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1 Range-wide variation in local adaptation and phenotypic plasticity of 

2 fitness-related traits in Fagus sylvatica and their implications under 

3 climate change 

4 Running title: range-wide multi-trait variation

5 Keywords: phenotypic variation, species distribution models, beech, acclimation, trait co-

6 variation, common gardens

7 ABSTRACT 

8 Aim: To better understand and more realistically predict future species distribution ranges, it is 

9 critical to account for local adaptation and phenotypic plasticity in populations’ responses to 

10 climate. This is challenging because local adaptation and phenotypic plasticity are trait-

11 dependent and traits co-vary along climatic gradients, with differential consequences for fitness. 

12 Our aim is to quantify local adaptation and phenotypic plasticity of vertical and radial growth, 

13 leaf flushing and survival across Fagus sylvatica range and to estimate each trait contribution to 

14 explain the species occurrence. 

15 Location: Europe

16 Time period: 1995 – 2014; 2070

17 Major taxa studied: Fagus sylvatica L. 

18 Methods: We used vertical and radial growth, flushing phenology and mortality of Fagus 

19 sylvatica L. recorded in BeechCOSTe52 (>150,000 trees). Firstly, we performed linear mixed-

20 effect models that related trait variation and co-variation to local adaptation (related to the 

21 planted populations’ climatic origin) and phenotypic plasticity (accounting for the climate of the 

Page 1 of 64 Global Ecology and Biogeography

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

22 plantation), and we made spatial predictions under current and RCP 8.5 climates. Secondly, we 

23 combined spatial trait predictions in a linear model to explain the occurrence of the species. 

24 Results: The contribution of plasticity to intra-specific trait variation is always higher than that 

25 of local adaptation, suggesting that the species is less sensitive to climate change than expected;  

26 different traits constrain beech’s distribution in different parts of its range: the northernmost edge 

27 is mainly delimited by flushing phenology (mostly driven by photoperiod and temperature), the 

28 southern edge by mortality (mainly driven by intolerance to drought), and the eastern edge is 

29 characterised by decreasing radial growth (mainly shaped by precipitation-related variables in 

30 our model);  considering trait co-variation improved single-trait predictions. 

31 Main conclusions: Population responses to climate across large geographical gradients are 

32 dependent on trait x environment interactions, indicating that each trait responds differently 

33 depending on the local environment. 
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47 1. INTRODUCTION

48 Climate change is having a major impact on the structure, composition and distribution of forests 

49 worldwide (Trumbore et al., 2015). Accordingly, numerous models have projected significant 

50 range shifts of forest tree species towards higher latitudes and elevations (Urban et al., 2016). 

51 However, to date, the two most important processes in the response of tree populations to a rapidly 

52 changing climate, local adaptation and phenotypic plasticity (Savolainen et al., 2007; Aitken et 

53 al., 2008), are not systematically considered by species distribution models (Valladares et al., 

54 2014; Duputié et al., 2015; Richardson et al., 2017). Phenotypic plasticity enables a given 

55 genotype to express different phenotypes in response to changing environments, while local 

56 adaptation produces new genotypes with a greater ability to cope with the new environment. The 

57 two mechanisms are ubiquitous in natural populations, although their respective importance is 

58 considered to vary extensively through time and across species ranges (Reich et al., 2016; Des 

59 Roches et al., 2018). To persist under rapid climatic change, organisms with short generation times 

60 can take advantage of evolutionary responses and phenotypic plasticity (Scheepens et al., 2018), 

61 whereas organisms with long generation cycles will rely predominantely on phenotypic plasticity 

62 (Fox et al., 2019). To better understand and more realistically predict future species distribution 

63 ranges, it is therefore critical to identify and quantify the respective importance of local adaptation 

64 and phenotypic plasticity in the response of local populations to a changing climate.

65 From an ecological perspective, fitness can be associated with several phenotypic traits 

66 which directly affect survival and reproduction, creating a fitness landscape (Laughlin, 2018) that 

67 allows them to be used to bound species ranges (Benito-Garzón et al., 2013; Stahl et al., 2014). 

68 From a biogeographical perspective, higher fitness can be associated with higher probabilities of 

69 occurrence of a species in a given environment (Jiménez et al., 2019). Fitness-related traits vary 
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70 across large geographical gradients, mainly depending on how natural selection drove differences 

71 among populations in the past. For instance, tree height is generally greatest at the core of a species 

72 range and decreases towards its margins (Purves, 2009; Pedlar & McKenney, 2017). Climate-

73 driven mortality commonly increases towards the driest part of a species range, which is related to 

74 drought-induced stress conditions (Benito Garzón et al., 2018). The onset of flushing phenology 

75 tends to be delayed towards high latitudes (Duputié et al., 2015) as a consequence of genetic 

76 adaptation to late frost and fluctuating photoperiod (Way & Montgomery, 2015). Moreover, traits 

77 tend to co-vary across climatic gradients (Laughlin & Messier, 2015). A conspicuous example is 

78 the demographic compensation found between survival and growth near range margins (Doak & 

79 Morris, 2010; Benito-Garzón et al., 2013; Peterson et al., 2018), and further delimitation of species 

80 ranges based on demographic approaches (Merow et al., 2017). New climatic conditions can result 

81 in maladaptation of some populations, which may change intra-specific patterns of trait variation 

82 and co-variation across geographical gradients, and eventually, species ranges. For example, 

83 increasing temperatures at high-latitude or high-elevation range margins are likely to produce 

84 higher growth rates, but they can also induce higher mortality owing to late frosts (Vitasse et al., 

85 2014; Delpierre et al., 2017). Hence, species ranges are likely to be delimited by the interaction of 

86 multiple traits and their responses across environmental gradients (Benito-Garzón et al., 2013; 

87 Stahl et al., 2014; Enquist et al., 2015).

88 Common gardens or provenance tests provide us with the necessary experiments to 

89 quantify phenotypic plasticity and local adaptation of fitness-related traits in response to climate 

90 (Mátyás, 1999). Models based on reaction norms of phenotypic traits using measurements 

91 recorded in common gardens show that: (i) geographic variation in populations’ responses to 

92 climate is more strongly based on phenotypic plasticity than on local adaptation (Benito Garzón et 
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93 al., 2019); (ii) phenotypic variation can strongly differ among traits, in particular for survival of 

94 young trees, growth, and flushing phenology - traits that are directly related to fitness and typically 

95 measured in common gardens (Benito Garzón et al., 2011; Valladares et al., 2014; Duputié et al., 

96 2015; Richardson et al., 2017); (iii) as a consequence, predictions of future species ranges are 

97 likely to be strongly influenced by the combined response of different fitness-related traits to 

98 climate (Laughlin, 2018), but this structured combination of intra-specific multi-trait variation 

99 defining species ranges has not been explored with empirical data. 

100 Fagus sylvatica L. (European beech, henceforth “beech”) is a widely distributed deciduous 

101 broadleaf temperate tree. In some parts of its range, beech has a late flushing strategy to avoid late 

102 frosts, which has a generally detrimental effect on tree growth (Gömöry & Paule, 2011; Robson et 

103 al., 2013; Delpierre et al., 2017). Beech is currently expanding at its northern distribution edge, 

104 whereas it experiences drought-induced radial growth decline and increasing mortality at its 

105 southern edge (Farahat & Linderholm, 2018; Stojnic et al., 2018). The extent to which this pattern 

106 will continue in the future depends on how the combination of several fitness-related traits will 

107 influence the species’ response to new climates.

108 Here, we propose a new modeling approach that quantifies local adaptation and phenotypic 

109 plasticity of four major phenotypic traits related to fitness (vertical and radial growth, young tree 

110 survival, and flushing phenology) and their interactions, to delimit species ranges under current 

111 and future climates. The four traits studied are expected to be under natural selection and show 

112 high heritability (Etterson, 2002; Delpierre et al., 2017). Radial and vertical growth are directly 

113 related with biomass and thus reproduction (Younginger et al., 2017), and the timing of flushing 

114 can affect fitness through reproduction success and growth by delimiting the growth season 

115 (Chuine, 2010). We use the phenotypic measurements recorded in the BeechCOSTe52 database 
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116 (Robson et al., 2018), the largest network of common gardens for forest trees in Europe,  covering  

117 virtually the entire distribution range of the species. Our specific objectives are: (i) to quantify 

118 range-wide patterns of phenotypic plasticity and local adaptation in growth, young tree survival 

119 and flushing phenology; (ii) to identify interactions among the different traits and the extent of 

120 their geographical variation in local adaptation and phenotypic plasticity; (iii) to discuss how these 

121 fitness-related traits delimit species ranges, and (iv) to better understand species ranges under new 

122 climate scenarios and the role of trait variation in shaping the future species range.

123

124 2. MATERIAL AND METHODS

125 We calibrated two types of linear mixed-effect models using a combination of trait measurements 

126 from common gardens where seeds coming from provenances from different origins have been 

127 planted (provenances) and of environmental variables that we obtained for these common gardens 

128 and provenances. The first model type (one-trait models) used single traits as response variables 

129 and environmental data as explanatory variables. The second model type (two-trait models) added 

130 a second trait as co-variate, which allowed the interaction of both traits to be accounted for in the 

131 model. Finally, to quantitatively estimate the contribution of each trait to explain beech range, we 

132 performed a binomial model using the occurrence of the species as response variable 

133 (presence/absence) and the spatial predictions of all traits as explanatory variables. 

134

135 2.1. Trait measurements 

136 We analyzed total tree height (vertical growth), diameter at breast height (DBH; radial growth), 

137 young tree survival and flushing phenology measured on a total of 153,711 individual beech trees 
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138 that originated from seeds collected from 205 populations (hereafter referred to as “provenances”) 

139 across Europe and planted at 38 common gardens (hereafter “trials”) (Figure 1). Briefly, the seeds 

140 were germinated in greenhouses and planted in the trials at an age of two years. Plantations were 

141 carried out in two consecutive campaigns, the first campaign (comprising 14 trials) in 1995 and 

142 the second one (comprising 24 trials) in 1998 (Robson et al., 2018). This experimental design 

143 allowed us to attribute the effect of the climate at the trials to phenotypic plasticity and the effect 

144 of the climate at the provenance origin to genetics, including both the genetic structure and 

145 adaptive potential of the provenances. Young tree survival was recorded as individual tree survival. 

146 Leaf flushing was transformed from observational-stage score data (qualitative measurements that 

147 slightly differ among trials) to Julian days by adjusting flushing stages for each tree in every trial 

148 using the Weibull function (Robson et al., 2011, 2013).

149

150 2.2. Environmental data

151 We used the EuMedClim database that gathers climatic information from 1901 to 2014 gridded at 

152 1km (Fréjaville & Benito Garzón, 2018). The climate of the provenances was averaged for the 

153 period from 1901 to 1990, with the rationale that the seeds planted in the common gardens 

154 stemmed from trees growing during that period (Leites et al., 2012). To characterize the climate 

155 of the common gardens, we calculated average values for the period between the date of planting 

156 (either 1995 or 1998) and the year of measurement of each trait for 21 climate variables 

157 (Supporting Information Table S1.2, Appendix S1).In addition, we used the latitude and longitude 

158 of the provenance and of the trial as proxies for the photoperiod and continentality, respectively 

159 (used in our flushing phenology models). 
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160 Phenotypic predictions under future climates were performed using the representative 

161 concentration pathway (RCP 8.5) in GISS-E2-R from WorldClim 

162 (http://www.worldclim.org/cmip5_30s) for 2070. We deliberately chose only this pessimistic 

163 scenario because for long-lived organisms such as forest trees it makes little difference whether 

164 the projected situation will be reached in 2070 or some decades later. 

165

166 2.3. Statistical analysis

167 2.3.1. Spatial autocorrelation analysis 

168 We performed a Moran’s I analysis to check for spatial autocorrelation of vertical and radial 

169 growth, young tree survival, and leaf flushing. Correlograms were used to check autocorrelation 

170 variation with distance. We used the Moran.I function of the ‘ape’ package (Paradis et al., 2018) 

171 and the ‘Correlog’ function of the ’pgirmess’ package (Giraudoux et al., 2018). 

172 2.3.2. Environmental variable selection

173 To avoid co-linearity and reduce the number of environmental variables to use in models, we 

174 performed two principal component analyses (PCA), one for the climate variables related to the 

175 provenance site and one for the climate variables related to the trial site. For tree height, DBH and 

176 young tree survival, we considered 21 variables for the provenance and 21 variables for the trial 

177 (Supporting Information Figure S1.3, Appendix S1); whereas for leaf flushing, we only included 

178 the temperature-related variables as well as latitude and longitude (a total of 20 variables), because 

179 leaf flushing is known to be mainly driven by them (Basler & Körner, 2014). 
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180 The retained variables after the PCA screening were combined in models containing one 

181 variable to characterize the climate of the provenance and one variable to characterize the climate 

182 of the trial (Supporting Information Table S1.3, Appendix S1). 

183

184

185 2.3.3. One-trait and two-trait mixed-effect models 

186 We used linear mixed-effect models to analyze the response of individual traits (one-trait models) 

187 and the co-variation between two traits (two-trait models) to climate. We included the climate at 

188 the provenance and the trial site as previously selected (Supplementary Table 1), the age of trees, 

189 and for the leaf flushing model also latitude and longitude as fixed effects. The trial, blocks nested 

190 within the trial and trees nested within block and trial, were included as random effects to control 

191 for differences among sites and for repeated measurements of the same trees. The random effect 

192 of the provenance was also included in the model. The common form of the one-trait model was:

193

𝑙𝑜𝑔(𝑇𝑅𝑖𝑗𝑘)
= 𝛼0+ 𝛼1(𝐴𝑔𝑒𝑖𝑘)+ 𝛼2(𝐶𝑃𝑖𝑗)+ 𝛼3(𝐶𝑇𝑖𝑘)+ 𝛼4(𝐶𝑃𝑖𝑗2)+ 𝛼5(𝐶𝑇𝑖𝑘2)+ 𝛼6(𝐴𝑔𝑒𝑖𝑘 × 𝐶𝑃𝑖𝑗)+ 𝛼7
(𝐴𝑔𝑒𝑖𝑘 × 𝐶𝑇𝑖𝑘)+ 𝛼8(𝐶𝑃𝑖𝑗 × 𝐶𝑇𝑖𝑘)+ 𝛽+ 𝜀

194 (Equation 1)

195 Where TR = trait response of the ith individual of the jth provenance in the kth trial; Age = tree age 

196 of the ith individual in the kth trial; CP = climate at the provenance site of the ith individual of the 

197 jth provenance; CT = climate at the trial site of the ith individual in the kth trial; β = random effects 

198 and ε = residuals. In addition, the model included the following interaction terms: Age and CP, 

199 Age and CT, and CP and CT. 
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200 We analyzed trait co-variation across the species range by adding two specific traits of 

201 interest in the same model. The common form of the two-trait model was:

202  𝑙𝑜𝑔(𝑇𝑅𝑖𝑗𝑘)= 𝛼0+ 𝛼1(𝐴𝑔𝑒𝑖𝑘)+ 𝛼2(𝐶𝑜𝑣𝑖𝑗)+ 𝛼3(𝐶𝑃𝑖𝑗)+ 𝛼4(𝐶𝑇𝑖𝑘)+ 𝛼5(𝐶𝑜𝑣𝑖𝑘 × 𝐶𝑃𝑖𝑗)+ 𝛼6
203 (𝐶𝑜𝑣𝑖𝑘 × 𝐶𝑇𝑖𝑘)+ 𝛼7(𝐶𝑜𝑣𝑖𝑘 × 𝐴𝑔𝑒𝑖𝑘)+ 𝛼8(𝐴𝑔𝑒𝑖𝑘 × 𝐶𝑃𝑖𝑗)+ 𝛼9(𝐴𝑔𝑒𝑖𝑘 × 𝐶𝑇𝑖𝑘)+ 𝛼10(𝐶𝑃𝑖𝑗 × 𝐶𝑇𝑖𝑘)
204 +𝛽+ 𝜀
205 (Equation 2)

206 Where TR = trait response of the ith individual of the jth provenance in the kth trial; Age = tree age 

207 of the ith individual in the kth trial; Cov = trait co-variate of the ith individual in the kth trial; CP = 

208 climate at the provenance site of the ith individual of the jth provenance; CT = climate at the trial 

209 site of the ith individual in the kth trial; β = random effects and ε = residuals. In addition, the model 

210 included the following interaction terms: Cov and CP, Cov and CT, Cov and Age, Age and CP, 

211 Age and CT, and CP and CT. 

212 The one-trait and two-trait models for vertical and radial growth and leaf flushing were 

213 fitted with the ‘lmer’ function, while the one-trait model for young tree survival was fitted with 

214 the ‘glmer’ function to accommodate logistic regressions (binomial family) in the analysis. We 

215 implemented a stepwise-model procedure with four main steps to choose the best supported model 

216 (Akaike, 1992): (i) we fitted saturated models that included all the variables in the fixed part of the 

217 model; (ii) we chose the optimal random component of the model by comparing the battery of 

218 models using restricted maximum likelihood (REML), and selected the best model using the 

219 Akaike information criterion (AIC) with criteria ∆AIC <2 (Mazerolle, 2006); (iii) we compared 

220 the battery of models using maximum likelihood (ML) and selected the optimal fixed component 

221 using the AIC criterion; (iv) we combined the best optimal random and fixed component 
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222 previously selected and adjusted them using REML to obtain the best performing model. All model 

223 fits were done using the package ‘lme4’ (Bates et al., 2018). 

224 For the best supported models, we visually analyzed the interactions of vertical growth, 

225 radial growth, young tree survival and leaf flushing with the environment (one-trait models) and 

226 between traits (between the response and co-variate variable, i.e. the two-trait models). To do so, 

227 tree age was fixed to 12 years for the radial and vertical growth and leaf flushing models and to 6 

228 years for the young tree survival model. Mathematical interactions in one-trait models (CP x CT 

229 in equation 1) represent the differences in trait values that can be attributed to the provenance 

230 (interpretable as local adaptation) and those that can be attributed to the trial (interpretable as 

231 phenotypic plasticity). Mathematical interactions in two-trait models (Cov x CT in equation 2) 

232 represent the differences in trait values that can be attributed to a second trait that co-varies across 

233 the species range with the first trait, mediated by the climate of the trial (representing phenotypic 

234 plasticity). Unfortunately, young tree survival could not be included in the two-trait models 

235 because there were insufficient measurements shared with other traits in the same trials.

236 We estimated the percentage of the variance explained by the model attributed to the fixed 

237 effects alone (marginal R2) and attributed to the fixed and random effects together (conditional 

238 R2). We measured the generalization capacity (Pearson correlation) of the model using cross-

239 validation (64% of the data used for calibration and the remaining 34% for validation). 

240 2.3.4. Spatial predictions 

241 We made spatial predictions for each trait across the species range for current and future climatic 

242 conditions using the ‘raster’ package (Hijmans et al., 2017). For the prediction of current and 

243 future trait variation, the climate variable for provenance was represented by the average climate 
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244 over the period from 1901 to 1990. The climate of the trial was set as the average climate from 

245 2000 to 2014, for current trait predictions, and to 2070 for future predictions. For two-trait models, 

246 the predicted values of the co-variate (DBH and leaf flushing) in the present were used to estimate 

247 the predictions of vertical growth in the future. We calculated the spatial difference between the 

248 future and the current conditions (future values minus current values) to illustrate the amount of 

249 change that traits can accommodate. All spatial predictions of traits were delimited within the 

250 distribution range of the species (EUFORGEN, 2009).

251 2.3.5. Quantification of the trait contribution to delimit the range of beech

252 Following the rationale that fitness-related, demographic and functional traits can shape species 

253 ranges (Stahl et al., 2014; Merow et al., 2017), we regressed the occurrence (presence/absence) of 

254 the species (EUFORGEN, 2009) against the trait values obtained by the one-trait models using the 

255 ‘glm’ function to accommodate logistic regressions (binomial family). The equation takes the 

256 form: 

257

(𝑅𝑉)
= 𝛼0+ 𝛼1(𝑉𝑔) + 𝛼2(𝑅𝑔) + 𝛼3(𝑆) + 𝛼4(𝐿𝑓) + 𝛼5(𝑉𝑔 × 𝑆) + 𝛼6(𝑅𝑔 × 𝑆) + 𝛼7(𝐿𝑓 × 𝑆) + 𝛼8
(𝑉𝑔 × 𝑅𝑔) + 𝛼9(𝑉𝑔 × 𝐿𝑓) + 𝛼10(𝑅𝑔 × 𝐿𝑓) + 𝜀

258  (Equation 3) 

259 Where RV = presence/absence of beech; Vg = vertical growth; Rg = radial growth; S = young tree 

260 survival; Lf = leaf flushing; ε = residuals. In addition, the model included all possible pairwise 

261 linear interactions of the included traits. The total deviance explained by the model was calculated 

262 using the function ‘Dsquared’ of the package ‘modEvA’ (Barbosa et al., 2014). Then, we 

263 performed an analysis of variance (ANOVA) of the model to obtain trait and trait interaction 

264 deviances to estimate the percentage of the variance attributable to each trait. 
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265 All the models where performed with the R statistical framework version 3.2.0 (R Development 

266 Core Team, 2015).

267

268 3. RESULTS

269 3.1. Spatial autocorrelation analysis

270 Overall, the four studied traits were not significantly autocorrelated (Supporting Information Table 

271 S1.1, Appendix S1), although one autocorrelation point was found for young tree survival and leaf 

272 flushing using distance correlograms (Supporting Information Figure S1.1, Appendix S1).

273

274 3.2. Environmental variables selection

275 The two PCA performed (provenance PCA and trial PCA) revealed two groups of variables, one 

276 related with temperature and another more related with precipitation (Supporting Information 

277 Figure S1.2, Appendix S1). The two most important axes of the provenance PCA explained 53.52 

278 and 24.03% of the total variance, and those of the trial PCA explained 38.93 and 24.19% 

279 (Supporting Information Figure S1.2, Appendix S1). To avoid co-linearity in the variables that we 

280 used in the model stepwise procedure, we retained the following variables for tree growth and 

281 young tree survival: BIO1, BIO5, BIO6, BIO12, BIO13, BIO14, PET Mean and PET Max. For 

282 the leaf flushing models, we retained BIO1, BIO5, BIO6, MTdjf, MTmam, MTjja, Mtson, and 

283 Mtdjfmam in addition to latitude and longitude. 

284

285 3.3. One-trait and two-trait models 
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286 According to the best supported models (Table 1 and Supporting Information Table S1.3, 

287 Appendix S1), the most important variable related to the climate at the provenance for vertical 

288 growth, radial growth and young tree survival was maximal potential evapotranspiration (PET 

289 Max). The most important variables related to climate at the trials were precipitation of the wettest 

290 month (BIO13) for vertical growth, annual precipitation (BIO12) for radial growth, and 

291 precipitation of the driest month (BIO14) for young tree survival. In the case of leaf flushing, the 

292 mean temperature of December, January and February (MTdjf) was the most important climate 

293 variable for both the provenance and the trial site. The latitude of the provenance and the trial and 

294 the longitude of the trial were also significant in the leaf flushing model (see Supporting 

295 Information Table S1.3, Table S1.4, Appendix S1 for detailed statistics on the models). We 

296 observed significant interactions between the climate of the trial and that of the provenance in all 

297 models (Table 1; Supporting Information Table S1.4, Appendix S1).

298 The capacity for generalization from the models (Pearson correlation coefficients) was high: 

299 between 0.53 for radial growth and 0.73 for leaf flushing. The marginal R2 ranged from 18% for 

300 the young tree survival model to 57% for the vertical growth model, while the conditional R2 

301 ranged from 40% for the young tree survival model to 98% for the radial growth model (Supporting 

302 Information Table S1.4, Appendix S1).

303 The significance of the fixed and random effects in the one-trait models was positively 

304 affected (i.e., estimates were higher) by the addition of a second trait (Supporting Information 

305 Table S1.5, Appendix S1). Furthermore, the co-variates and their interactions with the climate 

306 variables of the trials were also significant in the two-trait models (Supporting Information Table 

307 S1.5, Appendix S1). The capacity to generalize from the two-trait models was high: 0.76 for the 

308 vertical growth-radial growth model and 0.77 for the vertical growth-leaf flushing model 
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309 (Supporting Information Table S1.5, Appendix S1). The marginal R2 was 62% in the vertical 

310 growth-radial growth model and 47% in the vertical growth-leaf flushing model, while the 

311 conditional R2 was 95% in the vertical growth-radial growth model and 99% in the vertical growth-

312 leaf flushing model (Supporting Information Table S1.5, Appendix S1).

313

314 3.4. Spatial patterns of phenotypic trait variation from one-trait models 

315 Spatial predictions showed differences in phenotypic trait variation among traits (Figure 2, maps) 

316 and the interaction graphs permitted the way that plasticity and local adaptation shape these 

317 differences to be visualized (Figure 2, interaction graphs). 

318 Vertical growth reached its maximum value at intermediate values of precipitation of the 

319 wettest month in the trials (Figure 2a, interaction graph). These largest trees were predicted to 

320 occur mostly over the northern and western part of the species range (Figure 2a, map). A signal of 

321 local adaptation to PET max was detected in our models and is shown by the interaction graph, 

322 where each line represents the response of provenances to high, intermediate and low levels of 

323 maximal potential evapotranspiration. 

324 Predicted radial growth across the species range presented a similar pattern to that of 

325 vertical growth, but with the lowest values in marginal populations, particularly at the southern 

326 margin (Figure 21b, map). High annual precipitation coincided with high growth rates (Figure 2b 

327 map), with a moderate signal of local adaptation to PET max in the form of some variation among 

328 provenances (Figure 2b, interaction graph). 

329 The lowest young tree survival rates were predicted towards the east and at some isolated 

330 points in the southernmost part of the range (Figure 2c, map). Young tree survival increased 
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331 towards those trials where precipitation is high in the driest month, with weak local adaptation to 

332 PET max indicated by very small –though statistically significant– differences among provenances 

333 (Figure 2c, interaction graph). 

334 Earlier flushing was predicted towards the south-eastern part of the range (Fig 1d, map), 

335 with notable local adaptation indicated by large differences among provenances depending on the 

336 latitude of origin (Figure 2d, interaction graph). Differences in flushing date among provenances 

337 were particularly large in trials where the winter temperature is low (Figure 2d, interaction graph). 

338

339 3.5. Patterns of phenotypic trait variation from two-trait models 

340 Overall, models with a second trait as co-variate produced different results to those considering a 

341 single trait only. Predicted vertical growth was higher when either radial growth (Figure 3a) or leaf 

342 flushing (Figure 3b) was included as a co-variate than when no co-variates were considered (Figure 

343 2a). Vertical growth increased with radial growth and precipitation (Figure 3a) and decreased in 

344 those regions where leaf flushing was predicted to be late in the year (which corresponded mainly 

345 to the northern part of the range) (Figure 3b). 

346

347 3.6. Spatial predictions of traits under climate change considering one- and two-trait models

348 Trait projections for 2070 showed an overall increase in tree growth, particularly for radial growth 

349 (Figure 4a, b), but following similar spatial patterns to those predicted under current conditions 

350 (Figure 2a, b). Young tree survival was predicted to strongly decrease (with respect to that 

351 predicted under current conditions, Figure 2c) in the east and throughout the range periphery, while 
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352 young tree survival rates remained higher in the central part (Figure 4c). Leaf flushing showed 

353 similar patterns to those predicted under current conditions (Figure 2d) but with an overall advance 

354 in flushing dates (Figure 4d). 

355 The prediction of vertical growth, considering radial growth as a covariate, showed an 

356 overall increase across the distribution range (Figure 4e) with respect to the model projection of 

357 vertical growth without radial growth as a covariate under future conditions (Figure 4a). 

358 Nevertheless, the predictions of vertical growth considering radial growth as a covariate  (Figure 

359 4e) showed an overall decrease in vertical growth, with some increases in vertical growth in the 

360 northern and northeastern range, compared to the same model applied to current conditions (Figure 

361 3a; Supporting Information Figure S1.3e, Appendix S1). Predictions considering leaf flushing as 

362 a co-variate tended to constrain vertical growth throughout the range (Figure 4f) compared with 

363 the same model in current conditions (Figure 3b). 

364

365 3.7. Total trait contribution to explain species ranges

366 All traits and their interactions significantly contributed to explain species occurrence (Table 2). 

367 The model explained 31% of the total deviance, with vertical growth accounting for 37%, radial 

368 growth for 33%, young tree survival for 19%, and leaf flushing for 1%. Please note that the 

369 different contribution of these four traits explaining species occurrence may be constrained by the 

370 nature of the data (particularly survival that is only measured in young trees). The interaction 

371 between vertical growth and young tree survival contributed with 3% to the total deviance, that 

372 between radial growth and leaf flushing with 2% and the remaining interactions with 1% or less 

373 (Table 2).
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374

375 4. DISCUSSION

376

377 4.1. Contribution of phenotypic plasticity and local adaptation to range-wide variation in 

378 beech growth, young tree survival and leaf flushing 

379 Altogether, our results underpin that range-wide variation in fitness-related traits of beech is driven 

380 markedly more by phenotypic plasticity than by local adaptation (Supporting Information Table 

381 S1.4, Appendix S1), as happens in other plant species (Benito Garzón et al., 2019), and they imply 

382 that beech possesses a noteworthy capacity to respond to rapid climate change through 

383 acclimation. Although a short-term response through acclimation can be considered as positive for 

384 beech to keep pace with climate change, our results point out that the plastic component of tree 

385 growth and young tree survival is mostly related to precipitation (Table 1), which follows highly 

386 unpredictable patterns (Pflug et al., 2018), making it difficult to evaluate whether acclimation will 

387 be enough for beeches to survive (our predictions for 2070 under RCP 8.5. showing an increase of 

388 mortality in young trees at the margins of the species ranges suggest that acclimation will not be 

389 great enough to permit the species to survive, at least at the margins of its range – Figure 4c). Local 

390 adaptation in tree growth (vertical and radial) and young tree survival are driven by adaptation to 

391 maximal potential evapotranspiration (Table 1), suggesting that populations are responding to 

392 selection factors related to drought (Volaire, 2018). This is in agreement with the general 

393 consensus that beech is a drought-sensitive species (Aranda et al., 2015), although there is ongoing 

394 debate over the extent of resistance that beech has to drought (Pflug et al., 2018).
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395  The plastic response of leaf flushing to climate was mainly driven by winter temperatures 

396 (Table 1). There is a general consensus that winter temperatures will increase globally in the future 

397 (Vautard et al., 2014), and, accordingly, our projection for 2070 anticipates an advance in flushing 

398 through most of the range (Figure 2d, 3d and S3d). However, leaf flushing can be constrained by 

399 local adaptation to photoperiod (Way & Montgomery, 2015; Gauzere et al., 2017). The fact that 

400 phenotypic plasticity and local adaptation in leaf flushing are driven by different environmental 

401 parameters implies that these two processes would interact in the long-term. For instance, 

402 phenotypic plasticity concerning winter temperatures might enhance local adaptation towards new 

403 photoperiodical cues (i.e., shorter spring days), but the evolutionary time scale of local adaptation 

404 makes this interaction very unlikely in the short-term. 

405

406  4.2 Trait relationships across the species range

407 Trait inter-dependence varied along geographical gradients as the two-trait models had higher 

408 predictive power and explained more variance than those based on a single trait (Supporting 

409 Information Table S1.4 and S1.5, Appendix S1). The tight albeit not perfect positive interaction 

410 between tree vertical and radial growth (Figure 3a, interaction graph) is unsurprising because of 

411 allometric relationships between these two variables, particularly in a common-garden plantation 

412 that avoids competition among trees. 

413 The biological basis of the observed co-variation between vertical growth and leaf flushing 

414 is less obvious. One possible explanation is that vertical growth is greatly restricted by late flushing 

415 in northern beech populations (Kollas et al., 2014). This would also explain our observation that 

416 the one-trait model predicts taller trees to occur in the North, whereas the two-trait model predicts 
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417 just the opposite. Interestingly, the two-trait model thus implies that strong local adaptation of leaf 

418 flushing to photoperiod tends to constrain phenotypic plasticity for vertical growth in northern 

419 beech populations (Way & Montgomery, 2015).

420

421 4.3. Are spatial patterns of growth, young tree survival and leaf flushing delimiting the range 

422 of beech?

423 Beech populations from certain eastern and southern parts of the distribution range seem most 

424 sensitive to climate, as suggested by the lowest values for all traits considered (Figure 2). In other 

425 parts of beech’s range, different traits respond differently to climate, in line with the patterns found 

426 in annual plants and wood scrubs (Merow et al., 2017). Our analysis of species occurrence as a 

427 function of spatial trait values also suggests that each of these traits and their interactions 

428 contributed to some extent to the delimitation of the species range (31% of the variance is 

429 explained by the four traits; Table 3). In particular: (i) young tree mortality delimits certain parts 

430 of the southern and eastern range of beech,  reflecting the marginality due to climate continentality 

431 in these areas, and meaning that these populations are most threatened, thus making eastwards 

432 expansion of beech difficult (survival was exclusively measured in young trees, reflecting 

433 recruitment processes that are largely limited to climatically favorable years, indicating that more 

434 studies on regeneration and mortality are needed to confirm this result); this is the case for many 

435 species whose highest mortality is in the driest part of their range (Benito-Garzón et al., 2013; 

436 Anderegg et al., 2015; Camarero et al., 2015); (ii) the smallest girths are predicted in the southern 

437 part of the distribution and the eastern part of the range, suggesting that radial growth is mostly 

438 restricted by drought (interaction graph and map, Figure 2b), as has already been pointed out 

439 (Farahat & Linderholm, 2018); (iii) with very little variation across climatic gradients, vertical 
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440 growth alone will not delimit beech range. This is not the case for other tree species, for which tree 

441 height is clearly delimiting species range (Chakraborty et al., 2018), highlighting the fact that no 

442 single best trait delimits tree species ranges; (iv) projections of trees growing in southern and 

443 south-eastern regions that flush early also have higher mortality and lower growth predictions than 

444 elsewhere within the species range. However, when tree height and leaf flushing are pooled 

445 together in the two-trait model, this leads to an decrease in vertical growth in the North; (v) it 

446 seems that in beech, and likely in other species with local adaptation to photoperiod, phenology 

447 could restrict the northern expansion of ranges (Duputié et al., 2015; Saltré et al., 2015). Although 

448 the link between phenology, young tree survival and fitness is still unclear, and more experiments 

449 would provide a better understanding the interaction between photoperiod and phenology. 

450

451 4.4. Implications of using trait approaches based on phenotypic variation to forecast beech 

452 sensitivity to climate change 

453 Overall, spatial patterns of vertical and radial growth, young tree survival and leaf flushing 

454 predicted for the future (Figure 4), are relatively similar to those predicted by the models under 

455 current conditions (Figure 2 & 3). This might be due to the high plasticity of these traits that allows 

456 populations to respond to short-term changes in their environment, but other factors such as 

457 dispersal capacity, geographical or human barriers, and adjustment of climatic scenarios for the 

458 future would change our predictions. Our results, based on the study of phenotypic variation, 

459 predict species persistence in the future (if the occurrence of the species can be linked to high trait 

460 values (Merow et al., 2017)) rather than extinction and migration northwards as predicted by 

461 species distribution models based on the occurrence of the species (Kramer et al., 2010; Stojnic et 

462 al., 2018). 
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463 Nevertheless, the direct comparison of our trait predictions for current and future 

464 conditions allows us to detect some differences in their spatial patterns and total trait values 

465 (Supporting Information Figure S1.3, Appendix S1), and gives us a better understanding of the 

466 temporal dynamics of traits and their relative importance for beech persistence in the future. For 

467 instance, our models of leaf flushing predict reduced geographical variability in phenology in the 

468 future (from day 94 to 160 -Figure 2d- and from day 94 to 147 – Figure 4d-), as has been reported 

469 worldwide (Ma et al., 2018). This is mostly explained by larger advances in the phenology of 

470 populations at colder sites than those at warmer sites, likely as a consequence of the larger 

471 increases in winter temperatures that happen in the North (Kjellström et al., 2018). Survival of 

472 young trees is predicted to decrease at the margins of the distribution, but less markedly than is 

473 predicted by species distribution models (Kramer et al., 2010; Stojnic et al., 2018). Although our 

474 spatial trait predictions do not perfectly match species occurrence, they explain the adaptive and 

475 plastic responses of populations’ fitness-related traits to climate (Benito Garzón et al., 2019). 

476 Including more than one trait related to growth likely reflects a conserved allometric 

477 relationship between vertical and radial growth in the future (Figure 4e), but this may be a direct 

478 consequence of the lack of competition among trees in our experimental design. Including 

479 phenology in two-trait models seems to be detrimental for vertical growth, at least for northern 

480 populations where growth is likely constrained by phenology (Figure 4f). However, our trait co-

481 variation approaches are limited to vertical growth as response variables, limiting our 

482 understanding of the interplay that other traits can have across species range in the future. 

483

484 4.5. Limitations, perspectives and future research
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485 Although this study relied on the largest network of common gardens for a forest tree in Europe, 

486 the resulting inferences suffer from a number of limitations. Our models are based on a limited set 

487 of ages (from 2 to 15 years old). However, the expression of phenotypic plasticity changes with 

488 age (Mitchell & Bakker, 2014), which can restrict the broad scope of our results to those ages that 

489 we considered. This limitation is particularly pronounced for the case of survival (age range 2 to 

490 6 years), for which data only reflect early recruit survival.  Our models of young tree mortality can 

491 also reflect the quality of the data from common gardens, where recruit survival was measured 

492 over a short study period and did not necessarily faithfully capture the regeneration potential of 

493 forest tree populations.

494 Tree growth and phenology are directly related to fitness (Chuine, 2010; Delpierre et al., 

495 2017; Younginger et al., 2017). However, other relevant proxies for tree fitness as fecundity and 

496 reproduction have not been considered in our approach. In beech, climate warming tends to 

497 increase seed production in northern populations (Drobyshev et al., 2010) and to cause a decline 

498 in seedling density in southern ones (Barbeta et al., 2011), which would be expected to continue 

499 under climate change. 

500 Our approach reflects the plastic and adaptive components of traits to determine their 

501 spatial distribution.  Important elements of spatial ecology, such as geographical barriers and trees’ 

502 dispersal capacity (Svenning & Skov, 2005), competition and other biotic interactions across large 

503 geographical gradients (Archambeau et al., 2019) and those aspects related with the uncertainty of 

504 future climate (Nazarenko et al., 2015), are not considered in our approach. . Adding these 

505 processes to our models would open a new perspective, to extend understanding of the realized 

506 niche of the species ranges. The genetic effect attributed to the provenances in our models includes 

507 both the genetic structure and the potential of populations to adapt. As more genomic information 
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508 on adaptive traits becomes available, models could incorporate the genomic basis of climate 

509 adaptation to help separate these different genetic effects (Bay et al., 2018)

510 Our predictions should help to shape future controlled experiments on those populations 

511 most sensitive to climate (in the South – East of the range), and others designed to test those trait 

512 relationships that are still unclear (phenology – growth – mortality) at the northernmost distribution 

513 edge. Although both for beech, and for tree species in general, plasticity is thought to help 

514 populations to persist under climate change (Benito Garzon et al. 2019), evolutionary processes 

515 can play an crucial role for annual plants and those organisms with short generation cycles, 

516 permitting them to adapt to new climate conditions (Scheepens et al., 2018; Fox et al., 2019). Both 

517 theoretical and empirical studies on the interplay between phenotypic plasticity and local 

518 adaptation across organisms with different life-history strategies are needed to fully understand 

519 how these two processes modify populations’ responses to climate change. 
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741 Tables & Figures 

742 Figure 1. Map: Distribution range of Fagus sylvatica L. (shaded in beige) and location of the 

743 provenances and trials by trait. Circles indicate the location of the provenances and triangles that 

744 of the trials. Different colors have been employed to indicate the different traits (VG: vertical 

745 growth; RG: radial growth; YTS: young tree survival; LF: leaf flushing). Table: The extent of data 

746 from the BeechCOSTe52 database (Robson et al. 2018) used for modelling. Measurements: total 

747 number of measurements; Trees: total number of individual trees; Trials: total number of trials; 

748 Provenances: total number of provenances, Age: the age at which the trees were measured. 

749 Columns indicate sample sizes for the traits used in the one-trait models and in the two-trait 

750 models. 
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757 Table 1. Summary of the variables included in the final best-supported models (one- and two-trait) 

758 for each trait analyzed. Environmental variables selected for the provenances and the trials for the 

759 one-trait models of height, DBH, young tree survival and flushing, and for the two-trait models of 

760 height-DBH and height-leaf flushing. H: height; DBH: diameter at breast height; Lf: leaf flushing; 

761 PET Max: maximal monthly potential evapotranspiration; BIO12: annual precipitation; BIO13: 

762 precipitation of wettest month; BIO14: precipitation of driest month; MTdjf: mean temperature of 

763 December, January and February; Co-variate: trait covariate.

764

one-trait models two-trait models

Height DBH
Young tree 

survival

Leaf 

flushing
H-DBH H-Lf

Environment of the 

provenance
PET Max PET Max PET Max

MTdjf
Latitude

PET 
Max

PET 
Max

Environment of the 

trial
BIO13 BIO12 BIO14

MTdjf
Latitude

Longitude
BIO13 BIO13

V
a
ri

a
b

le
s

Co-variate  DBH Lf

765
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772 Table 2.  Summary statistics for a generalized linear model (binomial family) of beech occurrence 

773 (presence/absence) as a function of trait spatial predictions and their interactions. Estimate: 

774 coefficient of the regression shown on a logarithmic scale; SE: standard error of fixed variables; t: 

775 Wald statistical test that measures the point estimate divided by the estimate of its standard error, 

776 assuming a Gaussian distribution of observations; p: p-value; DE: deviance explained; VG: 

777 vertical growth; RG: radial growth; YTS: young tree survival; LF: leaf flushing. 

Estimate SE t p DE

(Intercept) -5.84 1.15e-02 -509.03 2.00E-16  

VG 5.45 1.64e-02 332.93 2.00E-16 0.37

RG 0.51 7.93e-03 64.67 2.00E-16 0.33

YTS 2.11 3.75e-03 562.83 2.00E-16 0.19

LG 3.12 1.48e-02 210.94 2.00E-16 0.01

VG x YTS 0.10 4.30e-03 21.08 2.00E-16 0.03

RG x YTS -0.60 2.04e-03 -295.94 2.00E-16 0.01

YTS x LF -1.40 4.02e-03 -348.1 2.00E-16 0.01

VG x RG -1.11 4.62e-03 -240.58 2.00E-16 0.01

VG x LF -7.81 2.15e-02 -363.18 2.00E-16 0.01

RG x LF 3.43 1.09e-02 313.89 2.00E-16 0.02

Model total 
deviance 

0.31

778

779

780

781

782

783
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784 Figure 2. Spatial projections for (a) vertical growth (cm), (b) radial growth (mm), (c) young tree 

785 survival (probability) and (d) leaf flushing (Julian days) generated using one-trait models (maps 

786 on the left), and corresponding graphs of interactions between the best environmental predictor 

787 variable across the trials divided according to environment at the provenance for each of the four 

788 traits (graphs on the right).  Interactions represent the differences in trait values that can be 

789 attributed to the provenance (interpretable as local adaptation driven by PET max in (a), (b), and 

790 (c) and driven by the latitude in (d)). Interactions also represent the differences in trait values that 

791 can be attributed to the environmental conditions of trial (interpretable as phenotypic plasticity 

792 driven by the environmental variables shown in the x-axis).  Black, dark grey, and light grey lines 

793 represent high, medium and low values of the climatic variable of the provenances (as opposed to 

794 those of the trial, indicated on the x-axis). The vertical lines represent the confidence intervals. 

795 The maps display the trait projection for contemporary climate (inferred from 2000-2014 

796 meteorological data) across the current species range. The color gradient depicts the clinal 

797 variation from low (red) to high (blue) values of each trait. The values of the different traits are 

798 represented in the following way: vertical growth (cm), radial growth (mm), probability of young 

799 tree survival (0 =dead, 1=alive) and leaf flushing (Julian days). PET max prov: maximal monthly 

800 potential evapotranspiration at the provenance; Latitude prov: latitude of the provenance. 
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802

803 Figure 3. Spatial projections of vertical growth (cm) for (a) Vertical-radial growth model and (b) 

804 vertical growth-leaf flushing models (maps on the left), and the corresponding graphs of co-

805 variation between vertical growth and the covariate: (a) DBH (mm) and (b) leaf flushing (Julian 

806 days). Black, dark grey, and light grey lines represent high, medium and low values of the 

807 precipitation of the wettest month of the trial (BIO13). The vertical lines represent the confidence 

808 intervals. The maps display the trait projection for contemporary climate (inferred from 2000-2014 

809 meteorological data) across the current species range. The color gradient depicts the clinal 

810 variation in vertical growth from 200 cm (gray) to 600 cm (blue). 
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811

812 Figure 4. Spatial predictions for 2070 (RCP 8.5) across the species range for one-trait models: (a) 

813 vertical growth (cm); (b) radial growth (mm); (c) probability of young tree survival (0=dead; 

814 1=alive); (d) leaf flushing (Julian days); and for two-trait models: (e) vertical growth (cm; co-

815 variate radial growth) and (f) vertical growth (cm; co-variate leaf flushing). The color gradients 

816 depict the clinal variation from low (red) to high (blue) values. 

817

818

819
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APPENDIX S1: Supporting information

1. Moran’s I correlation coefficient

Supporting Information Table S1.1. Statistics of the spatial autocorrelation of vertical growth 

(VG), radial growth (RG), young tree survival (YTS) and leaf flushing (LF). Ob: observed 

computed Moran’s I; Ex: expected value of I under the null hypothesis; Sd: standard deviation of 

I under the null hypothesis; p-value: p-value of the test of the null hypothesis against the alternative 

hypothesis; Null hypothesis: the data does not have spatial correlation.    

VG RG YTS LF

Ob -0.04 -0.09 -0.17 -0.10

Ex -0.03 -0.05 -0.13 -0.08

Sd 0.06 0.06 0.17 0.08

p-value 0.81 0.47 0.78 0.74
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2. Moran’s I correlograms

Supporting Information Figure S1.1. Correlograms of Moran’s I correlation coefficient (y-axis) 

and the distance classes (x-axis) for vertical (a) and radial (b) growth, young tree survival (c), and 

leaf flushing (d). Moran’s correlation coefficient ranges between 1 and -1. Distance classes are 

Euclidian and in degrees. Distances of significant spatial dependence are shown in red (significant 

values p < 0.05).
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3. Climatic variables

Supporting Information Table S1.2. List of yearly climatic variables provided by EuMedClim. 

°C: Celsius degree; mm: millimeters; water balance: precipitation minus potential 

evapotranspiration.

Climatic 

variables
Definition Unit

BIO1 Annual mean temperature °C

BIO2 Mean diurnal temperature range °C

BIO5 Maximal temperature of the warmest month °C

BIO6 Minimal temperature of the coldest month °C

BIO12 Annual precipitation mm

BIO13 Precipitation of the wettest month mm

BIO14 Precipitation of the driest month mm

MTdjf Mean temperature of December, January and February °C

MTmam Mean temperature of March, April and May °C

MTjaj Mean temperature of June, July and August °C

MTson
Mean temperature of September, October and 

November
°C

Pdjf Precipitation of December, January and February mm

Pmam Precipitation of March, April and May mm

Pjaj Precipitation of June, July and August mm

Pson Precipitation of September, October and November mm

PET Mean Annual potential evapotranspiration mm

PET Max Maximal monthly potential evapotranspiration mm

PET Min Minimal monthly potential evapotranspiration mm

PPET Mean Annual water balance mm

PPET Max Maximal monthly water balance mm

PPET Min Minimal monthly water balance mm

Page 45 of 64 Global Ecology and Biogeography

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

4. Principal Components Analysis (PCA) of the climate variables

Supporting Information Figure S1.2. Results of PCA for checking for co-linearity and reducing 

the climatic space to select the final climate variables for the stepwise procedure used in the models 

on traits vertical and radial growth, and young tree survival, conducted by provenance (a) and by 

trial (b). When two variables are strongly correlated, only one of them was used in models. The 

variance explained by the first two axes is indicated in the figures.
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5. AIC analysis

We performed a total of 64 one-trait models and selected the best model based on AIC. 

Supporting Information Table S1.3. AIC values obtained for vertical growth, radial growth, 

young tree survival and leaf flushing one-trait models. AIC: Akaike information criterion; CP: 

climate of the provenance; CT: climate of the trial; BIO1: annual mean temperature; BIO5: max 

temperature of warmest month; BIO6: min temperature of coldest month; BIO12: annual 

precipitation; BIO13: precipitation of wettest month; BIO14: precipitation of driest month; PET 

Max: maximal monthly potential evapotranspiration; PET Mean: annual potential 

evapotranspiration; MTdjf: mean temperature of December, January and February; MTmam: mean 

temperature of March, April and May; MTjja: mean temperature of June, July and August; MTson: 

mean temperature of September, October and November; MTdjfmam: mean temperature of 

December, January, February March, April and May.

Vertical growth Radial growth Young tree survival Leaf flushing

CP CT AIC CP CT AIC CP CT AIC CP CT AIC

PET Max BIO13 102495.10 PET Max BIO12 23099.69 PET Max BIO14 39299.61 MTdjf MTdjf -32835.88

BIO13 BIO13 102498.40 BIO12 BIO12 23099.77 BIO5 PET Max 39299.75 MTdjfmam BIO5 -32835.2

BIO1 BIO13 102509.20 PET Mean BIO12 23100.00 BIO5 BIO13 39300.20 MTdjfmam MTdjf -32835.01

BIO5 BIO13 102509.70 BIO5 BIO12 23100.17 BIO14 BIO14 39300.57 MTdjf BIO5 -32834.71

PET Mean BIO13 102515.30 BIO13 BIO12 23105.95 PET Mean PET Max 39301.21 BIO1 MTdjf -32833.53

BIO12 BIO13 102538.90 BIO14 BIO12 23107.76 PET Mean BIO14 39303.74 MTson MTdjf -32833.2

BIO6 BIO13 102647.10 BIO1 BIO12 23109.40 PET Max PET Max 39307.04 BIO1 BIO5 -32832.97

BIO14 BIO13 102694.40 BIO14 PET Max 23112.39 BIO12 BIO14 39307.83 MTdjfmam MTjja -32832.95

BIO5 BIO12 102827.20 BIO6 BIO12 23113.15 BIO5 BIO12 39308.26 BIO6 MTdjf -32832.8

BIO1 BIO12 102836.50 PET Max PET Max 23119.66 BIO13 BIO13 39308.30 MTdjf MTjja -32832.59

PET Max BIO12 102849.60 BIO12 PET Max 23119.73 PET Mean BIO1 39308.32 MTson BIO5 -32832.53

PET Mean BIO12 102849.80 PET Mean PET Max 23123.73 BIO5 BIO14 39308.80 BIO6 BIO5 -32831.78

BIO13 BIO12 102856.00 BIO13 PET Max 23124.58 PET Mean PET Mean 39308.84 BIO1 MTjja -32830.75

BIO12 BIO12 102924.80 BIO5 PET Max 23127.81 BIO5 BIO1 39308.93 MTson MTjja -32830.39

BIO6 BIO12 103000.30 BIO6 PET Max 23129.06 BIO5 PET Mean 39309.13 MTmam MTdjf -32829.82

BIO14 BIO12 103035.00 BIO1 PET Max 23131.01 BIO13 PET Max 39310.60 MTmam BIO5 -32829.69

BIO13 BIO14 104366.60 PET Mean BIO13 23155.46 PET Mean BIO5 39310.84 BIO6 MTjja -32829.67
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BIO12 BIO14 104433.70 BIO1 BIO13 23158.17 BIO13 BIO14 39311.05 MTdjfmam MTson -32828.93

BIO5 BIO5 104479.60 BIO5 BIO13 23158.45 PET Mean BIO13 39311.74 MTdjf MTson -32828.49

BIO1 BIO5 104486.20 PET Max BIO13 23160.20 PET Max BIO13 39312.16 MTmam MTjja -32827.31

BIO13 BIO5 104486.40 BIO6 BIO13 23161.55 BIO13 BIO12 39312.17 BIO1 MTson -32826.31

PET Max BIO5 104498.00 BIO12 BIO13 23170.84 BIO6 BIO13 39312.88 BIO5 BIO5 -32826.25

PET Mean BIO5 104502.00 BIO14 BIO13 23170.94 PET Max BIO1 39313.22 MTson MTson -32825.79

BIO12 BIO5 104531.00 BIO13 BIO13 23172.87 BIO14 BIO13 39313.52 BIO6 MTson -32825.65

BIO1 BIO14 104548.20 BIO12 BIO14 23213.00 BIO5 BIO6 39313.96 BIO5 MTdjf -32825.32

BIO6 BIO5 104551.90 BIO13 BIO14 23214.59 BIO12 PET Max 39314.37 BIO5 MTjja -32824.01

PET Max BIO14 104554.10 BIO14 BIO14 23221.30 BIO12 BIO13 39314.57 MTmam MTson -32823.39

PET Mean BIO14 104561.80 PET Max BIO14 23228.03 BIO13 BIO1 39314.63 MTdjfmam BIO1 -32821.39

BIO5 BIO14 104568.60 BIO12 BIO6 23228.43 BIO5 BIO5 39315.15 MTdjf BIO1 -32821.3

BIO14 BIO5 104595.80 PET Mean BIO14 23229.18 PET Max PET Mean 39315.57 BIO5 MTson -32819.16

BIO14 BIO14 104632.90 BIO13 BIO6 23230.85 BIO1 BIO13 39315.98 BIO1 BIO1 -32818.88

BIO6 BIO14 104662.10 BIO5 BIO14 23231.28 BIO1 BIO14 39316.04 MTson BIO1 -32818.63

BIO5 BIO1 104948.50 BIO6 BIO14 23231.86 BIO6 BIO14 39316.50 MTjja BIO5 -32818.54

PET Max BIO1 104951.50 BIO1 BIO14 23235.69 BIO12 BIO1 39316.56 BIO6 BIO1 -32818.38

PET Mean BIO1 104953.40 BIO14 BIO6 23236.45 PET Mean BIO12 39316.71 MTjja MTdjf -32817.94

BIO13 BIO1 104958.20 BIO6 BIO6 23240.51 BIO6 BIO12 39316.72 MTjja MTjja -32816.41

BIO1 BIO1 104990.00 PET Max BIO6 23247.34 BIO6 PET Max 39316.79 MTmam BIO1 -32815.09

BIO12 BIO1 105034.80 PET Mean BIO6 23248.79 PET Max BIO12 39316.82 MTdjfmam BIO6 -32813.73

BIO6 BIO1 105103.40 BIO5 BIO6 23251.22 BIO13 PET Mean 39317.10 MTdjf BIO6 -32813.64

BIO14 BIO1 105134.00 BIO1 BIO6 23251.39 PET Max BIO6 39317.35 MTson BIO6 -32811.78

BIO13 PET Mean 105607.20 PET Max BIO5 23326.60 BIO1 PET Max 39317.45 BIO1 BIO6 -32811.7

BIO13 BIO6 105655.60 PET Mean BIO5 23330.74 PET Max BIO5 39317.56 MTjja MTson -32811.33

BIO12 PET Mean 105700.20 BIO5 BIO5 23333.80 BIO13 BIO6 39317.60 BIO6 BIO6 -32810.51

BIO12 BIO6 105740.90 BIO14 BIO5 23336.46 PET Mean BIO6 39317.70 BIO5 BIO1 -32810.39

BIO5 PET Mean 105752.70 BIO12 BIO5 23337.86 BIO1 BIO1 39317.71 MTmam BIO6 -32807.09

BIO1 PET Mean 105753.10 BIO13 BIO5 23342.73 BIO14 PET Max 39317.82 MTjja BIO1 -32803.17

PET Max PET Mean 105762.50 BIO1 BIO5 23343.08 BIO14 BIO1 39317.95 BIO5 BIO6 -32803.03

PET Mean PET Mean 105769.40 BIO12 BIO1 23344.66 BIO14 BIO12 39318.04 MTdjfmam MTdjfmam -32798.69

PET Max BIO6 105777.20 PET Max BIO1 23345.37 BIO12 BIO12 39318.24 MTdjf MTdjfmam -32798.47

PET Mean BIO6 105777.90 BIO6 BIO5 23345.84 BIO6 BIO1 39318.36 MTson MTdjfmam -32796.38

BIO5 BIO6 105782.20 BIO5 BIO1 23349.97 BIO13 BIO5 39318.74 BIO1 MTdjfmam -32796.37

BIO1 BIO6 105790.00 PET Mean BIO1 23350.61 BIO12 BIO6 39320.02 MTjja BIO6 -32795.95

BIO6 PET Mean 105851.70 BIO14 BIO1 23353.91 BIO12 PET Mean 39320.05 BIO6 MTdjfmam -32795.67

BIO14 PET Mean 105867.10 BIO13 BIO1 23354.27 BIO14 BIO6 39320.34 MTmam MTdjfmam -32792.13

BIO6 BIO6 105898.10 BIO6 BIO1 23363.77 BIO6 BIO6 39320.41 BIO5 MTdjfmam -32787

BIO14 BIO6 105901.40 BIO1 BIO1 23367.18 BIO12 BIO5 39320.73 MTdjfmam MTmam -32786.71

BIO13 PET Max 106062.80 BIO14 PET mean 23417.15 BIO1 BIO6 39321.01 MTdjf MTmam -32785.98

BIO12 PET Max 106132.40 PET Max PET mean 23420.69 BIO1 BIO12 39321.06 BIO1 MTmam -32784.65

BIO1 PET Max 106176.20 BIO12 PET mean 23423.00 BIO1 PET Mean 39321.28 MTson MTmam -32784.57

BIO5 PET Max 106179.00 PET Mean PET mean 23423.23 BIO6 PET Mean 39321.81 BIO6 MTmam -32783.62

PET Max PET Max 106187.20 BIO5 PET mean 23426.95 BIO14 PET Mean 39321.88 MTmam MTmam -32780.58

PET Mean PET Max 106194.00 BIO13 PET mean 23427.90 BIO14 BIO5 39322.35 MTjja MTdjfmam -32780.05

BIO14 PET Max 106256.90 BIO6 PET mean 23431.24 BIO1 BIO5 39323.48 BIO5 MTmam -32775.52

BIO6 PET Max 106268.70 BIO1 PET mean 23432.28 BIO6 BIO5 39323.84 MTjja MTmam -32768.2
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6. Summary statistics of one-trait models

Supporting Information Table S1.4. Statistics of random and fixed effects from generalized 

linear mixed-effect models of vertical growth, radial growth, young tree survival and leaf flushing. 

Obs: number of trait measurements; Variance: variance explained by the random effects; SD: 

standard deviation of each level of random effects; Estimate: coefficient of the regression, shown 

on a logarithmic scale for vertical growth, radial growth and leaf flushing; SE: standard error of 

each fixed variable; t: Wald statistical test that measures the point estimate divided by the estimate 

of its SE, assuming a Gaussian distribution of observations conditional on fixed and random 

effects; z: Wald statistical test that measures the point estimate divided by the estimate of its SE, 

assuming a binomial distribution of observations conditional on fixed and random effects. Fixed 

effects: Coefficients of the fixed effects of the model; CP: climate of the provenance origin; CT: 

climate of the trial; LatP: latitude of the provenance origin; LatT: latitude of the trial; LongT: 

longitude of the trial; CP2: quadratic effect of the climate of the provenance; CT2: quadratic effect 

of the climate of the trial. Coefficients of the interactions: Age x CP, Age x CT, CP x CT, LatP x 

CT, LatP x LatT, LatP x LongT, CP x LongT. R2M: percentage of the variance explained by the 

fixed effects (Marginal variance); R2C: percentage of the variance explained by the random and 

fixed effects (Conditional variance); r: Pearson correlation. The climate variable of the provenance 

(CP) for vertical growth, radial growth and young tree survival is maximal potential 

evapotranspiration; CP for leaf flushing is mean temperature of December, January and February. 

The climate variable of the trial (CT) for vertical growth is precipitation of the wettest month, for 

radial growth is annual precipitation, for young tree survival is precipitation of the driest month 

and for leaf flushing is mean temperature of December, January and February. 
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Vertical growth Radial growth Young tree survival Leaf flushing

Model Linear Mixed Effect Linear Mixed Effect
Generalized Linear Mixed 

Effect (Family: binomial)
Linear Mixed Effect

Random Effects Random Effects Random Effects Random Effects

Obs Variance SD Obs Variance SD Obs Variance SD Obs Variance SD

Provenance 205 1.00e-02 9.00e-02 187 9.31e-03 9.65e-02 114 2.98e-01 5.46e-01 62 4.60e-04 2.20e-02

Trial 36 9.00e-02 3.00e-01 19 3.81e-01 6.17e-01 7 6.31e-01 7.94e-01 7 3.60e-05 6.00e-03

Trial:Block 107 9.00e-02 1.00e-01  56 6.97e-03 8.35e-02 21 1.48e-01 3.84e-01    

Trial:Block:Tree 108415 8.00e-02 2.80e-01 31339 1.10e-01 3.32e-01 37433 1.16e-02 1.08e-01    

Residuals  5.00e-02 2.20e-01  1.66e-02 1.29e-01  1.54e-01 3.92e-01  8.56e-04 2.92e-02

Fixed Effects Fixed Effects Fixed Effects Fixed Effects

Estimate SE t Estimate SE t Estimate SE z Estimate SE t

Intercept 4.84e+00 5.22e-02 92.7 2.82e+00 1.56e-01 18.1 1.08e+00 3.38e-01 3.2 4.76e+00 5.16e-03 921.9

Age 6.45e-01 1.14e-03 563.6 7.17e-01 8.74e-03 82 -1.72e+00 9.29e-02 -18.5    

CP 2.58e-02 6.93e-03 3.7 2.94e-02 8.81e-03 3.3 2.83e-02 5.30e-02 0.1 1.07e-02 2.63e-03 4.1

CT 9.70e-02 4.63e-03 20.9 2.54e-01 7.02e-02 3.6 1.54e-01 2.78e-01 0.6 -1.28e-01 9.77e-03 -13.1

LatP          5.43e-03 2.63e-03 2.1

LatT          4.38e-02 4.77e-03 9.2

LongT          -1.12e-01 9.87e-03 -11.4

CP2 -1.27e-02 4.84e-03 -2.6          

CT2 -1.50e-01 2.45e-03 -61.2 -4.30e-01 5.89e-02 -7.3       

Age x CP -1.07e-02 7.86e-04 -13.6 -1.09e-02 3.58e-03 3       

Age x CT -1.92e-02 1.50e-03 -12.8 3.33e-01 1.44e-02 23.1 1.59e+00 1.21e-01 13.1    

CP x CT 9.58e-03 1.29e-03 7.4 7.45e-03 3.01e-03 2.5 8.11e-02 2.52e-02 3.2    

LatP x CT          -1.08e-02 1.74e-03 -6.2

LatP x LatT          4.15e-03 7.95e-04 5.2

LatP x LongT          -1.09e-02 1.61e-03 -5.3

CP x LongT          -2.63e-03 4.98e-04 -6.8

r R2 M R2 C r R2 M R2 C r R2 M R2 C r R2 M R2 C

0.69 0.57 0.91 0.53 0.51 0.98 0.59 0.18 0.40 0.73 0.49 0.68
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7. Summary statistics of two-trait models

Supporting Information Table S1.5. Statistics of random and fixed effects from linear mixed-

effect models of the vertical growth-radial growth and vertical growth-leaf flushing two-trait 

models. Obs: number of trait measurements; Variance: variance explained by the random effects; 

SD: standard deviation of each level of random effects; Estimate: coefficient of the regression 

shown in logarithmic scale; SE: standard error of each fixed variable; t: Wald statistical test that 

measures the point estimate divided by the estimate of its SE, assuming a Gaussian distribution of 

observations conditional on fixed and random effects. Coefficients of the fixed effects of the 

model: Cov: trait covariate; CP: climate of the provenance origin; CT: climate of the trial; CP2: 

quadratic effect of the climate of the provenance. Coefficients of the interactions: Age x CP, CP x 

CT, Cov x Age and Cov x CT. R2M: percentage of the variance explained by the fixed effects 

(Marginal variance); R2C: percentage of the variance explained by the random and fixed effects 

(Conditional variance); r: Pearson correlation. The trait co-variate (Cov) for growth-radial growth 

is radial growth and for vertical growth-leaf flushing is leaf flushing. The climate variable of the 

trial (CT) for the two-trait models is precipitation of the wettest month (BIO13). The climate 

variable of the provenance (CP) for the two-trait model is maximal potential evapotranspiration.
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Vertical growth-Radial growth Vertical growth-Leaf flushing

Model Linear Mixed Effect Linear Mixed Effect

Random Effects Random Effects

Obs Variance SD Obs Variance SD

Provenance 187 1.70e-03 4.21e-02 150 2.33e-02 1.53e-01

Trial 19 3.26e-02 1.81e-01 6 1.05e-01 3.24e-01

Trial:Block 56 2.20e-03 4.60e-02 17 1.00e-03 3.24e-02

Trial:Block:Tree 31339 9.50e-03 9.70e-02 10634 9.82e-02 3.13e-01

Residuals  1.50e-02 1.23e-01  2.70e-03 5.21e-02

Fixed Effects Fixed Effects

Estimate SE t Estimate SE t

Intercept 4.38E+00 4.51e-02 97.18 4.94e+00 4.23e-01 11.68

Cov 3.50E-01 5.02e-03 69.72 6.24e-02 8.40e-02 0.74

Age -1.97E-01 1.26e-02 -15.66 7.40e+00 5.28e-01 14.01

CP 5.04E-03 3.47e-03 1.45 2.59e-02 1.38e-02 1.87

CT -1.33E-01 3.47e-02 -3.84 1.91e+00 3.89e-01 4.92

CP2 -5.26E-03 2.43e-03 -2.17    

Age x CP    -1.96e-02 5.33e-03 -3.68

CP x CT -3.47E-02 9.66e-03 -3.59 1.78e-02 5.72e-03 3.11

Cov x Age 1.05E-01 3.44e-03 30.57 -1.43e+00 1.09e-01 -13.08

Cov x CT 8.02E-02 3.82e-03 21 -3.84e-01 7.84e-02 -4.89

r R2 M R2 C r R2 M R2 C

0.76 0.62 0.95 0.77 0.47 0.99
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8. Differences in spatial predictions between future and current climate for one- and two-

trait models

Vertical growth prediction for 12 year-old trees showed small changes in the core of the species 

range, and moderate decrease in growth in some areas of southern, eastern, western and northern 

Europe. Increases in vertical growth were mainly expected in the eastern region of the distribution 

(Supporting Information Figure S1.3a, Appendix S1). Radial growth of 12 year-old trees was 

predicted to increase in the eastern regions and to decrease across the rest of the range (Supporting 

Information Figure S1.3b, Appendix S1). Survival of 6 year-old trees was expected to strongly 

decrease in the western and southern parts of the distribution. Increases in young tree survival were 

mainly expected in central and some eastern regions of the species range (Supporting Information 

Figure S1.3c, Appendix S1). The model predicted later leaf flushing in the future than at present 

for almost all central and western parts of the species distribution. Earlier leaf flushing in the future 

than today was particularly expected in Sweden (Supporting Information Figure S1.3d, Appendix 

S1).  Differences in vertical growth predictions between future and present climatic conditions for 

the vertical growth-radial growth model showed an overall increase in vertical growth in some 

regions of the eastern and southern range; the largest decrease was expected in the southeastern 

region (Supporting Information Figure S1.3e, Appendix S1). Differences in vertical-growth 

predictions between the future and present conditions for the vertical growth-leaf flushing model 

anticipated a decrease in the southeastern and the southern range. A small increase in the northeast 

was predicted by this model (Supporting Information Figure S1.3f, Appendix S1).
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Supporting Information Figure S1.3. Differences in predictions between future (2070) and 

contemporary (2000-2014) climate for one-trait models in beech range: (a) vertical growth of 12 

year-old trees (in cm); (b) radial growth of 12 year-old trees (in mm); (c) probability of young tree 

survival of 6 year-old trees; (d) leaf flushing of 12 year-old trees (difference in Julian days); and 

for two-trait models: (e) vertical growth (in cm; co-variate radial growth) and (f) vertical growth 

(in cm; co-variate leaf flushing). The color gradient depicts the clinal variation from low (red) to 

high (blue) values. 
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Dear Editors, 

Many thanks again for the review, we addressed all the minor points raised by the editors and 

one of the reviewers. 

Yours sincerely, 

Marta Benito Garzón on behalf of the co-authors

EDITOR'S COMMENTS TO AUTHORS

Editor: Blonder, Benjamin

Comments to the Author:

The authors have assessed the substance of all of the reviewers' and my points. The work is 

likely to be of broad interest to our readership. I think the manuscript is essentially ready to go. 

There are only a few minor presentation issues remaining that could be trivially addressed by the 

authors:

R: Many thanks for checking and editing the manuscript, we followed all your advises in our 

reviewed version of the manuscript. 

Abstract: I would rather say that one of the main conclusions is that the drivers of range limits are 

dependent on trait x environment interactions - not only do multiple traits matter, but each trait 

matters differently depending on the environmental variable.

R: Thank you, we agree and changed the sentence accordingly. 

103: broadleaf, not broadleaved

R: Changed 

221: delta term is not clear, suggest replacing with ∆AIC

R: Changed

488: based on, not based in

R: Changed 

506: this is a run-on sentence - please fix.

R: We split this sentence in two. 

510: could, not can
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Changed 

Figure 1: can you make symbols in the inset legend larger? They are hard to see.

We made larger the symbols of the inset, thank you. 

Figure 2/4: please consider replacing color scales with more colorblind-friendly version, e.g. just a 

simple red-gray-blue gradient (no yellow or green)

R: Thank you, we changed them to a red-gray-blue scale. 

Referee: 2

I am happy that my comments were useful for this manuscript. Just a note, in this sentence: "[...in 

certain parts of the southern and eastern range of beech,  reflecting the climatic marginality due 

to continentality of the species in these areas...]", you perhaps refer to continentality of the 

climate, and not of the species.

R: Thank you, we fixed it. 
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Figure 1. Map: Distribution range of Fagus sylvatica L. (shaded in beige) and location of the provenances 

and trials by trait. Circles indicate the location of the provenances and triangles that of the trials. Different 

colors have been employed to indicate the different traits (VG: vertical growth; RG: radial growth; YTS: 

young tree survival; LF: leaf flushing). Table: The extent of data from the BeechCOSTe52 database (Robson 

et al. 2018) used for modelling. Measurements: total number of measurements; Trees: total number of 

individual trees; Trials: total number of trials; Provenances: total number of provenances, Age: the age at 

which the trees were measured. Columns indicate sample sizes for the traits used in the one-trait models 

and in the two-trait models. 
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Figure 2. Spatial projections for (a) vertical growth (cm), (b) radial growth (mm), (c) young tree survival 

(probability) and (d) leaf flushing (Julian days) generated using one-trait models (maps on the left), and 

corresponding graphs of interactions between the best environmental predictor variable across the trials 

divided according to environment at the provenance for each of the four traits (graphs on the right). 

 Interactions represent the differences in trait values that can be attributed to the provenance (interpretable 

as local adaptation driven by PET max in (a), (b), and (c) and driven by the latitude in (d)). Interactions also 

represent the differences in trait values that can be attributed to the environmental conditions of trial 

(interpretable as phenotypic plasticity driven by the environmental variables shown in the x-axis).  Black, 

dark grey, and light grey lines represent high, medium and low values of the climatic variable of the 

provenances (as opposed to those of the trial, indicated on the x-axis). The vertical lines represent the 

confidence intervals. The maps display the trait projection for contemporary climate (inferred from 2000-

2014 meteorological data) across the current species range. The color gradient depicts the clinal variation 

from low (red) to high (blue) values of each trait. The values of the different traits are represented in the 

following way: vertical growth (cm), radial growth (mm), probability of young tree survival (0 =dead, 
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1=alive) and leaf flushing (Julian days). PET max prov: maximal monthly potential evapotranspiration at the 

provenance; Latitude prov: latitude of the provenance. 

135x230mm (300 x 300 DPI) 
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Figure 3. Spatial projections of vertical growth (cm) for (a) Vertical-radial growth model and (b) vertical 

growth-leaf flushing models (maps on the left), and the corresponding graphs of co-variation between 

vertical growth and the covariate: (a) DBH (mm) and (b) leaf flushing (Julian days). Black, dark grey, and 

light grey lines represent high, medium and low values of the precipitation of the wettest month of the trial 

(BIO13). The vertical lines represent the confidence intervals. The maps display the trait projection for 

contemporary climate (inferred from 2000-2014 meteorological data) across the current species range. The 

color gradient depicts the clinal variation in vertical growth from 200 cm (gray) to 600 cm (blue). 
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Figure 4. Spatial predictions for 2070 (RCP 8.5) across the species range for one-trait models: (a) vertical 

growth (cm); (b) radial growth (mm); (c) probability of young tree survival (0=dead; 1=alive); (d) leaf 

flushing (Julian days); and for two-trait models: (e) vertical growth (cm; co-variate radial growth) and (f) 

vertical growth (cm; co-variate leaf flushing). The color gradients depict the clinal variation from low (red) 

to high (blue) values. 
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Supporting Information Figure S1.1. Correlograms of Moran’s I correlation coefficient (y-axis) and the 

distance classes (x-axis) for vertical (a) and radial (b) growth, young tree survival (c), and leaf flushing (d). 

Moran’s correlation coefficient ranges between 1 and -1. Distance classes are Euclidian and in degrees. 

Distances of significant spatial dependence are shown in red (significant values p < 0.05). 
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Supporting Information Figure S1.2. Results of PCA for checking for co-linearity and reducing the climatic 

space to select the final climate variables for the stepwise procedure used in the models on traits vertical 

and radial growth, and young tree survival, conducted by provenance (a) and by trial (b). When two 

variables are strongly correlated, only one of them was used in models. The variance explained by the first 

two axes is indicated in the figures. 
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Supporting Information Figure S1.3. Differences in predictions between future (2070) and contemporary 

(2000-2014) climate for one-trait models in beech range: (a) vertical growth of 12 year-old trees (in cm); 

(b) radial growth of 12 year-old trees (in mm); (c) probability of young tree survival of 6 year-old trees; (d) 

leaf flushing of 12 year-old trees (difference in Julian days); and for two-trait models: (e) vertical growth (in 

cm; co-variate radial growth) and (f) vertical growth (in cm; co-variate leaf flushing). The color gradient 

depicts the clinal variation from low (red) to high (blue) values. 
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