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Abstract. We present an improved space/query-time tradeoff for the general simplex 
range searching problem, matching known lower bounds up to small polylogarithmic 
factors. In particular, we construct a linear-space simplex range searching data 
structure with O(n z- 1/,t) query time, which is optimal for d = 2 and probably also 
for d > 2. Further, we show that multilevel range searching data structures can be 
built with only a polylogarithmic overhead in space and query time per level (the 
previous solutions require at least a small fixed power of n). We show that Hopcroft's 
problem (detecting an incidence among n lines and n points) can be solved in time 
n*/32~176176 In all these algorithms we apply Chazelle's results on computing optimal 
cuttings. 

1. Introduction 

Building on the works of Agarwal [A] and of the author  (e.g., [M2]  and [M1]), 

Chazelle recently found a new approach to the computa t ion  of so-called cuttings 

[C2], and also gave some applications of  this result. In this paper we present 

several results which use his construction in a substantial way. 

Mainly we consider geometric range searching problems, whose prototype is 

the following simplex range searching problem: preprocess a set P of  n points in 

E d so that, given any query simplex a, the points in P n a can be counted or 

reported efficiently. Usually this problem is investigated in a more  general setting, 

when a weight function on the points is assumed and a cumulative weight of the 

points in P ra tr is requested. The weights are assumed to belong to a semigroup, 

i.e., subtractions should not  be used when computing the answer. 

* Part of this research was done during the First Utrecht Computational Geometry Workshop, 
supported by the Dutch Organization for Scientific Research (NWO). 
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This problem has a rich literature, which we do not try to survey here; we only 
recall the current best bounds. Chazelle I-C1J derived lower bounds for this 
problem: under certain reasonable assumptions on the model of computation, if 

a simplex range searching algorithm is allowed to use storage at most m, the 

worst-case query time is no better than f~(n/(m TM log n)) (resp. f~(n/x/~ ) for d = 2; 
it seems that the logarithmic factor in the denominator of the lower bound for 
higher dimensions might be only a product of the proof technique). Chazelle et 
al. [CSW] gave an algorithm whose performance matches this lower bound quite 
closely, and another (simpler and slightly more efficient) solution for the case of 
roughly linear space was given in I-M4]. 

In this paper we improve the current upper bounds in the full range of the 
space/query-time tradeoff (Theorem 6.2), further approaching the lower bounds. 
In particular, we present a linear-space data structure for the simplex range 
searching problem with query time O(n 1-1/d) (Theorem 4.1); in view of the 

above-mentioned lower bounds, this is optimal for d = 2, and quite likely also for 

d > 2 .  
The previously known and new bounds are summarized in Table 1. In each 

section of the table we first give the general space/query-time tradeoff (the best 

query time achievable with given space m), and then various special cases and/or 
improvements for particular values of m. In the table, as well as in the whole 
paper, 6 denotes an arbitrarily small positive constant; the constants hidden in 
the big-Oh notation may depend on 6. The O( ) notation is omitted in the table. 

We also obtain results concerning the construction of so-called multilevel range 

searching structures. This idea has been widely used, e.g., in orthogonal range 
searching problems. In the context of partition trees and similar range searching 
structures, it appears in the paper by Dobkin and Edelsbrunner [DE], and it has 
been elaborated in various directions in [CSW], lOSS-l, [M4], [AS], and other 
papers. The currently most efficient known method for constructing such struc- 

tures is based on the results of [CSW-J. Let us remark that while the results of 
I'M4] improved the simplex range searching with a linear space and simplified the 

multilevel structures to some extent, they did not increase the asymptotic efficiency 
for the multilevel structures. Without going into technical details here, let us 
indicate the main result about multilevel range searching structures: we show that 
for the full range of space/query-time tradeoffs, such structures can be built with 
only a polylogarithmic overhead in space and query time per level of the structure. 

This improves previous solutions, where an extra factor n 6 was necessary. 
We also consider Hopcroft's problem: given n lines and n points in the plane, 

decide whether some point lies on some of the lines. Understanding this problem 

seems to be one of the major challenges in computational geometry. Many 
algorithms were published, the most efficient one in Chazelle's paper [C4], with 
time complexity O(n 4/3 log 1/3 n). It is suspected that n 4/3 might be the true 

computational complexity of this problem, although nothing even approaching a 
proof is known. We show that the running time can be improved to n4/32 ~176 
(here log* x is the function defined by log* x = 1 for x < 1, 

log* x = log*(log 2 x) + 1 for x > 1). 
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The paper is structured as follows: In Section 2 we recall the definition of 

cuttings and explain Chazelle's result. In Section 3 we discuss Hopcroft 's problem 

as the most direct application. Section 4 describes a simplex range searching 

structure with linear space. In Section 5 we introduce a tool for building multilevel 

data structures, so-called half-space decomposition schemes, and we construct two 

types of these. In Section 6 we describe a simplex range searching structure with 

polylogarithmic query time and a combination of data structures which yields a 

space/query-time tradeoff. We mention various open problems in Section 7. 

2. Efficient Hierarchical Cuttings 

In many randomized computational geometry algorithms of divide-and-conquer 

type, as well as in their deterministic counterparts, the following notion of a 
(1/r)-cutting turned out to be crucial. A cutting is a collection E of closed 

d-dimensional simplices 1 with disjoint interiors, which cover all E a. Let H be a 

i By a s implex we m e a n  a n  in te rsec t ion  o f  a t  m o s t  d + 1 c losed  half-spaces,  so we a lso  a d m i t  

u n b o u n d e d  simplices.  
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collection of n hyperplanes in E d. For a simplex s, let Hs denote the collection of 

hyperplanes of H intersecting its interior. A (1/r)-cutting for H is a cutting g 

satisfying I n~l < h/r for every s e g (here r is a parameter, 1 < r < n). The size of 

a (1/r)-cutting is the number of its simplices. 

Chazelle and Friedman [CF]  proved that, for every H and r < n, there exists 

a (1/r)-cutting of size O(r ~) for H (which is asymptotically the best possible size), 

and that such a (1/r)-cutting can be computed by a randomized algorithm in 

expected O(nr a- 1) time. This running time is optimal if, together with the (1/r)- 

cutting, the collections H,  should also be output, since the sum of the sizes of these 
collections is f~(nr a - l )  (at least if the hyperplanes are in a general position). After 

several previous works on deterministic computation of cuttings (see, e.g., [M1] 

and references therein), Chazelle [C2] was able to match this performance by a 

deterministic algorithm for the full range of the values of r. The main novel feature 

in Chazelle's solution is that, together with the required (1/r)-cutting, he also 

computes a certain hierarchy of coarser cuttings. This is usually important  in 

applications of his results; so we introduce a name for it. 

We say that a cutting g '  refines a cutting g if every simplex of g '  is completely 

contained in a single simplex of g. We say that g '  C-refines g if it refines g and 

every simplex of g contains at most C simplices of g' .  Let H, r be as in the 

definition of the (1/r)-cutting, and let C, p > 1 be constants. Let go, El  . . . . .  ~'~k 

be cuttings such that go is the cutting consisting of the single "simplex" E d, and 

every g~ (1 < i < k) is a (1/p ~) cutting of size O(p ~d) which C-refines g i -  1, and 

pk- 1 < r < pk (thus k = | r)). Then we call the sequence :~o . . . . .  gk an efficient 
hierarchical (1/r)-cutting (for H). 2 

If s is a simplex of g~ and s' is a simplex of g~_ ~ containing it, we call s' the 

father of s and s a son of s'. 
In one of our subsequent constructions, we will need the following stronger 

(and natural) property: 

For  every i, j, 0 < j < i < k, and s e gj ,  s contains at most O(p (i-j~a) (2.1) 
simplices of g~. 

Chazelle's method implies the following: 

T h e o r e m  2.1 [C2] (Hierarchical Cutting Lemma). For every fixed dimension d, 
there exist constants C, p > 1, such that, for any H and r, an efficient hierarchical 
(1/r)-cutting for H satisfying the additional condition (2.1) exists 3 and can be 
computed deterministically in time O(nr d- 1) (together with the collections H s for 
every simplex s e gk). 

Let us remark that we can always choose p larger than any prescribed constant. 

2 This notion of course depends on the values of C, p, so, in order to be quite rigorous, we should 
say something like a "(C, p)-efficient hierarchical (l/r)-cutting," hut since the values of C, p are not 
essential as long as they do not depend on n, we do not use such a cumbersome term. 

3 Condition (2.1) is not explicitly established in [C2], but it follows easily from the construction. 
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Using the method of [M4] in a straightforward way, we obtain the following 

corollary (we omit the proof, since the method is explained in I-M4] on a very 
similar case of the computation of a (1/0-cutting): 

Corollary 2.2. There exists a constant �9 > 0 (dependent on the dimension d), such 

that the following holds: for  r < n ~, an efficient hierarchical (1/r)-cutting can be 
computed in time O(n log r) (without computing the Hs's ). 

Usually the main point of interest in an efficient hierarchical (1/r)-cutting is the 

finest cutting E k, but the hierarchy supplies a useful tree-like "access structure" 

for E~. For example, given a query point p, a simplex of E k containing it can be 

located by a straightforward descent through the hierarchy, in O(log r) time. 

In one of our applications, we also need to consider a weighted collection of 

hyperplanes, which is a pair H, w, where H is a set of hyperplanes and w: H ~ R § 

is a (nonnegative) weight function. For X _ H, we write w(X) for ~.h~x w(h). The 

notions of a (1/r)-cutting and of an efficient hierarchical (1/r)-cutting can be 

naturally generalized for the weighted case (each simplex in a (1/0-cutting for H, 

w should be intersected by hyperplanes of total weight at most w(H)/r). By a 

method described in [M2] (using a simple trick and the simulation of simplicity), 

an algorithm computing an efficient hierarchical (1/r)-cutting extends also to the 

weighted case (with only a constant factor overhead). 

For our simplex range searching construction, we need one more concept 
(originating in [M3] and [CSW]). Let P be a set of n points in E d, and let r < n 

be a parameter. Let G be a set of d + 1 hyperplanes. We call G a guarding set for 

a hyperplane h (with respect to P and r) if the zone of h in the arrangement of G 

contains less than n/r l/a points of P. 

The following lemma immediately follows from [M4-1: 

Lemma 2.3 (Guarding Set Lemma). Given P and r, one can compute (in polynomial 

time) a set (~ of  O(r) (d + 1)-tuples o f  hyperplanes plus an additional data structure 

(requiring O(r) space), such that (~ contains a guarding set for  every hyperplane h, 

and such a set can be found for given h in O(log r) time. For r < n ~ for a suitable 

constant ~ > O, (~ can be constructed in O(n log r) time. 

3. Hopcroft's Problem 

In this section we prove the following improved upper bound for Hopcroft 's 

problem: 

Theorem 3.1. Given n points and n lines in the plane, the existence of  a line/point 

incidence can be decided in time n4/32 ~176176 

The algorithm can be easily modified for counting or reporting all the incidences 

within the same time bound, only the details are slightly more complicated. Also, 
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there is an obvious generalization of the problem into higher dimensions (detecting 

or counting hyperplane/point incidences), and our solution can be generalized as 
well. These generalizations are not presented here. 

Our  algorithm for Hopcroft 's  problem is similar in spirit to previous ones (e.g., 

in [C2]), we only use a more complicated recursion. By an (n, m)-problem, we 

mean the problem of detecting a line/point incidence for at most n points and at 

most m lines. By the well-known line/point duality, an (n, m)-problem can be solved 

in the same time as an (m, n)-problem. 

Lemma 3.2. An (n, m)-problem can be solved in time O(mr + n log r) plus the time 
needed for solving O(r 2) (n/r 2, m/r)-problems (r is a parameter which can be chosen 

in range from 1 to min(m, x/~)). 

Proof. The idea goes back to Edelsbrunner et al. [EGH+] ,  and a procedure 

similar to ours is sketched in [C2]. However, since there are rather ,delicate issues 
of degenerate cases to be treated, we give a proof  here. 

Let H be the set of m lines and let P be the set of n points. Using Theorem 2.1, 

we compute an efficient hierarchical (1/r)-cutting for the set of lines, together with 

the subcollection H s of lines intersecting the interior of every simplex s (a triangle 

in this case) of the finest cutting E k. Then we locate every point in the cutting E k. 

This takes time O(mr + n log r). Now, for every simplex s e E k, we know the set 

Ps of points contained in it (including its sides and vertices). Each point of P which 

is not a vertex of Ek contributes to at most two P~'s. On the other hand, the points 

coinciding with vertices contribute at most three members of each P~, and hence 

f__~k levi < 2n + O(r 2) = O(n). For  every s, we further partition (if necessary) P~ 

into subsets of size at most n/r 2, and, for every such subset, we solve the subproblem 

involving that subset of points and the set H s of lines. By the previous considera- 
tions, we get O(r 2) (n/r 2, m/r)-problems. The only incidences which might avoid 

detection in these subproblems are those formed by a line containing a side of a 

simplex and a point on that side. However, for every side, we can tell whether it 

is contained in a line, 4 and take care of this in the point-location phase. [] 

Proof of  Theorem 3.1. Let T(n, m) denote the time needed for solution of an 

(n, m)-problem. Let ~0(x) be the function given by 

~o(x)=l  for x < 2 ,  

tp(x) = log 2 X tp(log 2 X) for x > 2. 

We begin by considering a problem involving mrp3(m) lines and m2tpa(m) points (for 

4 One possible way of how to do this: compute the list of all lines defined by the sides, sort it 
lexicographically by the coefficients in their equation, and search for every line of H in this list; the 
total running time is O(r 2 log r + m log r) = O(n log r + mr). 
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these rather mysteriously looking parameters we get a nice recursion). We choose 
r = m log m, and from Lemma 3.3 we get 

T(m2cp3(m), m~oS(m)) 

< O(m 2 log m r + O(m 2 log 2 m)T(log m tp~(log m), log 2 m tpa(log m)). 

We see that in each subproblem we have a similar form of parameters as in 
the original problem, only that the role of points and lines is flipped and m is 
replaced by log m. Denoting f(m) = T(m2q~3(m), mtp3(m)), we thus have 

f(m) < O(m 2 log m cp3(m)) + O(m 2 log 2 m)f(log m), 

and it is easily verified that a solution to this recurrence satisfies 

f(m) < m2q)4(m)2 cl~ 

for a large enough constant C. 
It remains to reduce the (n, n) problem to the case solved above. We can do it 

in two steps: In the first step we choose r = nl/3/~p(n). This yields O(n2/3/tp2(n)) 
problems with at most n2/3tp(n) lines and at most nl/3tp2(n) points each. In the 

second step we flip the role of lines and points, and choose r = nl/3/q~(log n). 
In this way we get O(n4/a/((02(n)~o2(log n))) subproblems in total, each being a 
(log 2 n tp3(log n), log n ~03(log n))-problem. The running time in these two steps is 

easily checked to be 0(n4/3). By the previous considerations, each subproblem can 
be solved in time log 2 n q~4(log n)2 ~176 and multiplying this by the number of 

subproblems, we get the total running time n4/a2~176 [] 

Theorem 3.1 has an amusing consequence, which was pointed out by Eppstein 
[Ep]. Namely, it implies the following: 

Corollary 3.3. An algorithm A can be constructed for solving the Hopcroft problem, 
such that if there exists any algorithm (in the algebraic decision tree model)for the 
Hopcroft problem with O(n 4/a) (resp. 0(n4/3)) running time, then algorithm A has 
O(n 4/3) (resp. 0(n4/3)) running time. 

Indeed, we may use few levels of the recursion to obtain O((n/log log log n) 4/3) 
subproblems of size O(log log log n). Then we exhaustively search (using the 
exponential-time decision theory of real numbers) for the algebraic decision tree 
algorithm on problems of that size having minimum complexity. We then run that 

algebraic decision tree on all the subproblems. This idea has been used in [L], 
and several applications (e.g., to minimum spanning trees) were mentioned by 
R. E. Tarjan in an invited lecture at the Second Scandinavian Workshop on 
Algorithm Theory, 1990. A useful consequence of this result might be that in 
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searching for an improved algorithm, we may restrict ourselves to the algebraic 
decision tree model. 

4. Simplex Range Searching: Linear Space 

As mentioned in the introduction, the best query time for simplex range searching 
with linear space was achieved in [M4]--O(n 1 - l/d(log log n)~ In some special 

cases the (log log n) ~ factor can be replaced by a much smaller one, 2 ~176 In 

this section we show 

Theorem 4.1. There exists a simplex range searching structure with O(n) space, 
O(n 1- l/d) query time, and O(n 1 +a) preprocessing time. 

Proof. The proof combines and somewhat refines ideas of [CW], [CSW], and 
some previous works of the author on this and related problems. 

For  technical reasons, we describe a way to construct a subset P' _ P of at 

least half of the points of P, and a simplex range searching structure for this P' 
with performance as in the theorem. In order to get a simplex range searching 

structure for the whole P, we perform the above-mentioned construction for P, 
then for P\P', etc., obtaining a logarithmic number of range searching structures 
with geometrically decreasing sizes. A query for P can be answered by querying 
each of these structures; the performance of this combined data structure is as 

required. 
We also assume that the points of P are in general position; degenerate cases 

can be handled using simulation of simplicity (see, e.g., [Ed]). 
Let us describe the components and properties of the simplex range searching 

structure. One part is a collection W0 = {Sx . . . . .  st} of t = rl TM log n full-dimen- 
sional simplices (not necessarily disjoint). For  every i = 1, 2 , . . . ,  t we also have a 
set P~ c P of cardinality at most n/2t, with Pi c sl. The P~'s are disjoint and 

together they form the above-mentioned set P'. 
For  every sz, there is a rooted tree whose nodes are simplices, with s~ as the 

root. Every nonleaf node of this tree has O(1) sons. These sons are simplices with 

disjoint interiors which together cover their father. The trees have depth at most 
q = O(log n). We note that every point of P~ is contained in exactly one leaf simplex. 
As will be apparent from the construction, leaf nodes may occur at all levels of 

the trees, not only at the deepest one. 
We let Wj be the collection of all simplices which lie at distance j from the root 

in some of the trees. 
Given the general position of P, we may assume that none of the points of P 

is contained in the boundary of a simplex of some Wj. For  a simplex s ~ W j, we 

let P(s) = P~ c~ s, where s~ is the root of the tree containing s. 
For  a hyperplane h, let K~(h) be the set of simpices of Wj intersected by h, and 

let Lj(h) be the leaf simpliees from Kj(h). Let K(h)= Kl(h ) u . . ' u  Kq(h), and 

similarly for L(h). 
In what follows we will show how to construct (in polynomial time) the 
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above-described objects, satisfying the following conditions (for every hyper- 

plane h): 

q 

IVjl = O(n), (4.1) 
j=O 

IK(h) l = O(n 1 - l/d), (4.2) 

[P(s)l = O(nl- l /d) .  (4.3) 
sEL(h) 

The simplex range searching structure will then be complemented as follows: 
with every nonleaf simplex s of the W]s, we store the total weight of the points of 
P(s), and for the leaf simplices we store the list of points of P(s). Storing the 
simplices, the tree structures and this additional information requires O(n) space, 
by (4.1). 

Given a query simplex a, the weight of points in P' n a is computed as follows: 

. 

3. 

We set a variable w to the total weight of the point sets Pi such that the 
simplices si e Wo are completely contained in a. We also set a variable cg to 
the set of all simplices of Wo intersected by the boundary of or. 
We repeat the following step until cg = ~ ,  then we output w as the answer. 
We remove one simplex s from cg. If it is a leaf simplex, we directly test the 

membership of every point of P(s) in a, and increase w by the weight of 
P(s) c~ or. If s is a nonleaf simplex, we determine the position of each of its 
sons with respect to a. We add those intersecting the boundary of a to ~, 
and we increase w by the total weight of the point sets corresponding to the 
sons completely contained in a. 

Conditions (4.2) and (4.3) guarantee that the time spent in the execution of steps 
2-3 will be O(n 1-  l/a). If step 1 is executed trivially, by inspecting all the simplices 
of ~o,  it needs time O(t) = O(n lid log n). For d > 2, this is o(n 1 - t/d); for d = 2, we 

have to use one more auxiliary data structure in order to execute this step in time 
O(n~/2). The requirements on the performance of the auxiliary structure are quite 
mild, and, e.g., a data structure described in [M4] is more than sufficient. 

Our simplex range searching structure has a linear storage, O(n ~- ~/d) query 
time, and a polynomial-time preprocessing, as is shown below. Later (in Section 

5.5), we show how to reduce the preprocessing time to O(n ~ +6). 

It remains to show that the data structure with the above-described properties 

can indeed be constructed. 
In order to gain some intuition about the construction, the reader is advised 

first to look into [M4], where a similar procedure is used to solve a simpler task. 
Here we only give a sketchy description of the basic ideas and then a formal proof, 

which might look somewhat scary at first sight. 
The problem considered in [M4] is to partition a point set into classes of a 

prescribed size, each class being contained in some simplex, and in such a way 
that no hyperplane crosses too many of these simplices. The following are the 
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basic ingredients in this simpler construction. First, it is shown that it is sufficient 

to guarantee a small crossing number only for the hyperplanes of a carefully chosen 
small collection H, in our case the ones from the guarding sets as in Lemma 2.3. 
If a (1/r)-cutting for H is constructed, then an average hyperplane of H crosses 
only a (l/r) fraction of all simplices of the cutting. In order to get a worst-case 
bound on the number of crossed simplices for all hyperplanes of H, the simplices 

are selected one by one. Each new simplex is selected as one of the simplices of a 
suitable (1/r)-cutting. This (1/r)-cutting is computed anew in each step, so that the 
hyperplanes which happen to intersect many of the already selected simplices are 
favored over the other hyperplanes. To this end, a weight function w on the 
hyperplanes is defined: the current weight of a hyperplane h during the construc- 

tion is equal to 2 ~h}, where x(h) is the number of simplices constructed so far which 
are crossed by h. Each (1/r)-cutting is computed with respect to the current weights. 
A relatively easy calculation with the weights then gives the worst-case crossing 
number bound. 

In our forthcoming construction, each step constructs not only a single simplex, 
but a whole tree-like structure of simplices. To this end we compute an efficient 
hierarchical cutting and we select one simplex from a suitable intermediate cutting 

in the hierarchy, and together with it we take all simplices from the finer levels of 
the hierarchy contained in it. The efficient hierarchical cutting is again computed 

with respect to certain current weighting of the hyperplanes of H. The weight 
function is more complicated than in the above-mentioned case. Essentially this 
is because it has to "watch" the crossing numbers in all levels of the tree-like 

structures. For the range searching data structure, the deepest (finest) level is the 
most crucial one, thus it is given the largest importance in the weight function. 
The requirements on the crossing numbers of the higher-level simplices are less 

strict, but they still have to be reflected in the weight function. An additional 
technical complication arises because the points of P need not be uniformly 
distributed among the simplices of the hierarchical cuttings used in the construc- 
tion. For  the finest-level simplices, it is not enough to guarantee a small number 

of simplices crossed by a hyperplane, but it is also necessary that the number of 
points appearing in the simplices crossed by any hyperplane is not too large. 
Another term in the weight function accounts for this. On the other hand, it could 

happen that many of the selected simplices on the deeper levels will be almost 
empty. This does not matter for the crossing-number argument concerning the 
hyperplanes of H, but it would cause problems when arguing about the crossing 

number of a general hyperplane. For this reason, we omit such almost empty 
simplices from our data structure. A more formal description of the construction 

follows. 
We begin by applying Lemma 2.3 for the set P and with r = n. This 

yields a collection f~ of guarding sets, and we let H be the union of all sets 

from (~. 
The construction of the data structure proceeds in t phases; in the ith phase 

we produce Pi, s~, and the whole tree rooted at si. 
Let us consider the situation at the beginning of the (i + 1)st phase, when 

PI . . . . .  P~, s l , . . . , s~ ,  and their trees have already been constructed. We let 
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W~) . . . . .  W~o stand for the already constructed parts of  ~F o . . . . .  W~, and K~~ 
L~~ have a meaning analogous to Kj(h), Lj(h). 

The construct ion of P~ + 1, si+ 1, and its associated tree structure in phase i + 1 

begins by defining a weight function w~ on the set H of hyperplanes.  For  h ~ H, 
we set 

w , ( h ) = e x p ~  ~ 4'-JlK~i)(h)[+ E }P(s)[ . (4.4) 

In this way we obtain  a weighted collection 5 of hyperplanes H, w~. According 

to Theorem 2.1 and the remarks  following it, we construct  E o . . . . .  Ek, an efficient 

hierarchical (1/nX/d)-cutting for H, w~, which also satisfies the proper ty  (2.1). 

The  construct ion of an efficient hierarchical (1/nl/d)-cutting guarantees that the 

size of  E~ does not exceed C~p u, where p > 4 is as in the definition of an efficient 

hierarchical cutting and the constant  C~ can be deduced from the proof. We let 
p be the maximal  index with Clp pd < t, thus ppd = t9(0 , and Ep is a (1/rp)-cutting 

for H, w~ with rp = p" = | and it consists of at most  t simplices. We define 

q (the depth of our  tree structures) by q = k - p. 

We let /~ = P\(Px w . " u  P~); thus I/~[ > n/2. Hence there exists a simplex 
(which we denote by si+ 1) of Ep containing at least n/2t points of P~. We add this 

s~+l to W~), obtaining W~+I). We select some n/2t points  o f / ~  contained in si+ ~ 
as Pi + r 

We consider the set S of all simplices in Ep . . . . .  E,  contained in s~ + 1 ; these form 

the tree structure rooted  at si+ a, only we need to eliminate some of them. We say 

that a simplex of S belonging to Ep+j (j  = 0, 1 . . . . .  q) is f a t  if it contains at least 

2 ~-j  points  of Pi+l (at least s~+l must  be fat). We put  a simplex sES belonging 

to Ep+~ to the tree rooted at s,+t iff all its predecessors (its father, father of its 
father, etc., until s~+ 1) are fat. The simplices of  depth j in this tree are added to 

~ 0 ,  forming ~ +  1). This finishes the description of phase i + 1 of the construction. 

It  is s t raightforward to check that  the construct ion can be executed in time 

polynomial  in n and r. 

By proper ty  (2.1) of the efficient hierarchical cutting used for the construction 

we have 

= O(pJ ), (4.5) 

and the total  weight w i of hyperplanes of  H intersecting each simplex of 

'V~ '+ 1)\~I'~') is 

(4.6) 

s Let us remark that in an actual implementation, the computation of the weight can be performed 
with quite limited precision; see [M3] for a more detailed analysis in a similar problem. 
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Since (4.5) implies that we add at most O(p ~) = O(n/t) new simplices in each 
of the t phases, property (4.1) follows. It remains to establish (4.2), (4.3), for which 
we use the following lemma: 

Lemma 4.2. For  every hyperplane h ~ H,  

(i) IK(h)l = O(n 1 - a/a), 
(ii) Igj(h)l = O(nl-1/d4-(q-J3), j = O, 1 . . . . .  q, 

(iii) ~,~x,(h)IP(s)l = O(n ~ - ~/0. 

Before proving this lemma we derive the required properties (4.2), (4.3) from it. 
Let h be a general hyperplane and let G c H be its guarding set. Any simplex 
intersecting h but none of its guarding hyperplanes lies completely in the zone of 
h in the arrangement of G, and thus all such simplices together contain at most 
O(n t - l/n) points of P. 

In order to establish (4.2) for h, let us consider the set F of fathers of the simplices 
of K(h); it is enough to show IFI = O(nl-X/a). Let F o be the set of simplices of F 
intersecting some hyperplane of G; by Lemma 4.2(i) we have [Fol = O(nl-X/a). 

Each of the simplices of FI = F \ F  o is completely contained in the zone of h in 
the arrangement of G. Let us consider the simplices of Fx belonging to ~'j. Their 
corresponding subsets of P are disjoint, each has at least 2 q-j points (since the 
nonleaf simplices are fat), and together they contain at most n 1 - ~/d points; hence 
their number is O(n ~ -1/a2-(a-J)). Summing up, we also get IFxl = O(n 1- l/d). 

As for property (4.3), first we consider the leaf simplices intersecting h but not 
its guarding set; since the point sets of the leaf simplices are disjoint, these contain 
O(n 1-1/n) points in total. Hence it suffices to show property (4.3) for every 
hyperplane h e H. For the leaf simplices from Wa intersected by h, we already have 
the bound O(n 1 - l/a) directly from Lemma 4.2(iii). For j < q, using Lemma 4.2(ii) 
and the fact that the leaf simplices from ~Fj contain less than 2 4 - j  points each, we 
get that there are at most O(nl-~/a2 -(q-J~) points in the leaf simplices of ~Fj 
intersecting h. The bound (4.3) follows by summation on j. [] 

P r o o f  o f  L e m m a  4.2. Clearly (ii) implies (i). Below we prove the estimate 
log wt(H) = O(log n). By our choice of the weight function, this implies that, for 
every h, 

n 1 - 1/a nl - 1 / d  

4'-JlK,(h)l + ~ [P(s)l - log wt(h) <_ - -  
j=o ,~(h) log n log n 

log w,(/-/) = O(n 1 - 1in), 

from which (ii) and (iii) follow. 
Let us investigate the increase in the total weight of the hypcrplanes of H when 

passing from phase i to phase i + 1, i.e., the relation between w~(H) and wi+ 1(/-/). 
First we show that the weight of every hypcrplane increases by at most a 

constant factor in every phase. Indeed, in view of (4.5), the weight of any hypcrplane 
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increases by a factor not exceeding 

L .j) e x p ~  ~=o 4q-JO(PJn) + ~ = exp(O(1)) 

(we have used pqd = @)(n/t) = @)(n 1- l/d/log n) and pd > 4). 

Let us now imagine that we are adding the new simplices one by one. We can 
naturally define intermediate weights (among w i and wi+ ~) of hyperplanes of H 
after adding a part of the new simplices, by replacing K~~ in definition (4.4) by 
the set of simplices intersected by h among those of W~) and the new ones added 
so far. By adding a new simplex s e qJi, the intermediate weight increases only for 
the hyperplanes intersecting that simplex. Using (4.6), we get that, for j < q, by 
adding a simplex of Wi the intermediate weight grows by a factor at most 

f j = l +  O( (exp(4~-j log n/n'-'/~) - n  TM 1)p q-j)  

_ < 1 + 0  q-JP Jlogn 

q -Jpq - j  
(4.7) 

(we have used the inequalities 1 + x < e x < 1 + 2x, the second one valid for x < 1). 
For j = q, the weight grows by a factor of fq and then also by a factor of 

1 + o(eXp  ,ogn./ njnl l/d, exp(O('P s"n'~ n)) 

We thus obtain the estimate 

s q j=O 

Using wo(H ) = O(n), [W j[ : O(tpJa), and substituting from the above estimates for 
f1 and f(s), we get the desired result w,(H) = exp(O(log n)). [] 

5. Half-Space Decomposition Schemes 

In this section we continue considering various improvements in solutions to 
geometric range searching problems, implied by Chazelle's results on hierarchical 
cuttings. We now set up an abstract framework. 
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5.1. Definitions 

Let F be a family of subsets of E a (the reader may imagine the set of all half-spaces). 

A F-decomposition scheme ~ is a function assigning to every finite subset P c E d 

a data structure ~(P), with the following components: 

�9 A collection of designated subsets of P, called the canonical sets. These subsets 

are not usually represented by lists of their points; rather the data structure 

stores only certain information associated with every canonical set (e.g., the 

number of points). We call this information the secondary structure of ~ ;  

formally this is a function S~,p defined on the collection of canonical sets of 

~(P). 

�9 An algorithm which, given a set )' e F, outputs the names of certain canonical 

sets, whose disjoint union is equal to P n )' (the decomposition of 3'). Here 
"names"  practically means pointers to the secondary structures of these sets. 6 

A basic example which can be regarded as a decomposition scheme in the above 

sense are the ran#e trees (see, e.g., [PS]). Here the family F is the family of all 

rectangular axis-parallel boxes. Numerous other examples can be obtained from 

known geometric range searching structures. 

The most direct application of a F-decomposition scheme ~ is for range 

searching with ranges belonging to F. To this end we define the secondary structure 

S~.e(C) for a canonical set C in the data structure ~(P)  as the total weight of 

points in C (e.g., if we need a F-range counting structure, the weight of C will be 

its cardinality). The total weight of points of P n 7 is the sum of the weights of 

the sets in the decomposition of P n ~, and it can be computed in an additional 

time proportional to the number of sets in the decomposition. 

Sometimes it is useful to consider a F-decomposition scheme without specifying 

the secondary structures; when we want to emphasize this point of view, we speak 

about  an abstract F-decomposition scheme. 

The idea of multilevel range searching structures is captured by the notion of 

composition of decomposition schemes. Let ~1 be an abstract Fl-decomposit ion 

scheme and let ~2 be an abstract F2-decomposition scheme. Let us define the 

secondary structure of ~1 by setting, for a set P and its canonical subset C, 

S~,,e(C) = ~2(C). In this way we naturally obtain an (abstract) F-decomposition 

scheme (where F = {)'t n )'2; )'1 e FI, )'2 ~ F2}), which we denote by ~1 ~ ~ 2  and 

call the composition of ~1 and ~2.  Indeed, given a set 7 = )'1 n ~2, )'i e F~, we 
consider the canonical sets forming the decomposition of P n )'1 given by ~I(P),  

and, for every such set C, we take the collection of canonical sets forming the 

decomposition of C n )'2 given by ~2(C). Taking these collections together, we 

obtain a decomposition of P n )'1 n )'2. For  instance, if ~ is a half-space decompo- 
sition scheme, then ~ o ~ o... o ~ ((d + 1)-fold composition) is a simplex decompo- 

sition scheme. 

6 We could give the definition in a still more abstract setting by defining a decomposition scheme 
for a set system (X, ~) (or range space in the terminology used in some computational geometry 
papers). In this paper we remain in the geometric setting. 
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Similarly a composition of an abstract Fl-decomposition scheme with a 

F2-range searching structure, obtaining a range searching structure for ranges of 

the form )'1 n )'2, )'1 ~ F1, )'2 ~ F2, can be defined. 
The effectivity of a decomposition scheme is determined by various parameters: 

How many canonical sets are there? What is the distribution of their sizes? How 
many canonical sets are used in the decomposition of a range from F? How are 

their sizes distributed, and what is the preprocessing time for building the structure 

and the running time of the decomposition algorithm? The importance of various 

parameters may depend on a specific application. In particular, if the secondary 

structures use only a constant amount of space each (as, e.g., in the above- 

mentioned example of a F-range searching structure), we are interested in the 

number of canonical sets only (in total and in the decomposition). If, on the other 

hand, the decomposition scheme is used as a "top-level" structure in composed 

(multilevel) structures, then the sizes of the canonical subsets play an important 

role. 

In order to express another common type of nesting in range searching 

structures, we also define a partial F-decomposition scheme (Fig. 1). The definition 

is similar to the F-decomposition scheme, but all canonical sets are divided into 

two subcollections: the inner sets and the remainder sets. The decomposition for 

a set P c~ )' is a collection of disjoint canonical sets, containing both inner and 

remainder sets. Each inner set of the decomposition is completely contained in 

P r~ V, while the remainder sets cover the remaining points of P c~ )' (but they may 

also contain some other points of P). The general goal is that a possibly small 

number of canonical sets is used and all the remainder sets are small. For an 

application in a data structure, it is usually necessary to use some other decomposi- 

tion schemes for the remainder sets. 

For partial decomposition schemes, it makes sense to define two types of 

composition: via inner sets, where we define the secondary structures for the inner 

sets of the first decomposition scheme (in this case an abstract partial F 1- 

( •  Inner sets 

�9 Remainder sets 

A schematic illustration of a partial half-spao~ decomposition scheme. Fi~ I. 
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decomposition scheme can be composed with an abstract partial F2-decomposi- 
tion scheme, yielding an abstract partial F-decomposition scheme with 

F := {Yl n Y2; ~1 E FI, Y2 E F2}), 

or via remainder sets, where we define the secondary structures for the remainder 
sets of the first decomposition scheme (here it usually only makes sense to compose 
abstract partial F-decomposition schemes with the same F; in particular, by 
composing an abstract partial F-decomposition scheme with an abstract F- 
decomposition scheme, we obtain another F-decomposition scheme). 

In the remainder of this section we concentrate on constructions of efficient 
partial half-space decomposition schemes, applicable in the construction of multi- 
level range searching structures. 

5.2. The Laroe Space Case 

In this section we consider a half-space decomposition scheme with O(n d) canonical 
sets, which provides decompositions consisting of O(log n) canonical sets. The 

following theorem is a rather direct consequence of Chazelle's cutting result and 
a construction of [CSW]. We formulate the result in terms of a partial decomposi- 
tion scheme, which allows us to apply it in "composed" data structures whose 

storage requirements can be adjusted between almost linear and roughly O(nd), 

while the query time varies accordingly. 

Theorem 5.1. There exists a partial half-space decomposition scheme ~c~, such that, 

for an n-point set P and a prescribed parameter r <_ n, the data structure .~(P) has 

the following parameters: the inner sets can be partitioned into O(log r) collections 

~o, ~1,- . - ,  Cgk- 1, such that ~i contains O(p i) sets of  size at most n/p i (where p is a 

constant, pk- 1 < r <_ pk). For any half-space 7, each ~ (i < k) contributes one inner 

set to the decomposition of  P n 7. There are O(r n) remainder sets of  size at most n/r 

each, and the decomposition of P n 7 contains only one remainder set. The decomposi- 

tion can be found in O(log r) time, and the data structure can be built in O(nr ~- 1) 

time. 

Proof We let H be the collection of hyperplanes dual to the points of P, and we 
compute an efficient hierarchical (1/r)-cutting E0 . . . . .  Ek for H as in Theorem 2.1. 
In order to simplify our considerations, we assume that the hyperplanes of H are 
in general position and also that the simplices of each E~ are in general position 

with respect to H (this can be achieved by simulation of simplicity, see [Ed]). We 
now regard the canonical sets as sets of hyperplanes of H. The collection of 
remainder sets consists of the sets of hyperplanes intersecting a simplex s for all 

s e E~. For  i < k, the collection ~gi contains the following sets: we consider a simplex 
s e E~ and its son s' e ~,~+ 1, and we include in cg~ the set of hyperplanes intersecting 
s and lying completely below s', and also a similar set with "below" replaced by 
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"above." The claims about the distribution of sizes of canonical sets and the 
preprocessing time are immediate from Theorem 2.1. 

In our dual setting, a decomposition of P c~ 7 corresponds to a decomposition 
of the set of hyperplanes of H lying below (or above) the point q dual to the 
boundary of ),; we speak about the "below" case only. The decomposition is 
formed as follows: let sl be the simplex of ~ containing q, then the decomposition 
contains the set of hyperplanes intersecting s~ and lying below sl + 1, 0 < i < k, plus 
the set of hyperplanes intersecting s k. This decomposition can be computed in 
O(log r) time, and it is easily verified that it has the required parameters. []  

5.3. The Small  Space Case 

Here we consider decomposition schemes whose canonical subsets have a roughly 
linear total size. In the following result we again combine an idea from [CSW] 
with the hierarchical cutting result, this time in a more complicated way. 

Theorem 5.2. There exists a partial half-space decomposition scheme 6r such that, 

for an n-point set P and a prescribed parameter r < n, the data structure S~(P) has 

the following parameters: 
There are O(r log r) inner sets with sizes summing up to O(n log 2 r), and O(r log r) 

remainder sets o f  size at most n/r each. For every half-space ~, the decomposition o f  

P n ~ consists o f  O(r ~- ~/d) sets, and if  c~ stands for the collection of  inner sets used 
in this decomposition, then 

iCil-x/a = O(n x-~/a log r). 
Ceqr 

The decomposition can be found in O(r I - lid) time. The structure can be built in time 

polynomial in n and r, and, for  r < n~ for  a certain constant ~t > O, the preprocessing 
time can be made O(n log 2 r). 

Proof. We assume that the set P is in general position. This is no loss of generality, 
since the degenerate cases can be handled using simulation of simplicity. 

Let us now apply Lemma 2.3 for P and r, obtaining a set f9 of O(r) guarding 

sets. For  a set P in general position, we may also assume that the hyperplanes 
forming ff are in general positions as well (in particular, they are all distinct) and 
that none of them contains a point of P; this can again be guaranteed by the 

simulation of simplicity. 
We now describe the construction of the partial half-space decomposition 

scheme. It consists of the data structure mentioned in the Guarding Set Lemma 
2.3 (for finding a guarding set in fr for every hyperplane) and of p = O(log r) 
components. Each component is associated with a subset c~i of the guarding sets, 
and it is used for decomposition of half-spaces whose bounding hyperplanes have 

the guarding set in ~ .  
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The construction proceeds inductively, producing one component at a time. At 

the beginning of ith stage we have a current set fq~ of guarding sets which remain 
to be treated (f~l = ~). We define a set Hi of hyperplanes as the union of the 
guarding sets of ~ .  We compute an efficient hierarchical (1/rl/d)-cutting E~ ) . . . . .  
E~ ~ for H~ according to Theorem 2.1. In what follows we drop the superscript 
(i) for the cuttings. Again, we assume that all the simplices of the Ej's are in 

general positions with respect to the hyperplanes of H i as well as to the points 7 
of P. 

We locate, in total time O(n log r), the points of P within the simplices of every 
~j. For  a simplex s ~ E~, we set P(s) = P n s. 

We say that a simplex s e Ej is fat if fP(s)] > 2k-Jn/r. We say that s is active if 

all his predecessors (i.e., his father, father of his father, etc.) are fat, and s is a leaf 
simplex if it is active and either belongs to Ek or is not fat. 

With these definitions we can describe the canonical sets in the ith component. 
The inner sets are the subsets of P contained in the active simplices. Next, we 
consider the subsets of P contained in the leaf simplices, and we partition each of 
these sets whose size exceeds n/r into subsets with sizes between n/2r and n/r. The 
resulting sets form the collection of the remainder sets in our decomposition 
scheme. 

Since the cuttings E1 . . . . .  E k have O(r) simplices in total, the ith component of 
the decomposition scheme has O(r) inner sets. The inner sets coming from each 
Ej are disjoint and have total size at most n, hence the total size of the inner sets 
of the ith component is O(n log r). The remainder sets are pairwise disjoint, and 

each has size at most n/r. Since they were defined by starting with O(r) subsets 
and then by splitting subsets of size larger than n/r into parts larger than n/2r, the 

total number is O(r). 
We are now going to define f~i - ~;, the subset for which the current hier- 

archical cutting is "good." To this end we define a weight function on the guarding 

sets. For  a hyperplane h, we let Kj(h) be the set of simplices of Ej intersected by 
h, K(h) = Kx(h) w. . .  w Kk(h ) and we define the weight of h by 

w(h) = ~ 4k-JlKj(h)l + ~  ~ IP(s)l + )_, r IP(s)l. (5.1) 
j =  1 s h) seKk(h) n 

Finally, the weight of a guarding set G e f~ is the sum of weights of its hyperplanes. 

[,emma 5.3. The average weight of a guarding set G ~ (~i is O(r 1-1/d). 

Proof. Since Ej is a (1/p~)-cutting for H~ (where pk-1 < rl/a < pk), each s e Ej is 

7 This triple application of the simulation of simplicity looks fearful, at least from an algorithmic 
point of view. We could completely avoid it, but the presentation would become much more 
complicated. 
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intersected by no more than IHil /p  j hyperplanes of H ,  Summing over all O(p ja) 

simplices in Ej, we get ~h~H, [Kj(h)l = O([Hitp jcd- 1~), and so the average value of 
!Kj(h)l is O(pXd-l~). Similarly, 

x 
h~H~ seKj(h) 

IP(s)P -lId = ~, IP(s) l~-~/dl{heHi;  h c~ s r ~}1 

< IH, I ~ iP(s)p_~/d, 
- -  PJ seEj 

and, by HSlder's inequality, 

I P(s) l x - ~/d S n~ - ~/d I Ejl ~/d = O(nl - X/dp~), 
sE~j 

so the average value of ~,s~Kjth)[P(s)[ 1-1/a is O(nl-l/d). A similar but simpler 

calculation shows that the average value of ~_.~x~<h)IP(s)l is O(n/A/d). These bounds 

imply the lemma. [] 

We define ~i (the "good"  guarding sets for the ith component) as the ones 

whose weight exceeds the average at most twice; thus c~ i contains at least half of 
the elements of ffi. We set ff~+ l = (r The whole construction finishes when 
ffi + ~ = ~ .  For  every hyperplane h from the union of the guarding sets of f~i, the 

bound on the weight function implies 

t K i ( h )  ] = 4 -  r J)O(r 1 - 1/d), (5.2) 

IP(s)l = O(n/H/d), (5.3) 
s E Kk(h) 

IP(s)I 1-1/a = O(n i-1/a log r). (5.4) 
sEK(h) 

Now let y be a half-space with a bounding hyperplane h, whose guarding set 
G belongs to (r We define the decomposition of P n y. The inner sets are those 
corresponding to all active simplices completely contained in y, whose father is 
not contained in ?. The remainder sets are the ones corresponding to all leaf 
simplices intersected by h. It is straightforward to check that all sets in this 

decomposition are disjoint and that the whole P :~ ? is covered. 
We now want to establish the bounds concerning the decomposition. It is 

sufficient to show the following three estimates for every hyperplane h (recall that 
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L(h) denotes the set of leaf simplices intersected by h): 

Ig(h)l : O(r l -  x/•), (5.5) 

sEL(h) 

[P(s)[ 1-1/d = O(n i-lId log r). (5.7) 
s~K(h) 

Indeed, from (5.5) and the fact that each simplex has a bounded number of sons, 
we infer the bound for the number of inner sets in the decomposition and also a 
bound for the running time of the algorithm for finding the decomposition. Then 
(5.5) and (5.6) imply the claim about the number of remainder sets in the 
decomposition, and (5.7) implies the bound on ~ c ~ } C I  1- t/d in the theorem. 

The proof of (5.5) and (5.6) from (5.2) and (5.3) is almost identical to the proof 
of (4.2), (4.3) from Lemma 4.2, and we leave it to the reader. As for (5.7), this 
condition holds for every h e Hi (it is just (5.4)). Let h be a general hyperplane with 
a guarding set G ~ f~i. If a simplex s e K(h) intersects some hyperplane of G, then 
its contribution to the estimated sum is already accounted for. Hence it suffices to 
consider the contribution of the set K i of simplices of K(h) contained in the zone 
of h. Each of the n/r TM points in that zone is contained in O(log r) simplices of 
K(h), so ~__a~K, I P ( s ) l  = O(n log r/ri/d). Using IKll_< IK(h)l = O(r I -i/u)and Hrlder's 
inequality, we get ~.a~r, [e(s)l 1-1/a = O(n x- 1/a(log 01-x/a). This gives (5.7). 

We have almost finished the proof of Theorem 5.2. The claim about poly- 
nomiality of the preprocessing time is obvious from the construction. Finally, all 
the steps of the construction can be executed in time which only depends on r 
(polynomially), except for the computation of the guarding sets and the location 
of the points in the simplices, but these two steps can both be performed in total 
time O(n log 2 r) (spending O(n log r) time for each of the O(log r) components of 
the decomposition scheme). For a sufficiently small r, the n log r term dominates 
the polynomial in r. This finishes the proof of Theorem 5.2. [] 

If we did not care about the preprocessing time, we could set r = n in Theorem 
5.2, and use it directly as a device for building multilevel range searching structures 
with almost linear space. We can improve the preprocessing (at the expense of 
space) by composing partial half-space decomposition schemes with smaller values 
of r, in a constant number of levels. 

Corollary 5.4. There exists a half-space decomposition scheme 6e o such that, for 
an n-point set P, the data structure 6eo(P ) has the following parameters: 

The sum of sizes of the canonical sets is O(n log ~ n). I f  c~ is the collection of 
canonical sets used in the decomposition of P c~ ?, then I c~l = O(n 1-1/~) and 

ICI 1- x/a = O(nl-  X/aOog n)~ 
Ceqr 
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The decomposition can be found in O(n 1- l/d) time. The structure can be built in time 
O(n 1 + 6). 

Proof First we note that by setting r = n, we can indeed obtain a half-space 

decomposition scheme from Theorem 5.2 (the remainder sets are singletons, so we 

can add the appropriate ones to the decompositon as inner sets). 

Now let 6 a be the (abstract) partial half-space decomposition scheme from 

Theorem 5.2, with a particular choice of the parameter r: for an n point set P, we 

choose r = n ", where ~ is as in Theorem 5.2. We set ~1 = 6~, and we define ~i+1 

as the composition of 6 e with @i via remainder sets. We observe that ~k(P) is a 

partial half-space decomposition scheme whose remainder sets have size at most 
ntl -')~; hence by choosing a large enough constant for k, the remainder sets of ~k 

have size at most n 6' for a prescribed constant 6' > 0. We finally compose this ~k 

via remainder sets with the half-space decomposition scheme mentioned at the 

beginning of this proof, obtaining a half-space decomposition scheme. All the 

parameters of this decomposition scheme correspond to the corollary, as may be 

verified by an elementary calculation. [] 

5.4. Example of  a Multilevel Data Structure 

For illustration let us use the above result for constructing a simple multilevel 

data structure. Given a set S of n segments in the plane, we want to preprocess 

it in such a way that, for a query line ,~, we can count the number of segments 

intersecting 2 quickly. Suppose that all endpoints of the segments are distinct, and 

that the segments are nonvertical. 

Let L denote the set of left endpoints of the segments of S, and, for x ~ L, let 

e(x) denote the right endpoint of the segment with the left endpoint x. For a 

suitable half-plane decomposition scheme 9 ,  we first construct the data structure 

~(L), and, for each of its canonical subset C _ L, we define the secondary structure 

S~.L(C) as a suitable half-plane range counting structure for the set e(C)= 
{e(x); x ~ C}. In this way we obtain the desired data structure. A query is answered 

as follows. For  a query line 2, we let 7 be one of the half-planes defined by 2. Using 

~(L) we find a decomposition of L c~ 7 into canonical sets. For every canonical 

set C in this decomposition, we use the secondary structure to count the number 

of points of e(C) contained in the half-plane complementary to ~,. The sum of these 

counts over the canonical decomposition gives the number of segments with the 

left endpoint inside V and the right endpoint outside V- The other possible case 

(with left and right exchanged) is handled symmetrically. 

Let us now consider a specific instance of the above construction. For the 

half-plane range counting structure, we take one with O(n) space and O(x/n ) query 
time (Theorem 4.1). For  the half-plane decomposition scheme, let us choose the 

scheme obtained from Theorem 5.2 by setting n = r. The space occupied by the 

resulting data structure is proportional to the sum of sizes of the canonical sets, 
which is O(n log 2 n). The query time is proportional to the sum of square roots 



178 J. Matou~ek 

of the sizes of the sets in the decomposition, which is O(x//n log n). With these 

parameters, the data structure may require a rather large preprocessing time; it 
can be traded for query time using Corollary 5.4. 

Note that in the above construction, we use essentially a composition of a 
half-plane decomposition scheme with a half-plane range counting data structure, 
only this composition is formally more complicated (it uses a bijection linking the 
top and bottom level structures together). 

The results of this section can also be applied in a similar manner in more 
complicated examples, as are those in [AS]. Each new level of such structures now 
brings only a polylogarithmic overhead in space and query time. At present we 
do not consider it useful to extend our formal framework to enable a sufficiently 
general precise statement of this result. 

5.5. Reducing the Preprocessing Time for 
Linear Space Range Searching 

In order to show that the preprocessing time in Theorem 4.1 can be reduced to 
O(n 1 +~) (from the polynomial bound derived in Section 4), we use one more type 
of a partial simplex decomposition scheme, whose existence directly follows from 

the results of [M4]: 

Lemma 5.5. There exists a partial simplex decomposition scheme 9-, such 

that, for an n-point set P and a parameter r < n 1 -~ for some fixed 6 > 0 (which 
can be chosen), the data structure ~--(P) has the following parameters: There are 
O(r) inner sets, and O(r) remainder sets of  size at most n/r each. The decomposi- 
tion of P n tr for every simplex tr consists of  O(r 1-1/d) inner and remainder sets, 
and it can be found in O(r I-1/d) time. The structure can be built in time 

O(n log r). 

Let us remark that the decomposition scheme in this lemma has better 
parameters in some respects than that of Theorem 5.2, but it does not say anything 
about the distribution of sizes of the inner sets in the decomposition, and it can 

only be built for r not too close to n. 
We use a standard trick to reduce the preprocessing in Theorem 4.1 to O(n 1 +~): 

we consider the partial simplex decomposition scheme 3- from the above lemma, 
with r = n 1-6' for a suitable t~' > 0. We compose it via remainder sets with the 

simplex range searching structure constructed in the proof of Theorem 4.1 (in 
other words, for every remainder set C of the data structure f ( P )  we build that 
simplex range searching structure and store it as the secondary data structure 

Sa-e(C)). Finally, we define the secondary structures for the inner sets of J-(P) as 
their weights, which yields a simplex range searching data structure. Its space and 

query-time requirements remain asymptotically the same as before, but the 

preprocessing time is only O(nl+~). 
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6. Simplex Range Searching: Tradeoff 

We begin by constructing a simplex range searching data structure with a 

polylogarithmic query time. 

Theorem 6.1. Let P be an n-point set in E d. The range searching problem for P 

with the ranges being intersections o f  p half-spaces, 1 < p < d + 1, can be solved 

with space O(na/log d-p+ 1), query time O(log v n), and preprocessing time 

O(na/loga-p+ t -~ n). 

Proof. We proceed by induction on p. For p = 1, we consider the (abstract) partial 

half-space decomposition scheme s from Theorem 5.1, and we set the parameter 

r to n/log a/~a- 1~ n; hence the size of the remainder sets will be at most log df(d- 1~ n. 

For every inner set, we store its weight as the secondary structure, and, for every 

remainder set C, we define the secondary structure as the range searching structure 

from Theorem 4.1 (this is a composition via remainder sets in the terminology of 

Section 5). We obtain a half-space range searching structure occupying space 
O(nr d- 1). When answering a query, we spend O(log r) = O(log n) time by compu- 

ting the decomposition corresponding to the scheme ~ ,  and another 

O((n/r)l - l/d) = O(log n) 

time by solving the subproblem for the single remainder set in that decomposition. 

Finally, the preprocessing will be O(nr d- 1 + rd(n/r)l +~') = O((n/log n) d log ~ n). 

For p > 1, we assume that a range searching structure ~p  with parameters as 

in the theorem has already been constructed for p. In order to constrct ~p+ L, we 

again take ~ with the same r as above and define the secondary structures for 

the remainder sets in the same way, but for the inner sets we use ~p  as the 

secondary structures (composition via inner sets). It remains to estimate the 

performance of ~p. Using the information from Theorem 5.1 about the distribu- 

tion of sizes of the inner sets of Ar we get that the storage is 

~ PdY(n/PJ)d ( nd ) 
/=o l ~  j) - 0 ioga_~+ 1 n ' 

the preprocessing time is again a factor of logbn bigger, and the query time is 

O(logP n). []  

Now we are ready to establish the general tradeoff: 

Theorem 6.2. Let P be an n-point set in E d and let m be a parameter, n < m < n d. 

The range searching problem with the ranges being intersections o f  p half-spaces, 
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1 < p < d + 1, can be solved with space O(m), query  t ime 

and preprocessin9 t ime O(n 1 +~ + re(log n)~). 

Proof.  First let us consider the case m > n ~§ We take the partial simplex 

decomposition scheme ~Y- as in Lemma 5.5, we define the secondary structures for 

the inner sets as the weight of these sets, and we let the secondary structures for 

the remainder sets be the range searching structures from Theorem 6.1. The space 

occupied by the resulting range searching structure can be written as 

O(r(n/r)a/loga- p + 1(n/r)) ' 

and since this should be equal to m, we get r a-  1 = nd/(m iogd-p+ l(n/r))" The query 

time then will be O(r 1 - l/a logP(n/r)). Expressing this in terms of n and m, we obtain 

the claimed bound. The preprocessing time bound is straightforward. 

It remains to handle the case when m is close to n, where r in the above 

construction would get too close to n to apply Lemma 5.5. Here we build the 

simplex range searching structure in the same manner as in the proof of Theorem 

6.1, only we choose a suitably smaller value of r, namely, the one giving space m, 

i.e., satisfying nr n- 1 = m. We omit the calculations for this case. [] 

7. Conclusion 

In various results of this paper we have approached the known or suspected lower 

bounds for the considered problems more closely than the previously known 

solutions did. However, certainly not all of the presented solutions can be regarded 

as final or completely satisfactory. We point out some open problems. 

For  Hopcroft 's  problem, the main challenge is to establish a lower bound, 
hopefully ~r'~(n4/3). As for the upper bound, the 20(l~ factor originates in the 

following manner: we are unable to solve the problem in a constant number of 

stages with the present method, essentialy because a nonconstant time is spent for 

location of every point in the cutting. Every stage contributes a constant multi- 

plicative factor to the "excess" in the number of subproblems. This is because we 

lack some mechanism to control this, similar to Chazelle's method (he can use the 

number of intersections of the lines as the control device, but we flip the roles of 

lines and points at every stage, and such a control device is missing in this 

situation). 

In the range searching area, one problem is to improve the preprocessing times, 

either for the linear-space simplex range searching structure or for the small space 

decomposition scheme. However, there seems to be a deeper issue here. 
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In our linear-space solution to the simplex range searching problem, we used 
tree-like hierarchies of simplices with a constant branching degree, but with a 
global control over the number of simplices intersected by a hyperplane. This data 
structure has two shortcomings (which do not matter in the simplex range 
searching problem): we cannot (so far) make the hierarchy a single tree (it has 
about n TM roots which are rather unrelated to each other), and while we can 
achieve an optimal number of simplices crossed by a hyperplane (crossing number) 
in the bottommost level and we have some control over the higher levels, we have 
not enforced an optimal crossing number for these levels. Both these features 
prevent a successful application of this construction in multilevel data structures, 
and we had to use another method (basically that of [CSW]) for this purpose. 
This method gives a nice hierarchy and almost optimal decompositions, but only 
for half of the guarding hyperplanes. This means that in fact a logarithmic number 
of data structures are needed, and what is worse, it does not directly give a simplex 
decomposition scheme. Again, rather similarly to Hopcroft's problem, it seems 
that in order to obtain a simplex decomposition scheme with optimal parameters, 
some new global invariant (playing a role similar to the number of intersections 
in Chazelle's cutting construction) to control the quality of the decomposition 
scheme at all levels is necessary. 

All the above vague statements have a single goal-- to point out that although 
the simplex range searching problem and related questions may look almost 

completely solved, a really satisfactory solution may still await discovery. 
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