an (n, m)-problem can be solved

in the same time as an (m, n)-problem.

Lemma 3.2. An (n, m)-problem can be solved in time O(mr + n log r) plus the time
needed for solving O(r 2) (n/r 2, m/r)-problems (r is a parameter which can be chosen

in range from 1 to min(m, x/~)).

Proof. The idea goes back to Edelsbrunner et al. [EGH+] , and a procedure

similar to ours is sketched in [C2]. However, since there are rather ,delicate issues
of degenerate cases to be treated, we give a proof here.

Let H be the set of m lines and let P be the set of n points. Using Theorem 2.1,

we compute an efficient hierarchical (1/r)-cutting for the set of lines, together with

the subcollection H s of lines intersecting the interior of every simplex s (a triangle

in this case) of the finest cutting E k. Then we locate every point in the cutting E k.

This takes time O(mr + n log r). Now, for every simplex s e E k, we know the set

Ps of points contained in it (including its sides and vertices). Each point of P which

is not a vertex of Ek contributes to at most two P~'s. On the other hand, the points

coinciding with vertices contribute at most three members of each P~, and hence

f__~k levi < 2n + O(r 2) = O(n). For every s, we further partition (if necessary) P~

into subsets of size at most n/r 2, and, for every such subset, we solve the subproblem

involving that subset of points and the set H s of lines. By the previous considera-
tions, we get O(r 2) (n/r 2, m/r)-problems. The only incidences which might avoid

detection in these subproblems are those formed by a line containing a side of a

simplex and a point on that side. However, for every side, we can tell whether it

is contained in a line, 4 and take care of this in the point-location phase. []

Proof of Theorem 3.1. Let T(n, m) denote the time needed for solution of an

(n, m)-problem. Let ~0(x) be the function given by

~o(x)=l for x < 2 ,

tp(x) = log 2 X tp(log 2 X) for x > 2.

We begin by considering a problem involving mrp3(m) lines and m2tpa(m) points (for

4 One possible way of how to do this: compute the list of all lines defined by the sides, sort it
lexicographically by the coefficients in their equation, and search for every line of H in this list; the
total running time is O(r 2 log r + m log r) = O(n log r + mr).

Range Searching with Efficient Hierarchical Cuttings 163

these rather mysteriously looking parameters we get a nice recursion). We choose
r = m log m, and from Lemma 3.3 we get

T(m2cp3(m), m~oS(m))

< O(m 2 log m r + O(m 2 log 2 m)T(log m tp~(log m), log 2 m tpa(log m)).

We see that in each subproblem we have a similar form of parameters as in
the original problem, only that the role of points and lines is flipped and m is
replaced by log m. Denoting f(m) = T(m2q~3(m), mtp3(m)), we thus have

f(m) < O(m 2 log m cp3(m)) + O(m 2 log 2 m)f(log m),

and it is easily verified that a solution to this recurrence satisfies

f(m) < m2q)4(m)2 cl~

for a large enough constant C.
It remains to reduce the (n, n) problem to the case solved above. We can do it

in two steps: In the first step we choose r = nl/3/~p(n). This yields O(n2/3/tp2(n))
problems with at most n2/3tp(n) lines and at most nl/3tp2(n) points each. In the

second step we flip the role of lines and points, and choose r = nl/3/q~(log n).
In this way we get O(n4/a/((02(n)~o2(log n))) subproblems in total, each being a
(log 2 n tp3(log n), log n ~03(log n))-problem. The running time in these two steps is

easily checked to be 0(n4/3). By the previous considerations, each subproblem can
be solved in time log 2 n q~4(log n)2 ~176 and multiplying this by the number of

subproblems, we get the total running time n4/a2~176 []

Theorem 3.1 has an amusing consequence, which was pointed out by Eppstein
[Ep]. Namely, it implies the following:

Corollary 3.3. An algorithm A can be constructed for solving the Hopcroft problem,
such that if there exists any algorithm (in the algebraic decision tree model)for the
Hopcroft problem with O(n 4/a) (resp. 0(n4/3)) running time, then algorithm A has
O(n 4/3) (resp. 0(n4/3)) running time.

Indeed, we may use few levels of the recursion to obtain O((n/log log log n) 4/3)
subproblems of size O(log log log n). Then we exhaustively search (using the
exponential-time decision theory of real numbers) for the algebraic decision tree
algorithm on problems of that size having minimum complexity. We then run that

algebraic decision tree on all the subproblems. This idea has been used in [L],
and several applications (e.g., to minimum spanning trees) were mentioned by
R. E. Tarjan in an invited lecture at the Second Scandinavian Workshop on
Algorithm Theory, 1990. A useful consequence of this result might be that in

164 J. Matou~ek

searching for an improved algorithm, we may restrict ourselves to the algebraic
decision tree model.

4. Simplex Range Searching: Linear Space

As mentioned in the introduction, the best query time for simplex range searching
with linear space was achieved in [M4]--O(n 1 - l/d(log log n)~ In some special

cases the (log log n) ~ factor can be replaced by a much smaller one, 2 ~176 In

this section we show

Theorem 4.1. There exists a simplex range searching structure with O(n) space,
O(n 1- l/d) query time, and O(n 1 +a) preprocessing time.

Proof. The proof combines and somewhat refines ideas of [CW], [CSW], and
some previous works of the author on this and related problems.

For technical reasons, we describe a way to construct a subset P' _ P of at

least half of the points of P, and a simplex range searching structure for this P'
with performance as in the theorem. In order to get a simplex range searching

structure for the whole P, we perform the above-mentioned construction for P,
then for P\P', etc., obtaining a logarithmic number of range searching structures
with geometrically decreasing sizes. A query for P can be answered by querying
each of these structures; the performance of this combined data structure is as

required.
We also assume that the points of P are in general position; degenerate cases

can be handled using simulation of simplicity (see, e.g., [Ed]).
Let us describe the components and properties of the simplex range searching

structure. One part is a collection W0 = {Sx st} of t = rl TM log n full-dimen-
sional simplices (not necessarily disjoint). For every i = 1, 2 , . . . , t we also have a
set P~ c P of cardinality at most n/2t, with Pi c sl. The P~'s are disjoint and

together they form the above-mentioned set P'.
For every sz, there is a rooted tree whose nodes are simplices, with s~ as the

root. Every nonleaf node of this tree has O(1) sons. These sons are simplices with

disjoint interiors which together cover their father. The trees have depth at most
q = O(log n). We note that every point of P~ is contained in exactly one leaf simplex.
As will be apparent from the construction, leaf nodes may occur at all levels of

the trees, not only at the deepest one.
We let Wj be the collection of all simplices which lie at distance j from the root

in some of the trees.
Given the general position of P, we may assume that none of the points of P

is contained in the boundary of a simplex of some Wj. For a simplex s ~ W j, we

let P(s) = P~ c~ s, where s~ is the root of the tree containing s.
For a hyperplane h, let K~(h) be the set of simpices of Wj intersected by h, and

let Lj(h) be the leaf simpliees from Kj(h). Let K(h)= Kl(h) u . . ' u Kq(h), and

similarly for L(h).
In what follows we will show how to construct (in polynomial time) the

Range Searching with Efficient Hierarchical Cuttings 165

above-described objects, satisfying the following conditions (for every hyper-

plane h):

q

IVjl = O(n), (4.1)
j=O

IK(h) l = O(n 1 - l/d), (4.2)

[P(s)l = O(nl- l /d) . (4.3)
sEL(h)

The simplex range searching structure will then be complemented as follows:
with every nonleaf simplex s of the W]s, we store the total weight of the points of
P(s), and for the leaf simplices we store the list of points of P(s). Storing the
simplices, the tree structures and this additional information requires O(n) space,
by (4.1).

Given a query simplex a, the weight of points in P' n a is computed as follows:

.

3.

We set a variable w to the total weight of the point sets Pi such that the
simplices si e Wo are completely contained in a. We also set a variable cg to
the set of all simplices of Wo intersected by the boundary of or.
We repeat the following step until cg = ~ , then we output w as the answer.
We remove one simplex s from cg. If it is a leaf simplex, we directly test the

membership of every point of P(s) in a, and increase w by the weight of
P(s) c~ or. If s is a nonleaf simplex, we determine the position of each of its
sons with respect to a. We add those intersecting the boundary of a to ~,
and we increase w by the total weight of the point sets corresponding to the
sons completely contained in a.

Conditions (4.2) and (4.3) guarantee that the time spent in the execution of steps
2-3 will be O(n 1- l/a). If step 1 is executed trivially, by inspecting all the simplices
of ~o, it needs time O(t) = O(n lid log n). For d > 2, this is o(n 1 - t/d); for d = 2, we

have to use one more auxiliary data structure in order to execute this step in time
O(n~/2). The requirements on the performance of the auxiliary structure are quite
mild, and, e.g., a data structure described in [M4] is more than sufficient.

Our simplex range searching structure has a linear storage, O(n ~- ~/d) query
time, and a polynomial-time preprocessing, as is shown below. Later (in Section

5.5), we show how to reduce the preprocessing time to O(n ~ +6).

It remains to show that the data structure with the above-described properties

can indeed be constructed.
In order to gain some intuition about the construction, the reader is advised

first to look into [M4], where a similar procedure is used to solve a simpler task.
Here we only give a sketchy description of the basic ideas and then a formal proof,

which might look somewhat scary at first sight.
The problem considered in [M4] is to partition a point set into classes of a

prescribed size, each class being contained in some simplex, and in such a way
that no hyperplane crosses too many of these simplices. The following are the

166 J. Matougek

basic ingredients in this simpler construction. First, it is shown that it is sufficient

to guarantee a small crossing number only for the hyperplanes of a carefully chosen
small collection H, in our case the ones from the guarding sets as in Lemma 2.3.
If a (1/r)-cutting for H is constructed, then an average hyperplane of H crosses
only a (l/r) fraction of all simplices of the cutting. In order to get a worst-case
bound on the number of crossed simplices for all hyperplanes of H, the simplices

are selected one by one. Each new simplex is selected as one of the simplices of a
suitable (1/r)-cutting. This (1/r)-cutting is computed anew in each step, so that the
hyperplanes which happen to intersect many of the already selected simplices are
favored over the other hyperplanes. To this end, a weight function w on the
hyperplanes is defined: the current weight of a hyperplane h during the construc-

tion is equal to 2 ~h}, where x(h) is the number of simplices constructed so far which
are crossed by h. Each (1/r)-cutting is computed with respect to the current weights.
A relatively easy calculation with the weights then gives the worst-case crossing
number bound.

In our forthcoming construction, each step constructs not only a single simplex,
but a whole tree-like structure of simplices. To this end we compute an efficient
hierarchical cutting and we select one simplex from a suitable intermediate cutting

in the hierarchy, and together with it we take all simplices from the finer levels of
the hierarchy contained in it. The efficient hierarchical cutting is again computed

with respect to certain current weighting of the hyperplanes of H. The weight
function is more complicated than in the above-mentioned case. Essentially this
is because it has to "watch" the crossing numbers in all levels of the tree-like

structures. For the range searching data structure, the deepest (finest) level is the
most crucial one, thus it is given the largest importance in the weight function.
The requirements on the crossing numbers of the higher-level simplices are less

strict, but they still have to be reflected in the weight function. An additional
technical complication arises because the points of P need not be uniformly
distributed among the simplices of the hierarchical cuttings used in the construc-
tion. For the finest-level simplices, it is not enough to guarantee a small number

of simplices crossed by a hyperplane, but it is also necessary that the number of
points appearing in the simplices crossed by any hyperplane is not too large.
Another term in the weight function accounts for this. On the other hand, it could

happen that many of the selected simplices on the deeper levels will be almost
empty. This does not matter for the crossing-number argument concerning the
hyperplanes of H, but it would cause problems when arguing about the crossing

number of a general hyperplane. For this reason, we omit such almost empty
simplices from our data structure. A more formal description of the construction

follows.
We begin by applying Lemma 2.3 for the set P and with r = n. This

yields a collection f~ of guarding sets, and we let H be the union of all sets

from (~.
The construction of the data structure proceeds in t phases; in the ith phase

we produce Pi, s~, and the whole tree rooted at si.
Let us consider the situation at the beginning of the (i + 1)st phase, when

PI P~, s l , . . . , s~ , and their trees have already been constructed. We let

Range Searching with Efficient Hierarchical Cuttings 167

W~) W~o stand for the already constructed parts of ~F o W~, and K~~
L~~ have a meaning analogous to Kj(h), Lj(h).

The construct ion of P~ + 1, si+ 1, and its associated tree structure in phase i + 1

begins by defining a weight function w~ on the set H of hyperplanes. For h ~ H,
we set

w , (h) = e x p ~ ~ 4'-JlK~i)(h)[+ E }P(s)[. (4.4)

In this way we obtain a weighted collection 5 of hyperplanes H, w~. According

to Theorem 2.1 and the remarks following it, we construct E o Ek, an efficient

hierarchical (1/nX/d)-cutting for H, w~, which also satisfies the proper ty (2.1).

The construct ion of an efficient hierarchical (1/nl/d)-cutting guarantees that the

size of E~ does not exceed C~p u, where p > 4 is as in the definition of an efficient

hierarchical cutting and the constant C~ can be deduced from the proof. We let
p be the maximal index with Clp pd < t, thus ppd = t9(0 , and Ep is a (1/rp)-cutting

for H, w~ with rp = p" = | and it consists of at most t simplices. We define

q (the depth of our tree structures) by q = k - p.

We let /~ = P\(Px w . " u P~); thus I/~[> n/2. Hence there exists a simplex
(which we denote by si+ 1) of Ep containing at least n/2t points of P~. We add this

s~+l to W~), obtaining W~+I). We select some n/2t points o f / ~ contained in si+ ~
as Pi + r

We consider the set S of all simplices in Ep E, contained in s~ + 1 ; these form

the tree structure rooted at si+ a, only we need to eliminate some of them. We say

that a simplex of S belonging to Ep+j (j = 0, 1 q) is f a t if it contains at least

2 ~-j points of Pi+l (at least s~+l must be fat). We put a simplex sES belonging

to Ep+~ to the tree rooted at s,+t iff all its predecessors (its father, father of its
father, etc., until s~+ 1) are fat. The simplices of depth j in this tree are added to

~ 0 , forming ~ + 1). This finishes the description of phase i + 1 of the construction.

It is s t raightforward to check that the construct ion can be executed in time

polynomial in n and r.

By proper ty (2.1) of the efficient hierarchical cutting used for the construction

we have

= O(pJ), (4.5)

and the total weight w i of hyperplanes of H intersecting each simplex of

'V~ '+ 1)\~I'~') is

(4.6)

s Let us remark that in an actual implementation, the computation of the weight can be performed
with quite limited precision; see [M3] for a more detailed analysis in a similar problem.

168 J. Matou~ek

Since (4.5) implies that we add at most O(p ~) = O(n/t) new simplices in each
of the t phases, property (4.1) follows. It remains to establish (4.2), (4.3), for which
we use the following lemma:

Lemma 4.2. For every hyperplane h ~ H,

(i) IK(h)l = O(n 1 - a/a),
(ii) Igj(h)l = O(nl-1/d4-(q-J3), j = O, 1 q,

(iii) ~,~x,(h)IP(s)l = O(n ~ - ~/0.

Before proving this lemma we derive the required properties (4.2), (4.3) from it.
Let h be a general hyperplane and let G c H be its guarding set. Any simplex
intersecting h but none of its guarding hyperplanes lies completely in the zone of
h in the arrangement of G, and thus all such simplices together contain at most
O(n t - l/n) points of P.

In order to establish (4.2) for h, let us consider the set F of fathers of the simplices
of K(h); it is enough to show IFI = O(nl-X/a). Let F o be the set of simplices of F
intersecting some hyperplane of G; by Lemma 4.2(i) we have [Fol = O(nl-X/a).

Each of the simplices of FI = F \ F o is completely contained in the zone of h in
the arrangement of G. Let us consider the simplices of Fx belonging to ~'j. Their
corresponding subsets of P are disjoint, each has at least 2 q-j points (since the
nonleaf simplices are fat), and together they contain at most n 1 - ~/d points; hence
their number is O(n ~ -1/a2-(a-J)). Summing up, we also get IFxl = O(n 1- l/d).

As for property (4.3), first we consider the leaf simplices intersecting h but not
its guarding set; since the point sets of the leaf simplices are disjoint, these contain
O(n 1-1/n) points in total. Hence it suffices to show property (4.3) for every
hyperplane h e H. For the leaf simplices from Wa intersected by h, we already have
the bound O(n 1 - l/a) directly from Lemma 4.2(iii). For j < q, using Lemma 4.2(ii)
and the fact that the leaf simplices from ~Fj contain less than 2 4 - j points each, we
get that there are at most O(nl-~/a2 -(q-J~) points in the leaf simplices of ~Fj
intersecting h. The bound (4.3) follows by summation on j. []

P r o o f o f L e m m a 4.2. Clearly (ii) implies (i). Below we prove the estimate
log wt(H) = O(log n). By our choice of the weight function, this implies that, for
every h,

n 1 - 1/a nl - 1 / d

4'-JlK,(h)l + ~ [P(s)l - log wt(h) <_ - -
j=o ,~(h) log n log n

log w,(/-/) = O(n 1 - 1in),

from which (ii) and (iii) follow.
Let us investigate the increase in the total weight of the hypcrplanes of H when

passing from phase i to phase i + 1, i.e., the relation between w~(H) and wi+ 1(/-/).
First we show that the weight of every hypcrplane increases by at most a

constant factor in every phase. Indeed, in view of (4.5), the weight of any hypcrplane

Range Searching with Efficient Hierarchical Cuttings 169

increases by a factor not exceeding

L .j) e x p ~ ~=o 4q-JO(PJn) + ~ = exp(O(1))

(we have used pqd = @)(n/t) = @)(n 1- l/d/log n) and pd > 4).

Let us now imagine that we are adding the new simplices one by one. We can
naturally define intermediate weights (among w i and wi+ ~) of hyperplanes of H
after adding a part of the new simplices, by replacing K~~ in definition (4.4) by
the set of simplices intersected by h among those of W~) and the new ones added
so far. By adding a new simplex s e qJi, the intermediate weight increases only for
the hyperplanes intersecting that simplex. Using (4.6), we get that, for j < q, by
adding a simplex of Wi the intermediate weight grows by a factor at most

f j = l + O((exp(4~-j log n/n'-'/~) - n TM 1)p q-j)

_ < 1 + 0 q-JP Jlogn

q -Jpq - j
(4.7)

(we have used the inequalities 1 + x < e x < 1 + 2x, the second one valid for x < 1).
For j = q, the weight grows by a factor of fq and then also by a factor of

1 + o(eXp ,ogn./ njnl l/d, exp(O('P s"n'~ n))

We thus obtain the estimate

s q j=O

Using wo(H) = O(n), [W j[: O(tpJa), and substituting from the above estimates for
f1 and f(s), we get the desired result w,(H) = exp(O(log n)). []

5. Half-Space Decomposition Schemes

In this section we continue considering various improvements in solutions to
geometric range searching problems, implied by Chazelle's results on hierarchical
cuttings. We now set up an abstract framework.

170 J. Matougek

5.1. Definitions

Let F be a family of subsets of E a (the reader may imagine the set of all half-spaces).

A F-decomposition scheme ~ is a function assigning to every finite subset P c E d

a data structure ~(P), with the following components:

�9 A collection of designated subsets of P, called the canonical sets. These subsets

are not usually represented by lists of their points; rather the data structure

stores only certain information associated with every canonical set (e.g., the

number of points). We call this information the secondary structure of ~ ;

formally this is a function S~,p defined on the collection of canonical sets of

~(P).

�9 An algorithm which, given a set)' e F, outputs the names of certain canonical

sets, whose disjoint union is equal to P n)' (the decomposition of 3'). Here
"names" practically means pointers to the secondary structures of these sets. 6

A basic example which can be regarded as a decomposition scheme in the above

sense are the ran#e trees (see, e.g., [PS]). Here the family F is the family of all

rectangular axis-parallel boxes. Numerous other examples can be obtained from

known geometric range searching structures.

The most direct application of a F-decomposition scheme ~ is for range

searching with ranges belonging to F. To this end we define the secondary structure

S~.e(C) for a canonical set C in the data structure ~(P) as the total weight of

points in C (e.g., if we need a F-range counting structure, the weight of C will be

its cardinality). The total weight of points of P n 7 is the sum of the weights of

the sets in the decomposition of P n ~, and it can be computed in an additional

time proportional to the number of sets in the decomposition.

Sometimes it is useful to consider a F-decomposition scheme without specifying

the secondary structures; when we want to emphasize this point of view, we speak

about an abstract F-decomposition scheme.

The idea of multilevel range searching structures is captured by the notion of

composition of decomposition schemes. Let ~1 be an abstract Fl-decomposit ion

scheme and let ~2 be an abstract F2-decomposition scheme. Let us define the

secondary structure of ~1 by setting, for a set P and its canonical subset C,

S~,,e(C) = ~2(C). In this way we naturally obtain an (abstract) F-decomposition

scheme (where F = {)'t n)'2;)'1 e FI,)'2 ~ F2}), which we denote by ~1 ~ ~ 2 and

call the composition of ~1 and ~2. Indeed, given a set 7 =)'1 n ~2,)'i e F~, we
consider the canonical sets forming the decomposition of P n)'1 given by ~I(P),

and, for every such set C, we take the collection of canonical sets forming the

decomposition of C n)'2 given by ~2(C). Taking these collections together, we

obtain a decomposition of P n)'1 n)'2. For instance, if ~ is a half-space decompo-
sition scheme, then ~ o ~ o... o ~ ((d + 1)-fold composition) is a simplex decompo-

sition scheme.

6 We could give the definition in a still more abstract setting by defining a decomposition scheme
for a set system (X, ~) (or range space in the terminology used in some computational geometry
papers). In this paper we remain in the geometric setting.

Range Searching with Efficient Hierarchical Cuttings 171

Similarly a composition of an abstract Fl-decomposition scheme with a

F2-range searching structure, obtaining a range searching structure for ranges of

the form)'1 n)'2,)'1 ~ F1,)'2 ~ F2, can be defined.
The effectivity of a decomposition scheme is determined by various parameters:

How many canonical sets are there? What is the distribution of their sizes? How
many canonical sets are used in the decomposition of a range from F? How are

their sizes distributed, and what is the preprocessing time for building the structure

and the running time of the decomposition algorithm? The importance of various

parameters may depend on a specific application. In particular, if the secondary

structures use only a constant amount of space each (as, e.g., in the above-

mentioned example of a F-range searching structure), we are interested in the

number of canonical sets only (in total and in the decomposition). If, on the other

hand, the decomposition scheme is used as a "top-level" structure in composed

(multilevel) structures, then the sizes of the canonical subsets play an important

role.

In order to express another common type of nesting in range searching

structures, we also define a partial F-decomposition scheme (Fig. 1). The definition

is similar to the F-decomposition scheme, but all canonical sets are divided into

two subcollections: the inner sets and the remainder sets. The decomposition for

a set P c~)' is a collection of disjoint canonical sets, containing both inner and

remainder sets. Each inner set of the decomposition is completely contained in

P r~ V, while the remainder sets cover the remaining points of P c~)' (but they may

also contain some other points of P). The general goal is that a possibly small

number of canonical sets is used and all the remainder sets are small. For an

application in a data structure, it is usually necessary to use some other decomposi-

tion schemes for the remainder sets.

For partial decomposition schemes, it makes sense to define two types of

composition: via inner sets, where we define the secondary structures for the inner

sets of the first decomposition scheme (in this case an abstract partial F 1-

(• Inner sets

�9 Remainder sets

A schematic illustration of a partial half-spao~ decomposition scheme. Fi~ I.

172 J. Matou~ek

decomposition scheme can be composed with an abstract partial F2-decomposi-
tion scheme, yielding an abstract partial F-decomposition scheme with

F := {Yl n Y2; ~1 E FI, Y2 E F2}),

or via remainder sets, where we define the secondary structures for the remainder
sets of the first decomposition scheme (here it usually only makes sense to compose
abstract partial F-decomposition schemes with the same F; in particular, by
composing an abstract partial F-decomposition scheme with an abstract F-
decomposition scheme, we obtain another F-decomposition scheme).

In the remainder of this section we concentrate on constructions of efficient
partial half-space decomposition schemes, applicable in the construction of multi-
level range searching structures.

5.2. The Laroe Space Case

In this section we consider a half-space decomposition scheme with O(n d) canonical
sets, which provides decompositions consisting of O(log n) canonical sets. The

following theorem is a rather direct consequence of Chazelle's cutting result and
a construction of [CSW]. We formulate the result in terms of a partial decomposi-
tion scheme, which allows us to apply it in "composed" data structures whose

storage requirements can be adjusted between almost linear and roughly O(nd),

while the query time varies accordingly.

Theorem 5.1. There exists a partial half-space decomposition scheme ~c~, such that,

for an n-point set P and a prescribed parameter r <_ n, the data structure .~(P) has

the following parameters: the inner sets can be partitioned into O(log r) collections

~o, ~1,- . - , Cgk- 1, such that ~i contains O(p i) sets of size at most n/p i (where p is a

constant, pk- 1 < r <_ pk). For any half-space 7, each ~ (i < k) contributes one inner

set to the decomposition of P n 7. There are O(r n) remainder sets of size at most n/r

each, and the decomposition of P n 7 contains only one remainder set. The decomposi-

tion can be found in O(log r) time, and the data structure can be built in O(nr ~- 1)

time.

Proof We let H be the collection of hyperplanes dual to the points of P, and we
compute an efficient hierarchical (1/r)-cutting E0 Ek for H as in Theorem 2.1.
In order to simplify our considerations, we assume that the hyperplanes of H are
in general position and also that the simplices of each E~ are in general position

with respect to H (this can be achieved by simulation of simplicity, see [Ed]). We
now regard the canonical sets as sets of hyperplanes of H. The collection of
remainder sets consists of the sets of hyperplanes intersecting a simplex s for all

s e E~. For i < k, the collection ~gi contains the following sets: we consider a simplex
s e E~ and its son s' e ~,~+ 1, and we include in cg~ the set of hyperplanes intersecting
s and lying completely below s', and also a similar set with "below" replaced by

Range Searching with Efficient Hierarchical Cuttings 173

"above." The claims about the distribution of sizes of canonical sets and the
preprocessing time are immediate from Theorem 2.1.

In our dual setting, a decomposition of P c~ 7 corresponds to a decomposition
of the set of hyperplanes of H lying below (or above) the point q dual to the
boundary of),; we speak about the "below" case only. The decomposition is
formed as follows: let sl be the simplex of ~ containing q, then the decomposition
contains the set of hyperplanes intersecting s~ and lying below sl + 1, 0 < i < k, plus
the set of hyperplanes intersecting s k. This decomposition can be computed in
O(log r) time, and it is easily verified that it has the required parameters. []

5.3. The Small Space Case

Here we consider decomposition schemes whose canonical subsets have a roughly
linear total size. In the following result we again combine an idea from [CSW]
with the hierarchical cutting result, this time in a more complicated way.

Theorem 5.2. There exists a partial half-space decomposition scheme 6r such that,

for an n-point set P and a prescribed parameter r < n, the data structure S~(P) has

the following parameters:
There are O(r log r) inner sets with sizes summing up to O(n log 2 r), and O(r log r)

remainder sets o f size at most n/r each. For every half-space ~, the decomposition o f

P n ~ consists o f O(r ~- ~/d) sets, and if c~ stands for the collection of inner sets used
in this decomposition, then

iCil-x/a = O(n x-~/a log r).
Ceqr

The decomposition can be found in O(r I - lid) time. The structure can be built in time

polynomial in n and r, and, for r < n~ for a certain constant ~t > O, the preprocessing
time can be made O(n log 2 r).

Proof. We assume that the set P is in general position. This is no loss of generality,
since the degenerate cases can be handled using simulation of simplicity.

Let us now apply Lemma 2.3 for P and r, obtaining a set f9 of O(r) guarding

sets. For a set P in general position, we may also assume that the hyperplanes
forming ff are in general positions as well (in particular, they are all distinct) and
that none of them contains a point of P; this can again be guaranteed by the

simulation of simplicity.
We now describe the construction of the partial half-space decomposition

scheme. It consists of the data structure mentioned in the Guarding Set Lemma
2.3 (for finding a guarding set in fr for every hyperplane) and of p = O(log r)
components. Each component is associated with a subset c~i of the guarding sets,
and it is used for decomposition of half-spaces whose bounding hyperplanes have

the guarding set in ~ .

174 J. Matou~ek

The construction proceeds inductively, producing one component at a time. At

the beginning of ith stage we have a current set fq~ of guarding sets which remain
to be treated (f~l = ~). We define a set Hi of hyperplanes as the union of the
guarding sets of ~ . We compute an efficient hierarchical (1/rl/d)-cutting E~)
E~ ~ for H~ according to Theorem 2.1. In what follows we drop the superscript
(i) for the cuttings. Again, we assume that all the simplices of the Ej's are in

general positions with respect to the hyperplanes of H i as well as to the points 7
of P.

We locate, in total time O(n log r), the points of P within the simplices of every
~j. For a simplex s ~ E~, we set P(s) = P n s.

We say that a simplex s e Ej is fat if fP(s)] > 2k-Jn/r. We say that s is active if

all his predecessors (i.e., his father, father of his father, etc.) are fat, and s is a leaf
simplex if it is active and either belongs to Ek or is not fat.

With these definitions we can describe the canonical sets in the ith component.
The inner sets are the subsets of P contained in the active simplices. Next, we
consider the subsets of P contained in the leaf simplices, and we partition each of
these sets whose size exceeds n/r into subsets with sizes between n/2r and n/r. The
resulting sets form the collection of the remainder sets in our decomposition
scheme.

Since the cuttings E1 E k have O(r) simplices in total, the ith component of
the decomposition scheme has O(r) inner sets. The inner sets coming from each
Ej are disjoint and have total size at most n, hence the total size of the inner sets
of the ith component is O(n log r). The remainder sets are pairwise disjoint, and

each has size at most n/r. Since they were defined by starting with O(r) subsets
and then by splitting subsets of size larger than n/r into parts larger than n/2r, the

total number is O(r).
We are now going to define f~i - ~;, the subset for which the current hier-

archical cutting is "good." To this end we define a weight function on the guarding

sets. For a hyperplane h, we let Kj(h) be the set of simplices of Ej intersected by
h, K(h) = Kx(h) w. . . w Kk(h) and we define the weight of h by

w(h) = ~ 4k-JlKj(h)l + ~ ~ IP(s)l +)_, r IP(s)l. (5.1)
j = 1 s h) seKk(h) n

Finally, the weight of a guarding set G e f~ is the sum of weights of its hyperplanes.

[,emma 5.3. The average weight of a guarding set G ~ (~i is O(r 1-1/d).

Proof. Since Ej is a (1/p~)-cutting for H~ (where pk-1 < rl/a < pk), each s e Ej is

7 This triple application of the simulation of simplicity looks fearful, at least from an algorithmic
point of view. We could completely avoid it, but the presentation would become much more
complicated.

Range Searching with Efficient Hierarchical Cuttings 175

intersected by no more than IHil /p j hyperplanes of H , Summing over all O(p ja)

simplices in Ej, we get ~h~H, [Kj(h)l = O([Hitp jcd- 1~), and so the average value of
!Kj(h)l is O(pXd-l~). Similarly,

x
h~H~ seKj(h)

IP(s)P -lId = ~, IP(s) l~-~/dl{heHi; h c~ s r ~}1

< IH, I ~ iP(s)p_~/d,
- - PJ seEj

and, by HSlder's inequality,

I P(s) l x - ~/d S n~ - ~/d I Ejl ~/d = O(nl - X/dp~),
sE~j

so the average value of ~,s~Kjth)[P(s)[1-1/a is O(nl-l/d). A similar but simpler

calculation shows that the average value of ~_.~x~<h)IP(s)l is O(n/A/d). These bounds

imply the lemma. []

We define ~i (the "good" guarding sets for the ith component) as the ones

whose weight exceeds the average at most twice; thus c~ i contains at least half of
the elements of ffi. We set ff~+ l = (r The whole construction finishes when
ffi + ~ = ~ . For every hyperplane h from the union of the guarding sets of f~i, the

bound on the weight function implies

t K i (h)] = 4 - r J)O(r 1 - 1/d), (5.2)

IP(s)l = O(n/H/d), (5.3)
s E Kk(h)

IP(s)I 1-1/a = O(n i-1/a log r). (5.4)
sEK(h)

Now let y be a half-space with a bounding hyperplane h, whose guarding set
G belongs to (r We define the decomposition of P n y. The inner sets are those
corresponding to all active simplices completely contained in y, whose father is
not contained in ?. The remainder sets are the ones corresponding to all leaf
simplices intersected by h. It is straightforward to check that all sets in this

decomposition are disjoint and that the whole P :~ ? is covered.
We now want to establish the bounds concerning the decomposition. It is

sufficient to show the following three estimates for every hyperplane h (recall that

176 J. Matou~ek

L(h) denotes the set of leaf simplices intersected by h):

Ig(h)l : O(r l - x/•), (5.5)

sEL(h)

[P(s)[1-1/d = O(n i-lId log r). (5.7)
s~K(h)

Indeed, from (5.5) and the fact that each simplex has a bounded number of sons,
we infer the bound for the number of inner sets in the decomposition and also a
bound for the running time of the algorithm for finding the decomposition. Then
(5.5) and (5.6) imply the claim about the number of remainder sets in the
decomposition, and (5.7) implies the bound on ~ c ~ } C I 1- t/d in the theorem.

The proof of (5.5) and (5.6) from (5.2) and (5.3) is almost identical to the proof
of (4.2), (4.3) from Lemma 4.2, and we leave it to the reader. As for (5.7), this
condition holds for every h e Hi (it is just (5.4)). Let h be a general hyperplane with
a guarding set G ~ f~i. If a simplex s e K(h) intersects some hyperplane of G, then
its contribution to the estimated sum is already accounted for. Hence it suffices to
consider the contribution of the set K i of simplices of K(h) contained in the zone
of h. Each of the n/r TM points in that zone is contained in O(log r) simplices of
K(h), so ~__a~K, I P (s) l = O(n log r/ri/d). Using IKll_< IK(h)l = O(r I -i/u)and Hrlder's
inequality, we get ~.a~r, [e(s)l 1-1/a = O(n x- 1/a(log 01-x/a). This gives (5.7).

We have almost finished the proof of Theorem 5.2. The claim about poly-
nomiality of the preprocessing time is obvious from the construction. Finally, all
the steps of the construction can be executed in time which only depends on r
(polynomially), except for the computation of the guarding sets and the location
of the points in the simplices, but these two steps can both be performed in total
time O(n log 2 r) (spending O(n log r) time for each of the O(log r) components of
the decomposition scheme). For a sufficiently small r, the n log r term dominates
the polynomial in r. This finishes the proof of Theorem 5.2. []

If we did not care about the preprocessing time, we could set r = n in Theorem
5.2, and use it directly as a device for building multilevel range searching structures
with almost linear space. We can improve the preprocessing (at the expense of
space) by composing partial half-space decomposition schemes with smaller values
of r, in a constant number of levels.

Corollary 5.4. There exists a half-space decomposition scheme 6e o such that, for
an n-point set P, the data structure 6eo(P) has the following parameters:

The sum of sizes of the canonical sets is O(n log ~ n). I f c~ is the collection of
canonical sets used in the decomposition of P c~ ?, then I c~l = O(n 1-1/~) and

ICI 1- x/a = O(nl- X/aOog n)~
Ceqr

Range Searching with Efficient Hierarchical Cuttings 177

The decomposition can be found in O(n 1- l/d) time. The structure can be built in time
O(n 1 + 6).

Proof First we note that by setting r = n, we can indeed obtain a half-space

decomposition scheme from Theorem 5.2 (the remainder sets are singletons, so we

can add the appropriate ones to the decompositon as inner sets).

Now let 6 a be the (abstract) partial half-space decomposition scheme from

Theorem 5.2, with a particular choice of the parameter r: for an n point set P, we

choose r = n ", where ~ is as in Theorem 5.2. We set ~1 = 6~, and we define ~i+1

as the composition of 6 e with @i via remainder sets. We observe that ~k(P) is a

partial half-space decomposition scheme whose remainder sets have size at most
ntl -')~; hence by choosing a large enough constant for k, the remainder sets of ~k

have size at most n 6' for a prescribed constant 6' > 0. We finally compose this ~k

via remainder sets with the half-space decomposition scheme mentioned at the

beginning of this proof, obtaining a half-space decomposition scheme. All the

parameters of this decomposition scheme correspond to the corollary, as may be

verified by an elementary calculation. []

5.4. Example of a Multilevel Data Structure

For illustration let us use the above result for constructing a simple multilevel

data structure. Given a set S of n segments in the plane, we want to preprocess

it in such a way that, for a query line ,~, we can count the number of segments

intersecting 2 quickly. Suppose that all endpoints of the segments are distinct, and

that the segments are nonvertical.

Let L denote the set of left endpoints of the segments of S, and, for x ~ L, let

e(x) denote the right endpoint of the segment with the left endpoint x. For a

suitable half-plane decomposition scheme 9 , we first construct the data structure

~(L), and, for each of its canonical subset C _ L, we define the secondary structure

S~.L(C) as a suitable half-plane range counting structure for the set e(C)=
{e(x); x ~ C}. In this way we obtain the desired data structure. A query is answered

as follows. For a query line 2, we let 7 be one of the half-planes defined by 2. Using

~(L) we find a decomposition of L c~ 7 into canonical sets. For every canonical

set C in this decomposition, we use the secondary structure to count the number

of points of e(C) contained in the half-plane complementary to ~,. The sum of these

counts over the canonical decomposition gives the number of segments with the

left endpoint inside V and the right endpoint outside V- The other possible case

(with left and right exchanged) is handled symmetrically.

Let us now consider a specific instance of the above construction. For the

half-plane range counting structure, we take one with O(n) space and O(x/n) query
time (Theorem 4.1). For the half-plane decomposition scheme, let us choose the

scheme obtained from Theorem 5.2 by setting n = r. The space occupied by the

resulting data structure is proportional to the sum of sizes of the canonical sets,
which is O(n log 2 n). The query time is proportional to the sum of square roots

178 J. Matou~ek

of the sizes of the sets in the decomposition, which is O(x//n log n). With these

parameters, the data structure may require a rather large preprocessing time; it
can be traded for query time using Corollary 5.4.

Note that in the above construction, we use essentially a composition of a
half-plane decomposition scheme with a half-plane range counting data structure,
only this composition is formally more complicated (it uses a bijection linking the
top and bottom level structures together).

The results of this section can also be applied in a similar manner in more
complicated examples, as are those in [AS]. Each new level of such structures now
brings only a polylogarithmic overhead in space and query time. At present we
do not consider it useful to extend our formal framework to enable a sufficiently
general precise statement of this result.

5.5. Reducing the Preprocessing Time for
Linear Space Range Searching

In order to show that the preprocessing time in Theorem 4.1 can be reduced to
O(n 1 +~) (from the polynomial bound derived in Section 4), we use one more type
of a partial simplex decomposition scheme, whose existence directly follows from

the results of [M4]:

Lemma 5.5. There exists a partial simplex decomposition scheme 9-, such

that, for an n-point set P and a parameter r < n 1 -~ for some fixed 6 > 0 (which
can be chosen), the data structure ~--(P) has the following parameters: There are
O(r) inner sets, and O(r) remainder sets of size at most n/r each. The decomposi-
tion of P n tr for every simplex tr consists of O(r 1-1/d) inner and remainder sets,
and it can be found in O(r I-1/d) time. The structure can be built in time

O(n log r).

Let us remark that the decomposition scheme in this lemma has better
parameters in some respects than that of Theorem 5.2, but it does not say anything
about the distribution of sizes of the inner sets in the decomposition, and it can

only be built for r not too close to n.
We use a standard trick to reduce the preprocessing in Theorem 4.1 to O(n 1 +~):

we consider the partial simplex decomposition scheme 3- from the above lemma,
with r = n 1-6' for a suitable t~' > 0. We compose it via remainder sets with the

simplex range searching structure constructed in the proof of Theorem 4.1 (in
other words, for every remainder set C of the data structure f (P) we build that
simplex range searching structure and store it as the secondary data structure

Sa-e(C)). Finally, we define the secondary structures for the inner sets of J-(P) as
their weights, which yields a simplex range searching data structure. Its space and

query-time requirements remain asymptotically the same as before, but the

preprocessing time is only O(nl+~).

Range Searching with Efficient Hierarchical Cuttings 179

6. Simplex Range Searching: Tradeoff

We begin by constructing a simplex range searching data structure with a

polylogarithmic query time.

Theorem 6.1. Let P be an n-point set in E d. The range searching problem for P

with the ranges being intersections o f p half-spaces, 1 < p < d + 1, can be solved

with space O(na/log d-p+ 1), query time O(log v n), and preprocessing time

O(na/loga-p+ t -~ n).

Proof. We proceed by induction on p. For p = 1, we consider the (abstract) partial

half-space decomposition scheme s from Theorem 5.1, and we set the parameter

r to n/log a/~a- 1~ n; hence the size of the remainder sets will be at most log df(d- 1~ n.

For every inner set, we store its weight as the secondary structure, and, for every

remainder set C, we define the secondary structure as the range searching structure

from Theorem 4.1 (this is a composition via remainder sets in the terminology of

Section 5). We obtain a half-space range searching structure occupying space
O(nr d- 1). When answering a query, we spend O(log r) = O(log n) time by compu-

ting the decomposition corresponding to the scheme ~ , and another

O((n/r)l - l/d) = O(log n)

time by solving the subproblem for the single remainder set in that decomposition.

Finally, the preprocessing will be O(nr d- 1 + rd(n/r)l +~') = O((n/log n) d log ~ n).

For p > 1, we assume that a range searching structure ~p with parameters as

in the theorem has already been constructed for p. In order to constrct ~p+ L, we

again take ~ with the same r as above and define the secondary structures for

the remainder sets in the same way, but for the inner sets we use ~p as the

secondary structures (composition via inner sets). It remains to estimate the

performance of ~p. Using the information from Theorem 5.1 about the distribu-

tion of sizes of the inner sets of Ar we get that the storage is

~ PdY(n/PJ)d (nd)
/=o l ~ j) - 0 ioga_~+ 1 n '

the preprocessing time is again a factor of logbn bigger, and the query time is

O(logP n). []

Now we are ready to establish the general tradeoff:

Theorem 6.2. Let P be an n-point set in E d and let m be a parameter, n < m < n d.

The range searching problem with the ranges being intersections o f p half-spaces,

180 J. Matou~ek

1 < p < d + 1, can be solved with space O(m), query t ime

and preprocessin9 t ime O(n 1 +~ + re(log n)~).

Proof. First let us consider the case m > n ~§ We take the partial simplex

decomposition scheme ~Y- as in Lemma 5.5, we define the secondary structures for

the inner sets as the weight of these sets, and we let the secondary structures for

the remainder sets be the range searching structures from Theorem 6.1. The space

occupied by the resulting range searching structure can be written as

O(r(n/r)a/loga- p + 1(n/r)) '

and since this should be equal to m, we get r a- 1 = nd/(m iogd-p+ l(n/r))" The query

time then will be O(r 1 - l/a logP(n/r)). Expressing this in terms of n and m, we obtain

the claimed bound. The preprocessing time bound is straightforward.

It remains to handle the case when m is close to n, where r in the above

construction would get too close to n to apply Lemma 5.5. Here we build the

simplex range searching structure in the same manner as in the proof of Theorem

6.1, only we choose a suitably smaller value of r, namely, the one giving space m,

i.e., satisfying nr n- 1 = m. We omit the calculations for this case. []

7. Conclusion

In various results of this paper we have approached the known or suspected lower

bounds for the considered problems more closely than the previously known

solutions did. However, certainly not all of the presented solutions can be regarded

as final or completely satisfactory. We point out some open problems.

For Hopcroft 's problem, the main challenge is to establish a lower bound,
hopefully ~r'~(n4/3). As for the upper bound, the 20(l~ factor originates in the

following manner: we are unable to solve the problem in a constant number of

stages with the present method, essentialy because a nonconstant time is spent for

location of every point in the cutting. Every stage contributes a constant multi-

plicative factor to the "excess" in the number of subproblems. This is because we

lack some mechanism to control this, similar to Chazelle's method (he can use the

number of intersections of the lines as the control device, but we flip the roles of

lines and points at every stage, and such a control device is missing in this

situation).

In the range searching area, one problem is to improve the preprocessing times,

either for the linear-space simplex range searching structure or for the small space

decomposition scheme. However, there seems to be a deeper issue here.

Range Searching with Efficient Hierarchical Cuttings 181

In our linear-space solution to the simplex range searching problem, we used
tree-like hierarchies of simplices with a constant branching degree, but with a
global control over the number of simplices intersected by a hyperplane. This data
structure has two shortcomings (which do not matter in the simplex range
searching problem): we cannot (so far) make the hierarchy a single tree (it has
about n TM roots which are rather unrelated to each other), and while we can
achieve an optimal number of simplices crossed by a hyperplane (crossing number)
in the bottommost level and we have some control over the higher levels, we have
not enforced an optimal crossing number for these levels. Both these features
prevent a successful application of this construction in multilevel data structures,
and we had to use another method (basically that of [CSW]) for this purpose.
This method gives a nice hierarchy and almost optimal decompositions, but only
for half of the guarding hyperplanes. This means that in fact a logarithmic number
of data structures are needed, and what is worse, it does not directly give a simplex
decomposition scheme. Again, rather similarly to Hopcroft's problem, it seems
that in order to obtain a simplex decomposition scheme with optimal parameters,
some new global invariant (playing a role similar to the number of intersections
in Chazelle's cutting construction) to control the quality of the decomposition
scheme at all levels is necessary.

All the above vague statements have a single goal-- to point out that although
the simplex range searching problem and related questions may look almost

completely solved, a really satisfactory solution may still await discovery.

References

[C1]

[c2]

[CF]

[CSW]

[CW]

[DE]

[Ed]
[EGH +3

[A] P. K. Agarwal. Partitioning arrangements of lines I: An efficient deterministic algorithm.
Discrete & Computational Geometry, 5:449-483, 1990.

[AS] P. K. Agarwal and M. Sharir. Applications of a new partitioning scheme. In Proc. 2nd
Workshop on Algorithms and Data Structures. Lecture notes in Computer Science, vol. 519.
Springer-Verlag, Berlin, 1991, pp. 379-391.
B. Chazelle. Lower bounds on the complexity of polytope range searching. Journal of the
American Mathematical Society, 2(4):637-666, 1989.
B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9:145-158, 1993.
B. Chazelle and J. Friedman. A deterministic view of random sampling and its use in
geometry. Combinatorica, 10(3):229-249, 1990.
B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range
searching and new zone theorems. Algorithmica, 8:407~,29, 1992.
B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.
Discrete & Computational Geometry, 4:467~,90, 1989.
D. Dobkin and H. Edelsbrunner. Space searching for intersecting objects. Journal of Algo-
rithms, 8:348-361, 1987.
H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.
H. Edelsbrunner, L. Guibas, J. Herschberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl.
Implicitly representing arrangements of lines or segments. Discrete & Computational

Geometry, 4:433466, 1989.
[Ep] D. Eppstein. Private communication, 1992.

[L] L. k Larmore. An optimal algorithm with unknown time complexity for convex matrix

searching. Information Processin# Letters, 36:147-151, 1990.

182 J. Matou~ek

[M1]

[M2]

[M3]

[M4]
�9 [oss]

[PS]

J. Matou~ek. Approximations and optimal geometric divide-and-conquer. In Proc. 23rd
ACM Symposium on Theory of Computin9, 1991, pp. 506-511.
J. Matou~ek. Cutting hyperplane arrangements. Discrete & Computational Geometry,
6(5):38~406, 1991.
J. Matou~ek. Spanning trees with low crossing number. Informatique Thborique et applica-
tions, 6(25): 103-123, 1991.
J. Matou~ek. Efficeint partition trees. Discrete & Computational Geometry, 8 : 315 334, 1992.
M. Overmars, H. Sehipper, and M. Sharir. Storing line segments in partition trees. BIT,
30:385403, 1990.
F. Preparata and M. I. Shamos. Computational Geometry--An Introduction. Springer-Verlag,
New York, 1985.

Received April 1, 1992, and in revised form January 10, 1993.

