
. Autonomous Robots, 2. 147-161 (1995)
@ 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Range Sensor Based Outdoor Vehicle Navigation, Collision Avoidance
and Parallel Parking

DIRK LANGER AND CHARLES THORPE
The Robotics Institute, Carnegie Mellon University, Pinsbugh, PA 15213

Abstract, Detecting unexpected obstacles and avoiding collisions is an important task for any autonomous mobile
system. This article describes GANESHA (Grid based Approach for Navigation by Evidence Storage and Histogram
Analysis), a system using sonar that we implemented for the autonomous land vehicle Navlab. The general hardware
configuration of the system is shown, followed by a description of how the system builds a local grid map of its
environment. The information collected in the map can then be used for a variety of applications in vehicle navigation
like collision avoidance, feature tracking and parking. An algorithm was implemented that can track a static feature
such as a rail, wall or an array of parked cars and use this information to drive the vehicle. Methods for filtering
the raw data and generating the steering commands are discussed and the implementation for collision avoidance,
parallel parking and its integration with other vehicle systems is described.

Keywords: obstacle detection, collision avoidance, parallel parking, navigation,grid map

1 Introduction

The autonomous land vehicle Navlab has already suc-
cessfully been driven on roads and cross country. Dif-
ferent sensors are used to perceive the structure of the
environment and navigate the vehicle under a variety of
conditions as described for example in (Thorpe et al.,
199 I). The sensors mainly employed so far were colour
video cameras and the ERIM 3-D laser range finder.
Detecting obstacles and taking an appropriate decision
is an important task for any mobile system in order to
navigate safely through its environment. Obstacle de-
tection is possible using colour video images or ERIM
range images. However, owing to the data aquisition
process and the required intensive image processing,
these types of perception systems are generally not very
well suited for a quick reaction to unexpected obstacles.
Especially in the case of collision avoidance, a sen-
sor is needed that can supply the relevant information
fast with little data processing overhead and interact
with actuators at the level of the vehicle controller (see
also (Amidi, 1990)). Sensors that satisfy these require-
ments are for example sonars, infrared sensors, pulsed
1-D laser range finders or microwave radar.

Compared to light based sensors, sonars have the ad-
vantage that they do not get confused by transparent or
black surfaces. On the other hand, the wavelength of
ultrasound is much larger than the wavelength of light,
i.e. usually around 4 mm as compared to 550 nm for
visible light. Therefore, unless the transducer faces the

reflector surface in a normal direction, only rough sur-
faces or edges can reflect sound waves. However, most
real world outdoor surfaces almost always have a type
of surface roughness that enables a sonar to detect the
object. We therefore decided to use sonar sensors for
the collision avoidance system of the autonomous land
vehicle Navlab. The following sections describe the
sonar system and its performance in an outdoor envi-
ronment. Some novel results were obtained in using the
system for vehicle navigation by itself and by integrat-
ing it into other vehicle navigation systems. The system
is configured in such a way that more sensors can be
added easily in the future. These sensors do not nec-
essarily have to be sonars but can be any other type of
point range sensor. In the future we intend to integrate
at least one other type of point range sensor into the sys-
tem, most probably laser or radar based. For a proof
of concept, the ERIM laser range finder has already
been suciessfully integrated as part of a cross-country
navigation system. In this case, however, obstacles can
only be detected by first processing 3-D range images
(refer to Ganger, Rosenblatt, & Hebert, 1994)).

2 Hardware Configuration

Sonar sensors have already been used successfully
for indoor mobile robots as described in (Borenstein
& Koren, 1990; Elfes, 1986; Moravec, 1988) and
(Leonard & Durrant-Whyte, 1990). An outdoor envi-
ronment, however, adds some additional constraints

. . . .__ - - . .

148 Langer and Thorpe

I V I

t Direction
of motion

. 'World

"\r 'Wor ld

Vehicle L Pos.

Van

Fig. 1. Sensor configuration.

on the type of sensor that can be used. Specifically the
sensor should meet the following requirements:
0 Robust against moisture and dust particles.
a Robust against noise from vehicle engine and other

sound sources.
Therefore an open type electrostatic transducer such

as the Polaroid cannot be used. Instead a closed type
piezoceramic transducer operating at a frequency of
80 kHz was selected. A detailed description of this
sensor is given in (Magori &Walker, 1987). The high
operating frequency makes this sensor fairly robust
against acoustic noise, while still providing an oper-
ating range up to 6 m. The beam angle of the sensor
is approximately 5", i.e. at the 3 dB intensity fall off
from the major axis. Based on these characteristics, a
total of five sensors was chosen in order to provide a
good area coverage in front of the vehicle with a rea-
sonable spatial resolution. The sensors are mounted
on a guide rail such that their position and orientation
can be freely adjusted. A typical sensor arrangement is
shown in Fig. 1. Certain sensor configurations or en-
vironments can lead to acoustic interference between
individual sensors. Therefore the hardware provides
the ability to choose the exact trigger time of each sen-
sor. In most circumstances the sensors are mounted
such that they point away from each other. In this case
all sensors are triggered at the same time. At present
a measurement rate of 9 Hz is used, which is based
on the following calculations: For very good reflectors
we can assume a maximum operating range of 8 m,
which corresponds to a time of flight of sound in air
of approximately 50 ms. Thus echoes are considered
during a receiving period of T,, = 50 ms after trigger-
ing the sensor. In order to avoid measurement errors

due to multiple echoes, only the range of the first echo
is measured. The sensors are retriggered after an ad-
ditional wait period of Twait = 60 ms, which ensures
that all detectable echoes from previous pulses are at-
tenuated below the detection threshold. Thus the total
cycle time T = T,, + Twait = 110 ms.

Each sensor measurement is tagged with the position
of the vehicle. At present the Navlab uses dead reckon-
ing to estimate its position relative to some initial point.
The distance travelled is provided by an optical encoder
on the drive shaft and vehicle orientation in 3-D space
is provided by the gyroscope of an inertial navigation
system. The measurements are combined to give the
x- y position and orientation of the vehicle with respect
to world coordinates. For the position tag of a sonar
measurement only the following three parameters are
used: x , y and q, where q = yaw (Fig. 1).

The hardware of the sonar system consists of an in-
terface module which triggers the sensors and measures
the time of flight to the first echo returned. The inter-
face module is accessed via VME bus from a 68020
based CPU. This processor runs as a slave of the ve-
hicle controller processor under a real time operating
system and takes care of data aquisition, conversion
to range, position tagging and proper timings. The
map building and tracking algorithms are presently
implemented on a Sun SPARC station which commu-
nicates with the vehicle controller via ethernet. Ether-
net communication time uncertainties can be neglected
because of the comparatively long cycle time of the
sonar system. The hardware configuration is shown in
Fig. 2.

3 LocalGridMap

This sensor system can now be used to build a local
grid map. The grid map is local because it contains
only i>formation about the immediate surroundings of
the vehicle. The vehicle position is kept at a fixed point
in the map. As the vehicle moves, objects in the map
are moved from cell to cell relative to vehicle posi-
tion. Once an object falls outside the map boundary it
is discarded and the information is lost. Using just a
local map has the advantage that error accumulation
owing to dead reckoning is kept small, since only rel-
ative movements are considered. On the other hand
the disadvantage is that information is lost and thus no
global information is available. However, if desired, se-
quences of the output from the local map could be com-
bined and included in a larger global map. At present

Range Sensor Based Vehicle Navigation 149

Sun 4/65 Sun 4/65
SPARC SPARC

Sun 4/65
SPARC

Fig. 2. Hardware architecture.

MC 68020
(Controller)

........... ~

Collision

sonar yo
MC 68020 Actuators
(Sonar) INS

m
......

2

‘Master CPU Shared Slave CPU

avoidance v. Pos.

Motion Control

YO

Map Origin - xm

10.2 m

30.2 m

10.2 m

0.0

-22.2 m 7

Fig. 3. Local grid map

the area covered by the local map is from -8.2 m to
8.2 m along the x-axis and from -22.2 m to 70.2 m
along the y-axis. Each grid cell has a resolution of
0.4 m along the x-axis, and a variable resolution of
0.4 m, 2 m or 4 m along the y-axis, depending upon
distance from the vehicle. Hence the map consists of
41 x 101 cells (see Fig. 3). The reason for taking such

a coarse resolution for each cell is that most applica-
tions of the system do not require a high accuracy and
the size of the highest resolution grid cell is small with
respect to the size of the vehicle. As objects get fur-
ther away from the vehicle, a coarser map resolution
is adequate. In general, sensor readings become less
accurate as the object is further away. However, coarse
resolution map information is sufficient to plan ini-
tial navigation maneuvres. As the object moves closer,
navigation needs to be more precise and therefore map
resolution is increased.

3.1 Grid Representation

This grid map representation can be used with any
obstacle detection sensor such as sonar, laser (single
spot or scanned), radar or stereo. Currently only an
array of sonar sensors is used as described in section
2. This sensor does not always provide an accurate
measurement. For the particular sonar sensors cho-
sen for example, the measurement accuracy is about
f 1 cm. However, depending on the environment, the
sensor may also deliver noisy results. The reason lies
in the poor angular resolution of the sensor. Echoes
may be detected from an object at a far range in the
main lobe or from a good reflector at closer range in a
side lobe. Depending on the relative signal strengths
and movement of the sensor, the range reading may os-
cillate. A similar effect can also happen when an echo
reflected multiple times is received. The sonars have a
fairly small maximum range. However, in anticipation
of future additions of longer range sensors based on

150 Langer and Thorpe

radar or laser, the maximum forward coverage of the
map is large at multiple resolutions.

Each cell has a set of parameters or annotations as-
sociated with it, which are described below:

1.

2.

3.

4.

Object Type. This parameter is used to indicate if
the object in that cell was seen at the current sensor
reading, or if it was seen at a previous reading. If
it was seen only at a previous reading, then the
object type indicates that it must have moved to
that particular cell due to vehicle motion only.
The parameter is also used to denote which type
of sensor detected that particular object if several
different types of sensors are connected (e.g. sonar
or radar).
Position. Indicates the x - y position of the object
with respect to vehicle position.
History. This parameter counts the number of
times an object was detected in a particular cell.
Curvature Vector: Is precomputed for each cell and
denotes the range of steering arcs that would avoid
a collision between the vehicle and an object in that
cell.

The resolution of the grid is fairly coarse and hence
a position parameter (xobj, Yobj) is kept to avoid gross
error accumulation when objects are transformed in the
map. Only one object is kept per grid cell.

Measurement uncertainty is part of the grid cell rep-
resentation and any object detected within an area cov-
ered by a particular cell is taken to belong to the same
object.

3.2 Grid Transformation

Following, a short description of object transforma-
tion within the map is given: Vehicle position and ori-
entation are kept constant within the map. Therefore
objects in the map move with respect to the vehicle.
The vehicle's positioning system returns vehicle posi-
tion and orientation with respect to a global frame of
reference (x , y) that is determined at the time of initial-
ization of the system. Since we are interested only in
the movement of objects with respect to the vehicle's
coordinate system (x,,, , y,,,), the appropriate transfor-
mation is obtained by using the position increments
along the axis (Sx,Sy) and orientation Sq. The to-
tal distance traveled is given by 1 8 s (Eq. (7)). As
the map remains local, errors due to dead reckoning
are reduced and the positioning system can be initial-
ized independently by using this method. Hence if the
vehicle moves from a position in a plane (XI, y ~ , ql)

Fig. 4. Object transformation in local gnd map

to a new position (x2, y2, cpz), then an object in the
map at position (x , ~ , y,,,~) is transformed to position
(x,,2, y,,,~) as follows (refer to Fig. 4):

Position and orientation increment:

Sq = bp2-q1, 6s = J S x 2 + 6 y 2

SX, , ,~ = Sx cos q 2 + Sy sin cpz
Sy,2 = -ax sin q 2 + Sy cos q2 (1)

New object position (vehicle moving forward):

x,2 = x,,,~ cos Sq - yml sin 6~ - Sxm2

ym2 = X m l sin6q + Y m l COSSC~ - 6 y m 2 (2)

After the position of objects in the map is updated,
new objects detected by the sensors are added. A sen-
sor measures the range R to an object. Position and
orientation of each sensor on the vehicle are known.
Hence, using the transformation 'sensor position 4

vehicle position map', a new object is placed in a
cell in the map (refer to Fig. 5) . If that particular cell
is already occupied, then only the cell parameter 'His-
tory' is updated as described in 3.3, otherwise all cell
parameters are updated.

3.3 Filtering

The map parameter History is used for differentiating
between moving and stationary objects and for filter-
ing the data. History can also be used to evaluate
the confidence that a particular cell is occupied by an
object. A higher value of History indicates a higher
confidence. In the case of collision avoidance for ex-
ample it is desirable to slow down the vehicle if there
is an obstacle in front and to resume driving if the ob-
stacle moves away, like a car or person. Hence objects

Range Sensor Based Vehicle Navigation 15 1

Rel.Velocity v

4

Fig. 5. Sensor to object transformation.

in the map in a sensor’s field of view are deleted if a
sensor does not detect them anymore. However, an
object will not be deleted immediately, but only after
it was not seen by the sensor for a certain time period.
This time period is defined by a parameter called Life
Time, which is given in terms of the number of cy-
cles of the update sequence (Fig. 7). We can assume
that the cycle period is approximately constant. The
parameter History is therefore updated at time t as
follows:

0 If an object is detected, then
1. If cell is empty, History, = Life Time
2. Otherwise, History, = History,-l + 1
3. Decay Amplitude = 0

0 If no object is detected by the sensor and History is
not equal to zero, then
1. Calculate Decay Amplitude initially, i.e. if it is

zero:
Decay Amplitude = History,Life Time
Decay Amplitude is calculated only once at the
beginning of a decay sequence. It ensures that
each object disappears after the same amount of
time, i.e. Life Time, has passed.

2. History, = History,-, - Decay Amplitude

Since different types of sensors may have different
field of views, a field of view constraint is applied de-
pending on which type of sensor detected a particular
object. Each map grid cell is labeled as to whether it

1 .o

0

-- max.

Distance D
I

I I)
1 .O 8.0 [m]

Distance D L 1 .O 8.0 [m]
..

D m l l x safety Dist. D,

Fig. 6. Velocity control.

is within the field of view of a particular sensor. In the
case of sonar sensors, it is not very useful to consider
the field of view of side looking sensors. Because of
vehicle speed and driving direction, objects detected in
these areas are seen only for a short time and i t would
not be possible to apply a proper decay. Therefore here
the decay algorithm is applied only to objects appear-
ing in the area directly in front of the vehicle. Moving
objects appearing in this area are also of most concern
for safe vehicle navigation. Therefore the velocity of
the vehicle is reduced as a function of range to the clos-
est object detected in this area. The velocity is set to
zero if the closest range is less than a certain minimum
safety distance. The decay algorithm ensures that the
vehicle resumes driving when the obstacle moves away.
Figure 6 shows a plot of the percentage of vehicle ve-
locity set versus closest range. D,, corresponds to
the maximum sensor operating range. The gain (I is
calculated as

(3)

The parameter History can also be used to elimi-
nate spurious echoes such as the ones returned by rain
droplets. In this case an object is supposed to be actu-
ally preseht only if it has been seen consecutively for a
certain number of cycle times. In practice, a threshold
of Life Time + 2 has worked well. Since rain droplets
return echoes at random ranges as time progresses,
these returns can then be filtered out and will not appear
as ghost objects in the map. Of course this procedure
does not work in a heavy downpour since the number
ofrain drops in the environment just becomes too large.

The parameter Object Q p e is used to denote the
sensor type that detected the object, i.e. for example
sonar or laser if these sensor types are connected. In
addition, it also indicates the type of operation that

2 a = v-/(Dm - D,)

152 Langer and Thorpe - Placenew Update Velocity control,
objects in map ~i~~~~ Tracking and other operations

Fig. 7. Update sequence for local grid map

was performed on an object in a particular grid cell.
These operations can be transformations as mentioned
before, or filtering operations like the ones described in
the following sections. Object Type is also used to tag
certain objects for tracking as described in section 6.

Figure 7 shows the cycle for map operations.
At present, each grid cell is associated with only four

parameters. The map structure allows an extension to
other annotations in the future, such as object charac-
teristics or triggers. In this way the local grid map could
easily be integrated into an Annotated Map such as the
one described in morpe & Gowdy, 1990).

Using a histogram based method provides fast map
building for real time outdoor mobile robot naviga-
tion. This has also been shown in a similar approach
for sonars in (Borenstein & Koren, 1990). Probability
based methods such as described in (Moravec, 1988)
and (Elfes, 1986) provide more accurate and detailed
map data. This is achieved by using many data samples
and a high resolution grid. However, it is computation-
ally more expensive and therefore not as well suited for
fast navigation. If only few data samples are available
as in our case, the performance of a probability based
method will degrade correspondingly and a histogram
method will be more efficient.

In general, for the environment considered, a low
resolution map and the ability to detect objects are suf-
ficient.

4 Obstacle Avoidance

The data collected by the grid map can now be used
for autonomous vehicle navigation functions. A basic
navigation function is the avoidance of obstacles in the
environment of the vehicle.

The problem here consists of finding a range of arcs
that the vehicle can safely travel on without colliding
with an obstacle. In order to represent arcs, curvature
is used instead of radius since curvature space is con-
tinous whereas radius space is not. For each cell in the
grid map as described in section 3, a range of arcs can
be determined that would make the vehicle collide with

1 U

Fig. 8. Arc evaluation for collision avoidance.

an object in that cell. Computing this range of arcs for
each grid cell and merging the results from the entire
map will determine the final range of arcs that the ve-
hicle can safely drive on and those that would lead to
a collision. In order to simplify the merging of results
from each individual grid cell, the total range of steer-
ing arcs is linearly discretized into a set of 31 arcs, i.e.
from maximum curvature left to maximum curvature
right. The number of arcs was chosen to be 31 as it
can be easily represented as a 32 bit integer number for
efficient computations.

Figure 8 shows the set of discretized arcs that are
evaluated for collision avoidance.

The range of inhibited arcs for each grid cell can be
precalculated as follows: The centre of the obstacle is
taken to be at the mid point of the cell. Since it is un-
desirable to pass an obstacle too closely, the obstacle is
assumed to fill the entire grid cell and in addition is ex-
panded by a safety margin M,. A particular expanded
object blocks not just any arc that it touches, but often
a range of nearby arcs as well, due to vehicle size. We
therefore calculate the boundaries of the range of arcs
that would make the vehicle collide with the object.

Range Sensor Based Vehicle Navigation 153

I

Fig. 9. Precalculating arcs

If the expanded object is inside the arc, the rear in-
side wheel tracks the innermost path and this defines
the widest part that needs to be checked for collision
(Fig. 9(a)). If the object is outside the arc, the outside
front corner swings widest and sets the collision limit

Hence, in the first case the left bound radius of the
inhibited steering R~~ is given by the arc op with
respect to Object 1 as shown in Fig. 9(a). We therefore
use the geometry shown for Object 1 and obtain (see
also Appendix A), R L b = -(Jm - OSV,) (6)

obtain,

@ L b = J - = d -

- (0.5Vw)z + ~ 7 ; - V i
(5)

The left bound of the inhibited steering arcs R L h is then
given

* xo =
(Fig. 9(b)). 2(O.5Vw - X D)

@ L b = (X z + y 2) / (2 X L) X L = Xobj - Ms
Y L = Yobj + Ms

.'. R L ~ = d L b -k 0.5Vw C U r v L b = I / R L b (4)

where (Xobj , y o b j) are the coordinates of the centre of
the object and V, is the width of the vehicle.

In the second case the outside front comer point will
hit an obstacle first in a collision and the geometry
shown for Object 2 in Fig. 9(b) is used. RL, is then
given by the circle that passes through points C and D
with its centre (-xo, 0) on the x-axis. If the distance
from vehicle position to the front of the vehicle is V F ,
then the coordinates of point C are (OSV,, VF). The
coordinates of point D are X D = Xobj - M, and Y D =
)'ob, - hfY. Using the equation of the circle, we then

Note that in the above equation R L b is negative for the
given geometry as it indicates a left turn. Radius is
then again converted to curvature.

In a similar way the right bound radius (curva-
ture) of the inhibited steering arcs R R b (C u n J R h) can
be calculated (see Fig. 9 (b)).

For each grid cell we now have the bounds on the
inhibited steering arcs C U t v L b and C U N R b . The set of
3 1 discrete steering arcs can be represented using a 32
bit number or bitvector. Each bit represents a steering
arc and a value of 1 indicates permission to drive on
the respective arc; a bit value of 0 indicates that the re-
spective arc is inhibited. Bit 0 (LSB) is always ignored
here since only 31 bits are needed. Given the bounds
on the inhibited steering arcs, the bitvector represent-
ing permitted and inhibited arcs for each grid cell can

154 h n g e r and Thorpe

be calculated and stored. An example of a bitvector
is given in Eq. (7). Here the zero curvature direction
(straight ahead) and the three extreme left curvatures
are inhibited. All other directions are permitted.

2

p = 0001111111111110111111111111111 (7)

During actual program runtime, only the bitvectors
for each obstacle cell need to be ANDed and the resul-
tant bitvector indicates permitted and inhibited arcs for
all obstacles in the vehicles environment, i.e.

Ini ti a1 1 y :

For each cell i :

If the vehicle moves through an obstacle field along a
desired direction such as one given by a feature tracker
(see section 5) , an unobstructed direction closest to the
desired direction is selected from the resultant bitvec-
tor. In certain circumstances this procedure can lead to
oscillations in the vehicle steering, especially if the spa-
tial distribution of obstacles changes ra’pidly or when
approaching a wall (Fig. 8). To prevent this from hap-
pening, a mechanism is used that keeps the vehicle
turning in one direction, either left or right, once a
direction has been selected in order to avoid an obsta-
cle. The mechanism resets when no more obstacles

are present or if the difference between desired steer-
ing direction and the new selected steering direction
is less than 10% of the number of discrete arcs, i.e. 3
arcs here. The condition for the latter case indicates
that there is little danger of oscillations as desired and
selected steering direction are very close.

In addition the vehicle is prevented from switching
from extreme left turns to extreme right turns and vice
versa unless an intermediate turn is selected in between.

These mechanisms were implemented as a result of
observations of the behaviour of the algorithm in sim-
ulation and in practice on the real vehicle.

5 Object Tracking

Another basic navigation function is the tracking of fea-
tures in the environment and using this information to
determine a path that the vehicle can drive. The follow-
ing paragraphs describe a method by which the vehicle
uses its sonar sensors to drive on a path parallel to a
feature such as a wall, railroad track or parked cars.

5.1 Feature Selection and Path Determination

Figure 10 shows data collected in the local grid map
when tracking cars parked on the right hand side of
the road. As can be seen in the figure, the side of
the cars facing the road is fairly well detected. Usu-
ally sonar does not detect smooth surfaces very well
because of specular reflections. However, in most real

“r, ,,

Fig. 10.
scene.

Searching for a parking space: (a) Approaching gap, (b) Detecting gap, (c) Preparing vehicle for parking maneuvre, (d) Typical street

Range Sensor Based Vehicle Navigation 155

world environments such as this one, there are n a per-
fectly smooth surfaces. In this case the sonar receives
echo returns from comers and projections like door
handles, mirrors, wheels, etc.

The vehicle is to drive on a path parallel to the
curve formed by the parked cars, keeping a constant
distance from the cars (usually around 2.5 m). There-
fore the parameters of that curve have to be calculated
first, using the data from the local grid map. For rea-
sons of computational simplicity and decreased noise

sen. A11 computations are performed with respect to
the vehicle origin which is at a fixed position in the
grid map. Data points for the line fit are selected by
choosing only data points that appear in a specific area
in the grid map. Thus for the environment represented
in Fig. 10, only the right half of the map is searched for
data points. The Position parameter gives a data point
in the map in terms of vehicle coordinates. Since the
direction of vehicle motion is along the y-axis, a line
parallel to the vehicle would have a slope of m = 00

(Fig. 3; Note that this coordinate system is defined by
the vehicle's position system). To avoid this incon-
venience, the vehicle coordinate system is rotated anti-
clockwise by 90". All following computations are now
performed with the transformed coordinates y =
and x = y o l d . Therefore the selected data points can
now be represented as a discrete function y , = f (x ;) .
The sonar sensors sometimes return a spurious echo.
These outliers generally degrade the performance of a
least square fit. Hence a median filter is applied first
along xi on the data points given by y i = f (x ;) . The
filter is applied twice, using window sizes three and
five points. The two parameters of the straight line
y = mx + c can now be found by using standard
formulae for a least square fit for n data points (x i , y i) :

I sensitivity a least square fit of a straight line was cho-

n n

Also, the standard error of estimate SO provides a
measure of how well the data points could be fitted and
is given by:

The data trajectory parameters m and c are stored
and updated during each system cycle (Fig. 7). The line

Path

y \

Fig. I I . Path parameter transformation.

can now be used by the controller to steer the vehicle
(section 5.3). To ensure a consistent steering response,
the line fit also has to be checked for validity. It may
happen that the sensors do not detect any features for
some driving distance. One reason in the case of parked
cars for example may be a gap between cars and no re-
flectors on the road edge. Here the line fit will produce
no valid output. Therefore if less than four data points
are available, the output of the line fit is ignored. In this
case the old path parameters are used and the vehicle
will continue driving in the previously calculated di-
rection until it encounters features again. Since the old
path parameters are referenced to the vehicle position
they still have to be updated to compensate for vehicle
movement during one system cycle. The position and
orientation increment during one system cycle is known
from Eq. (1). Hence m is transformed as follows:

bp = atan(m), mnew = tan((p - 6 ~) (IO)

In order to obtain Cnew, point P (x l , y1) is selected on
the path where it intersects the y-axis (for convenience)
as shown in Fig. 1 1. Using Eqs. (1) and (2) the coordi-
nates of P in the new coordinate system (x l n e w , yInew)
can be calculated. Hence cMW can be calculated by

(1 1) Cnew = Y ~ n e w - m n e w Xlncw

5.2 Path Filtering

The method described above worked well in an en-
vironment that provided good reflectors and continu-
ous smooth features. However, especially in the case
of parked cars, problems arise when gaps are encoun-
tered or reflectors that do not belong to the feature be-
ing tracked are nearby. A typical situation is shown in

156 Lunger and Thorpe

Vehicle
Path

A

2

I 1

B
t
.bPe A

(a)

Fig. 12. Removing outliers from least square fits: (a) Map display, (b) Qpical corresponding scene.

(b)

Fig. 12. In the least square fit sequence 1 4 , only line
fits 1 and 4 track the feature. Type A data does not be-
long to the feature being tracked, type B data is due to
corner effects at a gap and type C data is a noisy range
measurement. Q p e B data can lead to an undesired
least square fit as shown by line fits 2 and 3. In or-
der to reduce these errors, obtain a smoother steering
response and make the system more robust against out-
liers, the values obtained from the least square fit are
filtered and path parameters are updated by merging
new information with past values.

An initial noise reduction is achieved by selecting
data points only from a small window in the grid map:
As we have some knowledge about the environment
the vehicle is driving in, we can predict up to a cer-
tain degree where we should look for valid data in
the map. This means in practice that only data points
within a certain distance from the data trajectory are
taken. This procedure removes outliers of type A as
shown in Fig. 12. Furthermore a point is selected only
if it is within a certain distance and direction from pre-
viously selected adjacent points. This method removes
outliers of type C and ensures that most points are al-
ready grouped close to a line segment.

Again a straight line is fitted using Eq. (8). For each
distance 6s; travelled, we obtain a new value of gradient
m;. The change in gradient is then given by

6mi = m; - mi-1 (12)

and 6rp, is the corresponding change in vehicle orien-
tation during that interval. Since not all type B data is

removed, there still may remain a problem with sud-
den large changes in orientation as shown by the least
square fit sequence 1-4 in Fig. 12.

These sudden changes in orientation basically ap-
pear as median noise. They can be filtered out by putting
current and past readings of 6m into a buffer of N val-
ues, passing a median filter across and then averaging
over N values. The buffer is implemented as an ordered
set,

Initially all buffer elements are set to zero, which
means that it is assumed that the vehicle so far has
driven exactly parallel to the data trajectory. During
each update sequence, all elements are shifted right
by one, the last element being discarded and the cur-
rent result replacing the first element. Median filter-
ing is achieved by replacing element 6rnj-r with a
median value, where 2k + 1 is the maximum possi-
ble window size of the filter. Since values towards the
right in the buffer represent increasingly earlier points
in timddistance, successive applications of a median
filter can be achieved by replacing elements Srnj-k- ,

with the filtered value, where r is the discrete shift in
timddistance. The new value m k r ’ of the path param-
eter is then computed, compensating also for change in
vehicle orientation during the averaging interval,

. Range Sensor Based Vehicle Navigation 157

mpah is then updated by merging the current and the
new value for mpah using a weighted average,

In a similar fashion as described above, the path pa-
rameter C P , ~ is updated. The weight w and the number
of values N control how close the path parameters r n p d

and cPa& should follow the actual data points. If a lot of
noise is present in the data, the path parameters should
be influenced only slightly, whereas if little noise is
present, the data should be followed closely. An es-
timate of the noise is given by the standard error SO

from Eq. (9) and w and N are adjusted accordingly;
i.e. small w and N for a small standard error and large
w and N for a large standard error. The actual values
were determined empirically. As a result the steering
of the vehicle is now much smoother. From mpah we
can also obtain an estimate of the road curvature Y over
a certain distance As travelled, using

1

where As = Asi, A 4 y = -
As ’

A+ = atan(miA’J) - atan(mFih) i- CAqi (16)
N

A drawback of the method is its slow reaction to a
relatively sudden change in road direction. This effect
is also due to the short range of the ultrasonic sen-
sors and the fact that almost no echoes are received at
large angles of incidence. In the case of features being
tracked on the right side, the system is able to han-
dle curves to the right since data points slowly move
away from the vehicle and the vehicle can follow with
a slight delay. On the other hand a curve to the left
poses a problem because by the time the vehicle rec-
ognizes that it should change direction, it has usually
come already too close to the feature and has no space
left to make a sharp left turn anymore.

For this reason a monitor is added which monitors a
particular area for objects towards the right hand side
of the vehicle as indicated in Fig. 3. If objects are
detected in this area, then the bitvector representing
inhibited arcs is checked for each occupied grid cell as
described in section 4. If the resultant bitvector does
not permit an arc as commanded by the path tracker,
the obstacle avoidance procedure overides the tracker.
In this case, the closest permitted left turning radius is
selected. This ensures that any part of a feature being
tracked to the right of the vehicle will be avoided. In
general therefore, the following condition has to be true

for all occupied grid cells i in the monitored area, using
curvature:

Altogether, the system performs well when tracking
a wall or a feature that changes curvature smoothly.
When tracking parked cars it does not perform as well
in curves and fails when the road curvature becomes
sharp. The reason here is that often parked cars are not
very well aligned and even on straight road stretches
parked at different angles to each other. The maximum
range of the sensors is simply too short to detect these
configurations well enough. Figure 10 shows the vehi-
cle tracking parked cars, detecting a gap and preparing
for reverse parking.

5.3 Path Tracking

The actual path tracking procedure used by the sys-
tem is based on the pure pursuit tracking described
in (Amidi, 1990). The goal to be achieved is to drive the
vehicle on a path parallel at a constant distance Dref to
the data trajectory given by m and c. Since the Navlab
cannot move in any arbitrary direction from a given
position, a point on the vehicle has to be selected
that will be kept at distance D,f from the data trajec-
tory. As the vehicle uses Ackerman steering, the front
part of the vehicle experiences the largest displacement
when the steering angle is changed. Therefore we do
not use the vehicle position which is at the centre of
the rear axle, but the position of the front part of the
vehicle to be kept at Dmf. Using data trajectory param-
eters m and c, the spatial displacement E and angular
displacement j? for points PO or Po’ from the desired
path can be calculated (Fig. 13):

j? = atan(m) (17)

since vehicle orientation is always fixed in the map.

E = Dact - Dref
Dact = Y F . COS j?, Y F = m * X F + c (18)

where X F is the distance between vehicle position and
the point selected at the front part of the vehicle as
reference for path tracking.

If the vehicle is now displaced by E from the desired
path, the pure pursuit method is used to drive the vehi-
cle back onto the desired path. In this method, an initial
goal point is selected on the desired path by the look
ahead distance L (Fig. 14). An arc is fitted between

_. . -- .

158 Langer and Thorpe

Fig. 13. Path tracking parameten.

Goal 1 Goal 2 Goal 3

Fig. 14. Pure pursuit.

the current vehicle position and this goal point. The
vehicle now moves a small distance during one sys-
tem cycle and then a new goal point is selected. If the
cycle time is small enough, a smooth path is executed
that drives the vehicle back onto the desired path as
shown in Fig. 14. The path tracking procedure works
for data trajectories on either side of the vehicle. Only
Dref changes in sign.

The steering radius R during each cycle time can
then be calculated by:

L R = - -
2 sin 4

C#I = p + 6, (19)
E S = asin- L

If the vehicle drives on a narrow road with objects
on both sides, keeping DRf at a fixed value may not
be appropriate as the vehicle may come too close to
the other side. In this case we obtain DactR and DactL
from the right and left side respectively and can use
this information to calculate a desired path that lies in
the center between objects on both sides.

6 Parallel Parking

With the help of the basic navigation functions de-
scribed in sections 4 and 5 , the vehicle can now search
for a parking gap in a row of parallel parked cars
and park itself autonomously by using the procedures
described in this section.

The vehicle starts out in tracking mode, driving par-
allel at a constant distance to a row of parked cars (refer
to section 5.1) and searches for a parking gap as shown
in Fig. 10. If the sideways looking sensors do not see
any new objects that can be tracked, it is assumed that
the vehicle has reached the edge of a potential gap. The
procedure for parking the vehicle is then as follows
(Fig. 15):

Since the current'sensors cannot see the curb or the
end of the gap, the vehicle's driving direction is pre-
dicted from the orientations of the parked cars passed
previously (Fig. 15(a), Position B-C). When the ve-
hicle drives past the next car, it detects the end point
of the gap. Both gap endpoints are tagged as shown
in Fig. 15 and the algorithm checks now whether there
are any obstacles present within the gap and whether
Gap length LG is sufficient.

Since parking is done via a fixed path trajectory
shape, the minimum length of the gap depends on sev-
eral constant parameters and is given by Eq. (20) . The
vehicle is then aligned in parallel to the car in front of
the gap (Position C-D).

LG = 2 R*,, sin CY

Der + 0.5 WG - 2Rmin(1 - COS CY) + tan CY - Y P (20)

where WG is the width of gap (average width of a car),
R ~ " is the minimum turning radius of the vehicle and CY

is a given constant. Here CY = 30". The values selected
for Y p and CY ensure that the side of the vehicle will
not hit the car parked in front of the gap. Refer to
Appendix A and Eq. (22) for a derivation of the above
equation.

If there is a lateral offset between the distance D,r
that the tracker kept from parked cars and the current
lateral distance of the vehicle with respect to the car in
front of the gap, then this offset is corrected by mov-
ing the vehicle an equal distance through two opposite
equal arcs (Fig. 15(a), D-E). This means the vehicle
changes its heading by an angle 8 on the first arc and by
an angle -8 on the second arc. Hence vehicle orienta-
tion is the same at position D and E. The angle depends

.. . -. . -. . . .

Range Sensor Based Vehicle Navigation 159

+ G

Fig. 15. Parallel parking.

on the lateral offset E and can be calculated by,

8 = acos 1 - - (ZER)
(see also Appendix A, substituting 6 for a!).

The vehicle stops now and then drives straight in
reverse until the vehicle position is within distance Y p
of the gap edge labelled ‘s’ (E-F, see Fig. 15(b)).

For reverse parking, first the minimum turn radius
Rfin to the right is commanded until the vehicle head-
ing has turned through an angle -a!. Then the vehicle
drives straight again in reverse for adistance AS. Since
a! is a given constant for reasons explained previously,
AS determines how close the vehicle is parked to the
curb and is given by (see Appendix A),

(22) sin a!
Currently, the curb cannot be sensed and therefore

the width of the gap WC is assumed to be an average of
the width of a typical car. Following, the minimum turn
radius - R,.,,jn to the left is commanded until the vehicle
heading has turned through an angle a! (Position F-G).

The vehicle now reverses its direction and in the
last step, moves forward straight again until the gap

(Drcf(+ OSWG - 2Rhn(l - COSCY)
AS =

F

+

between the vehicle and the car in front is approxi-
mately one metre (G-H). The vehicle has now parallel
parked.

During the reverse driving part of the parking pro-
cedure the sensors are not used and the vehicle path
is computed from the data points previously collected
in the map. In the last part of the parking procedure
(G-H), the sensors are used again in order to detect the
vehicle parked in front of the gap.

7 Results and Conclusions

Parking or docking maneuvres are important au-
tonomous vehicle tasks. The system described has been
successfdly used to drive the Navlab parallel to parked
cars in a city street, detect a parking space and au-
tonomously park the vehicle. The sonar system also
drove the Navlab on a dirt road next to a railroad track,
using the railroad to guide the vehicle. The sonar is suc-
cessfully integrated into two other systems that drive
the Navlab. The first one is YARF (Kluge & Thorpe,
1990), which drives the robot on city streets. YAW
uses colour vision for road following but cannot detect
if obstacles obstruct the vehicle’s path and thus can-
not adjust the velocity accordingly. The sonar system

160 Lunger and Thorpe

takes over that task and sends velocity commands to
YAW via the TCX toolkit (Fedor, 1993), using TCP/IP.
The sonar is also integrated into the new architecture
DAMN (Distributed Architecture for Mobile Robot
Navigation) of the Navlab. The outputs of several mod-
ules that can drive the vehicle are used here to decide on
an optimum path for the vehicle (Payton, Rosenblatt,
& Keirsey, 1990). The sonar module sends votes for
a number of discrete steering arcs, voting against arcs
.that would result in a collision with an obstacle and
voting for obstacle free arcs. The system then selects
an obstacle free path to a goal point. Communication
is again facilitated via the TCX toolkit.

The sonar system proved to work reliably in a variety
of different situations. There were no major problems
with false returns or sensor noise that could not be dealt
with. One reason is most probably that an outdoor en-
vironment like a road is generally less cluttered than
most indoor environments where autonomous vehicles
are used. Outdoor objects tend to be large, having usu-
ally enough comers and projections that reflect ultra-
sound well. Care has to be taken in avoiding reflections
from the ground. This problem can be solved in most
cases by mounting the sensor high enough above the
ground and pointing it slightly upward. The system can
also be easily integrated with other vehicle navigation
systems or adapted to other vehicles.

A drawback of using ultrasound in air is the limita-
tion of range and data update due to high attenuation
and low speed of sound. At low vehicle speeds this fact
does not matter that much and the system works very
well for slow speed maneuvres and parallel parking.
However, the current system design is not limited to
using only ultrasonic sensors.

We have successfully integrated a laser scanner
(ERIM) into the system. Here obstacles are detected
from 3-D laser range images and stored in thegrid map.
Votes for discrete steering arcs are then computed and
sent to the arbitrator in DAMN. This system has been
used in cross country navigation, driving the Navlab at
speeds up to 3 m/s over a distance of 1 km (Langer,
Rosenblatt, & Hebert, 1994).

Currently, we are planning to integrate a millimeter
wave radar system with a range upto 200 metres for
driving on highways and in city traffic.

Acknowledgments

This research is partly supported by contracts from
DARPA, titled “Robot System Development and

Testing” (monitored by TACOM) and “Perception for
Outdoor Navigation” (monitored by ETL), and partly
supported by a grant from NSF titled “Annotated Maps
for Autonomous Underwater Vehicles”. The authors
would like to thank Valentin Magori and Siemens AG
for providing some of the sensors and helpful informa-
tion. Many thanks to Martial Hebert for his advice and
comments.

Appendix A

Calculation of parameters for pure pursuit and obstacle
avoidance:

cl

A D C

- -
Triangle ABC is equilateral, since AC = BC = R

Y Y cos4 = -
R L

sina = -

:. Rsinu = Lcose

cos 4 L
j R = L . - = - (2) sin24 2sin4

sin4 = 5 L = 4- L

From (2),

(3)

Additional calculation of parameters for parallel

From triangle BDC,
parking (Eqs. (20), (21) and (22) in section 6):

R - x
R

cosff = - + x = R (l -COSCY) (4)

Range Sensor Based Vehicle Navigation 161

Calculation of dS in sequence F-G and part of gap
length in Eq. (20), section 6:

References

Ax

Ax Ax
sin CY tan CY

dS = - Ay = - (5)

Amidi. Omead 1990. Integrated Mobile Robot Control. Technical
Repon, Robotics Institute, Camegie Mellon University.

Borenstein. J. and Koren, Y. 1990. Real-time Obstacle Avoidance
for Fast Mobile Robots in Cluttered Environments. In Proc. /€€E
Conference on Robotics andAutomation, Cincinnati, pp. 572-577.

Elfes. A. 1986. A Sonar-Based Mapping and Navigation System. In
Pmc. /E€€ Conference on Robotics and Automation.

Fedor. C. 1993. TCX, Task Communications User's Manual. Internal
Repon, The Robotics Institute, Carnegie Mellon.

Kluge, Karl and Thorpe Charles. 1990. Explicit Models for Robot
Road Following. Vision and Navigation: The Carnegie Mellon
Navlab. Kluwer Academic Publishers. Chapter 3.

Langer. D., Rosenblatt, J.K., and Hebert, M. 1994. A Reactive
System For Off-Road Navigation. In Proc. IEEE Conference on
Robotics and Automation.

Leonard, J. and Durrant-Whyte, H. 1990. Application of Multi-
Target Tracking to Sonar-based Mobile Robot Navigation. In Proc.
IEEE Conference on Decision and Control.

Magori, V. and Walker, H. 1987. Ultrasonic Presence Sensors with
Wide Range and High Local Resolution. In /€€E Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-34(2).

Moravec, H.P. 1988. Sensor Fusion in Certainty Grids for Mobile
Robots. A I Mugazine, 9(2):61-77.

Payton, David W., Rosenblatt Kenneth, and Keirsey, David M.
1990. Plan Guided Reaction. I€EE/ournal on System, Man and
Cyberneficr.

Thorpe, C. and Gowdy. J. 1990. Annotated Maps for Autonomous
Land Vehicles. In Proceedings of DARPA Image Understanding
Workshop, Pittsburgh PA.

Thorpe. Charles, Heben, Martial. Kanade. Takeo, and Shafer,
Steven. 1991. Toward Autonomous Driving: The CMU Navlab.
Part I-Perception. In IEEE Erpen.

Dirk Lnnger received the Dipl.-lng. degree in Electrical Engineer-
ing in 1989 from the Technical University in Munich, Germany.
From 1989 to 1992 he was a Visiting Scholar at Camegie Mellon
University, working on ultrasonic sensors for robot navigation and
side scan sonar for underwater mapping. Currently he is a PhD
student in Robotics at Camegie Mellon University.

His current research focuses on the design and development of a
radar sensor for automated on-road dnving.

Other research interests include robot navigation, perception and
vehicle control.

Charles Tborpe is curren~-,r a Senior Research Scientist at the
Robotics Institute of CMU. His interests are in computer vision,
planning, and control of robot vehicles operating in unstructured out-
door environments. He directs the research on the Navlab project,
which is developing mobile robots that use perception and mapping
for outdoor autonomous driving. The Navlab project has long been
supported by ARPA, for developing techniques for driving in haz-
ardous environments. Recently, the Navlab project has expanded to
include work for the US Department of Transportation, for studies
of crash avoidance technology for highway driving. and for building
the AutomaGd Highway System.

Dr. Thorpe is also involved with robots for planetary exploration
and for underwater mapping. He received his PhD in Computer
Science from CMU, in 1984. and his BA in Natural Science from
North Park College in Chicago.

,

