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Preface

This book summarizes the current status of scientific and management knowledge 

regarding global rangelands and the major challenges that confront them. It origi-

nated from discussions to update the well-received book entitled Grazing 

Management: An Ecological Perspective that was first published in 1991. However, 

it became apparent that rangeland science had advanced so rapidly in the 25 years 

since this book had been published that its scope was no longer sufficient to accom-

modate the newly created knowledge. Consequently, it was decided that a new book 

with an expanded scope and greater relevance to contemporary rangeland chal-

lenges was required. This book also assesses why these major advances occurred so 

rapidly following a half century of limited conceptual change. Major advances have 

primarily been represented by scientific contributions such as nonequilibrium ecol-

ogy and resilience theory, but socio-political events, including new policy and 

increasing societal demand for rangeland services, have also been important.

Collectively, this book represents an attempt to achieve these broader and more 

contemporary objectives by emphasizing three major themes. The first summarizes 

recent conceptual advances for rangeland science and management. The second 

addresses the implications of these conceptual advances with respect to manage-

ment recommendations and policy decisions. The third evaluates some of the major 

challenges confronting global rangelands in the twenty-first century. This book is 

intended to complement applied range management textbooks by evaluating the 

conceptual foundation of the profession and recommending changes to promote 

future development and greater effectiveness.

The book is organized in three major sections addressing each of the primary themes.

• An ecological processes section includes six chapters highlighting major advances 

in ecological knowledge and theory regarding the function and dynamics of 

rangeland systems. Specific chapters emphasize woody plant encroachment, eco-

hydrology, soils and belowground processes, structural heterogeneity, nonequi-

librium ecology and resilience theory, and potential consequences of climate 

change.
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• A management section consists of five chapters describing major advances that 

have originated, at least in part, from the knowledge previously described in the 

ecological processes part. Management is used in a broad context that references 

landscape and regional scales, in addition to smaller “pasture” scales, to opti-

mize land use decisions for both landowners and society at large. Specific chap-

ters focus on social-ecological systems, state-and-transition models, livestock 

production systems, adaptive management, and wildlife–livestock interactions.

• A challenges section contains five chapters that focus on emerging, high profile 

issues that will substantially impact the ability of rangelands to continue to pro-

vide ecosystem services to human societies. These chapters emphasize invasive 

plant species, ecosystem services, climate change adaptation, ecological moni-

toring, and rangelands in developing nations.

Consolidation of these diverse and complex concepts within a single, readily 

accessible volume is intended to improve communication among rangeland profes-

sionals as well as to better inform stakeholders from other sectors of current range-

land concepts and challenges. This volume is designed for a broad audience, 

including ecosystem managers in the private sector, state and federal agencies, and 

nongovernmental organizations; and policy makers in local, state, and national gov-

ernment. This content also has value for educational instruction and research, espe-

cially in multidisciplinary academic programs.

Collectively, the content of this book confirms that a more comprehensive frame-

work is necessary to address the complex challenges confronting global rangelands 

in the twenty-first century. Rapid human population growth, climate change, land 

tenure modification, landscape fragmentation, food security, biodiversity loss, and 

globalized markets represent some of the major challenges that have minimized the 

effectiveness of traditional range management. Many “complex” problems have 

gone unrecognized or have been inappropriately identified as “simple” problems 

that have been addressed with narrowly framed approaches. The complexity of con-

temporary challenges requires that rangelands be re-envisioned as integrated social- 

ecological systems, in which societal values, goals, and capacities are given equal 

consideration to those of ecological processes. A more comprehensive framework 

of rangeland systems may enable management agencies and educational, research, 

and policy-making institutions to more effectively assess complex problems and 

develop appropriate solutions.

This book represents the most comprehensive and diverse compilation of knowl-

edge regarding rangeland systems to date. It is founded upon the collective experi-

ence, knowledge, and commitment of 80 authors who have worked in rangelands 

throughout the world. The constructive contributions of 35 reviewers, some of 

whom also served as authors of related chapters, improved the presentation and 

quality of content and enhanced content integration among chapters. The USDA-

ARS Jornada Experimental Range generously provided funds to publish this book 

Preface
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in an open access venue and to partially support the summer salary of the editor 

during book preparation. The guidance of the Springer Nature senior editor for 

environmental science, Melinda Paul, and book project manager, Silembarasan 

Panneerselvam, is gratefully acknowledged. I extend my sincere appreciation to all 

who were involved in the inception, writing, and publication of this volume.

College Station, TX David D. Briske 
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Chapter 1

Rangeland Systems: Foundation 

for a Conceptual Framework

David D. Briske

Abstract This book describes the conceptual advances in scientific and management 

knowledge regarding global rangelands in the past 25 years. This knowledge origi-

nated from a substantial shift in underlying ecological theory and a gradual progres-

sion of natural resource management models. The progression of management 

models reflects a shift from humans as resource users to humans as resource stew-

ards and it represents the backdrop against which this book has been written. The 

most influential scientific and sociopolitical events contributing to transformation of 

the rangeland profession in the past quarter century were recognition of nonlinear 

vegetation dynamics that solidified dissatisfaction with the traditional rangeland 

assessment procedure, the introduction of resilience theory and state-and- transition 

models that provided a conceptual framework for development of an alternative 

assessment procedure, and the National Research Council’s report on Rangeland 

Health that provided the political support to implement these changes in federal 

agencies. The knowledge created by this series of interrelated events challenged the 

traditional concepts developed decades earlier and provided the space and creativity 

necessary for development of alternative concepts. In retrospect, these conceptual 

advances originated from the ability of the rangeland profession to progress beyond 

the assumptions of equilibrium ecology and steady-state management that directly 

contributed to its inception 100 years ago. A more comprehensive framework of 

rangeland systems may enable management agencies and educational, research, and 

policy-making institutions to more effectively develop the capacity to address the 

challenges confronting global rangelands in the twenty-first century.

Keywords Drylands • Natural resource management • Rangelands • Range science 

• Resilience-based management • Steady-state management

D.D. Briske (*) 

Department of Ecosystem Science and Management, Texas A&M University,  
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1.1  Introduction

This book summarizes the current state of scientific and management knowledge 

regarding global rangelands and the major challenges that confront them. Current 

knowledge is assessed relative to changes that have occurred within rangeland ecol-

ogy, management applications, and, more broadly, global events that have influ-

enced rangelands. A widely accepted philosophical interpretation of scientific 

advancement notes that progress is often gradual and incremental as prevailing 

theories are explored and refined (Kuhn 1996). These periods of incremental prog-

ress, however, are periodically interrupted by major changes in underpinning theo-

ries that are termed scientific revolutions. This proved to be the case for range 

ecology and the discipline of ecology in the 1970s and 1980s when the prevailing 

theory of ecological equilibrium was challenged by a more dynamic nonequilibrium 

interpretation (Briske et al. 2003). Whether or not this represented a scientific revo-

lution remains in dispute, but there is no question that it introduced a period of rapid 

conceptual change for the rangeland profession.

Perhaps more pertinent to the goal of this book is that the development of this 

new knowledge broadly paralleled the progression of natural resource management 

models based on human–natural resource interactions. These models are envisioned 

to sequentially progress with time following human settlement and societal 

development from humans as natural resource users to humans as natural resource 

stewards (Chapin et al. 2009). Consequently, changes in the perception of how 

humans interact with nature contribute to different knowledge needs and manage-

ment strategies to maintain the supply of desired natural resources.

Natural resource exploitation is an anticipated outcome following a long period 

of low-impact preindustrial human use (Fig. 1.1). Exploitation of US rangelands, 

prompted by the perception of limitless open-access resources, did occur in response 

to excessive livestock grazing in the late nineteenth and early twentieth centuries. 

This period of exploitation and subsequent natural resource degradation was termed 

the “range problem” in the southwest USA, and it directly contributed to develop-

ment of the rangeland profession (Sayre et al. 2012; Sayre 2017). Exploitation was 

followed by development of steady-state management that attempts to maximize 

sustainable yield of specific goods that are most highly valued. This model is imple-

mented through the control of ecosystem variation—fire suppression, predator con-

trol, and fencing—to optimize production of desired goods, on the basis of broad 

ecological principles that are administered through command and control manage-

ment by various state or national agencies (Table 1.1).

Recognition that effective management needed to consider entire ecosystems, 

including their inherent variation, and a societal demand for more diverse ecosystem 

services promoted development of the ecosystem management model. The ecosys-

tem management model—focused on planning for integrated ecosystems as well as 

solicitation of more diverse stakeholder feedback—originated in the 1970s and was 

D.D. Briske
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Fig. 1.1 Progression of 

natural resource 

management models 

following human 

settlement (redrawn from 

Chapin et al. 2009)

Table 1.1 Seven distinguishing attributes of steady-state, ecosystem, and resilience-based natural 

resource management modelsa

Attribute

Steady-state 

management Ecosystem management

Resilience-based 

management

Ecological 

models

Succession- 

retrogression

State-and-transition, 

rangeland health

Multiple social–

ecological systems/

novel ecosystems

Reference 

condition

Historic climax 

plant community

Historic climax plant 

community, including 

historical range of 

variation

Landscapes with 

maximum options for 

ecosystem services

Role of humans Use ecosystems Part of ecosystems Direct trajectories of 

ecosystem change

Ecosystem 

services

Meat and fiber 

products

Several ecosystem 

services

Options for diverse 

ecosystem services

Management 

goals

Sustain maximum 

yield of 

commodities

Sustain multiple uses Sustain capacity of 

social–ecological 

systems to support 

human well-being

Science- 

management 

linkages

Top-down from 

management 

agencies

Top-down from 

management agencies

Multi-scaled social 

learning institutions

Knowledge 

systems

Management 

experience and 

agricultural 

experiments

Multidisciplinary science 

and ecological 

experiments

Collaborative groups, 

spatially referenced, 

updatable databases

aFrom Bestelmeyer and Briske (2012)

1 Rangeland Systems: Foundation for a Conceptual Framework
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widely adopted in the 1990s, especially by natural resource management agencies in 

the USA (Quigley 2005). Subsequently, ecosystem management has  introduced 

associated concepts that include adaptive management and ecosystem services (Nie 

2013). A more recent model—resilience-based management—is  currently being 

developed and explored to provide a more effective means for managing natural 

resources (Chapin et al. 2009, 2010). This model recognizes the inevitability of 

change and seeks to guide change to sustainably provide multiple ecosystem ser-

vices for society. Successive development and implementation of steady-state man-

agement, ecosystem management, and, most recently, resilience- based management 

represent the backdrop against which this book has been written.

1.2  Extent, Distribution, and Societal Value

Rangelands represent the most extensive land cover type on Earth. Many defini-

tions of rangelands exist, but most address both a land cover type, associated with 

vegetation or biome, and a land use that primarily emphasizes grazing or pastoral-

ism (Lund 2007) (Text Box 1.1). Although varying definitions of rangelands are 

presented in the following chapters, they all contain one or both of these character-

istics. Rangelands were placed within the drylands category of the Millennium 

Ecosystem Assessment that includes cultivated land, scrublands, shrublands, 

grasslands, savannas, semideserts, and true deserts (MA 2005). Drylands are 

defined as being limited by soil water, the result of low rainfall and high evapora-

tion, and show a gradient of increasing primary productivity, ranging from hyper-

arid, arid, and semiarid to dry subhumid areas (Fig. 1.2). The ratio of annual 

precipitation to annual potential evapotranspiration is termed the aridity index and 

it is less than 0.65 for drylands. Although the majority of rangelands exist within 

the dryland category, a portion also occur in wetter regions, and high-latitude and 

high-elevation grasslands and tundra.

Drylands are estimated to occupy 41 % of the Earth’s land area (6 billion 

hectares), 69 % of which are rangelands, and support 2 billion humans and 50 % 

of global livestock (MA 2005). This is an area 1.5 times larger than all forests 

combined and nearly three times greater than cropland (Reid et al. 2008). Given 

their expansiveness and heterogeneity, rangelands provide numerous ecosystem 

services including biodiversity, carbon sequestration, and cultural values, in 

addition to the provisioning services of food, fiber, and fuel. Limited and highly 

variable resource availability, both ecological and socioeconomic, makes these 

systems and their human inhabitants highly vulnerable to both ecological and 

social disruption. Approximately 73 % of drylands are affected by accelerated 

soil degradation and 10–20 % of drylands are currently degraded (MA 2005). 

Human populations inhabiting drylands lag far behind the rest of the world in 

terms of human well-being and development indicators; 90 % of the inhabitants 

reside in developing countries (MA 2005; Chapter 17, this volume).

D.D. Briske
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1.3  Events Contributing to Rapid Conceptual Advancement

A large number of conceptual advances began to occur in the late 1980s, after a 

50-year period of minimal conceptual change, to markedly transform the range-

land profession. These advances originated from scientific events both internal 

and external to the profession, as well as sociopolitical events motivated by 

dissatisfaction with the prevailing method of rangeland assessment. These 

major events and conceptual advances, along with their contribution to the 

Text Box 1.1: Chronology of Major Rangeland Definitions

“From the 100th meridian to the Pacific,” “one of the most important eco-

nomic uses is the grazing of livestock,” and “climatic conditions do not, in 

most localities, favor the production of farm crops” are the phrases that 

A.W. Sampson used to refer to rangelands in his book entitled “Range and 

Pasture Management,” 1923, p. 4.

Rangelands are those areas of the world, which by reason of physical limi-

tations—low and erratic precipitation, rough topography, poor drainage, or 

cold temperatures—are unsuited to cultivation and which are a source of for-

age for free-ranging native and domestic animals, as well as a source of wood 

products, water, and wildlife. Range Management, Stoddard et al. (1975, p. 3).

All territories presently used as grazing lands, which are accounted for in 

yearly FAO statistics as well as other nonagricultural, largely unoccupied, dry-

lands which are used only occasionally by nomadic pastoralists or are presently 

unused at all. United Nations Environment Program 1991 (cited in Lund 2007).

Rangeland is a type of land that supports different vegetation types including 

shrublands such as deserts and chaparral, grasslands, steppes, woodlands, tem-

porarily treeless areas in forests, and wherever dry, sandy, rocky, saline, or wet 

soils; and steep topography precludes the growing of commercial farm and tim-

ber crops. Rangeland Ecology and Management, Heady and Child (1994, p. 1).

An area where wild and domestic animals graze or browse on uncultivated 

vegetation. FAO (2000).

Rangeland is defined as “uncultivated land that provides the necessities of 

life for grazing and browsing animals.” Range Management: Principles and 

Practices. Holechek et al. (2011, p. 1).

Rangelands are a type of land (not just land grazed by livestock) on which 

natural vegetation is dominated by grasses and shrubs and the land is man-

aged as a natural ecosystem. UNCCD (2011).

“Land supporting indigenous vegetation that either is grazed or that has the 

potential to be grazed, and is managed as a natural ecosystem. Range includes 

grassland, grazable forestland, shrubland and pastureland.” SRM Glossary of 

Terms 1998, updated 2015.

1 Rangeland Systems: Foundation for a Conceptual Framework
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progression of natural resource management models previously described, are 

summarized in the following sections (Table 1.1, Fig. 1.3). This section exam-

ines the professional legacies that have influenced our current, and potentially 

our future, perceptions of rangelands.

1.3.1  Internal to the Profession

Scientific—A foundational concept of the US rangeland profession in the twentieth 

century was range condition and trend analysis (the range model). It was founded on 

plant successional theory developed by the influential early American ecologist 

Fredric E. Clements in 1916. The range model broadly assumed that livestock grazing 

counteracted plant succession to establish the species composition of plant communi-

ties in a linear response to the severity of livestock grazing (Briske et al. 2005). Arthur 

Sampson, a former student of Clements at the University of Nebraska, introduced 

succession as a conceptual framework for rangeland assessment in 1917. The adop-

tion of successional theory—an equilibrium concept—was considered a major con-

ceptual advance by rangeland professionals in the early twentieth century. It had a 

profound influence on the rangeland profession by directly linking it to equilibrium 

ecology and by indirectly contributing to the steady-state management model of natu-

ral resource management. Dyksterhuis (1949) further secured succession in the foun-

dation of rangeland science by operationalizing the range model on a quantitative 

basis. The range model provided the standard assessment procedure for approximately 

50 years (Fig. 1.3).

Fig. 1.2 Distribution of global drylands as classified by the UNCCD (Millennium Ecosystem 

Assessment (2005))
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However, both the range model and successional theory encountered severe 

criticism by both Australian and US rangeland scientists in the 1970s and 1980s. 

This criticism was primarily founded on recognition that the rate and extent of 

woody plant expansion was not solely a consequence of grazing intensity and that 

removal of grazing did not necessarily prevent or reverse woody plant encroach-

ment (Westoby et al. 1989; Laycock 1991). This ecological outcome was inconsis-

tent with the assumptions of the range model and it provided a strong justification 

for development of an alternative model to more accurately interpret observed 

vegetation dynamics and to more effectively support rangeland management.

Fig. 1.3 Timeline of major events and conceptual advances that have contributed to development 

of the rangeland system framework described in this chapter and throughout the entire book. The 

relative rate of conceptual advances is shown on the right and the successive emergence of natural 

resource management models on the left

External to
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U.S. Forest Service 1905 
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succession

Multiple Resource Act 1960
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ecology
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A second source of criticism occurred when the concepts of range science that had 

been developed in the USA, including the range model, were applied to pastoral sys-

tems on other continents. International development programs recognized that these 

Western concepts had limited application to pastoral systems in the late 1970s (Sayre 

2017). The international scope of this knowledge proved to be extremely valuable by 

assessing range science through the lens of pastoral societies where private lands and 

market-oriented goals were of limited relevance (Reid et al. 2014). Research in arid 

pastoral systems indicated that plant production and livestock numbers were seldom in 

equilibrium because periodic multiyear drought prevented livestock numbers from 

attaining the maximum carrying capacity established by plant production (Ellis and 

Swift 1988). This also contributed to management and policy recommendations that 

rejected the equilibrium-based concepts on which Western range science was founded.

Sociopolitical—Growing dissatisfaction with the range model, as well as 

inconsistent rangeland assessment procedures among the major US federal agen-

cies, contributed to the development of political pressure to devise a more ecologi-

cally relevant and consistent assessment procedure. The National Research 

Council (NRC)  published the “Rangeland Health Report” in 1994 that broadly 

outlined an alternative rangeland assessment to replace the highly criticized range 

model. Shortly following the publication of this influential report, a group of 

rangeland specialists within the NRCS made the bold decision to adopt this alter-

native assessment procedure and began development of state-and-transition mod-

els within the framework of Ecological Site Descriptions.

A memorandum of agreement was signed by the NRCS, US Forest Service (USFS), 

and Bureau of Land Management (BLM) in 2010 to use Ecological Site Descriptions 

as the major procedure for rangeland assessment to successfully fulfill the recommen-

dation of the NRC report. The NRC Report provided political motivation for change, 

especially within the federal agencies. However, the conceptual framework for devel-

opment of an alternative assessment procedure was based on the influential paper of 

Westoby, Walker, and Noy-Meir entitled “Opportunistic Management for Rangelands 

not at Equilibrium” that was published in the Journal of Range Management in 1989. 

It is this series of events that propelled nonequilibrium ecology beyond equilibrium 

ecology as the dominant theory underpinning the rangeland profession.

Interest in range science educational programs in Western universities of the 

USA began to wane during this period and student enrollment declined drastically 

in some cases. Greater societal demands from rangelands and increasing complex-

ity of natural resource management had exceeded the capacity of the traditional 

range science curriculum to effectively address them. This trend was also occurring 

in other natural resource disciplines that had originated with the assumptions of 

simplicity, predictability, and manageability that characterized steady-state man-

agement last century (Holling and Meffe 1996; Thurow et al. 2007).

The close association of range science with livestock grazing, both real and per-

ceived, further minimized the value of range science as multiple resource use and 

ecosystem management began to develop. Declining student enrollment in many 
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natural resource management disciplines led to consolidation of academic programs, 

including many range science departments that were merged with those of related 

disciplines (Abbott et al. 2012). However, these events contributed to the integration 

and broadening of academic curricula and research programs that were more inclu-

sive of multiple disciplines. Although the rangeland profession was multidisciplinary 

from its inception, the contributions of the allied disciplines were often narrowly 

confined by prevailing perceptions within the rangeland profession.

Development of a more diverse multidisciplinary range science curriculum that 

included systems ecology, landscape ecology, spatial sciences, and biogeochemistry 

contributed to a knowledge base that has brought range science into closer alignment 

with the concepts and theories of its related disciplines. The Grassland Biome Project 

of the International Biological Program promoted ecosystem ecology as a research 

focus in the late 1960s and early 1970s and introduced subsequent generations of US 

and Canadian grassland and rangeland ecologists to this systems- oriented approach 

(Smith 1968). The past 25 years have witnessed an important generational turnover 

of researchers and managers that has introduced broader, multidisciplinary perspec-

tives, and new scientific, technological, and communication skills that extend far 

beyond the traditional perspectives of the twentieth-century rangeland profession.

In some cases, professionals with degrees in disciplines other than range science 

were employed to further expand this knowledge base. It was also during this period 

that social scientists who had been studying pastoral societies and peoples began to 

interact with biophysical scientists to create a more comprehensive interdisciplinary 

framework for investigating rangeland systems (Reid et al. 2014). This provided nec-

essary knowledge of the people that inhabit rangelands, including their culture, social 

structure, and livelihoods. These events collectively created both the scientific capac-

ity and creative space for reassessment and exploration of alternative perspectives, 

interpretations, and concepts that contributed to this period of rapid change (Fig. 1.3).

1.3.2  External to Profession

Scientific—Resilience is undoubtedly the major scientific theory that contributed to 

the transformation of range science. Resilience was introduced in 1973 by 

C.S. Holling in an attempt to reconcile ecosystem dynamics with the prevailing 

concept of ecological stability. Resilience recognizes that ecosystems can exhibit 

dynamic behavior, and yet retain their general structure and function, and that 

alternative stable ecosystems may be formed in cases where resilience of the initial 

ecosystem has been exceeded. However, it took another 16 years before resilience 

was introduced to the rangeland profession (Westoby et al. 1989) and nearly another 

10 years before it was incorporated into rangeland assessment. It continues to be 

developed as a central component of the rangeland profession (Bestelmeyer and 

Briske 2012; Herrick et al. 2012). Resilience theory is currently replacing 
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nonequilibrium ecology as the dominant theoretical concept because what was pre-

viously considered nonequilibrium is now more appropriately interpreted as multi-

ple equilibria in many cases (Petraitis 2013; Chapter 6, this volume). Resilience is 

also used to describe “a way of thinking,” in addition to a property of ecological 

systems, especially in reference to social–ecological systems.

Recognition of the importance of spatial scales to ecological processes and eco-

system dynamics also had a profound influence by shifting emphasis from small 

plots to a broader landscape perspective (Turner 1989). The concept of social–eco-

logical systems emerged in the 1990s to emphasize the strong linkage that existed 

among ecological and social components (Berkes and Folke 1992). This goes 

beyond simply stating that humans are dependent upon nature to emphasize that 

ecological and social systems are tightly integrated with many complex and poorly 

understood interactions that directly influence natural resource management.

Rangeland research priorities were further modified by major changes in funding 

sources beginning in the early 1990s. Research programs shifted from single- 

scientist projects funded by land-grant institutions and agricultural experimental 

stations to much larger, multidisciplinary programs that emphasized broader and 

more contemporary natural resource management issues identified by federal fund-

ing agencies (Thurow et al. 2007). A portion of these federal grant programs 

required that research include extension or education personnel, and some required 

direct stakeholder engagement to further ensure that research outcomes had practi-

cal application. This provided a strong incentive that moved range science toward 

more effectively integrated, multidisciplinary research programs that ultimately 

contributed to a portion of the conceptual advances summarized in this book.

Although this shift in research funding has enhanced the scientific capacity of 

the rangeland profession, concern has been expressed that it may have reduced 

management emphasis and expertise (Abbott et al. 2012). However, the rangeland 

CEAP assessment that was organized by the NRCS to evaluate the effectiveness 

of rangeland conservation practices indicated that the benefits of these practices 

that had been developed decades earlier were largely undocumented (Briske 

2011). This was primarily a consequence of minimal monitoring of practice out-

comes and the assessment further concluded that previous research had provided 

only modest support for management and policy recommendations. Consequently, 

this shift in research emphasis driven by research funding may potentially intro-

duce greater, rather than less, management-relevant science, especially when fed-

eral grant programs require stakeholder involvement and demonstration of 

research application. This indicates that the management model in which 

knowledge is implemented is as important as the knowledge itself.

Sociopolitical—The steady-state model of natural resource management was devel-

oped early last century and it is still widely implemented today (Table 1.1, Fig. 1.3). 

This model attempts to maintain ecosystems in a single state through the implementa-

tion of management practices and policies that are applied in a command and control 

manner to efficiently optimize production of one or a few select ecosystem services 
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(Holling and Meffe 1996). The steady-state model began to be challenged in response 

to an increasing incidence of natural resource management failures and societal demand 

for more diverse ecosystem services. The publication of academic papers entitled “The 

pathology of natural resource management” (Holling and Meffe 1996) and “The era of 

management is over” (Ludwig 2001) was a direct challenge to steady-state management 

that has continued to the present. In many respects the major conceptual advances that 

range science has made in the past 25 years are a consequence of its ability to progress 

beyond the assumptions of equilibrium ecology and steady-state management that 

directly contributed to its inception 100 years ago.

Expanding societal awareness of the value of rangelands and greater demands for 

diverse services from them, especially those held in the public domain, required that 

federal land management agencies develop more comprehensive objectives following 

passage of the Multiple Use Act in 1960 (Holechek et al. 2011). The ecosystem man-

agement model emerged in the late 1970s in response to recognition that entire ecosys-

tems, including their inherent variation, were appropriate units for natural resource 

management (Koontz and Bodine 2008; Nie 2013) (Table 1.1). By the mid-1990s all 

four of the major federal natural resource management agencies in the USA had 

adopted this model. This raised a new set of social, as well as ecological, questions and 

challenges regarding natural resource management that had not previously been con-

sidered. Consider that the initial definitions of range management provided by Stoddart 

and Smith in the first (1943) and second (1955) editions of the text book “Range 

Management” make reference to “obtaining maximum livestock production” which is 

consistent with steady-state management previously described (Text Box 1.2). It 

wasn’t until the third edition in 1975 that this definition was modified to “optimize 

returns from rangelands in those combinations most desired and suitable to society.” 

Heady (1975) introduced a similar definition in the text “Rangeland Management” 

that same year. These expanded definitions are indicative of a shift from the steady-

state management to the ecosystem management model.

Use of the term ecosystem management rapidly declined in the early 2000s likely in 

response to its ambiguous definition, multiple interpretations, and numerous barriers 

encountered in its implementation (Nie 2013). However, several of its major compo-

nents—stakeholder engagement, adaptive management, and restoration—continue to 

shape natural resource management and planning. Resilience- based management 

appears to have adopted some of the most effective components of the ecosystem man-

agement model (Table 1.1). This management model embraces the inevitability of eco-

logical and social change and emphasizes that management should anticipate and guide 

change, rather than minimize it, to sustainably provide society with desired ecosystem 

services (Chapin et al. 2009, 2010; Bestelmeyer and Briske 2012). It seeks to address 

uncertainty and incomplete knowledge through the involvement of diverse stakehold-

ers to develop adaptive capacity, rather than static management prescriptions and 

regulations, to maintain resilient systems.
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1.4  Section Perspectives

All three sections of this book—processes, management, and challenges—summarize 

concepts that did not exist 25 years ago, and those few that did have been greatly 

modified and refined, which is indicative of the rate at which science and global 

events have advanced. This rapid change also parallels the progression of natural 

resource models previously described through greater understanding of human 

dependence and impact on natural resources (Table 1.1, Fig. 1.3).

1.4.1  Processes Section

The processes section outlines a comprehensive and in-depth understanding of eco-

logical knowledge that has challenged and, in some cases, replaced traditional 

assumptions and concepts. The chapters in this section reflect the global significance 

of rangeland processes and indicate that accelerating global change will further 

Text Box 1.2: Chronology of Major Range Management Definitions

“The science and art of planning and directing range use so as to obtain the 

maximum livestock production consistent with conservation of the range 

resource”—Range Management. Stoddart and Smith (1943, p. 2).

“The science and art of obtaining maximum livestock production from 

range land consistent with the conservation of the land resources”—Range 

Management. Stoddart and Smith (1955, p. 1).

“The science and art of optimizing the returns from rangelands in those 

combinations most desired by and suitable to society through the manipula-

tion of range ecosystems”—Range Management. Stoddard et al. (1975, p. 3).

“Land management discipline that skillfully applies an organized body of 

knowledge know as range science to renewable natural resource systems for 

two purposes: (1) protection, improvement, ad continued welfare of the basic 

range resource, which may include soils, vegetation, and animals; and (2) 

optimum production of goods and services in combinations needed by man-

kind”—Rangeland Management, Heady (1975, p. 4).

“The manipulation of rangeland components to obtain optimum combina-

tion of goods and services for society on a sustained basis”—Holechek et al. 

(1989, p. 5). This definition has been retained in all subsequent editions.

“A distinct discipline founded on ecological principles and dealing with 

the use of rangelands and range resources for a variety of purposes. These 

purposes include use as watersheds, wildlife habitat, grazing by livestock, 

recreation, and aesthetics, as well as other associated uses.” SRM Glossary of 

Terms 1998, updated 2015.
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amplify the inherent variability and uncertainty inherent to rangelands. Ecological 

processes are the source of multiple ecosystem services that society demands from 

rangelands, including the provisioning services of food, fiber, and fuel.

A greater understanding of belowground processes, including the structure 

and function of microbial communities, has increased insight into the contribu-

tion of soils in rangeland systems, and their significance in global biogeochemi-

cal cycles. Hydrological processes are central to the function of arid and 

semiarid rangelands and their close coupling with vegetation makes them very 

sensitive to natural disturbances and human activities. Woody plant encroachment 

has occurred in many rangelands throughout the globe to modify not only 

vegetation structure, but also ecological processes that create trade-offs among 

important ecosystem services. Heterogeneity, diversity, and variability are envi-

sioned to possess inherent value and the occurrence of ecological processes 

over diverse spatial and temporal scales has been recognized to produce impor-

tant ecological outcomes. Resilience theory has provided an interpretation of 

how ecosystems can be dynamic, but persist as self-organized systems, and cli-

mate change science provides valuable projections of how ecosystems may be 

impacted by these changes in the future.

1.4.2  Management Section

The management section emphasizes the transition of humans from users to 

stewards of natural resources within the context of social–ecological systems. 

Management is used in a broad context to reference landscape and regional scales, 

in addition to smaller “pasture” scales, to optimize land-use decisions for both land-

owners and society at large. The content of these chapters cautions that we must 

learn from past professional experiences, but stand ready to move beyond them to 

explore alternative approaches and to create innovative solutions. For example, rap-

idly increasing global demand for animal protein requires development of more 

efficient livestock production systems while minimizing their adverse ecological 

consequences. State-and-transition models are widely used to support rangeland 

management and they continue to undergo further refinement to increase their man-

agement utility.

Management decisions are often made under conditions of inherent uncertainty 

and risk that require systematic approaches to inform decision-making processes 

under these circumstances. Adaptive management has been developed to address 

these challenges, but its application has been limited by both insufficient 

management- relevant science and the inability of institutions to support its imple-

mentation. A consensus is emerging that collaborative learning and collective action 

are required among diverse stakeholders to produce useable knowledge, increase 

adaptive capacity, and maintain resilience of rangeland systems.
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1.4.3  Challenges Section

The challenges section emphasizes that future events may surpass previous human 

experience regarding adaptation to changing climatic, ecological, and socioeco-

nomic conditions. Surprises occur when unanticipated outcomes originate from 

threshold conditions, extreme events, and unrecognized drivers external to the sys-

tem. A primary challenge will be to determine the types of changes that are desir-

able and beneficial and to implement them in a manner that does not create other 

problems or degrade rangeland resources. Invasive species continue to alter the 

structure and function of rangeland systems and ecosystem services supplied, and in 

some cases these transformations may be irreversible. Invasive plant management 

has adopted an ecosystem perspective to contend with this accelerating biotic chal-

lenge. Ecosystem services, including those that do not currently possess economic 

market value, are being explored as a means to recognize and evaluate trade-offs 

and create win-win outcomes regarding land-use decisions.

Changing socioeconomic conditions have required that pastoralists throughout the 

world become more sedentary which undermines the traditional risk aversion strat-

egy of livestock mobility. Knowledge of rangelands and their human inhabitants in 

developing countries has rapidly increased, but numerous barriers exist to its imple-

mentation to improve rangeland resources and human well-being. The development 

of cost-effective, large-scale monitoring of rangeland resources will be a consider-

able challenge for implementing effective management and policy decisions.

1.5  Foundation for a Rangeland Systems Framework

Range management has focused on prescribed management practices to a much 

greater extent than management approaches or strategies to achieving desired 

outcomes (Text Box 1.2). The limited development of management approaches has 

been highlighted by the introduction of adaptive management—an approach to 

management that emphasizes structured learning through decision making for situ-

ations where knowledge is incomplete and managers must act despite uncertainty 

(Chapter 11, this volume). Limited management strategies may be a consequence of 

the heterogeneous environmental and managerial conditions encountered on range-

lands that necessitates development of broad principles. However, the application of 

prescribed practices appears to be more consistent with administrative regulation 

than it does with an effective approach for addressing heterogeneity.

Limited development of well-defined management strategies may have partially 

resulted from the regulatory origins of the profession to minimize rangeland exploi-

tation, initially by the US Forest Service (Sayre 2017). Emphasis on “prescribed” 

management practices—stocking rates, fencing of pastures, and grazing seasons—

by land management agencies enabled them to retain authority over users of pub-

lic land in a manner that is consistent with command and control management. 
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These practices were initially designed to minimize livestock impacts based on the 

assumption that they were the key variable influencing rangeland—controlling live-

stock equated to controlling ecosystems. In addition, the economic benefits that 

fencing and predator control provided by reducing labor costs for herders may have 

also reinforced “management by practice” (Sayre 2015). Consequently, the need for 

management to control rangeland exploitation, support agency authority, and pro-

duce economic value directly contributed to the development of range science—not 

the other way around (Sayre 2017).

The occurrence of these events early in the rangeland profession may partially 

explain why “management practices” have to some extent become synonymous 

with range management. This perspective is evident in the phrase “manipulation of 

rangeland components” that is used to define range management in a widely used 

textbook (Holechek et al. 2011). Even though it is obvious that practices do not 

equate to management—the process of deciding how to allocate finite resources—

consider how prevalent practices are in a management context. For example, the 

USDA-NRCS Environmental Quality Assessment Program (EQIP)—a voluntary 

cost share program to enhance conservation on private rangelands—is primarily 

organized around the selection and implementation of practices in the context of 

broader conservation planning (Briske 2011). The implementation of prescribed 

practices and their management have made major contributions to rangeland con-

servation in the twentieth century, but the Rangeland CEAP Assessment indicated 

that documentation of these outcomes was extremely limited (Briske 2011). Another 

important constraint of “practice-based” management is that it enforces a small- 

scale “pasture” focus that precludes assessment within landscapes and regions 

where many of the most pressing challenges exist.

Provenza (1991) cautioned that range science was dominated by managerial issues 

that limited progression of the science in an editorial written 40 years after the profes-

sion had been formally founded. This is consistent with the interpretation that the range-

land profession originated from the need for management action to resolve immediate 

practical problems, rather than from the establishment of sound scientific principles 

(Sayre 2017). However, the conceptual advances that have occurred in the past 25 years 

may have differentiated management and science to the greatest extent in the history of 

the profession. Ironically, these concepts have also provided the approaches and justifi-

cation—social–ecological systems, adaptive management, and resilience-based man-

agement—for integrating these two important knowledge sources. This represents a 

pressing challenge for which no solution or approach has yet emerged.

Collectively, these considerations make a compelling case for development of a 

more comprehensive framework to assess rangelands and to implement manage-

ment. Definitions emphasizing land cover type and land use are narrowly focused 

on biophysical systems and do not recognize the social component of these 

systems (Reid et al. 2014; Chapter 17, this volume). The content of these chapters 

collectively indicates that neither ecological nor social knowledge alone is sufficient 

to effectively assess or manage rangeland systems because of the highly integrated 

nature of the social and ecological subsystems (Chapter 8, this volume). A new 

management framework is required to place greater emphasis on social components, 
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including cultural values, land tenure, governance systems, and markets, that inter-

act with ecological systems to influence the value, availability, and use of rangeland 

resources. Adaptive management and collaborative adaptive management—adap-

tive management among multiple stakeholder groups—represent essential 

approaches to a more comprehensive management framework.

The inability of the rangeland profession to resolve debates concerning intensive 

rotational grazing, shrub removal versus water yield, and wild horse and burro dilemma 

on public lands in the western USA is symptomatic of a narrow management frame-

work that does not possess the capacity to effectively address the social components of 

these systems (Briske et al. 2011; Boyd et al. 2014). Similarly, the implementation of 

well-intended, but inappropriate, policy throughout the world has contributed to range-

land fragmentation, degradation, and conversion (MA 2003). These adverse conse-

quences occur for numerous reasons, but they often result because the potential 

trade-offs and consequences were not recognized prior to policy implementation.

This questions whether current management approaches possess sufficient 

capacity to contend with future challenges confronting global rangelands. These 

seemingly intractable management dilemmas demonstrate that a framework is 

required that can keep pace with the increasing scope and complexity of natural 

resource management. In contrast to “practice-based” management, the comprehen-

sive approach to collaborative adaptive management that was used to address the 

proposed listing of the greater sage grouse (Centrocercus urophasianus) as a threat-

ened species in the western USA has been viewed as being highly successful (Boyd 

et al. 2014). A successful outcome to this complex, regional natural resource con-

cern lends credibility to the emerging natural resource management model of 

resilience- based management.

Resilience-based management involves the development and implementation 

of strategies that support human well-being via adaptation and transformation of 

social–ecological systems to sustain the supply of ecosystem services in changing 

environments (Chapin et al. 2010; Chapter 6, this volume). This management 

model acknowledges both the dependence and impact that humans can have on 

natural resources and the ecosystem services they provided. It also cautions man-

agers and scientists to exhibit greater humility regarding the management of natu-

ral resources, than that conveyed by the linear and predictable outcomes inherent 

to the steady- state management model. The emerging reality of natural resource 

management is one of increasing management complexity, disputed values, and 

incomplete knowledge (Benson and Craig 2014).

Incorporation of the concepts presented in this book—namely, ecosystem 

services, structural heterogeneity, and social–ecological systems—into a manage-

ment context has been slow—although resilience is a clear exception. The primary 

challenge may reside in the fact that these concepts are more consistent with 

resilience- based management than they are with the steady-state management 

model. Therefore, management must learn to not only adopt new concepts, but also 

transition between natural resource management models to effectively incorporate 
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new knowledge. However, concepts and experience with the ecosystem manage-

ment model may serve to bridge this transition in some cases (Nie 2013). In addi-

tion, resilience-based management empowers diverse stakeholders to bring unique 

knowledge, goals, and values to decision-making processes. Integrating human 

dimensions into natural resource management will require expertise and methodol-

ogy from the social sciences, which is currently underrepresented in the rangeland 

profession, and this has likely slowed concept adoption as well.

The Drylands Development Paradigm describes a set of management and policy 

recommendations that are consistent with resilience-based management (Reynolds 

et al. 2007). Five principles of this paradigm follow: (1) social–ecological systems are 

coupled, dynamic, and co-adapting with no single target equilibrium point; (2) critical 

system dynamics are determined by several slow or controlling variables; (3) control-

ling variables possess thresholds that, if crossed, cause the system to reorganize as a 

new state; (4) stakeholders are networked across multiple organizational levels in 

social–ecological systems to produce cross-scale interactions; and (5) “hybrid” 

knowledge that integrates management and policy experience with scientific knowl-

edge must be developed and legitimized by relevant social institutions. Collectively, 

these principles are in direct contrast to those of the steady-state management model 

that is interwoven with the origins of the rangeland profession (Table 1.1). This pro-

vides further insight into the magnitude of the challenge associated with the transition 

from the steady-state management to the resilience-based management model.

This compilation of major conceptual advances provides an opportunity to envi-

sion a more comprehensive framework for rangeland systems that is capable of 

designing and implementing management strategies for landscape and regional 

applications. The following definitions of rangeland systems and management could 

provide the foundation for an alternative framework. Rangeland systems represent 

ecological systems supporting native or naturalized vegetation characterized as 

grasslands, shrub steppe, shrublands, savannas, and deserts that are managed as 

adaptive social–ecological systems to provision multiple ecosystem services to ben-

efit human well-being. These systems function through complex interactions among 

social and ecological subsystems, at multiple scales, to influence supply, demand, 

and preferences for ecosystem services (Chapters 8 and 14, this volume). Rangeland 

system management is based on the iterative development of management strategies 

through collaborative adaptive management among diverse stakeholders, represent-

ing management and scientific knowledge, to provision multiple ecosystem services 

required by society. The outcomes of management strategies are collaboratively 

monitored and evaluated to provide information feedbacks to enhance subsequent 

management effectiveness and to promote adaptive capacity of multiple stakeholder 

groups to support resilient rangeland systems (Chapters 6 and 11, this volume). 

Development of a framework that can accommodate the concepts that have emerged 

in the past 25 years to support rangeland systems in the twenty-first century may be 

the primary challenge confronting the global rangeland community.

1 Rangeland Systems: Foundation for a Conceptual Framework



18

1.6  Summary

This book describes the advances that have occurred in scientific and management 

concepts regarding global rangelands in the past 25 years. This knowledge originated 

from two interwoven themes—a substantial shift in underlying ecological theory and 

a gradual progression of natural resource management models—the former appears 

to have been most influential, but the latter may prove most significant over the lon-

ger term. The conceptual advances that occurred in the 1980s and 1990s were a reac-

tion to what can be considered the initial conceptual advance in the rangeland 

profession—the introduction of Clementsian successions as a conceptual framework 

for rangeland assessment. This had a profound influence on the rangeland profession 

by directly linking it to equilibrium ecology and by indirectly contributing to the 

steady-state management model of natural resource management.

However, both the initial procedure for rangeland assessment and successional 

theory, on which it was founded, encountered two broad categories of criticism in 

the 1970s and 1980s. The first was recognition of nonlinear vegetation dynamics 

which was inconsistent with both concepts. The second category of criticism 

occurred in response to the failure of range science concepts that had been applied 

to pastoral systems on other continents. These criticisms provided a strong justi-

fication for development of an alternative ecological theory to more accurately 

interpret the dynamics of rangeland vegetation and to more effectively support 

rangeland management. Two alternative models emerged simultaneously, but 

independently, in the late 1980s—the nonequilibrium and state-and-transition 

models.

The state-and-transition framework was adopted by the rangeland profession in 

the late 1990s and it has become an important management tool replacing the range 

model that had been introduced 80 years earlier. However, resilience theory is cur-

rently replacing nonequilibrium as the dominant theory because what was previ-

ously considered nonequilibrium is more appropriately interpreted as multiple 

equilibria. It is somewhat ironic that rangeland systems are now considered to have 

an equilibrial component after the severe criticism that the concept had previously 

received.

The conceptual advances described above were broadly paralleled by the pro-

gression of natural resource management models that reflected a shift from humans 

as resource users to humans as resource stewards. Although these models are not 

always obvious—they have a pronounced influence by shaping the perception of 

human interactions with nature. A major objective of range science in the twenti-

eth century was to develop knowledge in support of the steady-state management 

model that emphasized the maximum sustainable production of forage and live-

stock. Recognition that management needed to consider entire ecosystems, includ-

ing their inherent variation, promoted development of the ecosystem management 

model. The most recent management model—resilience-based management—is 

currently being developed and investigated as an extension of resilience theory. 

Currently, elements of all three management models are in operation to varying 

degrees.
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The conceptual advances presented in this book make a compelling case for 

development of a more comprehensive framework to assess rangelands and to 

implement more effective management strategies. This framework could be orga-

nized around the following definitions of rangeland systems and rangeland manage-

ment. Rangeland systems represent ecological systems supporting native or 

naturalized vegetation characterized as grasslands, shrub steppe, shrublands, savan-

nas, and deserts that are managed as adaptive social–ecological systems to provi-

sion multiple ecosystem services to benefit human well-being. These systems 

function through complex interactions among social and ecological subsystems, at 

multiple scales, to influence supply, demand, and preferences for ecosystem ser-

vices. Rangeland system management is based on the iterative development of man-

agement strategies through collaborative adaptive management among diverse 

stakeholders representing management and scientific knowledge to provision mul-

tiple ecosystem services required by society. Development of a framework that is 

capable of incorporating the concepts that have emerged in the past 25 years to 

support rangeland systems in the twenty-first century may represent the major chal-

lenge confronting the global rangeland community.
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Chapter 2

Woody Plant Encroachment: Causes 
and Consequences

Steven R. Archer, Erik M. Andersen, Katharine I. Predick, 

Susanne Schwinning, Robert J. Steidl, and Steven R. Woods

Abstract Woody vegetation in grasslands and savannas has increased worldwide 

over the past 100–200 years. This phenomenon of “woody plant encroachment” 

(WPE) has been documented to occur at different times but at comparable rates in 

rangelands of the Americas, Australia, and southern Africa. The objectives of this 

chapter are to review (1) the process of WPE and its causes, (2) consequences for 

ecosystem function and the provision of services, and (3) the effectiveness of man-

agement interventions aimed at reducing woody cover. Explanations for WPE 

require consideration of multiple interacting drivers and constraints and their varia-

tion through time at a given site. Mean annual precipitation sets an upper limit to 

woody plant cover, but local patterns of disturbance (fire, browsing) and soil proper-

ties (texture, depth) prevent the realization of this potential. In the absence of these 

constraints, seasonality, interannual variation, and intensity of precipitation events 

determine the rate and extent of woody plant expansion. Although probably not a 

triggering factor, rising atmospheric CO2 levels may have favored C3 woody plant 

growth. WPE coincided with the global intensification of livestock grazing that by 

reducing fine fuels, hence fire frequency and intensity, facilitated WPE. From a con-

servation perspective, WPE threatens the maintenance of grassland and savanna 
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ecosystems and its endemic biodiversity. Traditional management goals aimed at 

restoring forage and livestock production after WPE have broadened to support a 

more diverse portfolio of ecosystem services. Accordingly, we focus on how WPE 

and management actions aimed at reducing woody plant cover influence carbon 

sequestration, water yield, and biodiversity, and discuss the trade-offs involved 

when balancing competing management objectives.

Keywords Brush management • Mortality • Recruitment • Roots • Seedling estab-

lishment • Soil depth/texture

2.1  Introduction

The relative abundance or dominance of grasses and woody vegetation is highly 

dynamic at timescales ranging from decades to centuries to millennia (Fig. 2.1). 

Over the past 100 years or so, there has been a directional shift toward increased 

abundance of woody vegetation worldwide (Sala and Maestre 2014). The phenom-

enon of woody plant encroachment (WPE) in grasslands and savannas contrasts 

with deforestation and dieback occurring in many forested systems. The proliferat-

ing trees and shrubs can be non-native species that were introduced purposely or 

accidentally or native species that have either increased in abundance within their 

historic ranges or expanded their geographic range. Woody plants have been dis-

placing grasses across bioclimatic zones. Trees proliferate in humid regions while 

unpalatable shrubs replace grasses in more arid regions, which is regarded as a type 

of desertification. In both cases, the proliferation of trees and shrubs threatens the 

maintenance of grassland and savanna ecosystems and the plants and animals that 

are endemic to these systems.

Proliferation of woody plants has long been of concern to range managers where 

grazing by cattle and sheep is the primary land use. Where funds and equipment 

were available, management was focused narrowly on reversing WPE with the goal 

of enhancing livestock production. Aggressively applied since the 1940s, “brush 

management” results have been mixed and their sustainability and cost- effectiveness 

questionable. As we gain a broader appreciation of how woody plants influence 

ecosystem processes and how changes in their abundance affect a broad portfolio 

ecosystem services, we are better positioned to evaluate trade-offs that must be 

considered as their abundance changes.

In this chapter we (1) review the rates, dynamics, causes, and consequences of 

woody plant proliferation over the past 100 years, (2) evaluate the extent to which 

interventions aimed at reducing woody vegetation have effectively restored lost or 
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Fig. 2.1 (a) Holocene changes in woodland, desert scrub, and grassland in the southwestern USA 

(modified from Van Devender 1997) and (b) photographic record of increases in woody plant 

abundance at the Santa Rita Experimental Range, Arizona, USA, against the backdrop of Huerfano 

Butte (images are from public domain available from http://cals.arizona.edu/srer/photos.html; 

compiled by R. Wu)
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altered key ecosystem services, and (3) assess trade-offs influencing ecological and 

socioeconomic decisions and priorities for managing woody plants in rangelands.

2.2  Rates of Change

Substantial increases in cover of woody plants can occur over decades. In North 

America, rates of encroachment vary by an order of magnitude among ecoregions 

(0.1–2.3 % cover year−1, Barger et al. 2011) (Fig. 2.2). Their review indicated that 

rates of tree proliferation typically exceeded those of shrub proliferation, ostensibly 

reflecting the higher precipitation in areas where tree encroachment occurs. We 

might expect that differences in encroachment rates would differ among woody 

functional types, but the Barger et al. (2011) review found that rates were highest 

and comparable among scale-leaved evergreen (Juniperus virginiana) and N2-fixing 

deciduous (Prosopis glandulosa) arborescents. Reported rates of change in woody 

cover across savannas and forest-savanna boundaries in Africa, Australia, and South 

America are comparable to those observed in North America (range = 0.1–1.1 % 

cover year−1, Stevens et al. 2016), though maximum rates reported in their synthesis 

were much lower than those reported by Barger et al. (2011) for North America (1.1 

vs. 2.3 % cover year−1).
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Text Box 2.1: Rates and Drivers of Woody Plant Encroachment

Absolute encroachment rates1 range from nil to 3.3 % cover year−1 and aver-

age 0.85 % cover year−1. Generally, rates of encroachment are highest in the 

early stages of encroachment, and then  decline (e.g., Fensham et al. 2005) or 

fluctuate (Browning et al. 2008) as maximum cover thresholds are approached. 

Accordingly, studies based on long-term observations tend to report low rates 

of encroachment. Barger et al. (2011) found that rates of woody plant 

encroachment in North America were highest in Great Plains grasslands 

(1–2 % cover year−1) and lowest in hot and cold deserts (<0.5 % cover year−1). 

Trees and shrubs exhibited similar mean encroachment rates (0.62 and 0.52 % 

cover year−1, respectively). Rates of increase for Great Plains species repre-

senting contrasting plant functional types (e.g., evergreen vs. deciduous; N2 

fixation potential) and dispersal mechanisms were comparable as well.

 

(continued)

1 A database of peer-reviewed research papers was compiled by searching for the terms “bush 

encroach*,” “brush encroach*,” “desertification,” “shrub grazing,” “shrub encroach,” “shrub invasion,” 

“shrub expansion,” “woody encroach*,” and “woody plant invasion” on the ISI Web of Knowledge. 

This search produced 865 unique references that were then subdivided into papers that quantified 

encroachment rates (n = 289) or relationships between shrub encroachment and grazing (n = 149).

Typically, research has targeted localities where encroachment is known to have 

occurred or is occurring. Estimates of encroachment rates, therefore, are likely 

biased. Furthermore, rates of encroachment tend to decline as woody proliferation 

progresses (Text Box 2.1). Variation in the rate and extent of encroachment is also 

mediated by local or regional differences in environmental factors, disturbance 

regimes, and land use as discussed in the following sections.
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Among papers reporting relationships between shrub encroachment and 

grazing, mean (±SE) shrub cover was statistically comparable on grazed sites 

(21 % ± 0.9) and sites protected from grazing (24 % ± 0.9). Overall, the pres-

ence or absence of grazing did not predict changes in shrub cover over time. 

Variation within many of these studies was high, indicating that the role of 

grazing is complex, even at the ranch level. Weighted regression analysis fur-

ther indicated that precipitation, continent (North and South America, 

Australia, Africa), and grain size (i.e., plot/pixel size) were not significant 

predictors of grazing importance. Interestingly, there was a significant rela-

tionship between the data source (field sampling vs. remote sensing) and 

grazing importance. Assessments based on broad-scale remote sensing (aerial 

photos, satellite imagery) were more likely to conclude that grazing promotes 

shrub encroachment, whereas field-based studies were more likely to con-

clude that grazing has no effect on shrub encroachment. This may reflect the 

fact that studies of shrub encroachment and grazing based on field data focus 

on, and are restricted to, the outcomes of short-term grass-woody plant inter-

actions at plant and patch scales, whereas remote sensing assessments reveal 

the longer term, landscape-scale outcomes of patch-scale dynamics (e.g., 

Milne et al. 1996). Photo credit: E. Andersen

Text Box 2.1: (continued)
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2.3  Factors Influencing Abundance of Woody Plants

Given the global scale of the WPE phenomenon, deriving robust generalizations 

about the causes of woody encroachment has been challenging, as species adapta-

tions, land-use history, and climate trends differ markedly among bioclimatic zones. 

Numerous factors (including climate, fire, and grazing/browsing regimes, concentra-

tions of atmospheric CO2, and levels of N deposition) co-occur and interact to pro-

mote or constrain increases in woody dynamics at local scales, with their relative 

importance and interaction strength differing markedly among locations (Archer 

1994; Bond and Midgley 2000; D’Odorico et al. 2012). In any location, it may be 

difficult to distinguish between “necessary” and “sufficient” conditions. For example, 

it may be necessary for a given biotic or abiotic environmental condition to change for 

woody plants to gain an advantage over grasses (e.g., higher atmospheric CO2 con-

centrations), but a change in that condition  may not by itself be sufficient to trigger 

woody plant proliferation unless accompanied by other changes (e.g., reductions in 

fire and browser populations). Accordingly, assigning primacy to the potential drivers 

of woody plant encroachment remains a topic of active debate and research.

Because woody plant encroachment has occurred across a wide range of climates 

from tropical to arctic and arid to humid, drivers likely vary among climate zones. 

Grazing effects on fire regimes and competitive interactions among plants may pre-

dominate in humid regions, whereas grazing effects on levels of plant stress and 

erosional processes (reducing ground cover and increasing wind/water erosion) 

may predominate in more arid regions. Disturbance is superimposed against a back-

drop of climate and soils to further modify the local abundance of shrubs or trees. 

Where climate and soils are capable of supporting an abundance of woody vegeta-

tion, the occurrence of periodic fire or an abundance of browsers utilizing woody 

vegetation can prevent them from attaining dominance. Conversely, preferential 

utilization of herbaceous vegetation by grazers may create opportunities for woody 

plants to establish (via reductions in competition) and persist (via reductions in fine 

fuel mass and continuity needed to carry fires). Woody plant cover at a given locale 

within a bioclimatic region is the net outcome of these interrelated and potentially 

interacting factors (Fig. 2.3). In the following sections, we review briefly some of 

the key drivers and their mediation by geomorphology, soils, and topography. 

Ultimately, the challenge for land managers will be to apply these perspectives 

appropriately and creatively to their local settings and situations.

2.3.1  Herbivory: Grazers and Browsers

Livestock grazing is a primary use of grasslands worldwide (Asner et al. 2004) and 

is often associated with WPE. The arrival of livestock with Anglo-European settlers 

in the Americas, Australia, and Southern Africa, although occurring at different 

times, coincided with dramatic and swift changes in woody abundance in grasslands 
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and savannas (Archer 1994). Grazing by livestock removes fine fuels, which reduces 

fire frequency and intensity and also enhances woody plant recruitment (Madany 

and West 1983). The advantages for woody plants may be magnified where live-

stock are effective dispersers of their seeds. In addition, livestock introductions can 

be associated with displacement of native browsers and seed predators, releasing 

woody plants from top-down controls.

Reported effects of livestock on rates of woody plant encroachment have been 

variable due to differences in the inherent characteristics of study sites or the inten-

sity, duration, or timing of grazing. Grazing has been associated with both substan-

tial increases (Roques et al. 2001; Valone et al. 2002) and moderate or no increases 

in the cover of woody plants (Allen et al. 1995; Fensham et al. 2005). Further, graz-

ing may even limit or retard shrub encroachment in some systems (Altesor et al. 

2006; Batista et al. 2014). It is unclear to what extent these contrasting patterns 

might reflect differences in stocking rates and season(s) of use through time. 

Interpretation of grazing effects on shrub encroachment can vary with spatial and 

CLIMATE
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Fig. 2.3 The abundance of woody and herbaceous vegetation is determined by interactions across 

a hierarchy of drivers and constraints operating across a range of spatial and temporal scales. 

Changes in climate and atmospheric chemistry (e.g., increased CO2 concentrations) determine 

grass-woody plant abundance at broad scales and over long time periods. Vegetation composition 

at local scales is mediated, and in some cases constrained, by geomorphology, soils, and topogra-

phy via their effects on water and nutrient distribution. Soils and topography, in turn, mediate 

vegetation responses to disturbances associated with drought, fire, grazing or browsing pressure, 

and land use
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temporal scale. For example, conversion of grassland to shrub-dominated dune land 

in the Chihuahuan Desert occurred within large areas free of livestock, suggesting 

that factors other than livestock grazing were driving the change. However, closer 

inspection revealed that historically heavy livestock grazing had reduced ground 

cover and accelerated wind erosion in upwind areas. Aeolian deposition accelerated 

grass mortality via burial and promoted shrub recruitment to drive the conversion 

from grassland to shrubland in the downwind area excluded from livestock grazing 

(Peters et al. 2006). This example shows that grazing effects must be evaluated con-

sidering spatial context as well as land-use history.

Drivers of change must also be considered in the context of time. At a site in the 

Sonoran Desert, woody cover increased both within 74-year-old livestock exclo-

sures and in the surrounding grazed landscapes, suggesting that factors other than 

grazing were responsible. However, heavy grazing in the late 1800s and early 1900s 

may have altered ecological processes in ways that predisposed the site to shrub 

encroachment prior to the time exclosures were established in 1932 (Browning and 

Archer 2011). In addition, cessation or relaxation of grazing subsequent to degrada-

tion may have promoted WPE by enabling a degree of grass recovery that then 

facilitated shrub recruitment (e.g., de Dios et al. 2014).

Preferential utilization of woody plants by wild browsers (e.g., Staver et al. 2009) 

or seed and seedling predators (Weltzin et al. 1997; Dulamsuren et al. 2008) may 

help maintain grassland and savanna communities. Activities of these herbivores 

can prevent shrubs and trees from establishing, prevent them from exerting domi-

nance, and maintain them at a stature vulnerable to fire. Types and abundances of 

wildland herbivores can vary spatially and temporally and this can lead to highly 

variable effects on WPE. Understanding mechanisms that contribute to WPE can be 

especially difficult in areas where livestock grazing occurs in conjunction with 

native herbivores whose activities are also influencing plant composition and abun-

dance (e.g., Heske et al. 1993). In some cases, native herbivores may be displaced 

by livestock or removed by managers if viewed as competing with livestock for 

forage (Weltzin et al. 1997). In those cases, the livestock grazing effects described 

earlier would be amplified by removal of native browsers. Maintaining populations 

of native herbivores in systems managed for livestock grazing may help maintain 

grass-woody populations in desired configurations while concurrently enhancing 

biodiversity and creating opportunities for lease hunting, game farming, and eco-

tourism revenue.

2.3.2  Climate

Grasslands of the world are situated between desert shrublands and woodlands/

forests with respect to annual rainfall, annual temperature, and potential evapotrans-

piration. In the future, if climate becomes warmer and drier or if the frequency, 

magnitude, and duration of drought increase, present-day grasslands in some areas 

may become desert shrubland. In contrast, woodlands and forests could also shift to 
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savanna or grassland (e.g., Allen et al. 2010; Anadón et al. 2014a) and increases in 

woody cover realized in recent decades may be reduced by a higher frequency of 

“hot droughts” (Bowers 2005; Breshears et al. 2005; Twidwell et al. 2014). Climate- 

change simulations under elevated atmospheric CO2 predict pronounced shifts 

toward tree-dominated biomes (Scheiter and Higgins 2009). Changes in dry-season 

duration or precipitation seasonality will also influence the balance between grass 

and woody vegetation (Neilson et al. 1992; Bailey 2014).

Mean annual precipitation (MAP) determines the potential “carrying capacity” 

for woody plants and upper limit for woody plant cover (Sankaran et al. 2005). As 

MAP increases, the potential for landscapes to support woody cover increases lin-

early, becoming asymptotic at ca. 650 mm (Fig. 2.4). Shrub or tree savanna or open 

woodland communities may therefore characterize regions where MAP is below 

this threshold, whereas the tendency to develop woodland or forest communities to 

the general exclusion of grasses occurs above this threshold. Managers contemplat-

ing actions to regulate woody plant cover should first determine their sites’ MAP in 

relation to this potential. Expensive interventions may not be warranted in areas 

where maximum cover potentials are relatively low.
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Fig. 2.4 Relationship between mean annual precipitation (MAP) and maximum woody plant 

cover in Africa. Maximum potential woody cover increases linearly with increases in MAP to 

~650 mm, and then levels off at ~80 %. Note that many sites are well below their potential, osten-

sibly owing to constraints imposed by geomorphology, soils, topography, disturbance, and land 

use. Modified from Sankaran et al. (2005)
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Depth of rainfall infiltration and seasonal timing of rainfall can interact with MAP 

to locally constrain the extent to which maximum potential woody cover might be 

realized at a given location. Rainfall that percolates deep into the soil is typically 

more assessable to deeper rooted woody plants than to shallow-rooted grasses. 

Accordingly, frequent low-intensity events (Good and Caylor 2011), large rainfall 

events (Kulmatiski and Beard 2013), and precipitation delivered during the period of 

grass dormancy (Walter 1979; Bond et al. 1994; Gao and Reynolds 2003) are more 

likely to recharge soil moisture at depths benefitting woody plants. Grasslands would 

therefore be favored in climates characterized by summer rainfall and small rainfall 

events that moisten only upper horizons (Neilson et al. 1992). At local scales, how-

ever, rainfall is redistributed by topography and the extent to which it infiltrates and 

percolates is influenced strongly by soil texture and depth (Sect. 2.3.3).

Precipitation variability influences grass-woody dynamics via its effects on plant 

recruitment, growth, and mortality. Interannual and spatial variability in rainfall is 

high in the semiarid zone. Given the potential longevity of woody plants, exception-

ally good recruitment years can set the stage for seed production and opportunities 

for recruitment decades into the future, whereas only exceptionally strong drought 

years can significantly reduce mature tree cover (Fensham and Holman 1999; 

Twidwell et al. 2014). Models incorporating these dynamics predict that decadal or 

longer deviations from mean tree density may result (Fig. 2.5). Few empirical data 

have been available to verify this nonstationary concept of savanna dynamics, due 

to the paucity of long-term data. However, where data are available, they support the 

notion that history matters and that the current state of the system does not neces-

sarily reflect recent events or current ecological processes (Staver et al. 2011). These 

long stochastic return times make it difficult in practice to distinguish natural fluc-

tuation from a regime shift, or a temporary upturn in woody plant abundance from 

directional, persistent woody encroachment.

The globally widespread proliferation of woody plants in arid and semiarid 

grasslands suggests the importance of broad-scale factors, such as climate change 

and increases in atmospheric CO2, as do recent increases in shrub abundance in 

high-latitude systems where climate change effects on ecosystem processes have 

been pronounced (Myers-Smith et al. 2011). The grasslands encountered by the 

Anglo-European settlers of southwestern North America in the mid-1800s may 

have established and flourished under the conditions of the Little Ice Age. These 

grasslands were only marginally supported under the climate of the 1800s–early 

1900s and were in the process of transitioning to desert scrub with the advent of 

warmer, drier conditions, with changes in vegetation lagging well behind the 

changes in climate driving them (Neilson 1986) (Fig. 2.1a). Broad-scale factors 

such as climate, however, cannot account for “fence-line contrasts” and local varia-

tion in rates and patterns of woody plant increases. These local dynamics ostensibly 

reflect changes in land use and spatial variation of disturbance regimes, such as 

livestock grazing and the abundance of browsers. In these cases, climate may not be 

the driver per se, but it will influence the rates and dynamics of woody cover change 

and may increase the susceptibility of the herbaceous vegetation to other agents of 

change.
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2.3.3  Topography and Soils

At the catena (hillslope) scale, edaphic properties—primarily soil depth and texture—

mediate broad-scale climate and atmospheric chemistry effects. These effects, in turn, 

are mediated by topographic setting, which dictates radiant energy regimes (e.g., 

slope aspect effects), cold air drainage, and patterns of rainfall redistribution via run-

off and runon (McAuliffe 2003). Grasses and woody plants possess different adapta-

tions to exploit soil resources. Root mass decreases exponentially with depth in both 

life forms, but woody plants typically have a greater root mass at deeper depths and 

greater maximum rooting depths (Canadell et al. 1996; Jackson et al. 1996). Grasses, 

by contrast, have a dense, fibrous root system of limited depth, well suited to exploit 

soil resources in the upper 20–30 cm of the soil profile, where water and nutrients 

reach peak concentrations. Hence, grasses are generally favored by fine-textured sur-

face soils and shallow soils that retain water and nutrients near the surface.

Woody plants are favored by deep, coarse soils that facilitate percolation and 

nutrient leaching. They are at a disadvantage on shallow soils where bedrock or 

claypan horizons restrict taproot extension. Many woody species have both a shal-

low, laterally extensive root system and deep taproots (Schenk and Jackson 2002). 

This reflects a generalist strategy for soil resource capture that allows them to use 

small rainfall events and the nutrients concentrated in the upper soil layers (Fravolini 

et al. 2005), but to also access water and nutrients (e.g., NO3
−) percolated below the 

depths effectively exploited by grasses. Woody plants with this dimorphic root 
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Fig. 2.5 Modeled fluctuations in grass and woody plant cover at decadal and longer time scales, 

assuming stationary stochastic rainfall distribution, in a savanna in Texas, USA (from van Wijk and 

Rodriguez-Iturbe 2002)
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 system can therefore exploit a wide range of growing season conditions (Scott et al. 

2006; Priyadarshini et al. 2015).

The contrasting grass and woody plant rooting patterns are the basis for the “two- 

layer hypothesis,” which characterizes the differential use of shallow and deeper 

soil resources by grasses and woody plants and grasses. The hypothesis appears to 

be widely applicable in a variety of dryland systems (Ward et al. 2013), but less so 

in mesic savannas with a shallow water table, where woody plants and grasses often 

have similar rooting depths and compete for moisture from the same soil horizons 

throughout the year (Rossatto et al. 2014). Interactions between topoedaphic prop-

erties and grass vs. woody plant rooting patterns help explain why some grassland 

sites are resistant to WPE and others are more susceptible (Knoop and Walker 

1985). The two-layer hypothesis is a niche-based perspective, which helps explain 

how the amount of precipitation and its seasonality interact with soil properties 

(texture and depth) to influence the proportion of grasses and woody plants on a 

given site.

Grasses tend to dominate shallow soils, where lateritic or argillic horizons, bed-

rock, or limestone are near the surface; water and nutrient resources “perch” and 

concentrate above these impermeable layers (Molinar et al. 2002). However, if there 

are fissures or gaps in the impermeable layers that allow resources and woody plant 

roots to pass through, woody plants may thrive. Aboveground patterns in distribu-

tion, size, and mortality rates of woody plants that accompany drought may reflect 

variation in these edaphic heterogeneities (Bestelmeyer et al. 2011; Rossatto et al. 

2014; Twidwell et al. 2014).

On playas and dry lake beds, where precipitation and runon accumulate in poorly 

drained, fine-textured topographic low points, conditions may become periodically 

anaerobic. These conditions tend to favor grasses to the exclusion of trees and 

shrubs regardless of grazing or fire regimes. Subtle, local variation in micro- 

topography within such sites may, however, provide refuges for woody plants and 

influence local patterns of woody plant composition and abundance (e.g., Sklar and 

Valk 2003).

Distribution, size, and density of woody vegetation are also influenced by topog-

raphy. In the Northern Hemisphere, south-facing slopes are warmer and drier than 

north-facing slopes and typically support less woody plant cover (Bailey 2014). 

Runoff from slopes concentrates water and nutrients in downslope areas and aug-

ments incoming precipitation, potentially enabling arroyos, washes, and intermit-

tent drainages to support higher densities of larger-sized woody plants than upslope 

portions of the landscape (Coughenour and Ellis 1993). Runoff and runon relation-

ships and their substantive influences on woody plant abundance are also evident on 

gently sloping landscapes (Tongway et al. 2001). Landscape-scale variation in rates 

and patterns of WPE in recent decades are therefore related to and constrained by 

topoedaphic variation (Wu and Archer 2005; Naito and Cairns 2011; Browning 

et al. 2012; Rossatto et al. 2014) (Text Box 2.2).
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Text Box 2.2: Soils and Topography Influence Susceptibility to Woody 

Plant Encroachment

Woody plant encroachment on the Santa Rita Experimental Range in the 

North American Sonoran Desert dates back to the early 1900s and has been 

well documented (McClaran 2003). However, most of the shrub encroachment 

(primarily Prosopis velutina) has occurred on Holocene-age sandy soils. 

Within the Holocene-age portions of the landscape, shrub cover appears to 

have peaked at about 30–35 %, consistent with predictions of the model in Fig. 

2.4, but sites on the landscape with a subsurface clay content of 17 % at 33 cm 

depth reached this cover asymptote about 30 years sooner than sites where the 

subsurface clay content was 25 % at 23 cm depth (Browning et al. 2008).

 

 

(continued)
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2.3.4  Increased Atmospheric CO2

Atmospheric CO2 concentrations have increased over the time period that WPE has 

occurred, from ~290 ppm at the beginning of the twentieth century to ~380 at the 

end. In this range, photosynthesis in C3 plants is CO2 limited, so it is possible that 

rising atmospheric CO2 has benefited C3 woody plants more than C4 grasses. The 

response of plants to elevated CO2 has been reviewed extensively elsewhere, but as 

a rule of thumb, a doubling of atmospheric CO2 from 350 to 700 ppm typically 

results in a 30–50 % increase in the carbon assimilation rate of C3 plants under opti-

mal conditions. In contrast, C4 plants are not affected directly by atmospheric CO2 

because they concentrate CO2 at the carboxylation sites to substrate saturation. Still, 

C4 plants often receive a growth advantage through partial stomatal closure, which 

increases their water-use efficiency in water-limited environments. At the whole- 

plant level, elevated atmospheric CO2 can elicit a wide range of growth responses 

depending on other co-limitations including other resource limitations (light, nitro-

gen, water), stress conditions (heat, frost), crowding, and species differences in 

growth and reproductive strategies (Körner 2006). As a result, a community may 

contain many species that show no response to elevated CO2 at all. Projections of 

CO2 enrichment effects should therefore be made cautiously and in the context of 

other drivers and constraints.

Woody encroachers are composed overwhelmingly of C3 plants. By contrast, 

grasslands and savannas in tropical, subtropical, and warm-temperate biomes often are 

dominated by C4 grasses. This pattern led to the hypothesis that woody encroachment 

Pleistocene-age surfaces, with their well-developed claypan horizons (39 

% clay at 10 cm depth), have experienced similar climate and levels of atmo-

spheric CO2 enrichment and have experienced similar land-use (livestock 

grazing) and disturbance regimes (heavy grazing in the early to mid-1900s, 

and lack of fire) as the Holocene-age landscapes, and yet have persisted as C4 

grassland. Note that shrub abundance is also higher in runon areas (arroyos 

and intermittent drainages) in both geomorphic settings and that shrubs give 

way to trees as elevation increases.

In this bioclimatic zone, it appears that a clay content threshold for the 

occurrence and persistence of an “edaphic grassland” occurs somewhere 

between 25 % at 23 cm depth and 39 % at 10 cm depth. It remains to be seen 

whether the edaphic grasslands on the Santa Rita Experimental Range will 

persist under the predicted changes in climate. See McAuliffe (1997) for 

details on the geomorphology of this site. Photo credits: W. Cable, aerial 

image; J. Fehmi, ground-level photo.

Text Box 2.2 (continued)
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might be a consequence of a CO2-mediated correction in the competitive relationships 

between C3 and C4 plants (Idso 1992; Polley 1997). However, this cannot entirely 

explain WPE at the global scale, as woody plants also encroach into grasslands 

dominated by C3 grasses. Woody plants have other structural and functional advan-

tages over herbaceous vegetation, which increase their ecological opportunities 

under accelerated growth conditions (Poorter and Navas 2003). Whereas herba-

ceous plants lose most annual biomass accumulation to herbivory, combustion, or 

decomposition, woody plants build up woody biomass and carbohydrate storage 

over decades, thereby strengthening their ability to persist in the face of stress and 

disturbance. Woody plants are most vulnerable to injury, physiological stress, and 

competition when they are small, and faster growth would expedite their transition 

to more resilient and competitive life stages.

Global vegetation models have solidified support for the connection between 

atmospheric CO2 and “woody thickening,” both within woodlands and forests and 

through the expansion of woodlands into grasslands. Importantly, these models 

have set WPE into the context of a millennial-scale global transition that started 

during the last glacial maximum when atmospheric CO2 was at a low point (Prentice 

et al. 2011). Examination of sediment records in the Chihuahuan Desert concluded 

that woody encroachment during the past 200 years is unprecedented in the context 

of the preceding 5500 years, that it was not related to droughts or changes in ENSO 

event frequency, and that it was contemporaneous with the rise in atmospheric CO2 

and known grazing impacts (Brunelle et al. 2014). However, it has been argued that 

WPE clearly outpaced the gradual increase in atmospheric CO2 and the modestly 

elevated concentrations present in the early- to mid-1900s, by which time substan-

tial encroachment had occurred (Archer et al. 1995). This suggests that while 

changes in atmospheric CO2 might have been contributed to WPE in the early to 

mid-1900s, it was not a driver per se. Continuing increases in atmospheric CO2, 

however, may increasingly favor woody plants. For example, dynamic global veg-

etation models suggest that with fire multiple stable biome states are possible across 

broad areas of Africa, but that the potential for multiple stable states will decline 

with further increases in atmospheric CO2 as biomes will become deterministically 

tree dominated (Moncrieff et al. 2014).

Growth advantages realized by woody plants under high CO2 conditions may 

enable them to minimize the time during which they are vulnerable to disturbance. 

For example, frequent fires are a major limitation to tree recruitment in subtropi-

cal savannas. These fires may kill saplings outright, necessitating recruitment 

from seed, or they may force saplings to regenerate from basal sprouts. In either 

case, the woody plants are kept in a fire-susceptible size class. In this scenario 

shrub or tree recruits are able to mature into tall savanna trees only during rare 

periods of infrequent fires when saplings can grow large to escape the flame zone. 

All else equal, an acceleration of sapling growth by CO2 fertilization would 

increase the probability of escaping the flame zone and increase tree density 

(Bond and Midgley 2000).
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2.4  Population Interactions Between Grasses and Woody 

Plants

In previous sections we focused on environmental drivers of woody plant encroach-

ment. We now turn to mechanisms that govern the ecological interactions between 

grasses and trees or shrubs. There is a large body of ecological and range- 

management literature on the effects of woody plants on grasses (Scholes and 

Archer 1997; Blaser et al. 2013; Dohn et al. 2013). Here, we focus on factors that 

influence recruitment and abundance of woody plants into grass-dominated com-

munities. Grass-woody plant interactions affecting the proliferation of woody plants 

are quite complex, involving multiple plant functional types with numerous con-

trasting traits and important differences in life history. Generally, population inter-

actions are governed by nonlinear density effects (both intra- and interspecific) on 

species’ vital rates and environment effects on those rates. In the context of WPE, 

three questions are especially relevant. First, how do populations of grasses resist 

invasion by woody plants and how do drivers of WPE lower resistance? This is the 

key question for explaining where and when WPE occurs. Second, beyond estab-

lishment, how do populations of grasses affect growth of woody plants and develop-

ment from seedling to sapling to seed-producing mature tree? This question is 

relevant to explaining the rates of woody plant invasion, after having established a 

presence in grasslands. Third, what are the interactions that limit woody plant cover 

and establish an upper limit, or carrying in encroached ecosystems? In Sect. 2.4.4 

we examine what, if anything, sets woody encroachers apart from the large number 

of woody species in a flora that have not proliferated in grasslands.

2.4.1  Establishment of Woody Plant Seedlings

The seedling and early establishment stage of the woody plant life cycle is typically 

the most vulnerable. Once past this stage, woody plants capable of vegetative regen-

eration (resprouting) may be highly persistent in the face of climatic events (drought, 

frost) or disturbances (browsing, fire) that top-kill them. Environment and neighbor 

interactions control population growth through effects on establishing seedlings, 

modifying their survivorship odds. This stage is therefore often described as a 

recruitment “bottleneck” constraining the proliferation of woody plants in grass-

lands (Bond 2008). The implication is that if individuals survive this stage, their 

odds of surviving to maturity are greatly improved.

Woody plant encroachment begins with deposition of seed within grassland 

communities. In instances where seed must be transported from distant seed sources, 

woody species dispersed by wind and birds would likely be the first colonizers. 

Species distributed by water are more likely to encroach from upstream or upslope 

to downstream or downslope locations than from lowland to upland locations. Some 

woody plants are dispersed readily by native ungulates and livestock. Examples 
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include leguminous species whose hard seeds are encased in nutrient-rich pods 

(e.g., some acacia and mesquite species). The pods are eaten but the hard seeds may 

escape mastication, become scarified during passage through the digestive tract, and 

deposited in a moist, nutrient-rich media away from parent plants harboring seed 

predators. Furthermore, foraging ungulates would deposit seeds in areas where 

defoliated grasses have diminished capacity to suppress seedlings by fueling fire or 

preempting water and nutrients. Secondary dispersal agents, such as dung beetles, 

may disperse seeds further and bury them at depths conducive to germination and 

establishment. In North America for example, mesquite may have been “dispersal 

limited” during the Holocene, owing to extinctions of Pleistocene megafauna, but 

introduction of livestock by Anglo-European settlers facilitated dispersal of mes-

quites into upland grasslands (Brown and Archer 1987). Seed produced by woody 

plants that are already established in grasslands can additionally be dispersed locally 

by a variety of vectors, including ants and rodents. These processes, however, may 

involve trade-offs with seed predation (Nicolai et al. 2010). Though seldom consid-

ered, dispersal has important implications for the rate of WPE, for as the dispersal 

of viable, germinable seed increases, so too do opportunities for establishment 

(Groom et al. 2000).

When woody plant seedlings germinate in grasslands, they face intense competi-

tion for light, water, and soil nutrients. In lightly grazed, high-productivity grass-

lands, grasses will initially be taller than woody plant seedlings, reducing light 

availability (de Dios et al. 2014). Typically, grasses and woody seedlings in water- 

limited environments share the same shallow soil horizon (Kambatuku et al. 2013), 

so that grasses may furthermore monopolize soil resources to near exclusion of 

woody plant recruits, especially under environmental conditions that favor grasses: 

fine-texture or shallow soil sites with a summer rainy season characterized by small 

rainfall events that wet only the near-surface soils (Fravolini et al. 2005). However, 

grazing reduces grass leaf area, root density, and depth and therefore competitive 

effects on seedlings above and below ground. The intensity of grazing required to 

induce this response is likely to vary among sites, and may vary with soil condition 

according to their favorability for grasses. Thus, critical grazing levels may be rela-

tively low on sandy, deep sites and higher on clayey or shallower sites (Knoop and 

Walker 1985).

Ground cover of many grasslands is characterized by a matrix of grass patches 

and bare ground. Grazing does not typically reduce grass biomass homogeneously 

and can contribute to increases in bare ground cover. These gaps in grass cover, 

which occur even in lightly grazed grasslands dominated by late seral, productive 

grasses, provide opportunities for woody seedlings to establish (Jurena and Archer 

2003; Wakeling et al. 2015). In woody species that develop taproots, seedlings may 

establish during periods when soil water content is high and belowground competi-

tion is minimal. Under such conditions, which can occur in years of average rainfall, 

taproots grow quickly beyond the zone exploited by grasses thereby reducing 

below-ground competition with grasses (Brown and Archer 1990; Weltzin and 

McPherson 1997). Drought-induced reductions in grass density or cover, perhaps 

amplified by grazing, may create additional opportunities for establishment 
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of woody plant seedlings when rains return. Once established, these seedlings may 

then persist through subsequent dry periods residual soil moisture is available below 

the grass root zone. This is a possible explanation for the “stair-step” or “ratchet” 

pattern of woody plant encroachment that has been observed in some areas. 

Collectively, these mechanisms help explain how some woody species can establish 

(1) under light grazing when grass competition should be highest (Brown and 

Archer 1989; Brown and Archer 1999, and references therein), and (2) under typical 

(non-episodic) climatic conditions (Watson and Westoby 1997), and (3) persist 

through periods of drought.

The relationship between grasses and woody plant recruits is not necessarily 

antagonistic. Grasses can in turn compete with and facilitate woody seedlings. A 

grass patch may increase water infiltration and reduce evaporation from the soil 

surface and subsequently deplete soil moisture by transpiration. The net effect on 

woody seedling survival depends on multiple factors including species, soil texture, 

rainfall amount/intensity, and temperature. Net effects of grasses on woody plant 

seedlings are more likely to be facilitative in arid or semiarid regions and competi-

tive in more mesic grasslands and savannas (Good et al. 2014). In semiarid and arid 

grasslands, small-scale heterogeneity may be such that there are patches where 

woody seedling establishment is high and patches where it is low (Maestre et al. 

2003a), as well as settings where facilitation by grasses more than offsets even 

strong belowground competition (Maestre et al. 2001; 2003b). Grasses can enhance 

microenvironmental conditions for woody seedlings by increasing root turnover and 

litter deposition, which function to improve soil organic matter, soil structure, fertil-

ity, and moisture retention. Grass stems can also capture surface-water runoff and 

sediment, increasing inputs of moisture and nutrients to the soil. In addition, grass 

shoots provide shade, reducing daytime temperature stress levels and evapotranspi-

ration. In dry years, the radiative protection afforded by grass litter can significantly 

reduce woody seedling mortality (de Dios et al. 2014). Even in tropical and sub-

tropical savannas, woody seedling growth and survival rates can be markedly higher 

in grass patches than in areas of bare soil. Consequently, levels of establishment can 

be higher on protected sites than on grazed sites (e.g., O’Connor 1995), especially 

if the protected sites are recovering from past brush management (e.g., Browning 

and Archer 2011).

2.4.2  Transitioning from Saplings to Adults

Once woody plants progress into the sapling stage, they have become far less vul-

nerable to competition, drought, and herbivory; they have passed through their most 

vulnerable stage. Saplings have better developed root systems, are taller, and have 

higher leaf area and carbohydrate reserves than seedlings. Unfavorable climate con-

ditions and competition will affect their growth rates, but not necessarily their sur-

vival (Cardoso et al. 2016). Belowground competition grasses can slow sapling 

growth particularly during periods of higher than average rainfall (February et al. 
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2013) or if mineral availability is increased (Vadigi and Ward 2012) and can also be 

amplified by browsing (Vadigi and Ward 2014). Accordingly, competition, nutrient 

limitations, and herbivory can combine to slow sapling development and prolong 

the time they require to achieve a size that allows them to competitively dominate 

grasses and begin to influence microclimate and soil properties that will alter future 

patterns of community development.

Both browsing and fire constrain the progression from sapling to mature shrub or 

tree (Norton-Griffiths 1979; Augustine and McNaughton 2004; Vadigi and Ward 

2014). The frequency and intensity of fire are coupled strongly to grassland produc-

tivity (Krawchuk and Moritz 2011) and to grazing (Anderies et al. 2002; Fuhlendorf 

et al. 2008). Grasslands that develop a high density of standing biomass generate 

litter capable of fueling hot fires that top-kill or kill saplings. Further, reliability of 

dry-season fire in more productive systems reduces the occurrence of temporal ref-

uges or fire-free periods that would permit some tree cohorts to pass into a fire- 

tolerant life stage. Similarly, high spatial connectivity of grass cover would reduce 

the occurrence of spatial refuges or patches that escape fire during a burn event. Fire 

is therefore considered the main factor limiting tree cover in warm, semiarid to 

subhumid savannas that would, without fire, transition to a community dominated 

by woody plants (Bond 2008).

Saplings of many grassland and savanna species can regenerate vegetatively 

(resprout) after fire. However, even if saplings survive, repeated fires would prevent 

them from reaching maturity. Grasslands and savannas may therefore have “seed-

ling banks” or “sapling banks” where woody plants persist in a diminutive state 

caused by fire or browsing events that occur with sufficient frequency to prevent 

them from growing past the flame or browse zone. These plants would be “waiting 

in the wings” for an opportunity to “escape”—an opportunity that may come when 

populations of browsers decline or when fires are suppressed or when grazers reduce 

the fine fuel density.

Herbivory and fire are linked so inextricably that some consider them a single 

disturbance regime: pyric herbivory (Archibald et al. 2005; Fuhlendorf et al. 2009; 

Fuhlendorf et al. 2012). In this view, when fire occurs randomly and herbivores 

roam freely, the two disturbances become spatially and temporally interdependent 

and the landscape is composed of a shifting mosaic of woody and herbaceous veg-

etation (Fuhlendorf and Engle 2001). In contrast, the traditional, independent man-

agement of fire and herbivory where livestock movements are regulated and 

relatively inflexible gives rise to a “fuel vs. forage paradox” (i.e., at a given time and 

place, grass biomass can be one but not both). Coupling the two, as pyric herbivory, 

averts this paradox because herbivores are attracted to, and concentrate their forag-

ing on, recently burned areas, which allows other areas to accumulate the fuel mass 

needed to enable future fires that would keep woody plants in check. Subsequent 

prescribed burns conducted on these areas would then attract grazing animals and 

alleviate grazing pressure on the previously burned area to allow fuel to accumulate 

for a follow-up prescribed fire. The net result is a shifting mosaic of vegetation states 

that provides habitat for a variety of species with contrasting habitat requirements.
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The prevalence of fire will determine which woody species in a local flora are 

more likely to pass from sapling to maturity. Among tree species of tropical Africa, 

seedlings that allocated resources preferentially to growth and resource-capture 

traits (e.g., height, leaf area, root-shoot ratios) survived better in ecotones between 

forests and savannas where fire frequency was low; species that allocated preferen-

tially to carbohydrate storage in leaves and roots had better survivorship in fire- 

prone savannas (Cardoso et al. 2016). However, larger saplings survived better than 

smaller saplings, irrespective of allocation traits in either plant community. These 

results have implications for WPE and highlight a question we have not yet 

addressed: If environmental conditions change to favor “woody plant” proliferation, 

why have so few of the species comprising the woody plant flora in an area become 

encroachers? We return to the question of species selection in the context of WPE 

in Sect. 2.4.4.

2.4.3  Woody Plant Carrying Capacity

A population is at carrying capacity when strong negative density feedbacks on 

recruitment or positive density feedbacks on mortality (i.e., self-thinning) prevent 

further population increases. In general, these feedbacks are mediated by resource 

competition or simply by patch occupancy, in the sense that a tree or shrub seedling 

cannot mature in a patch already occupied by a mature tree, or, if it could, would not 

actually increase woody plant cover.

Greater resource inputs into an ecosystem shift carrying capacities toward 

higher biomass densities. We have already noted that limits of woody plant cover 

increase with MAP up to a point when presumably other resources become more 

limiting (Fig. 2.4). However, in regions where annual precipitation is highly vari-

able—a characteristic of many water-limited environments—it is challenging to 

pinpoint an absolute carrying capacity for woody plants, as mortality and recruit-

ment in any given year are tied to that year’s or the recent series of years’ precipita-

tion, not the long-term average. Precipitation deficits will decrease recruitment and 

increase adult mortality (Bowers 2005; Twidwell et al. 2014), but density-depen-

dent mortality may also occur during more benign conditions (Meyer et al. 2008; 

Dwyer et al. 2010). Precipitation-induced fluctuations in recruitment and mortality 

rates (Fig. 2.5) may keep woody plants from reaching their MAP potential in some 

areas (Fig. 2.4).

Though the theory of density dependence or self-thinning is clear-cut, it has been 

difficult to find evidence of it in field studies. If density dependence is at play, it 

should leave an imprint on tree or shrub spatial distribution, such as a decrease in 

spatial aggregation with tree size or age (Meyer et al. 2008; Belay and Moe 2012). 

These patterns indicate that survivorship probabilities of woody plants decrease in 

the vicinity of woody plants. In savannas, the maintenance of long inter-canopy 

distance between mature trees is additionally mediated by grasses suppressing the 

seedling growth (Sea and Hanan 2012).
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Cover of velvet mesquite (Prosopis velutina) into grassland at a Sonoran Desert 

site is near the maximum level predicted by MAP in Fig. 2.4. The only woody 

encroacher at this site (Fig. 2.6), velvet mesquite has well-developed, shallow lateral 

roots extending well beyond their canopies. Intraspecific, shrub-shrub competition 

could therefore potentially explain why cover appears to have reached its maximum. 

However, an analysis of spatial patterns over a 74-year period failed to exhibit 

changes indicative of self-thinning (Browning et al. 2014). Are there explanations 

other than those related to plant spatial patterns that might set upper limits to shrub 

cover on a site? One hypothesis is related to hydraulic constraints on shrub size (e.g., 

Sperry and Hacke 2002; Hacke et al. 2006). As shrubs approach their upper size 

limit for a site with a given soil texture, depth, topographic setting, etc., their ability 

to maintain continuity in transport of xylem water may become increasingly jeopar-

dized and lead to higher probabilities of branch or whole-canopy mortality. This loss 

of plant branch systems or canopies would reduce canopy cover that subsequently 

would be compensated by recruitment of new plants or growth of other, smaller 

plants if stand-level canopy cover were to be maintained. This more subtle form of 

density-dependent interaction manifests itself via canopy reductions rather than 

whole-plant mortality. Support for this proposition comes from observations of 

shrub height asymptotes and shifts in leaf-stem biomass allocation (Martinez and 

Lopez-Portillo 2003) and shrub size-abundance relationships (Allen et al. 2008).

Some woody encroachers can generate positive density dependence by facilitating 

the encroachment of other woody species. In these instances, the initial encroaching 
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Fig. 2.6 Canopy cover of three shrub species and “all other shrubs” at a Sonoran Desert grassland 

(USA) where woody plant encroachment has been well documented. Prosopis velutina cover 

increased markedly from the 1950s to the 1990s, whereas that of Acacia greggii and Parkinsonia 

florida (both potentially N2-fixing) and all other shrubs has remained low (note break in y-axis). 

Data are from the Santa Rita Experimental Range Digital Database, Pasture 8 (http://ag.arizona.

edu/SRER/longterm/ltcover.xls)
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species, perhaps arriving via dispersal from wind, water, ungulates, rodents, or ants, 

adds vertical structure to the grassland community and modifies soils and microcli-

mate subsequent to its establishment. Seeds of other woody species concentrated in 

other parts of the landscape may then arrive via birds attracted to this new vertical 

structure, and their germination, growth, and establishment would be enhanced 

through modifications of microclimate and soils from pioneer plants (Archer 1995; 

Stokes and Archer 2010). Facilitation, therefore, may have a combination of passive 

and active components: adding structure and altering local ecosystem processes. 

Active processes would include hydraulic lifting of soil moisture from deep to shal-

low layers (Zou et al. 2005) and modification of soil-nutrient pools and radiant-

energy regimes (Barnes and Archer 1996; Barnes and Archer 1999). Where woody 

encroachment reduces grass biomass and cover, fire frequency and intensity can be 

reduced, enabling increased establishment of woody seedlings and clonal reproduc-

tion (Ratajczak et al. 2011a; Brandt et al. 2013). Accordingly, in fire-prone grass-

lands and savannas, encroachment by a relatively fire-tolerant or fast-growing 

woody species may facilitate the spread of fire-intolerant or slow- growing woody 

species. These processes have an important temporal component, as changes initi-

ated by the initial encroaching species may occur gradually over decades (Throop 

and Archer 2008; Liu et al. 2013).

2.4.4  Why Do So Few Woody Species Proliferate 

in Grasslands?

The diverse mechanisms proposed to explain woody plant encroachment in Sect. 

2.3 are united by being general enough to pertain to many woody plant species 

occurring in any biogeographic province. The treatment of “woody plants” as a de 

facto functional group  befits investigation of woody plant encroachment as a global 

phenomenon, but ignores another important aspect of WPE: that very few woody 

species in a regional flora have actually become aggressive encroachers or have 

spearheaded the encroachment process (Stokes and Archer 2010; Barger et al. 

2011). However, there are dozens of woody species with growth forms that should 

have benefited from the changes in drivers, yet have not proliferated (Fig. 2.6).

The apparent selectivity of woody encroachment suggests that it may be useful 

to examine the phenomenon under a different light: (1) which, if any, traits unify 

woody encroachers around the world and (2) what might this potentially tell us 

about the relative importance of various potential drivers? In addressing these ques-

tions we borrow from community theory the perspective of viewing the landscape 

distribution and abundance of species as the result of a regional species pool passing 

through a sequence of abiotic environmental and biotic community “filters”, such 

that species with mismatched trait combinations are excluded from a community 

(Keddy 1992). Applied to encroachment of tree and shrub species, we propose that 

there are a sequence of barriers for entering and proliferating in a grassland or 

savanna community (Fig. 2.7). One or more of these barriers may be made progres-
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Fig. 2.7 Conceptual model of the species selection process in woody plant encroachment into 

grasslands. Numbered circles represent woody species and blocks represent barriers or trait filters 

constraining advancement to the next life stage. Each barrier may be comprised of several indepen-

dent and interactive challenges to growth and survivorship (e.g., dispersal, predation, nutrient scar-

city, disturbance). In this hypothetical example, (a) one or more barriers prevent any of the woody 

species in the flora from recruiting in the grassland. (b) Land-use change makes one barrier (in red) 

more surmountable, now permitting two additional species to get to the seedling stage (#4 and #6). 

However, one of these (#6) is constrained by the next life stage barrier, whereas the other (#4) is 

not. This framework explains how grazing, fire suppression, elevated CO2, climate change, etc. 

could have nonselective positive effects on many woody plant species in a flora, and yet only a very 

narrow subset of those would be capable of developing a viable population in grassland. Research 

should seek to identify the combination of woody plant traits required for passage through all bar-

riers. Doing so would help us explain past encroachment and predict encroachment under future 

environmental conditions
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sively “leaky” or “porous” by changes in drivers of WPE. We furthermore integrate 

the concept with population biology to highlight the fact that the exclusion of 

species is most likely to occur during the more vulnerable and uncertain stages of 

population growth, specifically seed survivorship and dispersal, germination and 

seedling establishment. Each of these is necessary for grassland invasion and each 

is a potential bottleneck for WPE.

In this framework, encroaching woody species must have heightened responsive-

ness to at least one encroachment driver, but must also overcome all other barriers 

to surviving a precarious life stage. Non-encroachers either may not be responsive 

to drivers or remain limited by other barriers. Prior to woody plant encroachment, 

every woody species in the regional flora must have been limited by at least one 

environmental or community barrier in at least one life stage (Fig. 2.7a). For exam-

ple, the high productivity and flammability of grasslands may have universally 

blocked recruitment of woody plants in grasslands, but individual species could 

have been excluded by any number of additional barriers, such as low-seed produc-

tion or survivorship, shade intolerance, or slow growth.

The key effect of the historic drivers of WPE was to modify one or more of the 

filters in such a way that at least one species could pass through a former barrier. A 

necessary condition for a species in the regional pool to encroach would be the 

release from at least one recruitment bottleneck by a shift in environmental condi-

tions. Nevertheless, many species meeting this requirement would have been pre-

vented from encroaching through unyielding restrictions in other life-stage 

transitions. Environmental regime change would have been a sufficient condition to 

trigger woody encroachment only for species not constrained by additional recruit-

ment bottlenecks (Fig. 2.7b). The relative paucity of species in the worldwide set of 

recognized “woody encroachers” suggests that most woody species remain excluded 

from grasslands through demographic barriers affecting recruitment, growth, or 

reproduction that have been essentially unchanged by regime shift.

What then are the traits that distinguish woody encroachers from non- 

encroachers? Table 2.1 lists a variety of functional attributes of woody encroachers 

on different continents. The list is not meant to be exhaustive, but only to provide 

examples. The list shows that woody encroachers are not consistently represented 

by, or restricted to, one or a few functional traits or groups. For example, it might be 

reasonable to expect that plants that fix N2, are deciduous, and are livestock- 

dispersed would be aggressive encroachers—and they certainly can be. But so too 

can species that are evergreen, bird-dispersed, and lacking the capability of symbi-

otic N2 fixation. Similarly, encroaching species can be subshrubs, shrubs, or treelike 

in stature, and may or may not be capable of vegetative regeneration following 

disturbance.

The conceptual framework in Fig. 2.7 paints the broader picture for organizing 

questions of woody encroachment based on species traits and provides a basis for 

developing and testing hypotheses regarding woody plant encroachment 

 systematically. The main point is that not necessarily all traits, but certainly several 
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Table 2.1 Woody plants proliferating in grasslands and savannas encompass a wide variety of 

functional traits and taxonomic families

Functional traits North America South America Africa Australia

Stature

 Fruticose (shrubby) x1 x2 x3 x4

 Arboreal (treelike) x5,6 x9 x7 x8

Leaf Habit

 Evergreen x1,5,6 x9 x10 x8

 Deciduous x11 x2 x12 x23

Potential N2 fixation

 Yes x11 x2 x7,10 x8

 No x1,5,6 x9 x12 x13

Dispersal

 Livestock x11 x2 x7,20 x8

 Wind/water x1 x9 x14 x15

 Bird x5 x22 x12 x16

Recruitment

 Readily generates from seed x11 x2 x7,10 x8

 Vegetative regeneration x11 x2 x7,14 x8

Deep or dimorphic root system x11 x2 x17 x18

Nativity

 Native species

 Exotic (non-native) species x19 x21 x20 x8,15,18

An ‘X’ denotes that a functional trait is represented by a species on a given continent. Superscripts 

link a given trait to the species exhibiting that trait (bottom of table). Species list is not intended to 

be comprehensive
1Creosote bush, Larrea tridentata, Zygophyllaceae (Grover and Musick 1990)
2Mesquite, Prosopis spp., Fabaceae (Cabral et al. 2003)
3Blackthorn Acacia mellifera, Fabaceae (Kraaij and Ward 2006)
4Coastal wattle, Acacia sophorae, Fabaceae (Costello et al. 2000)
5Eastern red cedar, Juniperus virginiana, Cupressaceae (Barger et al. 2011)
6Ponderosa pine, Pinus ponderosa, Pinaceae (Barger et al. 2011)
7Karroo thorn, Acacia karroo, Fabaceae (O’Connor 1995)
8Prickly acacia, Acacia nilotica, Fabaceae (Kriticos et al. 2003)
9 Quebracho blanco, Aspidosperma quebracho-blanco, Apocynaceae (Morello and Saravia-Toledo 

1959)
10Paperbark thorn, Acacia sieberiana, Fabaceae (Mitchard and Flintrop 2013)
11Velvet mesquite, Prosopis glandulosa, Fabaceae (Bahre and Shelton 1993)
12African myrrh, Commiphora Africana, Burseraceae (Oba et al. 2000)
13Rubber vine, Cryptostegia grandiflora, Asclepiadaceae (Grice 1996)
14Sickle bush, Dichrostachys cinerea, Fabaceae
15Catclaw mimosa, Mimosa pigra, Fabaceae (Lonsdale 1993)
16Chinee apple, Ziziphus mauritiana, (Rhamnaceae) (Grice 1996)
17Blackthorn Acacia mellifera, Fabaceae (Kambatuku et al. 2013)
18Mesquite, Prosopis spp., Fabaceae (Robinson et al. 2008)
19Chinese tallow, Sapium sebiferum (Euphorbiaceae) (Bruce et al. 1995)
20Mesquite, Prosopis spp., Fabaceae (Shackleton et al. 2015)
21Paraiso, Melia azedarach, Meliaceae (Ruiz Selmo et al. 2007; Batista et al. 2014)
22Glossy privet, Ligustrum lucidum, Oleaceae (Tecco et al. 2006)
23Mulga, Acacia aneura, Fabaceae (Noble 1997)
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key traits, could distinguish encroachers from non-encroachers in a given bioregion. 

Furthermore, common trait trade-offs could be influencing the selection of woody 

encroachers in interesting ways. Most species in a regional pool could be prevented 

from encroaching by a trade-off between seed dispersal and seedling survivor-

ship such that some small-seeded species may readily disperse into grassland but 

not survive as seedlings, whereas large-seeded species could potentially establish 

but lack adequate dispersal. Seen in this light, it is clearer why there does not seem 

to be a universally applicable set of encroacher characteristics, but also why taxo-

nomic groups that may be less constrained by dispersal-survivorship trade-offs do 

seem to contribute more species to the global set of woody encroachers. Knowledge 

of the trade-offs in trait combinations could help to explain changes and patterns of 

WPE observed to date and also to predict future changes in woody species or func-

tional group composition.

2.5  Ecosystem Services

Maintenance of a desirable mixture of herbaceous and woody vegetation is a key 

component of sustainable ecosystem management in grazed rangelands. Over the 

past century, this balance has been disrupted and shifted in favor of unpalatable 

shrubs in many areas of the world. Widespread conversion of grasslands and savan-

nas to shrublands or woodlands has long been of concern to those whose livelihoods 

depend on livestock production; but the recent realization that this land cover change 

has significant implications for a myriad of other ecosystem services is now chal-

lenging us to adopt a broader perspective on this global phenomenon. Here, we 

review the effects of WPE on a subset of ecosystem services related to carbon 

sequestration, hydrology, and biodiversity. Management actions aimed at reducing 

woody cover also influence ecosystem service portfolios and these are reviewed in 

Sect. 2.6. The effects discussed here should be further considered in the context of 

the supply and demand perspectives presented in Chap. 14.

2.5.1  Carbon Sequestration: Plant and Soil Pools

The global phenomenon of WPE has resulted in a significant redistribution of car-

bon (C) among major terrestrial pools. Trees and shrub proliferation across a range 

of bioclimatic regions (Fig. 2.2) constitute a potentially significant, but highly 

uncertain component of the North American C budget (Barger et al. 2011). Presently 

we cannot confidently predict the magnitude, let alone the direction, of change 

(Eldridge et al. 2011). Robust generalizations about WPE impacts on ecosystem C 

balance are elusive because of insufficient quantification of woody plant productiv-

ity in encroached ecosystems. Definitive conclusions have been further constrained 

by confounding methodologies used to estimate soil organic carbon pools, and how 
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those pools change with disturbance (e.g., drought, wildfire) and land management 

practices (e.g., prescribed burning, brush management). These knowledge gaps are 

amplified at regional scales where quantifying the net effects of WPE on regional 

carbon balance would require an accounting of the area undergoing WPE, the stages 

of encroachment, and the area recovering from past disturbances (Asner et al. 2003).

Studies quantifying herbaceous production in drylands in relation to climate, 

land use, and disturbance are numerous, but relatively few have simultaneously 

quantified woody plant production and even fewer have quantified plant and soil 

pools. Accordingly, we know very little about how ecosystem (plant + soil) carbon 

pools change with changes in grass-woody plant abundance. Scenarios where 

aboveground net primary production (ANPP) increases, decreases, or remains 

unchanged can be logically theorized following woody plant encroachment 

(House et al. 2003). At broad scales, if encroaching woody plants are less produc-

tive than the grass communities they replace net ANPP will decrease. Conversely, 

if encroaching woody plants are more productive than the replaced grass commu-

nities net ANPP will increase. Lastly, if grassland and woody plant communities 

are equally productive then no change in ANPP would be expected. So, which of 

these three scenarios is most likely to occur? As it turns out, the answer depends 

on rainfall.

Recent syntheses suggest that ANPP scales linearly with MAP in landscapes 

where woody plants have displaced grasses. At an MAP of ~340 mm the ANPP 

contribution to the C pool in woody plant-encroached landscapes switches from 

being a net C source to a net C sink (Fig. 2.8a). Whereas grassland ANPP stabilizes 

at MAP > 500 mm, woody plant ANPP continues to increase linearly with increases 

in MAP. This presumably reflects the ability of woody plants, with their more 

 complex canopy architecture, to utilize greater leaf area than grasses (Knapp et al. 

2008a). However, the belowground soil organic carbon (SOC) pool typically dwarfs 

the aboveground pool in drylands. Given its large size, even small changes in the 

SOC pool could have big impacts on ecosystem C balance, especially given the 

expansiveness of grasslands and savannas. So how and to what extent do these 

aboveground changes in plant production affect belowground C pools?

The SOC pool reflects long-term inputs from plant leaves, stems, and roots. This 

suggests that changes in the amount of SOC would vary with changes in the plant 

production. However, a survey of studies quantifying changes in SOC with WPE 

revealed no consistent patterns—it increased markedly in some cases, and remained 

unchanged, or decreased in others and had no correlation with MAP (Fig. 2.8b). 

This indicates that when grass communities are replaced by woody plant communi-

ties, there is a major difference between ANPP and belowground carbon pools: 

ANPP scales with MAP while SOC has no apparent relation to it. Reasons for this 

disconnect are unclear, but may (1) be an artifact of different soil sampling method-

ologies (see discussion in Barger et al. 2011; Throop et al. 2012), (2) reflect the 

nonequilibrium status of many landscapes experiencing WPE and the fact that 

changes in soils lag well behind the changes in the vegetation that drive them, and 

(3) plant species or functional group differences in allocation of carbon for aboveg-

round vs. belowground growth.
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Where landscape effects of both ANPP and SOC responses to have been taken 

into account in North America it appears that arid zones are likely to become net 

sources of carbon when WPE occurs, whereas higher rainfall areas will become net 

sinks (Fig. 2.9). Given that WPE has been occurring since the late 1800s in many of 

these regions, the sites depicted in Fig. 2.9 may have been at relatively advanced 

stages of woody plant stand development. Accordingly, the reported values may 

represent potential envelopes between the lower and upper limits of an ecological 

site. However, natural disturbances (e.g., drought, wildfire, pathogen outbreaks) and 

land management (Sect. 2.6) will alter the extent to which these potentials may be 

realized or maintained.
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Fig. 2.8 Changes in (a) aboveground net primary productivity (g biomass m−2 year−1) and (b) soil 

organic carbon with woody encroachment as a function of mean annual precipitation. Data span a 

range of species and ecoregions and encompass a range of sample collection and processing meth-

odologies (from Barger et al. 2011)
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2.5.2  Hydrology

The hydrological impact of WPE has been of intense interest, as climate change and 

human demand for freshwater have increased, inciting global concerns about water 

security for communities (Vorosmarty et al. 2010). The question that generally con-

cerns the public most is whether WPE decreases groundwater recharge and/or 

streamflow (Tennesen 2008). WPE has the potential to interfere with all compo-

nents of the water budget equation: precipitation, evapotranspiration (ET), runoff 

(R), and deep drainage (D, recharge below the rhizosphere). Structural differences 

between woodlands and grasslands suggest that, in general, woodlands should have 

higher ET and lower R than grasslands (Bonan 2008). Four major mechanisms fol-

low. First, woody plants can take up water stored in deeper soil layers (Sect. 2.3.3). 

Second, woodlands have lower albedo and greater air turbulence in the canopy 

boundary layer, which increases their potential ET (PET). Third, protracted periods 

of dormancy limit the number of days over which transpiration occurs in grasslands, 

whereas shrubs and trees, particularly if they are evergreen, have longer periods of 

transpiration (Donohue et al. 2007). Fourth, canopy interception of rainwater, a 

component of ET, is lower in grasslands especially when compared with needle- or 

scale-leaf conifers (e.g., Pinus, Juniperus) (Owens et al. 2006).

WPE also can influence runoff by changing soil infiltration rates. In water- 

limited systems, runoff comes during intense rainfall events, when the precipitation 

input rates exceed the infiltration rate. Water begins to pond and run off, eventually 

flowing into streams (Dunne 1978). Woody cover may change the infiltration char-

acteristics of soil through effects on soil quality and spatial heterogeneity of plant 
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cover. A recent meta-analysis showed that these effects are highly context depen-

dent (Eldridge et al. 2011). Shrub encroachment into grasslands is often classified 

as a “trigger” for soil degradation and “desertification” (Schlesinger et al. 1990). 

But a study conducted in a semiarid Mediterranean grassland in Spain showed that 

the effect can also be opposite (Maestre et al. 2009). In this example, shrubs estab-

lishing in degraded pastures created “islands of fertility” that enhanced vascular 

plant richness, microbial biomass, soil fertility, and nitrogen mineralization. In this 

sense, shrubs may be seen as reversing, rather than causing, desertification.

Regardless of changes in vegetation and soil structure, there are physical limits 

to the magnitude with which WPE can modify the hydrological budget. Potential 

effects are greatest where precipitation approximately equals PET (Zhang et al. 

2001); above or below this threshold, ET is constrained either by precipitation or 

PET. Grassland and savanna biomes occur under both climate conditions. The Great 

Plains of North America, for example, straddle regions with precipitation surplus to 

the east and precipitation deficit to the west (Fig. 2.10). Therefore, WPE should 

have maximal hydrological consequences in central regions of the USA.

There are several caveats to these generalizations and we mention two: first, 

there are hydrological systems with large bypass-flow components. Bypass flow is 

Fig. 2.10 A map of average precipitation (P) minus average potential evapotranspiration (PET) 

for the contiguous USA. P-PET decreases prominently from east to west and less so from north to 

south. Impacts of woody plant encroachment on ET are expected to be maximized near the 97th 

degree west longitude, where P approximately equals PET. Where P exceeds PET, ET is energy 

limited approaching PET; where PET > P, ET is water limited, approaching P, irrespective of 

woody cover
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the rapid transport of water through the root zone by way of macropore conduits 

(e.g., channels left by large dead roots, cracks, and fissures in bedrock). Bypass flow 

expedites recharge of aquifers or spring-fed streams and the brief residence time for 

water in the rhizosphere means that vegetation has practically no influence on the 

volume of bypass flow. This minimizes the effect that WPE can have on the water 

budget. This was demonstrated in a series of rainfall simulation experiments in the 

karst region of Central Texas, a semiarid area where P is not far below PET. Shallow 

caves at the field site made it possible to capture drainage out of the root zone as 

cave drip. Juniper removal had no significant effect on the amount of water captured 

as cave drip (Bazan et al. 2013). Decades of controlled experiments in this region 

have generally returned the same result, that the effect of removing encroaching 

woody plants on ET and/or spring flow is small and short-lived (Wilcox et al. 2005) 

(Chapter 3, this volume).

A second important exception to the general pattern occurs in systems with shal-

low water tables, in which the incursion of deeply rooted trees can fundamentally 

alter the hydrological cycle, including precipitation. For example, a regional increase 

in the woody cover of the African Sahel zone has recently been linked to a precipita-

tion feedback: as woody plant cover increased, more moisture (from groundwater) 

was cycled into the atmosphere, which increased cloud formation and rainfall. The 

positive-feedback loop closes when higher rainfall in turn increases woody cover 

(Scheffer et al. 2005). It has been suggested that this regional vegetation- precipitation 

feedback may be locally enhanced by a vegetation- infiltration feedback, in which 

infiltration is improved as a consequence of higher vegetation cover, enabled by 

WPE. Together, these two feedbacks are a powerful force of self-organization of the 

hydrological system, which can either be locked into an arid, low-productivity state 

or a mesic/high-productivity state (Dekker et al. 2007).

2.5.3  Biodiversity

Biodiversity, whether quantified as richness of species, plant functional groups, or 

animal guilds, is influenced strongly by WPE. From the perspective of vegetation 

structure, WPE is transformative: grasslands become shrub or tree savannas and 

shrub and tree savannas become shrublands or woodlands.

Grassland ecosystems are among the most endangered in North America, with 

most having been reduced to small remnants of their original distribution (Noss 

et al. 1995; Hoekstra et al. 2004). Initially, colonization of grasslands by woody 

plants involves new species that increase the biodiversity pool directly. Subsequently, 

modification of soil properties, vegetation structure, and microclimate may facili-

tate establishment by other novel plant and animal species. Maximum diversity in 

savanna-like configurations occurs often where woody and herbaceous plants are 

both well represented or where gains in new woody and herbaceous species 

 outweigh losses of the initial grassland-obligate species (Fig. 2.11). As abundance 

of woody plants increases, grassland components eventually decrease and are 

S.R. Archer et al.



57

replaced by plants and animals adapted to shrublands or woodlands. In tropical and 

subtropical areas with large and diverse regional species pools, there may be a net 

increase in diversity along with concomitant changes in community structure. In 

other settings, there may be little or no net change in numerical diversity, but pro-

found changes in community structure. In settings where the number of encroach-

ing woody species is low, their proliferation may create virtual monocultures with 

little or no understory that will result in profound decreases in the diversity of plants 

and animals. Examples of the latter in North America include both native (juniper, 

ponderosa pine) and non-native (salt cedar, Chinese tallow) species. No matter the 

numerical changes in biodiversity, persistence of plants and animals endemic to 

grassland and open savanna ecosystems is jeopardized. Some grassland obligates 

are immediately lost at the initial stages of encroachment (e.g., Fuhlendorf et al. 

2002; Lautenbach et al. 2016), whereas others may persist until woody plant cover 

reaches about 15 % (reviewed in Archer 2010).

2.5.3.1  Herbaceous Vegetation

Encroaching woody plants may have an immediate, adverse effect on herbaceous 

vegetation in some cases or a positive, facilitative effect in others. In the latter, 

woody plants may eventually suppress herbaceous plants as their density increases. 

These overstorey-understory relationships are influenced strongly by soil type, such 

that herbaceous plants may be suppressed on lowlands and facilitated on uplands 

(Hughes et al. 2006). Local- and landscape-scale diversity perspectives should 

therefore be kept in mind when generalizations are made.

Woody plant encroachment

Species’ abundances

Species richness

Fig. 2.11 Conceptual model of community changes in species abundances and richness with 

woody plant encroachment. Species richness is likely to be highest where both shrub-associated 

and grassland-associated species co-occur, with the endpoints varied, depending on the encroach-

ing species
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A recent global analysis indicates that WPE generally has positive to neutral 

effects on plant diversity (Eldridge et al. 2011). However, evidence from North 

America indicates consistent declines in species richness (45 %, on average) 

(Ratajczak et al. 2011b). Variation in evolutionary history and Anglo-European 

land-use practices may account for these varied responses between North America 

and other continents. In addition, declines in North America plant diversity seem to 

vary with MAP. For example, long-term assessments of plant species richness in 

desert grasslands revealed linear declines with time since encroachment by an arid 

land shrub. Additionally, species-poor communities in areas invaded by the same 

shrub were less stable (more variable in time) than species-rich communities in 

nearby grassland-dominated areas (Baez and Collins 2008). In contrast, species 

richness declined exponentially with woody plant cover in humid grasslands 

invaded by an evergreen arborescent (Knapp et al. 2008b). These contrasts in arid 

and humid regimes (linear vs. exponential declines, respectively) suggest that the 

future magnitude and dynamics of vegetation diversity response to WPE will be 

mediated by climate change. Changes in species composition should not be lost in 

discussions of diversity. As we mentioned earlier, substantial changes in species, 

functional groups, or guilds, as well as changes in relative species abundances 

(evenness), can occur with small, or even no, net changes in species richness. 

Furthermore, these changes in species composition impact ecosystem processes 

related to primary production, nutrient cycling, and structure of tropic pyramids. 

Accordingly, measures of species richness alone provide a limited metric of changes 

in diversity.

As summarized in the next section, plant diversity changes have a multiplier 

effect on animal diversity by adding keystone structures and increasing vegetation 

heterogeneity (Tews et al. 2004).

2.5.3.2  Animals

Changes in the plant community associated with WPE have affected many grass-

land animals principally by reducing the quantity or quality of habitat and by alter-

ing a suite of fundamental ecological processes. Consequently, the abundance and 

distribution of many organisms that inhabit grassland ecosystems have decreased 

markedly (Samson 1994; Sauer and Link 2011). During the last 30 years, for exam-

ple, grassland birds have declined more rapidly than any other group of birds in 

North America (Knopf 1994; Peterjohn and Sauer 1999; Vickery et al. 1999; 

Brennan and Kuvlesky 2005; Sauer and Link 2011).

Although long-term declines in the abundance and distribution of many grass-

land species have been relatively well documented, linkages between changes in 

grassland plant communities and their effects on animals are less clear. Vegetation 

structure is a key determinant of animal diversity, and because a principal conse-

quence of WPE is a marked increase in vertical and horizontal structure, popula-

tions and communities of many resident animals shift markedly in response to 

woody encroachment (Skowno and Bond 2003; Coppedge 2004; Sirami and 
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Monadjem 2012). Although some species respond to changes in vegetation at 

broader scales, animals that function at smaller scales, such as small mammals and 

arthropods, are more likely to respond to changes in vegetation that alter local envi-

ronmental characteristics (Wiens and Milne 1989). Consequently, some taxa, 

including birds, mammals, and reptiles, are more likely to respond to the structural 

changes in the plant community that accompany WPE, whereas other taxa, espe-

cially arthropods, are also likely to respond to changes in species composition that 

interfere with coevolved relationships with specific plant species (Litt and Steidl 

2010). Relative to vertebrates, many arthropods are less mobile, depend on a nar-

rower range of plants for food, cover, and sites for reproduction, and can have spe-

cialized relationships with specific plant species (Kremen et al. 1993). This makes 

them especially vulnerable to compositional changes in the plant community (Steidl 

et al. 2013). Changes in the arthropod community may feed back to influence mul-

tiple ecological processes, including pollination, decomposition, and nutrient 

cycling, as well as food resources for insectivores, including breeding grassland 

birds, small mammals, and reptiles.

Responses of animals to WPE vary broadly by taxa, plant community, and geo-

graphic region, but ultimately responses can vary by species (Ayers et al. 2001; 

Meik et al. 2002; Blaum et al. 2007a; Blaum et al. 2007b; Blaum et al. 2009). 

Species-specific responses are expressed frequently as sharp transitions in the prob-

ability of occupancy (i.e., changes in distribution) or as changes in demographic 

rates such as density, survival, or reproductive success at specific levels of woody 

plant cover (Grant et al. 2004; Sirami et al. 2009). For example, verdins (Auriparus 

flaviceps) and eastern meadowlarks (Sturnella magna), species common throughout 

grassland and shrublands of southern Arizona, respond strongly and oppositely to 

changes in the abundance of woody vegetation (Fig. 2.12). For verdins, as the 

amount of woody vegetation increases, the probability of them selecting an area for 

breeding increases; in contrast, the probability of eastern meadowlarks selecting an 

area for breeding decreases sharply as the amount of woody vegetation increases. 

Species-specific responses such as these explain why the effects of WPE on animal 

populations and communities vary with stage of encroachment (Fig. 2.11); compo-

sition of these communities shifts as density of woody plants changes. In early 

stages of encroachment when cover of woody plants is relatively low, vertical struc-

ture in the plant community increases. These structural changes increase the diver-

sity of niche spaces available for exploitation by animals. Therefore, species capable 

of exploiting these niches are added to the initial animal community, increasing 

species richness and diversity. Overall richness and diversity of these areas increase 

as shrub-associated species join the existing community of grassland-associated 

species (Tews et al. 2004). In the southwestern USA, for example, increases in spe-

cies richness of several taxa were associated with increased cover of woody plants 

(Arnold and Higgins 1986; Lloyd et al. 1998; Bestelmeyer 2005; Block and 

Morrison 2010).

As encroachment advances and shrub cover continues to increase, habitat for 

grassland-associated species declines, so their abundances decline. This pattern has 

been well documented for grassland birds (Coppedge et al. 2001; Cunningham and 
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Johnson 2006; Winter et al. 2006; Block and Morrison 2010), but has also been 

observed for mammals (Krogh et al. 2002; Blaum et al. 2007a) and reptiles 

(Mendelson and Jennings 1992; Pike et al. 2011). When woody cover exceeds 

species- specific thresholds, which as yet have been poorly established, populations 

of grassland-associated species are displaced (Grant et al. 2004; Sirami et al. 2009) 

and animal communities shift from being dominated by grassland-associated spe-

cies to shrubland-associated species (Igl and Ballard 1999; Rosenstock and Van 

Riper 2001; Skowno and Bond 2003; Sirami and Monadjem 2012). Overall, richness 

of animal communities is likely maximized where cover of woody plants is below 

the threshold levels that displace grassland specialists but above levels where habitat 

becomes more exclusively suitable for shrub-associated species (Fig. 2.11); that is, 

where gains of new species outweigh losses of existing species (Archer 2010). This 

pattern of peak species richness at intermediate levels of woody cover has been 

documented for mammalian carnivores (Blaum et al. 2007a), arthropods (Blaum 

et al. 2009), and birds (Grant et al. 2004; Sirami and Monadjem 2012). Regardless 

of how encroachment affects animal diversity at local scales, animal diversity is 

ultimately reduced at broader scales if grassland-associated species are displaced.

Although systematic patterns in responses of animals to WPE are becoming 

clearer, the mechanisms governing them are not. Specifically, we do not understand 

clearly how WPE and other vegetation transitions influence demographic processes 

at the population scale or the behavior of individuals, particularly those related to 

habitat selection. In general, WPE influences populations and communities of ani-

mals directly by reducing both the quantity and the quality of habitat. Many animals 

rely on vegetation-based cues to indicate the presence of habitat—that is, to identify 

areas that provide the suite of resources necessary for survival and reproduction 

(Mannan and Steidl 2013). Therefore, as vegetation composition and structure 

change in response to WPE, areas that once provided habitat for a species may no 

longer provide that function. Specifically, as WPE proceeds, species will continue 

to persist in patches that provide habitat; as the vegetation transition continues, the 

same species could be displaced entirely.

WPE can lower habitat quality for animals that continue to inhabit encroached 

areas and reduce their survival or reproductive success. Changes in habitat quality 

may reflect changes in rates of predation or brood parasitism or changes in the types, 

abundance, or availability of food resources. WPE can alter predation risk by influ-

encing the types, densities, and behaviors of predators in a community. For example, 

predation is often the primary cause of nest failure in grassland birds (Martin 1992) 

and is thought to be responsible for decreases in reproductive success of birds in 

areas encroached by woody plants (With 1994; Mason et al. 2005; Graves et al. 

2010). Further, for songbirds nesting in grassland patches, the risk of nest predation 

increases with proximity to woody plants (Johnson and Temple 1990; Mason et al. 

2005). WPE could affect food resources available to herbivores through changes in 

the composition or biomass of vegetation and subsequently to carnivores through 

changes in herbivore populations and communities (Maurer 1985). Among birds, 

declines in food availability can delay nest initiation or lead to nest failure (Ortega 

et al. 2006), and increase rates of nestling starvation (Maron and Lill 2005; Granbom 

et al. 2006) and predation (Dewey and Kennedy 2001; Zanette et al. 2003). 
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Additionally, food availability for nestlings could be affected by rates of brood para-

sitism by brown-headed cowbirds (Molothrus ater), which are correlated positively 

with woody plant cover (e.g., Johnson and Temple 1990; Shaffer et al. 2003).

Despite the global scale of the encroachment phenomenon and the tremendous 

number of grassland-associated animals that might be affected, only a modest 

amount of research has explored and quantified responses of animals to WPE. A 

variety of perspectives exist, but unifying, robust generalizations are still elusive. 

Some of the variation in results among studies might be attributable to artifacts of 

study design. For example, many studies simply contrast areas as “encroached” vs. 

“not encroached.” These coarse classifications likely occlude biologically meaning-

ful variation in animal responses along complex gradients of vegetation structure, 

composition, and dominance, as well as their continuous changes throughout the 

encroachment process (e.g., Thompson et al. 2009). Many of the studies that have 

explored broader encroachment gradients use space-for-time substitutions as a way 

to compare areas with different amounts of woody cover. Although these approaches 

can be useful in understanding how animals respond to structural changes in habitat 

resources—especially when gradients span large areas—they are predicated on the 

assumption that animals respond to vegetation changes in space in the same way 

they respond to changes in time (Sirami and Monadjem 2012). In addition, areas 

that have been encroached by shrubs may differ inherently from areas that have not 

been encroached in ways that are not apparent to researchers, but that may be impor-

tant to animals.

2.6  Management Perspectives

Proliferation of woody plants has long been of concern in areas where the primary 

land use is cattle and sheep grazing. WPE on these lands typically reduces produc-

tion of valued forages, complicates animal handling, and improves habitat for ecto-

parasites. Furthermore, and despite limited supporting evidence, WPE is often 
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presumed to adversely affect stream flow and groundwater recharge (Sect. 2.5.2). 

As a result, management of rangelands for production of cattle and sheep has 

focused historically on reducing the amount of woody vegetation using a variety of 

technologies (Bovey 2001; Hamilton et al. 2004). Known as “brush management” 

(North and South America), “woody weed management” (Australia), and “bush 

clearing” (Africa), these technologies may be applied singly, in combination, or 

sequentially. As a result, rangelands are complex mosaics of areas undergoing 

woody plant encroachment and areas subjected to, and transitioning from, past 

efforts to reduce woody cover (Asner et al. 2003; Browning and Archer 2011).

Cover and biomass of herbaceous vegetation that is valued as forage typically 

decline as woody plant abundance increases (Anadón et al. 2014b). This loss of for-

age production has traditionally been the impetus for brush management, with the 

expectation that reductions in tree or shrub cover would promote recovery of herba-

ceous production. More recently, interest in recovering grassland biodiversity has 

become a priority (Sect. 2.5.3.1). A synthesis of research on this topic indicates that 

responses of herbaceous vegetation to brush management are highly variable (Fig. 

2.13). Although 64 % of investigations reported increases in forage production fol-

lowing brush management, those gains were, on average, short-lived, typically less 

than 5–7 years. Furthermore, herbaceous production and diversity remained 

unchanged, or even decreased—sometimes substantially—in 36 % of the studies. 

This range of herbaceous responses to brush control begs several questions. First, 

why is the response of herbaceous vegetation short-lived on some sites and longer 

lived on others? Second, why is herbaceous vegetation unresponsive to reductions 

in cover of woody plants at many sites? Third, what caused herbaceous vegetation 

at some sites to respond so negatively? Answers to such questions are needed if we 

are to identify where, when, how, and under what circumstances to intervene with a 

given brush management practice (Archer et al. 2011).

Integrated brush management systems (IBMS) (e.g. Noble and Walker 2006) are 

the hallmark of progressive, modern brush management. The IBMS approach advo-

cates consideration of the type and timing of a given brush management technology 

and makes explicit allowances for the type and timing of follow-up treatments. This 

approach benefits from knowledge of how woody and herbaceous plants are likely 

to respond and how climate, soils, topography, and livestock and wildlife manage-

ment might mediate plant responses. These considerations are crucial for long-term 

cost-benefit analysis of these treatments (e.g., Torell et al. 2005a). The conceptual 

model in Fig. 2.14 represents the kinds of ecological data that will be needed to 

evaluate the feasibility and sustainability of brush management practices from a 

forage production standpoint. Rangeland ecologists should develop families of 

curves for ecological sites in a given bioclimatic zone (e.g., McDaniel et al. 2005).

Historically, brush management treatments were often applied across entire 

landscapes and watersheds. However, it would be more effective to treat portions of 

a landscape and distribute treatments across landscapes in both time and space to 

create mosaics of vegetation structure, patch sizes, shapes, and age states (Scifres 

et al. 1988; Fulbright 1996) that would increase diverse habitats to potentially 

increase biodiversity (Jones et al. 2000) (Sect. 2.5.3.2). This would enable a 

S.R. Archer et al.



63

low- diversity shrubland or woodland developing on a grassland site to be trans-

formed into a patchwork of grassland-savanna-shrubland or woodland communities 

that promotes diversity at multiple scales (Chapter 5, this volume).

Economic analyses of brush management suggest that assessments based solely 

on increased forage and livestock performance may not be economically justified, 

especially when external subsidies are not available (Torell et al. 2005b; Tanaka 

et al. 2011). Full and explicit consideration of other ecosystem services may, how-

ever, change the cost-benefit assessment. Knowledge gaps remain, but a large and 

growing body of work on woody plant encroachment impacts on ecosystem ser-
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vices is developing (Archer 2010; Barger et al. 2011; Eldridge et al. 2011). Much 

less is known about how post-encroachment management of woody vegetation 

influences those services. The scientific community is challenged with quantifying 

and monitoring the concomitant impacts of woody plant encroachment and brush 

management so that trade-offs (e.g. Nelson et al. 2009) can be objectively evaluated 

at spatial and temporal scales relevant to land management and policy (Fig. 2.15).

Rangelands prone to woody plant encroachment present a novel series of dilem-

mas, challenges, and opportunities for mitigation. For example, proliferation of 

woody plants can promote primary production and carbon sequestration under some 

circumstances, and may trigger new land-use drivers for biofuel production (Park 

et al. 2012) or as industries seek opportunities to offset CO2 emissions. Woody plant 

proliferation in grasslands and savannas managed traditionally for grazing may 

therefore shift from being an economic liability to a source of income and economic 

diversification. However, under this scenario, grasslands and savannas and the 

plants and animals endemic to them would be at risk and their influences on hydrol-

ogy, tropospheric chemistry (such as non-methane hydrocarbons, Guenther et al. 

1999), and mesoscale meteorology altered. At present, our ability to evaluate and 

weigh these trade-offs, and their potentially synergistic interactions, is limited 

owing to variable, and often conflicting, results, and by limited scientific informa-

tion (Archer and Predick 2014). These ecosystem-science challenges are magnified 

when placed in the human dimension context of cultural traditions, stakeholder 

preferences and priorities, market externalities, and climate change (Chapter 14, 

this volume). Given the cost and short longevity of brush management treatments, 
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integrated brush management system (IBMS) approach (from Archer and Predick 2014)
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the adage “an ounce of prevention is worth a pound of cure” is applicable. In areas 

where WPE is at advanced stages, grassland restoration may not be economically 

feasible or sustainable and alternative land uses should be considered.

Grasslands and savannas are integral to the global carbon, water, and nitrogen 

cycles, and to human well-being (Campbell and Stafford Smith 2000; Reynolds 

et al. 2007; Peters et al. 2015). Their extensive airsheds and watersheds provide 

habitat for wildlife and a variety of ecosystem goods and services important to both 

local and distant settlements and cities. As such, they have considerable multipur-

pose value. A key component of dryland ecosystem management is maintaining the 

proportions of herbaceous and woody plants within a range that satisfies a given set 

of objectives and values, some of which may be conflicting (e.g., wildlife vs. live-

stock, Du Toit et al. 2010; Augustine et al. 2011). Perspectives on woody plants in 

rangelands vary widely depending on cultural traditions and land-use goals and 

objectives. In many regions of the world, woody plants are a valued source of food 

(e.g., honey, fruits, seeds), fuel, charcoal, and construction materials and an impor-

tant source of fodder for browsing livestock (e.g., goats, camels), and wildlife. 

Additionally, there is growing recognition that woody plants on rangelands can pro-

vide products with potential commercial (e.g., gums, resins) or medicinal value.

Policy and management issues related to rangeland conservation have evolved to 

extend well beyond the traditional concerns of livestock production and game man-

agement (wildlife valued for sport hunting) to include potential effects on hydrol-

ogy, carbon sequestration, biological diversity, atmospheric chemistry, and climate 

system (Archer 2010; Eldridge et al. 2011). The research community is challenged 

with quantifying and monitoring these varied impacts so that trade-offs (Fig. 2.15) 

can be assessed objectively and used as the foundation for science-based decision 

making. The management community is challenged with devising approaches for 

creating or maintaining woody-herbaceous mixtures in spatial arrangements that 

negotiate and balance competing land use and conservation objectives.

2.7  Future Perspectives

The woody plant encroachment phenomenon highlights the challenges of integrat-

ing stochastic and deterministic drivers of environmental change and plant trait rep-

resentations to predict vegetation change. Vegetation models that account for the 

complexity of these interactions will be better suited to predict how changes in cli-

mate and atmospheric conditions will influence the future structure, function, and 

distribution of grasslands, savannas, woodlands, and forests (e.g., Scheiter and 

Higgins 2009). Among the philosophical differences that remain are the long- 

standing controversies regarding the influence of equilibrial dynamics, based upon 

the persistent properties of mature plants, and the influence of random environmen-

tal events and externalities on recruitment, mortality, and mutable competitive hier-

archies of species during establishment.
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Research on WPE should draw from and contribute to the area of trait-based 

ecology. Discussions framed in terms of “woody plants” and their proliferation in 

“grasslands” do not help explain why only a few of the many woody species in a 

flora have become encroachers. What specific traits allowed these species to prolif-

erate in grasslands after livestock introduction, while most other woody species 

could not? How do those traits determine the varied ecosystem effects of WPE on 
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carbon stocks, soil fertility, and water budget? What traits may explain the idiosyn-

cratic responses of herbaceous vegetation to brush management? Such questions are 

germane to those being asked in modern evolutionary ecology. Their answers have 

real-world implications for human welfare, rural economies, and climate change 

readiness.

There is broad consensus in the Earth sciences that the regulation of global water 

and carbon cycles by terrestrial vegetation is a critical aspect upon which the cli-

mate future of our planet depends. There remain significant knowledge gaps not the 

least of which center on vegetation change in the world’s herbaceous communities. 

The influence of WPE on local water budgets, we are now learning, can influence 

the hydrological cycle at regional scales.

A better understanding of the controls over woody plant “carrying capacity” is 

needed to position us to predict how community dynamics and ecological processes 

will respond to changing environmental conditions. The upper limits of woody 

cover in rangelands seem to be dictated by mean annual precipitation, but mecha-

nisms contributing to the MAP constraint are not clear. Density-dependent mecha-

nisms would be a logical expectation, but studies quantifying interactions among 

woody plants in rangelands are uncommon and should receive more emphasis. The 

limited evidence available for density-dependent control over woody plant density 

or cover is equivocal. Our understanding of the extent to which the upper limits of 

woody plant cover are governed by the traits of seedlings influencing recruitment 

patterns and the traits of adult plants that influence ecosystem processes is limited. 

Alternative conceptual models highlight stochastic spatial processes, in which the 

equivalent of a carrying capacity is an emergent property of recruitment and distur-

bance probabilities.

Woody plant proliferation in grasslands and savannas has been ongoing for 

decades and is approaching or exceeding 100 years in some areas. Our focus has been 

on understanding the encroachment process, its rates, causes, and consequences. But 

“encroachment” is not the end of the story. We know relatively little of the dynamics 

of the shrubland or woodland communities that have developed on former grassland 

and how they might change through time. Understanding post- encroachment dynam-

ics is important if we are to predict how ecosystem structure and function might 

continue to unfold over time. With accelerating rates of climate change and other 

anthropogenic disturbances, the potentially novel and dynamic communities of 

plants and animals created in the wake of Anglo-European settlement may be a natu-

ral laboratory for studying vegetation dynamics in the Anthropocene.

Responses of herbaceous vegetation to brush management are highly variable. 

Herbaceous production and diversity increase on some sites, but decrease on others, 

and positive responses, when they occur, vary greatly in their longevity. 

Improvements in our ability to explain these varied responses will enable us to iden-

tify (1) where and when brush management intervention might be most likely to 

achieve the outcomes desired for a given set of management or policy goals, and (2) 

the combination and time series of intervention methods that are most likely to 

effect desired changes within socioeconomic constraints.
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Uncertainties and knowledge gaps regarding the impact of WPE and subsequent 

brush management activities on carbon sequestration are substantial. Studies quan-

tifying the herbaceous production responses to WPE and brush management are 

abundant, but robust predictions are elusive, particularly with brush management. 

Data quantifying woody plant productivity is a major data gap, as are estimates of 

belowground production. Flux-tower networks targeting WPE-brush management 

areas will enable us to better determine source-sink relationships. Recent advances 

in tools for gathering remote-sensing data (e.g., LIDAR; unmanned aerial vehicles; 

multispectral, hyperspectral, and thermal satellite-based sensor arrays) have given 

us new capabilities for quantifying aboveground vegetation structure and biomass 

over expansive and remote areas. Furthermore, these technologies have the potential 

to quantify cacti, an important and sometimes very abundant, plant functional type 

on rangelands. The contributions of cacti have been virtually ignored in biomass 

and ANPP estimates of the aboveground carbon pool. These synoptic perspectives 

will position us to inventory carbon stocks more accurately at regional scales, where 

landscapes are mosaics of areas in various stages of WPE and recovery from extreme 

events or management interventions. Studies quantifying changes in the soil organic 

carbon pool with WPE have been accumulating over the past 10–15 years, but there 

is an urgent need to balance these with data documenting brush management 

impacts. In both cases, there is a need for standardization of methodologies if we 

hope to develop robust, meaningful generalizations.

From a conservation perspective, WPE represents a major threat to grassland and 

savanna ecosystems and their endemic plants and animals. This perspective needs 

to be considered explicitly when evaluating ecosystem service portfolios that have 

focused traditionally on forage and livestock production, water quality/quantity, etc. 

Biodiversity perspectives should be broadened similarly to include organisms val-

ued for their functional and charismatic roles, as well as animals valued for hunting 

and plants valued for forage.

Concerns over WPE will be complicated by the invasion and proliferation of 

non-native grasses. Acting as “transformer species,” these exotic grasses can change 

the character, condition, function, and form of native ecosystems. Once established, 

non-native annual and perennial grasses can generate massive, high-continuity fine 

fuel loads that predispose grasslands to fires that can be more frequent and intense 

than those with which they evolved. The result is the potential for shrublands and 

woodlands developing on former grasslands to be quickly and radically transformed 

into exotic grass monocultures over large areas. This is well under way in the North 

American cold desert region (e.g., cheatgrass, Bromus tectorum) and is in its early 

stages in hot deserts. These transformations have profound effects on ecosystem 

processes (Betancourt 2015) and biodiversity (Steidl et al. 2013) and present unique 

management challenges. More research is needed to develop an understanding of 

how WPE and non-native grasses could be comanaged to conserve biodiversity and 

ensure the sustained provision of core ecosystem services.
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Assessments of woody plan encroachment and actions taken to halt or reverse it 

must be broadly considered and evaluated in the context of plant and animal com-

munity dynamics, biodiversity, and ecosystem function. The near-term context will 

be largely determined by land-use priorities and socioeconomic externalities. Over 

the longer term, climate change will determine the context within which land-use 

and socioeconomic decisions are made. Management therefore needs to address 

ongoing and near-term challenges associated with WPE while positioning us to 

anticipate and adapt to changes on the horizon.

2.8  Summary

Woody plant encroachment (WPE) is an umbrella phrase describing increases in 

abundance and distribution of woody plants in grassland and savanna plant com-

munities worldwide. WPE has been documented in arid, semiarid, and subhumid 

climate zones and in tropical, subtropical, temperate, and arctic regions. WPE has 

been traditionally associated with ecosystems degraded due to intensive grazing by 

cattle and sheep. We now appreciate, however, that woody plants play important 

roles in maintaining ecosystem processes on these degraded landscapes. 

Consequently, their proliferation is now viewed more appropriately as a symptom, 

rather than cause, of degradation.

2.8.1  Causes

Although numerous efforts have sought to elucidate the proximate causes of woody 

encroachment, robust generalizations remain elusive. The WPE process is highly 

context dependent and influenced by numerous, interacting location-specific factors 

related to climate, fire frequency and intensity, grazing/browsing regimes, soil prop-

erties, and functional traits of the encroaching species and native browsers.

MAP sets an upper limit to woody plant cover, which tends to plateau to a maxi-

mum above 650 mm. However, local patterns of disturbance (fire, browsing) and 

soil properties (texture, depth) may prevent this potential from being realized. In the 

absence of these constraints, interactions among the seasonality, interannual varia-

tion, and intensity of precipitation events will determine the rate and extent of 

woody plant recruitment. Precipitation in arid grasslands varies markedly in both 

space and time. This can cause cover of woody plants to wax and wane at decadal 

or longer time scales, which helps to explain the high variation observed in rates of 

WPE. Climate zones with higher precipitation have the capacity for rapid conver-

sion from grassland to woodland, but decadal-scale variation in precipitation can 

make it difficult to distinguish natural fluctuations from directional changes in veg-

etation communities.
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Paleoecological studies indicate that the balance between grass- and woody- 

plant- dominated communities has fluctuated over the last 10,000 years, suggesting 

climate as a long-term determinant. However, WPE in the “Anthropocene” is more 

complicated. Concentrations of atmospheric CO2 have been increasing exponen-

tially since the advent of the industrial revolution. Although probably not a trigger-

ing factor per se, rising CO2 levels may well have been a supporting factor in that 

woody plants, which are characterized by the C3 photosynthetic pathway, would 

have benefited more from CO2 “fertilization” than the C4 grasses that dominate 

tropical, subtropical, and warm-temperate regions. Further, woody plants can use 

higher assimilation rates to expedite the accumulation of woody biomass and carbo-

hydrate storage. This would lower their mortality risks during the critical 

 establishment phase while also enabling more rapid growth to sizes where they 

could escape constraints imposed by fire and browsers.

Woody plant encroachment has also coincided with the global intensification of 

livestock grazing. Prior to the introduction of domestic grazers, an abundance of 

fine fuels produced by grasses stimulated periodic fires that regularly suppressed 

woody plant recruitment and controlled the density of mature shrubs and trees. The 

introduction of large numbers and high concentrations of livestock reduced both the 

density and continuity of fine fuels, which reduced fire frequency and intensity, and 

facilitated development of woody plant communities. Locally, woody plants bene-

fited from secondary factors, such as livestock dispersing seeds or by displacing 

native browsers and seed predators.

When woody plant seedlings germinate in the immediate proximity of mature 

grasses, they face potentially intense competition for light, water, and soil nutrients. 

Grazing reduces grass biomass both above- and belowground and therefore the abil-

ity of grasses to competitively suppress shrub seedlings. However, this does not 

explain why woody plants are also encroaching into areas protected from grazing 

livestock. In many grasslands, ground cover consists of bare and vegetated patches, 

and thus spatially variable levels of competition. In addition, where annual rainfall 

is monsoonal or bimodal, woody seedlings may germinate and establish during 

those periods when competition for soil moisture is low. Having survived the most 

vulnerable period immediately after germination, woody plants rapidly develop 

deep taproots below the primary root zone of grasses. This increases their access to 

water that has infiltrated more deeply and alleviates competition for water with 

grasses. As woody seedlings grow taller, they incrementally gain competitive domi-

nance over their grass neighbors and may begin to displace grasses through resource 

competition. At some stage, grasses can substantially influence the dominance of 

woody saplings only through their influence on the fire cycle. However, woody 

encroachers capable of regenerating vegetatively (resprouting) often survive fire. 

Then if grazing reduces fire frequency, plants in these “seedling” or “sapling banks” 

are poised to grow quickly and escape the flame zone of future fires. Eventually, 

these plants will produce seed and intensify propagule pressure in grasslands. Long- 

term maintenance of grassland and savanna ecosystems is therefore contingent on 

maintaining a balance woody plants and grasses based on climate, disturbance, and 

species traits.
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2.8.2  Consequences for Ecosystem Services

Traditional concerns related to the loss of forage production accompanying WPE 

have been broadened to include consequences for provision of services related to 

primary production and carbon sequestration. Because of the global extent and 

magnitude of the impact of WPE, these changes can potentially significantly affect 

the global carbon budget and energy balance. If encroaching woody plants are less 

productive than the grasses they replace, then ecosystem ANPP would decline; if 

they are more productive than the grasses they displace, then ANPP would increase; 

and if ANPP of encroaching woody plants is comparable to that of the grasses they 

are replacing, then there would be no net change. Evidence indicates that all three 

scenarios are at play, with changes in ANPP scaling linearly with MAP. Below an 

MAP of ~340 mm, ANPP will decline with WPE and above this level ANPP will 

increase. Our understanding of WPE effects on the soil organic C pool, which typi-

cally dwarfs the aboveground pool in grasslands, is poor. Some studies show large 

increases in soil organic C with WPE, whereas others show no change or large 

decreases. Reasons for this range of responses have yet to be explained. This is a 

major knowledge gap that needs to be filled if we are to understand fully the effects 

of WPE on the carbon cycle.

WPE has the potential to reduce streamflow and/or groundwater recharge by 

reducing deep recharge and runoff through increases in evapotranspiration (ET). 

However, evidence for the relationship between WPE and water yield has been 

equivocal and may depend on climate, edaphic factors, and traits of the encroaching 

woody species. WPE may impact the water budget only where MAP approximately 

equals PET. Where deep-rooted trees have encroached in grasslands on sites with 

shallow water tables, ET has increased, but where recharge and runoff are con-

trolled strongly by physical properties of the soil, WPE has had little additional 

effect on the hydrological budget.

WPE markedly affects biodiversity and threatens the very existence of grassland 

and savanna ecosystems and their endemic plants and animals. In North America, 

diversity of herbaceous plants declines ~45 % when woody plants encroach. 

Changes in vegetation structure and species composition accompanying WPE con-

tribute to the loss of grassland-adapted animals by reducing both the quantity and 

quality of their required habitat. Because a principal result of WPE is a marked 

increase in vertical and horizontal vegetation structure, composition of animal com-

munities shifts to favor species that prefer woody vegetation. WPE can affect habi-

tat quality for grassland-associated species that persist within encroached areas 

through changes in rates of predation or changes in the types, abundance, or avail-

ability of food resources. Ultimately, when woody cover exceeds species-specific 

thresholds, populations of grassland-associated species are displaced by shrubland- 

or woodland-associated species.
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2.8.3  Management

Proliferation of woody plants has long been of concern in areas managed primarily 

for grazing cattle and sheep, where WPE typically reduces production of forage, 

complicates animal handling, and improves habitat for ectoparasites. As a result, 

multiple strategies have been developed to reduce cover of woody vegetation. 

Collectively known as “brush management,” these approaches include prescribed 

burning, mechanical clearing, and herbicide application. Responses of herbaceous 

vegetation to brush management practices have been highly variable and typically 

short-lived. Early goals for brush management centered on eradicating shrubs to 

improve production of livestock, which gave way to efforts aimed at shrub “con-

trol,” which gave way to integrated brush management systems (IBMS). IBMS is 

ecologically based and predicated on using location-specific knowledge of vegeta-

tion characteristics, climate, soils, and topography to determine the type, sequenc-

ing, and timing of initial and follow-up treatments. In the IBMS model, landscapes 

are comanaged for livestock and wildlife, and with consideration for the diverse 

portfolio of ecosystem services that rangelands provide.

Unless subsidized, brush management is rarely economically feasible based solely 

on increases in forage production and livestock performance. However, consideration 

of “intangibles” related to enhancements of other ecosystem services will influence 

the conclusions taken from traditional, narrowly focused cost-benefit calculations. 

For example, brush management contributions to the conservation of grassland eco-

systems and the plants and animals unique to them constitute an important benefit 

that is largely unaccounted for. Conversely, increased potential for carbon sequestra-

tion may be a positive outcome of WPE that would have to be weighed against poten-

tial reductions in biodiversity, water yield, or changes in vegetation structure that 

affect key wildlife species adversely. The scientific community is challenged to quan-

tify and monitor the concomitant impacts of WPE and brush management on the 

diverse components comprising an ecosystem service portfolio so that trade-offs can 

be evaluated objectively in the context of a clear set of goals and priorities.
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Chapter 3

Ecohydrology: Processes and Implications 

for Rangelands

Bradford P. Wilcox, David Le Maitre, Esteban Jobbagy, Lixin Wang, 

and David D. Breshears

Abstract This chapter is organized around the concept of ecohydrological 
processes that are explicitly tied to ecosystem services. Ecosystem services are ben-
efits that people receive from ecosystems. We focus on (1) the regulating services of 
water distribution, water purification, and climate regulation; (2) the supporting ser-
vices of water and nutrient cycling and soil protection and restoration; and (3) the 
provisioning services of water supply and biomass production. Regulating services 
are determined at the first critical juncture of the water cycle—on the soil surface, 
where water either infiltrates or becomes overland flow. Soil infiltrability is influ-
enced by vegetation, grazing intensity, brush management, fire patterns, condition 
of biological soil crusts, and activity by fauna. At larger scales, water-regulating 
services are influenced by other factors, such as the nature and structure of riparian 
zones and the presence of shallow groundwater aquifers. Provisioning services are 
those goods or products that are directly produced from ecosystems, such as water, 
food, and fiber. Work over the last several decades has largely overturned the notion 
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that water supply can be substantially increased by removal of shrubs. In riparian 
areas, surprisingly, removal of invasive, non-native woody plants appears to hold 
little potential for increasing water supply. Here, the primary factor appears to be 
that non-native plants use no more water than the native vegetation they displace. 
Clearly there is a close coupling between biota (both fauna and flora) and water on 
rangelands—which is why water-related ecosystem services are so strongly 
dependent on land management strategies.

Keywords Ecosystem Services • Infiltration • Rangeland Hydrology • Riparian • 
Groundwater • Overland Flow • Soil Water • Climate • Water Supply • Climate 
Regulation • Erosion • Spatial Variability • Scale • Thresholds • Connectivity

3.1  Introduction

The distribution, quality, and provisioning of water are intimately related to how 
rangeland landscapes function and are managed, particularly with respect to land- 
use change. Understanding the linkages between vegetation and the water cycle is a 
major focus of ecohydrology, an emerging discipline that melds the sciences of 
hydrology and ecology as a means of addressing complex environmental issues. Its 
scientific heritage also embraces many other disciplines, including watershed man-
agement, plant physiology, soil science, geomorphology (Newman et al. 2006), and 
of course rangeland hydrology (Branson et al. 1981). In addition, the importance of 
interactions between fauna and the water cycle is increasingly being recognized.

Ecohydrology is very much an applied science with a focus on problem solving 
(Nuttle 2002; Jackson et al. 2009b; Wilcox et al. 2011), but at the same time it has 
a firm theoretical foundation (D’Odorico et al. 2012, 2013a; Turnbull et al. 2012; 
Saco and Moreno de las Heras 2013). Because of its strong intellectual roots in 
research conducted on drylands—including semiarid and subhumid rangelands 
(Rodriguez-Iturbe and Porporato 2004; D’Odorico and Porporato 2006; Newman 
et al. 2006)—and its “transdisciplinary” nature, ecohydrology has advanced our 
knowledge of rangelands (Wilcox and Newman 2005; Wilcox et al. 2012a). But 
much more needs to be done to take full advantage of the scientific strengths of 
ecology and hydrology (King and Caylor 2011).

In this chapter, we present some of the major ecohydrological advances that have 
occurred in rangelands in the last quarter century and discuss their importance for 
management. There has been extraordinary scientific progress on so many fronts 
that it will be impossible to adequately address all of them; but we aim to provide a 
comprehensive overview of those most relevant to rangeland systems. We rely 
extensively on the recent publication of several review papers and books dealing 
with the ecohydrology of rangelands (D’Odorico and Porporato 2006; Newman 
et al. 2006; D’Odorico et al. 2010; Asbjornsen et al. 2011; Wang et al. 2012a).

We have organized our chapter around the concept of ecosystem services—as elab-
orated in the Millennium Ecosystem Assessment (Millennium Ecosystem Assessment 
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2005). Ecosystem services are benefits that people receive from ecosystems. They can 
be categorized as regulating services, supporting services, provisioning services, and 
cultural services. We focus on (1) the regulating services of water distribution, water 
purification, and climate regulation; (2) the supporting services of water and nutrient 
cycling and soil protection and restoration; and (3) the provisioning services of water 
supply and biomass production. In addition, we review current conceptual, theoreti-
cal, and technical developments that will provide a foundation for future advances in 
rangeland ecohydrology—advances critical to informed management decisions and 
actions needed to meet the growing environmental challenges of rangeland systems.

3.2  Ecosystem Services

The provisioning of water to ensure that humans obtain the quantity and quality of 
water needed is the most fundamental service provided by ecosystems (Falkenmark 
and Rockstrom 2004; Brauman et al. 2007). Paradoxically, this is especially true of 
rangelands, even though most are considered “drylands,” which by definition convert 
a relatively small percentage of precipitation into streamflow or groundwater (Wilcox 
et al. 2003b). Water produced on rangelands, whether drawn from aquifers or from 
surface sources, is vitally important to support the people, livestock, and wildlife that 
inhabit these regions (Le Maitre et al. 2007; Reynolds et al. 2007). Many dryland 
population centers are growing at alarming rates, and this growth brings with it 
numerous environmental stresses (D’Odorico et al. 2013a). The degradation of 
rangelands diminishes their ability to regulate and provide water (MEA).

Figure 3.1 illustrates an important conceptual advance in understanding water 
dynamics in rangelands: the explicit partitioning of water resources into “blue 
water” (liquid water) and “green water” (vapor- or water-produced evapotranspira-
tion [ET]) (Falkenmark and Rockstrom 2004, 2006; Gordon et al. 2005; Falkenmark 
et al. 2009; Rockstrom et al. 2009; Hoff et al. 2010). To date, the water management 
community has focused almost exclusively on blue water resources and has failed 
to recognize the opportunity to effectively allocate green water. Maximizing the 
amount of green water used for plant production or transpiration and minimizing the 
amount lost as soil evaporation is an imperative. How rangelands are managed—
especially their surface cover—has a tremendous effect on both the relative propor-
tion of blue water to green water and the partitioning of green water between E and 
T. The ability of rangelands to regulate and provide water is strongly dependent on 
conditions at three critical junctures in the terrestrial water cycle (Falkenmark and 
Rockstrom 2004). The first and most critical is whether water infiltrates into the soil 
or becomes overland flow—which is mainly a function of rainfall intensity, slope, 
and soil infiltrability. The importance of soil infiltrability has long been recognized 
(Smith and Leopold 1941) and has been the focus of considerable research in the 
last half century or more. It is influenced by many factors, including management 
practices; for example, overgrazing that results in a loss of vegetation cover and an 
increased exposure of bare soil can dramatically reduce soil infiltrability (Blackburn 
et al. 1982; Snyman and du Preez 2005).
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Water that does not infiltrate becomes overland flow on slopes, but the final outcome 
in terms of net water losses is highly scale dependent. At the hillslope scale, runoff–
runon dynamics become important and are strongly influenced by the spatial variability 
of infiltration. For example, overland flow may be generated from some areas on the 
hillslope only to infiltrate the soil somewhere downslope (Bergkamp 1998a; Wilcox 
et al. 2003a), and can contribute to surface and groundwater recharge.

The second critical juncture is at the root zone: soil water may drain out of 
the root zone, and eventually be stored as groundwater or discharged into a 
stream as baseflow, or may stay in the root zone and eventually be transpired or 
evaporated from the soil surface. Although largely a function of climate, soil, 
and geological characteristics, this process can also be affected by management 
strategies, especially if the functional type of vegetation—and particularly its 
rooting depth—is changed. The linkage between vegetation and groundwater is 
very much influenced by the depth to groundwater. Recent work has highlighted 
the importance of rangelands where groundwater tables are shallow and strongly 
influenced by vegetation that are termed groundwater-coupled rangelands 
(Jobbágy and Jackson 2004a).

The third critical juncture is the fate of soil water: whether it is absorbed by 
plants and transpired or lost through evaporation from the soil surface, which is 
often described as the partitioning of E and T (Fig. 3.1). This juncture is critical 
because it dictates the amount of biologically available water on rangelands 
(Falkenmark and Rockstrom 2004; Newman et al. 2006). The portioning of E and 
T is central to water cycling and is discussed in more detail in the section 
Supporting Services, below.

Fig. 3.1 Conceptual diagram of the water cycle, highlighting blue (liquid) and green (vapor) 
flows. Source: Figure 1 in D’Odorico et al. (2010)
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3.2.1  Regulating Services: Water Distribution and Purification

Ecosystem services regulating water on rangelands include those that affect the 
amount, timing, and quality of blue water flows. These are to a large extent 
determined at the first critical juncture of the water cycle—on the soil surface, 
where water either infiltrates or becomes overland flow. For this reason, a great 
deal of research, most of it conducted at the point or plot scale, has focused on 
understanding the infiltration process and how it is affected by different manage-
ment strategies (Pyke et al. 2002; Stavi et al. 2009).

3.2.1.1  Infiltration: Water Regulation at the Soil Surface

Infiltration of water into the soil is enhanced and maintained by the presence of 
vegetation, both by direct influences (soil protection, root action, etc.) and by modi-
fication of the soil through the addition of organic matter. This tight coupling 
between vegetation and soil infiltrability on rangelands was recognized many years 
ago (Smith and Leopold 1941; Woodward 1943; Dyksterhuis and Schmutz 1947; 
Dortignac and Love 1961); but recent research is adding greatly to our understand-
ing by providing specifics concerning how management practices and disturbances 
(grazing, shrub management, fire) and vegetation cover types (shrubs vs. grasses, 
biological soil crusts) affect soil infiltrability, but also the contributions of spatial 
variability and scale. In addition, we now recognize that fauna—large and small—
can significantly affect soil infiltrability.

Influence of Grazing. There is an extensive body of work examining the ecohy-
drological influence of grazing, and specifically its influence on soil infiltration. 
Much of this work was conducted in the USA in the 1970s and 1980s and has been 
summarized in several review papers (Gifford 1978; Wood et al. 1978; Wood and 
Blackburn 1981; Blackburn et al. 1982; Trimble and Mendel 1995). The findings 
consistently show that, irrespective of grazing systems, light-to-moderate grazing 
generally has little adverse effect on the ecohydrology of rangelands and may even 
have a positive effect, whereas heavy grazing generally significantly decreases soil 
infiltrability. These conclusions have been verified by more recent investigations 
conducted on rangeland throughout the globe (Hiernaux et al. 1999; Ludwig et al. 
1999; Savadogo et al. 2007).

Influence of Shrubs. Over the past several decades, grasslands and savannas 
worldwide have been undergoing a process of woodland conversion, often described 
as woody plant encroachment (Archer 1994; Archer et al. 2011). For many range-
lands, attempts to reverse this process or even to control it have met with minimal 
success (Archer et al. 2011). During the past quarter century, considerable research 
has been focused on understanding the ecohydrological implications of this conver-
sion (Huxman et al. 2005; Wilcox et al. 2006). It has generally been found (though 
not always—see Moran et al. (2010)) that infiltration rates are higher beneath shrub 
canopies than in intercanopy areas (Lyford and Qashu 1969; Seyfried 1991; 

3 Ecohydrology: Processes and Implications for Rangelands



90

Bergkamp 1998b; Schlesinger et al. 1999; Wilcox 2002; D’Odorico et al. 2007; 
Wilcox et al. 2008; Pierson et al. 2010; Daryanto et al. 2013; Eldridge et al. 2013), 
primarily owing to the accumulation of organic matter under shrubs, root activity 
(Joffre and Rambal 1993; Martinez-Meza and Whitford 1996; Jackson et al. 2000), 
and soil disturbance by fauna (see “Influence of Fauna” section). In some situations 
the chemical composition of the litter may cause water repellency (hydrophobicity), 
which reduces the infiltration capacity of soils beneath the canopy, at least in the 
short term (Doerr et al. 2000). In addition, burning can cause or aggravate hydro-
phobicity (Hester et al. 1997; Cammeraat and Imeson 1999).

Influence of Biological Soil Crusts. Biological soil crusts are the community of 
living organisms, including fungi, lichens, cyanobacteria, and algae, at the soil sur-
face. The integrity of biological soil crusts, which are common in many drylands, is 
extremely sensitive to disturbance such as heavy grazing or off-road vehicle traffic 
(Belnap and Lange 2001). The relationship between biological soil crusts and pro-
cesses of soil infiltrability is complex: their presence can increase, decrease, or have 
no effect on this process (Eldridge 2003; Warren 2003; Belnap 2006b). One factor 
that appears to determine local hydrological response is the successional stage, or 
status of crust development. As crusts mature, the biomass of cyanobacteria, mosses, 
and lichens increases—which in turn increases aggregate stability, shear strength, 
and roughness of the soil surface (Belnap 2003, 2006a). A six-level classification of 
level of crust development (LOD) was recently developed for biological soil crusts, 
based on (1) color (light to dark, visual assessment); (2) presence of mosses/lichens; 
and (3) soil surface roughness (Belnap et al. 2008). Soil crust classification was 
found to be strongly related to infiltration rates, with infiltration being highest where 
crusts were the most developed (Belnap et al. 2013).

Influence of Fauna. A recent review of ecohydrological studies revealed a 
strong emphasis on plant–hydrology interactions, with few studies of fauna–hydrol-
ogy interactions (Westbrook et al. 2013). Only 17 % of the 339 papers reviewed 
considered fauna–hydrology interactions, and more than half of those focused on 
how hydrology affects fauna rather than how fauna function to influence ecohydrol-
ogy. Fauna are usually seen as passive beneficiaries of ecohydrological changes 
rather than as playing a key role in the formation of vegetation patterns.

Fauna have both direct and indirect effects on ecohydrology, ranging from micro- 
perturbations to the macro-perturbation commonly described as ecosystem engi-
neering (Whitford and Kay 1999; Jones et al. 2006; Butler 2007; Hastings et al. 
2007; Jones 2012; Raynaud et al. 2013). These processes are critical for producing 
the organic matter that binds with mineral soil particles to form aggregates (peds), 
which facilitate the movement of water through soils and thereby increase infiltra-
tion and percolation rates and capacities (Weaver 1926; Coleman et al. 1992; Lavelle 
1997; Angers and Caron 1998; Roth 2004; Jones et al. 2006). Soil fauna, particu-
larly the mammals and macro-invertebrates (such as earthworms, termites, or cica-
das), engineer ecosystems by creating openings at the soil surface and tunnels, also 
known as macropores, beneath the soil surface (Beven and Germann 1982; Lavelle 
1997; Leonard et al. 2004; Roth 2004). These openings increase infiltration and 
percolation of water through the soil profile (Dean 1992; Angers and Caron 1998; 
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Whitford and Kay 1999; O’Farrell et al. 2010), in the same way as do the channels 
left by decayed plant roots (Beven and Germann 1982). Clearly, one cannot separate 
the roles played by animals from those played by plants; but, in combination, they 
significantly affect how water moves through the soil (Shafer et al. 2007)—includ-
ing processes such as groundwater recharge, which in turn affect plant productivity 
and other ecosystem services.

Influence of Fire. The frequency and intensity of wildfires are increasing on range-
lands as a result of several factors, including rising temperatures and the invasion of 
non-native grasses (Running 2006; Wilcox et al. 2012b). In addition, prescribed fire is 
now more commonly applied as a management tool for many rangelands (Twidwell 
et al. 2013). A number of recent reviews summarize the extensive literature on the 
hydrological consequences of fire on rangelands; in general, study results indicate that 
the infiltration capacity of soils is significantly reduced immediately following fires, 
but the extent of this reduction depends on fire severity, degree of hydrophobicity, 
antecedent soil moisture, and topographic position (Baker and Shinneman 2004; 
Shakesby and Doerr 2006; Pierson et al. 2011).

3.2.2  Overland Flow: Regulation at the Hillslope Scale 

Water that does not infiltrate, of course, becomes overland flow or surface run-
off. It is at the hillslope scale that important interactions take place between 
vegetation patches and runoff. Surface runoff may be captured and stored by 
vegetation patches or other surface obstructions, a process known as runoff–
runon (Ludwig et al. 2005).

An important conceptual advance in describing and clarifying the linkages 
between surface runoff and vegetation patches is the trigger-transfer-reserve-pulse 
(TTRP) framework (Fig. 3.2) (Ludwig et al. 1997, 2005). This framework was orig-
inally proposed as a way of describing runoff–runon processes observed in areas of 
banded vegetation (Anderson and Hodgkinson 1997; Dunkerley and Brown 1999; 
Valentin and d’Herbes 1999; Tongway and Ludwig 2001); it was subsequently veri-
fied for other vegetation patch types in semiarid settings (Reid et al. 1999; Wilcox 
et al. 2003a; Ludwig et al. 2005). The framework assumes that the redistribution of 
resources from source areas (bare patches) to sink areas is a fundamental process 
within drylands, and that this process may be disrupted if vegetation patch structure 
is altered by disturbances such as overgrazing or multiyear drought. These dynam-
ics govern how runoff and runon vary with scale in semiarid settings. In regions 
where runoff is efficiently captured down slope by vegetation patches, unit-area 
runoff and erosion diminish rapidly with increasing scale. But where vegetation 
patch structure has been disturbed and runoff is not efficiently captured, declines in 
runoff with increasing scale are much smaller (Fig. 3.3). Erosion may even increase 
as runoff increases with increasing scale, leading to rilling and gully formation 
(Wilcox et al. 2003a; Moreno de las Heras et al. 2010).
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3.2.3  Drainage: Water Regulation Within the Soil 

Water that enters the soil may either evaporate, be transpired by plants, or drain out 
of the root zone and ultimately contribute to groundwater and streamflow. On range-
lands, drainage is generally (but not always) a small percentage (<5 %) of the water 
budget (Wilcox et al. 2003b). Vegetation management that alters the amount of 
woody plants may affect drainage because woody plants are deeper rooted than 
grasses or forbs and tend to transpire more water. Therefore, woodlands and forests 
generally use more water than grasslands (Zhang et al. 2001). The relationship is 
complex, however, especially for drylands, as it is modified by other factors—
including climate, soils, and topographic position (Huxman et al. 2005).

The shrub–streamflow framework (Fig. 3.4) was developed to aid in determining 
which landscapes are most “hydrologically sensitive” to changes in woody plant 
cover. A hydrologically sensitive landscape is one in which a shift in functional 
vegetation type (woody to nonwoody or vice versa) causes an important shift in the 
water balance. Hydrological sensitivity is dictated or strongly influenced by how 
vegetation change affects drainage; and it is also influenced by factors such as depth 
to water table, soil and geological characteristics, and topographic position. The 
shrub–streamflow framework uses these concepts to predict where hydrologically 
sensitive shrublands might exist (Wilcox et al. 2006).

The first criterion for hydrologic sensitivity—the presence of shallow groundwa-
ter—is likely to be stronger where the groundwater table is within a few meters of 
the surface, as in riparian zones or groundwater-coupled rangelands. Obviously, this 
condition affords more opportunity for interaction between deep-rooted vegetation 
and groundwater.

Seasonality of precipitation is a second criterion in determining hydrologic sensi-
tivity. Those rangelands having the greatest potential for water to move deeply into 
the soil—beneath the rooting zone of herbaceous plants—will be the most hydro-
logically sensitive. Such deep drainage occurs in regions where winter precipitation 
is high. It is no coincidence that the strongest linkage between woody plants and 
streamflow has been observed in Mediterranean climates where precipitation is often 
“out of phase” with potential ET. For example, in South Africa (van Wilgen et al. 
1998), Spain (Puigdefabregas and Mendizabal 1998), Australia (Walker et al. 1993), 
and California (Hibbert 1983), dramatic changes in drainage have been observed 
following vegetation changes in native shrublands. Similarly, shrublands in which 
soil recharge comes mainly from snowmelt may be hydrologically sensitive; a large 
pulse of melting snow often produces enough water to saturate or exceed the water 
storage capacity of the upper soil (Baker 1984; Seyfried and Wilcox 2006).

Finally, soil or geological conditions also determine hydrologic sensitivity, by affect-
ing the potential for deep drainage. We would expect higher hydrologic sensitivity where 
soils are sandy (Moore et al. 2012; Dzikiti et al. 2013), are deeply cracked (Richardson 
et al. 1979), or are shallow and overlie fractured bedrock (Huang et al. 2006).
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For many rangelands, the opportunities for deep drainage are quite limited, 
because of either climate or soils. In these landscapes, shifting from a grassland to 
a shrubland will have little effect on the overall water balance, but may nevertheless 
affect drainage in important ways. For example, in areas where even small amounts 
of drainage can be significant (such as sites where hazardous wastes are buried), the 
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presence of deep-rooted shrubs may ensure that drainage below the root zone sel-
dom occurs (Scanlon et al. 2005b, c; Seyfried et al. 2005).

3.2.4  Riparian Systems: Regulation at the Watershed Scale 

The common perception is that rangelands are exclusively dryland environments. 
Even when the presence of riparian environments is recognized, these are generally 
seen as a minor component of the entire landscape system. However, there is a 
growing body of research showing that riparian environments are not only key habi-
tats for rangeland fauna and flora, but also critical providers of ecosystem services 
to rangeland inhabitants (Milton 1990; Dean et al. 1999, 2002; Naiman et al. 2002; 
Sabo et al. 2005; Le Maitre et al. 2007; Soykan and Sabo 2009; Jones et al. 2010; 
Merritt and Bateman 2012).

Many of the features and key processes in groundwater-coupled systems are like-
wise found in riparian environments. The principal differences are that (1) riparian 
zones receive inputs of surface water, often from areas far upstream, that play a 
major role in their ecology (Boulton and Hancock 2006; Bunn et al. 2006; Nagler 
et al. 2008) and (2) the dynamics of riparian zones are strongly influenced by flow 
regimes and fluvial processes (Ward 1998), particularly sediment movement 
(Naiman et al. 1999; Tabacchi et al. 2000).

Riparian environments are typically located in the lowest parts of a landscape, 
where surface water (overland flow) and groundwater (subsurface flow) collect; thus 
they integrate outputs from all watershed-scale processes (Naiman et al. 2002). Their 
structure is long and narrow with a very large perimeter-to-area ratio—which makes 
them highly connected to, and thereby highly influenced by, events originating in the 
adjacent drylands. The headwaters section of a river typically has steep gradients, and 
the river bed contains rocks or boulders with little accumulation of fine sediments, 
whereas the middle and lower reaches are characterized by extensive alluvial deposits 
and wide floodplains (e.g., Nile, Platte, Euphrates, Ganges) (Vannote et al. 1980; Wiens 
2002). These deposits are typically heterogeneous, with coarse sediments that can cap-
ture, store, and transmit large volumes of water interspersed vertically and horizontally 
with fine sediments that have a lower storage capacity and low transmissivity (Blasch 
et al. 2006; Morin et al. 2009). In humid- to- semiarid landscapes, rainfall is sufficient 
to generate runoff and groundwater that sustain river systems, and the rivers are gain-
ing water, albeit seasonally. But in arid landscapes the rivers are often hydrologically 
disconnected from the adjacent dryland areas—except for losing water to the flood-
plain, and gaining water during rainy seasons or after very high rainfall events.

Water use by riparian communities has been intensively studied in the 
southwestern USA, mainly to estimate transmission losses, but also to quantify the 
effects of woody species such as the invasive or saltcedar (Tamarix spp.) on these 
losses. Evapotranspiration rates can exceed annual rainfall in these arid environ-
ments (Doody et al. 2011). Early research on saltcedar suggested that its water use 
was very high: up to 200 m3 ha−1 day−1 (Sala et al. 1996); but subsequent research 
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has found that it is much lower and close to that of the native poplars and willows 
that grow in riparian systems of the southwest. Therefore, removal of these plants 
would have little effect on water loss if native riparian shrubs remain (Nagler et al. 
2009; Shafroth et al. 2010b; Doody et al. 2011). Similar work in Australia found 
that although invasive Salix species in the river channel can use large quantities of 
water (±2000 mm year−1 vs. 1500 mm year−1 for open water), overall ET for this 
invasive species is very similar to that found for native riparian Eucalyptus forest 
(Doody and Benyon 2011; Doody et al. 2011).

In the floodplain of the perennial San Pedro River in Arizona, Prosopis wood-
lands have replaced native grasslands, increasing ET from 407 to 639 mm year−1 
(Scott et al. 2006). Evapotranspiration from Prosopis woodlands in floodplains 
linked to perennial rivers ranges from about 350 to 750 mm year−1 (Scott et al. 2004, 
2008), which suggests that other perennial river systems (such as those in South 
Africa where native tree species such as Acacia karroo are sparse or absent) could 
be similarly affected by invasion of non-native species.

The Working for Water program in South Africa, a national initiative for removal of 
invasive plants, emphasizes clearing to increase river flows (van Wilgen et al. 1998). 
Extensive invasions by Acacia mearnsii, Eucalyptus species, willows, and poplars 
have taken place along perennial rivers in the arid grasslands and savannas of the inte-
rior, where the native riparian species are mainly shrubs or small trees. If the difference 
between the annual ET from stands of these species and that from native species is as 
much as indicated by some studies (Dye and Jarmain 2004), or by data for willows and 
eucalypts from Doody and Benyon (2011) and Doody et al. (2011), removal could lead 
to an increase in river flows that would be substantial and very important for down-
stream water users and ecosystems. However, there may be other cases in which 
streamflows could be significantly reduced, such as invasions of species that are high 
water users along ephemeral streams (Doody et al. 2011; Hultine and Bush 2011).

The distinct species composition, structure, and dynamics of riparian environments 
generate a suite of ecosystem services very different from that of dryland environ-
ments. This makes them a key resource area, particularly in developing countries where 
they are less likely to have undergone extensive transformation by agriculture and other 
activities (Tockner and Stanford 2002; Kgathi et al. 2005; Brauman et al. 2007).

Recent work has also documented the extent to which large fauna can alter ripar-
ian processes. For example, in riparian ecosystems, large-scale earthworks are cre-
ated mainly by the activities of fauna, particularly large mammals, which shape 
floodplains at a range of scales, from the microtopographical to that of river chan-
nels (Naiman and Rogers 1997; Moore 2006). Ecosystem modifications brought 
about by beavers, through the construction of dams, have been well studied; but 
much less is known about the ecological roles played by large mammals. In wetlands 
like the Okavango, large mammals (elephant, buffalo, hippopotamus) open up flow 
paths for water through reeds, changing water circulation patterns. Similarly, wart-
hogs carve out feeding patches that form temporary pools during the wet season, 
creating habitats for many other species to complete their life cycles.

Riparian vegetation provides important feedbacks to the river system: it captures 
and stabilizes sediments, shapes river channels, and determines and regulates biotic 
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processes (and, thus, water quality) (Tabacchi et al. 2000; Naiman et al. 2002). By 
these means, the vegetation creates its own habitat as well as that for animal spe-
cies, and ensures its replacement through succession. Further, riparian vegetation 
serves as a buffer, shielding the aquatic ecosystems from the effects of land-use 
practices in adjacent environments—by filtering sediments, nutrients, and other 
pollutants (Naiman et al. 1999; Tabacchi et al. 2000; Brauman et al. 2007; Corenblit 
et al. 2009).

3.2.5  Regulation in Groundwater-Coupled Rangelands

In all rangelands the recharge, transport, and quality of groundwater depend on the 
nature of deep drainage and solute leaching. Where groundwater tables are shallow, 
reciprocal interactions between vegetation and groundwater are often observed (Le 
Maitre et al. 1999). This two-way exchange of water and solutes increases primary 
and secondary production, particularly under dry climatic conditions; at the same 
time; however, it renders water, soil, and vegetation resources more vulnerable to 
land management.

Groundwater-coupled rangelands—those in which shallow water tables are 
found, and the potential for a strong coupling between vegetation and groundwater 
exists—are increasingly recognized as important, and yet are poorly understood. 
These ecosystems have been categorized as “groundwater dependent”; yet the 
degree to which they are dependent varies greatly in time and space (Boulton and 
Hancock 2006; Eamus and Froend 2006). For this reason, we prefer the term 
“groundwater coupled” to describe the broad array of rangelands characterized by 
shallow water tables. We do know that vegetation has a major role in regulating 
groundwater resources in these systems, and significant strides have been made 
recently in understanding these ecohydrological interactions.

Many rangeland landscapes host, at their lowest topographic points, shallow 
groundwater zones that are sustained by local or distant recharge sources (Tóth 
1999). In dry rangelands, where evapotranspiration recycles essentially all precipi-
tation inputs back to the atmosphere, local recharge is negligible (Scanlon et al. 
2006) and such shallow aquifers are rare. Regions where they do occur are charac-
terized by sandy or rocky soils (such as sand dunes, fractured rock outcrops), highly 
seasonal and intense precipitation regimes, and zones of extensive lateral flow and 
intense runon. In such regions, at least some deep drainage into the saturated zone 
will eventually take place (Scanlon and Goldsmith 1997; Athavale et al. 1998; 
Seyfried et al. 2005; Small 2005; Gates et al. 2008). Recharge from more distant 
sources is particularly significant in arid regions located downstream of water- 
yielding mountains. For example, shallow water tables, wetlands, and lakes fed by 
mountain snowmelt are found at topographic lows within sand-dune rangelands 
such as the Great Sand Dunes of Colorado (Wurster et al. 2003), the Bahrain Jaram 
and Taklamakan deserts in China (Thomas et al. 2000; Chen et al. 2004; Gates et al. 
2008), and the Monte desert in Argentina (Jobbágy et al. 2011).
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In more humid rangelands, local groundwater recharge is more widespread and 
frequent, and shallow water tables are commonly found at topographic lows and 
along riparian corridors (Jobbágy and Jackson 2007). Finally, shallow water tables 
are a widespread feature in very flat, sedimentary rangelands (Fan et al. 2013) 
(Fig. 3.5); some conspicuous examples are the steppes of Western Siberia, the 
Northern Caspian plains in Asia, the grasslands of the Llanos and Pampas in South 
America, and the Miombo systems of sub-Saharan Africa (von der Heyden 2004).

3.2.5.1  Vegetation Dynamics Affect Groundwater Consumption

Groundwater consumption by rangeland plants is dictated by the interplay of water 
demand and accessibility. Most plants use groundwater in a dynamic and facultative 
manner, according to rainfall variability, preferring surface/shallow soil moisture 
when available (Engel et al. 2005). When soil moisture is low, the ability of plants 
to access groundwater depends, first, on the depth to the water table. Most rangeland 
plants access groundwater from the capillary fringe, where upflowing water and air 
coexist in the pore spaces of soils. Special adaptations include root aerenchyma tis-
sue that enables species to survive and grow in saturated soils by providing air 
spaces to supply oxygen and facilitate groundwater consumption where water tables 
are very close to the surface (Visser et al. 2000). The optimum condition for plants 
is one in which the water table is deep enough to prevent waterlogging, but still high 
enough for easy access to groundwater (Jackson et al. 2009a). Groundwater use 
declines as water table levels drop, both in space—along topographic gradients 

Fig. 3.5 Schematic of water balance for two landscape types in a subhumid climate. In sloped 
landscapes, vegetation regulates the rate of groundwater recharge. Groundwater gains that are 
eventually balanced by liquid discharge to streams (taking with it salts and dissolved nutrients). In 
flat landscapes, groundwater gains can be balanced only through higher evaporative discharge. 
When water leaves the landscape as vapor, its solute load is left behind. Transpiration results in salt 
build-up in the root zone, and direct evaporation results in salt build-up on the surface
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(Zencich et al. 2002; Gries et al. 2003; Nosetto et al. 2009)—and through time, e.g., 
as depth shifts seasonally (Stromberg et al. 1992; Naumburg et al. 2005; Cooper 
et al. 2006). Certain shrub and tree species can have maximum rooting depths of 
many meters (Schenk and Jackson 2002), and some observations suggest ground-
water uptake from as deep as 20 m below the surface (Haase et al. 1996; Gries et al. 
2003); but in dry ecosystems where water tables exceed depths of 10 m, it is rare to 
find significant groundwater use by plants (Zencich et al. 2002).

Other variables governing groundwater consumption by plants include water 
salinity and the fluid transport properties of soils and sediments. As the salinity of 
groundwater increases, the number of plant species able to tolerate the salinity 
declines, as does the rate at which the water is used. In groundwater-coupled range-
lands, this relationship is commonly reflected by a series of drops in the diversity 
and productivity of vegetation along gradients of increasing salinity (Perelman et al. 
2001). With regard to fluid transport properties, coarse-textured materials with high 
hydraulic conductivity favor groundwater recharge, whereas clay-dominated mate-
rials limit it to negligible rates (Jobbágy and Jackson 2004b).

3.2.5.2  Land Use/Management Affects Groundwater Consumption

The way in which the vegetation and soils of groundwater-coupled rangelands are 
managed can have a strong influence on the exchange of water and solutes, and 
thereby the availability and quality of groundwater for human and livestock con-
sumption, among other uses. Reciprocally, intense extraction of groundwater can 
significantly alter the structure and functioning of groundwater-coupled rangelands. 
Groundwater consumption often rises when deep-rooted woody species become 
abundant (Huxman et al. 2005) or when salt-tolerant species proliferate in areas 
where high salinity levels previously limited consumption of groundwater (Pataki 
et al. 2005). Conversely, where rangeland use contributes to a reduction in the den-
sity of deep-rooted species the overall reduction in leaf area and transpiration 
decrease groundwater consumption (Meglioli et al. 2013).

This trade-off can lead to actions having different potential outcomes in different situa-
tions. In the very dry, sand-dune landscapes of central Argentina, groundwater- coupled 
woodlands occupy less than 15 % of the land area, but represent the major source of forage 
for local herders. At the same time, these woodlands may consume up to 17 % of the 
mountain-source recharge that sustains the aquifer—which is the only local source of 
water for humans and livestock (Jobbágy et al. 2011). If groundwater consumption by 
these woodlands were to be reduced, for example through clearing of the vegetation, the 
actual effect on groundwater availability would be very localized and minor, but the nega-
tive effect on forage availability and the herding economy would be huge.

A contrasting example comes from groundwater-coupled rangelands along river 
banks in the southwestern USA; here, mesquite encroachment has resulted in a dou-
bling of groundwater consumption—producing more biomass, but with little benefit 
to livestock production (Scott et al. 2006). Finally, there are situations in which 
groundwater consumption can be a desirable factor in hydrological regulation. 
In many rangelands in Australia, the removal of native vegetation for cultivation led 
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to massive waterlogging and salinization of the soils (Turner and Ward 2002). The 
only means of reversing this process has been reforestation of large areas of the 
watershed (Barrett-Lennard 2002; Asseng et al. 2010)—the biomass gains and con-
sequent water losses to lower the water table in this case both bringing benefits.

Rangeland use can affect not only the amount of available groundwater, but also its 
quality. When plants consume groundwater, they typically filter out salts at the root 
surface, which then accumulate in the absorption zone (Heuperman 1999), raising 
groundwater salinity (Jobbágy and Jackson 2007). Salinity levels tend to stabilize once 
the maximum tolerance of the consuming species is reached (Nosetto et al. 2008). It 
should be noted that where water tables are shallow enough to connect the capillary 
fringe with the surface, substantial amounts of groundwater can be lost through direct 
evaporation. If salinity is high, evaporation can seriously damage surface soils (Lavado 
and Taboada 1987). To reduce direct evaporation and restore transpiration, manage-
ment methods such as halting grazing and creating means for retaining surface runoff 
appear to be effective (Alconada et al. 1993; Chaneton and Lavado 1996).

Groundwater availability and quality can also be compromised by rangeland 
uses involving animals, such as livestock. For example, continual livestock tram-
pling has worn channels in groundwater-fed meadows. If the overall slope of the 
ground is somewhat steep, such channeling can rapidly lower the water table, lead-
ing to shifts in rangeland composition and productivity (Loheide and Booth 2011). 
The quality of groundwater is often affected as well, as has been documented in 
corrals and homestead areas in the groundwater-coupled woodlands of central 
Argentina. The combined effects of denudation from overgrazing and nutrient con-
centration from feces and urine have switched the net groundwater flux from dis-
charge (losing water) to recharge (gaining water), at the same time placing soluble 
nitrogen contaminants into the groundwater (Meglioli et al. 2013).

Groundwater-coupled rangelands in many regions have been severely affected by 
direct human interventions—such as intensive pumping of groundwater—greatly draw-
ing down the water table. Some of the most dramatic examples have been documented 
in the Owens Lake basin in California (Elmore et al. 2006; Pritchett and Manning 2012).

3.3  Regulating Services: Climate Regulation

The water cycle in rangelands is strongly influenced by vegetation dynamics, owing 
in part to the tight coupling between the water, energy, and biogeochemical cycles 
in these systems (Noy-Meir 1973; Austin et al. 2004; Wang et al. 2009b). In range-
lands where water availability is typically low, the dominant factor controlling veg-
etation cover and interannual variability in vegetation productivity is mean annual 
precipitation. The effects of rainfall on vegetation productivity have been investi-
gated in many parts of the world, such as the western USA (Nippert et al. 2006) and 
northern Africa (Le Houérou and Hoste 1977). For example, shrub encroachment 
has been shown to change the spatial patterns of water infiltration into soils 
(Daryanto et al. 2013), thus affecting local water balance. In the Mojave desert in 
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the southwestern USA, paired lysimeter data showed that when vegetation produc-
tivity increased significantly following elevated winter precipitation, soil water stor-
age was reduced by half, precluding drainage below the root zone (Scanlon et al. 
2005a). Such vegetation-controlled soil water flow has been occurring for 10,000–
15,000 years in this region (Scanlon et al. 2005a), as it most likely has in many other 
rangeland ecosystems across the globe. A contrasting example comes from south-
western Australia, where replacement of perennial vegetation with annual crops led 
to much higher groundwater recharge, which resulted in soil salinity problems 
(Turner and Ward 2002).

Vegetation dynamics not only influence local hydrological conditions, but they 
also affect local and regional climate. Recent studies have shown that invasive 
shrubs in rangelands modify surface energy fluxes, causing greater nighttime air 
temperatures near the soil surface—particularly during the winter—thus producing 
a positive feedback for further shrub encroachment (D'Odorico et al. 2013b). At the 
regional scale, the effect of vegetation changes on climate has been observed in the 
Sahel (West Africa); although rainfall variability in this region is mainly influenced 
by variations in the surface temperature of the oceans, it is also accompanied by 
variations in vegetation, as seen during the multi-decadal drying trend from the 
1950s to the 1980s (Zeng et al. 1999; Hein and de Ridder 2006; Prince et al. 2007). 
Another modeling exercise showed, in addition, that vegetation dynamics in the late 
1960s in the Sahel played a critical role in maintaining the drought through the fol-
lowing decades. The course of the drought has been marked by a forced shift from 
a self-sustaining wet climate equilibrium to a similarly self-sustaining, but dry cli-
mate equilibrium (Wang and Eltahir 2000). Other research has indicated the role 
vegetation plays in the dynamics of the West African monsoon (Zheng and Eltahir 
1998; McAlpine et al. 2009).

3.4  Supporting Services: Water Cycling and Protection 

Against Erosion

Supporting services are those required for the production of other ecosystem 
services. Their effects on people are either indirect or manifest over a very long 
time. Examples of supporting services include soil formation, nutrient cycling, 
water cycling, and protection against erosion. Of these, water cycling and protection 
against erosion are most germane to ecohydrology.

3.4.1  Water Cycling: With a Focus on E vs. T

The cycling of water on rangelands is obviously driven by many factors, some of 
which have been discussed in the previous section. A fundamental factor is the pro-
cess of evapotranspiration (ET), which on most rangelands accounts for more than 
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95 % of the water budget (Wilcox et al. 2003b). Evapotranspiration is the sum total 
of interception—water captured by vegetation or litter and subsequently evapo-
rated, transpiration, and evaporation from the soil or surface of water bodies. 
Recently, ecohydrologists have recognized the importance of better understanding 
the dynamics of ET, and in particular have placed more emphasis on accurately 
partitioning ET into soil evaporation and transpiration (Newman et al. 2006). Soil 
evaporation, from an ecohydrological perspective, is not a productive use of water 
because it does not contribute to plant productivity and carbon sequestration, food, 
fiber, or fuel production (D’Odorico et al. 2013a). This insight indicates that the 
main focus of ecohydrology should be to develop methods for better partitioning of 
the green water resources (i.e., decrease soil evaporation and increase transpiration) 
in semiarid and subhumid landscapes (Falkenmark and Rockstrom 2004). The same 
insight is motivating ecohydrologists to better understand and quantify ET.

Evapotranspiration can be partitioned into three components: (1) water that is 
intercepted by foliage and then evaporates back to the air; (2) water that is inter-
cepted by litter on the soil surface, infiltrates into that litter and into the soil, and 
then evaporates; and (3) water that infiltrates into soil, is absorbed by plants, and 
later transpired back to the atmosphere. An additional process, previously not taken 
into account, is the potential for plants to absorb foliar-intercepted rainfall (Breshears 
et al. 2008); this process can be important during protracted periods of water stress, 
allowing plants to take advantage of rainfall events that are just large enough to be 
intercepted, but not large enough to infiltrate soil (Loik et al. 2004; Owens et al. 
2006). This process has not been fully investigated, and the degree to which it may 
affect multiple species of plants is not yet known.

The rate at which soil evaporation takes place depends on several variables, 
including soil texture, soil temperature, and near-surface wind; these in turn are 
affected by basic properties of rangeland structure, such as the amount and type of 
woody-plant canopy cover. Recently, considerable work has focused on ways to 
identify the linkages between vegetation characteristics, soil evaporation, and 
microclimates for a diverse set of rangeland vegetation types—including mesquite, 
piñon-juniper, ponderosa pine, eucalypt, and saguaro cactus (Breshears and Ludwig 
2010; Royer et al. 2010; Villegas et al. 2010a, b; Zou et al. 2010; Royer et al. 2012). 
Other recent work has focused on understanding how changes in woody plant cover 
may affect the ratio of transpiration to ET (Wang et al. 2010b, 2012a).

3.4.2  Protection of Soils Against Erosion and Degradation

3.4.2.1  Understanding the Importance of Vegetation Patch Structure

Another important supporting service of healthy rangelands is that of soil protection 
from erosion—in other words, on healthy rangelands, soils are not eroding. The 
obvious reason for this is that vegetation cover is adequate. But what is adequate 
cover? Many rangelands, particularly in drier climates, have significant areas of 
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bare ground and yet are not eroding. According to Ludwig et al. (1997), Vegetation 
patch structure is the key: vegetation patches must be numerous enough and large 
enough to be able to recapture soil eroded from bare areas. In fact, the transfer of 
water, soil, and nutrients from bare areas (sources) to vegetated areas (sinks) is a 
fundamental process within drylands that may be disrupted if the vegetation patch 
structure is disturbed. “Resource-conserving” drylands are organized such that run-
off is quickly captured by, and concentrated in, vegetation patches—minimizing the 
loss of resources from the landscape. Resource concentration of resources increases 
the efficiency of their use, which translates to higher net primary productivity and 
the maintenance of rangeland functionality (Stavi et al. 2009).

If a disturbance, such as overgrazing, reduces the density and size of vegetation 
patches, the system will become “leaky” or “nonconserving”—less efficient at trap-
ping runoff, leading to a loss of valuable water and nutrient resources (Ludwig and 
Tongway 2000). A positive-feedback loop may then reinforce the degradation pro-
cess: the higher runoff rates will mean less water available to plants and higher ero-
sion rates (Davenport et al. 1998; D’Odorico et al. 2013a). This degradation cycle 
may proceed to the point that overland-flow runoff increases in both amount and 
energy, erosion increases, and plant density and production declines, and the micro-
climate becomes more extreme (Fig. 3.6). Recognition of these processes is impor-
tant not only for understanding how rangelands retain function, but also for how to 
devise more effective remediation strategies (Tongway and Ludwig 1997).

3.4.2.2  Wind and Water Erosion

Erosion research on rangelands has traditionally focused on water erosion and 
associated fluvial processes. One key advance in recent decades is recognition of 
the importance of wind-driven transport (aeolian) and its linkage with water ero-
sion (Breshears et al. 2003; Belnap et al. 2011). Aeolian processes are much bet-
ter understood now, thanks to improvements in measurement methods (Zobeck 
et al. 2003)—including relative humidity near the soil surface (Ravi et al. 2007a), 
the effects of vegetation patterns, and predictions of how vegetation structure 
influences horizontal sediment transport (Okin and Gillette 2001). Like water 
erosion, aeolian sediment transport is strongly influenced by the structure and 
arrangement of vegetation patches (Field et al. 2012). But when a grass patch is 
denuded (as can be caused by overgrazing) and the soil is exposed to wind action, 
there is a “double- whammy” effect: not only is the potential for recapturing the 
sediment lost, but also the wind causes the bare patch to generate additional sedi-
ment (Field et al. 2012). In the absence of disturbance, shrublands may inherently 
generate more wind- derived sediment than grasslands, as they have greater sur-
face roughness as well as less intercanopy ground cover (Breshears et al. 2009). 
Aeolian erosional processes may also be interrelated with fire dynamics (Ravi 
et al. 2007b, 2009; Field et al. 2011a).

Under future climatic conditions, in regions where precipitation may become 
more intense while simultaneously drought frequency and intensity increase, 
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fluvial and aeolian erosion processes will be affected in different ways. A simple 
but important point is that fluvial erosion occurs in rangelands only during the 
infrequent precipitation events that have sufficient magnitude and intensity to 
generate runoff, whereas small wind gusts occurring frequently can result in 
regular, ongoing aeolian sediment transport even during less windy periods of 
the year. Consequently, aeolian transport is a relatively constant and ongoing 
process (Field et al. 2011b) and may even be highly interactive with fluvial pro-
cesses (Belnap et al. 2011).

3.5  Provisioning Services: Water Supply

Provisioning services are considered as those goods or products—food, fiber, and 
water—that are directly produced from ecosystems. Water supply, including its 
magnitude, timing, and quality, is a fundamental service provided by rangelands, 
even those having relatively dry climates. Given that most rangelands are in semiarid 
settings, the amount of “blue water” is generally quite low—often less than 5 % 
(Wilcox et al. 2003b). Nevertheless, given the extent of rangelands, even a relatively 
small fraction of blue water can translate to a considerable amount of freshwater, 
which is of particularly high value in regions where the quantity is very limited. In 
rangelands having more humid climates, cold and snowy climates, or rocky or very 
sandy soils, “blue water” outputs can be much higher (Wilcox et al. 2006).

Fig. 3.6 Feedback loops 
in the degradation process. 
Positive feedbacks are 
depicted between loss of 
vegetation cover and (top 
loop) decreased 
precipitation and changes 
in atmospheric conditions; 
and (bottom loop) soil 
erosion and loss of fertility. 
Source: Figure 4 in 
D’Odorico et al. (2013)
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Water supply as a provisioning service is essentially a product of the array of 
regulating services discussed above. The amount of “blue water” supplied by a 
given landscape, i.e., water flow to streams and aquifers, is fundamentally a function 
of climate, vegetation, soils, and geology. Of these factors, vegetation and—to a 
lesser extent—soils are the most affected by rangeland management. The concept of 
managing vegetation for the purpose of augmenting water supply has a long, com-
plicated, and rich history. In fact, one could argue that it is a fundamental tenet of the 
science and art of watershed management (Wilcox 2010). The last decade in particu-
lar has seen a considerable refinement of our understanding of the linkage between 
vegetation and water supply on rangelands—especially concerning the effects of 
removing woody plants and invasive riparian species (Huxman et al. 2005; Edwards 
and Roberts 2006; Shafroth et al. 2010a; Doody et al. 2011; Hultine and Bush 2011; 
van Wilgen et al. 2012). With respect to the USA, the issue has been reviewed in 
detail in Archer et al. (2011). In general, large-scale woody plant removal has not 
resulted in measurable increases in streamflows or groundwater recharge, although 
increases would have been anticipated given (1) the long experience of similar 
manipulations (various levels of clear-cutting) carried out in forest watersheds 
(Bosch and Hewlett 1982) and (2) experience with the reductions in water yield 
brought about by the reverse type of intervention, i.e., the establishment of tree 
plantations in areas that were originally treeless (Farley et al. 2005; Jobbagy et al. 
2013). The only areas in which there may be a true potential for enhancing water 
supply through woody plant removal appears to be those having annual precipitation 
above 500 mm (Zhang et al. 2001) along with at least one of the following condi-
tions: (1) predominantly winter precipitation or significant snow accumulation; (2) 
permeable (sandy) and deep soils; and (3) karst geology (Huxman et al. 2005).

Surprisingly, the conventional wisdom has even been overturned in the case of 
riparian areas invaded by alien shrubs. Until recently it was widely accepted that 
removal or control of invasive riparian shrubs such as Russian olive (Elaeagnus 

angustifolia) and saltcedar (Tamarix ramosissima) would result in substantial water 
savings. A recent comprehensive review on the subject, however, concluded that 
there is in fact little evidence for large-scale water supply augmentation through 
these interventions (Shafroth et al. 2010a). The primary finding was that the inva-
sive species do not appear to use more water than the native vegetation they displace 
(Doody et al. 2011; Hultine and Bush 2011).

Finally, studies of groundwater recharge in the sandy deserts of Central Argentina 
have yielded some paradoxical results. Certain regions that are highly degraded 
from constant wind erosion and dune formation, with severe loss of both forage and 
sediment, have nevertheless seen an improvement in freshwater supply as recharge 
gives rise to high-quality groundwater lenses (Jobbágy et al. 2011). Except for this 
peculiar example of vegetation denudation proceeding in concert with gains in 
groundwater, the region is characterized by low-quality groundwater. In undisturbed 
areas it exhibits high total salt and/or arsenic content, while in disturbed areas with 
high animal concentrations it is less salty but polluted with nitrogen (Aranibar et al. 
2011; Meglioli et al. 2014).
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3.6  Observational and Conceptual Advances

As noted in previous sections, the availability and distribution of water in the land-
scape are of paramount importance for rangelands. Over the last few decades, a num-
ber of exciting developments have taken shape, both observational and conceptual. 
The former category includes in situ and remote-sensing monitoring tools—such as 
field-deployable, laser-based spectroscopy instruments that determine the ratios of 
hydrogen and oxygen isotopes (Lee et al. 2005; Wang et al. 2009a); portable 3D 
LIDAR systems for plant canopy analysis; electromagnetic imaging (EMI) devices 
for in situ soil water moisture monitoring; and distributed temperature- sensing (DTS) 
and remote-sensing tools, including drones and radio-controlled helicopters with 
lightweight digital cameras, that gather data for estimating key hydrological vari-
ables (Alsdorf et al. 2000). These and other recent developments are revolutionizing 
data gathering, in terms of both the scale and the precision of information used to 
inform ecohydrological measurement and investigation. It would be impractical to 
try to cover all the advances here; we have therefore selected a few that are closely 
related to topics already discussed in this chapter: the observational technologies of 
remote sensing and stable isotopes, and the conceptual advances in understanding 
nonlinear ecosystem behavior, scale and spatial variability, and hydrological con-
nectivity. Discussions of other geophysical advances (e.g., EMI) can be found in the 
following sources (e.g., Robinson et al. 2008; Zreda et al. 2012).

3.6.1  Observational Advances

3.6.1.1  Remote Sensing for Investigating Components of the Water 

Budget

Remote-sensing technology has a long history in rangeland management (e.g., 
Prince and Tucker 1986). One of its key advantages is that it enables extrapolation 
not just in space, but also temporally, offering insight into change of vegetation pat-
tern and development through time. Rapid developments in remote-sensing-based 
hydrological monitoring are providing unprecedented temporal and spatial cover-
age in estimates of hydrological variables such as rainfall, soil moisture, ET (Kustas 
et al. 1994; Garcia et al. 2008), surface water level (Alsdorf et al. 2000), and ground-
water storage (Yeh et al. 2006).

In rangelands, the irregular spatial and temporal distribution of rainfall imposes 
key constraints on ecosystem function and development. Remote measurement of 
precipitation has an extensive history, with numerous hydrological investigations 
being informed by the two-decade-long Tropical Rainfall Measuring Mission 
(TRMM) satellite system (Kummerow et al. 2000) and related sensors. Over the 
coming years, the next generation of satellite rainfall-measuring systems, referred to 
as the Global Precipitation Measurement (GPM) mission, will provide a much- 
needed update to the space-based rainfall monitoring capacity. The GPM Core 
Observatory is in the final stages of testing at the NASA Goddard Space Flight 
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Center; launch is scheduled for early 2014. The resolution of spatial and temporal 
rainfall data derived with CPM will exceed that possible with previous designs and 
it will enable a much greater range of ecohydrological investigations in rangelands.

Like other water-limited systems, rangelands are characterized by a strong cou-
pling between the dynamics of soil moisture and vegetation productivity. Soil mois-
ture can be estimated remotely, through either active or passive microwave-based 
systems—each of which involves a compromise between spatial and temporal reso-
lution. Although passive microwave sensing can be used for routine, daily global- 
scale estimates of soil moisture (Njoku and Entekhabi 1996), which makes it an 
ideal technique for large-scale studies, it also has a clear limitation: the spatial reso-
lution of retrievals is quite coarse (approximately 25 km) (McCabe et al. 2005). 
Active microwave sensing provides a higher spatial resolution (up to a few kilome-
ters), but the repeat time is generally on the order of a few days. It is possible that 
improved data sets for large-scale ecohydrological investigations can be obtained by 
merging the best features from multiple systems and sensors (e.g., Liu et al. 2011).

3.6.1.2  In Situ Methods for Measuring Components of the Water Budget

Partitioning of Evapotranspiration

Evapotranspiration is a major component of the water budget and accounts for up to 
95 % of the total water input (e.g., precipitation) in rangelands (Huxman et al. 2005). 
It has two distinct constituents (E and T), which are controlled by different mecha-
nisms. Partitioning of ET is important not only for better understanding the water 
budget but also for predicting the biogeochemical fluxes driven by hydrological varia-
tions (Wang et al. 2010a). Efficient use of the limited water resources in rangelands 
requires maximizing the productive water loss (T) and minimizing the unproductive 
water loss (E) (Wang and D’Odorico 2008). Separating E from T, however, has always 
been a difficult task—especially from the observational point of view at larger scales.

A useful tool for separating E from T is stable isotopes of water, because E and 
T carry distinct isotopic signatures. Traditionally, the stable isotopic compositions 
of water samples are measured by isotope ratio mass spectrometry (IRMS), while 
the vapor-phase measurements are based on cryogenic water vapor collection cou-
pled with IRMS. Such methods are labor intensive and time consuming. Over the 
past decade, a revolutionary change has taken place in water isotope measurement: 
the appearance of spectroscopy-based instruments capable of continuously measur-
ing water vapor isotopic compositions (Fig. 3.7) (Lee et al. 2005; Wen et al. 2008; 
Wang et al. 2009a; Griffis et al. 2010).

Monitoring of Soil Moisture

Perhaps the most important recent innovation for measuring soil moisture in situ is 
the COSMOS monitoring system (Zreda et al. 2012). Based on both the release of 
fast and slow neutrons from interactions between water in the soil column and a 
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regular flux of cosmic rays from space, the COSMOS system provides, for the first 
time, a reliable estimate of the soil wetness in a system. In addition, because the 
hydrogen in the top layer will have more sensitivity to the neutron counts, COSMOS, 
combined with modeling to separate the various hydrogen pools in the average mea-
surement, has the potential to discriminate between moisture in the topsoil and that 
in the subsoil. The COSMOS installations are revolutionary in terms of bridging the 
spatial divide that often exists between remote-sensing and in situ measurement 
approaches. If a network of these systems can be distributed globally, our ability to 
monitor ecosystem change and development will be markedly improved.

3.7  Conceptual Advances

The last quarter century has seen considerable advances in our conceptual under-
standing of ecohydrological processes and interactions, particularly in regard to (1) 
spatial variability and scale, (2) ecosystem thresholds and feedbacks, and (3) hydro-
logical connectivity of landscapes.

Fig. 3.7 Examples of recent advances in hydrological monitoring technology. (A) Eddy covari-
ance system and scintillometer for ecosystem-scale measurements of sensible heat flux (evapo-
transpiration); (B) COSMOS system for monitoring ecosystem-scale soil moisture; (C) 
spectroscopy-based instrument for measuring the isotopic composition of water vapor in situ, 
which can be used in applications such as partitioning of evapotranspiration
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3.7.1  Spatial Variability and Scale

Understanding spatial dynamics and scale relationships has been a formidable chal-
lenge in both ecology and hydrology and, by extension, ecohydrology (Wood et al. 
1990; Sivapalan and Kalma 1995; Sposito 1998; Grayson and Bloschl 2000; 
Western et al. 2001). Nevertheless, important advances have been made (Newman 
et al. 2006; Asbjornsen et al. 2011). For example, comparative studies across spatial 
scales have revealed the nonlinear nature of runoff and erosion with changing scales 
and how disturbance alters these relationships (Fig. 3.3) (Bergkamp 1998a; 
Puigdefabregas et al. 1999; Wilcox et al. 2003a; Favreau et al. 2009; Moreno de las 
Heras et al. 2010). Nonlinear responses in runoff and erosion are the result of redis-
tribution across the landscape as well as alterations in runoff generation mecha-
nisms with changing scale (Seyfried and Wilcox 1995).

Similarly significant strides have been made in quantifying the spatial variabil-
ity of infiltration at the hillslope scale (Berndtsson and Larson 1987; Seyfried 
1991; Pierson et al. 1994, 2001; Bhark and Small 2003; Daryanto et al. 2013). 
Infiltration capacities are generally higher under shrub canopies than in intercan-
opy areas, and these differences markedly influence patterns of soil moisture 
(Breshears and Barnes 1994, 1999). In addition, runon from intercanopy patches 
often contributes additional water to the shrub patches (Ludwig et al. 2005). 
Correspondingly, a number of conceptual advances have enhanced our under-
standing of the spatial variability of vegetation patterns on rangelands and how 
these are regulated by rainfall and runoff (HilleRisLambers et al. 2001; Rietkerk 
et al. 2002, 2004; Thompson et al. 2011).

Faunal activities also play an important role in structuring dryland landscapes as 
well. One feature of many arid landscapes is the formation of mounds, generally 
regularly dispersed, that range in diameter from a few meters to tens of meters. 
Known as mima mounds in the western USA, they are called heuweltjies in South 
Africa, where they cover from 14 to 25 % of the landscape (Lovegrove and Siegfried 
1986, 1989; Whitford and Kay 1999). Their regular distribution is probably the 
result of competition among fauna for resources (Lovegrove and Siegfried 1986; 
Laurie 2002). Most authors agree that these enigmatic features are initiated by ani-
mals, whether mammals or invertebrates. One theory regarding the heuweltjies is 
that they developed over buried termite nests (Milton and Dean 1990; Moore and 
Picker 1991), but a recent paper argues that they are relicts of shrub-clump- 
controlled erosion processes (Cramer et al. 2012). Whatever their origin, the accu-
mulation of transported organic matter, softer soil, and food remains they contain 
increases their fertility (Midgley and Musil 1990) and infiltration rates (Dean 
1992), supports a distinctive suite of plant species (Knight et al. 1989), and attracts 
faunal activity—digging by termite-eating mammals, burrowing by rodents and/or 
nesting ostrich (Lovegrove and Siegfried 1986, 1989; Milton and Dean 1990), and 
foraging by game and domestic livestock (Armstrong and Siegfried 1990; Kunz 
et al. 2012). The movement of water across and between the vegetation mosaic and 
the heuweltjies has not been studied to determine whether these mounds contribute 
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to groundwater recharge; but their higher infiltration rates (Dean 1992) suggest that 
their ecohydrological function may be analogous to that of the vegetation patches; 
that is, they may capture and filter runoff and act as foci for deep infiltration and 
recharge of groundwater.

The origins of the mima mounds in North America are no less controversial, but in 
this case small mammals (gophers) appear to be the primary drivers for the accumula-
tion of materials (Whitford and Kay 1999; Jackson et al. 2003; Horwath and Johnson 
2006; Johnson and Horwath-Burnham 2012). Whether or not that proves to be the 
sole explanation, these features also accumulate materials and alter the ecohydrology 
of the landscape. These important soil modifications justify the need for further 
research into the ecohydrological consequences of soil (Westbrook et al. 2013).

As noted by Vivoni (2012), our understanding of the role of scale and spatial 
variability in ecohydrological processes on rangelands will certainly increase in the 
future as remote-sensing and computational capabilities continue to progress.

3.7.2  Ecological Threshold and Feedback Mechanisms

Ecological thresholds and feedback loops are intimately related (Runyan et al. 2012; 
D’Odorico et al. 2013a). Threshold behavior occurs when a relatively small change 
in external drivers causes a disproportionally large response. A classic example of 
an ecological threshold is the transition between two stable states—such as the tran-
sition from a grassland or savanna to woodland or highly eroded state (D’Odorico 
et al. 2013a). The shift or change in state is induced and maintained by positive 
feedbacks that destabilize the system (Chapter 6, this volume). Examples of positive 
feedbacks are those between vegetation cover and (1) erosion, (2) soil moisture, and 
(3) climate (Runyan et al. 2012; D’Odorico et al. 2013a). The desertification feed-
back loop presented in D’Odorico et al. (2013a) (Fig. 3.6) illustrates these: A 
decrease in vegetation cover triggers the loss of water, nutrients, and soil that may 
as changes in albedo and evapotranspiration. All of these changes in turn create an 
environment that is less conducive to vegetation growth. In the last decade in par-
ticular, a considerable amount of work has been done that helps us better understand 
feedback loops and their important role in ecohydrological interactions (D’Odorico 
et al. 2007, 2012, 2013a, b; Stavi et al. 2009; Runyan et al. 2012; Turnbull et al. 
2012).

3.7.3  Hydrological Connectivity

Hydrological connectivity refers to the water-mediated transfer of matter, energy, 
and organisms within or between elements of the hydrologic cycle (Pringle 2001). 
We now recognize that hydrological connectivity is essential for ecological integ-
rity—and, more important, that activities by humans that disrupt this connectivity 
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(dams, interbasin water transfers, etc.) can have dramatic negative consequences 
(Pringle 2003). “Connectivity” can be more broadly understood as the transfer of 
energy, matter, and organisms by not only water but also other vectors—such as 
wind and animals (Peters et al. 2006; Okin et al. 2009). One of the major benefits 
of studying connectivity in physical processes is that it identifies cross-scale inter-
actions. For example, how do various different stomata in individual grass leaves, 
when under stress (e.g., from grazing or drought), function to modify water fluxes 
at the landscape scale? Answering such questions, on the basis of information from 
smaller scales, will significantly improve our ability to make predictions at larger 
scales (Peters et al. 2004). Hydrological connectivity has proved useful in explain-
ing ecohydrological patterns on at the landscape scale as previously indicated 
(Wainwright et al. 2011). However, quantifying connectivity among different 
scales is still a major challenge, owing largely to a lack of a conceptual framework 
and modeling approaches applicable at multiple scales (Miller et al. 2012). 
Analogical models, which simulate the behaviors of complex physical systems 
using laws and theorems known to control components of those systems, may be 
able to fill some of these gaps. Recently, Wang et al. (2012b) developed a concep-
tual framework that uses electrical circuit analogies and Thévenin’s theorem to 
upscale ecohydrological and biogeochemical processes from point scales to water-
shed scales. This conceptual work, by providing a means of representing concomi-
tant processes at both small and large spatial scales, may prove useful for multi-scale 
rangeland management efforts.

A number of important conceptual advances have improved our understanding 
of hydrological connectivity and flows—longitudinal, lateral, and vertical—within 
river systems as well as between river systems and landscapes, and the importance 
of this connectivity for river ecosystem structure, functioning, and maintenance of 
ecosystem services (Naiman et al. 1999; Ward et al. 2001; Wiens 2002; Caylor et al. 
2004; Boulton and Hancock 2006). Combined with hydrogeomorphology, 
connectivity processes play a vital role in the structuring of river systems and the 
ecosystem services they provide (Thorp et al. 2006, 2010) (Fig. 3.8). The implica-
tion, for those involved in land management and in water resource management—
two traditionally separate policy and legislative domains—is important: the two are 
actually inseparable (Postel and Thompson 2005). In fact, rivers are complex 
social–ecological systems, and if we are to ensure continued delivery of the numer-
ous essential ecosystem services they provide, including their traditional use as 
water conduits, we must advance our knowledge of not only the scientific but also 
the social and economic aspects of managing them (Chapter 8, this volume).

3.8  Future Perspectives

The past quarter century has seen impressive advances in our understanding of eco-
hydrological processes on rangelands, and new research is providing a much clearer 
picture of water dynamics (amounts and timing of both green and blue water and 
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how these fluxes are affected by biota). These advances are attributable not only to 
the sheer number of new studies but also to the development of new observational 
methodologies, such as remote sensing and the use of stable isotopes. We anticipate 
that these advances will continue.

In addition, new conceptual and theoretical approaches, coupled with increases 
in computational power, have significantly improved our ability to predict and 
model ecohydrological processes. These approaches have and will continue to prove 
particularly useful for elucidating (1) spatial variability and scale, (2) ecosystem 
thresholds and feedbacks, and (3) hydrological connectivity of landscapes. We 
expect that the near future will bring further developments in all these areas, paving 
the way for more new and exciting insights into the ecohydrology of rangelands.

3.9  Summary

Our discussion of recent advances in the ecohydrology of rangelands has been orga-
nized around the concept of ecosystem services, especially those related to water. 
The fate of water in rangeland environments and, by extension, that of the flora and 
fauna that depend on this water are determined by conditions at three critical junc-
tures: (1) The soil surface—will water infiltrate or run off? (2) The vadose zone—
will water remain in the root zone or move beyond it? (3) The root zone—will water 
be transpired or evaporate?

Rangeland ecosystem services are categorized as regulating, supporting, and 
provisioning. Water-regulating services include those that affect the amount, 
timing, and quality of blue water flows. These are to a large extent determined at 
the first critical juncture of the water cycle—on the soil surface, where water 
either infiltrates or becomes overland flow, depending on the infiltrability of the 
soil. Soil infiltrability in turn depends on myriad factors, including vegetation, 
grazing intensity, brush management, fire patterns, condition of biological soil 
crusts, and activity by fauna. At larger scales, water-regulating services are influ-
enced by other factors, such as the nature and structure of riparian zones and the 
presence of shallow groundwater aquifers. Finally, an important ecohydrological 
interaction that occurs at large scales is that between the land surface and the 
atmosphere. Climate regulation may result from feedbacks between rangeland 
vegetation and rainfall patterns.

Supporting services are those required for the production of other ecosystem ser-
vices. Examples include the process of ET, which supports water cycling, and the 

Fig. 3.8 (Continued) Thoms and Parsons 2003); and (2) the ecological measures of food chain 
length (FCL), nutrient spiraling (NS), and species diversity (SpD), the first two scaled from long 
to short and the third from low to high. The light bar within each box is the expected median, with 
the shading estimating the range of conditions. The size of each arrow reflects the magnitude of 
lateral, longitudinal, and vertical connectivity. Source: Figure 1.1 and color plate 1 (revised) in 
Thorp et al. (2008)
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Fig. 3.8 A conceptual riverine landscape, depicting various functional process zones (FPZs) and 
their possible arrangement in the longitudinal dimension. Information contained in the boxes show 
the hydrological and ecological conditions predicted for that FPZ, including (1) the hydrological 
scale of greatest importance (scales being flow pulse, flow history, and flow regime, as defined by 
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processes by which soils are protected against erosion or degradation. The process of 
ET has become a subject of active inquiry in ecohydrological research—in particular, 
the partitioning of ET into soil evaporation and transpiration. From an ecohydrologi-
cal perspective, soil evaporation is not a productive use of water because it does not 
contribute to plant productivity. An improved understanding of ET partitioning 
may lead to new management insights concerning methods for shifting more green 
water to productive uses. The processes that act to protect soils from erosion and/or 
degradation are also important ecohydrological support services. We now recognize 
that vegetation patch structure has a very large influence on soil erosion. Fundamentally, 
vegetation patches must be numerous enough and large enough to effectively capture 
water and sediment coming off of the bare patches. If such a patch structure is lost, 
rangelands begin eroding at rates that render the ecohydrological balance of the land 
unsustainable. Another factor affecting soil erosion, and which has been the focus of 
much recent research, is wind—and how it is related to water erosion. New measure-
ment methods are yielding fresh insights into aeolian processes.

Provisioning services are those goods or products that are directly produced from 
ecosystems, such as water, food, and fiber. With respect to ecohydrology, the produc-
tion of water from rangelands and how that production is affected by different man-
agement strategies are issues of paramount importance—but concerning which there 
has also been considerable misunderstanding. Work over the last several decades has 
largely overturned the notion that water supply can be substantially increased by 
removal of shrubs. Evidence of a true potential for enhancing water supply through 
woody plant removal has so far been found only in upland regions, and appears to be 
limited to those having annual precipitation above 500 mm, along with at least one 
of the following conditions: (1) predominantly winter precipitation or significant 
snow accumulation and (2) deep and permeable (sandy) soils (Huxman et al. 2005). 
But even where these conditions are met, in many cases the additional amount of 
water gained through manipulation of vegetation may be marginal. In riparian areas, 
surprisingly, removal of invasive, non-native woody plants appears to hold little 
potential for increasing water supply. Here, the primary factor appears to be that non-
native plants use no more water than the native vegetation they displace.

We hope that by making an explicit linkage between ecohydrological processes 
and the ecosystem services concept, we have made it easier to grasp the multifaceted 
and complex nature of these processes on rangelands. Clearly there is a close coupling 
between biota (both fauna and flora) and water on rangelands—which is why water-
related ecosystem services are so strongly dependent on land management strategies.
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Chapter 4

Soil and Belowground Processes

R. Dave Evans, Richard A. Gill, Valerie T. Eviner, and Vanessa Bailey

Abstract Soil characteristics and functions are critical determinants of rangeland 

systems and the ecosystem services that they provide. Rangeland soils are extremely 

diverse, but an emerging understanding is that paradigms developed in more mesic 

forest ecosystems may not be applicable. Vascular plants, biological soil crusts, and 

the soil microbial community are the three major functional groups of organisms 

that influence rangeland soils through their control over soil structure and soil car-

bon, water, and nutrient availability. Rangelands occur across a broad range of pre-

cipitation regimes, but local water status can be modified by management and land 

use. Important processes in carbon and nutrient cycling can be unique to arid range-

lands. Physical drivers such as UV radiation and soil–litter mixing can be important 

factors for decomposition. Precipitation, vascular species composition and spatial 

pattern, presence of biological soil crusts, and surface disturbance interact to deter-

mine rates of carbon and nutrient cycling. The low resource availability in range-

land soils makes them very vulnerable to drivers of global change, and also excellent 

indicators of small changes in resource availability. Recent large-scale experiments 

demonstrate that rangelands are very susceptible to changes in precipitation regimes, 

warming, and atmospheric carbon dioxide. Growth of molecular tools in combina-

tion with other techniques has allowed scientists to increasingly link microbial 

community composition and function, thereby shedding light on what was formerly 
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viewed as the black box of microbial dynamics in soils. Concurrent technological 

advances in  environmental sensors and sensor arrays allow more mechanistic 

understanding of soil processes while also offering new opportunities to develop 

questions at the landscape scale.

Keywords Atmospheric deposition • Biological soil crusts • Grazing • Soil carbon 

• Soil community composition and function • Soil nitrogen

4.1  Introduction

The maintenance of healthy, productive soils in rangelands is a critical management 

issue, determining vegetation production, cover, and composition, and the liveli-

hood of over 2.5 billion people, most of whom live in poverty and directly rely upon 

the ecosystem services of rangelands for their well-being and survival (MEA 2005; 

Reynolds et al. 2007). Their inherently low soil carbon (C) and nutrient levels cause 

rangelands to be among the most responsive terrestrial land cover type to even small 

changes in resource availability caused by drivers of global change. This sensitivity 

to change, coupled with their extensive global coverage, is the primary reason that 

rangelands are now recognized as critical components of global biogeochemical 

cycles (Donohue et al. 2013; Evans et al. 2014; Poulter et al. 2014).

Their importance for a large fraction of the human population despite their low 

resource availability is a reason for an increased emphasis on the function and global 

significance of rangeland soils over the past 25 years. Prior to this scientists had devel-

oped detailed understanding of soil classification and physical characteristics, espe-

cially those properties contributing to water-holding capacity and plant water 

availability. However, our functional understanding of soil microbial community 

composition and biologically mediated processes in the carbon and nitrogen cycles 

had not progressed as rapidly as our knowledge of aboveground dynamics, or even 

soil function, in more mesic ecosystems. Recent emphases on community and ecosys-

tem-level questions as well as development of new technologies have greatly facili-

tated our understanding and led to the following conceptual understandings: (1) 

increased awareness that paradigms developed in more mesic ecosystems may be less 

applicable in rangeland ecosystems, and in some cases major drivers of ecosystem 

function may be unique to rangelands; (2) identification of unifying principles in soil 

ecology is difficult because rangelands encompass many diverse ecosystems with 

wide variation in temperature, precipitation, and disturbance regimes; (3) rangeland 

ecosystems respond rapidly to perturbations in resource availability caused by anthro-

pogenic drivers of change. The conceptual advances reaffirm that proper management 

and restoration are necessary to ensure ecosystem health into the future.

The broad goals are to identify the primary advances in our understanding of soil 

and belowground processes and function that have occurred during the past 25 

years, and discuss the potential consequences of future drivers on rangeland soils.
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4.2  Major Conceptual Advances

4.2.1  Community Composition and Function

4.2.1.1  Soil–Plant Interactions

Soils have a large influence on shifts in vegetation composition that are common in 

rangelands (Bestelmeyer et al. 2003), particularly since rangeland vegetation is 

extremely sensitive to soil degradation (van de Koppel et al. 2002). Vegetation com-

position not only responds to soils, but can also cause large changes in soil proper-

ties and functions (Diaz et al. 2002; Eviner and Chapin 2003; Bestelmeyer and 

Briske 2012). The magnitude and direction of soil changes, and which attributes are 

modified, depend on the magnitude of species composition change, as well as eco-

logical site conditions. The most common vegetation shifts that occur in rangelands 

include shifts from palatable to unpalatable vegetation; shifts from herbaceous to 

woody dominance; changes in grass species composition; shifts from grass to forb 

dominance (Vetter 2005). Each of these categories are summarized below.

Shifts from palatable to unpalatable vegetation. Preferential grazing can 

decrease the prevalence of palatable plants and increase unpalatable plants 

(Bestelmeyer et al. 2003; Seymour et al. 2010). This shift tends to occur under con-

tinuous grazing regimes, particularly under lower soil nutrient availability (Wardle 

2002; Harrison and Bardgett 2008), and more arid conditions (Diaz et al. 2007). 

Unpalatable plants represent a variety of growth forms, including other grasses, 

forbs, or woody species. These plants usually have lower nutrient concentrations 

and higher chemical defenses than palatable species, so their litter inputs decrease 

rates of nutrient recycling, further decreasing plant nutrient availability (Bardgett 

and Wardle 2003; Harrison and Bardgett 2008). Such changes in soils can lead to 

delayed or inhibited recovery of palatable vegetation, even after grazing has ceased 

(Bestelmeyer et al. 2003; Seymour et al. 2010).

Shifts from herbaceous to woody dominance. Many rangelands across the 

globe have experienced increasing woody encroachment over the past century 

(Fig. 4.1), which has been attributed to a variety of factors, including: overgrazing, 

decreased human disturbance, lower fire frequency, nitrogen (N) deposition, climate 

change, and predator suppression (Eldridge et al. 2011; Chapter 2, this volume). 

The encroachment of shrubs and trees into herbaceous-dominated rangeland has 

extremely variable impacts on multiple soil properties depending upon the plant 

species, local climate, and soil type (Schuman et al. 2002; Barger et al. 2011). 

Generally, woody plant encroachment leads to more patchy vegetation cover caus-

ing higher heterogeneity in soil conditions (Van Auken 2009; Barger et al. 2011) 

and lower water infiltration and increased vulnerability to erosion, particularly after 

fires and during droughts, in plant interspaces (Ravi et al. 2009; Barger et al. 2011). 

This is why in some areas, shrub encroachment has been linked with significant soil 

degradation and even desertification (Bestelmeyer et al. 2003; Ravi et al. 2009), but 

this is not true everywhere (Eldridge et al. 2011). In general, woody encroachment 

increases surface soil C, total N, mineralizable N, soil aggregate stability, and available 
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calcium (Archer et al. 2001; Schuman et al. 2002). Carbon accumulation tends to be 

higher in arid sites than in wetter sites (Jackson et al. 2002; Barger et al. 2011), but 

this strongly depends on species of shrub, soil bulk density (higher bulk density 

associated with more C loss), and % clay content (higher C accumulation associated 

with more clay) (Barger et al. 2011). In general, woody encroachment has stronger 

impacts on soil C pools than soil N (Van Auken 2009).

Woody encroachment into arid systems can enhance surface soil water through a 

combination of reduced evapotranspiration and hydraulic lift (Gill and Burke 1999). 

Shrub encroachment in arid ecosystems is generally patchy, leading to many areas 

of little to no plant cover, with low infiltration (Eviner and Chapin 2003). The effects 

of woody encroachment on streamflow vary with site hydrology. For example, a 

decrease in shrub cover can significantly enhance streamflow on sites with springs 

and groundwater flow, or that receive greater than 500 mm of rain per year, due to 

decreased transpiration rates. However, shrub removal may have no effect or even 

decrease streamflow in drylands or in systems where most streamflow is delivered 

Fig. 4.1 Changes in community structure that occur during a shift in dominance from herbaceous 

to woody species (from Mohamed et al. 2011)
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through overland flow (Wilcox et al. 2006; Chapter 3, this volume). Woody species 

may also decrease infiltration by depositing hydrophobic substances (e.g., waxes), 

which are very common in species such as oaks, but tend to be low in soils associ-

ated with grasses and mosses (Doerr et al. 2000; Schnabel et al. 2013).

Shifts in grass species dominance. Grazing can induce compositional shifts in 

some regions from perennial to annual dominated grasslands (Fernandez-Gimenez 

and Allen-Diaz 1999; Diaz et al. 2007). An increased prevalence of annual grasses 

can also be due to increased N deposition and introduction of non-native annuals 

(Bai et al. 2009; Ravi et al. 2009). Transition to annual plant dominance can lead to 

high temporal variability in plant production and cover paralleling climate variabil-

ity, and little to no vegetation cover during droughts (Bai et al. 2004; Ravi et al. 

2009). During these drought periods, low vegetation cover can lead to massive ero-

sion and irreversible desertification (Ravi et al. 2009). Domination by annual plants 

can also homogenize spatial distribution of soil C, N, and water, eliminating the 

islands of fertility created by continuous litter inputs from perennial species that are 

important in facilitating reestablishment of other vegetation. Soil C has been shown 

to be higher under perennial vs. annual grasses across a range of sites in the western 

USA (Gill and Burke 1999). Shifts in grass composition within the annual or peren-

nial groups can also have significant soil impacts. For example, in the shortgrass 

steppe, microbial biomass C and C mineralization rates were higher under perennial 

bunchgrasses than under rhizomatous grasses (Vinton and Burke 1995). In a tall-

grass prairie, soil N mineralization rates differed tenfold across five different peren-

nial grasses (Wedin and Tilman 1990). In California’s annual grasslands, annual 

grass species differed in their impacts on net N mineralization and nitrification 

(Eviner et al. 2006).

Shifts between grass and forb dominance. Rangeland herbaceous vegetation 

commonly contains both grasses and broad-leafed species (forbs and legumes), 

with their relative dominance shifting over space and time (Fig. 4.2). Forbs tend to 

Fig. 4.2 The relative dominance of grasses and broad-leaved species in many rangelands often 

shifts both temporally and spatially. For example, in this grassland in California the community is 

grass dominated (left) in some years, while in others forbs and legumes are dominant (right) (pho-

tographs by V. Eviner)
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increase after disturbances that remove grass biomass (e.g., fire, grazing, gopher 

mounds, and herbicides) (Fernandez-Gimenez and Allen-Diaz 1999; Stahlheber 

and D’Antonio 2013). The effects of increasing forbs on soil processes will vary 

strongly by species. In general, forbs have lower C:N ratios than grasses, which 

could lead to higher rates of decomposition and nutrient recycling. However, many 

forbs contain secondary compounds that make plant litter more resistant to break-

down, and these species can slow rates of nutrient recycling (Eviner and Chapin 

2003). Legumes generally increase total soil N and rates of N cycling through their 

fixation of atmospheric N (Eviner and Chapin 2003), and can also enhance soil 

organic C (Derner and Schuman 2007).

4.2.1.2  Biological Soil Crusts

Biological soil crusts are composed of cyanobacteria, lichens, mosses, fungi, and 

algae that intermix and form a consolidated matrix with surface soils (Fig. 4.3). The 

dominant organisms are autotrophic; thus they reach their greatest development in 

ecosystems where low water availability prevents continuous plant cover; under these 

conditions they can be a dominant feature of the landscape and coverage can approach 

100 % in plant interspaces. The occurrence of biological soil crusts on the soil surface 

directly influences hydrology and soil surface stability, and autotrophs and organisms 

capable of biological N2 fixation within crusts play a central role in ecosystem biogeo-

chemistry. An extensive review of the composition and ecological roles of biological 

soil crusts in diverse biomes is provided by Belnap and Lange (2001).

The impacts of biological soil crusts on surface hydrology and soil stability are 

complex and variable (Warren et al. 2001; Rodriguez-Caballero et al. 2013). 

Biological soil crusts decrease erosion by protecting the soil surface from the direct 

impact of rain drops in a similar manner as vegetation. Greater microtopography of 

well-developed soil crusts can also increase pooling of water on the crust surface, 

Fig. 4.3 Biological soil crusts are a consolidated matrix of organisms that stabilize soil surfaces 

(left) and can be important components of ecosystem carbon and nitrogen cycles. Coverage can be 

100 % in plant interspaces. The soil crusts are the dark covering on the soil surface in the photo-

graph on the right; the light shade is an artificial disturbance treatment illustrating the color of the 

soil underlying the soil crusts (photographs by R.D. Evans)
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thus decreasing surface runoff (Rodriguez-Caballero et al. 2013). Wetting can also 

cause swelling of crust organisms effectively blocking infiltration into the soil 

(Belnap 2006; Bowker et al. 2013; Rodriguez-Caballero et al. 2013). Organisms 

within the crust also exude a gelatinous sheath that binds fine soil particles into 

larger aggregates (Belnap and Gardner 1993). This can have a negative impact on 

water infiltration in sandy soils because polysaccharide secretions, filaments, and 

accumulated fine soil particles may block pores at the soil surface reducing porosity 

(Warren et al. 2001). Infiltration may also be lower because the organic component 

of soil crusts is slightly hydrophobic. In contrast, in fine textured soils binding of 

soil fine particles into larger aggregates may increase effective porosity and infiltra-

tion. In general, crusts in cool and cold environments increase infiltration and reduce 

runoff, while crusts in very dry environments generally reduce infiltration and 

increase runoff, and results are mixed in intermediate locations (Belnap 2006).

Biological soil crusts have long been recognized as critical components of bio-

geochemical cycles in most arid rangelands. Autotrophic organisms within the 

crusts contribute to ecosystem C cycles (Evans et al. 2001a), and N2 fixation by 

crust organisms can be the dominant source of N into many arid ecosystems (Evans 

and Ehleringer 1993; Evans and Belnap 1999; Evans et al. 2001a). Recent synthesis 

efforts estimate that biological soil crusts provide 7 % of the net primary production 

of terrestrial vegetation and nearly half of terrestrial biological N2 fixation world-

wide (Elbert et al. 2012). Lichens and mosses can also directly impact phosphorous 

availability and can promote chemical weathering of substrates (Cornelissen et al. 

2007; Porada et al. 2014).

Understanding the fate of C and N assimilated by soil crusts is critical because of 

their central role in ecosystem C and N cycles. Rates of N2 fixation by crust organ-

isms are much greater than necessary for their own growth; thus it appears that a 

majority of the N assimilated during N2 fixation is either emitted back to the atmo-

sphere as nitric oxide (NO), nitrous oxide (N2O), or ammonia (NH3) during nitrifi-

cation, denitrification, and volatilization or leached into underlying soils where they 

could be assimilated by microbes and vascular plants (Evans and Johansen 1999; 

Strauss et al. 2012). Recent studies combining molecular and microsensor 

approaches (Johnson et al. 2005, 2007; Strauss et al. 2012) indicate that despite 

significant variation in community structure across arid lands of North America, the 

relative magnitude of N2 fixation, N gaseous loss, and N inputs into underlying soils 

was similar for all sites, with low flux rates of N to the atmosphere, indicating that 

biological soil crusts are net exporters of NH4
+, NO3

−, and organic N into underlying 

soils at rates commensurate with rates of N2 fixation (Johnson et al. 2007; Strauss 

et al. 2012).

4.2.1.3  Soil Microbial Diversity and Function

Bacteria. Microbial diversity in rangeland soils remains poorly characterized (An 

et al. 2013) but this is rapidly changing with recent advancements in molecular and 

bioinformatics techniques. Recent studies have revealed unexpectedly large 
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bacterial diversities despite low microbial biomass (An et al. 2013). These diversities 

are described by culture-independent, DNA-based approaches, such as sequencing 

the 16S gene to profile bacterial communities. Generally, the composition of soil 

bacterial communities are site specific, but at the phylum level, the most abundant 

members include Proteobacteria, Bacteroidetes, and Actinobacteria (An et al. 2013; 

Kim et al. 2013; Steven et al. 2014); these phyla are typical of soils around the 

world. In a global analysis of the biogeography of soil bacteria, arid soils were 

observed to have the highest proportions of Actinobacteria (Fierer et al. 2009). This 

abundance is particularly notable as the degree of ecosystem aridity increases, the 

relative abundances of the Proteobacteria decrease (Neilson et al. 2012). Abundances 

of beta-Proteobacteria and Bacteroidetes are often correlated with carbon availabil-

ity as measured by carbon mineralization (Fierer et al. 2007). Total bacterial rich-

ness has also been observed to increase with increasing C:N (An et al. 2013), 

suggesting that increased diversity may result from nitrogen limitations. Overall, 

soil texture is a good predictor of community structure (Kim et al. 2013; Pasternak 

et al. 2013), suggesting that the local environmental conditions that underlie habitat 

quality—pore structure, mineral surfaces, and water-holding capacity—influence 

microbial composition.

DNA-based approaches identify organisms that are present in the soil including 

those that are dormant when environmental conditions are not favorable for their 

activity. In contrast, RNA-based approaches provide a more functional approach by 

describing only the active members of the microbial community. This is an impor-

tant distinction in rangelands where short-term stresses such as water limitations or 

high temperatures can cause the active microbial community to be very different 

from the dormant, and thus total, community. For example, in a series of sites in the 

Mediterranean, the community structure of the total Bacteria and Archaea revealed 

by DNA was driven by large-scale landscape patterns and less strongly correlated 

with local transient variables such as soil water (Angel et al. 2013). The RNA-based 

profiles were significantly more correlated to soil water, though this active subset of 

the microbial communities was less diverse indicating that a large portion of the 

community was dormant. The effect of water on these communities was stronger in 

Bacteria than in Archaea (Angel et al. 2013), which is consistent with other obser-

vations of the greater tolerance of Archaea to extreme conditions (Sher et al. 2013). 

Ammonia-oxidizing bacteria and archaea both had relatively stable community 

structures and were able to withstand the extreme conditions in arid systems; how-

ever the archaeal communities were more associated with the dry and hot periods, 

whereas the bacterial community was more responsive during the wetter periods 

(Sher et al. 2013).

Fungi. The fungal community is less well studied than the bacterial community 

in rangeland systems; yet fungi are potentially more able to withstand stressful 

 conditions (Jin et al. 2011). Fungi are more drought tolerant than bacteria in arid 

soils, as fungal:bacterial ratios reported by phospholipid fatty acid profiling are 

negatively correlated with soil water content (Jin et al. 2011). Arbuscular mycor-

rhizal (AM) fungi can stimulate plant growth and drought tolerance (Querejeta et al. 

2007); therefore, these plant symbionts are likely very important in arid ecosystems 
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characterized by patchy plant distribution. AM fungal diversity is largely controlled 

by local soil nutrients with lower levels of phosphorus causing more diverse AM 

fungal communities, and yet less diverse microbial communities, because competi-

tion for phosphorus excluded several types of microbes (Martinez-Garcia et al. 

2011). Comparison of rhizosphere with bulk soil showed greater AM fungal diver-

sity in the bulk soil, while the plant host selected for the most fit symbiont, reducing 

diversity in the rhizosphere (Martinez-Garcia et al. 2011). Free-living fungal com-

munities in the bulk soils of very arid systems have relatively low diversity domi-

nated by Basidiomycota and Ascomycota (Steven et al. 2014). Within the 

Ascomycota, the Dothideomycetes were highly abundant in the bulk soil (Steven 

et al. 2014).

4.2.2  Ecosystem Processes

4.2.2.1  Water

Water availability in rangeland systems is a critical determinant of soil community 

composition and function (Campbell et al. 1997). In most rangelands, precipitation 

inputs are low and episodic often occurring as short pulses (Austin et al. 2004). Soil 

physical parameters and vegetation condition are the major determinants of the fate 

of this water. Precipitation can evaporate from the soil or vegetation surface, run off 

from the surface through overland flow, or infiltrate into the soil, where the water 

can be stored, evapotranspired, or leached into groundwater (Wilcox 2002; Chapter 3, 

this volume).

Soil water-holding capacity is influenced by particle sizes, soil organic matter, 

and soil depth. Soil texture is critical in determining available soil water, and soil 

water-holding capacity can increase up to 3.7 % for every 1 % increase in soil 

organic matter (Bot and Benites 2005). In areas receiving less than 360 mm of pre-

cipitation per year, coarse soils decrease evaporative loss and enhance plant water 

availability. In areas receiving greater than 370 mm of precipitation per year, fine- 

textured soils increase plant water availability by enhancing water-holding capacity 

(Austin et al. 2004).

Soil water infiltration is critical for plant water supply and to prevent erosion 

through overland flow. High soil pore volume can greatly increase infiltration, and 

is enhanced by soil aggregation, and channels created by roots and through the 

activity of soil organisms. Vegetation can greatly enhance infiltration by slowing 

down overland flow, allowing more time for water to infiltrate into the soil. 

Vegetation cover is also critical in enhancing infiltration by minimizing soil 

 compaction, decreasing the impacts of raindrops directly on the soil surface, increas-

ing porosity through root growth, and increasing soil organic matter to promote 

aggregation (Li et al. 2011). For example, when 60–75 % of the ground is covered 

with live plants and litter, surface runoff can be as low as 2 % of rainfall. However, 

with 37 % plant cover, surface runoff increases to 14 % of rainfall, and when vegetation 
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cover is less than 10 %, up to 73 % of rainfall can run off the surface (Bailey and 

Copleand 1961). Biological processes can also induce soil water repellency which 

can decrease infiltration rates by 6–25-fold (Doerr et al. 2000) and is caused by fac-

tors that include waxy plant materials, hydrophobic compounds produced by fungi, 

and hot surface temperatures and fires which melt or volatilize these compounds, 

causing them to coat the soil surface (Doerr et al. 2000; Schnabel et al. 2013). Water 

repellency of soil is particularly common in semiarid and seasonally dry conditions, 

and in fire-prone areas, which are typical in rangeland systems. This repellency can 

last from seconds to weeks (Doerr et al. 2000), and is particularly high in the dry 

season, and in the transitions between dry and wet periods (Schnabel et al. 2013). 

This water repellency can lead to heterogeneity in infiltration, and soil water con-

tent, causing preferential flow paths which can accelerate leaching losses and ero-

sion (Doerr et al. 2000, Schnabel et al. 2013).

While most rangelands are constrained by water inputs, water limitation can be 

caused by meteorological drought resulting from low rainfall, or agricultural 

drought resulting from management practices that degrade the soil’s ability to infil-

trate and store water, thus limiting production of crops or forage (Rockstrom 2003; 

Mishra and Singh 2010). Intensive grazing can decrease soil water by compacting 

soil, which decreases infiltration, soil water (Trimble and Mendel 1995), and soil 

organic matter (Hutchens 2011). In general, low-to-moderate grazing has variable 

effects on soil water availability. While soil water availability generally mirrors 

grazing effects on soil organic matter, soil water decreases when grazing leads to 

compaction (Derner and Schuman 2007) that can cause increased runoff and over-

land flow (Wilcox 2002). High stocking rates can also decrease water infiltration 

because livestock trampling can destroy soil aggregates critical for maintaining soil 

porosity, and decrease plant cover, which decreases soil organic matter and increases 

the erosive impact of raindrops (Briske et al. 2011). These effects seem to be more 

associated with stocking rate than duration/seasonality of grazing, so that a high- 

density, short-duration grazing regime can have larger impacts than moderate, con-

tinuous grazing. However, rotational grazing that provides rest periods greater than 

1 year can improve hydrologic function. The intensity of grazing necessary to dis-

rupt water infiltration depends on vegetation cover (Briske et al. 2011).

4.2.2.2  Decomposition

Decomposition is the physical and chemical breakdown of dead biological materi-

als. Decomposition is responsible for the formation of soil organic matter, and 

transformations result in organism-available energy and nutrient sources. The 

chemical composition of litter is a traditional metric used in studies of decomposi-

tion because it relates directly to the stoichiometric and chemical requirements of 

microbial decomposers. Predictors of quality of litter, C:N and lignin:N ratios, 

describe energy and nutrient source as well as the relative recalcitrance of available 

substrates. It is for these reasons measures of climate and litter quality are correlated 

with rates of net N mineralization at a global level (Manzoni et al. 2008) and are 
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included in models of ecosystem biogeochemistry (Parton et al. 1987). However, in 

arid and semiarid rangelands the value of these predictors is more problematic 

(Throop and Archer 2009; Austin and Ballare 2010). Recent research in arid range-

lands has focused on other determinants of litter to better predict rates and patterns 

of decomposition. The role of UV radiation has received considerable attention 

because litter on the soil surface is often exposed to direct solar radiation for long 

periods in ecosystems with low plant cover. Another key determinant is the rate of 

soil–litter mixing, which is relatively slow compared to more mesic ecosystems.

The role of UV radiation in aboveground decomposition has become increas-

ingly apparent, especially in more xeric regions with lower plant cover. 

Photomineralization of litter by UV radiation can short-circuit the C cycle because 

it results in direct loss of C to the atmosphere (Austin and Vivanco 2006), and can 

alter the chemical composition of remaining litter (Austin and Ballare 2010). In 

contrast, in the more mesic shortgrass steppe, precipitation, litter chemistry, and UV 

radiation were all important factors, but precipitation was the best determinant of 

litter decomposition, followed by litter chemistry (Brandt et al. 2010). Intercepted 

radiation was the major factor observed to have a significant effect on decomposi-

tion rates in the Patagonian Steppe, where filtering of UV-B and total solar radiation 

decrease decomposition rates by 33 % and 60 %, respectively (Austin and Vivanco 

2006). Significant mass loss was associated with solar radiation in a mesocosm 

experiment in North America, and rates of loss were not significantly different 

between UV radiation alone, microbial activity alone, or UV and microbial activity 

in combination. The authors conclude that UV radiation can be as effective at 

decomposing litter as microbial activity (Gallo et al. 2006). Lignin is often very 

resistant to microbial attack, so decomposition rates often decrease with increasing 

lignin content. However, rates of photodegradation have been observed to increase 

with lignin concentration because it is an effective light-absorbing compound 

(Austin and Ballare 2010), and exposure to sunlight leads to a decrease in litter 

lignin concentrations. Thus, while increased lignin will decrease microbial medi-

ated decomposition, it actually enhances photodegradation. An added consequence 

of greater photodegradation of lignin is that it allows microbial decomposers access 

to labile compounds protected by lignified materials.

The importance of photodegradation decreases with increasing plant cover and 

water, and as litter is mixed with soil (Barnes et al. 2012). The development of the 

soil–litter matrix is critical in our understanding of rangeland decomposition as it 

mediates the transition from physical breakdown from abrasion and photodegrada-

tion to biologically mediated decomposition by soil microbes. In a UV–soil mixing 

factorial experiment in a savanna ecosystem early decomposition was enhanced by 

UV radiation, but the effects decreased with increasing soil–litter mixing (Barnes 

et al. 2012). Nearly half of the surface area of litter was covered by a film of soil 

particles bound with fungal hyphae after 180 days. Others have also observed a 

positive relationship between soil litter mixing and mass loss of litter (Hewins et al. 

2013). Three mechanisms lead to the increase in decomposition with soil–litter 

mixing (Throop and Archer 2009). First, soil is the vector for colonization of litter 

by microbial decomposers. Second, mixing with soil can ameliorate temperature 
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and water extremes associated with the soil surface provide a more favorable micro-

environment for microbial colonization. Finally, soil transport along the soil and 

litter interface may increase the physical abrasion of litter making it more accessible 

to microbial decomposers.

4.2.2.3  Rhizosphere Dynamics

The influence of plant communities and the formation of resource “islands” exert 

strong controls on microbial community composition in arid and semiarid soils 

(Angel et al. 2013; Wang et al. 2013; Steven et al. 2014), with effects being more 

pronounced in arid soils compared to semiarid (Ben-David et al. 2011). Plant roots 

create local environments that are enriched in organic C and N (Orlando et al. 2012), 

have improved water-holding capacity (Wang et al. 2013), and support increased 

microbial biomass (Marasco et al. 2012; Wang et al. 2013), including the obligate 

plant host for symbiotic fungi (Martinez-Garcia et al. 2011). These islands of fertil-

ity have significantly greater function as indicated by greater rates of gaseous N 

losses and respiration (McCalley et al. 2011, Wang et al. 2013).

Rhizosphere dynamics link multiple complex plant processes—photosynthate 

translocation, rhizodeposition, root demography, and mycorrhizal associations—

with equally complex soil biotic factors—root herbivory, biofilm development and 

maintenance, and micro- and mesofaunal interactions. Further complicating our 

understanding of these interacting processes is the sensitivity of each of these pro-

cesses to abiotic factors, including temperature, soil water, and atmospheric CO2. 

Several exciting developments in rhizosphere research have shown that the micro-

bial communities that develop around root-soil interfaces inhabit biofilms, the 

extracellular polymeric substance matrix typical of benthic microbial habitat every-

where, and that these biofilms mediate mineral-microbe-root chemical exchanges 

(Balogh-Brunstad et al. 2008) and create resilient microenvironments suitable for 

maintaining microbial life and sustaining terrestrial ecosystems (Schimel et al. 

2007). Production by microbes within biofilms and the associated roots of higher 

plants can determine soil C accumulation, local pH, and rates of C and N transfer 

between roots and soil organisms. The development of mycorrhizospheric biofilms, 

by microbial and plant production of extracellular polymeric substances (EPS) and 

manipulation of biofilm chemistry, creates a microenvironment where microbial 

metabolism is buffered from extremes in soil conditions during drying and 

wetting.

4.2.2.4  Carbon Dynamics

The physical properties of soils exert strong controls on the soil C cycle. Soil struc-

ture created by aggregation of physical particles and organic matter increases C 

storage at fine scales. Greater concentrations of soil organic C are observed in soil 

aggregates (Wiesmeier et al. 2012; Fernandez-Ugalde et al. 2014) because 
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aggregation decreases the surface area per unit mass of soil increasing physical 

protection of soil organic matter from decomposition. This stabilization of organic 

C is enhanced in calcareous soils typical of many arid rangelands because the depo-

sition of calcite crystals can decrease the overall porosity of the aggregates 

(Fernandez- Ugalde et al. 2014). A comparison of the C mineralization rates between 

soil cores with intact aggregates and those with aggregates disrupted by sieving 

revealed that removal of structure increased decomposition and subsequent respira-

tion of soil C from 11- to 16-fold (Norton et al. 2012).

At broader scales, community structure in ecosystems with bunchgrasses or 

shrubs can create resource islands under the canopies of dominant plant species. 

Microbial biomass and resulting biological activity are enhanced in these areas 

compared to plant interspaces because of greater organic matter inputs from above- 

and belowground plant litter (Bolton et al. 1993; Smith et al. 1994). Resource 

islands can have twice the total soil C and over five times the detectable microorgan-

isms as soils located between plant canopies (Bolton et al. 1993) resulting in much 

greater respiration rates (Bolton et al. 1993; Smith et al. 1994; Wang et al. 2013).

Small changes in the timing and quantity of precipitation can significantly alter 

the C cycle in arid systems. Additions of 2–5 mm of precipitation each week can 

increase soil respiration as much as 50 % (Lai et al. 2013). Changes in the seasonal 

timing of precipitation can also be critical. Water additions during the dry season 

can greatly increase microbial activity and respiration demonstrating that soil organ-

isms are able to respond rapidly to pulses to soil water, but similar treatments during 

the moist season had little effect (Song et al. 2012). However, more frequent but 

smaller events can have detrimental effects on soil organisms. Small events can 

immediately increase microbial activity and respiration, but short-term increases in 

soil water do not persist long enough to stimulate photosynthesis in autotrophic 

organisms such as cyanobacteria. This leads to carbon deficits and long-term 

declines in their population size (Johnson et al. 2012).

Of particular interest in rangeland ecosystems is the influence of drying and wet-

ting soils on CO2 fluxes. Soil scientists have documented that drying soils reduces 

microbial activity and rewetting soils rapidly increases respiration rates (Birch 

1958; Miller et al. 2005; Borken and Matzner 2009). When a dry soil was rewetted, 

CO2 production could be elevated by up to 500 % over soils continuously moist 

(Fierer and Schimel 2002). This “Birch effect” can result in much higher respiration- 

related soil C loss than in soils that have not experienced soil water pulses. There is 

abundant discussion about the mechanism responsible for the Birch effect (Placella 

et al. 2012), and hypotheses include accumulation of solutes in microbial cells dur-

ing drying that are rapidly mineralized during rewetting (Harris 1981), hydration, 

lysis, and mineralization of dead microbial cells (Schimel et al. 2007), and an 

increase in the availability of nonmicrobial substrates (Unger et al. 2012), exoen-

zyme activity (Moorhead and Sinsabaugh 2000), or physical release of CO2 from 

carbonates (Billings et al. 2004). A recent study (Blazewicz et al. 2014) provides 

insight by combining DNA stable isotope probing and measures of soil CO2 fluxes. 

CO2 production increased significantly within 3 h of a water pulse, but this was not 

accompanied by significant microbial growth. Total microbial abundance did not 
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change significantly in the 7 days post-pulse, but substantial turnover of ~50 % was 

observed for both bacteria and fungi. The authors suggest that cell death that occurs 

during dry-down periods or during rapid changes in water potential associated with 

pulses generates a pool of labile C that likely contributes to the large CO2 fluxes 

observed following precipitation pulses.

4.2.2.5  Nitrogen Dynamics

The relative importance of processes within the N cycle is highly variable as a 

function of precipitation, plant species and phenology, and disturbance regime. The 

soil N cycle in more xeric sites is very “open” characterized by relatively rapid 

fluxes into and out of the soil (Peterjohn and Schlesinger 1990). The primary eco-

system input of N is N2 fixation by biological soil crusts (Evans and Ehleringer 

1993) and much of this is leached into soils in organic and inorganic forms (Johnson 

et al. 2005, 2007). Rates of gaseous loss from volatilization, nitrification, and deni-

trification are of comparable magnitude, leading to very slow accumulation of 

organic N over time. Retention and internal cycling of N increase in importance 

with increasing precipitation. For example, nitrogen-use efficiency of plants 

increased along a water gradient in North America resulting in greater plant bio-

mass in spite of similar rates of N mineralization (McCulley et al. 2009). 

Decomposition rates and release of N from litter decreased with increasing precipi-

tation, resulting in larger N pools, but also greater N limitations to plants, on the 

mesic end of the gradient.

While average precipitation patterns can have strong impacts on nutrient dynam-

ics, rangelands are also characterized by strong seasonal variations in precipitation, 

often with distinct wet and dry seasons, and sometimes frequent dry-wet pulses 

(Austin et al. 2004; Borken and Matzner 2009). During dry periods, soil microbial 

activity may be low, but inorganic N tends to accumulate through slow mineraliza-

tion rates, and low diffusion and plant uptake (Evans and Burke 2013). Nitrogen 

uptake may also be facilitated during these dry periods by hydraulic lift that pro-

motes mineralization even when surface soils are dry (Cardon et al. 2013). When 

soils rewet during a rainfall event, there tends to be a spike in N availability. The 

wetting up of dry soils stimulates a short-term spike in C and N mineralization 

through the disruption of soil aggregates (releasing physically protected soil organic 

matter), through lysis of microbial cells, and through microbial release of solutes to 

prevent them from bursting due to wet up. The size and duration of this flush of 

mineralization vary depending on soils and rainfall patterns, temperatures, and 

whether soils are hydrophobic or not (Borken and Matzner 2009; Morillas et al. 

2013). Pulses tend to be higher in fine-textured soils, due to their higher C and N 

contents (Austin et al. 2004). Frequent wet-dry pulses often lead to lower pulses of 

mineralization, due to the depletion of labile soil organic matter over time. While 

the rates of N and C mineralization spike during these rewetting periods, cumula-

tively, mineralization rates are usually higher on continuously wet soils than on dry 

soils during these wet-dry cycles, due to low rates during the dry periods (Borken 
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and Matzner 2009). These wet-dry cycles can also lead to high losses of N through 

leaching and trace gases, particularly since the wet-dry cycles stimulate N mineral-

ization to a greater extent than C.

Changes in species composition as modified by local environment also impact soil 

N dynamics. This is exemplified by the contrasting impacts of invasion by the exotic 

annual cheatgrass (Bromus tectorum L.). In the Colorado Plateau of North America, 

cheatgrass invasion has established a series of positive feedbacks among biological 

soil crust disturbance, fire frequency, and cheatgrass abundance (Fig. 4.4), all of 

which result in declines in total and available soil N (Evans et al. 2001b). In this sce-

nario cheatgrass shades autotrophic organisms within the biological soil crust decreas-

ing N2 fixation, which also favors cheatgrass establishment. Ecosystem N also 

accumulates in aboveground litter where it is not available for mineralization within 

the soil (Sperry et al. 2006), decreasing inorganic N availability. Subsequent range 

fires volatilized N within the litter, further decreasing soil fertility (Evans et al. 2001b; 

Sperry et al. 2006). In contrast, other studies from the Great Basin of North America 

(Booth et al. 2003) have observed greater total N, gross mineralization, and gross 

nitrification under cheatgrass than in neighboring native communities where differ-

ences in microenvironment promote greater mass loss of litter and N mineralization 

under cheatgrass. Nitrifier populations were also greater in invaded communities, and 

ultimately these differences in microenvironment and soil properties promoted greater 

N availability under cheatgrass compared to native communities.

Disturbance history can also influence soil N dynamics, especially in ecosystems 

that have evolved in the absence of large herbivores such as the Intermountain West 

of North America (Mack and Thompson 1982). In such cases, surface disturbance 

can disrupt the biological soil crust, greatly decreasing N2 fixation. Gaseous loss 

continues, causing overall N loss from the ecosystem and decreases in soil fertility 

(Evans and Belnap 1999). For example, disturbed sites that had been allowed to 

recover 30 years still had total soil N content and potential N mineralization rates 

that were 30 % and 70 % lower, respectively, than adjacent undisturbed locations. 

This presents an interesting contrast on anthropogenic effects on the N cycle, 

because surface disturbance can decrease soil fertility across many rangelands, 

Fig. 4.4 Native (left) and invaded (right) grasslands on the Colorado Plateau. Cheatgrass (Bromus 

tectorum) invasion shades biological soil crusts located in plant interspaces and greatly increases 

aboveground litter biomass (photographs by R.D. Evans)
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while a majority of terrestrial ecosystems are impacted by N deposition leading to 

N excess (Pardo et al. 2011). Grazing can have: no effect, enhance, or decrease N 

recycling rates in more mesic rangelands, depending on the conditions. In general, 

on high-fertility soils, grazing enhances recycling rates. However, under low- 

fertility conditions, livestock preferentially graze high-quality plants, selecting for 

unpalatable plants which decrease nutrient recycling rates (Bardgett and Wardle 

2003). Similarly, grazing on low-fertility soils can decrease aboveground plant pro-

duction, especially during drought (Augustine and McNaughton 2006). However, 

the impacts of grazing can vary due to the interactions of soil fertility and precipita-

tion. In low-rainfall conditions, grazers reduce aboveground net primary produc-

tion, regardless of soil fertility. However in wetter conditions, grazing increases 

aboveground net primary production on high-fertility soils, but decreases it in low- 

fertility soils (Augustine and McNaughton 2006).

4.3  Anthropogenic Impacts and Societal Implications

4.3.1  Responses to Land-Use Change

Grazing effects on soil characteristics have been a dominant area of research in 

rangeland ecology. The key responses most often measured include changes in soil 

organic matter (McSherry and Ritchie 2013), N transformations (Anderson et al. 

2006; Ingram et al. 2008), and soil texture, with its impacts on infiltration and water- 

holding capacity (Zhao et al. 2007, 2010). A challenge in synthesizing the impacts 

of grazing on soils is the extreme variability in environmental conditions and graz-

ing practices in rangelands. As a consequence, many reviews have concluded that 

grazing has mixed results (Milchunas and Lauenroth 1993; Derner et al. 2006) on 

key soil attributes. However, with the accumulation of additional studies and novel 

meta-analytical tools, there is a clearer understanding of how environmental vari-

ability may interact with grazing practices to produce predictable outcomes in soil 

processes. For example, there is an interaction between soil texture and precipita-

tion in determining the effect of grazing on soil C (McSherry and Ritchie 2013). On 

fine-textured soils, as precipitation increases the effect of grazing decreases while 

over the same range in precipitation, coarse-textured soils had an increase in the 

grazer effects on soil C. Increasing grazing intensity in rangelands dominated by 

plant communities utilizing C4 or mixed C4–C3 photosynthetic pathways increased 

soil C, while increasing grazing intensity in C3-dominant communities decreased 

soil C. While it is challenging to recognize context-specific grazing effects on soil 

processes, we are moving into a period where we can begin to predict specific 

effects due to grazing.

For many rangeland soils, soil loss is driven by surface disturbance of physical 

and biological soil crusts (Belnap et al. 2014). Dust production is best understood as 

the interacting processes that control the entrainment, transport, and deposition of 

wind-borne sediments (Chepil 1951, 1953; Ravi et al. 2011). Initially, wind erosion 
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research was motivated by a desire to understand the geomorphic and erosion pro-

cesses associated with agriculture (Chepil 1951, 1953). In the past two decades, this 

research has been reinvigorated as it has become clear that airborne sediments 

strongly influence soil fertility, planetary energy balance (Goudie and Middleton 

2001; Goudie 2008; Ravi et al. 2011), snow surface albedo, and thus melt rates on 

downwind mountain snowpack (Painter et al. 2010, 2012a, b). Drylands around the 

world are considered to naturally generate large amounts of sediment; many studies 

show that this is generally not true unless soil surfaces are disturbed (Belnap et al. 

2014). Instead, most undisturbed soil surfaces, unless they are barren sand dunes or 

soils consisting of mostly fine sands, have some form of protective surface, whether 

physical crusts, biocrusts, rocks, or plant cover. However, almost all these protective 

covers are highly vulnerable to the forces associated with vehicle and animal traffic. 

Once disturbed, protective crusts are unable to stabilize soil surfaces. Surface dis-

turbance due to animal traffic, off-road vehicle use, or other processes causes sedi-

ment generation to increase dramatically at most sites (Warren et al. 2001). As high 

winds commonly occur in rangeland regions, this destabilization often results in 

large dust storms originating from once stable areas. While there are some common 

predictors of sediment emission globally (e.g., silt content), other biophysical fac-

tors such as biocrust biomass and rock content are more important at the site scale. 

Soil surface disturbances are expected to increase in dryland regions, given the 

increasing demand for energy, minerals, recreational opportunities, and food pro-

duction. With this disturbance, aeolian erosion is also expected to increase from the 

disturbed soils.

4.3.2  Responses to Invasive Species

Invasive, non-native plant species have become one of the most pressing rangeland 

management issues (Fig. 4.5). In the western USA, 51 million hectares of rangeland 

are now dominated by invasive plants considered to be noxious weeds (Duncan and 

Clark 2005), including diverse life forms such as annual and perennial grasses, 

annual and perennial forbs, shrubs, and trees. In over 2/3 of western rangelands, 

non-native annual grasses account for 50–85 % of vascular plant cover (DiTomaso 

2000; Chapter 13, this volume). Invasions by exotic species are altering the struc-

ture and function of soils, including water availability and flow, C storage, nutrient 

availability, erosion rates, soil microbial communities, and disturbance regimes 

(Eviner et al. 2012; Eviner and Hawkes 2012).

While invasive plants have the potential to strongly impact soil, the specific 

impacts of any invasion strongly depend on environmental conditions and the 

unique functional traits of the invasive compared to native species. For example, the 

invasion of medusa head wildrye (Taeniatherum caput-medusae (L.) Neviski) into 

western US rangelands is associated with loss of soil C (Eviner and Hawkes 2012). 

In contrast, in New Zealand, the exotic mouse-eared hawkweed (Hieracium pilo-

sella L.) increases soil organic matter and productivity in overgrazed pastures, but 
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this effect depends on grazing intensity and aspect (Scott et al. 2001). Invasive spe-

cies may enhance N availability through increases in decomposition and N mineral-

ization rates (Ehrenfeld 2003; Corbin and D’Antonio 2004; Liao et al. 2008), 

although some invasive species decrease N availability, such as goatgrass (Aegilops 

triuncialis) into grasslands of California, USA (Drenovsky and Batten 2007), and 

crested wheatgrass (Agropyron cristatum L.) into the northern Great Plains of the 

USA (Christian and Wilson 1999). The effects of cheatgrass and spotted knapweed 

(Centaurea maculosa) on soil N vary with local soil and climate conditions, with 

different studies showing an increase, decrease, or no change (Eviner and Hawkes 

2012). Even when invaders don’t alter the total amount of soil resources, they can 

change the timing, location, and type of resource availability, restricting which plant 

species have access to these resources. For example, replacement of native peren-

nial species by the annual cheatgrass alters the timing of soil N availability, with 

high N availability occurring after its senescence because perennials are not present 

to assimilate inorganic N released during decomposition of cheatgrass litter (Adair 

and Burke 2010). Subsequent leaching in the absence of active plant cover redistrib-

utes soil nitrate deep in the soil profile. Cheatgrass is a winter annual, while native 

grasses resume activity in spring; so root growth by cheatgrass during winter and 

early spring allows it to assimilate this leached nitrogen pool before native grasses 

are active later in spring. This enhances cheatgrass growth at the expense of the 

native grasses (Sperry et al. 2006). Invasive plants also can alter the form of N avail-

able. For example, in California grasslands, USA, invasive grasses increase the soil 

bacterial nitrifier populations responsible for nitrification (Hawkes et al. 2005). 

Conversely, the invasion of gamba grass (Andropogon gayanus) into Australian 

grasslands inhibits nitrification (Rossiter-Rachor et al. 2009). Changes in the form 

Fig. 4.5 Senesced (background) grasses are naturalized annual species in California’s rangelands. 

Medusa head and goatgrass are present in the foreground, and both are invasive noxious weeds 

(photograph by V. Eviner)
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of available N can alter competition between species (Marschner 1986; Crabtree 

and Bazzaz 1993). The largest impacts of invasive plants on soils can be mediated 

through changes in disturbance regimes. For example, invasion of cheatgrass and 

medusa head can greatly increase fire frequency, which greatly increases potential 

loss of soil C and N. Soil nutrient availability may briefly spike after disturbances, 

stimulating reestablishment of invaders (Eviner et al. 2012; Eviner and Hawkes 

2012). Increased fire frequency in response to annual grass invasion can also lead to 

higher erosion rates after fire, leading to potential desertification of rangelands 

(Ravi et al. 2009).

Many invasive species alter soil in ways that shift competitive balance from 

native to non-native species resulting in “invasional meltdown” (Simberloff and 

Von Holle 1999). For example, changes in the soil environment caused by the inva-

sion of cheatgrass favor medusa head, and further modification of soils favors exotic 

forbs (Eviner et al. 2012). Similarly, changes in the soil microbial community 

caused by smooth brome (Bromus inermis) can favor the establishment of the 

invader leafy spurge (Euphorbia esula) (Jordan et al. 2008). Controlling the positive 

soil feedbacks of invaders requires a specific understanding of the mechanism of 

feedback, which can vary greatly by species, and even within a species across sites 

(Eviner and Hawkes 2012). Early eradication is critical, as the strength of soil feed-

backs tends to increase with time since invasion. For example, extensive erosion as 

a result of invasion of spotted knapweed (Centaurea maculosa) (Lacey et al. 1989) 

can take decades to centuries to reverse via soil formation processes and the gradual 

buildup of organic matter by the restored plant community.

4.3.3  Responses to Global Climate Change

4.3.3.1  Precipitation Change

Climate is a major controlling factor over ecosystem structure and function and 

changes in the frequency and intensity of drought caused by anthropogenic activity 

are the most likely to negatively impact rangeland ecosystem processes. Drought 

restricts biological activity, primary production, timing of plant growth, patterns of 

mortality, organic matter dynamics, and nutrient availability (Borken and Matzner 

2009; Evans and Burke 2013; DeMalach et al. 2014). For example, extended drought 

produced region-wide tree mortality in the southwestern USA (Breshears et al. 

2005). There have been a number of studies that evaluate two critical elements of 

precipitation change: (1) the timing of precipitation, independent of total amount, 

and (2) changes in the amount of precipitation.

While soil water is a principal driver of soil processes in rangelands, it is very likely 

that precipitation change will interact strongly with rising temperatures—particularly 

extreme heat waves. One of the most promising advances in understanding rangeland 

soil responses to climate change is the addition of factorial experiments that look at the 

individual and combined effects of various climate change factors. Relatively modest 
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changes in soil water content can produce much larger changes in ecosystem processes, 

including soil CO2 efflux (Fay et al. 2011). A 15 % decrease in soil water that accom-

panied precipitation variability treatments caused measured responses to decrease by 

up to 40 %. In addition to modifying precipitation timing, year-round warming can 

cause a change in plant phenology and shift the seasonality of microbial activity with 

higher winter soil CO2 flux and lower summer soil CO2 flux. While the effects of chang-

ing precipitation variability and warming were modest compared to large between year 

variability, they are likely ecologically significant. While this experiment altered mean 

patterns, additional studies have begun looking at extreme events including the interac-

tions between extreme drought and heat waves and found that even extreme warming 

had only modest effects on plant production and community composition and that the 

majority of observed changes were driven by soil water effects. In addition, drought and 

precipitation variability could impact ecosystem function. Drought has a greater impact 

when it occurs in the wettest portion of the year when organisms are most active, in 

contrast to typical seasonally dry periods. In addition, heat waves and droughts late in 

the growing season had no significant effects on ecosystem dynamics.

4.3.3.2  Elevated CO2

Arid and semiarid soils are critical components of the Earth’s C budget (Evans et al. 

2014; Poulter et al. 2014). Recent increases in atmospheric [CO2] are unprecedented 

as emissions have accelerated from 1 % year−1 from 1990 to 1999 to 2.5 % year−1 

from 2000 to 2009 (Friedlingstein et al. 2010). The increase in atmospheric [CO2] 

has the potential to dramatically alter the biogeochemistry of rangeland soils. The 

direct effects of increasing [CO2] on soils are negligible because soil [CO2] greatly 

exceeds that of the atmosphere (Drigo et al. 2008); however, increases in atmo-

spheric [CO2] can indirectly impact soil elemental cycles by altering the amount and 

chemical composition of organic matter inputs in the form of above- and below-

ground plant litter, rhizodeposition, and mycorrhizal associations. Carbon dioxide 

is also the dominant greenhouse gas influencing climate, so increases in atmospheric 

[CO2] impact ecosystem function through changes in ambient temperatures.

Early studies demonstrated that elevated [CO2] could increase rates of C assimi-

lation and decrease stomatal conductance, causing increased water-use efficiency 

(Nowak et al. 2004; Chapter 7, this volume). This led to predictions that water- 

limited ecosystems, including many rangelands, would be most responsive to future 

atmospheric conditions. A conceptual model was proposed (Strain and Bazzaz 

1983) that predicted that the magnitude of ecosystem responses to elevated [CO2] 

was controlled by water and N availability. Ecosystems with sufficient water, or 

where N was limiting, would see limited response to elevated [CO2]. In contrast, 

water-limited ecosystems with sufficient N would exhibit the greatest responses. It 

has since been recognized that N limitations to net ecosystem productivity can 

increase over time with increased exposure to elevated [CO2] as organic matter is 

sequestered into recalcitrant materials such as woody biomass and soil pools with 

slow turnover (Gill et al. 2002), a process termed progressive nitrogen limitation 

(Luo et al. 2004).

R.D. Evans et al.



151

Results from long-term elevated [CO2] experiments in rangelands demonstrate 

complex responses to elevated [CO2] especially in those studies that consider mul-

tiple environmental drivers. Three experiments in North American rangelands occur 

along a precipitation gradient from 134 mm year−1 for the Nevada Desert FACE 

Facility (NDFF) and 384 mm year−1 for the Prairie Heating and CO2 Enrichment 

(PHACE) in the C3–C4 shortgrass steppe (Fig. 4.6) to 914 year−1 mm at the site of 

two experiments in the C3–C4 tallgrass prairie (Fig. 4.7). Biogeochemical cycling 

at the xeric end of the precipitation gradient is characterized by C limitations to 

microbial activity and very open C and N cycles, so significant increases in ecosys-

tem C and N were observed over the life of the experiment (Evans et al. 2014). 

Greater soil C under elevated CO2 resulted from death of enhanced plant growth that 

occurred during periods of adequate soil water that could not be supported during 

intervening drought, and significantly greater rhizodeposition (Jin and Evans 2010). 

Progressive N limitation has yet to be observed as increased C has accelerated rates 

of N transformations increasing gross N mineralization and organism N availability 

(Billings et al. 2004; Jin et al. 2011). Nutrient availability was further enhanced by 

increases in microbial diversity and abundance (Jin and Evans 2010), especially for 

fungi that are able to utilize the recalcitrant C and N that dominate these soils 

(Billings et al. 2004). Elevated [CO2] also increased retention of N within the soil 

by promoting microbial immobilization of N and decreasing rates of gaseous N loss 

(Schaeffer et al. 2003; McCalley and Sparks 2008, 2009).

Fig. 4.6 The Prairie Heating and CO2 Enrichment (PHACE) study located manipulated tempera-

ture and CO2 concentration in C3–C4 shortgrass steppe. Warming was controlled by infrared heat-

ers at the top of each plot, while CO2 was controlled by emitting gas from the ring at the bottom of 

the plot (photograph by Sam Cox, (former) USDA-ARS Biological Science Technician, (now) 

Natural Resource Specialist with Wyoming BLM)
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Similar results were observed in open top chamber (OTC) experiments in the 

shortgrass steppe. Elevated [CO2] stimulated above- and belowground production 

and increased rhizodeposition almost 100 % (Pendall et al. 2004). Results also sug-

gest that available soil N remained high during the 5-year experiment presumably 

due to increased soil water promoting more rapid N mineralization (Dijkstra et al. 

2008). No differences were observed in gaseous N loss (Mosier et al. 2002). 

Research on elevated [CO2] in the shortgrass steppe was subsequently expanded to 

include effects of warming through the PHACE experiment, and [CO2] and warm-

ing produced contrasting effects on soil processes. In contrast to earlier studies, 

elevated [CO2] resulted in a more closed N cycle by promoting microbial immobi-

lization of N, decreasing soil inorganic N availability (Dijkstra et al. 2010; Carrillo 

et al. 2012). In contrast, warming enhanced inorganic N presumably because of 

greater rates of decomposition. Similar results have been observed for grasslands in 

Australia, where elevated [CO2] decreased available soil N, but warming of 2 °C 

plus elevated [CO2] prevented this effect (Hovenden et al. 2008). Results from 

PHACE also suggest that the interacting effects of warming and elevated CO2 may 

decrease ecosystem C storage (Pendall et al. 2013). Microbes from the combined 

warming–elevated [CO2] treatments exhibited greater decomposition activity than 

other treatments suggesting greater rates of decomposition and C loss, a conclusion 

supported by direct measurements of soil C efflux (Pendall et al. 2013).

Fig. 4.7 The CO2 concentration-gradient study in the tall-grass steppe. Air with an elevated CO2 

concentration simulating future conditions is introduced at one end and the concentration decreases 

through photosynthesis as it moves through the tunnel. This allows scientists to examine plant and 

soil responses ranging from preindustrial to expected levels in 2050 in the same experiment. The 

experimental infrastructure also allows manipulation of other variables such as soil type (photo-

graph by F.A. Fay)
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Two experiments at the most mesic end of the precipitation gradient strongly 

support progressive N limitation under elevated CO2. In the first, intact C3–C4 

grasslands were exposed to a gradient in [CO2] from 200 to 560 μmol CO2 mol−1 

(Gill et al. 2002; Gill et al. 2006). A threefold decrease in N availability was 

observed with increasing [CO2] (Gill et al. 2002) and N transferred from soil 

organic matter to plant pools (Gill et al. 2006). Similarly, transfer of soil C from 

recalcitrant to labile pools was observed resulting in greater C loss through res-

piration with increasing [CO2]. Greater respiration was offset by enhanced NPP 

at higher [CO2] resulting in no change in the overall C balance, but future C 

sequestration may be limited by progressive N limitations. This experiment was 

followed by the establishment of the lysimeter CO2 gradient study using the 

same gradient in [CO2] but incorporating three soil treatments. Results from this 

study strongly emphasize the importance of soil type in controlling responses to 

drivers of global change. For example, elevated [CO2] favored forbs over grasses 

on only one of the three soil types (Fay et al. 2012; Polley et al. 2012). Similar 

responses were observed for soils where elevated [CO2] enhanced soil water 

availability on only two of the three soil types (Fay et al. 2012). In contrast to 

earlier research, no changes were observed in soil N availability with increasing 

[CO2] across all soil types.

4.3.3.3  Atmospheric Deposition

Ecosystems affected by atmospheric deposition are often located downwind of large 

urban centers, near point emission sources, or in regions with a mix of urban and agri-

cultural emission sources (Fenn et al. 2003a, b). Background rates of atmospheric 

deposition are generally less than 3 kg N ha−1 year−1, but can approach and may even 

exceed 30 kg N ha−1 year−1 in the most heavily impacted areas (Fenn et al. 2003b). 

Research addressing the effects of atmospheric deposition on rangeland soils is rare 

compared to forest and aquatic ecosystems (Pardo et al. 2011). Assessing the regional 

importance is difficult because accurate sampling networks for wet and dry deposition 

are either widely separated or absent in most rangelands around the globe, and when 

studies do occur they often focus on plant or aquatic species rather than soils.

Attempting to extrapolate the effects of atmospheric deposition from many fer-

tilization studies can be misleading. The major effects of elevated atmospheric 

deposition result from long-term, chronic addition of low amounts of N. Most fer-

tilization studies apply N in one or a few applications that may overwhelm the 

assimilation capacity of plants and microbial populations, leading to artificially 

high rates of leaching and gaseous loss from the soil. Application rates can also 

greatly exceed rates of deposition observed even in the most impacted areas. 

Atmospheric deposition in most rangelands is still less than 10 kg N ha−1 year−1, and 

rates exceeding 20 kg N ha−1 year−1 are found only in ecosystems adjacent to heavily 

industrialized areas. Critical loads for most ecosystem components are less than 

10 kg N ha−1 year−1 (Pardo et al. 2011); thus application rates in excess of 

30–40 kg N ha−1 year−1 have minimal value when attempting to understand or predict 
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ecosystem responses to atmospheric deposition. Finally, experiments must not only 

apply realistic amounts spread throughout the year, but must also match the form of 

deposition most common in that region because oxidized and reduced forms can 

have very different effects on soil processes.

It is for these reasons that the best studies of the effects of atmospheric deposi-

tion are most often those that occur in currently impacted areas. Even here the 

responses are complex due to interactions between the form and amount of N depo-

sition and their interaction with local soils making generalizations difficult (Greaver 

et al. 2012). A common observation is that increased atmospheric deposition 

relieves N limitations to growth and activity by plants and soil organisms (Aber 

et al. 1989). Initial increases in net primary production are often observed in 

N-limited soils. Further deposition can exceed rates of plant assimilation leading to 

increases in nitrification, denitrification, and emissions of greenhouse gases such as 

NO and N2O (Fenn et al. 1996, 2003b; Templer et al. 2012). Chronic, high rates of 

atmospheric deposition may ultimately lead to significant leaching of nitrate from 

soils into surrounding aquatic ecosystems and groundwater, decreases in base satu-

ration, acidification of soils, and cation limitations to plant and microbial activity 

(Aber et al. 1989). N deposition can greatly alter plant species composition, particu-

larly promoting invasive species.

4.3.4  Restoration

Rangelands are extremely variable and multiple stable states may exist depending 

on precipitation patterns, grazing, fire, and land use (Campbell et al. 1997; Reynolds 

et al. 2007) (Chapter 6, this volume), but functioning soils are the key to resilience 

under these varying conditions (Briske et al. 2006). Soil functions that are critical 

for rangeland resilience include infiltration, water storage, erosion control, soil 

fertility, and net primary production (MEA 2005; Briske et al. 2006), and their 

degradation can limit restoration of productive communities and the ecosystem 

services they provide (Bestelmeyer et al. 2003; MEA 2005; Seymour et al. 2010; 

Li et al. 2013). The key factor to maintaining soil resilience is vegetation cover. 

This can be disrupted through overgrazing, fire suppression, and drought that may 

contribute to state shifts from grassland to shrublands, which often increases bare 

ground and erosion.

Degradation due to soil erosion can be difficult, if not impossible, to reverse (Li 

et al. 2013), so the best management options are those that prevent it from occur-

ring. Grazing practices to maintain plant cover are the key to preventing erosion 

(Pulido-Fernandez et al. 2013), with low-to-moderate grazing intensities, and sea-

sonal grazing tending to have minor impacts on soils, while continuous intensive 

grazing can deplete C and N and degrade soil structure (Kotze et al. 2013; Xu et al. 

2014). Grassland productivity can often be maintained by leaving critical levels of 

plant biomass as residual dry matter. The amounts of residual biomass vary depend-

ing on slope and precipitation (Bartolome et al. 2007; Xu et al. 2014), but managing 
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for this target can be difficult due to fluctuations in precipitation, and thus livestock- 

carrying capacity (Kiage 2013). Restoration of degraded soils often requires cessa-

tion of grazing during the recovery period.

4.4  Future Perspectives

The development and application of molecular tools are revolutionizing disciplines 

within the life sciences. This is especially apparent in soils, where microorganisms 

are responsible for a majority of the biological activity, but available technologies 

caused them to be treated as a black box termed “microbial biomass.” Recent 

advances now allow for descriptions of microbial diversity and community struc-

ture, and continued development of high-throughput sequencing and metagenomics 

approaches permits discovery of new organisms and large-scale comparisons across 

diverse ecosystems (Zak et al. 2006; Weber et al. 2011; Dunbar et al. 2012). Stable 

isotope probing, where substrates with distinct isotope composition are assimilated 

by organisms that are later identified using DNA (Zak et al. 2006) or cell wall pro-

files (Jin and Evans 2010), now has the potential to directly link functional groups 

of organisms with their biogeochemical function. Quantifying functional genes that 

encode specific enzymes also allows grouping of organisms into functional groups 

focused on specific processes (Zak et al. 2006).

Efforts are also under way to describe the functional state of rangeland soil 

microbial communities using proteomics, the study of protein structure and func-

tion (Bastida et al. 2014). Proteomic profiling is potentially very powerful for soil 

ecology, as the proteome encompasses the overall metabolism of the system, and 

the cellular machinery that is poised to respond to new conditions. Key functions 

identified in this study included dehydrogenases, catalases, and superoxide dis-

mutases. The presence of a large number of carboxysome proteins and other C fixa-

tion proteins (phycocyanins) in highly degraded, low-C soils suggests that there is 

large capacity for C fixation that is not favored for environmental reasons such as 

substrate availability or microbial vigor (Bastida et al. 2014). As proteomic analyses 

of soils continue to develop, new knowledge of how local conditions regulate soil 

metabolism is likely to emerge.

Technological advances are not confined to soil microbiology; development of 

new microelectronics, digital computation, and networking has created a data del-

uge in rangeland ecology. These new sensors are facilitating our understanding of 

water fluxes (Reeves and Smith 1992; Paige and Keefer 2008; Flerchinger and 

Seyfried 2014), soil electrical connectivity, plant and soil microenvironments, 

incoming radiation amount and quality, and soil CO2 fluxes (Kao et al. 2012; Taylor 

and Loescher 2013; Loescher et al. 2014). Rangeland ecologists are now able to 

monitor microclimate with high spatial and temporal resolution with better preci-

sion at costs well below standard prices in past decades. Capacitance and time 

domain reflectometry measurements of soil water have become commonplace in 

many rangeland studies, allowing for direct connections between soil water 

4 Soil and Belowground Processes



156

availability and ecological processes. One of the key attributes of the new National 

Ecological Observatory Network in the USA is the high level of sensor integration 

into a continental-scale research network (Kao et al. 2012; Taylor and Loescher 

2013; Loescher et al. 2014) that offers the potential to ask complex, landscape-scale 

ecological questions using wireless sensor networks (Simoni et al. 2011; Kerkez 

et al. 2012; Rosenbaum et al. 2012; Chaiwatpongsakorn et al. 2014). With the prom-

ise of a future of inexpensive, spatially and temporally expansive data comes the 

challenges of managing, integrating, analyzing, and interpreting these data.

Fortunately for soil biologists, many of the challenges that come in a data-rich 

science have been addressed by bioinformaticians trained to apply computational 

techniques to analyze information tied to biomolecules, including genomics, gene 

expression, structural biology, and other molecular applications. Environmental 

research is quickly requiring the same informatics tools to deal with sensor data 

(Michener and Jones 2012; Porter et al. 2012) leading to the new field of ecological 

informatics (Suri et al. 2006; Michener et al. 2007; Michener and Jones 2012).

4.5  Summary

The past 25 years have seen increased emphasis on understanding soil function and 

sustainability in rangelands, and their significance in global biogeochemical cycles. 

Research demonstrates that rangelands are extremely diverse and future studies 

should strive to further develop common unifying principles. It is also apparent that 

paradigms developed in more mesic ecosystems may not be applicable in range-

lands because of their extreme environments and inherently low and often stochas-

tic resource availability. Plant community composition is a major driver of soil 

function. Grazing can cause shifts to species with lower nutrient content, higher 

concentrations of defense compounds, or more woody vegetation, lowering nutrient 

availability and impacting soil water dynamics. Increased emphasis is also being 

placed on nonvascular components of the rangeland ecosystems. Biological soil 

crusts are common on surface soils of ecosystems with less than 100 % plant cover-

age. Soils crusts enhance soil stability and can be the dominant source of N through 

nitrogen fixation. Recent results demonstrate that N assimilated by crusts is subse-

quently leached into soils making it available for uptake by plants and soil microbes. 

Growth of molecular tools with high throughput has greatly expanded our under-

standing of the diversity and community composition of the archaea, fungi, and 

bacteria responsible for most transformations within soils. Combining molecular 

approaches with other techniques has allowed scientists to increasingly link compo-

sition and function in soils, thereby shedding light on what was formerly viewed as 

the black box of microbial dynamics in soils.

Decomposition is a major driver of nutrient availability in all ecosystems. Unlike 

more mesic ecosystems, photodegradation caused by UV radiation can be a major 

determinant of rates of decomposition, especially in more arid rangelands. The rate 

of mixing of litter into soils is also important as this enhances inoculation by micro-
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bial decomposers. Carbon and nutrients can also enter soils directly through rhi-

zodeposition through plant roots and mycorrhizae. At small scales, the greatest soil 

C is associated with soil aggregates and significant amounts of soil C can be pro-

tected by soil structure. The unique patchiness of vegetation in many rangelands 

controls C dynamics at larger scales, and larger microbial populations, greater plant 

and microbial activity, and greater C fluxes are associated with the canopies of 

higher plants, rather than in plant interspaces. Soil nutrient cycles are controlled by 

precipitation, plant species, and disturbance regimes. Nutrient cycles in more xeric 

ecosystems are characterized as being very “open” with rates of input balanced by 

relatively equal rates of loss. In contrast, nutrient contents are greater with increas-

ing precipitation, and cycling rates are more “closed” and characterized by internal 

cycling. Seasonal patterns of precipitation are also important and can lead to pulses 

of nutrient availability following rain events. Restoration efforts in rangelands must 

adapt to local conditions, but keys to maintaining soil condition and function are 

infiltration, water storage, erosion control, and maintaining soil C and nutrients.

Rangeland responses to land-use change are diverse matching their highly vari-

able composition and associated grazing practices. Surface disturbance can increase 

soil loss in more xeric rangelands by disrupting the biological soil crusts. The 

impact of invasive plant species on rangeland soils can also be highly variable. For 

example, cheatgrass can increase, decrease, or not alter available nitrogen. Invasive 

species can also alter the timing, location, and type of resources available. One of 

the most profound responses of rangeland soils to changing atmospheric conditions 

is likely to be responses to the increase in the frequency and intensity of drought. 

Water is a primary driver of soil processes in rangelands and decreases in water 

availability can negatively impact microbial activity, nutrient availability, and sub-

sequent plant growth. Of special concern is the interaction between drought and 

predicted increases in extreme temperatures, which will greatly exacerbate responses 

observed under drought alone. Precipitation regime will also determine ecosystem 

responses to increases in atmospheric CO2. Experiments in more xeric ecosystems 

found that soil C and N cycling was energy limited and increasing [CO2] enhanced 

nutrient availability and C storage. In contrast, additional C in more mesic ecosys-

tems led to microbial sequestration of N and progressive N limitation over time. 

Although soils have received less recognition than vegetation or climate the knowl-

edge summarized in this chapter demonstrates that they are essential to the resil-

ience of rangeland ecosystems.
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Chapter 5

Heterogeneity as the Basis for Rangeland 

Management

Samuel D. Fuhlendorf, Richard W.S. Fynn, Devan Allen McGranahan, 

and Dirac Twidwell

Abstract Rangeland management, like most disciplines of natural resource man-

agement, has been characterized by human efforts to reduce variability and increase 

predictability in natural systems (steady-state management often applied through a 

command-and-control paradigm). Examples of applications of traditional command 

and control in natural resource management include wildfire suppression, fences to 

control large ungulate movements, predator elimination programs, and watershed 

engineering for flood control and irrigation. Recently, a robust theoretical founda-

tion has been developed that focuses on our understanding of the importance of 

variability in nature. This understanding is built upon the concept of heterogeneity, 

which originated from influential calls to consider spatial and temporal scaling in 

ecological research. Understanding rangeland ecosystems from a resilience per-

spective where we recognize that these systems are highly variable in space and 

time cannot be achieved without a focus on heterogeneity across multiple scales. 
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We highlight the broad importance of heterogeneity to rangelands and focus more 

specifically on (1) animal populations and production, (2) fire behavior and man-

agement, and (3) biodiversity and ecosystem function. Rangelands are complex, 

dynamic, and depend on the variability that humans often attempt to control to 

ensure long-term productivity and ecosystem health. We present an ecological per-

spective that targets variation in rangeland properties—including multiple ecosys-

tem services—as an alternative to the myopic focus on maximizing agricultural 

output, which may expose managers to greater risk. Globally, rangeland science 

indicates that heterogeneity and diversity increase stability in ecosystem properties 

from fine to broad spatial scales and through time.

Keywords Scale • Landscape ecology • Hierarchy • Pattern • Disturbance • 

Resilience

5.1  Introduction

The modern era of natural resource management has been characterized by human 

efforts to reduce variability and increase predictability in natural systems. This 

command-and-control paradigm is an extension of societal attempts to identify 

problems and design and apply solutions to control or mitigate those problems 

(Holling and Meffe 1996). Examples of command and control in natural resource 

management include wildfire suppression, fences to control large ungulate move-

ments, weed control for herbaceous native forbs, predator elimination programs, 

and watershed engineering for flood control and irrigation, including dams, ter-

races, and subsurface tile drainage. Each of these practices employs human technol-

ogy to attempt to modulate and regulate the spatial and temporal distribution of 

resources and complexity of ecological processes. As a result of these attempts (and 

others), modern natural resource management has created more simple and homo-

geneous landscapes, which have been considered to be more economically produc-

tive due to their perceived increase in predictability. Alongside resource homogenization, 

land subdivision, fences, transport networks, growing human populations, and other 

forms of development are increasingly fragmenting ecosystems into smaller man-

agement units (Hobbs et al. 2008).

Paralleling command-and-control management is a scientific paradigm that 

likewise seeks to control or even eliminate variation. Generations of scientists have 

been trained to design experiments that control all variations except for that which 

is expected to drive the hypothesized differences. Extreme examples are green-

house studies and small plot studies that attempt to control for weather and spatial 

 variation, even though we are studying systems that are often described as non- 

equilibrial and interconnected with other systems. Data from such experiments 

have most often been subjected to Fisherian statistics, which describe differences 

between groups in terms of variation around mean values. These models have tra-
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ditionally considered variation only as a nuisance parameter that is only useful to 

calculate an accurate mean, rather than a critical parameter in itself. These factors 

have contributed to a scientific discipline that has tendencies to reduce variation 

and study small plots, rather than embracing variation and studying complex land-

scapes at multiple scales.

Yet natural systems are subject to a host of biotic and abiotic processes that shape 

these landscapes ranging from broad-scale, long-term changes in climate to more 

localized, short-term events such as droughts, floods, and fires (Fig. 5.1). Over time 

these factors have created complex systems in nature with a high degree of spatio-

temporal variability associated with topography, soils, climate, weather, and distur-

bance regimes overlain with a diversity of plant and animal communities. 

Consequently, management seeking to maintain homogeneity presents a major 

quandary, and often comes at substantial cost, because it is attempting to override 

the inherent heterogeneity of rangelands and the behavior of disturbances. 

Considerable money and energy are spent attempting to minimize heterogeneity. 

Rangeland managers have long sought to override variability in nature with man-

agement infrastructure (e.g., fencing, water provisioning) and by controlling distur-

bances (e.g., channeling or damming water courses and suppressing fires). Despite 

these efforts, disturbances such as fire, flooding, and drought continue to create 

variation in systems managed for equilibrium, although the variability is structured 

differently. This has led to a prevailing view that such disturbances are destructive 

threats to production systems.

Fig. 5.1 The complexity of rangeland landscapes is a consequence of varying topo-edaphic char-

acteristics and disturbance patterns, including land use. Photo by Sam Fuhlendorf

5 Heterogeneity as the Basis for Rangeland Management



172

A robust theoretical foundation now underlies our understanding of the impor-

tance of variability in nature. This understanding is built upon the concept of hetero-

geneity, which originated from influential calls to consider spatial and temporal 

scaling in ecological research (Wiens 1989; Levin 1992), that resulted in the field of 

landscape ecology (Urban et al. 1987; Turner 1989; 2005). As a consequence, het-

erogeneity has become a familiar concept in the study and management of land-

scapes. But heterogeneity has only recently become appreciated as a component of 

ecological systems, and adopting it as a guiding principle for ecosystem manage-

ment has been slow. Obstacles to heterogeneity-based management and policy stem 

from problems associated with understanding the concept, inconsistent definitions 

and measurement, as well as a general affinity for homogeneity of landscapes asso-

ciated with command-and-control management to optimize efficiency.

The intentional simplification and fragmentation of landscapes have contributed 

to a limited understanding of variability and complexity. In this chapter, we synthe-

size the current status of rangeland science and management demonstrating the 

importance of heterogeneity in rangeland ecosystems and the limitations of 

homogeneity- based management approaches. This chapter is organized into the fol-

lowing sections. First, we discuss how heterogeneity is defined and measured. 

Second, we use case examples from rangeland research in North American and 

sub- Saharan Africa to address the following questions: (1) How does heterogeneity 

support faunal diversity and abundance? (2) How is heterogeneity critical to ecosys-

tem function? (3) How is heterogeneity featured in policy and management? We 

end by offering suggestions as to how heterogeneity may represent the cornerstone 

to rangeland management, which should support a large degree of spatial and tem-

poral variability.

5.2  Heterogeneity and Scale: Concepts Linking Pattern 

and Process

Because heterogeneity is largely associated with spatial and temporal variation of 

pattern–process relationships, heterogeneity depends on the scale of measurement 

or observation. Thus, heterogeneity cannot be operationalized without explicit con-

sideration of scale—both in time and space. A widely accepted approach is to mea-

sure and evaluate heterogeneity across several scales (Senft et al. 1985; Fuhlendorf 

and Smeins 1999). Still, studies that have actually evaluated hierarchical relation-

ships between the scale of heterogeneity and the structure and function of rangeland 

ecosystems are very limited. In this section, we discuss (1) the different types of 

heterogeneity and (2) the sources of heterogeneity contributing to variation in 

rangeland ecosystems.
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5.2.1  Types of Heterogeneity

5.2.1.1  Measured vs. Functional

Measured Heterogeneity. This is a measure of the variability of an ecological 

property or process without explicit relations to variability in animal behavior or 

ecological function (Li and Reynolds 1995). Measured heterogeneity is the 

product of the perspective of the observer and dependent on sampling protocols 

and arbitrary decisions of experimental design. For example, a study conducted 

with meter square sampling plots uniformly or randomly distributed that calcu-

lates the variation among this arbitrary plot size and arrangement should be 

described as measured heterogeneity. Studies that considered multiple levels of 

arbitrary or measured heterogeneity have demonstrated considerable differences 

in the measured response of an ecological property or process across multiple 

scales of studies (Wiens 1989; Fuhlendorf and Smeins 1999). These measures 

can be useful for understanding how important patterns and processes change 

with scale. However, measured heterogeneity can only be used to infer ecologi-

cal function since relationships are arbitrarily established and may, in fact, have 

little relevance to the ecological questions of interest. Also, if the range of scales 

measured does not include the appropriate scale to describe the relationship, we 

can erroneously conclude an inappropriate value of heterogeneity in describing 

the process.

Functional Heterogeneity. This is variability at a scale that influences the func-

tion of a specific ecological property or process (Li and Reynolds 1995). Because 

the ecosystem properties that are important to a beetle are not the same as those that 

are important to a fox or an elk, the scale of heterogeneity relevant to their behavior 

differs among species. Also, patterns driven by climate fluctuations occur at differ-

ing scales than topo-edaphic features or local pathogen outbreaks. Functional het-

erogeneity assumes that scale of variability is determined by the ecological entity of 

interest, and is based on the perspective of the participating ecological entities, not 

the perspective of the ecologist.

The functional heterogeneity concept suggests that rather than asking if a species 

or process responds to heterogeneity, the more relevant question is what types, pat-

terns, and scales of heterogeneity are important to a species or process of interest 

(Kolasa and Rollo 1991). Experiments demonstrate that functional heterogeneity 

has greater potential to explain variability in the relationship between pattern and 

process than measured heterogeneity (Gómez et al. 2004; Twidwell et al. 2009). But 

functional heterogeneity requires greater knowledge of pattern–process relation-

ships and often demands more sampling effort. In the face of such limitations, mea-

sured heterogeneity and establishment of arbitrary sampling points across multiple 

spatial or temporal scales have the potential to identify likely scales of interaction 

between pattern and process. Measured heterogeneity can therefore be a useful step 

toward understanding the spatiotemporal scales at which functional heterogeneity 

emerges (Twidwell et al. 2009).
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Linking pattern and process through a lens of functional heterogeneity is 

extraordinarily rare in rangeland research and monitoring. Random sampling points 

are used to satisfy assumptions of independence for commonly used statistical analy-

ses (e.g., analysis of variance, ANOVA). But heterogeneity occurring within the study 

area can lead to misinterpretations from arbitrary sampling approaches and produce 

erroneous results. This occurs because a fundamental assumption of many sampling 

procedures and statistical analyses is that heterogeneity within experimental units is 

not present or unimportant and the ecological property or process of interest operates 

uniformly across experimental units. While small homogeneous plots can have some 

value, it is important to recognize that ecological processes rarely operate in this way.

5.2.1.2  Spatial vs. Temporal

Landscapes consist of variable patterns and processes that are dynamic in space and 

time and lead to complexity that is an essential characteristic of rangelands. Spatial 

heterogeneity refers to how an ecosystem property—nutrients, vegetation type, or 

amount of cover—varies among points within the landscape. Temporal heterogene-

ity is similar but refers to variability at one point in space over time. When we con-

sider heterogeneity we often consider spatial and temporal heterogeneity separately 

for statistical and logistical reasons, but in nature they are largely inseparable. For 

example, if temporal heterogeneity differs between two locations, the locations are 

also spatially heterogeneous (Kolasa and Rollo 1991). Furthermore, when patch 

types change positions within the landscape—which often occurs at some spatial 

and temporal scale in nature because ecosystems are not static—then heterogeneity 

is changing over both space and time.

A third scenario is the shifting mosaic, in which a specific set of patch types shift 

across space over time, such that the same type of patch occurs in each time step but 

never in the same space in consecutive time steps. In such cases, spatial heteroge-

neity within the landscape is conserved over time. Although the pattern of bison 

following burned areas of the pre-European North American Great Plains has 

become a model for the shifting mosaic, the phenomenon has been repeatedly 

shown to drive the conservation of pattern–process relationships and the function-

ing of rangeland ecosystems (Fuhlendorf et al. 2012). Experimental and statistical 

norms limit our ability to understand landscapes that are highly dynamic in space 

and time and overcoming these norms is an important challenge to producing 

usable science on rangelands.

5.2.2  Sources of Heterogeneity

Heterogeneity in rangeland landscapes arises from two main sources. Inherent het-

erogeneity is variability driven by abiotic factors such as geology and topo-edaphic 

variation influenced by factors such as soil depth, soil fertility, and soil water 
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availability that ultimately contribute to patterns of vegetation composition, 

productivity, and nutrient content (McNaughton and Banyikwa 1995; Fynn et al. 

2014). Disturbance-driven heterogeneity is variability influenced by processes such 

as fire and grazing. These effects can be temporary or persistent and are strongly 

interactive. On rangelands, a heterogeneous patchwork of vegetation conditions can 

result from differential timing of disturbances and corresponding out-of-phase suc-

cession among patches (Fuhlendorf and Engle 2004); spatial heterogeneity of 

resources associated with rainfall (Sala et al. 1988; Hopcraft et al. 2010); topo-

edaphic patterns (Acres et al. 1985; Scoones 1995); or competitive interactions 

among plant species (Fuhlendorf and Smeins 1998).

5.2.2.1  Inherent Heterogeneity

Rangelands are inherently heterogeneous in that community composition, produc-

tivity, and diversity can vary across scales ranging from centimeters to continents 

(Fuhlendorf and Smeins 1999; Fuhlendorf et al. 2009). Several environmental fac-

tors drive spatial heterogeneity in plant community composition (through competi-

tion or tolerance), which can in turn create functional heterogeneity. For example, 

soil fertility, as influenced by geology and landscape position, plays an important 

role in determining nutrient concentrations in grasses. In some cases higher clay 

fertility soils derived from weathered, mineral-rich rock (e.g., dolerite or basalt) 

promote higher concentrations of protein and minerals in grass tissue than sandy, 

leached soils derived from sandstone and granite (Hopcraft et al. 2010). High soil 

salinity can inhibit growth while providing an excess of minerals for uptake by 

grasses (e.g., McNaughton and Banyikwa 1995; Murray 1995; Grant and Scholes 

2006). Another, illustrative example is that patterns in soil depth that can occur at 

fine or broad spatial scales can lead to differences in species composition that may 

be as important as and interactive with disturbance processes (Fuhlendorf and 

Smeins 1998).

In terms of local plant productivity, the effect of geology depends on landscape 

position. In some cases, deep moist and fertile soils in bottomland positions pro-

mote the growth of taller, more productive grasses (Briggs and Knapp 1995; 

McNaughton and Banyikwa 1995). On shallow but fertile soils in some uplands 

there may be strong moisture limitation of growth (McNaughton and Banyikwa 

1995). From a herbivore perspective, short, leafy grasses often provide higher for-

age quality (digestibility and nutrient concentrations) than taller grasses 

(O’Reagain and Owen-Smith 1996; Coetsee et al. 2011), but taller grasses in wet-

ter sites can provide an important source of biomass during the resource-limited 

dry season. Consequently, functional heterogeneity for herbivores is distributed 

along forage productivity gradients with high-quality forage needed to satisfy the 

high-resource demands of herbivores during calving, lactation, and growth occur-

ring in less productive sites but forage to sustain livestock maintenance during the 

dry season occurring in more productive sites (Maddock 1979; Hopcraft et al. 

2010; Fynn et al. 2014).
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Inherent heterogeneity at the scale of variable ecological sites dominates 

discussions of heterogeneity within rangeland landscapes. These patterns of sites 

are characterized by differences in plant communities and different responses to 

disturbances such as fire and grazing. Ecologists and soil scientists working with 

these sites recognize that patterns exist within sites and at broader scales, but this 

resolution was based on the ability to map soils and other features. The spatial scale 

of mapping sites is arbitrary indicating that this is measured heterogeneity, rather 

than functional heterogeneity, which makes its relevance to management and 

society dubious.

5.2.2.2  Disturbance-Driven Heterogeneity

Ecologists understand that rangeland ecosystems evolved with disturbances, includ-

ing fire and grazing, but the spatial patterns and heterogeneity of these disturbances 

were not recognized until recently (Fig. 5.2). Research on spatial and temporal het-

erogeneity in rangelands has been motivated by loss of habitat for species of conser-

vation concern, as well as the recognition that animals need to be able to respond to 

extreme climate events through behavior (Allred et al. 2011). Many of the wildlife 

species that are declining on rangelands today likely evolved with conditions that 

are best described as heterogeneous across many spatiotemporal scales and are 

largely driven by disturbance.

Disturbances like fire or prairie dog colonization create feedbacks in which het-

erogeneity influences subsequent disturbance—the effect or condition of a patch in 

Fig. 5.2 Fire interacts with topography and other disturbances to produce a shifting mosaic that is 

variable in fire severity and time since fire. This landscape in British Columbia was modified by 

prescribed fire. Photo by Sam Fuhlendorf
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one spatial context at a given time not only depends upon the nature of other patches 

in previous times, but also influences patches at future times. Patterns created by 

feedbacks are either shifting continuously or relatively stable, and can even vary 

between the two at different scales. For example, the shifting mosaic created by fire- 

grazing interaction in tallgrass prairie induces great contrast between patches within 

a single season, but little permanent change in plant community composition at 

broad spatial scales through time (Fuhlendorf and Engle 2004; Fuhlendorf et al. 

2009). Alternatively, if grazing is sustained in sufficient intensity on certain portions 

of the landscape or uniformly across the entire landscapes, shifts in plant communi-

ties—such as compositional changes from tall grass species to short grass species—

are either permanent or at least persist through the duration of the disturbance and 

may require decades to change to their former composition (Knapp et al. 1999; 

Archibald et al. 2005). Examples include the white rhinoceros-moderated grazing 

lawns in South Africa’s Hluhluwe-iMfolozi Park (Coetsee et al. 2011) as well as 

within spatially discrete bison patch grazing in tallgrass prairie (Knapp et al. 1999). 

With domestic herbivores, long-term changes in composition and structure are often 

the result of constant grazing distribution from water distribution patterns or promo-

tion of more uniform grazing through cross-fencing.

5.3  Heterogeneity and Rangeland Function: Three Major 

Cases

In this section, three major cases are presented to demonstrate the importance of 

heterogeneity. These are just a few examples but understanding heterogeneity is 

essential for most major rangeland functions. These cases are (1) herbivore popula-

tion productivity and stability, (2) fire and rangeland ecosystems, and (3) biodiver-

sity and ecosystem function.

5.3.1  Heterogeneity and Herbivore Populations

Herbivores must be able to move across a landscape to deal with stressors asso-

ciated with availability of resources (water and forage) as well as thermal stress 

or predation (Allred et al. 2011). Simplification or fragmentation can result in 

smaller units that will limit an animal’s ability to use its behavior to deal with 

stress that can be cyclic and predictable or stochastic. Smaller pastures or land 

fragments result in less inherent variation within each pasture and potentially 

more inherent variability among pastures (Wiens 1989). This shift in variability 

results in a fundamental change in management required to sustain and match 

primary and secondary productivity. Small management units suggest a need for 

greater knowledge and management control of animal requirements and 
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availability of forage quality and quantity, as well as refugia from thermal stress 

or predation. Consequently, smaller management units will often require greater 

economic and management inputs—supplementary feeding, licks, and con-

trolled movement—to compensate for limited adaptive foraging options avail-

able to herbivores on large landscapes. Larger management units enhance an 

animal’s ability and freedom to respond to variable requirements and the chang-

ing environment without management interference (Hobbs et al. 2008). Wild and 

domestic herbivores, whether grazers or browsers, must cope with elevated 

requirements for protein, energy, and minerals during certain life stages (Murray 

1995; Parker et al. 2009) that may not match resource patterns due to weather 

and plant phenology, especially when landscapes are small and compartmental-

ized (Ellis and Swift 1988; Owen-Smith 2004). It is critical that we understand 

that periods of limited forage biomass and quality may be most important to 

herbivore populations, rather than average conditions across space and time 

(Hempson et al. 2015).

Landscape or regional-level variability in plant community composition and 

productivity—inherent and/or disturbance driven—is important on many range-

lands. For example, on African rangelands high-quality short grass sites provide 

excellent wet-season grazing, but they generally provide little growth and forage 

during dry periods (McNaughton and Banyikwa 1995; Fynn et al. 2014). By 

contrast, greater soil moisture availability for dry-season forage production is 

found in low-lying, poorly drained positions in the landscape such as various 

wetland types and floodplains (Vesey-FitzGerald 1960; Pamo 1998), as well as 

in high-rainfall regions receiving significant rainfall during the dry season 

(Breman and de Wit 1983; McNaughton and Banyikwa 1995). Shallow water 

tables of wetland sites enable perennial grasses to regrow after fire in the dry 

season, thereby providing quality regrowth for herbivores (Vesey-FitzGerald 

1960; Fynn et al. 2014). Access to green regrowth after fire in the dry season 

may greatly increase dry-season protein intake for herbivores (Parrini and Owen-

Smith 2010). In the absence of fire, taller coarser grasses may be left uneaten, 

thereby forming a drought-refuge resource for herbivores if rains fail. Such 

uneaten resources of productive perennial grasses can buffer herbivore popula-

tions against the effects of drought, despite their low quality, and have been 

referred to as buffer resources (Owen-Smith 2002) or key resources (Illius and 

O’Connor 2000). Loss of access to these key resource areas can result in herbi-

vore population crashes during droughts (Fynn and Bonyongo 2011). Soil tex-

ture also plays an important role in facilitating moisture available for growth 

during the dry season with sandy soils generally supporting growth later into the 

dry season than clay soils (Sala et al. 1988; McNaughton and Banyikwa 1995). 

Heterogeneity in clay and sandy soils across landscapes contributes to variation 

in soil water availability and habitat productivity on strongly developed catenas. 

When these inherent patterns interact with disturbances such as fire, functional 

heterogeneity and adaptive foraging options for herbivores are maximized allow-

ing animals to deal with environmental stress. It is important to note that pasto-

ralists of West Africa and wild herbivores that share landscapes follow similar 
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seasonal patterns across large regions indicating that both may have converged 

on key ecological indicators reflecting seasonal functionality of habitats along 

various ecological gradients and importance of broad-scale spatial patterns to 

herbivore-dominated landscapes (Vesey-FitzGerald 1960; Jarman 1972; Pamo 

1998; Bartlam-Brooks et al. 2011).

Similar patterns in grassland productivity-driven heterogeneity are seen in 

North American prairies on landscape-scale soil depth gradients (Briggs and 

Knapp 1995) and regional-scale rainfall gradients. Elevation and the associated 

temperature gradients provide another key source of functional heterogeneity by 

prolonging the length of time during which herbivores have access to forage at 

peak nutritional quality (Hobbs and Gordon 2010). Warmer conditions and less 

snow accumulation at lower elevations result in forage growing earlier in spring 

than at higher altitudes but also maturing and losing quality earlier such that the 

highest quality forage will move in a “green wave” up the altitudinal gradient over 

summer as the snowline recedes (Frank et al. 1998; Hobbs and Gordon 2010). 

Livestock in transhumance systems as well as wildlife such as bison, elk, and 

bighorn sheep track this high- quality green wave upslope into higher altitude 

regions during the growing season (Festa-Bianchet 1988; Albon and Langvatn 

1992; Frank et al. 1998; Omer et al. 2006; Hebblewhite and Merrill 2007). If for-

age across the available landscape all matured at the same time then herbivores 

would have a much shorter period of access to optimal quality forage over the 

growing season (Hobbs and Gordon 2010). The ability of herbivores to migrate 

and track the early phenology peak-quality forage in relation to increasing altitude 

and variation of aspect has been demonstrated to result in increased body size of 

red deer compared to nonmigratory individuals (Albon and Langvatn 1992; 

Mysterud et al. 2001).

In the absence of disturbance-driven patches of high-quality forage patches, 

large regional- and landscape-level movements may be required for a foraging ani-

mal to be able to access alternate forage resources and sustain year-around diet 

quality and quantity. The spatial scale at which heterogeneity is distributed deter-

mines the distance that herbivores need to move to forage adaptively over the annual 

cycle. Disturbance can further enhance heterogeneity at community, landscape, and 

regional scales by modifying grassland structure and forage quality (Fuhlendorf and 

Engle 2004). As landscapes are made smaller from fragmentation and compartmen-

talization, promoting highly variable disturbance patterns to provide greater hetero-

geneity becomes even more important.

In conclusion, heterogeneity associated with large and complex landscapes 

enables herbivores to optimize energy and nutrient intake rates during key growth 

periods of pregnancy, lactation, and body growth while minimizing losses of gains 

in body mass or population size during resource-limited periods such as the dry 

season, hot summers, or extreme winters. In addition to diet, herbivores must simul-

taneously moderate thermal stress and maintain access to water, which is a function 

of the interaction between the type of animal and its grazing environment (Fig. 5.3; 

Allred et al. 2011). Similarly, empirical studies have demonstrated much lower 

mortality of wildlife and livestock during drought years if they have greater access 
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to functional heterogeneity (Walker et al. 1987; Scoones 1993). In addition, access 

to greater functional heterogeneity in rangelands with increasing spatial scale results 

in a decrease in the strength of density dependence in the relationship between 

stocking rate and animal growth rate (Hobbs et al. 2008) and also increases body 

size (Albon and Langvatn 1992; Mysterud et al. 2001). These conclusions are in 

direct contrast to management prescriptions that reduce functional heterogeneity by 

reducing the management scale and simplifying the landscape suggesting that 

greater managerial certainty is expected by a command-and-control perspective on 

management. Rangeland management should be designed to specifically acknowl-

edge and address uncertainty and variability and we advocate that it should consider 

the importance of maintaining or enhancing heterogeneity at multiple scales and 

allow animals to effectively interact with their environment.

Fig. 5.3 Resource selection coefficients at varying air temperatures for bison and domestic cattle 

at the Tallgrass Prairie Preserve, USA. Environmental factors include time since fire (TSF), dis-

tance to water (Water), and distance to woody vegetation (Woody). Bison and cattle most strongly 

select for areas that minimize time since fire, but begin selecting sites nearer woody vegetation and 

water as the temperature increases. Domestic cattle-grazing behavior changes sooner and more 

dramatically than does bison behavior. Modified from Allred et al. (2013)
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5.3.2  Fire and Rangeland Ecosystems

5.3.2.1  Heterogeneity and the Shifting Mosaic

Grasslands, shrublands, and savannas are often described by their dependence 

on herbivores and fire. Most studies have focused on these factors independent 

of each other and based on studies of relatively small experimental units that 

could be well replicated (Fuhlendorf et al. 2009; Fuhlendorf et al. 2012). 

Recently studies have investigated the landscape-level interaction of fire and 

herbivores across many continents and various herbivores Fuhlendorf and Engle 

2004; Archibald et al. 2005; Allred et al. 2011). These large-scale patterns are 

best described as a shifting mosaic where fire and grazing interact through a 

series of feedback mechanisms. As herbivores select recently burned areas for 

foraging sites, unburned areas are subject to less grazing activity and accumu-

late fuel. When additional areas burn, grazing animals switch to the more 

recently burned areas and previously burned areas recover through a transitional 

stage eventually reaching a state that has accumulated its maximum fuel load. 

This fire-grazing interaction, or pyric herbivory (grazing driven by fire), results 

in a shifting mosaic across the landscape allowing herbivores to select from 

high-quality, recently burned sites and sites that have high biomass accumula-

tion. Herbivores in rangelands of North America spend as much as 70 % of their 

time on recently burned areas and for domestic herbivores it can increase live-

stock gains (Limb et al. 2011) and stabilize productivity through drought years 

when compared to areas managed homogenously (Allred et al. 2014) (Fig. 5.4). 

For bison of North America, access to burned and unburned areas leads to 

increased selection of burned areas and higher reproductive rates compared to 

herds that do not have variable fire patterns (Fuhlendorf and Engle 2001; 

Fuhlendorf et al. 2009).

The effect of patch fires on forage available for herbivores is best described as 

a shifting mosaic with patches that vary in forage quantity and quality (Figs. 5.3 

and 5.5). Averaged across pastures or experimental units, biomass may be similar 

between the shifting mosaic and a pasture more traditionally managed. But, the 

variability is much greater in terms of forage quality and quantity when the shift-

ing mosaic is maintained. Recently burned patches produce forage of high quality 

and digestibility. Alternatively, biomass accumulation is higher on areas that have 

greater time since fires, resulting in an overall increase in heterogeneity of forage 

resources. Animals may respond to this variability differently depending on age, 

sex, and conditions pre- and postfire. In dry years unburned areas can serve as for-

age, albeit low quality, through the dry season. Following rain, rapid growth occurs 

in burned patches and herbivores, particularly females, can select high-quality 

diets. Heterogeneous landscapes that have been created by patch fires have greater 

functional heterogeneity as indicated by the high degree of deviation around the 

mean (Fig. 5.6, Panel B), than landscapes without fire or that are homogeneously 

 managed (Fig. 5.6, Panel C). Smaller landscapes where animal movements are 
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Fig. 5.4 Livestock gain (kg/head) in relation to growing season precipitation within pastures that 

varied in heterogeneity in tallgrass prairie of North America. Heterogeneous pastures had 2–8 

patches that had been burned in a fire-grazing interaction while the homogeneous pasture was 

uniformly burned annually. The heterogeneous—eight patches—treatment had two patches burned 

annually (one in spring and one in summer) over 4 years and was the most heterogeneous treat-

ment. Pastures that were managed to promote heterogeneity had more consistent livestock produc-

tion and were less influenced by low-rainfall years. Modified from Allred et al. (2014)

Fig. 5.5 Bison are able to forage in different patches to meet their differing forage requirement. 

This photo is from the Tallgrass Prairie Preserve in Oklahoma and illustrates the increased hetero-

geneity in forage quality and quantity. Photo by Steve Winter
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strongly limited by fences may require more application of alternative distur-

bances than large landscapes with free-roaming herds. It has been demonstrated 

that grazing operations on small pastures characteristic of many compartmental-

ized rangelands also benefit from the creation of fire-driven heterogeneity pro-

moted by small burned patches that are rotated over several years (Limb et al. 

2011; Allred et al. 2014).

Fig. 5.6 Forage crude protein (%) as influenced by fire-grazing interactions in tallgrass prairie. (a) 

Forage quality of patches that vary in time since fire. Recently burned areas have much higher for-

age quality than unburned areas and remain high throughout the season as animals graze thereon. 

(b) Error bars reflect the heterogeneity in forage quality available to herbivores. Due to the high 

variation in forage resources when heterogeneous fires are applied to the landscape, animal choice 

is unrestricted so animals can seek out desired forage based on dietary needs and preferences. (c) 

Elimination of fire (mean of unburned patches) results in low forage quality through time and low 

patch variability. This low variation homogenizes available forage resources to restrict livestock 

choice
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5.3.3  Heterogeneity of Fuel and Fire Effects

Improving our understanding of the variability of fire effects on rangelands requires 

that researchers account for heterogeneity. Contradictory findings are evident 

throughout fire effects research and little information elucidates why inconsisten-

cies among studies exist. Disparate findings are likely due to a lack of recognition 

of the role of heterogeneity in fire effects and limited studies at sufficient spatial 

scale to capture real-world fire behavior (Fuhlendorf et al. 2011). As an example, a 

fire experiment was established to link variability in fuels, fire behavior, and crown 

scorch (the portion of the crown of a tree that is killed by heat) (Fig. 5.7) and mortal-

ity of Juniperus ashei for fires conducted in wet and dry periods of the growing 

season (refer to Twidwell et al. 2009 for complete methodology). During a wet 

period of the study, when herbaceous fuel moisture content was near its maximum 

level, the pattern of area burned was a function of fine-scale patch dynamics. Of the 

parameters measured, the type of fuel patch and its size were the two factors most 

important in determining discontinuities in the propagation of fire across the land-

scape. Discontinuities in the fuel bed create fuel gaps—patches without herbaceous 

fuels that occurred within a continuous bed of grassland fuels—drove this relation-

ship (Fig. 5.8).

Studying fire on rangelands requires an understanding of functional heterogeneity 

of fire and pattern of area burned on the landscape, which is ultimately a function of 

the spatial arrangement of these different patch types. But functional heterogeneity 

is dynamic and therefore should not be measured or characterized at a single scale of 

measurement. Understanding functional heterogeneity improves  understanding of 

Fig. 5.7 Variability in height of tree scorch on two adjacent Ashe juniper (Juniperus ashei) trees 

indicates that heterogeneity of fuel load and tree size may be critical in understanding fire effects 

on rangelands. Photo by Dirac Twidwell
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Fig. 5.8 Fine-scale determinants of area burned, shown here as the relationships between the 

amount of herbaceous fuel loading occurring at multiple spatial scales and the probability of stop-

ping fire spread for fires conducted in two different fuel moisture conditions (A, high fine fuel 

moisture; B, low fine fuel moisture). Increasing gaps in herbaceous fuels increase the probability 

of stopping fire, but the relationship is less predictable in fuel conditions promoting more erratic 

fire behavior (e.g., in low fuel moisture conditions)
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second-order fire effects that are also the result of discontinuities in fire spread and 

variability in fire behavior. Discontinuities in fire spread allow some juniper trees to 

escape damage from fire, whereas others directly adjacent to them are completely 

scorched and killed (Fig. 5.7). In other cases, trees are partially scorched, indicating 

that the heat applied was below the threshold required for mortality.

Understanding functional heterogeneity resulting from interactions between 

variability in fuels, fire behavior, and fire effects requires a sampling procedure that 

differs from traditional approaches. Most often, herbaceous fuel load is randomly 

sampled across a landscape and in the interspaces between trees, followed by ran-

dom sampling of flame length (if done at all), and then random sampling of physical 

damage caused by the fire. In contrast, sampling in this experiment was stratified to 

account for the influence of the tree on the fuels beneath it, which subsequently 

influenced the fire intensity occurring beneath the specific tree of interest, and in 

turn influenced crown scorch and mortality. Importantly, no single spatial scale was 

used to characterize this relationship, but instead individual trees were of different 

sizes and influenced interrelationships between fuels, fire intensity, and crown 

scorch differentially. The contribution of functional heterogeneity to fire effects was 

best described by establishing a variable scale that accounted for differences in the 

size of each tree. Using this approach, a clear relationship of functional heterogene-

ity emerged that enabled the empirical detection and quantification of the fire inten-

sity threshold required for juniper mortality (Twidwell et al. 2013a, b). This 

threshold could not be detected using simple random sampling that assumes homo-

geneity around the average in fuel load and fire behavior (Twidwell et al. 2009), 

which has been the most common procedure used to attempt to understand how 

fuels drive fire effects in rangelands.

5.3.4  Biodiversity and Ecosystem Function

Meeting variable forage demands and analyzing fire effects are just a couple of 

examples of enhanced functionality created by heterogeneity in rangelands. 

Heterogeneity can also increase habitat availability for different plant, insect, bird, 

and mammal species. Research worldwide describes how different species within 

major taxonomic groups have variable habitat requirements, and managing for spa-

tially heterogeneous landscapes creates multiple habitat types simultaneously (Tews 

et al. 2004; Fuhlendorf et al. 2006; McGranahan et al. 2013a, b). Furthermore, plant 

biomass production varies less across seasons in spatially heterogeneous landscapes 

(McGranahan et al.  2016).

The fire–grazing interaction is especially important in the North American Great 

Plains, where more distinct habitat types are created in rangeland managed with 

pyric herbivory than in rangeland managed with fire or grazing alone (Fuhlendorf 

et al. 2009). This breadth of habitat types is essential for the conservation of 

grassland- obligate fauna, such as the Henslow’s Sparrow (Ammodramus henslowii), 

which requires dense, moribund grass material for nesting, and the regal fritillary 
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(Speyeria idalia), a fire-dependent but grazing-sensitive butterfly, which might 

depend on spatial heterogeneity to persist in working rangeland landscapes that are 

managed specifically for grazing (Fuhlendorf et al. 2006; Moranz et al. 2014).

Perhaps the most illustrative example of a species that requires the full breadth 

of habitat types available under heterogeneity-based fire and grazing management is 

the greater prairie chicken (Tympanuchus cupido) (Fig. 5.9, Hovick et al. 2014). 

These grassland-obligate birds begin the breeding season on leks, areas of extremely 

short vegetation where males gather and display to attract females. Upon mating, 

females seek dense vegetation to hide their nests during incubation, and between 

hatching and fledging, prairie chicken broods benefit from transitional patches fol-

lowing focal disturbance from pyric herbivory, as these areas provide aerial plant 

cover with limited obstruction from litter and other vegetative debris. Importantly, 

prairie chickens require each of these habitat types to be accessible within relatively 

short distances. Greater prairie chickens select nesting sites at coarse scales to be 

near leks (frequently on burned sites) and far from trees and at very fine scales for 

specific sites best suited to moderate temperature extremes (Hovick et al. 2014).

Likewise, several African antelope species require patches of short grassland for 

grazing and adjacent taller grass patches for resting and concealing young (Everett 

et al. 1991). Short-grass grazers such as wildebeest and Thomson’s gazelle occur in 

higher densities in the heavily grazed livestock areas outside the Masai-Mara Game 

Reserve in East Africa, whereas tall-grass grazers such as Cape buffalo (Syncerus 

caffer) are restricted to within the less heavily grazed taller grass areas within the 

game reserve (Bhola et al. 2012). Similarly, diverse communities of African herbi-

vores require heterogeneity due to topo-edaphic patterns as well as disturbance.

Fig. 5.9 Greater prairie chickens require short vegetation for their breeding displays, but females 

build their nests in nearby dense vegetation that has not been burned or grazed for 1 year or more. 

Brood rearing requires open vegetation with high plant and insect diversity and structural hetero-

geneity required for protection from temperature extremes and ease of movement. Photo by Torre 

Hovick
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Similar patterns of plant, insect, and bird compositional responses to burning and 

grazing frequency effects on grassland structural heterogeneity have been observed 

in both North American and African rangelands. On both continents, the interactive 

effects of fire and grazing on grassland structure and plant composition translated 

into differences in invertebrate communities (Chambers and Samways 1998; Engle 

et al. 2008; Dosso et al. 2010; Doxon et al. 2011). The community composition of 

several bird taxa—especially passerines—also varies with grassland structure in 

both continents (Fig. 5.10) (Fuhlendorf et al. 2006; Bouwman and Hoffman 2007; 

Krook et al. 2007; Gregory et al. 2010; Chalmandrier et al. 2013). Exceptions, how-

ever, do exist, and the community composition of some taxa is not associated with 

spatially heterogeneous disturbance patterns especially when those patterns are lim-

ited in spatial extent and largely based on measured rather than functional heteroge-

neity estimates (Pillsbury et al. 2011; Davies et al. 2012; Moranz et al. 2012; 

McGranahan et al. 2013a, b).

Beyond maximizing habitat heterogeneity across a landscape within a given sea-

son, maintaining a spatial mosaic of patches across several seasons increases stabil-

ity of important ecosystem functions like aboveground biomass production and 

habitat. Ecologists have long recognized that biological diversity—often measured 

as plant species richness or functional types—can stabilize community composition 

and ecosystem function (McNaughton 1977; Tilman and Downing 1994; Tilman 

et al. 2006; Zimmerman et al. 2010; Isbell et al. 2011). Experiments now demon-

strate that ecological diversity—measured as differences among patches within het-

erogeneous landscapes—can stabilize avian community composition, as well as 
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Fig. 5.10 Response of grassland birds to time since disturbance by fire and grazing at the Tallgrass 

Prairie Preserve, Oklahoma, from 2001 to 2003. Some birds native to the area require recently 

burned patches that are heavily grazed while others require habitats that are undisturbed for several 

years (Fuhlendorf et al. 2006)
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both plant biomass and livestock production, over time (McGranahan et al.  2016; 

Allred et al. 2014; Hovick et al. 2014). This suggests that spatially heterogeneous 

disturbance regimes that reduce temporal variability in primary production might 

represent a land-use paradigm that enhances landscape-level diversity to promote 

rangeland conservation and resilience in a changing world (Fuhlendorf et al. 2012). 

So, we would argue that at broad scales, functioning rangelands should have vari-

able disturbance patterns that interact with inherent topo-edaphic variability and are 

central to many aspects of landscape and population stability. This relationship 

among disturbance, pattern, diversity, heterogeneity, and stability is more realistic 

at broad scale than the more simplistic focus on diversity as a driver of stability as 

predicted by small-plot agronomic experiments.

Increasing spatial heterogeneity might buffer ecosystem function against climate 

change, which is consistent with the predictions of diversity-stability theory (Mori 

et al. 2013). In many rangelands, variation in primary production can destabilize 

ecosystem structure and function. Such variability is expected to increase under 

many climate change scenarios, which might make ecosystems more vulnerable to 

degradation of ecosystem function (Walker et al. 2004; Mori et al. 2013). Because 

rangeland management often depends upon a degree of dynamic equilibrium (Briske 

et al. 2003; Mori 2011), enhancing a spatial pattern of heterogeneity that buffers 

against temporal variability can enhance response to global change much in the way 

of portfolio effects of diversity-stability studies (Turner 2010).

5.4  Future Perspectives

Rangeland management has been slow to adopt a dynamic basis for ecosystem man-

agement that sustains multiple ecosystem services. Instead, livestock production 

systems continue to trump management for other rangeland services. For example, 

emergency haying programs in the USA permit the harvesting of grass biomass in 

grasslands prioritized for wildlife conservation when production is lower than opti-

mal due to environmental stressors such as drought. The result is a strong reliance 

on command-and-control management approaches to rangeland management (e.g., 

attempting to minimize variation). To overcome natural rangeland variability, con-

ventional grazing management relies upon a myopic focus on cross-fencing and 

controlled access to forage and water, seeking to minimize variability in disturbance 

intensity by promoting uniform, moderate grazing across the entire landscape. This 

attempt to override heterogeneity has been aptly described as management toward a 

uniform middle and has become the central theme to the discipline or rangeland 

management (Fuhlendorf and Engle 2001, 2004; Bailey and Brown 2011).

Mounting evidence suggests that heterogeneity enhances biodiversity in agricul-

tural landscapes (Ricketts et al. 2001; Benton et al. 2003; Hobbs et al. 2008; Franklin 

and Lindenmayer 2009) where native biodiversity is threatened by the intensifica-

tion and compartmentalization of land use (Reidsma et al. 2006; Flynn et al. 2009). 

But agricultural policy has been slow to respond. In the USA, no federal farm bill 
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program specifically targets farmland or rangeland heterogeneity, although limited 

heterogeneity-based management practices have been recently allowed for use in 

long-standing programs like the Conservation Reserve Program (NRCS 2004; Hart 

2006), and such heterogeneity-based management has been shown to increase the 

quality of CRP projects for wildlife (Matthews et al. 2012). In Europe, where agri-

cultural conservation policies tend to place greater emphasis on landscape-level 

objectives than in the USA (Baylis et al. 2008), agri-environmental schemes that 

can increase wildlife habitat heterogeneity remain an unstated objective and inci-

dental outcome (Vickery et al. 2004).

Understanding heterogeneity has been an important limitation to the application 

and principles of science and management on rangelands. Globally, rangeland sci-

ence indicates that heterogeneity and diversity increase stability in ecosystem prop-

erties from a broad spatial and temporal perspective. Management should no longer 

consider fine-scale spatial and temporal variability as a threat to ecosystem structure 

and function. It is logistically critical to the science of rangelands because of the 

importance of scale in experimental design and the point that traditional experimen-

tal design was largely based on Fisherian statistics where small experimental units 

were used to minimize variation within treatments (Fuhlendorf et al. 2009). 

Embracing heterogeneity requires academics, practitioners, and policy makers to 

realize the fallacy in building a profession that relies on statistical replications of 

small-scale plots to represent complex rangeland landscapes that are dynamic in 

space and time. This is a fundamental fallacy of our profession that is mostly a 

social construct of the profession rather than a reflection of a true need to simplify 

landscapes. Understanding that this simplified focus on homogeneity is cultural to 

the profession suggests that we can work to overcome these biases through aca-

demia and natural resource agencies. The greatest challenge and opportunity in con-

temporary rangeland science and management are overcoming our traditional focus 

on uniformity and developing policies and an understanding that promotes range-

lands as heterogeneous natural resources that are complex and capable of achieving 

many objectives by operating at the nexus of working and wild landscapes.

5.5  Summary

Understanding rangelands as complex, dynamic ecosystems that are highly variable 

in space and time cannot be achieved without a focus on heterogeneity as a critical 

and multiscale characteristic. Comparisons between the state of our current scien-

tific knowledge and the application of management have often identified scale and 

heterogeneity as limitations to making our science applicable to land management 

and policy (Bestelmeyer et al. 2011, Fuhlendorf et al. 2011). While we have theo-

retically understood rangelands as dynamic and variable in space there has been 

minimal effort focusing on the variability as a critical and inherent characteristic of 

rangelands. One very important exception to this has been the efforts to connect 

variation in soil, landform, and climate to ecological sites through USDA-NRCS 
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(Chapter 9, this volume). This is a critical first step, but still limits variability to 

mapping units that are primarily viewed as static in space and time. This is often 

still focused on a single state or phase existing within each site rather than a dynamic 

and shifting condition that is variable in space and time (Twidwell et al. 2013a, b). 

The limited use of non-equilibrial concepts and landscape ecological principles is 

surprising because rangelands are disturbance-driven ecosystems that are clearly 

dynamic in space and time.

Ultimately, the science and management of rangelands need to advance beyond 

a focus on average conditions and the current paradigm of uniform and moderate 

disturbance. This simplistic focus leads to debates, such as wildlife vs. livestock, 

fuel vs. forage, and forests vs. grassland. Understanding heterogeneity in space and 

time should be central to the framework for advancing our discipline and progress-

ing to solve problems that arise with changes in societal desires on rangelands. 

Perhaps the greatest challenge for applying heterogeneity-based science in range-

land management is overcoming a century-old vision of rangelands as simple eco-

systems that sustainably provide forage for domestic livestock. Below are general 

principles for our profession to begin thinking of rangelands as highly dynamic in 

space and time that provide many goods and services to society that include live-

stock production, wildlife habitat, biodiversity, and water quality and quantity 

(Fuhlendorf et al. 2012):

 1. Large continuous tracts of rangelands are critical for conservation so that distur-

bance processes can interact with inherent heterogeneity to form multiscaled 

mosaics that are capable of providing multiple goods and services. Large land-

scapes will include more heterogeneity than small landscapes and this will buffer 

ecosystems and populations from unexpected and stochastic perturbations (Ash 

and Stafford-Smith 1996). Rangeland fragmentation that results in many small 

land units precludes sufficient patch size or number for long-term conservation 

and land management objectives. Conservancies and landowner associations can 

help coordinate heterogeneity-based management at broad spatial scales 

(Toombs et al. 2010; McGranahan 2011).

 2. Professionals and the general public have largely learned to promote uniformity 

in disturbance processes and minimize the occurrence of both undistributed and 

severely disturbed areas. The first step in managing for heterogeneity and mul-

tiple objectives is to place value on these disturbance-driven attributes and to 

minimize efforts to manage for homogeneity or uniformity. This will require us 

to develop approaches that promote variability in disturbance frequency and 

intensity across complex and large landscapes, preferably by recognizing, main-

taining, and restoring broad-scale processes.

 3. Shifting mosaics of landscape patches are necessary for maintaining ecosystem 

structure and function and achieving multiple objectives such as improved pro-

ductivity and stability of livestock production (Limb et al. 2011) and conserva-

tion objectives (Fuhlendorf et al. 2009). Managing for a single condition, state, 

phase, or successional stage is incapable of sustaining livestock production and 

is not capable of promoting biodiversity or multiple uses.
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 4. Inherent heterogeneity, associated with soils, topography, and temporal variabil-

ity from climate, is a defining characteristic of rangelands. Additionally, distur-

bance regimes, such as fire and grazing, are as vital to ecosystem structure and 

function as climate and soils and are capable of driving landscape-level hetero-

geneity. These disturbances must be viewed as interactive processes that are criti-

cal to heterogeneity of rangelands rather than mere optional management tools.

 5. As policy developers and implementers recognize the importance of multiple 

land uses and the full suite of ecosystem services, a focus must be placed on 

maintaining large landscapes, in spite of fragmented ownerships, and conserving 

the processes that drive heterogeneity at multiple scales. Developing policies 

that move beyond the traditional command-and-control paradigm/steady-state 

management model will be our greatest challenge in the next century.
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Chapter 6

Nonequilibrium Ecology and Resilience 
Theory

David D. Briske, Andrew W. Illius, and J. Marty Anderies

Abstract Nonequilibrium ecology and resilience theory have transformed rangeland 

ecology and management by challenging the traditional assumptions of ecological 

stability and linear successional dynamics. These alternative interpretations indicate 

that ecosystem dynamics are strongly influenced by disturbance, heterogeneity, and 

existence of multiple stable states. The nonequilibrium persistent model indicates 

that plant production and livestock numbers are seldom in equilibrium in pastoral 

systems because reoccurring drought maintains livestock number below the 

ecological carrying capacity. However, it has recently been demonstrated that live-

stock are often in equilibrium with key dry-season resources, even though they may 

only be loosely coupled to abundant wet-season resources. Similarly, state- and- 

transition models were initially influenced by nonequilibrium ecology, but they 

have subsequently been organized around resilience theory to represent both 

equilibrial dynamics within states and existence of multiple states. Resilience the-

ory was introduced to describe how ecosystems can be dynamic, but still persist as 

self- organized systems. It envisions that community structure is maintained by 

ecological processes representing feedback mechanisms and controlling variables 

to moderate community fluctuation in response to disturbance. Appropriate qualifica-

tion of equilibrium ecology within resilience theory, rather than its complete 

replacement by nonequilibrium models, provides more realistic interpretations for 

both plant–herbivore interactions and vegetation dynamics than does complete reli-

ance on disturbance-driven events. Resilience thinking represents a “humans-in- nature” 

perspective that emphasizes human values and goals and it seeks to guide change in 

social-ecological systems by creating opportunities for multiple stakeholders to 

adaptively design management strategies and policies.
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6.1  Introduction

Humans interact with nature through the use of simplified and incomplete percep-

tions of its structure, interrelationships, and dynamics. These perceptions are based 

on experience, specific to place, and subject to change (Jones et al. 2011). They 

influence which problems are considered, how they are envisioned, and the poten-

tial solutions to address them (Lynam and Stafford Smith 2004). Consider the 

following questions regarding ecosystem dynamics. How stable are ecosystems? 

Do limits exist to ecosystem recovery following disturbance? What management 

actions are most likely to sustain desired ecosystems? A major shift in our percep-

tion of nature would greatly alter our responses to these questions, and the manner 

in which we interact with nature to promote sustainable ecosystem management and 

human well-being.

Nonequilibrium ecology and resilience theory represent such a change in the 

human perception of nature. Nonequilibrium ecology challenged the prevailing per-

ception of ecosystem stability and rapid, linear recovery following natural or human 

disturbances. Equilibrium ecology is reflected in the “balance-of-nature” metaphor 

and is exemplified by the controversial Gaia hypothesis which suggests that the 

Earth system is in part self-regulated to maintain conditions for life. Equilibrial 

ecology was initially challenged by theoretical evidence of nonlinear system dynam-

ics in the mid-twentieth century and, thereafter, by inconsistencies in natural 

resource management outcomes (Holling 1973; Folke 2006).

Nonequilibrium ecology represents a more dynamic and less predictable percep-

tion of ecosystem dynamics that recognizes the contributions of disturbance, spatial 

heterogeneity, and multiple stable states, in addition to internal biotic regulation 

(Wu and Loucks 1995). It further challenges the prevailing model of natural resource 

management—the steady-state management model—that was founded upon equi-

librium ecology. This management model emphasizes the maximum sustainable 

yield of one or a few resources through implementation of management actions to 

minimize variability and redundancy that may interfere with maximum sustainable 

production (Holling and Meffe 1996). Practices that optimize harvest efficiency and 

reduce diversity and heterogeneity—fire prevention, plant control measures, and 

planting of monocultures—are representative of this management approach that 

often relies on technological solutions to increase production and reduce uncertainty. 

It is now recognized that this management model along with the command- and- 

control management strategy—top-down regulation by a centralized authority—

can destabilize the very ecosystems that they were intended to sustain (Holling and 

Meffe 1996). The adverse outcomes originating from these  management approaches 

have been termed the “pathology of natural resource management.”
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Resilience theory emerged in response to recognition that the prevailing concept 

of ecological stability was not a realistic interpretation of observed ecosystem 

dynamics. For example, ecosystems can exhibit wide fluctuations in species compo-

sition, but still be very resilient (Curtain and Parker 2014). This inconsistency was 

resolved by dividing stability into two components—resistance and resilience. 

Resistance describes the capacity of systems to remain unchanged by disturbance, 

while resilience is the capacity to return to a former configuration following distur-

bance (Holling 1973). Resilience also recognizes the existence of threshold condi-

tions that contribute to the formation of alternative stable states. Grassland 

conversion to woodland and perennial shrub steppe conversion to annual grasslands 

are widely recognized examples of nonreversible dynamics that result in the forma-

tion of alternative ecosystems on the same site. Resilience-based management fur-

ther provides an alternative to steady-state management that encourages managers 

to anticipate and guide the direction of change, rather to prevent change, so that 

ecosystems can sustainably provide ecosystem services to society (Holling 1973; 

Chapin et al. 2010).

Resilience theory has recently been extended to social systems to provide a 

“humans-in-nature” perspective to ecosystem management and policy. Adaptive 

management—learning by doing—and social learning—the capacity of groups of 

people to achieve goals—have emerged as essential components of resilient human- 

dominated systems. These resilience-based approaches are collectively termed 

“resilience thinking” and they are intended to provide a path toward greater sustain-

ability by embracing uncertainty, variability, and recognition of incomplete knowl-

edge (Walker and Salt 2012; Curtain and Parker 2014).

The goals of this chapter are to provide a synopsis of the origins and develop-

ment of nonequilibrium ecology and resilience theory and to describe how these 

concepts have influenced the ecology, management, and governance of rangeland 

systems. Specific objectives are to:

 (1) Summarize equilibrium and nonequilibrium ecology and resilience theory

 (2) Assess the consequences of these concepts to rangeland ecology and management

 (3) Explore the application and utility of resilience in social-ecological systems

 (4) Describe future perspectives regarding further integration of resilience in range-

land systems

6.2  Conceptual Advances

6.2.1  Equilibrium and Nonequilibrium Ecology

Equilibrium ecology and its associated metaphor, “the balance of nature,” is an 

ancient human concept, but the modern foundation was derived from systems the-

ory in the 1960s. It is founded on the assumption that ecosystems are highly self- 

regulated by internal biotic processes, including intra- and interspecific competition 

and plant–animal interactions that restrict their dynamics to a single stable state 

6 Nonequilibrium Ecology and Resilience Theory
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(Wu and Loucks 1995). It is further assumed that this state will return to its original 

pre-disturbance condition after a disturbance has ceased. The predictable and direc-

tional response of plant succession that passes through anticipated, sequential stages 

toward a single equilibrium point or stable state provides a well-known example 

(Pickett and Ostfeld 1995). Equilibrium ecology experienced growing criticism in 

the mid-twentieth century for several reasons, including (1) limited supporting evi-

dence of equilibrium conditions in ecosystems, (2) an inability to account for the 

occurrence of alternative stable states in some ecosystems, and (3) slow or nonexis-

tent recovery of alternative states when they had formed (Wu and Loucks 1995; 

Briske et al. 2003).

Nonequilibrium theory emerged from investigation of theoretical competition 

models in the mid-1950s (Petraitis 2013) and the potential existence of multiple 

ecological states was first described some 15 years later (Lewontin 1969). However, 

this theory did not enter the ecological mainstream until the following decade when 

several non-equilibrial systems, include rangelands, were described (May 1977). 

Nonequilibrium ecology and its associated metaphor, “the flux of nature” (Pickett 

and Ostfeld 1995), are founded on the assumption that ecosystems possess a finite 

capacity for internal regulation such that they may be strongly influenced by distur-

bances (Wiens 1984; Wu and Loucks 1995). This implies that nonequilibrium sys-

tems possess greater potential for change than do equilibrium systems, including 

the potential to exhibit multiple stable states (Table 6.1).

6.2.2  Engineering Versus Ecological Resilience

Holling (1973) initially envisioned resilience theory by recognizing the potential 

occurrence of multiple stable states associated with the nonlinear dynamics in theo-

retical predator–prey models. Resilience was initially defined as the “persistence of 

relationships within a system and is a measure of the ability of these systems to 

Table 6.1 Proposed characteristics of equilibrium and nonequilibrium systems (from Wiens 

1984)

Equilibrium systems Nonequilibrium systems

Abiotic patterns Relatively constant Stochastic/variable

Plant–herbivore interactions Tight coupling Weak coupling

Biotic regulation Abiotic drivers

Population patterns Density dependence Density independence

Populations track 

carrying capacity

Dynamic carrying capacity limits 

population tracking

Community/ecosystem 

characteristics

Competitive 

structuring of 

communities

Competition not expressed

Internal regulation External drivers
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absorb changes of state variables, driving variables and parameters, and still persist” 

(Holling 1973, p. 17). Two expressions of resilience later emerged to describe unique 

categories of ecosystem dynamics (Gunderson 2000). Engineering and ecological 

resilience broadly correspond to, but do not originate from, equilibrium and non-

equilibrium ecological models, respectively. Engineering resilience describes sys-

tem behavior near an individual equilibrium point and, therefore, system dynamics 

are assumed to be more consistent and predictable. Engineering resilience represents 

the time required for a system to return to its original equilibrium state after it has 

been modified by a disturbance (Holling 1973; Folke 2006). In contrast, ecological 

resilience describes system dynamics far from an equilibrium point and it recognizes 

the possibility that ecosystems may not return to their original equilibrium point and 

that they may reorganize around alternative equilibrium points (Gunderson 2000). 

Ecological resilience is currently defined as the capacity of systems to absorb distur-

bances and reorganize while undergoing change so as to still retain essentially the 

same function, structure, identity, and feedbacks (Walker et al. 2004).

Resilience theory is often presented graphically in an attempt to clarify this 

abstract concept. The “basin-of-attraction” or “ball-and-cup” graphic is among the 

most commonly used. In this highly simplified presentation the ball represents the 

current state of the system (state variables; structural system characteristics) with 

respect to the slow or controlling variables (parameters; ecological processes) of the 

system, the limits of which are represented by the size and shape of the basin 

(Beisner et al. 2003; Walker et al. 2012). Engineering resilience reflects the shape of 

the basin—its depth and degree of inclination—that determines the rate of recovery 

following disturbance (i.e., rate at which the ball returns to the bottom of the same 

basin). Ecological resilience is signified by the width of the basin of attraction, 

rather than its depth and inclination, as in the case for engineering resilience. If a 

disturbance forces the ball (structural system or community) beyond the rim of the 

basin (threshold) or if the width of the basin is narrowed by the modification of a 

controlling variable, resilience is exceeded and an alternative state may be formed 

as the ball moves into an adjacent basin (Gunderson 2000; Beisner et al. 2003). 

Multiple basins of attraction are representative of ecological resilience indicating 

that an ecosystem may possess more than one equilibrium state. The total number 

and shape of the basins in which an ecosystem may reside are collectively termed 

the resilience landscape (Walker et al. 2004) (Fig. 6.1).

6.2.3  Drivers, Controlling Variables, and Feedback 

Mechanisms

As indicated in the previous section, resilience is influenced by interactions among 

several variables and these interactions can be modified by events both internal and 

external to the system (Walker et al. 2004, 2012). Drivers, controlling variables, and 
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feedback mechanisms, in addition to the state variables previously introduced, are 

among the most important components of resilience (Text Box 6.1). Drivers are 

considered to be external to the system and they are not coupled to the system by 

feedback mechanisms (e.g., climatic regimes and extreme weather events). 

Controlling variables have a major influence on resilience and most systems are 

assumed to be regulated by a rather small number (3–5) of these variables (Chapin 

et al. 2010; Walker et al. 2012). They are often relatively stable through time, because 

they are buffered by feedback mechanisms (see below). Important controlling vari-

ables are major ecological processes—primary production and nutrient cycling; bio-

diversity—plant functional groups and woody plant encroachment; and historical 

disturbances—fire and grazing regimes. The modification of controlling variables 

directly by drivers or indirectly by feedback mechanisms represents the major way 

that resilience is altered (Beisner et al. 2003; Walker et al. 2012). These modifica-

tions are depicted as changes in the resilience landscape of the basin-of- attraction 

model (Fig. 6.1). Fast variables—annual plant and animal production—are more 

obvious than controlling (slow) variables because they fluctuate widely throughout 

an annual cycle. Critical interactions among these components occur when a driver—

drought—modifies important controlling variables—grazing and fire regimes to 

influence numerous fast variables—grass growth and livestock gains.

Fig. 6.1 The basin of attraction model illustrates ecological resilience as a ball (the community) 

that can reside in one or more basins of attraction (alternative states). Drivers may sufficiently 

modify controlling variables to force a community out of the original basin, beyond the ridge rep-

resenting the threshold, and into an alternative basin forming a new stable state (see Table 6.1 for 

concept definitions) (from Beisner et al. 2003)
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Text Box 6.1: Concept Definition and Application to Resilience Theory

System or stable state—collection of multiple state variables and the feed-

back mechanisms that exist among them. State variables are broadly catego-

rized as fast and slow (controlling).

Examples: Grassland, savanna, or shrubland communities.

Fast variables—variables characterized by dynamic and rapid responses to 

controlling variables and external drivers.

Examples: seasonal plant and animal production, compositional shifts in 

annual and transient species, soil water availability, pathogen, and insect 

dynamics.

Controlling (slow) variables—variables that often operate at slow rates and 

have a controlling influence on fast variables, feedbacks, and collectively sys-

tem resilience; they are the central focus of resilience management.

Examples: dominant plant species, including plant functional groups and 

woody plant encroachment; grazing and fire regimes, soil characteristics, 

invasive species.

Drivers—events that are external to the system and do not possess feedbacks 

within the system; drivers may be of natural or human origin. They influence 

both fast and slow variables and their interactions within systems.

Examples: climatic regimes, extreme weather events, globalized markets, 

and human population growth.

Interpretation—drivers directly impact both fast and slow variables and the 

feedback mechanisms that exist between them. When a driver of sufficient 

magnitude modifies one or more slow (controlling) variables, threshold con-

ditions may be established and existing stable states may transition to alterna-

tive stable states.

Application of resilience concepts to woody plant encroachment

System—grassland or savanna characterized by contiguous grass production 

that provides fine fuel to support regular fire regimes.

Fast variables—soil water availability, grass production, and fine fuel 

accumulation.

Controlling (slow) variables—dominant grass species, sustained intensive 

grazing regimes that reduce fine fuel accumulation, negative human percep-

tions and regulations limiting use of prescribed burning.

Drivers—severe drought that contributes to mortality of dominant grasses, 

human-induced land cover change, and increasing atmospheric carbon diox-

ide that increases woody plant growth.

Interpretation—interaction of natural and human drivers suppresses the con-

trolling variable of fire frequency to enable threshold conditions to develop 

and grasslands or savannas to transition to alternative woodland states.

6 Nonequilibrium Ecology and Resilience Theory



204

Feedback mechanisms are ecological processes that influence the rate of change 

among system variables. More specifically, they are secondary effects of one vari-

able interacting with another to either enhance or dampen the rate of change of the 

initial variable. Stabilizing (negative) feedbacks reduce the rate of change of the 

initial variable (Gunderson 2000; Walker et al. 2012). For example, a high density 

of dominant grass species provides abundant, continuous fine fuel loads capable of 

supporting frequent fires to prevent woody plant encroachment and maintain grass-

lands. Amplifying (positive) feedbacks have the opposite effect and accelerate 

change of the initial variable. For example, increasing abundance of the invasive 

annual grass cheatgrass (Bromus tectorum) in the western USA increases fire fre-

quency that contributes to the mortality of native vegetation to further increase 

cheatgrass dominance. In both examples, feedbacks interacted with a controlling 

variable—dominance of native grasses and invasion of an exotic plant species, 

respectively.

In the basin-of-attraction graphic, stabilizing feedbacks are greatest when com-

munities reside near the bottom of the basin, while the relative strengths of stabi-

lizing and amplifying feedbacks are assumed to be equivalent near the rim of the 

basin, which represents threshold conditions (Scheffer and Carpenter 2003; Walker 

et al. 2012). When the relative strength of amplifying feedbacks exceeds that of 

stabilizing feedbacks, one or more controlling variables may be sufficiently modi-

fied to create threshold conditions and initiate formation of an alternative state 

within a different basin of attraction (Fig. 6.2). Once an alternative stable state has 

been formed, resilience is established through a unique set of controlling variables 

and feedback mechanisms. The strengthening of stabilizing, relative to amplifying, 

Fig. 6.2 The feedback switch model depicts thresholds as the point where feedbacks switch from 

a dominance of negative (stabilizing) feedbacks (NFB) that maintain resilience (solid ball) to a 

dominance of positive (amplifying) feedbacks (PFB) that decrease resilience. The dominance of 

positive feedbacks contributes to formation of an alternative state (cross-hatched ball) in a different 

basin of attraction. Resilience of the alternative state requires that NFBs exceed PFBs (from Briske 

et al. 2006)
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feedbacks will support controlling variables and increase resilience of the alterna-

tive state. The potential for multiple interactions among external drivers, control-

ling variables, and feedback mechanisms over various time periods contributes to 

the difficulty of anticipating and describing thresholds and identifying ecological 

indicators of their occurrence (Briske et al. 2006; Bestelmeyer et al. 2011) (Text 

Box 6.1).

6.2.4  Threshold Indicators

The difficultly associated with threshold identification has focused attention on 

the search for early warning indicators. Indicators are assumed to signify modifi-

cations to state variables (structural characteristics), controlling variables, and to 

a lesser extent feedback mechanisms that determine the ecological resilience of a 

state. From a management perspective, indicators can be used to identify the tra-

jectory of systems toward pending thresholds so that management strategies can 

be implemented or modified to prevent thresholds from being crossed (Briske 

et al. 2008; Standish et al. 2014). Alternatively, restoration ecologists may use 

threshold indicators to promote restoration of previous states that were considered 

more desirable (Suding and Hobbs 2009; Limb et al. 2014). Indicator effective-

ness is a function of (1) the rate at which a system will respond to management 

actions to modify its resilience, (2) the amount and type of variability (noise) 

within systems that may mask indicator detection, and (3) the number of feedback 

mechanisms and controlling variables that contribute to system resilience 

(Contamin and Ellison 2009). In addition, threshold indicators are most relevant 

to systems where resilience is associated with gradual modification of controlling 

variables, rather than abrupt events that are difficult or even impossible to detect 

in advance (Hastings and Wysham 2010).

Two categories of theoretical early warning signals have been developed for 

threshold identification. The first emphasizes an increase in time required for 

recovery of system variables following disturbances that is termed “critical 

slowing down” (Scheffer et al. 2012; Dakos et al. 2012). The second category 

focuses on increasing variance and autocorrelation among system variables as 

thresholds are approached. It is assumed that both categories of indicators 

reflect a decrease in stabilizing feedback mechanisms as thresholds are 

approached (Walker et al. 2012). However, the limited scope of these early 

warning signals suggests that specific knowledge of systems dynamics, espe-

cially the major controlling variables, is still of greatest value (Dakos et al. 

2012). Consequently, threshold identification on rangelands currently relies on 

ecological indicators that have been previously developed for evaluation of 

rangeland health and implementation of the range model last century and they 

are primarily implemented within the STM framework (Bestelmeyer et al. 

2013) (Chapter 9, this volume).
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6.2.5  Rethinking Rangeland Ecology

The concepts of nonequilibrium and resilience profoundly altered rangeland ecol-

ogy by supporting development of the nonequilibrium persistent (NEP) model and 

state-and-transition model (STM), respectively, in the late 1980s. However, these 

two models functioned independently because they focused on unique aspects of 

rangeland systems. The NEP model is based on the occurrence of nonequilibrium 

dynamics among vegetation and livestock, but it does not reference the existence of 

multiple stable states as does the STM. The following three subsections contrast the 

traditional equilibrium range model with the nonequilibrium persistent and multi- 

equilibrium state-and-transition model.

6.2.5.1  Range Model

The assessment of rangeland vegetation in response to grazing was initially linked 

to successional theory by Arthur Sampson, a former student of Fredric Clements, 

shortly following the publication of Clements’ influential work on succession in 

1916 (Briske et al. 2005). However, a quantitative assessment of this procedure was 

not developed for another 30 years when Dyksterhuis (1949) published his classic 

paper outlining rangeland condition and trend analysis (here termed the range 

model). This procedure was adopted and applied to rangelands throughout the world 

during the last half of the twentieth century even though it encountered considerable 

criticism (Joyce 1993). The range model envisioned vegetation dynamics to occur 

along a single axis in which grazing intensity linearly counteracted secondary suc-

cession. The species composition of plant communities along a succession–grazing 

axis was compared to that of a single historic plant community to define a range 

condition rating. The more closely the species composition of a plant community 

approached that of the reference community, the higher the condition rating. These 

ratings were used to draw inferences for both production goals and ecological 

assessments (Joyce 1993). Range trend described the relative change in range con-

dition ratings on specific sites through time. The adoption of Clementsian succes-

sion as the basis for vegetation assessment deeply embedded equilibrium ecology 

within the rangeland profession from its very beginnings (Fig. 6.3).

The expansion of woody plants and the persistence of these plant communities 

following the reduction or removal of grazing resulted in strong criticism of the 

range model in the 1970s and 1980s (Laycock 1991; Briske et al. 2005). However, 

in retrospect, the decision to use the grassland-savanna fire climax community (e.g., 

pre-European, Native American), as opposed to the climatic climax community 

(e.g., shrubland or woodland in wetter regions), as the primary reference state in the 

range model was a major contributor to these inconsistent outcomes. The selection 

of this reference state likely resulted from the recognized value of grasslands and 

savannas to livestock production, but climatic climax communities began to be 

expressed as historical fire regimes were minimized by grazing induced fuel 

 reductions and direct fire suppression (Smith 1988; Westoby et al. 1989). However, 
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the range model is still considered an appropriate interpretation of vegetation 

dynamics in more productive grasslands similar to those in which Dyksterhuis 

devised the range model (Fort Worth Prairie in north central Texas) (Dyksterhuis 

1949). The occurrence of relatively linear vegetation dynamics in these grasslands 

is a result of intense plant competition and stronger plant–livestock interactions that 

are characteristic of equilibrium ecology (Díaz et al. 2001) (Table 6.1).

6.2.5.2  Nonequilibrium Persistent Model

The nonequilibrium persistent model was introduced by Ellis and Swift (1988) 

while conducting research in pastoral systems of the Turkana region of East Africa. 

This region is characterized by low annual and high interannual rainfall variability. 

This variability, especially when expressed as multiyear drought, frequently con-

tributes to substantial livestock mortality in spite of attempts by nomadic pastoral-

ists to track this variation. Livestock numbers recover less rapidly than plant 

production in the intervening favorable rainfall years such that they lag behind the 

availability of forage resources. This weak relationship between plant production 

and animal numbers contributed to the interpretation that these were nonequilib-

rium ecosystems. This interpretation gave rise to an alternative set of management 

and policy recommendations for pastoral systems in the early 1990s that was termed 

the “New Range Ecology” (Behnke et al. 1993). These recommendations rejected 

the equilibrial concepts of carrying capacity, stocking rate, and the potential for 

livestock to degrade rangeland resources that were inherent to traditional grazing 

management (Cowling 2000) (Fig. 6.4).

Fig. 6.3 The range model assumes that the species composition of plant communities is a result 

of the opposing forces of plant succession and grazing intensity. Grazing can slow, stop, or reverse 

secondary succession to produce communities that differ in species composition from the histori-

cal climax plant community that represents the single reference (equilibrium) point (from Briske 

et al. 2005)
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Interannual variability in rainfall is negatively correlated with mean annual rainfall, 

and so the limitation on animal numbers imposed by low primary production in arid 

and semiarid rangelands is compounded by intra-annual rainfall variation. This 

makes it difficult to separate the effects of low annual rainfall from those of seasonal 

variability. A critical level of rainfall variability—an interannual coefficient of vari-

ation (CV, annual variability relative to the long-term mean) of ≥33 %—was estab-

lished as the value at which animal numbers are no longer in equilibrium with plant 

production (Ellis and Swift 1988) (Fig. 6.4).

Reassessment of NEP. The NEP model was critically evaluated by Illius and 

O’Connor (1999, 2000) from the perspective of spatial and temporal forage avail-

ability to livestock. They concluded that the NEP model did not sufficiently consider 

livestock use of distinct vegetation resources between wet and dry seasons within an 

annual cycle. They reasoned that livestock numbers in environments characterized by 

wet and dry seasons are closely couple to a subset of “key” resources that are acces-

sible in the dry season, while being largely uncoupled from more abundant forage in 

the wet season. The critical parameter establishing livestock herd size is often animal 

survival over the dry season, which is a function of forage availability during this 

period. Therefore, the ultimate determinant of animal numbers and their potential 

impacts on vegetation is the relative proportion of the grazed ecosystem that provides 

key resources during the dry season. It is this partitioning of forage resources, and not 

rainfall variability per se, that is the true determinant of livestock persistence and the 

potential for grazing to impact vegetation (llius and O’Connor 2000).

Fig. 6.4 The persistent nonequilibrium model indicates that multiyear droughts occurring on 

approximately decadal intervals minimize equilibrium between plant production and livestock 

numbers because vegetation recovers much more rapidly than livestock numbers following 

drought (redrawn from Ellis and Swift 1988)
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A reduction in access to key resource areas would cause livestock numbers to 

decline over the course of several years, especially during drought periods. In con-

trast, an abundance of non-key resources is likely to occur during the wet season, 

because animal numbers have been reduced by a scarcity of, and competition for, 

high-quality forage during the dry season. This interpretation establishes that live-

stock are closely coupled to forage resources, for at least part of the year, to meet 

their energy and nutrient requirements for survival, growth, and reproduction. This 

interpretation has been experimentally corroborated in a pastoral system located in 

an arid and highly stochastic environment (Hempson et al. 2015). In this investiga-

tion, livestock body condition followed density-dependent depletion of the limited 

dry-season riverine vegetation (key resources), and annual demographic parameters 

of animal populations tracked dry-season conditions. Dry-season length and previ-

ous population size were the main determinants of the animal population trajectory, 

with no clear evidence for an effect of growing season conditions over the vast area 

accessible to them. Therefore, wet-season rangeland can be categorized as nonequi-

librium, because animal populations are only loosely coupled with it, but livestock 

do exist in equilibrium with dry-season resources.

Implications to Grazing Management. Reinterpretation of the NEP model 

has several important implications for management of livestock grazing. It indi-

cates that the potential for grazing to modify vegetation and potentially degrade 

 rangeland resources during the wet season increases as the proportion of key dry-

season resource areas increases because it is these resources that establish the 

maximum number of livestock supported over the long term. Consequently, a high 

ratio of key dry:wet-season resources could support livestock numbers which are 

sufficient to produce high grazing intensities on wet-season resources, even though 

they may not be in equilibrium with them. Key resource areas themselves are 

obviously of considerable importance, and since they represent an equilibrial part 

of the grazed ecosystem they generally respond to increasing grazing intensity 

through reduced productivity and altered species composition (von Wehrden et al. 

2012; Muthoni et al. 2014). These negative vegetation impacts will likely have 

direct, negative feedbacks on animal populations as described by traditional graz-

ing management.

Commercial ranching represents a situation where livestock are often provided 

with supplemental feed during the dry or winter season to minimize animal mor-

tality and weight loss. In these cases, livestock numbers would become uncoupled 

from both wet- and dry-season resources because grazing intensity is determined 

by animal numbers maintained by supplemental feeding. The maintenance of high 

livestock numbers during these periods increases the potential to adversely impact 

vegetation during the growing season and it reduces the opportunity for vegeta-

tion recovery following drought compared with less intensively managed sys-

tems. In principle, this interpretation would also apply to wild herbivores that 

migrate from wet-season (summer) resources to dry-season resources during the 

winter and then return to wet-season resources. Vegetation on summer range 

would be impacted to the extent that resource availability in winter range can support 

total animal numbers.
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This reassessment strongly qualifies the NEP model by indicating that livestock 

will always maintain an equilibrial relationship with forage in key resource areas, 

even though this is not necessarily the case for abundant forage during the wet sea-

son. It also minimizes legitimacy of the “new” rangeland ecology by reaffirming 

that stocking rate and carrying capacity are valid concepts for grazing management, 

albeit in the context of larger landscapes and longer time periods (Cowling 2000).

6.2.5.3  The State-and-Transition Model

State-and-transition models were introduced as a “management language,” rather 

than an ecological theory, to organize and interpret rangeland vegetation dynamics 

(Westoby et al. 1989). They provided an alternative to the range model that had been 

severely criticized in the 1970s and 1980s for being overly reliant on linear, direc-

tional vegetation dynamics that were unable to account for nonreversible vegetation 

change, especially woody plant encroachment and invasion by exotic invasive spe-

cies (Briske et al. 2005). An influential report by the US National Research Council 

(NRC 1994) endorsed development and adoption of an alternative management 

model based on the STM framework and the Society for Range Management 

quickly supported this endorsement (SRM Task Group 1995). The US Department 

of Agriculture—Natural Resource Conservation Service (USDA-NRCS) formally 

adopted STMs for rangeland assessment in the late 1990s and established programs 

to develop and organize these models for all 50 states in the USA. A National 

Ecological Site Manual was developed and adopted in 2010 to standardize the use 

of ecological site descriptions and STMs among the NRCS, Bureau of Land 

Management, and US Forest Service (BLM 2010).

State-and-transition models are organized as a collection of all recognized or 

anticipated stable states that individual ecological sites may support (Bestelmeyer 

et al. 2003; Stringham et al. 2003). Individual stable states (e.g., grassland or shru-

bland) include transient and reversible shifts in species composition that occur in 

response to disturbances or self-regulating processes. These internal state dynamics 

are referred to as community phases and represent variation in species composition 

associated with wet and dry years, periodic intensive grazing, and fire frequency. In 

contrast, individual states are assumed to be separated by thresholds that are consid-

ered to be irreversible without management intervention. Ecological indicators of 

state variables, controlling variables, and to lesser extent feedback mechanisms that 

underpin state resilience are used to determine if a state is trending toward or away 

from pending thresholds (Briske et al. 2008). This information can inform managers 

of the need to implement actions to modify state resilience to achieve desired out-

comes (Watson et al. 1996; Bagchi et al. 2013) (Fig. 6.5).

State-and-transition models have subsequently been organized around ecological 

resilience to link them to an accepted ecological theory and to accommodate scien-

tific, in addition to management knowledge (Briske et al. 2008). In relation to resil-

ience, individual states exist within a single basin of attraction that is consistent 

with engineering resilience and thresholds represent boundaries between multiple 

D.D. Briske et al.



211

equilibrium states. Consequently, STMs are best interpreted as multiple equilibria 

rather than disequilibrium models (Petraitis 2013). Rangeland ecologists adopted 

the “nonequilibrium” terminology utilized by Westoby et al. (1989) because STMs 

were introduced as an alternative to the range model that was severely criticized for 

overemphasis of equilibrium dynamics associated with Clementsian succession 

(Joyce 1993; Briske et al. 2005). In addition, the focus of STMs has moved beyond 

threshold identification to the management of controlling variables and feedback 

mechanisms supporting resilience of stable states, but the nonequilibrium terminol-

ogy has remained. Chapter 9 by Bestelmeyer and coauthors comprehensively 

describe the development, implementation, and interpretation of STMs.

6.2.6  What Has Been Learned?

Nonequilibrium ecology as described by the NEP model has been reinterpreted to 

indicate that while livestock may not necessarily be in equilibrium with forage dur-

ing the wet season, they will always be in equilibrium with key forage resources 

during the dry season (Illius and O’Connor 1999). The recognition of two catego-

ries of forage resources with grazed systems indicates that those with low and highly 

variable rainfall do not function exclusively as “nonequilibrium systems”, because 

Fig. 6.5 State-and-transition models are a representation of all known or anticipated stable states 

that may occupy an individual ecological site. States are assumed to be separated by thresholds that 

are considered to be nonreversible without management intervention. Community phases repre-

sent recognizable variations of a state that are readily reversible (from Stringham et al. 2003)
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an equilibrial relationship with forage availability and livestock exists during the 

dry or winter season. Similarly, systems considered to be equilibrial are likely to 

experience intervals of nonequilibrium between livestock and forage during wet or 

dry seasons or years when forage production is high or when animal numbers are 

low. The current status of this rigorous debate is that appropriate qualification of 

equilibrium ecology, rather than its complete replacement by nonequilibrium mod-

els, offers more realistic interpretations for both plant–herbivore interactions and 

vegetation dynamics than does complete reliance on disturbance-driven events.

Resilience provides a framework to accommodate the occurrence of dynamic 

equilibria within ecosystems (i.e., engineering resilience) and the potential for eco-

systems to transition to alternative stable states (i.e., ecological resilience). 

Recognition of nonlinear and nonreversible shifts between stable states initially 

focused attention on identification and characterization of thresholds separating 

these states. However, thresholds have proven very difficult to identify prior to their 

occurrence which minimizes their management value. An alternative approach that 

has greater management value focuses on the trajectory of state resilience relative to 

the proximity of potential thresholds, with the use of ecological indicators, rather 

than on thresholds themselves (Watson et al. 1996; Briske et al. 2008). State-and- 

transition models developed and maintained by the USDA-NRCS and its partners 

represent the major framework for application of ecological resilience to rangelands 

in the USA and elsewhere. Greater insight into feedback mechanisms and controlling 

variables establishing resilience, and ecological indicators to assess the trajectory of 

state resilience, are needed to promote implementation of resilience-based manage-

ment (Bestelmeyer and Briske 2012).

6.3  Resilience of Social-Ecological Systems

Resilience theory is currently being explored in coupled social-ecological systems 

(SESs), in addition to ecological systems previously described. The objective is to 

provide a “humans-in-nature” perspective that serves to guide natural resource man-

agement, policy, and governance. As the name suggests, SESs are integrated sys-

tems of ecosystems, humans, institutions, and social organizations that contain 

feedbacks and interdependences among system components (Folke et al. 2010). 

This approach has provided common ground for social and natural sciences to inter-

act and evaluate multiple knowledge sources addressing human–environment rela-

tionships. SESs are founded on the recognition that ecological information represents 

necessary but insufficient knowledge to manage ecosystems because they are 

strongly influenced by human needs, values, and goals (Chapter 8, this volume). Put 

more simply, “natural resource problems are human problems” (Ludwig 2001).

The concept of SESs emerged from interaction between social and ecological 

scientists in response to what was seen as failed natural resource management pol-

icy from the 1970s to the early 1990s. These policies often resulted in unintended 

negative consequences because they neglected the complex and often unrecognized 

interactions that exist between social and ecological components of these systems. 
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These failures primarily originated from the ineffectiveness of the steady-state man-

agement model that emphasized maximum sustainable production of one or a few 

ecosystem services such as livestock production from rangelands and timber from 

forests, with little concern for other components of these complex systems. The 

deficiencies of this management model reside in the narrow interpretation of sus-

tainability, inevitable trade-offs between sustainability and maximum resource 

yield, and tendency to overestimate resource availability and the consistency of 

resource yield (Holling and Meffe 1996; Ascher 2001). In contrast, resilience and 

resilience-based management focus on the variability and uncertainty of SESs and 

encourage managers to guide the direction of change, rather than to prevent change, 

to provide diverse ecosystem services to society (Chapin et al. 2010). However, in 

spite of the recognized deficiencies of the steady-state management model, it still 

remains the most widely used natural resource management strategy today (Anderies 

et al. 2006). Its persistence is likely a consequence of the central role that optimal 

control procedures have played in natural resource economics and the absence of a 

viable alternative management strategy.

At the same time that C.S. Holling and coworkers were studying the problems 

caused by the “command-and-control pathology of natural resource management” 

discussed above, Elinor Ostrom was also questioning the rationality of top-down, 

command-and-control governance structures from a policy perspective (Ostrom 

1990). Her work demonstrated that small groups of people can effectively manage 

complex natural resource challenges without top-down governance. She further 

suggested that top-down interventions could have “pathological” effects on social 

systems by reducing their capacity to solve problems similar to the way in which 

Holling envisioned the negative impact of top-down control on ecosystems. These 

two independent assessments of natural resource management failures—one 

ecological and other sociological—eventually converged to giving rise to the con-

cept of SESs in the 1900s (Berkes et al. 2003) (Chapter 8, this volume).

6.3.1  Resilience Thinking

Resilience thinking provides a general framework for organizing and analyzing 

information regarding SESs to guide sustainable development and natural resource 

use (Folke 2006; Cote and Nightingale 2012). In this context, resilience is more 

appropriately interpreted as an approach and set of assumptions to analyze and guide 

SESs, rather than a system property as described in the previous sections (Biggs 

et al. 2015). The application of resilience to SESs implies “general” resilience that 

considers the potential existence of multiple drivers, disturbances, and thresholds, as 

opposed to “specified” resilience that emphasizes the impact of a smaller number of 

impacts on a specific threshold (Anderies et al. 2006). Resilience thinking is widely 

viewed as being comprised of three broad components (Folke et al. 2010). First, as 

previously defined for ecological systems, resilience describes the capacity of SESs 

to continually change and adapt, and yet remain within their current basin of 
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attraction. Second, adaptive capacity describes the ability of humans to guide and 

direct change by enabling SESs to respond and adapt to internal and external events 

so that they can maintain their integrity and function. Third, transformation describes 

the capacity to create an alternative SES when resilience of the previous system can 

no longer be maintained by incremental adaptation (Folke et al. 2010). Each of these 

components will be discussed further in the following sections.

6.3.1.1  Social Resilience

Social resilience refers to the ability of human communities to withstand external 

shocks to their social infrastructure, such as environmental variability or social, eco-

nomic, and political disruption (Adger 2000). However, attempts to transfer resil-

ience theory from ecological systems to social systems have encountered several 

major concerns. Central among them is the validity of the assumption of persistent 

relationships—feedback mechanisms as described for ecosystems—which deter-

mine the ability of SESs to absorb natural and social disruption, change, and con-

tinue to persist (Cote and Nightingale 2012; Brown 2014). Social resilience 

emphasizes societal values and human behaviors, including power relations, equity 

and justice, and function of social organizations, which are central to human–envi-

ronment relationships and social change, but are absent from ecological systems 

(Cote and Nightingale 2012; Olsson et al. 2015). Therefore, thresholds may repre-

sent changes in institutional procedures, including power sharing in decision mak-

ing, wealth distribution, and land tenure, rather than irreversible divisions between 

two stable states (Christensen and Krogman 2012). In addition, neither social nor 

ecological resilience are normative so they do not provide a basis to distinguish 

between desirable and undesirable expressions of resilience (Brown 2014). 

Consequently, the value of resilience as an analytical tool for SESs has proven even 

more difficult to define and implement than for ecological systems (Benson and 

Garmestani 2011). The broad integration of knowledge and perspectives that con-

veys value to resilience as an organizing framework likely represents the same attri-

butes that restrict its application to standardized management protocols and policies 

(Cote and Nightingale 2012).

6.3.1.2  Adaptive Capacity and Social Learning

Adaptive capacity describes the ability of humans to create, and shape variability 

and change in SESs, and it represents a central component of social resilience. 

Adaptive management, social learning, and adaptive governance are all components 

of adaptive capacity that are necessary for putting resilience into practice. Adaptive 

management is often described as learning by doing and it operates in an iterative 

manner acknowledging that our understanding of complex systems is incomplete 

and constantly changing. Adaptive management was introduced shortly following 

development of resilience theory to incorporate the inevitable constraints of 
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uncertainty and insufficient knowledge into natural resource management (Holling 

1978). Social learning describes the process by which groups of individuals assess 

social- ecological conditions and respond in ways that meet desired objectives. This 

represents a central component of the ability of small coordinated groups of natural 

resource users to develop more effective local governance than top-down policies 

(Ostrom 1990) (Chapter 11, this volume).

6.3.1.3  Anticipating System Transformation

Transformation becomes necessary when adaptive capacity and available adapta-

tion strategies are no longer sufficient to maintain resilience of SESs. Transformation 

describes the capacity to create fundamentally new SESs when ecological, eco-

nomic, or social conditions make the existing system unsustainable (Walker et al. 

2004). Ecological change in the form of increased climatic variability or social dis-

ruption regarding the availability and allocation of land, labor, and capital can initi-

ate the need for transformation. The intended goal of transformation is to reorganize 

SESs around alternative and likely novel basins of attraction that can provide eco-

system services to sustainably support human livelihoods when previous SESs have 

failed (Walker and Salt 2012).

The capacity of SESs to successfully manage transformation has only recently 

been considered and is not yet well developed. However, successful transformation 

may be dependent on five key considerations: awareness, incentives, networks, 

experimentation, and assets. Awareness of the need to implement transformative 

strategies is dependent upon the ability of members of the SES to recognize and 

broadly communicate the occurrence of unsustainable conditions and the need for 

transformation (Carpenter and Folke 2006; Marshall et al. 2011). Incentives may be 

required to encourage voluntary change because indecision or denial is often an 

immediate response to the loss of resilience in SESs (Walker and Salt 2012). The 

strength of social networks, ability of participants to experiment, preferably at local 

to regional scales until cost-effective strategies have been established, and leadership 

are important components for implementing transformation (Nelson et al. 2007; 

Folke et al. 2010). Finally, effective transformation requires flexibility in the assets or 

resources necessary to implement change. Recognizing and communicating the need 

for transformation and developing policies, programs, and actions to support determi-

nation of when and how to initiate transformational change represent important chal-

lenges for the rangeland profession (Joyce et al. 2013) (Chapter 15, this volume).

6.3.2  Resilience-Based Governance and Policy

Institutions and policies governing the behavior of SESs influence resilience by 

defining the rights and capacities of managers to make decisions regarding social- 

ecological trade-offs (Horan et al. 2011). A framework capable of supporting 
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resilience thinking in SESs must be able to address the problems of governance, 

including management and policy decisions in the face of uncertainty, disputed values, 

and potential shifts to alternative states (Carpenter and Brock 2008). The failure to 

recognize and manage feedbacks in SESs, including limited monitoring of policy 

outcomes and insufficient adaptive management, may be among the primary reasons 

previous institutions have contributed to natural resource management failures 

(Holling and Meffe 1996; Ascher 2001). Therefore, a key component of the resil-

ience of SESs is the reorganization of institutions to monitor policy outcomes and 

implement information feedbacks to learn from previous actions. This may be best 

achieved by focusing on experimentation, adaptation, and social learning within 

local communities, rather than on implementation of generalized policies originat-

ing from static institutions that are assumed to be efficient or “right” (Benson and 

Garmestani 2011; Anderies and Janssen 2013).

Designing governance for resilient SESs requires understanding of how biophysi-

cal conditions, social structure, and institutional policies interact and affect each 

other and the entire system. Resilient governance regimes are those that achieve a 

good fit between these different system components so that they continue to function 

under conditions of uncertainty and disturbance to the system (Anderies and Janssen 

2013). In this way, “resilience thinking” departs considerably from traditional policy 

and resource management which typically takes a narrower view of imposing top-

down policies to drive the system toward specific outcomes. Understanding how 

different components in SESs respond and interact to management strategies and 

policies and what outcomes will be produced has proven extremely difficult. 

Consequently, only general principles of governance have been identified to promote 

resilience in SESs (Anderies et al. 2006). Three of these major principles follow:

 (1) Collaboration to build trust and promote dialogue toward a shared understanding 

of the system among stakeholders is necessary to mobilize action and self- 

organize SESs (Ostrom 1990).

 (2) Multilayered institutions located at various scales within the system improve 

the fit between knowledge, action, and social-ecological interactions in ways 

that promote adaptive societal responses at appropriate times and locations 

(Ostrom 1990; Anderies and Janssen 2013).

 (3) Accountable authorities that pursue the just distribution of benefits and involun-

tary risks among stakeholders to enhance the adaptive capacity of the most 

vulnerable groups (Lebel et al. 2006).

6.3.3  Resilience Analysis and Management

Resilience management in SESs emphasizes two major, interrelated goals. First is 

to prevent the system from transitioning to an undesirable stable state, and second 

is to retain and promote the ability of SESs to reorganize following major change 

(Walker et al. 2002). The intent is not to direct the trajectory of SESs toward a pre-

determined endpoint, but rather to strengthen the internal feedbacks to enhance 
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general resilience to both anticipated and unanticipated future change. A planning 

approach consisting of four broad, interrelated steps has been developed as a means 

to retain and promote general resilience of SESs (Walker et al. 2002). The planning 

process is to be conducted by multiple stakeholders possessing diverse interests and 

knowledge of the SES under consideration (Fig. 6.6).

Step 1. Develop a Conceptual System Model. The initial step is to establish 

boundaries for the SESs, and to identify the major management issues, critical 

stakeholders groups, and primary drivers of change. Identification of major eco-

system services, primary controlling variables, and institutional and governance 

arrangements is also important. Investigation of the historical profile of SESs 

emphasizing the impact and adaptive responses to previous disturbances will 

provide valuable baseline information.

Step 2. Create Scenarios of Future System Trajectories. The second step is the 

development of a limited set (3–5) of future scenarios that address a range of 

potential SES trajectories in response to the major drivers of change identified in 

step 1. The scenarios may include a business-as-usual scenario, a more confined 

or conservative scenario, and one or two more exploratory scenarios. These sce-

narios are not intended to be predictions, but rather broad plausible visions of 

potential outcomes that are consistent with existing evidence.

Step 3. Resilience Analysis. The goal is to assess how the system may change 

within each of the scenarios identified in the previous step. This assessment 

should emphasize anticipated responses of SESs to the drivers and processes that 

Fig. 6.6 A resilience analysis and management procedure that consists of four broad, interrelated 

steps that are to be conducted by multiple stakeholder groups as a means to retain and promote 

resilience of social-ecological systems (Walker et al. 2002)
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influence stakeholder interests. The identification of thresholds, alternative 

states, and other potential surprises are of primary importance. This step is highly 

context dependent and therefore difficult to define in specific detail.

Step 4. Resilience Management. The final step involves stakeholder evaluation of 

the knowledge created in the previous steps for management and policy consid-

erations. The implications of this knowledge for assessment and management of 

critical feedback mechanisms and controlling variables that determine general 

resilience of SESs are especially relevant. A specific trajectory for SESs is not 

selected because it is assumed that insufficient information and occurrence of 

unanticipated change will limit the value of predictions.

6.3.4  What Has Been Learned?

The concepts of social resilience and SESs emphasize a “humans-in-nature” per-

spective that recognizes that ecological knowledge alone is insufficient to sustain-

ably manage human-dominated systems. These concepts recognize the importance 

of human values and goals to sustainable natural resource management and they 

create opportunities for multiple stakeholders to adaptively design management 

strategies and policies. In the context of social resilience, sustainability is pursued 

by acknowledging the existence of uncertainty, incomplete knowledge, and the 

potential for abrupt shifts to alternative states, as opposed to steady state manage-

ment that attempts to minimize variability and target specific outcomes. The appli-

cation of resilience to SESs emphasizes “general” resilience to various human and 

natural disturbances, rather than “specified” resilience that emphasizes the impact 

of a small number of known impacts on specific thresholds. Adaptive capacity has 

emerged as a key feature of general resilience in SESs that includes adaptive man-

agement, social learning, and adaptive governance. Adaptive capacity may be best 

achieved by focusing on experimentation, adaptation, and collaboration within 

local communities, rather than on implementation of generalized policies that are 

assumed to be efficient or “right.” Rangeland SESs and the human livelihoods they 

support are especially vulnerable to a loss of resilience given that they are often 

characterized by resource scarcity and variability. In cases where the resilience of 

SESs has been exceeded, transformational change will be required to reorganize 

these systems within other basins of attraction to support human livelihoods 

through the production of alternative ecosystem services with different manage-

ment strategies.

6.4  Future Perspectives

In this section we summarize several perspectives regarding the future development 

and implementation of resilience that emerged during the writing of this chapter.
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6.4.1  Heterogeneity and Livestock-Vegetation Dynamics

Reinterpretation of the NEP model has indicated that grazed systems often contain 

two unique resource categories: one in which livestock may not necessarily be in 

equilibrium during the wet season and the other is key resource areas with which 

livestock are always in equilibrium (Illius and O’Connor 1999). These resource 

categories are created by heterogeneity in the relative proportion and spatial arrange-

ments of wet- and dry-season forage resources within the landscape (Hempson et al. 

2015). The manner in which these spatial attributes influence coupling of vegetation 

and livestock in relation to length of the wet and dry seasons would provide greater 

insight into this component of grazed systems. The importance of functional hetero-

geneity needs to be more effectively incorporated into management recommenda-

tions and policy decisions (Chapter 5, this volume).

6.4.2  Procedures to Implement Resilience-Based Management

Resilience has gained wide acceptance as a framework to guide natural 

resource management, but the procedures necessary to implement it require 

additional development. Thresholds and alternative states have received the 

greatest attention, but they do not necessarily provide the best information to 

guide resilience-based management because they are often only recognized 

after their occurrence. Greater emphasis needs to be focused on the identifica-

tion of ecological indicators of controlling variables and feedback mechanisms 

to assist managers in assessing the trajectory of ecosystem resilience and to 

identify appropriate management strategies to modify these trajectories when 

desired.

The search for procedures to implement resilience has encountered some fric-

tion between traditional and contemporary scientific approaches regarding the 

trade-off between precision and vagueness. It has been argued that vagueness, 

which is normally viewed as being detrimental to scientific progress, may actually 

promote creativity and problem solving within the context of resilience-based 

management (Strunz 2012). This creates considerable uncertainty regarding the 

extent to which resilience procedures should be standardized and formalized for 

application. State- and- transition models as a component of Ecological Site 

Descriptions are currently the primary procedure for implementation of resilience-

based management on rangelands. It remains uncertain whether procedures 

addressing the resilience of SESs should be incorporated into this framework or if 

a separate framework specifically focusing on SESs is required. Emphasis on SESs 

will require a reorientation from specified resilience emphasizing specific stable 

states and thresholds, as widely applied today, to general resilience of entire SESs 

that exist at larger spatial scales.
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6.4.3  Recognizing and Guiding Transformation

Globalized markets, climate change, loss of biodiversity, and species invasion 

collectively contribute to conditions in which SESs and the human livelihoods 

they provide may become unsustainable. Rangeland SESs may be especially vul-

nerable because they are frequently characterized by resource scarcity and vari-

ability, limited infrastructure and financial capital, and few viable alternatives to 

sustain human livelihoods (Sayre et al. 2013). Development of policies and pro-

grams to increase awareness and communication of the need for transformational 

change represents an important challenge. The ability to determine when an SES 

is becoming unsustainable and how to effectively guide transformation of SESs 

toward a more sustainable alternative requires greater consideration. This will 

require an assessment of resilience over multiple timescales (Anderies et al. 

2013). Short-term decisions primarily focus on specified resilience to maintain 

stabilizing feedbacks of a desirable state that will minimize development of an 

alternative state. Mid- and long-term decisions require emphasis on general resil-

ience by adapting SESs to increasing uncertainty and new conditions, and on 

transformational change when appropriate. Strategies focused on general resil-

ience will require a greater understanding of the organization and function of 

SESs than is currently available.

6.4.4  Institutional Reorganization to Promote Resilience

A centralized organizational structure controlling both power and financial resources 

often supports a command-and-control management strategy which is recognized 

as an impediment to resilience-based management (Holling and Meffe 1996). 

Consequently, the traditional management, policy, and institutions responsible for 

natural resource management present major challenges to the implementation of 

resilience thinking (Benson and Garmestani 2011). Formal institutional arrange-

ments within existing laws and regulations often ignore ecological complexity and 

variability, and emphasize a “preservation paradigm” that is focused on minimizing 

or mitigating human damage to ecosystems. Current natural resource management 

policies and incentives are often designed to prevent change in the desired “opti-

mal” state and they often represent perverse incentives that may eventually reduce 

resilience of the system (Anderies et al. 2006). In addition, management agencies 

often focus exclusively on ecological components of natural resource challenges, 

but largely overlook the associated social components. This is largely a consequence 

of legal and policy frameworks that separate decision making regarding these two 

systems. However, as previously indicated, ecological and social systems are tightly 

linked through reciprocal feedbacks that require simultaneous consideration for 

development of effective management and policy.
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Barriers that must be overcome to modify governance to enhance resilience of 

SESs include (1) the tendency for political expediency to modify, rather than change, 

existing institutions; (2) reliance on traditional procedures and knowledge to address 

novel, complex problems; and (3) fragmented governance among land ownership 

patterns and institutional jurisdictions (Brunckhorst 2002). Potential implementa-

tion of the Endangered Species Act to address conservation and management of 

greater sage-grouse (Centrocercus urophasianus) and its habitat represents an 

excellent example of an institutional mismatch with complex natural resource man-

agement challenges (Boyd et al. 2014). The regulatory approach is incapable of 

addressing the ecological and social complexity of these challenges because it is not 

designed to empower collaborative adaptive management among diverse stakehold-

ers (Chapter 11, this volume).

6.5  Summary

Rangeland ecology and management have undergone a major transformation in the 

past quarter century as nonequilibrium ecology and resilience theory were adopted 

to increase consistency with observed ecological dynamics and management out-

comes. Equilibrium ecology had long been a guiding ecological principle that 

emphasized linear and predictable ecosystem dynamics and it supported the steady- 

state management model that prevailed throughout the twentieth century. 

Equilibrium ecology was challenged on the basis of both theoretical inconsistencies 

and its inability to account for observed ecosystem dynamics. Nonequilibrium ecol-

ogy recognizes that disturbance, spatial heterogeneity, and multiple stable states, in 

addition to internal biotic regulation, have a major influence on ecosystem dynam-

ics (Wu and Loucks 1995).

In addition to these broad implications of nonequilibrium ecology, rangeland 

ecology was explicitly challenged by the persistent nonequilibrium model that orig-

inated in pastoral systems in East Africa. This model indicated that forage avail-

ability and livestock numbers were seldom in equilibrium because vegetation 

recovered more rapidly than livestock numbers following multiyear drought (Ellis 

and Swift 1988). It was further assumed that this weak coupling between vegetation 

and livestock minimized the potential for grazing to degrade rangeland resources. 

However, the persistent nonequilibrium model has been qualified by recognizing 

that livestock are always in equilibrium with the key resource areas of a grazed 

system, even though they may only be loosely coupled to abundant wet-season 

resources. Reinterpretation of the nonequilibrium persistent model challenges the 

legitimacy of the “new” rangeland ecology by reaffirming that stocking rate and 

carrying capacity are valid concepts for grazing management, albeit in the context 

of larger landscapes and longer time periods.

Two categories of resilience exist to describe unique patterns of ecosystem dynam-

ics. Engineering resilience assumes that systems are confined to a single basin of 

attraction and it is represented by the time required for a system to return to its original 
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equilibrium point following disturbance (Holling 1973). In contrast, ecological resilience 

recognizes that ecosystems may not return to their original equilibrium point, but that 

they may reorganize around alternative equilibrium points (Gunderson 2000). 

Resilience is often expressed graphically with “basin-of- attraction” or “ball-and-

cup” diagrams to further clarify this abstract concept. In this graphic representation, 

the ball represents the structural variables of the system in relation to the controlling 

variables and feedback mechanisms that are represented by the shape and number of 

the basins (Beisner et al. 2003; Walker et al. 2012). Engineering resilience empha-

sizes the depth of the basin which determines the rate of recovery following distur-

bance. Ecological resilience emphasizes the width of the basin to represent the 

amount of disturbance that a system can withstand without the ball rolling beyond the 

rim of the basin (threshold) into an alternative basin. Ecological resilience is most 

commonly applied to natural resource management where thresholds and the forma-

tion of alternative stable states are of major concern.

State-and-transition models represent a conceptual advance from the traditional 

range model that was founded on Clementsian succession by recognizing the occur-

rence of nonlinear vegetation dynamics and the potential existence of alternative 

stable states on individual ecological sites. These models were originally introduced 

as a “management language,” rather than an ecological theory, to organize and inter-

pret rangeland vegetation dynamics. However, the STM framework has become a 

major tool for interpreting and integrating both management and ecological infor-

mation. Subsequently, these models are broadly viewed as being supported by eco-

logical resilience and are most appropriately considered equilibrium models because 

individual states exist with a single basin of attraction and thresholds represent 

boundaries between multiple equilibrium states. Ecological indicators of state vari-

ables, controlling variables, and to lesser extent feedback mechanisms that underpin 

resilience are used to determine if a state is trending toward or away from pending 

thresholds (Briske et al. 2008). This information can inform managers of the need 

to implement actions to modify state resilience to achieve desired outcomes.

The adoption of resilience theory has had broad consequences for natural resource 

management by providing an alternative to command-and-control management. 

Command and control employs a top-down, regulatory strategy that often ignores varia-

tion and the complexity of interactions among ecological and social system components 

(Anderies et al. 2006). The typical response to uncertainty and surprise is to increase 

control which often further reduces resilience and moves the system toward pending 

thresholds (Holling 1973; Holling and Meffe 1996). Management strategies to minimize 

variability and optimize production efficiency in one portion of the system frequently 

increase vulnerability in another portion of the system. These top-down management 

strategies have also been founded on unrealistic assumptions regarding the ability of 

managers to anticipate and implement actions, often as technological solutions, in time 

to prevent natural resource degradation or ecosystem shifts to alternative states.

In contrast to command and control, resilience-based management recognizes 

both the inevitability of change and the need for change, such that it seeks to 

guide change, rather than to control it to maintain a single optimal state. A family 
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of concepts—alternative stable states, thresholds, controlling variables, and 

feedbacks—has evolved around resilience theory that has both increased its 

potential conceptual value and introduced considerable ambiguity (Strunz 2012). 

The vagueness inherent to resilience theory is counter to the clarity and precision 

normally associated with science, but this trade-off may be necessary to promote 

creativity, trans- disciplinarity, and cooperation among diverse stakeholder 

groups that is needed to contend with the complexity of natural resource prob-

lems currently confronting society. The broad and often ambiguous elements of 

resilience that have contributed to its intuitive value and appeal are likely the 

same attributes that make it challenging to interpret and implement (Cote and 

Nightingale 2012).

Some of the critical challenges confronting the application of resilience to natu-

ral resource management are represented by the following questions. How much 

disturbance can ecosystems absorb before they cross thresholds and reorganize as 

alternative stable state (Standish et al. 2014)? Is it possible to identify indicators of 

resilience within existing stable states so that management actions can be imple-

mented to reduce the probability of a threshold being crossed? How can restoration 

programs best prioritize efforts to reestablish stable states after they have crossed a 

threshold and reorganized as an alternative stable state? How can resilience thinking 

be most effectively incorporated into management recommendations and policy 

decisions without impairing generality and flexibility inherent to the theory (Strunz 

2012)? Is the resilience framework relevant to SESs (Anderies et al. 2006)? These 

questions are especially challenging given that experimental evidence is very lim-

ited and that experiments to address these questions are extremely difficult to con-

duct in large complex systems. Historical data has been suggested as a means to 

investigate resilience by retrospective analysis of events in both ecological (Standish 

et al. 2014) and SESs (Stafford Smith et al. 2007). All indications are that resilience 

will continue to be a work in progress given both the complexity of the concepts 

involved and the enormity of natural resource challenges to be addressed.

Resilience has been envisioned as a framework to guide society on a path 

toward sustainability (Folke 2006). It has even been suggested that resilience 

should replace sustainability as an organizing framework to support environmen-

tal management and ecological governance because it is often impossible to know 

what should and can be sustained in a world of increasing complexity, uncer-

tainty, and rapid change (Benson and Craig 2014). Resilience-based management 

emphasizes adaptive management and the development of adaptive capacity to 

guide change, rather than management actions to reduce variability in an attempt 

to stabilize desired systems. In this context, resilience may represent a more valu-

able framework than sustainability for natural resource management because it 

anticipates uncertainty and emphasizes learning to contend with future challenges 

(Strunz 2012). However, for resilience to meaningfully contribute to this enor-

mous challenge it must be put it into practice at multiple scales of application or 

it may encounter the same ambiguous outcome as sustainability.
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Chapter 7

Ecological Consequences of Climate Change 

on Rangelands

H. Wayne Polley, Derek W. Bailey, Robert S. Nowak, 

and Mark Stafford-Smith

Abstract Climate change science predicts warming and greater climatic variability for 

the foreseeable future. These changes in climate, together with direct effects of 

increased atmospheric CO2 concentration on plant growth and transpiration, will influ-

ence factors such as soil water and nitrogen availability that regulate the provisioning 

of plant and animal products from rangelands. Ecological consequences of the major 

climate change drivers—warming, precipitation modification, and CO2 enrichment—

will vary among rangelands partly because temperature and precipitation shifts will 

vary regionally, but also because driver effects frequently are nonadditive, contingent 

on current environment conditions, and interact synergistically with disturbance 

regimes and human interventions. Consequences of climate change that are of special 

relevance to rangelands are modification of forage quantity and quality, livestock 

metabolism, and plant community composition. Warming is anticipated to be accom-

panied by a decrease in precipitation in already arid to semiarid rangelands in the south-

western USA, Central America, and south and southwestern Australia. Higher 
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temperatures combined with drought will significantly impair livestock production by 

negatively impacting animal physiological performance, increasing ectoparasite abun-

dances, and reducing forage quality and quantity. Conversely, the warmer, wetter con-

ditions anticipated in the northwestern USA, southern Canada, and northern Asia may 

increase animal productivity by moderating winter temperatures, lengthening the grow-

ing season, and increasing plant productivity. Synergist interactions between climate 

change drivers and other human impacts, including changes in land-use patterns, inten-

sification of disturbances, and species introductions and movements, may further chal-

lenge ecosystem integrity and functionality. Evidence from decades of research in the 

animal and ecological sciences indicates that continued directional change in climate 

will substantially modify ecosystem services provisioned by the world’s rangelands.

Keywords Atmospheric CO2 • Atmospheric warming • Forage quality and quan-

tity • Livestock production • Precipitation • Soil water availability

7.1  Introduction

Climate change science predicts warming and greater climatic variability for the 

foreseeable future, including more frequent and severe droughts and storms, as a 

consequence of increasing atmospheric concentrations of greenhouse gases (GHGs). 

These gases, which include carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), and tropospheric ozone (O3), reduce cooling of the Earth by partially block-

ing the emission of long-wave infrared radiation into space to create a “greenhouse 

effect” that is vital to buffering day-night temperature fluctuations on Earth. GHG 

concentrations are rising largely as a result of human activities (IPCC 2013) and 

will continue to rise for the foreseeable future even if emission rates decline because 

GHGs remain in the atmosphere for hundreds of years (Karl et al. 2009). Increased 

GHG concentrations will amplify the current greenhouse effect and further warm 

the Earth and modify precipitation patterns.

These changes in climate, together with the direct effects of increased CO2 

concentration on plant growth and transpiration, will influence factors such as 

soil water availability and nitrogen (N) cycling that regulate the provisioning 

of plant and animal products and other services from rangeland ecosystems 

(Walther 2003, 2010; Joyce et al. 2013; Polley et al. 2013). Climate change 

alone or in combination with impacts of other human activities, such as inten-

sification of disturbances, may force ecosystems beyond their historical range 

of variability. This may result in a change in ecosystem structure and function 

that will be difficult to reverse on the management timescale of decades (Joyce 

et al. 2013).

H.W. Polley et al.
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We provide a (1) brief review of climatic trends during the twentieth century that 

provide evidence of a climate change signature, (2) summary of changes in climate 

anticipated on the world’s rangelands during the twenty-first century, (3) synthesis 

of key “principles” from the ecological and climatological sciences that are founda-

tional to projecting climate change impacts, and (4) assessment of three plausible 

climate change scenarios for rangelands.

7.2  Recent Climatic Trends: A Climate Change Signature

The Earth’s climate changed throughout geological history in response to natural 

events, but we have entered an era in which human impacts on global fluxes of 

radiative energy have demonstrable effects on climate (IPCC 2013). This modern 

climate change signature is evident in the form of atmospheric warming, rapid gla-

cial retreat, accelerated plant phenology, modified precipitation patterns, and 

increasing wild fires (Parmesan and Yohe 2003; IPCC 2013). Global mean tempera-

ture increased during recent decades, particularly in northern latitudes and over 

land. Each of the last three decades has been successively warmer at the Earth’s 

surface than any preceding decade since 1850 (IPCC 2013). Six of the 10 years 

from 1998 through 2007 were among the hottest 10 % recorded for much of North 

America (NOAA National Climatic Data Center 2013).

Precipitation has also increased on average during recent decades, particularly in 

the Northern Hemisphere and at midlatitudes (IPCC 2013). Importantly, however, 

precipitation has declined by >5 % in several areas of the world with extensive graz-

ing lands. These areas include southeastern Australia, central Africa, the 

Mediterranean grasslands, and woodlands in southern Europe, and rangelands of 

northwestern North America.

A climate change signature also is evident in the form of an increasing fre-

quency of extreme weather events, including greater precipitation variability. The 

frequency of intense precipitation events has increased in North America and 

Europe, but there is lesser confidence that this change has occurred for other 

continents (IPCC 2013).

7.3  Climate Change Projections

Atmospheric temperature increased by 1 °C since industrialization (ca. 1750) 

largely as a result of increasing concentrations of CO2 (Keeling et al. 2009) and 

other GHGs (IPCC 2007). Globally, surface air temperature is predicted to 

increase by 2–4 °C by the final decades of this century, relative to the 1986–2005 

average (IPCC 2013). Warming is expected to be greatest at northern latitudes 

(Fig. 7.1) and at night.

7 Ecological Consequences of Climate Change on Rangelands
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Warming is anticipated to increase weather extremes, including both intra- and 

interannual precipitation variability and the occurrence of both drought and heat 

waves, by altering atmospheric circulation patterns (Easterling et al. 2000; McCabe 

and Clark 2006). Projections of regional and seasonal shifts in precipitation include 

greater uncertainty than those of CO2 or temperature modification, but precipitation 

generally is expected to increase near the poles and decrease elsewhere, with sig-

nificant seasonal variation (IPCC 2007). Precipitation is anticipated to increase dur-

ing winter in the northwestern USA, southern Canada, and northern Asia, and 

during spring in central North America, but decrease by 10–20 % during winter and 

spring in southern Africa and during spring and summer in central Asia. Average 

annual precipitation is expected to decrease in southwestern North America. 

0

Tundra Temperate Grasslands

Tropical Grasslands and Savanna

Mediterranean Grasslands and Woodlands

Cold Winter Desert/Semi-Deserts

Warm (Hot) Desert/Semi-Deserts

0.5 1 2 3 4 4.5 5 5.5
(˚C)

3.52.51.5

Fig. 7.1 The annual average of air temperature change at the Earth’s surface as simulated by cli-

mate models for the period 2046–2065 (upper panel) and distribution of the world’s rangelands 

(lower panel; redrawn from Allen-Diaz 1996). Temperature change is calculated relative to the 

average for the period 1980–1999. The upper panel is adapted from IPCC (2007)
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Reduced precipitation and more frequent droughts are forecast for much of Australia, 

particularly southern and southwestern regions (IPCC 2007). Climate change also 

may increase the size or intensity of events when they do occur (Groisman et al. 

2005; Karl et al. 2009). Heat waves are anticipated to increase in both frequency 

and magnitude in proportion to increasing mean temperature.

The issues of global GHG accumulation and its consequences for future climate 

patterns are necessarily complex (Lindzen 1999), as evidenced by the unanticipated 

slowing of global warming for more than a decade (Smith 2013). Despite uncertain-

ties and the apparent “pause” in the warming trend, which has been attributed partly 

to heat uptake by ocean waters (Guemas et al. 2013), it would be irresponsible to 

ignore the cumulative evidence for a climate change footprint and the well- 

documented and continuing GHG accumulation that, given current understanding, 

must eventually lead to additional warming at the Earth’s surface (IPCC 2013).

The climate change drivers of warming, precipitation modification, and CO2 

enrichment each will influence rangeland structure and function with impacts on 

animal production. Temperature regulates rates of chemical reactions, animal 

metabolism, and water and energy fluxes. However, CO2 concentration influences 

rates with which leaves exchange CO2 and H2O with the atmosphere. Precipitation 

regulates plant productivity and associated ecosystem processes by determining soil 

water availability.

7.4  Key Scientific Principles for Projecting Climate Change 

Impacts

In this section, we discuss key scientific findings or principles that form the basis for 

our assessment of climate change impacts on rangelands. We regard each principle 

as a critical generalization resulting from years of research in the ecological or cli-

matological sciences. Together, these principles inform our evaluation of rangeland- 

climate interactions.

7.4.1  Magnified Greenhouse Effects Are Irreversible

Climatic consequences of the magnified greenhouse effect are irreversible for a 

minimum period of decades to centuries given current technologies. GHG concen-

trations and climate are changing at a rate that is and likely will continue to be 

exceedingly rapid compared to past changes.

7 Ecological Consequences of Climate Change on Rangelands
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Despite important uncertainties about the magnitude of atmospheric warming, 

dynamics in the Earth climate system make additional climate change a virtual cer-

tainty. Indeed, centuries may be required for climate to equilibrate with current levels 

of GHGs (Matthews and Weaver 2010). For instance, warmed oceans cause air tem-

perature to increase even if atmospheric CO2 concentration is stabilized. The decrease 

in warming that would result from slowly declining CO2 concentrations would largely 

be offset by heat loss from warmed oceans (Solomon et al. 2009). Dynamics of C-cycle 

processes also will lead to warming by causing CO2 concentration to continue to rise in 

the absence of anthropogenic emissions if, as anticipated, climate change leads to loss 

of organic C from terrestrial ecosystems by causing widespread forest loss or thawing 

of permafrost (Koven et al. 2011).

Climate is changing at an unprecedented rate. For example, rates of change were 

greater during the period from 1880 to 2005 than during the Little Ice Age and early 

Holocene (Diffenbaugh and Field 2013) and further acceleration is anticipated. 

These unprecedented rates of change challenge the coping capacity of social- 

economic- biophysical systems (Joyce et al. 2013; Chap. 15, this volume) and the 

ability of many organisms to track favorable climatic conditions across the land-

scape. Consequences include shifts in vegetation patterns and range distributions, 

increases in rapidly dispersed “weedy” species, and the potential occurrence of plant 

communities that have not previously existed (Polley et al. 2013).

7.4.2  Ecological Consequences of Climate Change Will Vary 

Regionally

Climate change will impact ecological processes differently in different regions 

because the magnitude, decadal timing, or seasonal patterns of warming and pre-

cipitation modification will be expressed differently among regions. Climate change 

impacts likely will be greatest for rangelands where climate shifts amplify currently 

positive climatic effects or exacerbate climatic limitations on plant and animal pro-

ductivity or surface water supplies. For example, intensification of drought (warmer, 

drier conditions) may elevate the risk of extensive plant mortality and even of biome 

reorganization in arid ecosystems in which plants already function with limited 

water availability (Ponce Campos et al. 2013; see Box 7.1).

7.4.3  Climate Drivers Have Unique but Potentially Interactive 

Effects on Plants and Ecosystem Processes

Climate drivers have unique effects on plants and ecosystems. For example, tem-

perature regulates water and energy fluxes between land surfaces and the atmo-

sphere, whereas CO2 concentration influences rates of leaf photosynthesis and 

transpiration, in addition to retaining thermal energy near the Earth’s surface.

H.W. Polley et al.
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Text Box 7.1: Climatic drying accelerates degradation of semiarid 

shrubland ecosystems

A recent trend toward greater aridity intensified stresses in a semiarid shrubland 

in Spain on a drought-prone soil (Vicente-Serrano et al. 2012). Increased 

temperature increased evaporative demand causing plant cover to decline during 

summer and in areas in which water limitation is common. Plant cover increased 

between 1984 and 2009 as temperature increased on some shrublands (top 

panel), but decreased strongly in more water-limited communities on infertile 

gypsum soil (lower panel). Photographs are reproduced from Vicente-Serrano 

et al. (2012) with permission from the Ecological Society of America.  

(continued)
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The combined effect of climate change drivers may differ from that anticipated 

by summing single-driver effects (Fig. 7.2; but see, Dukes et al. 2005). For 

instance, plant biomass responses to combined warming and CO2 enrichment 

treatments often are smaller than anticipated from single-factor experiments 

(Morgan et al. 2011; Dieleman et al. 2012). Interactions also are evident in driver 

effects on plant community composition. Responses of foliar cover to experimen-

tal warming were species specific in an old field, varied through time, and were 

contingent on precipitation treatments (Engel et al. 2009). Warming may exacer-

bate effects of reduced precipitation on rangelands (Hovenden et al. 2008; Sherry 

et al. 2008), but the ecosystem consequences of the combination of climate change 

drivers generally are not as extreme as would be anticipated from single-driver 

effects (Wu et al. 2011; Dieleman et al. 2012).

Text Box 7.1: (continued)

H.W. Polley et al.
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A
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Warming + ∆ precipitation

Fig. 7.2 The combined effects of warming and either CO2 enrichment (a) or precipitation treat-

ment (b) on aboveground biomass plotted versus biomass values predicted by summing responses 

from single-factor manipulations. Data are reported as either the logarithm of the ratio of treatment 

to control biomass (a) or as the difference in biomass between the treatment and control (b). The 

solid line is the 1:1 line representing the responses expected if warming did not modify the CO2 or 

precipitation response. Most observations fall below the 1:1 line, indicating that combined treat-

ment effects are smaller than anticipated by summing effects from single-factor manipulations

7.4.4  Rangelands Will Respond Strongly to Driver Effects 

on Soil Water Availability

Plant productivity and community composition are regulated by soil water avail-

ability on rangelands.

The importance of precipitation, by inference of soil water availability, to plant 

productivity is evident in positive relationships between plant productivity and 

7 Ecological Consequences of Climate Change on Rangelands
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various measures of precipitation, both across (e.g., Rosenzweig 1968; Lieth 1973; 

Sala et al. 2012) and within ecosystem types (e.g., Sala et al. 1988; Huxman et al. 

2004). Indeed, water is the most limiting resource on arid and semiarid rangelands 

(Smith and Nowak 1990). The importance of precipitation to plant community 

structure and composition is evident in the marked shift in grassland vegetation 

that occurs along a west-to-east gradient of increasing precipitation in the Great 

Plains of North America (Risser et al. 1981) and in the major shifts in plant com-

position that occurred during the 1930s’ drought in the Great Plains (Weaver and 

Albertson 1943). The strong link between precipitation and rangeland function 

implies four climate change-relevant corollaries to Principle 4 (Sect. 7.4.4).

Corollary 1 Climate change drivers strongly influence precipitation patterns and rates 

of evapotranspiration, potentially leading to large changes in soil water availability.

Warming of the biosphere is anticipated to increase both interannual and intra- 

annual precipitation variability with possible shifts in precipitation seasonality 

(Easterling et al. 2000; McCabe and Clark 2006) and associated shifts in temporal 

patterns of soil water content. One of the primary ecosystem-level effects of 

warmer temperatures is to reduce water availability to plants by increasing evapo-

rative demand (McKeon et al. 2009). The resulting increase in plant water stress 

often reduces plant productivity in the absence of compensating precipitation 

changes (Parton et al. 2007). One of the primary effects of CO2 enrichment is to 

increase plant growth per unit of water transpired (plant water use efficiency; 

Ainsworth and Long 2005) and, at least temporarily, reduce canopy-level transpi-

ration rate to slow the decline in soil water content during periods between pre-

cipitation events (Morgan et al. 2004b; Fay et al. 2012).

Corollary 2 The effect of precipitation variability on plant productivity differs 

among ecosystems and as a function of the current precipitation regime.

Plant productivity (NPP) of a given ecosystem varies among years in response 

to interannual precipitation variability, but the relationship of NPP to precipitation 

variability differs among rangelands as a function of the current precipitation 

(Fig. 7.3). The NPP-precipitation relationship differs among ecosystems partly 
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because rain-use efficiency varies among ecosystems as a result of differences in 

plant life history traits and biogeochemical cycling (Huxman et al. 2004). In gen-

eral, NPP is more responsive to annual increases in precipitation than to precipita-

tion declines in warm and either mesic or semiarid than in desert rangelands 

because the NPP response is constrained in deserts by low plant density and leaf 

area (Knapp and Smith 2001).

The response of rangeland NPP to intra-annual variability in precipitation also 

differs among ecosystems and depends on current precipitation. The anticipated 

shift to larger, but less frequent precipitation events (Groisman et al. 2005; Karl 

et al. 2009) is expected to increase the duration and severity of drought stress and 

hence reduce aboveground NPP (ANPP) in mesic rangelands (Knapp et al. 

2002), but increase ANPP in more arid systems (Heisler-White et al. 2009). The 

ANPP impact of changing the size and frequency of precipitation events can be 

envisioned using a conceptual “soil water bucket” model (Knapp et al. 2008; 

Fig. 7.4). According to this model, the amount of water in the rooting zone of 

plants (the soil water bucket) has both upper and lower stress thresholds for plant 

and ecosystem processes. Plant and ecosystem processes approach maximum 

rates when soil water availability is neither limiting nor excessive. On mesic 

rangelands with annual precipitation of approximately 600–1000 mm, the soil 

water bucket usually is moderately full. For these ecosystems, a shift to larger, 

but less frequent precipitation events increases the frequency and duration of 

periods during which soil water content falls below the lower stress threshold by 

increasing water losses to runoff and percolation to groundwater. In more arid 

ecosystems where soil water content usually is low, precipitation that arrives in 

fewer, larger events is anticipated to increase the proportion of precipitation that 
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Fig. 7.4 A conceptual depiction of effects of mean annual precipitation on the response of soil 

water dynamics to precipitation and fewer, larger precipitation events (Knapp et al. 2008). Vertical 

bars represent temporal fluctuations in soil water content as influenced by intra-annual variation in 

precipitation for each of the three sites along a precipitation gradient (arid; <500 mm, mesic, wet; 

>1000 mm). A solid line connects idealized responses given the current size and frequency of 

precipitation events. A dashed line connects responses envisioned under a precipitation regime 

characterized by larger, but fewer events
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percolates beneath upper soil layers where it is most susceptible to evaporation. 

Greater percolation to depth should increase ANPP by reducing the frequency or 

duration of periods during which soil water content remains below the lower 

stress threshold. Consistent with the soil water bucket model, it was found that 

delivering the same total of precipitation as fewer, but larger events increased 

ANPP by 30 % in semiarid shortgrass steppe, but decreased ANPP by 10–18 % in 

tallgrass prairie (Knapp et al. 2002; Heisler-White et al. 2009).

Corollary 3 Precipitation regulates the response of productivity to CO2 but not to 

warming.

The ANPP response to CO2 varies as a function of precipitation when consid-

ered across ecosystems. The ANPP-CO2 response peaks at “moderate” levels of 

annual precipitation (300–400 mm) across desert and grassland ecosystems 

(Fig. 7.5; Nowak et al. 2004; Morgan et al. 2004b). Productivity responds rela-

tively little to CO2 when precipitation is very low because water stress inhibits 

growth and may contribute to plant senescence and mortality if it becomes suffi-

ciently severe. The benefits of elevated CO2 on productivity are reduced when 

annual precipitation is >400 mm partly because the efficient use of water use is no 

longer a critical variable (Nowak et al. 2004; Morgan et al. 2004b). Therefore, the 

average across-ecosystem response of NPP to CO2 likely will be greatest in sys-

tems in which NPP is or will become moderately water limited (Nowak et al. 2004; 

Morgan et al. 2004b, 2011; Webb et al. 2012).
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Fig. 7.5 The ratio of ANPP at elevated compared to ambient CO2 (E/A) varies as a function of 

precipitation for grassland and desert ecosystems. The dashed line in the figure represents a con-

ceptual model of the maximal E/A vs. precipitation relationship developed by Nowak et al. (2004). 

Symbols denote annual data from field experiments with open-top chambers on tallgrass prairie 

(open circles; Owensby et al. 1999), shortgrass steppe (open triangles; Morgan et al. 2004a), and 

Swiss calcareous grassland (open squares; Niklaus and Körner 2004), and the 5-year average of 

E/A for tallgrass prairie vegetation grown in elongated chambers on each of the three soil types 

(closed circles; Fay et al. 2012; Polley et al. 2012) as a function of growing season precipitation. 

The figure is adapted from Nowak et al. (2004) and Morgan et al. (2004b)
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Fig. 7.6 Biomass responses of terrestrial plants to experimental warming plotted versus the mean 

annual temperature (MAT) and mean annual precipitation (MAP) at the site of origin. Values are 

means ± 95 % CI. The biomass response to warming varies as a quadratic function of MAT, but is 

not significantly related to MAP. Figures are adapted from Lin et al. (2010)

By contrast, there is no consistent relationship between biomass response to 

experimental warming and mean annual precipitation (MAP) across terrestrial 

plants studied (Fig. 7.6; Lin et al. 2010). Experimental warming has been shown 

to reduce soil water content by increasing evapotranspiration (Harte and Shaw 

1995; Wan et al. 2005), with potentially negative effects on ANPP. Warming 

also may enhance productivity by alleviating low temperature limits on plant 

growth (Luo 2007; Lin et al. 2010) and increasing N mineralization (Rustad 

et al. 2001; Dijkstra et al. 2008). These opposing influences of warming may 

explain why many rangeland experiments have shown little consistent warming 

effect (Polley et al. 2013) and why interactive effects of warming and altered 

precipitation are smaller than expected from single-factor effects (Fig. 7.2b; Wu 

et al. 2011; Morgan et al. 2011; Xu et al. 2013).

Corollary 4 Precipitation seasonality regulates ecosystem responses to both CO2 

and warming.

Warming and CO2 enrichment combined should lead to earlier and more rapid 

plant growth in ecosystems dominated by winter precipitation because warming 

will reduce temperature limitations on both growth and growth responses to CO2. 

On the other hand, warming may reduce CO2 benefits on arid and semiarid range-

lands dominated by summer precipitation by increasing evaporative demand. 

The evaporative potential of air increases nonlinearly with temperature, such that 

a given increase in temperature will cause a disproportionately large increase in 

evaporative demand when temperature is high.

Plant responses to CO2 enrichment alone also depend on the seasonal distribu-

tion of precipitation. CO2 stimulated ANPP of Australian grassland most during 

years when summer rainfall exceeded rainfall during spring and autumn (Hovenden 

et al. 2014). High rainfall during cool spring and autumn seasons may reduce pro-

duction in this grassland by intensifying N limitation to plant growth.
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7.4.5  Soil Nitrogen (N) Availability both Regulates 

the Response of Plant Productivity (NPP) to Climate 

Change Drivers and Is Affected by Drivers

Plants require adequate supplies of N for growth and reproduction; consequently N 

availability will regulate plant responses to climate change drivers. As many of the 

pathways in the soil N cycle are temperature and soil water dependent, N availabil-

ity is, in turn, influenced by these drivers.

Corollary 1 N regulation of NPP-climate responses differs among climate change 

drivers.

Most terrestrial N occurs in organic forms that are not readily available to 

plants; hence rangeland responses to climate change drivers depend partly on how 

quickly N is mineralized from organic to inorganic forms that are available to 

plants. Low N availability frequently limits plant productivity on rangelands (e.g. 

Seastedt et al. 1991) and may reduce or even eliminate any benefit of CO2 enrich-

ment for plant growth (Owensby et al. 1994; Reich et al. 2006; Reich and Hobbie 

2012). Conversely, N availability does not appear to restrain plant response to 

experimental warming (Lin et al. 2010). Typically, N limits plant production in 

arid and semiarid ecosystems only if drought stress is alleviated (Ladwig et al. 

2012), implying that N availability will have little effect on ANPP on arid and 

semiarid rangelands such as those in the southwestern North America and south 

and southwestern Australia that are predicted to become even drier.

Corollary 2 Climate change drivers may accelerate or slow N cycling with possible 

feedbacks on NPP.

Experimental warming increases N availability to plants by accelerating N min-

eralization rates, provided that soil water is available (Rustad et al. 2001; Dijkstra 

et al. 2008), but warming also may increase N losses (Wu et al. 2012). Water addi-

tion to dry soil greatly increases N mineralization rates, but the long-term relation-

ship between precipitation and ecosystem N pools and N cycling is more complicated. 

Nitrogen pools increase along a gradient of increasing precipitation from shortgrass 

steppe to tallgrass prairie in the central USA, but rates of litter decomposition and 

of resin-captured N in soil decline (McCulley et al. 2009).

CO2 enrichment has been hypothesized to create or reinforce N limitations 

on ANPP by reducing N mineralization. To the extent that CO2 enrichment 

increases plant production and ecosystem C accumulation, it also increases the 

sequestration of N and other elements in long-lived plant material and organic 

matter leading over time to a decline in N availability to plants [the progressive 

N limitation (PNL) hypothesis; Luo et al. 2004]. Elevated CO2 reduces soil N 

availability in some cases (Reich et al. 2006; Reich and Hobbie 2012), but 

results from most experiments indicate that the strength of this negative feed-

back is reduced by processes that delay the onset of N limitation or enhance N 

accumulation in soil-plant systems (Polley et al. 2011). For example, rates of N 

input in arid ecosystems are thought to be balanced by similar rates of gaseous 
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loss of N (Peterjohn and Schlesinger 1990), but the addition of labile C 

(McCalley and Sparks 2008), as may result from CO2 enrichment (Schaeffer 

et al. 2003), greatly decreases N emissions. Microbial activity in arid lands is 

limited by available C (Schaeffer et al. 2007); consequently CO2 enrichment 

may increase C inputs into soil, which then accelerate rates of soil organic N 

mineralization to increase the availability of inorganic N to plants (Billings 

et al. 2004; Jin and Evans 2007; Jin et al. 2011). CO2 enrichment may further 

increase N availability by increasing the biomass and diversity of fungi (Jin and 

Evans 2010; Nguyen et al. 2011) that utilize recalcitrant soil substrates and by 

increasing the activities of enzymes involved in N and C cycling (Jin and Evans 

2007; Jin et al. 2011). Increased N2 fixation, increased N use efficiency, and 

increased root foraging for N at elevated atmospheric CO2 also may delay 

potential decreases in soil N (Luo et al. 2006). The preponderance of evidence 

indicates that gradual sequestration of N in organic matter will not strongly 

limit the responses of rangeland plants to climate change drivers.

7.4.6  Ecosystem Responses to Climate Change Drivers Vary 

Because of Differences in Management Practices 

and Historical Land-Use Patterns

Effects of climate change drivers on ANPP and other ecosystem processes are 

governed by a set of variables “internal” to ecosystems. These internal controls, which 

include soil resource supply and characteristics, current or potential biota, and current 

and historical land-use patterns and accompanying disturbance regimes, all contribute 

to variation in ecosystem responses to climate change drivers (Lindenmayer et al. 

2010; Polley et al. 2013). For example, fire indirectly affects responses to drivers by 

modifying soil resources and vegetation. Fires volatilize substantial quantities of N 

(Seastedt et al. 1991); hence frequent burning may constrain ecosystem responses to 

drivers by reinforcing N limitations on plant growth. Land uses such as grazing also 

regulate rangeland responses to climate change. Sheep grazing limited CO2 stimula-

tion of grassland productivity by selectively consuming the two groups of plants 

(legumes, forbs) with the greatest growth responses to CO2 (Newton et al. 2014).

7.4.7  Climate Change Drivers Affect Livestock Production 

both Directly and Indirectly

Corollary 1 Warming causes greatest physiological impairment to livestock in 

environments that are currently warm.

Livestock performance is optimal when ambient temperatures are within the 

“thermo-neutral zone” (Ames and Ray 1983) where forage intake and energy 

requirements of livestock are not affected by temperature. At temperatures below 
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the thermo-neutral zone, animals increase energy production and forage intake to 

maintain homeostasis. At temperatures above the thermo-neutral zone, animals 

become stressed and must actively dissipate heat by reducing walking and spend-

ing more time in shade (Table 7.1). Heat stress can dramatically reduce milk 

production and the efficiency of feed conversion (Wayman et al. 1962; McDowell 

1968) by reducing forage intake, changing nutrient portioning independent of 

intake, and reducing capacity to mobilize body fat and employ glucose-sparing 

mechanisms (Baumgard and Rhoads 2012). Heat stress also reduces reproduction 

rates by reducing male and female gamete production, embryonic development, 

and fetal growth (Hansen 2009; Kadokawa et al. 2012). Heat stress can be fatal 

to livestock, especially those fed large quantities of high-quality feeds, as evi-

denced by the mass mortality of feedlot cattle during heat waves (Hahn 1999). 

Values of a temperature humidity index (THI; the weighted product of air tem-

perature and relative humidity) greater than 80 are considered heat stress days, 

requiring deployment of sprinklers, additional shade, or similar cooling measures 

to minimize deaths among feedlot cattle (Hahn 1999). The number of days that 

THI exceeds 80 may increase by 138 % by 2070 (Howden et al. 2008).

Detrimental effects of heat stress will be intensified if climate change results in 

more frequent and severe droughts, as are forecast for southwestern North America 

(Seager and Vecchi 2010) and south and southwestern Australia (IPCC 2007). 

Springs and dugouts on arid and semiarid rangelands often dry during drought, 

requiring that livestock travel greater distances for water. Walking increases the 

heat load, and animals must increase sweating and respiration rates to maintain 

homeostasis (Moran 1973).

Corollary 2 Climate change drivers reduce livestock production by increasing 

abundances of ectoparasites and reducing forage quality and quantity.

Warmer temperatures may suppress livestock productivity by increasing winter 

survival of ectoparasites to facilitate larger populations (Karl et al. 2009). Horn flies 

[Haematobia irritans (L.)] are the primary pest of concern for cattle in the USA 

(Byford et al. 1992). Horn flies can reduce cattle weight gain by 4–14 %, and 

adversely impact animal physiological functions by increasing cortisol production 

Table 7.1 Potential consequences of heat stress for cattle performance

Immediate (hours to days) Medium term (days to weeks)

Long term (weeks to 

years)

Increased activity to dissipate heat 

(e.g., increased sweating and time 

in shade)

Altered metabolism (e.g., 

decreased feed conversion 

efficiency)

Increased ectoparasite 

loads

Increased water intake Reduced milk production Reduced reproduction

Reduced forage intake Reduced growth Possibly increased 

mortality
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and decreasing N retention (Byford et al. 1992; Oyarzún et al. 2008). Horn flies also 

promote livestock-avoidance behaviors, such as walking and tail switching (Harvey 

and Launchbaugh 1982). These additional activities and energy expenditures 

directly contribute to reduced livestock performance. Ticks (Amblyomma america-

num Koch) reduce weight gains of British breeds, such as Hereford, by greater than 

30 % (Byford et al. 1992). By contrast, ticks have less effect on Brahman crosses 

with British and Continental cattle, and little, if any, effect on Brahman cattle (Utech 

et al. 1978; George et al. 1985). Livestock gains in Australia could decrease by 

greater than 18 % because of increased tick infestations associated with climate 

change unless European and British cattle breeds are replaced by Brahmans or other 

tick-resistant breeds (White 2003).

Climate change drivers also are anticipated to reduce livestock performance 

on many rangelands by reducing forage quantity, quality, or both (Polley et al. 

2013). Drought obviously reduces forage production, whereas elevated CO2 has 

consistently been shown to increase plant C:N ratios and decrease tissue N con-

centrations (Cotrufo et al. 1998; Morgan et al. 2001), resulting in forage with 

reduced crude protein levels. Forage digestibility often declines at elevated CO2 

(Morgan et al. 2004a; Milchunas et al. 2005). Regional-scale analyses indicate 

that livestock become more nutrient limited in warmer and drier climates as both 

dietary crude protein and digestible organic matter content of forages decrease 

(Craine et al. 2010). A 4-year study in the tallgrass prairie showed that warming 

reduced N concentration and, correspondingly, crude protein levels of live and 

dormant forage from five warm-season grasses (An et al. 2005). In the absence 

of protein supplementation, cattle production will decline if forage quality 

declines too greatly because forage intake is volume limited. Forage quality may 

increase in cooler regions, such as the northern USA and southern Canada 

(Craine et al. 2010), if winters become warmer and wetter as anticipated.

7.4.8  Climate Change Indirectly Affects Vegetation 

Composition and Structure by Influencing Fire Regimes

Fire affects the composition of vegetation partly by favoring fire tolerant over fire- 

sensitive species. Fire is an important, although not exclusive, predictor of the rela-

tive abundances of comparably fire-tolerant grasses and fire-sensitive woody 

vegetation (Bond 2008) and of the global distribution of the savanna biome (Staver 

et al. 2011). By increasing fine fuel loads, exotic grasses can increase wildfire fre-

quency to the detriment of native vegetation. Proliferation of the exotic annual grass 

Bromus tectorum (cheatgrass), for example, has significantly increased fire fre-

quency and even the spatial areas of fires in invaded areas of the Great Basin, USA 

(Balch et al. 2013).
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Shifts in temperature and precipitation are known to modify fire regime. Most 

wildfires in the western USA occur during the hottest, driest portion of the year 

(Westerling et al. 2003). Fires are largest in grass- and shrub-dominated ecosystems 

when unusually wet-growing seasons during which fine fuels accumulate are followed 

by dry conditions that enhance fuel flammability and ignition (Littell et al. 2009). In 

contrast, fires are largest in western forested ecosystems of North America when 

precipitation is low and temperature is high in both the fire year and the preceding 

year. Fire activity is projected to increase if the climate becomes both warmer and 

drier (Pechony and Shindell 2010).

Warmer and drier conditions are conducive to more frequent fires, but suf-

ficient fuels will be required to sustain rangeland fires. Increased CO2 could 

increase fire frequency or intensity (Sage 1996) and thereby reinforce the 

effects of fire on ecosystem processes by increasing plant production (fuel 

load) and fuel flammability or favoring fire-adapted plant species. Plant 

growth appears to be particularly responsive to CO2 among several fire-

adapted annual grasses, including Bromus tectorum and Avena barbata 

(Jackson et al. 1994; Ziska et al. 2005).

7.4.9  Climate Change May Lead to Communities That Are 

Unlike any Found Today, with Important Consequences 

for Ecosystem Function and Management

Climate change may alter the composition or relative abundances of species in plant 

communities. Increased weather variability is anticipated to favor short-lived plants 

and other organisms (e.g., animals, insects, diseases) that can response rapidly to 

environmental change. Vegetation shifts are expected to result largely from changes 

in the amount, seasonal pattern, and vertical distribution of soil water (Knapp et al. 

2008; Volder et al. 2010).

Climate change will lead to combinations of seasonal temperature and precipita-

tion that differ from current climatic conditions. Consequently, climate shifts may 

support plant communities that are compositionally unlike any found today (no- 

analog or novel communities; Williams and Jackson 2007), perhaps accompanied 

by changes in the number and functional types of species present. For example, 

species diversity is lower and the latitudinal shift in the ratio of C3 to C4 species is 

more pronounced in novel than native communities in the tallgrass prairie region of 

North America (Martin et al. 2014).

Past episodes of climate change drove local extinctions that led to vegetation 

change as geographic shifts in climatic conditions outpaced the capacity of many 

plant species to migrate and establish (Blois et al. 2013). Species that success-

fully colonize following extinctions often are ecological generalists (e.g., many 

“weedy” species). Increased establishment of generalist species leads, in turn, to 

the development of progressively more homogenous plant assemblages across 
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spatial scales. Climate change may exacerbate vegetation homogenization by 

favoring generalist and often exotic species (Everard et al. 2010; Blois et al. 

2013), with potentially negative effects on ecosystem function (Isbell et al. 2011).

7.4.10  Increased Climatic Variability Increases Fluctuations 

in Ecological Systems, Rendering Sustainable 

Management More Difficult

Human learning to avoid cycles of degradation is hindered by variability in both 

ecological and social-economic systems (Stafford Smith et al. 2007). Increased 

variability in ecological systems in future climates, combined with mismatches in 

the temporal or spatial scales at which human impacts and ecological processes 

change, can lead to rangeland degradation. Stafford Smith et al. (2007), for exam-

ple, described a cycle of rangeland degradation that has been repeated multiple 

times in Australia over the past century. Favorable climatic and economic condi-

tions lead initially to an increase in the number of livestock maintained per unit 

of land area (stocking rate). Subsequent drought decreases forage production, 

often leading to overgrazing, especially when drought is coupled with govern-

ment inducements (e.g., feed subsidies) or reduced livestock prices that lessen 

incentives for producers to destock (Thurow and Taylor 1999). Excessive defolia-

tion reduces herbaceous cover potentially leading to greater soil erosion. The 

combined impacts of drought, current and previous stresses, including water limi-

tation and overgrazing, and the occurrence of a warmer, drier climate might be 

reflected first in directional shifts in the cover or composition of the plant com-

munity or as increased variability in ANPP (Fig. 7.7). Rangeland degradation 

results if plant productivity and diversity decrease to levels that cannot be eco-

nomically sustained or ecologically reversed (Willms et al. 1985; Milton et al. 

1994) (Chaps. 8 and 15, this volume).

7.5  An Assessment of Climate Change Scenarios

Following, we provide an assessment of the implications of climate change for 

rangelands organized around three plausible, but regionally unique, climate change 

scenarios. Greater uncertainty is associated with projected changes in precipitation 

than CO2 concentration or warming, particularly at regional scales. The following 

should be viewed as a general assessment of the collective impact of a given climate 

change scenario (Box 7.2).  
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Fig. 7.7 A framework for envisioning how climate change alone or in interaction with other risks 

may cause a large decline in ecosystem services, including plant and livestock productivity [upper 

panel; adapted from Manion (1981)]. We consider three categories of risks—predisposing, incit-

ing, and contributing. Predisposing factors are current and antecedent stresses that increase an 

ecosystem’s susceptibility to short-duration stresses, such as drought (inciting factor), or to longer 

term change in climate (contributing factor). Predisposing factors include stresses related to cur-

rent states or values of variables that are internal to ecosystems and dynamic over ecological tim-

escales (current regional climate, soil resources, biota, and disturbance regime; lower panel). In the 

upper panel, we illustrate a case in which climate change (contributing factor) exacerbates nega-

tive effects of a recent stress, such as drought (inciting factor), for a rangeland on which processes 

already are limited by a warm/dry climate, overgrazing, or a sparse, species-poor plant canopy 

(predisposing factors) to increase process variability sufficiently to change average process levels

Text Box 7.2: Key risks associated with climate change for rangelands

Illustration of representative risks for livestock production on rangelands sub-

ject to each of the three general climate change scenarios. Climate-related 

drivers of risk are indicated by icons. Key risks are those shifts in biotic or 

abiotic conditions judged likely to lead to ecosystem changes that are of large 

magnitude or are irreversible at management timescales of decades. An over-

all potential risk is assessed for each scenario assuming an increase in mean 

temperature of either 2 or 4 °C given current management strategies and 

adaptation capacity. The risk associated with any given biotic or abiotic shift 

will vary among regions depending on current biophysical and socioeco-

nomic factors.

(continued)
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7.5.1  Warmer, Drier Climate Scenario

Regional specificity—Climate models project that warming will be accompanied by 

a decrease in precipitation in arid to semiarid rangelands in the southwestern North 

America, Central America, and south and southwestern Australia (IPCC 2007). 

Precipitation is projected to decrease by 10–20 % during winter and spring in south-

ern Africa and during spring and summer in central Asia.

NPP and forage quality—Warming and drying will reduce soil water availability 

leading to a decrease in NPP on rangelands that already are warm and dry. NPP is 

more sensitive to the amount by which precipitation declines than to the amount of 

warming (Xu et al. 2013). Elevated CO2 will not greatly alleviate negative effects of 

drying on NPP because of persistent soil water limitations. Forage quality likely 

will decline in response to combined effects of CO2 enrichment, warming, and 

reduced precipitation.

Livestock production—Warmer and potentially drier conditions likely will 

reduce cattle production, resulting in fewer cattle operations. Remaining cattle 

operations will likely switch to the most heat tolerant of the British and European 

breeds (Bos taurus) or from Bos taurus breeds to the more heat-tolerant Bos indicus 

breeds, including Brahman and Brahman crosses, Romosinuano and Senepol 

Text Box 7.2: (continued)
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(Hammond et al. 1996; Kay 1997). Some ranchers may be forced to change species 

of livestock, such as by replacing cattle with sheep or goats which are better adapted 

to warm temperatures and drought (Kay 1997).

Vegetation composition—Intensification of drought (warmer, drier conditions) 

elevates the risk of extensive plant mortality and even of biome reorganization in 

arid ecosystems (Ponce Campos et al. 2013). For example, the severe drought of 

2002–2003 caused greater than 90 % mortality of pinyon pine (Pinus edulis) in the 

southwestern USA whereas associated trees of Juniperus monosperma survived 

(Breshears et al. 2005, 2009). Warmer and drier conditions also may alter vegetation 

by favoring more frequent fires. Increasing fire frequency in the Mojave Desert and 

Great Basin in the past 20 years has converted communities of desert shrublands 

and shrub steppe to annual grasslands (CCSP 2008; Balch et al. 2013). Some shrub 

and woodland ecosystems of rangelands, such as those in the western USA, devel-

oped under climatic conditions more favorable than those forecast. These ecosys-

tems may be subject to increased fire frequencies if more severe droughts lead to 

episodes of woody mortality that produce fuel loads sufficient to sustain fire (e.g., 

Breshears et al. 2005).

7.5.2  Warmer, Wetter Winters Scenario

Regional specificity—Climate models project that warming will be accompanied by 

an increase in precipitation in the northwestern USA, southern Canada, and north-

ern Asia, with most of the increase occurring during winter months (IPCC 2007).

NPP and forage quality—Warming and increased precipitation, coupled with 

elevated CO2 concentration, should increase NPP, especially early in the season. 

Experimental warming and increased precipitation generally stimulate plant growth 

(Wu et al. 2011). NPP likely will decline in the latter portion of the growing as 

warming and reduced precipitation limit soil water availability. In combination, cli-

mate change drivers may have little effect on forage quality.

Livestock production—The combination of warmer temperatures, greater pre-

cipitation, and CO2 enrichment should increase livestock productivity, particularly 

in cooler regions such as the northern USA and Canada, by moderating winter tem-

peratures (Baker et al. 1993; Eckert et al. 1995; Rötter and Geijn 1999), lengthening 

the growing season, and increasing NPP.

Vegetation composition—Warmer, wetter winters likely will favor plants that 

grow early in the season or access soil water accumulated early in the growing sea-

son. For example, ponderosa pine (Pinus ponderosa) established in grassland-forest 

ecotones in northern Colorado during years when spring and autumn precipitation 

were high in association with El Niño events (League and Veblen 2006). By increas-

ing soil water content, higher CO2 and precipitation also favor recruitment of tap- 

rooted invasive forbs like leafy spurge (Euphorbia esula), diffuse knapweed 

(Centaurea diffusa), and baby’s breath (Gypsophila paniculata), as well as some 

subshrubs (Owensby et al. 1999; Morgan et al. 2007; Blumenthal et al. 2008).
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7.5.3  Warmer, Wetter Growing Season Scenario

Regional specificity—Climate models project an increase in winter and spring pre-

cipitation in northern portions of Great Plains region of central North America 

(IPCC 2007; Walthall et al. 2012).

NPP and forage quality—Warming combined with wetter conditions during the 

early growing season and elevated CO2 should increase NPP, partly by extending 

the growing season. Grass production in tallgrass prairie in this region is highly 

responsive to early-season precipitation (Craine et al. 2012). The anticipated shift to 

larger, but less frequent precipitation events may reduce ANPP in mesic rangelands 

(Knapp et al. 2002), but increase ANPP in more arid systems in the region (Heisler- 

White et al. 2009). Forage quality may improve, especially if forage benefits of 

increased early-season precipitation are not negated by effects of late-season dry 

periods.

Livestock production—The combination of warmer temperatures, greater pre-

cipitation, and CO2 enrichment should increase livestock productivity by moderat-

ing winter temperatures (Baker et al. 1993; Eckert et al. 1995; Rötter and Geijn 

1999), lengthening the growing season, and increasing early-season NPP. Wetter 

growing seasons allow rangeland livestock producers to provide additional watering 

locations and, perhaps, shift to more heat-tolerant breeds.

Vegetation composition—Warmer temperatures and wetter winter and spring 

seasons likely will favor plants that grow early in the season.

7.6  Knowledge Gaps

The following are important knowledge gaps that limit our ability to predict range-

land responses to climate change.

• Uncertainty in climate projections, especially in projections of precipitation 

trends. Uncertainty is greater at regional than global scales.

• Limited understanding of how climate change drivers interact to affect key eco-

system variables and processes, including soil water content and dynamics, NPP, 

and forage quality.

• Limited capacity to discern impacts of climate change from those of manage-

ment and disturbances.

• Limited capacity to breed livestock that are adapted to weather and rangeland 

conditions anticipated as climate changes.

Most livestock currently are selected for growth and carcass traits (Cartwright 

1970). Climate change may render the capacity to survive and reproduce under 

harsh conditions more important than growth rate. Progress in molecular genetics 

and animal breeding is required to identify and select livestock with improved adap-

tation to warmer and drier conditions. Because the traits selected to improve 
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 performance under harsher environments may be opposite to those traditionally 

selected (e.g., productivity traits; Prayaga et al. 2009), programs are required to 

breed animals adapted to harsh environments that also produce red meat of accept-

able quality to consumers.

7.7  Summary

Climate is changing at an unprecedented rate as a consequence of increasing atmo-

spheric concentrations of greenhouse gases including carbon dioxide (CO2), meth-

ane (CH4), and nitrous oxide (N2O). Dynamics in the Earth climate system make 

additional climate change a virtual certainty because centuries will be required for 

climate to equilibrate with current levels of greenhouse gases.

Climate change science predicts warming and greater climatic variability for the 

foreseeable future. Warming is expected to be greatest at northern latitudes and over 

land. Precipitation is anticipated to increase at higher latitudes and decrease else-

where, with significant seasonal variation and greater interannual or intra-annual 

variability.

The major climate change drivers—warming, precipitation modification, and 

direct effects of increased CO2 concentration on plant growth and transpiration—

will alter soil water availability and N cycling, processes that regulate the provision-

ing of plant and animal products and other services from rangelands. For example, 

increased precipitation variability will be manifest as shifts in precipitation season-

ality and in the temporal patterns of soil water availability on some rangelands. 

Warmer temperatures will increase evaporative demand, thereby reducing soil water 

in the absence of compensating change in precipitation, whereas CO2 enrichment 

could reduce transpiration rates and increase plant growth per unit of water trans-

pired. Climate change drivers also will influence soil N availability to plants, with 

potential feedbacks on plant responses to drivers. Warming increases N availability 

by accelerating N mineralization rates when soil water is available, but CO2 enrich-

ment can create or reinforce N limitations on productivity by increasing the seques-

tration of N in long-lived plant material and organic matter. Limited N, in turn, can 

constrain benefits of CO2 enrichment for plant growth.

The ecological consequences of climate change drivers will vary among range-

lands partly because the magnitude, decadal timing, or seasonal patterns of warm-

ing and precipitation modification will be expressed differently among regions. 

Climate change impacts will be greatest for rangelands where climate shifts amplify 

currently positive climatic effects or exacerbate climatic limitations on plant and 

animal productivity.

The ecological consequences of climate change drivers also will vary among 

rangelands because driver effects frequently are nonadditive and contingent on cur-

rent precipitation regimes. Nonadditive effects are indicated when the combined 

influence of shifts in climate drivers differs from that anticipated by summing 

single- driver effects. Plant growth responses to combined warming and CO2 
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 enrichment treatments often are smaller than anticipated from single-factor experi-

ments, for example. The effects of climate drivers also vary as a function of the 

current precipitation regime. The responses of plant productivity to both CO2 and 

precipitation variability depend on the current precipitation regime, for instance. 

Plant productivity generally is more responsive to interannual precipitation vari-

ability in mesic or semiarid than desert rangelands. The stimulating effect of CO2 on 

productivity also depends on precipitation, peaking at moderate levels of annual 

precipitation (300–400 mm) when considered across desert and grassland 

ecosystems.

Warming, especially when combined with drought, will cause greatest physio-

logical impairment to livestock in already warm environments by negatively impact-

ing animal physiological performance, increasing abundances of ectoparasites, and 

reducing forage quality and quantity. Heat stress reduces milk production, forage 

intake, and reproduction rate, whereas warmer temperatures increase winter sur-

vival of ectoparasites and may reduce forage quality.

Climate change will lead to combinations of seasonal temperature and precipita-

tion that differ from current climatic conditions. Warmer, drier conditions also are 

anticipated to increase fire activity. This shift in climatic conditions and fire activity 

could lead to plant communities that are compositionally unlike any found today. 

The rapid rate at which climate is changing, in combination with other drivers and 

disturbances, will favor ecological generalists such as short-lived plants (e.g., weeds), 

animals, insects, and disease organisms. Increased establishment of generalist plant 

species could, in turn, hasten the development of more homogeneous plant assem-

blages with negative effects on species diversity and animal productivity.

Rangelands increasingly are being transformed by climate change and a variety 

of human impacts, including change in land-use patterns, intensification of distur-

bances, and accelerated species introductions and movements. Singly, any of these 

changes will alter services provisioned by rangelands. Combined, the imprint of 

human activities may challenge ecosystem integrity and functionality by increasing 

variability in ecosystem processes and production enterprises beyond their histori-

cal range. As a result, livestock production and supply of other ecosystem services 

could decline to levels that cannot be economically sustained or ecologically 

reversed. Given this potential outcome, we suggest that an overarching goal of man-

agement and monitoring must be to improve our ability to predict the vulnerability 

of rangelands and rangeland production systems to continued climate change.
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Chapter 8

Rangelands as Social–Ecological Systems

Tracy Hruska, Lynn Huntsinger, Mark Brunson, Wenjun Li, 

Nadine Marshall, José L. Oviedo, and Hilary Whitcomb

Abstract A social–ecological system (SES) is a combination of social and ecologi-

cal actors and processes that influence each other in profound ways. The SES frame-

work is not a research methodology or a checklist to identify problems. It is a 

conceptual framework designed to keep both the social and ecological components 

of a system in focus so that the interactions between them can be scrutinized for 

drivers of change and causes of specific outcomes. Resilience, adaptability, and 

transformability have been identified as the three related attributes of SESs that 

determine their future trajectories. Identifying feedbacks between social and eco-

logical components of the system at multiple scales is a key to SES-based analysis. 

This chapter explores the spectrum of different ways the concept has been used and 

defined, with a focus on its application to rangelands. Five cases of SES analysis are 
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presented from Australia, China, Spain, California, and the Great Basin of the 

USA. In each case, the SES framework facilitates identification of cross-system 

feedbacks to explain otherwise puzzling outcomes. While information intensive and 

logistically challenging in the management context, the SES framework can help 

overcome intractable challenges to working rangelands such as rangeland conver-

sion and climate change. The primary benefit of the SES framework is the improved 

ability to prevent or correct social policies that cause negative ecological outcomes, 

and to achieve ecological objectives in ways that support, rather than hurt, range-

land users.

Keywords Endangered species • Ranch economics • Restoration • Resilience • 

Climate change • Complex adaptive systems

8.1  Introduction: What Is a Social–Ecological System?

The dependence of humans on natural systems makes it essential to understand how 

human use and management affect the capacity of ecosystems to sustainably sup-

port human needs. Yet, too often, social and ecological systems have been studied 

as if they operate independently. There is a critical need for comprehensive, multi-

disciplinary approaches to understanding the social and ecological components, 

interactions, and processes that shape rangeland conditions, including the social, 

economic, cultural, and political attributes of the people and communities within 

rangeland systems. Environmental problems arise from failures in social processes 

as much as from ecological processes, and recognizing this, a common framework 

is needed for understanding and analyzing the drivers that lead to improvement or 

deterioration of natural resources (Ostrom 2009). The “social–ecological system” 

(SES) concept provides a framework for analyzing complex rangeland dynamics 

and identifying interventions that can increase rangeland sustainability and support 

the production of desired goods and services. Here we explore a spectrum of differ-

ent ways the concept has been used and defined in research on rangelands.

Humans alter natural systems in an effort to increase human benefit. Some 

changes are dramatic, such as cultivation for crop production, but others are less 

obvious, such as vegetation changes caused over time by extensive livestock graz-

ing. Human systems react to ecosystem changes in many different ways, as with the 

economic, demographic, and policy responses to drought, wildfire, or deforestation. 

While range science has developed sound techniques for examining both the eco-

logical and social components of rangelands, there has been little progress so far in 

seeing them as integrated and interdependent, or in developing techniques to resolve 

potentially competing goals (e.g., species conservation, open land access, economic 

benefits) within a rangeland SESs. Range ecology research has traditionally focused 

on grazing regimes and ecological indicators with less attention paid to the needs 

and goals of the livestock owner or property manager. This neglects real-world 
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 concerns about the finances, labor, limited time and information, and multiple goals 

of ranchers, pastoralists, and resource managers that influence why livestock are 

grazed in a certain way. Conversely, the social sciences have provided a wealth of 

information on who uses rangelands and why, but has been less successful at linking 

social, cultural, political, and ecological factors to ecological outcomes (Brunson 

2012).

Purely technical interventions in rangelands often fail when researchers and 

managers do not consider their impacts on economic, political, cultural, and social 

well-being. To illustrate, introducing improved livestock to replace local breeds has 

at times been proposed to improve the livelihoods of pastoralists in developing 

countries. Some researchers have pointed out that improved livestock in such set-

tings have had unintended consequences including increased financial risk, altered 

grazing patterns and gender roles, increased labor needs, and decreased income for 

women (Wangui 2008). Improving livestock breeds may do little to alleviate what 

might be the overarching problems of inadequate markets, government and industry 

land grabs, crop encroachment, and even climate change. In addition, the accept-

ability and practicality of a new technology for the people expected to use it must be 

considered. The goals of individual ranching enterprises may or may not mesh with 

those supposed by researchers and agency managers. In addition, drought, govern-

ment policy, and livestock prices are external drivers affecting any proposed innova-

tion at the ranch enterprise level, while personal beliefs and traditions, and family 

relationships, have implications for the ability and willingness to cope with change 

and adopt new technology. Rangeland research and management cannot afford to 

overlook human dimensions if the expectation is to contribute to the solution of 

real-world problems.

The social processes that sustain or degrade the ecosystem’s current state, and 

the ecological processes that both drive ecosystem change and shape human use and 

benefits occur at multiple scales and are fraught with uncertainties. To improve the 

sustainability of natural resource use, managers need not only better or more com-

plete ecological data, but also a clear understanding of where, when, and how 

resources are used and who gets to use them, and how and why use varies over time 

and across the landscape. The SES framework allows managers to treat all these 

interacting dynamics as part of a single integrated system (Fig. 8.1).

The notion that ecosystems and societies are shaped by one another is not a new 

idea (Norgaard 1994), but it has not been sufficiently emphasized in rangeland sci-

ence. The edited book entitled “Linking Social and Ecological Systems” by Berkes 

and Folke (1998) was groundbreaking because it provided an integrated approach to 

simultaneously analyze both social and ecological systems for the purpose of natu-

ral resource management, and launched the term “social–ecological systems.” 

Foundational work on the SES concept replaced the “view that resources can be 

treated as discrete entities in isolation from the rest of the ecosystem and the social 

system” (Berkes and Folke 1998, p. 2). Since the term emerged in the late 1990s, 

SESs have also, but less commonly, been called “coupled human-natural systems” 

to reflect the fact that both society and ecosystems have distinct internal dynamics 
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but react in response to one another, sometimes in unanticipated ways (Liu et al. 

2007a, b; Turner et al. 2003).

Much of  SES research has focused on their resilience, describing various char-

acteristics that allow an SES to persist and adapt to changing circumstances (e.g., 

Gunderson and Holling 2002; Berkes et al. 2003). This vein of SES scholarship is 

dominated by systems theory and treats SESs as complex adaptive systems that 

self- organize (e.g., Folke et al. 2005) and operate with feedbacks and thresholds 

(e.g., Walker et al. 2004). Drawn almost wholly from the natural sciences, this 

framing of SES has been critiqued by some social scientists on the grounds that 

such ecological principles cannot be so simply applied to social systems nor, by 

extension, to SESs (Olsson et al. 2015).

A challenge for applying the SES framework is in analyzing how social and 

ecological components of the system interact in iterative cycles. Too often, only 

single cross-system influences are emphasized in SESs, such as how changes in 

resource or social policy affect rangeland ecosystems, without following up to see 

how altered ecological processes feed back to affect the social system. While sev-

eral conceptual models have been created for rangeland SES that might address this 

shortcoming (e.g., Fox et al. 2009; Walker et al. 2009), it is not always clear how to 

use them and they have not been widely applied.

Fig. 8.1 Generalized diagram of a rangeland social–ecological system. Humans and the environ-

ment interact in countless ways outside of natural resource management, but the interactions are 

most directly planned, manipulated, and monitored in natural resource management activities. 

Local, regional, and global social processes can all shape natural resource use and management 

activities. While resource policy may be set at large geographical scales (e.g., national), manage-

ment activities occur within a single ecosystem. Livestock grazing differs from other types of natu-

ral resource use in that it is indirect; rather than directly manipulating a rangeland ecosystem, 

livestock operators devote their primary attention to managing livestock, and the livestock interact 

directly with the rangeland (adapted from Reid et al. 2014)
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8.1.1  Conceptualizing SESs

SESs are typically too large and complex to analyze all their structural and func-

tional components at once. Creating a conceptual framework is one way of thinking 

through the complexity of SESs. The primary purpose of SES frameworks is the 

identification of specific components, processes, or feedbacks for analysis, and a 

metric for assessing their roles and interactions in the system. For example, who are 

the resource uses, and do they share information about the resource with each other? 

How far is a population from where policy and management decisions are made, 

and how valued is their input about resource use? Policy makers or resource manag-

ers can create their own frameworks in order to analyze their resource systems of 

interest. The key is identifying the important variables, the scales on which they 

operate, figuring out how they interact, and then measuring them over time. When 

problems arise, trying to solve the “why” will often entail finding unexpected con-

nections between multiple components within the SES. Understanding how the SES 

has reacted to perturbations in the past can be of great help in this effort. At best, the 

use of SES frameworks will spotlight where interventions are needed or possible to 

achieve management goals, and will detect system changes over time in a way that 

allows for some level of prediction.

One SES framework originating from political and economic science is meant to 

allow identification of SES components and interactions within systems of resource 

use such as fish, groundwater, or pastures. This framework divides an SES into 

seven categories for analysis: resource systems, resource units, governance, users, 

interactions, outcomes, and related (or adjacent) ecosystems (Ostrom 2007, 2009). 

Each of the seven categories is then subdivided into a set of components in order to 

identify causal relationships and drivers, so that different systems can be compared. 

A different framework focuses on the exposure of an SES to a particular hazard, and 

then tracks sensitivity and resilience of both social and ecological components with 

the aim of analyzing vulnerability (Turner et al. 2003). A third, called the Drylands 

Development Paradigm, aims to synthesize lessons from research on desertification 

and economic development, and to act as a template whereby each of the five key 

principles of SESs can be examined and tested in case studies (Reynolds et al. 

2007). The Resilience Alliance has created its own framework specifically for 

assessing the resilience of an SES (Resilience Alliance). Each of these frameworks 

is intended for a specific set of contexts and types of resource use, but the underly-

ing assumptions about the interdependency of SESs are the same (for a review of 

ten SES frameworks, see Binder et al. 2013).

Researchers and managers tend to focus on the components of an SES most 

likely to be influenced by a given change or intervention, or perhaps those most 

amenable to analysis or management based on their own discipline, as the methods 

and theories of their own discipline are most familiar to them. Team approaches that 

include social as well as ecological scientists can help to assure a more comprehen-

sive approach. Three key characteristics critical for analyzing an SES—scale, feed-

back, and resilience—may be difficult to recognize and measure, and thus may be 

overlooked. A rangeland SES is profoundly affected by attributes such as the 
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system’s geographical location, social context, governance structure, management 

dynamics, uses of natural resources, and economic relationships. These attributes can 

all be helpfully analyzed according to their scale, feedback, and resilience in the SES.

8.1.2  Scale

Understanding of ecosystems and their response to use and management has often 

been hampered by a failure to appreciate the role of scale (Cash et al. 2006). Each 

scale, such as spatial or temporal, may have different dominant patterns and pro-

cesses at different hierarchical levels (Fig. 8.2). For example, in considering sustain-

ability of rangelands, at the level of a rangeland ecological site, the selectivity and 

distribution of grazing animals may be critical. At the regional level, the price of 

real estate and zoning laws may be the critical factors in rangeland sustainability. 

Although they are not always, hierarchical levels may be nested. For example, if 

conservation does not occur at the regional level, then there may be no rangeland 

Fig. 8.2 An SES portrayed as a nested hierarchy illustrates how feedbacks occur across and 

within scales, and that different processes act as important system drivers at different scales. It also 

illustrates how some factors are largely outside the control of the pastoralist, for example national 

politics or drought and warming. On the other hand, outer levels are shaped by lower levels: with-

out pastoralists, there is no pastoral community
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ecological site left to manage (Chap. 5, this volume). Conversely, if ecological sites 

are not well managed, negative perceptions by the public may erode support for 

ranching, a possibility that lends support to the creation of regulations governing 

grazing use implemented at the regional or even national level. Temporal scale is 

similarly important, as processes may happen quickly or slowly, last only briefly, 

have a legacy effect influencing future processes, or persist for a very long time. 

Interactions among scales and levels are common and may cross social and ecologi-

cal systems.

Unfortunately, monitoring or evaluating systems at multiple scales is often 

beyond the budget and knowledge of natural resource managers or scientific 

researchers. For this reason, some authors have recommended concentrating analy-

sis on interactions of specific subcomponents (Roe et al. 1998), while others have 

suggested that social–ecological interactions are typically determined by a small 

number of “controlling variables” that should be the focal point of analysis (Holling 

2001). In either case, the spatial or temporal scale of management may not be ade-

quate to address the scale of ecological processes, a social–ecological mismatch 

leading either to mismanagement, ineffectual management, or an absence of man-

agement (Cumming et al. 2006). For example, a land manager might set a single 

stocking rate for an entire property based on average grass cover. Within that prop-

erty, however, that stocking rate might result in overgrazing of some pastures and 

undergrazing in others. In this instance, the geographical level of management—the 

property—is too large for sustainable management of some individual pastures. On 

the other hand, some natural resource problems may occur at a larger level than the 

property, calling for a watershed-level approach that crosses property lines and 

involves understanding what drives cross-boundary cooperation. The challenge is to 

integrate and validate social and ecological data from multiple scales and levels 

when crafting policy and management prescriptions.

8.1.3  Feedbacks

A feedback, or feedback loop, is when a variable within a system changes in such a 

way that increases the likelihood and strength of further change (positive feedback) 

or decreases the likelihood or strength of future change (negative feedback). Positive 

feedback loops are self-reinforcing or amplifying, while negative feedback loops 

are self-regulating, or stabilizing. For example, conservation initiatives directed at 

ecological systems may alter the living situation or behavior of local social groups 

who might then increase or reduce their environmental impact as a result (Miller 

et al. 2012). As an example of a positive feedback loop, the sale of several ranches 

for residential development in an area formerly dominated by ranching can increase 

land values and alter community dynamics, causing more ranchers to sell their land 

to developers (Huntsinger 2009). Negative feedback loops dampen a particular 

effect or make an action less likely to be repeated. For example, in a natural system 

an overpopulation of herbivores reduces the forage available to each animal to the 
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point where reproduction slows and mortality increases, lowering the number of 

herbivores. In SESs, interactions between hierarchical levels may function as feed-

backs (Gunderson and Holling 2002).

From the perspective of rangeland managers or policy organizations, feedbacks 

may act as both vulnerabilities and opportunities. Where positive feedback loops 

have negative consequences, such as the conversion of ranchland mentioned previ-

ously, extra precautions should be taken to prevent those feedbacks from taking 

effect. Where feedback loops create positive change, short-term expenditures may 

be justified by long-term benefits. For example, establishing venues for stakeholder 

meetings and management collaboration may require investing additional time and 

money but result in steadily increasing participation that reduces management costs 

and improves outcomes in the long run. Whether positive or negative, recognizing 

the presence of feedback is a crucial step.

8.1.4  Resilience and Adaptability

Rangeland management and science have increasingly focused on resilience of 

rangeland ecosystems, including the resilience of social actors. Resilience can be 

defined as the capacity of a system to absorb disturbance and reorganize so as to 

retain essentially the same function, structure, identity, and feedbacks (Walker 

et al. 2004) (Chap. 6, this volume). Disturbances may originate in social or ecologi-

cal subsystems and may occur slowly or rapidly (May 1977). A non-resilient SES 

may change or lose components and functionality when an unusual change, or per-

turbation, occurs in either the social or the ecological subsystem; a resilient SES 

will not only maintain function, but may also benefit from disturbance by reorga-

nizing to further increase resilience (Gunderson and Holling 2002; Berkes et al. 

2003). Resilient systems are those that can more readily adapt to new forces with-

out losing functionality or transforming in fundamental ways. It is important to 

note that resilience is not an inherently good or bad quality. Degraded, unproduc-

tive rangelands or impoverished communities might be just as or even more resil-

ient to change (i.e., improvement) than are more desirable and productive states 

(Cote and Nightingale 2012).

Resilience is not the same thing as stability. Stability is the ability of a system to 

return to an equilibrium state following a temporary disturbance (Holling 1973). 

Ecological stability has been challenged by alternative ecological models that reject 

the notion that ecosystems have a single equilibrium state (Westoby et al. 1989). 

Managers often attempt to create a stable flow of inputs and outputs from a managed 

system, because managing more variable systems requires frequent monitoring and 

the ability to rapidly alter resource-use patterns—both of which are expensive and 

difficult to carry out. Unfortunately, the resulting simplification of the managed 

system frequently results in reduced resilience (Holling 1973; Walker et al. 1981). 

The resilience concept does not preclude small changes or variation within the sys-

tem, thus providing a better fit with dynamic, multi-equilibrium rangelands. For 
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example, the establishment of stocking rates at a rangeland’s perceived carrying 

capacity may be assumed to foster stable, sustainable livestock production. Such a 

steady-state view overlooks the impact of variable rainfall and temperature on for-

age production, which may lead to undesirable grazing outcomes in above- or 

below-average years and ultimately result in loss of ecosystem functionality (Chap. 

6, this volume).

Analyses of integrated rangeland SESs have tended to view rangelands as com-

plex adaptive systems that should be managed to enable adaptation to ecological and 

social change (Walker and Janssen 2002; Walker et al. 2009; Huber-Sannwald et al. 

2012). Complex adaptive systems have many components that adapt or learn as they 

interact (Holland 1992) (Chap. 11, this volume). For example, cheatgrass (Bromus 

tectorum) invasion of the US Great Basin has resulted in ecosystem shifts away 

from dominance by perennial grasses and shrubs to dominance by cheatgrass, an 

annual species. This has influenced both the biological and human components of 

the ecosystem. The monocultural stands now common in North America facilitate 

the spread of a native generalist fungal pathogen called “black fingers of death” 

(Pyrenophora semeniperda) that colonizes cheatgrass stands across  a broad distri-

bution (Meyer et al. 2008). Livestock operators have had to adapt their grazing 

regimes to fit the timing of cheatgrass productivity and the periodic loss of forage 

caused by increasingly frequent wildfires. The transition to cheatgrass dominance 

has altered wildlife habitat and reduced the populations of some species, spurring 

conservation and restoration efforts. Cheatgrass is thought to be spread by livestock 

grazing, but grazing also serves to reduce cheatgrass biomass and thus the likeli-

hood of damaging wildfires (Knapp 1996). Grazing, restoration efforts, and wild-

fires all interact in the production of ecosystem services. Interventions by livestock 

operators, range managers, and policy makers may have an effect, but the ultimate 

outcomes are difficult to predict given the complex ecologic and climatic factors 

involved.

The ability to cope with disturbance and respond to change has been termed 

adaptive capacity (Plummer and Armitage 2010). Within a given SES, adaptive 

capacity may vary at different scales, for different processes, and for different orga-

nizations and individuals. An individual or community with many diverse resources 

may be better able to adapt to change. A multispecies rangeland is usually better 

able to maintain productivity despite fluctuations in weather or drought, or the intro-

duction of a plant disease, because some species will thrive better than others in the 

new conditions. Similarly, some people may have the flexibility of mind to adapt to 

new life conditions while others may not.

Adaptation does not only occur after singular, discrete perturbations, however. 

The dynamic nature of both ecosystems and society entails a constant state of 

change, meaning that adaptation is a continual, iterative process (Rammel et al. 

2007). Change can originate in either society or the ecosystem and does not neces-

sarily result in a functional, or successful, adaptation by the other system. People 

and institutions may not perceive change or the necessity of change, may be unwill-

ing to change, may be unable to adapt successfully, or may change in a way that 

does not help. In society, the ability to adapt and the options available for adaptation 

8 Rangelands as Social–Ecological Systems

http://dx.doi.org/10.1007/978-3-319-46709-2_6
http://dx.doi.org/10.1007/978-3-319-46709-2_11


272

are limited by power dynamics that are often overlooked or wishfully assumed to be 

less significant than they are. Adaptation should not be assumed to follow change, 

nor should it be assumed to be beneficial when it does (Watts 2015a). While it is 

common to hear of the need for society to adapt to climate change or other environ-

mental forces in order to reduce vulnerability, it is rarely pointed out that the reason 

society is vulnerable and must adapt is because of the way the social–ecological 

landscape has developed. In many cases, society has created its own vulnerability to 

climate change and other environmental forces (Taylor 2014).

Ecological diversity and the presence of redundant components have also been 

highlighted as central for maintaining resilience (Walker 1995; Walker et al. 1999). 

While some theorists have proposed that a diversity of institutions and stakeholders 

in governance and management structures can benefit natural resource manage-

ment, social scientists have questioned the extent to which such ecologically based 

notions can be extended to social systems. For example, some consolidated authori-

tarian regimes have proven to be remarkably resilient by monopolizing power and 

violently crushing any challenges (Agrawal 2005). Resilience was incorporated into 

ecology decades ago and is now ubiquitous in that field, but it has also emerged as 

a central feature in SES analyses, including rangeland SESs (Folke 2006; Reid et al. 

2014). Despite the concept’s recent prevalence in such institutions as the World 

Bank and the US military, many social scientists are critical about applying the 

concept in social contexts, including to SESs (Olsson et al. 2015). There are several 

key reasons for this critique.

First, by placing emphasis on resilience to disturbance rather than on disturbance 

itself, less attention is paid to the more politically sensitive questions of who is vul-

nerable and why, and how future disturbances might be avoided (Walker and Cooper 

2011; Watts 2015b). Coming as it does largely from the natural sciences, resilience 

is often viewed as a rather mechanistic cause-and-effect process that does not 

account for human agency and goal formation (Davidson 2010). Furthermore, the 

formation of resilient livelihoods in SESs may be promoted by governments or 

other institutions but perceived by individuals or communities as radical, undesir-

able cultural change (Crane 2010). This is in part because what constitutes a social 

or environmental “problem” is highly subjective and frequently politically moti-

vated (Castree 2001). The role of environmental shocks in driving social or SES 

change must be balanced by an awareness of the political and economic factors that 

create or allow “natural” disasters such as famines (Watts 1983). Despite these cri-

tiques, it is also true that the resilience concept has been adopted by many social 

movements around the world as a way to frame projects of social adaptation to new 

challenging circumstances (Brown 2014).

It must also be noted that the centrality of the system concept inherent in SES, 

resilience, and complex adaptive system frameworks is not without problems. The 

concept of a system inherently involves thinking about a multitude of components 

with coordinated actions and potentially even a unitary goal. In both human and 

ecological settings, who and what constitutes “the system” is by no means clear, and 

it would be inappropriate to assume that coordinated activity or collective goals are 

common outcomes of human interactions (Olsson et al. 2015).
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8.2  Environmental Governance

The richly interconnected view of resource systems in an SES stands in opposition 

to strategies that attempt to reduce system complexity by focusing on only a small 

number of target resources, species, or indicators as is typical of maximum sus-

tained yield and steady-state natural resource management (Holling and Meffe 

1996). History has shown that these types of management strategies are often eco-

logically unsustainable because of unrecognized slow system change, sudden 

unpredicted disturbance, and/or unknown interconnections. On the social dimen-

sion, these approaches often fail as a result of an inability to understand what people 

want from natural resources, a lack of capacity to govern human resource use, and 

the broad perception of an accompanying policy or distribution of benefits as unjust.

Given the evolving nature of complex adaptive systems and their lack of predict-

ability, much of the work on SESs in rangelands and elsewhere focuses on develop-

ing responsive policy and governance that supports system resilience (e.g., Walker 

et al. 2004; Armitage et al. 2009) rather than attempting to provide specific and rela-

tively inflexible resource management prescriptions. Social groups do not maintain 

consistent or uniform relationships with their surrounding environment, but change 

in either social or ecological patterns cannot necessarily be attributed to a corre-

sponding driver in the other system (Vayda and McCay 1975). Resource manage-

ment and governance policies must therefore monitor and be responsive to ecological 

and social processes that may or may not create new drivers of change within the 

SES. It is the inclusion of both ecological and social variables within the frame of 

analysis that makes the SES framework useful for management. Changes in the 

price of beef or altered land tenure policies, for example, have to be considered 

alongside fluctuations in climate and vegetation composition when planning man-

agement actions or policies for a rangeland SES.

Problems that cross scales or levels within SESs can prove challenging for two 

reasons: perception and communication. First, the occurrence of a phenomenon at 

one level must be perceived as having been caused by a driver at another level. 

Second, that observation has to be communicated—persuasively—to the person or 

organization capable of solving the problem, and that person or entity has to decide 

to address the problem. Solutions involving changes in policy need to be effectively 

communicated to the affected population, ideally with buy-in from the affected 

populations. The perception problem can be met with a combination of thorough 

cross-scale monitoring and diverse information networks. Communication prob-

lems require adaptations to governance structures and strategies that facilitate infor-

mation sharing and learning across sectors and hierarchical levels. An increasing 

number of groups, such as the Sustainable Rangelands Roundtable (http://www.

sustainablerangelands.org/) and the California Rangeland Conservation Coalition 

(http://carangeland.org/) in the USA, are devoted to encouraging this type of com-

munication about rangelands and range management.

Inclusion of various stakeholders in goal-setting, planning, monitoring, research, 

data interpretation, and decision making is one way that managers can create 
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improved integration of ecosystem management with the social system, and gather 

more information about the system. Various models and terms have been created for 

this type of process, including community-based natural resource management 

(Leach et al. 1999) and adaptive comanagement (Olsson et al. 2004). Through the 

inclusion of multiple stakeholders, a project can gain access to information about 

the social needs and dynamics of the SES and to traditional and local knowledge 

about the ecosystem, which optimally increases the benefits of management to both 

the social and ecological components of the SES (Olsson et al. 2004). Engaging 

stakeholders can start to build consensus around an initiative, constructing the social 

networks needed for implementation and adaptation across the many dimensions of 

an SES. One model for a participatory approach to increasing SES resilience 

involves collaboration between many stakeholders to define the bounds of the SES 

and the trajectory of progress desired, followed by scientific study to determine how 

resilience can be maximized under such trajectories, and lastly a collaborative 

assessment of policy and management implications (Walker et al. 2004). In this 

process, stakeholders can provide information and insights that managers or scien-

tists cannot, while networks and relationships are formed that can foster the iterative 

learning central to adaptation.

Some social and ecological problems occur at extensive spatial scales which 

only organizations with broad jurisdiction may be equipped to handle, such as regu-

lating the migration of livestock herds under transhumance (Turner 2011). 

Furthermore, participatory approaches must be tailored to the specific management 

context and be flexible in response to social needs and the respective strengths of 

different stakeholders, which may mean employing different collaboration tech-

niques and reaching out to different stakeholders at different times (Stringer et al. 

2006). Increased stakeholder participation can also prevent making timely or diffi-

cult management decisions, particularly regarding the curtailment of resource use. 

For this reason it is best to adopt governance strategies that incorporate stakeholder 

input without causing decision-making stalemates. Providing a process to sanction 

the decision-making authority helps to ensure that decision makers who do make 

nonconsensual management decisions remain accountable for those decisions, 

hopefully leading to fully participatory negotiations and decisions most of the time 

(Lebel et al. 2006) (Chap. 11, this volume).

One hurdle in the way of improving the management of rangeland SESs is that 

regulatory policies are usually enacted on the premise that the problem faced is 

homogeneous across different times and places and that a single policy applied 

consistently will solve this problem in all locations. Unfortunately, rangeland prob-

lems are rarely so consistent and neither are the agencies tasked with implementing 

government policy. The single agency, single policy type of policy implementation 

is an example of centralized governance. Centralized systems assume that all infor-

mation can be routed through a single office and that solutions can come from that 

same office. In contrast, polycentric governance systems have multiple locations 

for collecting data and issuing and carrying out management actions. Polycentric 
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governance models do not rely on a single solution to a perceived single problem, 

but rather seek to coordinate activities working toward a common goal.

For example, rather than ordering a single government bureau to apply a herbi-

cide to an invasive weed wherever it is found at the same time every year, a polycen-

tric governance system might rely on some federal offices, some counties, and some 

local nonprofit groups to eradicate that same weed at the time and in the manner that 

work best in that area. Polycentric governance systems may be more difficult to 

coordinate logistically but they are more likely to account for local social and eco-

logical differences in a manner that increases project efficacy (Nagendra and Ostrom 

2012). Given their more diverse constituents, polycentric governance systems are 

also more open to different types of information than centralized systems, and may 

be more creative in finding solutions (Lebel et al. 2005). Polycentric systems may 

also find it more difficult to reach consensus among their constituents, which can 

slow down decision making and delay projects.

The recent turn toward adaptive management and comanagement models tends 

to feature government agencies, NGOs, and other institutions as the principle actors 

in SESs. This institutional bias risks excluding individuals or groups that lack the 

relevant job titles from having a voice in how resources are managed. This is espe-

cially problematic for politically marginalized groups, such as most mobile pasto-

ralists, who may not be considered viable rangeland managers by governmental or 

international entities. The institutional bias in both the resilience and adaptive man-

agement frameworks works to overlook power imbalances between various stake-

holders, encouraging the false assumption that resulting decisions are consensual. 

Even in community-based natural resource management models, which have been 

extensively deployed in sustainable development projects worldwide, the “commu-

nity” is all too often assumed to be a singular, cohesive group with internally uni-

form characteristics and goals, when in reality this is seldom, if ever, true (Agrawal 

and Gibson 1999).

8.3  Case Studies

In the following case studies, each conducted by different authors of this chapter, 

the SES framework is used to focus on different aspects of the SES as they influence 

the adaptive capacity and resilience of the system. Some authors focus more on the 

ecological dynamics shaping the ability to adapt, while others are most attentive to 

the social components. The focal spatial scale ranges from entire regions in the 

USA’s Great Basin and Australia to a couple of counties in California, down to the 

village scale in China, and finally to the scale of individual enterprises in Spain. 

Each study intends to improve understanding and support of the social and ecologi-

cal drivers of resilient rangeland SESs.
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8.3.1  Adaptation to Climate Change by Australian Livestock 

Managers

In northern Australia, climate change is expected to lead to increasingly dry condi-

tions (Marshall 2010; Marshall and Stokes 2014). These changes are anticipated to 

be unprecedented—projections suggest that the scale and rate of change driven by 

increasing concentration of greenhouse gases in the atmosphere will significantly 

alter the distribution and quality of rangeland resources (IPCC 2014). The most 

likely climate future for the North based on RCP4.5 and RCP8.5 model projections 

for 2030 and 2090 suggests that temperatures will be warmer and hotter, respec-

tively, but no “most likely” future with respect to rainfall is suggested (www.cli-

matechangeinaustrala.gov.au). Although Australian rangelands have historically 

been highly resilient to a range of environmental, economic, and social changes, 

climate change in northern Australia is expected to reduce forage production, live-

stock profit margins, and biodiversity. Rangeland livestock operations are already 

struggling to maintain profitability because of recent drought conditions (Marshall 

and Stokes 2014). If managers and operators are not able to adapt to changing con-

ditions, the extensive lands currently utilized for grazing might be converted to 

other, less valuable, states. Should grazing cease, extensive areas may transition to 

new ecological states that provide fewer or less valued ecosystem services. This 

means that sustaining rangeland landscapes in Australia is tied to the profitability 

of rangeland operations compared to the alternative possible uses. This study uses 

the SES framework to highlight how changes to the ecological system must be 

matched by adaptive changes in the social system in order to maintain the resil-

ience of these pastoral SESs.

The future of the Australian rangeland SESs depends on the capacity of manag-

ers to sustainably manage rangelands, and the employment of managers is depen-

dent on the condition of the rangelands (Marshall et al. 2011, 2014). Occupying 

some 70 % of the Australian landmass (Stafford Smith et al. 2007), rangelands are 

sparsely populated and of spatially and temporally variable productivity due to 

erratic rainfall. High variation in weather and seasons means that droughts are “nor-

mal” across the country, and drought declaration can occur more often than 3 years 

in 10 (McKeon et al. 2000). Livestock managers have had to cope with drought 

against an existing backdrop of conventional economic, biophysical, institutional, 

cultural, and political pressures and uncertainties (Howden et al. 2007). It is uncer-

tain whether livestock operators have the adaptive capacity to adjust grazing 

 practices to the altered conditions of a changed climate and remain both ecologi-

cally sustainable and economically viable (Marshall and Stokes 2014).

Environmental degradation on Australian rangelands can occur when, in an 

attempt to minimize the costs of a drought, livestock managers mismanage stocking 

rates, exacerbating pressures on already stressed grasslands (McKeon et al. 2004). 

One way for Australian livestock managers to adapt to climate change would be 

through making the most of good years and avoiding losses and reductions in 

resource condition in drought years (McKeon et al. 2004). Knowing when to alter 
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stocking rates, when to supplement with outside feed, when to move livestock to 

other properties, when to burn, and when to alter water supplies, for example, can 

differentiate between those producers likely to be successful in the long term and 

those that are not (Hansen 2002). If stocking rates are too high at the onset of 

drought, for example, soil compaction and erosion will reduce productivity in future 

years (McKeon et al. 2004). In order to avoid damaging rangelands in bad times but 

reap rewards in good times, livestock managers have to remain flexible by having 

backup plans and the ability to quickly adapt grazing plans to match present condi-

tions. They need to balance economic, environmental, and social trade-offs, and 

manage their system as an SES, rather than attempting to make the system profit-

able every year. However, not all managers in Australia have the vision or capacity 

to maintain rangeland resilience (Marshall and Smajgl 2013).

Adaptive capacity in people or organizations is typically associated with creativ-

ity and innovation (Holling 2001); testing and experimenting (Folke et al. 2005); 

effective feedback mechanisms (Adger et al. 2011; Cumming et al. 2005); adaptive 

management approaches (Briske et al. 2008); flexibility (Cumming et al. 2006); 

reorganizing given novel information (Marshall et al. 2013); managing risk (Howden 

et al. 2007); and having the necessary resources at hand (Marshall and Stokes 2014). 

These characteristics are critical at all scales. On Australian rangelands, the adap-

tive capacity of individual managers has been conceptualized and operationalized as 

comprising four main dimensions; (1) how risks and uncertainty are managed; (2) 

the extent of skills in planning, learning, and reorganizing; (3) financial and psycho-

logical flexibility to undertake change; and (4) anticipation of the need and willing-

ness to contemplate and undertake change (Marshall 2010; Marshall et al. 2014). A 

livestock manager who ranks highly in all four dimensions is thought to be more 

able to adapt to changing circumstances, in other words possess greater adaptive 

capacity. These four dimensions have been used to examine the adaptive capacity of 

managers to sustainably manage rangelands (Marshall and Smajgl 2013). Based on 

a survey-based evaluation of these dimensions, only 16 % of managers across north-

ern Australia have the capacity to meet the challenges of a changing climate, and the 

remaining majority may be unable to maintain successful grazing operations into 

the future (Marshall et al. 2014). Vulnerability was assessed as a function of both 

adaptive capacity and climate sensitivity, where managers who were assessed as 

more dependent on the grazing resource were assumed to be affected by smaller 

changes in local climate. The northern beef industry as a whole was regarded as 

vulnerable particularly because of poorly managed operational risk, weak support 

networks, and low strategic skills or interest in changing behavior by managers 

(Marshall et al. 2014).

The SES concept recognizes the link between the continuation of a specific eco-

logical system and the continued socioeconomic viability of the livestock industry. 

By 2030, some areas of northern Australia will be experiencing more droughts and 

lower summer rainfall (Cobon et al. 2009). Livestock managers need support in 

accepting that they must adapt and in developing and implementing effective adap-

tations. Possible avenues for intervention might be in teaching managers about 
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climate change, disseminating up-to-date climate and ecological data, determining 

appropriate stocking rates for new climatic conditions, assisting with financial tools 

to support rapid sales or purchases of livestock when conditions change, and 

improving the monitoring strategies or adaptability of grazing plans more gener-

ally. By providing knowledge of the different types of vulnerability of resource 

users, vulnerability assessments can enable decision makers to prioritize their 

efforts, provide a basis for early engagement, and tailor a range of adaptation 

approaches to most effectively accommodate and support the divergent require-

ments of the different categories of resource users. Given the coupling of social and 

ecological systems, maintaining rangeland resilience across scales by supporting 

human adaptation processes is likely to be an essential strategy for adapting to the 

challenges of the future.

8.3.2  Climate Change and Forb Restoration  

in the Great Basin, USA

The SES framework was used to understand factors that impeded the use of herba-

ceous broad-leaved plants, or forbs, in restoration of cheatgrass (Bromus tecto-

rum) invaded Great Basin sagebrush steppe ecosystems of the western USA. Most 

of these ecosystems are managed by federal agencies, in particular the Bureau of 

Land Management. Forbs are an important component of biodiversity in these eco-

systems (West 1993) and increasing native forb species richness can enhance resis-

tance to invasive plants (Pokorny et al. 2005) including cheatgrass. By providing 

fine-textured, combustible fuels, cheatgrass increases susceptibility to wildfires, and 

wildfires have been growing in frequency and severity across the Great Basin 

(Brooks et al. 2004), a trend that is expected to continue as a result of climate 

change (Abatzoglou and Kolden 2011). Yet when rangeland managers choose seed 

mixes for restoring native plant communities after a wildfire, forbs are often under-

utilized. While reduced forb abundance after wildfires is a local- to regional-scale 

ecological issue, applying an SES framework revealed that it stems partly from 

higher level processes that affect agency budget choices, as well as individual varia-

tion in how managers perceive and interpret scientific information about rangelands 

and climate change. The SES framework accounts for factors, relationships, and 

feedbacks among scales that influence the relationship between forb restoration, 

climate change, invasive plants, and manager decision making. An SES-based anal-

ysis of key drivers of manager decision making helped to understand the limitations 

to the adaptive capacity of managers.

Land managers may know which plant species to reseed after wildfire to suit 

past conditions, but predictions of future climate in these regions suggest more 

variable and extreme weather events, longer droughts, and increasing summer high 

temperatures (Ackerly et al. 2010; Polley et al. 2013). Part of this study was to 

evaluate the effect of summer warming on forbs to test the assumption that forb 

species choices for postfire rangeland seedings might need to be adapted to suit 
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future climate conditions (Whitcomb 2011). Summer air temperatures at the soil 

surface are predicted to increase +4.5 to +6 °C in the Great Basin by the year 2100 

(Jiang et al. 2013). A field experiment was conducted over 2 years at an experiment 

station near Logan, Utah, in which selected native and non-native forbs were grown 

to test their responses to increases in air temperature (Post and Pederson 2008). As 

hypothesized, the different plant species responded differently to warming, indicat-

ing that changes in species fitness and ultimately composition under warming con-

ditions are likely. If managers are to effectively implement postfire seeding 

practices for these new conditions, they need to have the adaptive capacity to try 

new seed mixes, despite concerns about costs and uncertainty about propagation 

(Sheley and Half 2006).

Land management decisions were examined in order to assess the interactions 

and factors shaping postfire rehabilitation practices. Most Great Basin public land is 

managed by natural resource professionals who are expected to be responsive to the 

interests of the public and to use scientific information, admittedly in short supply, 

to manage sustainably. In this case, information about the prospect of climate 

change and the response of different species should have driven managers to choose 

rehabilitation methods that anticipate climate change effects on the ecosystem. The 

available climate and ecological information suggests that forb rehabilitation should 

be prioritized in management decisions, and that using seed mixes that are adapted 

for climate change will increase the likelihood of diverse forb communities over the 

long term. Yet knowing which species are more likely to survive in a warmer cli-

mate is only part of the management picture.

Using the SES framework it became apparent that managers’ attitudes toward 

using available scientific information were influenced by broader scale US political 

debates about the existence, causes, and appropriate response to climate change. 

Research has shown that the best predictor of viewpoints about climate change is 

personal value orientation (Leiserowitz 2006). Managers employed by government 

agencies are partially influenced by the policies and norms of the agencies that 

employ them, but personal values also can affect management decisions (Richards 

and Huntsinger 1994). To understand how these social factors influence rangeland 

rehabilitation decisions in a sagebrush steppe SES, managers employed by various 

agencies across the region were interviewed regarding their opinions whether local 

weather events are indicators of larger climate trends; their concerns about the risks 

associated with climate change in their jurisdictions; current management activities 

to address future climate predictions; and perceptions about the role of forbs in 

ecosystem resilience.

Insights from 20 usable interviews conducted in May 2010 found that managers 

may not use available data about temperature changes or forb responses when 

choosing species for seed mixes. Thirty-year climate data showed that precipitation 

had declined at 18 of the 20 locations where the interviewees worked, with an aver-

age decrease of 12 %, and maximum temperatures overall had increased. Yet when 

asked whether the climate was changing locally or not, only about half had noticed 

changes. Those who thought that the climate was changing typically had spent more 

time in that location than those who did not think so. This finding may indicate that 
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managers with local experience based their answers on personal experience, while 

more recent arrivals relied instead on general beliefs about climate change. Managers 

in both groups stated that while their organizations had policies in place that encour-

aged consideration of climate change in management, they were hesitant to do so 

without more specific guidance about how to use climate change information in 

their decision making. This range of responses demonstrates the complexity of 

managerial decision making and the unpredictable array of variables that influence 

adaptive capacity.

Further limitations to adaptive capacity were revealed in the interviews. Some 

managers were uncertain about the role and status of native forbs in their jurisdic-

tions. Most reported using custom seed mixes that included native forbs as well as 

grasses, but forb diversity was low with only one or two species included, typically 

due to the generally high cost of forb seed. As wildfires become more frequent and 

severe across the region, managers struggle to obtain the resources needed to keep 

up with postfire rehabilitation needs. Budget shortages also inhibit the ability to take 

the risks needed to successfully adapt to changing conditions. Together with a lack 

of firm conviction about the occurrence of climate change, a choice not to change 

practices could be easily made.

Considered in its entirety, analysis of the social context suggests that many 

rangeland managers were unprepared to adapt to climate change when implement-

ing postfire rehabilitation seedings. Over time, such a failure in adaptability, if it 

continues, could lead to the transition of more areas of sagebrush steppe to alterna-

tive ecological states, which in turn would affect land-use practices by local com-

munities. The SES framework made it possible to examine how local land 

management practices are affected by large-scale social and ecological forces that 

do not seem directly related, but are linked and mediated through manager 

perceptions.

One might conclude that the key to changing seed choices is to influence man-

ager beliefs about the importance of forbs to ecosystems and the reality of climate 

change. Yet climate change beliefs are highly related to personal values, and value- 

based attitudes are highly resistant to change (Eagly and Kulesa 1997). Manager 

beliefs are also shaped partially by prevailing opinions in the local community 

(Kennedy et al. 2001), and these may be even more resistant to change. A more 

fruitful intervention might be to provide specific agency-wide guidance for the use 

of new seed mixes, framing the need not in terms of climate change, but as related 

to problems managers experience directly such as non-native species invasions, 

higher fire frequencies, and drought. Facilitating communication between managers 

who are actively preparing for climate change and those who are not may clarify the 

benefits of adaptation measures and enhance adaptive capacity. Increasing budgets 

to increase purchasing power and devoting more resources to identifying new seed 

sources and seeding technologies would also help to improve manager ability to use 

native forb seeds effectively in future conditions.
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8.3.3  California Black Rail Habitat in the Sierra Nevada 

Foothills

Concerns about the welfare of a rare bird, the California black rail (Laterallus 

jamaicensis coturniculus), led to a study of the SES that sustains the small wetlands 

that are its primary habitat in the Sierra Nevada foothills. More than two-thirds of 

the wetlands in the area are fed primarily by irrigation water, either by irrigation 

runoff or through leaks in earthen irrigation canals and ditches, and are scattered 

within grazed annual grasslands that are mostly in private ownership. Wetlands fed 

by irrigation water are also more consistently wet and had greater bird use than 

those subject to seasonal water variations (Richmond et al. 2010). Designing the 

study and analyzing research results using an SES framework revealed that many 

wetlands are functionally “accidental” and have little impact on land use or produc-

tivity from the landowner perspective. They are largely ignored by landowners, and 

while this benign neglect is to some degree why they have served as black rail habi-

tat for decades, changing environmental and economic conditions could lead to 

their demise. In this study, the SES framework linked factors outside of the land 

manager-ecosystem relationship to strong impacts on the potential for conserving 

rail habitat, and revealed a need for governance that facilitates feedbacks from rail 

habitat conditions to water districts.

The secretive black rail is a small ground-dwelling marsh bird, and was known 

only from large marshes in San Francisco Bay and along the lower Colorado River 

until it was “discovered” in the Sierra foothills of Yuba, Nevada, Placer, and Butte 

counties in 1994 (Richmond et al. 2008). The SES framework enabled researchers 

to conceptualize and model the ecosystem service of rail habitat provision as a prod-

uct of the interaction of humans and environment, rather than a service provided by 

the ecosystem alone (Huntsinger and Oviedo 2014). Researchers hypothesized that 

the interaction of landowners and environment is driven mostly by water scarcity, 

fears of mosquito-related illness, ranching activities, water price, and landowner 

goals for their land (Fig. 8.3).

To understand how landowner decisions influenced black rail habitat, landowners 

within the bird’s habitat distribution were surveyed about water and land management 

goals and practices in 2014. Results showed that about half the landowners purchased 

irrigation water from a water district. Water districts are local  government institutions 

that supply water to farms and homes in a rural area. They typically serve hundreds to 

thousands of properties. While many respondents reported having a small wetland 

that could be rail habitat on their property, few survey respondents reported any man-

agement of such wetlands, with about 9 % reporting draining a wetland in the last 5 

years, and 9 % reporting that they created a wetland during the last 5 years. About half 

said that they valued wetlands as wildlife habitat, about a quarter thought that the 

green forage was useful for livestock, but about a quarter reported not doing any man-

agement because the wetlands simply did not “bother” them.
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The history of real estate appreciation in the area has also influenced water use. 

Because of strong competition for water allocations from water districts, it is often 

difficult to get a new allocation or increase an old one, but once granted, allocations 

are rarely taken away. As a result, landowners who get an allocation keep purchas-

ing that amount of water every year, whether they can use it or not, to avoid losing 

their allocation. Having an allocation makes a property more valuable. Under these 

conditions there is little motivation to conserve water. Despite the fact that California 

was in the third year of severe drought, in 2013–2014 water district water purchas-

ers were more likely than non-purchasers to respond in the survey that they had 

plenty of water for their property. Water districts buffer the drought for their cus-

tomers, maintaining existing flow largely without reductions. Using water district 

water apparently changes the timing and nature of feedbacks to management from 

drought—it took 4 years of drought before water districts began cutbacks and land-

owners felt the impacts in our study area. While the lack of reduced water use dur-

ing drought is a problem from a water conservation standpoint, it is positive for 

maintaining rail habitat.

Researchers learned that water districts and their policies have an extraordinarily 

important role in determining how people use water, especially during droughts. 

Fig. 8.3 Initial model of the SES proposed by researchers for California black rail in the Sierran 

foothills (Hruska et al. 2015). Much of the focus was on the relationship between landowners and 

wetlands. While the focus of this excerpt is on the social element, researchers also studied bird 

ecology, epidemiology, and hydrology as part of the study
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This finding came despite the fact that, because they are so diverse, numerous, and 

little understood, water districts were not included in the initially proposed SES. The 

two most common actions respondents said that they would take if water districts 

increased prices substantially would be to reduce or cancel water purchases, or to 

reduce or eliminate irrigated pasture, two actions that would strongly affect rail 

habitat. Similarly, many respondents reported that they would reduce the size of 

irrigated pastures or decrease their irrigation frequency if water districts provided 

less water. Interviews with water districts revealed that while there are feedbacks 

between landowners and water districts, there seem to be no feedbacks from 

 wetlands to water districts—in general, water districts have no legal or political 

motivation to consider the impacts on habitat from water conservation or water 

delivery practices (Fig. 8.4). In addition, state policy is encouraging water districts 

to conserve water, and districts are now making substantial investments in their 

infrastructure to prevent leaks and seeps, both water sources that create rail habitat. 

Water conservation efforts throughout California will be translated to many land-

owners and wetlands via the water districts.

The SES framework made crucial “weak links” in sustaining habitat for the rail 

quite clear: state water policy, local water districts, and landowners are unaware of 

Fig. 8.4 A modified SES for California black rail habitat in the Sierran Foothills. New, critical 

players were identified as the study progressed and the areas where interventions would be impor-

tant were located. Landowners only have an indirect effect on water districts, and at a different 

scale—in the aggregate. Water districts are directly affected by climate and regulations, both larger 

scale processes
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any reason to consider impacts of management decisions on small wetlands. In 

conclusion, maintaining the resilience of the SES will require finding points of 

leverage for influencing water district actions, a process that will involve changes in 

governance. Given that most rail habitat is on private land, improving the resilience 

of wetlands must also incorporate outreach to landowners and water districts, a 

process that would require collaboration between multiple organizations throughout 

the SES. The fact that landowners expressed a strong interest in wildlife will help 

guide outreach activities.

8.3.4  Nomad Sedentarization Project in Xinjiang, China

Grassland covers 41.7 % of China and is home to some 17 million registered pas-

toralists and agro-pastoralists. Most pastoralists are ethnic minorities that have 

traditionally moved mixed herds of livestock up and down an elevation gradient 

on a seasonal basis, or across large distances to avoid drought and seek good 

weather and range conditions. Mobile livestock management buffers the spatially 

and temporally variable conditions in arid rangelands and is deeply intertwined 

with social and cultural practice and traditions (Roe et al. 1998; Li and Huntsinger 

2011). Mobility and opportunistic grazing, common adaptive strategies in arid 

land pastoralism, are important components of the resilience that has enabled 

pastoralists to persist in environments with unpredictable forage production. The 

SES framework can be used to assess the resilience of pastoralist SESs in response 

to development policies, in this case sedentarization projects that decrease mobil-

ity of livestock herds. State- driven nomad sedentarization projects in China are 

intended to improve household income while decreasing grazing pressure on local 

grasslands (Harris 2010). By examining sedentarization at multiple spatial 

scales—village, county, and water catchment—researchers found that these proj-

ects have met objectives at some scales and in some locations but not others. An 

SES approach revealed how new patterns of resource use created by sedentariza-

tion policies have had significant environmental consequences, weakening the 

resilience of pastoralist communities in the study area within Xinjiang Uyghur 

Autonomous Region (hereafter Xinjiang).

Since 2006, the Chinese Government has enacted a series of Nomad 

Sedentarization Projects (NSP) throughout the country’s six largest pastoral areas. 

The NSPs in China are designed to provide improved social services to herders, 

including construction of houses with tap water and electricity, and development of 

alternative livelihoods, and to restore grasslands by reducing grazing pressure 

through decreased stocking rates and the planting of supplemental fodder near set-

tlements. The projects are funded directly by the central government, with annual 

budgets sometimes exceeding the equivalent of 200 million US dollars (Ministry of 

Finance 2011). In contrast to previous studies of sedentarization that focused only on 

individual villages, this study sought to examine the effects of sedentarization on the 

pastoral SES across different spatial scales: economic and rangeland conditions at 
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the village scale, social and economic processes at the county scale, and ecological 

processes at the catchment scale (Fig. 8.5). This allows analysis connecting man-

agement impacts at one scale to unexpected consequences or feedbacks to smaller 

or larger scales (Pelosi et al. 2010).

In Jinghe County of Xinjiang, sedentarization of mobile pastoralists began in the 

late 1990s and was completed in 2007, by which time 98 % of pastoral households 

had settled. Jinghe County lies within the Ebinur Lake catchment, and the two study 

villages are both within the county and within 50 km of the lake’s shore. Given the 

low precipitation at the catchment floor of only 60–80 mm per year, the snowmelt- 

fed lake and associated wetlands play an important role in sustaining the regional 

ecology.

Researchers surveyed herder households in two villages, here referred to as 

Village A and Village B, to document household income and herder opinions on 

sedentarization’s effect on grassland health and livelihoods. Prior to sedentariza-

tion, all households had annually moved livestock through four seasonal pastures 

and had similar standards of living, though households in Village A owned more 

livestock (406 ± 142) than those in Village B (308 ± 142). As part of sedentariza-

tion, all households built permanent homes in their former autumn pastures and 

were allotted adjacent land for cultivation. Access to traditional pastures was lim-

ited, allowing for only a two-season (summer–winter) rotational cycle, with live-

stock spending more time near residences. Importantly, Village A was allotted 

13.4 ha of private land per household by the government whereas Village B received 

only 5.4 ha per household due to a new protected area nearby. Though livestock 

husbandry still accounted for approximately three-quarters of total income, new 

Multiple scales of the sedentarization program

Spatial Scale

Catchment What were the interactions and

outcomes over the larger area?

Why were the outcomes

different between the two

villages?

Changes in village A and the

outcomes for village households

and pastures.

Step 3

Step 2

Step 1

Achieve ecologigal and social

effect in broader area

Extend the experience from the

village scale to a larger scale

County

Village

Model Program

Temporal Scale

Questions at each scale

Fig. 8.5 Questions developed based on the SES framework for two sedentarized villages in 

Xinjiang Province, China (from Fan et al. 2014)
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income sources included renting out land, government grassland subsidies, 

agriculture, and outside employment. While the pattern of sedentarization was 

quite similar for the two villages, its effect on household livelihoods was not. Village 

A was a local success story and held up as a model of modernization, while Village 

B struggled to meet household needs.

In Village A, all 23 surveyed households reported preferring their new sedentary 

life because they liked the improved housing and access to services, and the overall 

“more convenient” lifestyle. Nearly all had increased livestock numbers, with a new 

average herd size of 1002 ± 548. These larger herds were given supplemental feed 

grown on household agricultural plots or purchased from outside the community, 

decoupling them from the variable rangeland productivity. Households built barns 

and warming sheds that maintained greater livestock body weight during the winter, 

allowing for earlier lambing with higher survival rates and heavier lamb weights at 

the time of sale. In the summer, livestock were grazed on traditional summer pas-

tures and also on summer pastures rented from neighboring townships. Despite this, 

only one household thought that pasture quality was improving over time, with most 

linking pasture condition to rainfall. At the village level,  ecological conditions were 

not believed to have improved because of the policy.

Sedentarization in Village B was significantly different. Due to smaller and more 

dispersed household allotments, few households were able to irrigate their land or 

rent it out to professional farmers. Village B was unable to rent additional summer 

pasture land, as Village A had. Households could not increase their livestock num-

bers, and average income is now 50 % of that of Village A. Households in Village 

B were unable to make comparable investments in infrastructure and supplemental 

feeds. Many households required bank loans just to meet household expenses. Thus, 

while both villages turned to agriculture and supplemental food and settled in per-

manent housing, the two villages had significantly different outcomes in terms of 

household income, herd size, and use of irrigation. At the county level, the sedenta-

rization created inequitable outcomes among villages which could ultimately desta-

bilize the social system.

At the catchment level, there have been dramatically increased rates of ground-

water withdrawal for irrigated agriculture, especially cotton. The nearby Ebinur 

Lake is shrinking rapidly and local river flows are decreasing or disappearing 

entirely. The lake now has half the surface area that it had in 1950, with steady 

declines marked since 2003, correlating with the increased area under cultivation 

(Sun and Gao 2010). Human activity is held responsible, with most of the water 

used for crops (Qian et al. 2004; Cheng and Hong 2011). Survey respondents 

remarked that it was becoming increasingly difficult to get drinking water from 

shallow wells, as the local water table was dropping. Sedentarization has had sig-

nificant ecological impacts at the catchment scale that may undermine the resilience 

of the SES of all villages in the watershed, even the more successful Village A.

The SES framework reveals that environmental policy has both social and eco-

logical effects, and that they may be different at different spatial scales. Ecologically, 

water limitations at the catchment scale seem likely to feed back to the village level, 

making the current agricultural uses that resulted from sedentarization unsustainable. 
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Declining pasture conditions may lead to more reliance on irrigated crops, feeding 

back to increased water demand, and worsening water loss at the catchment level. 

The disparity in economic impacts apparent at the county level may destabilize the 

SES socially by creating feelings of inequity at the village level. Sedentarization has 

undermined the resilience of these pastoral communities by generating social and 

ecological tensions at multiple spatial scales. By becoming aware of the intercon-

nections of social and ecological systems, and considering outcomes at multiple 

spatial scales, managers in this case would be better equipped to establish develop-

ment policies that sustain households and villages, pastures, and watersheds.

8.3.5  Environmental Accounting  for Spanish Private Dehesa 

Properties

Oak woodland dehesa is an ancient and extensive agro-sylvo-pastoral system in 

southwestern Spain’s Mediterranean climate zone that produces multiple products, 

including cork, acorns, and wood from oaks; forage for diverse breeds of cattle, 

sheep, goats, and bees; habitat for game and mushrooms; recreation and scenery; 

and acorns for Iberian pigs. The characteristic pattern of well-spaced oaks with a 

mostly herbaceous understory is shaped by human management. Landowners enjoy 

many nonmarket ecosystem services (also called private amenities) from the land, 

including a beautiful setting, recreation, the status of owning a large property, hunt-

ing, a traditional lifestyle, the rewards and challenges of stewardship, and the pos-

sibility of passing the property on to their heirs. Woodland ecosystems actively 

managed as dehesa have notably high biodiversity, higher than similar systems 

under alternate land uses (Bugalho et al. 2011). Dehesa is threatened by abandon-

ment because of the low prices for commodities such as cork and by competition 

from agricultural intensification and development. The SES framework is applied 

here to explore the feedbacks between the environment and the individual dehesa 

enterprise to understand factors shaping the persistence of the dehesa system at the 

household level.

Like ranches in the USA (Oviedo et al. 2013), dehesa properties command higher 

prices than can be explained solely by income from commercial production. 

Commercial income is often low and governmental subsidies supplement the opera-

tions. However, the cultural and ecological nonmarket ecosystem services con-

sumed by dehesa owners partially explain why they chose to pay expensive dehesa 

land prices, just as they have been used to explain why ranchers in the USA persist 

in ranching when other investment choices might show greater monetary returns 

(Smith and Martin 1972; Oviedo et al. 2012) (Chap. 14, this volume). In this study, 

researchers sought to quantify these nonmarket landowner benefits in order to deter-

mine how much dehesa owners “earn” from nonmarket ecosystem services com-

pared to commercial income. This comparison would make it possible to consider 

these services, as motivators for land ownership, when making land use policy. 

In this case study, an “agroforestry accounting system” (Campos 2000) is used at 
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the property level to monetize some of the nonmarket benefits to the landowner 

from dehesa, and to place them into a fuller accounting of income to the landowner. 

Presented here is a summary from the detailed study of Oviedo et al. (2015a, b).

The Agroforestry Accounting System (AAS) is a framework developed to over-

come the limitations of conventional income accounting by incorporating, among 

other things, ecosystem amenity benefit streams in economic analysis (Campos 

2000). Though this approach can be used to estimate the economic value of the 

ecosystem to society, here we focus on benefits to the landowner as the focal envi-

ronmental feedback to the SES. The AAS includes capital gains, with land appre-

ciation as its main component. Land appreciation is part of landowner income 

because the landowner will realize this value when the property is eventually sold. 

As with land valuation more broadly, land appreciation of dehesa is better explained 

by nonmarket ecosystem service amenities available to dehesa owners than by com-

mercial income potential (Oviedo et al. 2015b). The study differs from previous 

economic analyses of dehesa and other agroforestry ecosystems in that both market 

commodities and nonmarket ecosystem services are calculated together to create a 

more complete ledger of total income equivalents for dehesa owners.

The “ecosystem services” concept originated with the idea that land-use decision 

making would be improved if the nonmarket benefits from ecosystems could be 

quantified in monetary terms (Chap. 14, this volume). For example, a municipality 

might develop a forest watershed and gain tax dollars, but it might trade off substan-

tial water filtration and provision services, erosion control, and recreation opportu-

nities. Recreation and water are sold in various markets, and the prices can be used 

to generate an estimate of those monetary values, but erosion risk, for example, is 

difficult to valuate. “Nonmarket” benefits such as aesthetic beauty or cultural heri-

tage values are even more difficult to monetize. One method often used is “contin-

gent valuation analysis” (CVA), where people who benefit from a particular 

environmental feature, such as a stand of trees used for walking or communing with 

nature, are asked how much money they would be willing to pay to maintain the 

existence of, or receive in compensation for the loss of, that feature (Mitchell and 

Carson 1989; Campos et al. 2009).

Data from three different sources was integrated in the AAS methodology. One 

source was a contingent valuation survey of 765 landowners used to obtain estimates 

of the value of nonmarket ecosystem service benefits to landowners (Oviedo et al. 

2015b). A second source was the nominal cumulative land revaluation rate for Spanish 

dry natural grassland for the period 1994–2010 (MARM 2011), used to roughly 

approximate land appreciation value. Third, commercial income data for three sample 

dehesas was gathered from account books, in-depth interviews, and field data (Oviedo 

et al. 2015a). Government net subsidies were not included here because they are tem-

porary, and depend largely on the varying European economic context.

In all three dehesas, commercial activities alone result in negative operating 

income. Capital gains from land appreciation are positive in all cases and make up 

some, but not all, of the difference between expenditures and revenue. The inclusion 

of the nonmarket ecosystem services consumed by dehesa owners and quantified 

by CVA makes the income for all three dehesas positive, and in fact makes up a 

higher share of total income than commercial activities. As the principal drivers of 
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appreciating land values, landowner nonmarket ecosystem services are doubly 

important in this accounting.

When the low or negative commercial income, positive income from capital 

gains, and value of owner-consumed ecosystem services are factored together, real 

total profitability ranges from 3.2 to 5.6 % (Oviedo et al. 2015a). If conventional 

income accounting were applied, the feedback from the ecosystem to the landowner 

from nonmarket ecosystem services would be overlooked, and our understanding of 

the interactions, or feedbacks, between landowners and the dehesa ecosystem would 

be less complete.

Dehesas would not be “profitable” for landowners without the ecosystem ser-

vices they provide, making nonmarket ecosystem services consumed by the land-

owner a positive feedback that should strengthen the landowner’s bond to the 

property. As these are nonmarket benefits and do not produce cash, the landowner 

must be able to afford, and be willing to pay, property expenses in order to acquire 

them. This capacity is key to the ecological sustainability of dehesas and implies 

that dehesas must be owned by people either with substantial savings or with mon-

etary income from other sources. When considered in the larger portfolio of income 

streams from dehesas, having nonmarket sources diversifies the operation, increas-

ing the resilience of ownership in the face of unpredictable and changing markets 

for the more tangible products.

The translation of nonmarket benefits to the landowner into monetary terms 

allows us to better understand when subsidies or other interventions are needed to 

maintain the integrated “profitability” that motivates landowner choice in this 

SES. It also highlights the need to maintain the production of landowner- consumable 

ecosystem services in order to motivate ownership and management investment. 

This is critical in Spain, for while land use controls inhibit conversion of dehesa to 

other uses, they do not sustain the active dehesa management necessary to preserve 

the considerable benefits of the system to Spanish society, including wildlife habi-

tat, carbon sequestration, watershed protection, and scenery. The governmental 

 subsidies that are provided to landowners reflect an appreciation of these values. An 

open question is whether any of these nonmarket goods and services can eventually 

find a nongovernmental market (Caparrós et al. 2013). Environmental accounting 

provides insight into how regulations, social pressures, significant ecological 

change, or other factors that reduce the nonmarket ecosystem services a landowner 

can consume from their property may put the dehesa at risk as much or more than 

low commercial profits.

8.4  What Can Be Learned from These Case Studies?

It has been suggested that resilience, adaptability, and transformability are the three 

related attributes of SESs that determine their future trajectories (Walker et al.  

2004). Resilience and adaptability figure prominently in the case studies, but the 

third, transformability, or the ability of a system to transition to a new SES, has been 
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less studied and is not found in the case studies. In each, the SES framework was 

used to locate key interventions needed to maintain or increase the resilience or 

adaptive capacity of the system (Table 8.1). The SES framework revealed multi- 

scalar feedbacks and drivers that otherwise likely would have been overlooked, and 

helped to understand at least some of the relationships that influence the resilience 

of complex systems. Each of the case studies reveals certain weak points in the SES 

that are either being neglected or exacerbated by current management strategies, 

and which may threaten the long-term persistence of the SES.

The focal SES in each case study was found to have vulnerabilities that threaten 

to cause significant shifts in the landscape and the resident social groups. By analyz-

ing each of the case studies as an SES, it was possible to identify threats as well as 

points where adaptive capacity and resilience were low, in essence revealing the 

weakest link in the chain of interactions and the point at which intervention should 

be made. Unfortunately, the synthetic research that went into each of the case stud-

ies is rare in natural resource management, and underscores the need for a large 

amount of information in order to create sound policies and management prescrip-

tions. Since it would likely be expensive and time consuming for any one agency or 

actor to gather all the necessary data individually, gathering together people from 

many different sectors of the SES may be the best way to detect threats and how 

they could be avoided.

8.5  Future Perspectives

Writing about the need for global action to respond to the profound changes in eco-

systems caused by human activity, Carpenter and others state, “The challenge of 

sustainable development is to … transform social-ecological systems to provide 

food, water, energy, health and well-being in a manner that is economically, eco-

logically and socially viable for many generations in the future and for people in all 

parts of the world” (2012). The Millennium Ecosystem Assessment published in 

2005 identified gaps in current knowledge linking ecosystem services and human 

well-being, including the need to understand how SESs evolve over time and 

respond to policy interventions, trade-offs among different ecosystem services, and 

how to integrate the expectation of nonlinear and abrupt changes into policy and 

planning (MA 2005). The SES concept is still relatively new to range science, and 

it has yet to be widely applied. It is acknowledged that social factors deserve more 

attention and more in-depth research in range management, but research to date on 

the interactions of society and rangelands has rarely been able to escape the bounds 

of a single discipline (Brunson 2012). Most range research has tended to focus on 

the ecology, management strategies, or economics of rangelands, but has rarely syn-

thesized these different components.
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Table 8.1 Overview of the SES framework and five case studies

Case Problem SES highlights Interventions

Adaptation to 

climate change by 

Australian livestock 

managers

Lack of adaptive 

capacity in the face of 

anticipated climate 

change leads to poor 

management 

decisions and reduced 

economic resilience to 

climate change

Scale: Region and 

enterprise

Ranching collapse 

would cause 

undesirable social 

and ecological 

change. Feedbacks 

between climate 

change and rangeland 

productivity are 

connected to ranch 

economic welfare

Education and support 

for rancher adaptive 

capacity, and mission- 

oriented research into 

rancher needs to guide 

education and outreach

Climate change and 

forb restoration in 

the Great Basin

Limited manager 

adaptive capacity in 

developing postfire 

seeding practices that 

anticipate climate 

change, leading to 

decreased ecosystem 

resilience

Scale: Region and 

administrative units

Individual and 

community values 

limit personal 

adaptive capacity, 

costs and uncertainty 

of successful 

regeneration 

constrain 

management adaptive 

capacity

Support receptivity to 

learning; problem 

should be stated in 

terms other than 

adapting to climate 

change; financial 

support to reduce risk 

is needed

The California 

black rail and small 

wetlands in the 

Sierran foothills

Small wetland 

habitats for a rare bird 

are at risk from 

climate change and 

nonadaptive water 

conservation policy

Scale: Individual 

landowners and water 

districts

Policy at the state and 

local scale 

inadvertently 

threatens small-scale 

wetland habitat for a 

rare bird. A lack of 

feedback to local or 

state policy makers 

about wetlands 

because they are 

“invisible”

New governance or 

policies for water 

districts are needed; 

outreach to landowners 

about maintaining 

small wetlands as 

wildlife habitat

Sedentarization of 

pastoralists in 

Xinjiang

Sedentarization and 

irrigated agriculture 

put the grassland SES 

at risk ecologically 

and socially due to 

economic inequality 

and overuse of water

Scale: Household, 

village, county, and 

catchment

Understanding of the 

multiple scales of an 

SES and how they 

interact can be used 

to assess resiliency; 

impacts to and 

feedbacks from 

processes at the 

broader scale 

undermine resilience 

at the household scale

Programs should be 

revised using SES 

assessment of impacts 

at multiple scales, 

including equity of 

outcomes; development 

plans should be altered 

to fit environmental 

constraints

Environmental 

accounting for 

dehesas in Spain

Reasons for owning 

traditional woodlands 

producing many 

ecosystem services 

are not recognized by 

policy, yet support 

resilience to 

fluctuating prices of 

agricultural products

Scale: Individual 

landowners, 

ecosystem

The consumption of 

ecosystem services 

by landowners acts as 

a positive feedback 

on the resilience of 

regionally valuable 

dehesa

Understand and 

support feedbacks that 

enhance landowner 

commitment to 

maintaining dehesa 

enterprises, including 

landowner-consumed 

ecosystem services
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Rangelands around the world operate under a broad array of governance systems 

and property rights regimes. Thus far the SES concept has been used far more effec-

tively to analyze past and present situations than in providing clear steps for future 

work. Future research should go further in determining how these different compo-

nents are linked, and further suggest policy improvements that might better support 

ranchers, pastoralists, and rangeland managers. The effect of large-scale economic 

and political forces on local environments lends itself well to SES analysis. For 

example, in the USA, zoning laws discourage conversion of private rangeland to 

other uses within certain geographical areas, but ranch conversion is not otherwise 

prohibited and ranches are rarely the most profitable land use. Alternatively, many 

European countries have national laws that ban the conversion of certain agricul-

tural lands—including dehesa—to nonagricultural uses. In the western USA, there 

is growing interest in conserving “working rangelands”—rangelands that produce 

ecosystem services as well as commodities. Yet there has been little research to date 

comparing the effectiveness of various national land policies on maintaining work-

ing rangelands or supporting their active management at the household scale. 

Comparing the effects of land-use policies on the ecology of working rangelands 

would provide needed policy-relevant information.

At a recent national workshop on “usable science,” participants, including scien-

tists, livestock operators, and land managers, ranked 142 identified issues proposed 

by five working groups (water, animals, vegetation, soils, and socioeconomics). The 

number one-ranked issue overall came out of the Socio-Economics Working Group: 

understanding and managing for variability (climate, drought, fire), adaptation, and 

recovery (Brunson et al. 2016). This topic is admittedly broad, but the SES approach 

is a good fit for analyzing key components: ecosystem change, adaptive capacity, 

and resilience in rangeland systems. Rangelands are subject to high variability of 

climate, vegetation, and market influences of livestock and feed prices, and dealing 

with such variability is a constant challenge for livestock operators and land manag-

ers. SES frameworks might productively be used to increase the resilience of work-

ing rangelands by identifying beneficial ecological traits but also by constructing 

social and economic support systems for livestock operators and land managers. 

Research exploring the use of SES frameworks to help practitioners and managers 

anticipate and manage variability and change in environment and society is a needed 

contribution.

Trade-offs and synergies among the various goods and services derived from 

rangelands need more attention in general. On public lands, agency interventions on 

specific allotments could have impacts on entire landscapes: examining these cross- 

scale effects, and the trade-offs among them, requires greater attention. Designation 

of a park or preserve may be of great benefit in meeting conservation and recreation 

needs, but might have devastating effects on individual livestock operators, and lead 

to a transformation in nearby communities with various ecological and social out-

comes at diverse scales. SES analysis could help anticipate these effects, providing 

a fuller picture of the opportunities and trade-offs of the change. This type of 

research is hampered, however, by the difficulties of cross-disciplinary research. 

SESs are inherently interdisciplinary, but different disciplines use different research 
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methods, and the multiple geographic scales used by SES researchers require mul-

tiple researchers to work together in different places. Greater emphasis is necessary 

to integrate and balance multidisciplinary programs and projects addressing range-

lands, including the use of multiple research methods.

Finally, as pointed out earlier, transformability as an SES characteristic has not 

received enough attention from SES researchers. Yet transformations are occurring 

in rangelands in many parts of the world. In China, when does a sedentarized nomad 

community shift to a different SES and what does that mean for the well-being of 

the people in the community? In the USA, many ranching communities have expe-

rienced an influx of new residents working in businesses related to mining and tour-

ism, or seeking a place to retire, vacation, or telecommute. When does a ranching 

community transform to another type of community or SES altogether? What does 

this mean for the economy and the environment? The SES framework could be used 

to assess the impact of such transformations in a comprehensive way, and to analyze 

the resilience and adaptability of the new SES.

8.6  Summary

An SES is a combination of social and ecological components that shape each other 

in profound ways. For example, a grassland landscape is radically altered when it is 

converted to agriculture. The natural components of that system are affected by 

farming and land management practices, water use, infrastructure, etc. Farming 

communities are impacted by the productivity of the soil, by precipitation and tem-

perature, and by the multitude of plants and animals they either rely on (for pollina-

tion or soil health) or compete with (crop pests or predators). Similarly, livestock 

operators graze their animals and conduct management activities in ways that shape 

rangeland ecology, but also respond to changing ecological conditions such as inva-

sive plant species or variable productivity caused by irregular rainfall. Larger scale 

patterns such as climate change, demographic trends, and global meat prices also 

affect rangelands both directly and by altering land-use patterns.

The SES concept is not a methodology for research or a checklist to identify 

problems. It is a conceptual framework designed to keep both the social and eco-

logical components of a system in focus so that the interactions between them can 

be scrutinized for drivers of change and causes of specific outcomes. Furthermore, 

change may cross back and forth between the social and ecological subsystems in 

ongoing feedbacks. Most research and land management policies are based pre-

dominantly on either ecological or social phenomena and problems. This type of 

single- discipline thinking leads to policies which either fail to address the problem 

or cause unintended consequences. SES analysis requires a great deal of informa-

tion from multiple disciplines and often at multiple sites, which is logistically chal-

lenging and has served as a barrier to widespread use of the SES framework until 

recently.
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SESs exist because human life depends on ecosystems, and human actions per-

petually affect ecosystem components and functions. Rangeland managers work at 

the intersection of human enterprise and rangeland ecosystems. Managers must 

remain flexible and adaptive enough not only to tailor grazing and management 

activities to suit unpredictable environmental conditions, but also to respond to 

changing policy, economics, demands for ecosystem services, and management 

capacity. Such flexibility and adaptability constitute a serious challenge especially 

given climate change and decreasing profitability of range-fed livestock. If we as a 

society want to continue to have working rangelands, policies to promote more 

cross-disciplinary research and education, flexible land use, and novel economic 

programs to satisfy multiple objectives for rangelands are sorely needed.

It has been suggested that resilience, adaptability, and transformability are the 

three related attributes of SESs that determine their future trajectories. Resilience can 

be defined as the capacity of a system to absorb disturbance and reorganize while 

undergoing change so as to retain essentially the same function, structure, identity, 

and feedbacks (Walker et al. 2004). In the face of a disturbance, a resilient SES will 

not only maintain function but may even use the disturbance as an opportunity to 

reorganize and further develop resilience (Gunderson and Holling 2002; Berkes et al. 

2003). Disturbances can originate in social or ecological systems and can happen 

rapidly or gradually (May 1977; Chap. 6, this volume). The ability of the SES to adapt 

to change is a key to resilience. If change overwhelms the resilience and adaptive 

capacity of an SES, it will transform to a new type of SES. SES analyses should strive 

to identify the interactions that lead to resilience, adaptation, or transformation.

The application of the resilience concept to social settings and, to a lesser degree, 

the use of the SES concept itself have been critiqued for overlooking the role of 

human autonomy, cultural values, social heterogeneity, and power relations among 

actors in SESs. An overemphasis on institutions as environmental managers and 

decision makers all too often obscures the role of individuals and loosely affiliated 

groups in social–environmental relations. In the future, range SES analyses could be 

improved by better accounting for social difference among stakeholders and their 

ability to take part in political and decision-making processes.

Components of SESs that figure prominently into their analysis include scale and 

feedbacks. Understanding of ecosystems and their response to management has 

often been hampered by a failure to appreciate the role of scale. Different patterns 

and processes are characteristic of different temporal and spatial scales. Research 

too often focuses on a single scale, overlooking processes that occur primarily at 

larger or smaller scales, but which nonetheless critically impact the components of 

the focal SES. Identifying feedbacks between social and ecological components of 

the system at multiple scales is a key to SES-based analysis. For example, house-

hold economics may be affected by international meat prices or a consolidation of 

the meat-packing industry. Droughts that occur only once a decade can have lasting 

effects on rangeland ecology, herd sizes, management strategies, and local poverty.

Five case studies using the SES concept were presented. In each, the SES frame-

work was used to locate key interventions needed to maintain or increase the resil-

ience or adaptive capacity of the system. Analyses identified important processes and 

T. Hruska et al.

http://dx.doi.org/10.1007/978-3-319-46709-2_6


295

interactions at scales from the personal values of an individual to region-wide water-

shed impacts. The SES framework revealed multi-scalar feedbacks and drivers that 

otherwise likely would have been overlooked, and helped to understand at least some 

of the relationships that influence the resilience of complex systems. Each of the case 

studies revealed weak points in the SES that were either neglected or exacerbated by 

current management strategies, and which may undermine the long-term persistence 

of the SES, causing significant shifts in both landscapes and social groups. By ana-

lyzing each of the case studies as an SES, it was possible to determine how the eco-

logical and social components of the systems were affecting each other. This allowed 

for an assessment of how the SES was being threatened, where adaptive capacity was 

low, and when resilience was breaking down, in essence revealing the weakest link in 

the chain of interactions and the point at which interventions should be made.

Unfortunately, the synthetic research that went into each of the case studies is 

rare in natural resource management, and indicates the need for a large amount of 

information in order to create sound policies and management prescriptions. Since 

it would likely be expensive and time consuming for any one agency or actor to 

gather all the necessary data individually, gathering together people from many dif-

ferent sectors of the SES to share information and collaborate on solutions may be 

the best way to detect threats and how they can be avoided. Research is needed on 

integrative metrics for cross-disciplinary projects, the on-the-ground impacts of 

social interactions and processes, the policy interventions that support resilience, 

and evaluating trade-offs and synergies.

One hurdle in the way of improving the management of rangeland SESs is the 

fact that regulatory policies are usually enacted on the premise that a problem is 

consistent across different times and places and that the policy will solve this prob-

lem when applied everywhere uniformly. Unfortunately, rangeland problems are 

rarely so consistent and neither are the agencies tasked with implementing govern-

ment policy. The single agency, single policy type of policy implementation is an 

example of centralized governance. Centralized systems assume that all information 

can be routed through a single office and that solutions can come from that same 

office. In contrast, polycentric governance systems have multiple locations for col-

lecting data and issuing and carrying out management actions. Polycentric gover-

nance models do not rely on a single solution to a perceived single problem, but 

rather seek to coordinate activities working toward a common goal.

Managers should aim to maximize the resilience of both the ecological and social 

elements of a desirable SES, which calls for favoring diversity and adaptability over 

maximizing yield and efficiency (Holling 1973; Holling and Meffe 1996). Given 

that rangeland managers typically have very limited control over the social compo-

nents of range SESs, increasing participation and cooperation between managers, 

other invested actors, and the public to maximize information sharing, cooperation, 

and adaptive capacity of management activities would likely improve outcomes of 

rangeland SES management (Walker et al. 2004; Gunderson 2001; Olsson et al. 

2006). Adaptive comanagement has become a common prescription for ecosystems 

and for SESs, and may include collaboration among agencies whose jurisdictions 

intersect in a particular SES, or participatory efforts with diverse stakeholders 
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(Stringer et al. 2006). Adaptive management also has relatively high information 

needs and institutional costs, making it difficult for many agencies to undertake 

(Jacobson et al. 2006). Increasing the involvement and number of stakeholders may 

improve monitoring of SESs and generate more viable alternatives and solutions, 

but it does not itself constitute a solution. Some stakeholders inevitably have more 

power than others in shaping how an SES functions.

Rangeland managers and policy makers would be well advised to keep the fol-

lowing points in mind when creating management plans for SESs:

 1. Ecological diversity and redundancy of components are beneficial for resilience, 

and should be preserved through management activities. Feedbacks may support 

or weaken resilience. Undesirable states can also be resilient.

 2. Stakeholders in any system are typically stratified throughout several hierarchi-

cal levels of geographical scale and legal authority. These hierarchical levels do 

not have the same motivations nor are they affected by the same processes. 

Interactions between them are complex.

 3. All SESs are complex, and changes within them may be difficult or impossible 

to predict. Management plans should thus be adaptive, with changes contingent 

on consistent monitoring to guide both short- and long-term planning. Governance 

systems should likewise be adaptive, for similar reasons.

 4. Uncertainty within the system can be minimized through the inclusion of all 

relevant stakeholders in the management process. Genuine inclusion implies that 

stakeholders have a chance to affect outcomes and receive benefits while 

acknowledging that authority and benefits are rarely shared equally and that 

action must usually be taken based on incomplete information and a lack of con-

sensus. When successful, stakeholder inclusion increases information gathering 

and feedback and decreases uncooperative behavior and unpredicted behavioral 

change (Armitage et al. 2009).

 5. SES research teams should include both social and ecological scientists. 

Unbalanced funding and emphasis can lessen the prospects for a successfully 

interactive project. Funding agencies need to emphasize this balance in granting 

programs.

The primary benefit of the SES framework is the improved ability to prevent or 

correct social policies that cause negative ecological outcomes, and to respond to 

ecological problems in ways that support, rather than hurt, social actors. By utiliz-

ing an SES analysis, rangeland managers and policy makers can create beneficial 

feedback loops such that society benefits from sustainable utilization of rangelands, 

and ecological objectives are met in ways that benefit livestock operators and the 

broader society. Managing solely for social or ecological objectives has a long his-

tory of unintended consequences, including ecosystem collapse and social unrest. 

While information intensive, conceptually complex, and logistically challenging in 

the management context, the SES framework can help overcome intractable chal-

lenges to working rangelands such as climate and land-use change.
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Chapter 9

State and Transition Models: Theory, 
Applications, and Challenges

Brandon T. Bestelmeyer, Andrew Ash, Joel R. Brown, Bulgamaa Densambuu, 

María Fernández-Giménez, Jamin Johanson, Matthew Levi, Dardo Lopez, 

Raul Peinetti, Libby Rumpff, and Patrick Shaver

Abstract State and transition models (STMs) are used to organize and communicate 
information regarding ecosystem change, especially the implications for manage-
ment. The fundamental premise that rangelands can exhibit multiple states is now 
widely accepted and has deeply pervaded management thinking, even in the absence 
of formal STM development. The current application of STMs for management, 
however, has been limited by both the science and the ability of institutions to 
develop and use STMs. In this chapter, we provide a comprehensive and contempo-
rary overview of STM concepts and applications at a global level. We first review 
the ecological concepts underlying STMs with the goal of bridging STMs to recent 
theoretical developments in ecology. We then provide a synthesis of the history of 
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STM development and current applications in rangelands of Australia, Argentina, 
the United States, and Mongolia, exploring why STMs have been limited in their 
application for management. Challenges in expanding the use of STMs for manage-
ment are addressed and recent advances that may improve STMs, including partici-
patory approaches in model development, the use of STMs within a structured 
decision-making process, and mapping of ecological states, are described. We con-
clude with a summary of actions that could increase the utility of STMs for collab-
orative adaptive management in the face of global change.

Keywords Digital soil mapping • Ecological site description • Resilience • State 
transition • Structured decision-making • Transient dynamics

9.1  Introduction

State and transition models (STMs) were conceived as a means to organize and 
communicate information about ecosystem change as a basis for management. 
While some authors regard “the state and transition model” as a specific theory 
about how ecosystems respond to disturbance (see review in Pulsford et al. 2014), 
we take the view that STMs are not a theory per se, but are a flexible way of organiz-
ing information about ecosystem change that may draw on a wide range of concepts 
about ecosystem dynamics (Westoby et al. 1989). The value of STMs for rangeland 
managers is in fostering a general understanding of how rangelands function and 
respond to management actions, thereby leading to more efficient and effective allo-
cation of management efforts.

The fundamental idea is simple (see the Caldenal STM at http://jornada.nmsu.
edu/esd/international/argentina). Vegetation, a commonly used indicator of ecosys-
tem conditions, is described according to discrete plant communities (such as an 
open Prosopis caldenia forest with grassy understory). In doing so, we develop a 
logic for distinguishing different communities so that stakeholders can communi-
cate effectively about them. Next, we describe the multiple plant communities that 
can occur on a particular site. The key problem in this step is to define the charac-
teristics of the “site”—its climate, soils, and topographic position. Otherwise we 
might conclude erroneously that a set of plant communities are alternative states of 
a specific site when in fact they exist on different sites. Finally, we identify the 
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causes of transitions between communities and the constraints to recovery of par-
ticular communities, including succession,  event- driven change, and persistent tran-
sitions to alternative stable states (Briske et al. 2003). The causes and constraints to 
change are often incompletely understood, but they can be tested by monitoring the 
effects of management and restoration actions.

These steps allow managers to link information about plant community compo-
sition collected during inventory with concepts of ecosystem dynamics to develop 
management plans aimed at long-term stewardship. For instance, management 
actions may seek to maintain a desired plant community with high forage quality, to 
restore native plants and animals that formerly occupied the site, or to create a 
mosaic of different plant communities favoring wildlife. In this way, STMs can help 
specify management objectives for a site, and serve as guides to maintain and restore 
ecosystem services.

The diagrammatic and narrative portions of STMs synthesize various sources of 
knowledge about ecosystem change, including scientific results, historical anec-
dotes, and local knowledge. The synthesis is used to develop predictions for how 
ecosystems respond to natural events and management actions (Bestelmeyer et al. 
2009b). Conceptual STMs can be expanded into quantitative models by including 
estimates of the likelihood of change.

Well-developed STMs can serve as a basis for collaborative adaptive manage-
ment (i.e., management by iterative hypothesis testing, involving multiple stake-
holders; Susskind et al. 2012) (Chap. 1, this volume). These guidelines can be 
updated based on monitoring and new knowledge. In this way, STMs can facilitate 
a shift from rigid prescriptions based on a one-way relationship between science 
and management toward a constantly evolving set of recommendations based on 
collaborative learning and adaptation. Collaborative adaptive management is likely 
to be more effective than rigid rules of thumb as a basis for environmental steward-
ship, especially as global climate continues to change.

Because of the potential for STMs to link science to management, they are being 
developed with increasing frequency in rangelands and other ecosystems on several 
continents (Hobbs and Suding 2009). While some STMs were never intended to be 
used for management, others were developed as a basis for outreach and decision 
support. The linkage of STMs to on-the-ground decision-making, however, remains 
limited for a number of reasons, including a lack of adequate detail and specificity 
in STMs and the inability of institutions to develop and use STMs. Moreover, it is 
inherently difficult to determine the likelihood of transitions, especially given time 
lags and long timeframes needed to observe some transitions. Nonetheless, there is 
continued optimism that STMs can provide useful tools for bridging the science- 
management divide (Knapp et al. 2011b).

Our approach in this chapter is to (1) review the ecological basis for STMs, (2) out-
line the fundamental components of STMs, (3) review the experiences in several coun-
tries with the development and use of STMs (Australia, Argentina, the United States, 
and Mongolia), (4) identify and address challenges to the use of STMs for management, 
and (5) describe recent technical advances that may improve STMs, including participa-
tory approaches in model construction, the use of STMs within a structured decision-
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making process, and mapping of ecological states. We conclude with a summary of 
strategies to improve the utility of STMs for collaborative adaptive management.

9.2  Conceptual Advances in the Ecology of State Transitions1

The publications of seminal papers on ecosystem resilience and event-driven veg-
etation dynamics in rangelands catalyzed a significant shift in thought among scien-
tists and managers beginning in the 1970s (Westoby 1980; Walker and Westoby 
2011) (Chap. 6, this volume). Prior to this time, the notions of climax vegetation and 
orderly succession following disturbance, stemming from early American plant 
ecology, were used to interpret vegetation dynamics, even in systems where vegeta-
tion change is now known to be discontinuous and irreversible (e.g., Campbell 
1929). It is now widely acknowledged that (1) vegetation change in response to 
grazing or weather variations may not occur along a single continuum but rather 
may produce multiple stable plant communities; (2) vegetation change is not neces-
sarily reversible; and (3) vegetation change can be discontinuous and sudden. While 
recognition of these patterns occurred prior to the development of STMs, the for-
malization of “state-and-transition” thinking via the models promoted a broadened 
view of how vegetation can change (Westoby et al. 1989).

In spite of the impact of STMs on general thought, the continuing challenge is to 
represent accurately the patterns, timescales, and drivers of change among states in 
particular settings. To this end, it is important to distinguish transient dynamics 
from persistent transitions between alternative states (Bestelmeyer et al. 2003; 
Stringham et al. 2003). Transient dynamics, driven by disturbance or weather 
events, produce significant but temporary changes in vegetation composition or pro-
duction that can be reversed in a few years to several decades (e.g., via moderation 
of disturbance, succession, or weather events). State transitions, on the other hand, 
involve persistent changes in vegetation such that recovery of the former state is 
dependent on unacceptably long recovery times, active restoration, extreme events, 
or a reversal of climatic change that occurs over several decades or never occurs 
(Suding and Hobbs 2009). Below, we review the conceptual distinction between 
these types of dynamics, acknowledging that it may be difficult to distinguish them 
in practice.

9.2.1  Transient Dynamics

Whether a system undergoes transient dynamics or a state transition following a 
disturbance is influenced by a variety of factors, including plant traits that evolved in 
response to disturbance, the ability of alternative plant species to colonize a site, and 

1 Primary author B. Bestelmeyer.
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the resistance of soils to degradation (Seybold et al. 1999; Cingolani et al. 2005). For 
example, in the Chihuahuan Desert where most historical grasslands have converted 
to eroding shrublands, grasslands dominated by the perennial grass tobosa (Pleuraphis 

mutica) have been comparatively resilient to drought and overgrazing episodes 
owing to its low palatability, vegetative reproduction via rhizomes that are protected 
below ground, and its dominance on landforms that receive water runoff and sedi-
ment from upslope positions (Herbel and Gibbens 1989; Yao et al. 2006). While 
disturbances such as continuous heavy grazing can cause significant change in veg-
etation cover and composition in many rangelands, recovery can be rapid, taking 
only a few growing seasons in productive settings (Fig. 9.1a), or occur slowly, taking 
decades in resource-limited environments (Miriti et al. 2007; Lewis et al. 2010). 
Species having slow recruitment and growth rates may exhibit significant time lags 
in recovery. Nonetheless, adjustments to the management strategy or disturbance 

Fig. 9.1 Examples of transient dynamics and state transitions in rangelands. (a) Transient dynam-
ics featuring a reversible shift between communities dominated by western wheatgrass, Pascopyrum 

smithii, (1) and blue grama grass, Bouteloua gracilis (2), in the northern Great Plains of North 
Dakota, USA; recovery of the more productive P. smithi community can occur in several years with 
changes to grazing management (courtesy of Jeff Printz). (b) Transient dynamics on the Santa Rita 
Experimental Range in the Sonoran Desert of Arizona, USA, starting with cholla cactus (Opuntia 

imbricata) dominance in 1948 (1), then burroweed (Ambrosia dumosa) dominance in 1962 (2), and 
increasing dominance of blue palo verde (Parkinsonia florida) from 1988–2007, which might rep-
resent a state transition (3 and 4; courtesy of Mitch McClaran). (c) A state transition from grass-
land to shrubland on the Jornada Experimental Range in the Chihuahuan Desert of New Mexico, 
USA, starting with high cover of black grama grass, Bouteloua eriopoda, (1) that may be reduced 
(2) and subsequently recovered, unless a threshold is crossed (3) after which B. eriopoda goes 
extinct and mesquite (Prosopis glandulosa) dominates (4). This change results in an eroding shru-
bland state that experiences infrequent co- dominance by another perennial grass, Sporobolus spp. 
(5), during periods of high rainfall
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regime (e.g., via reduced stocking rates or reestablishment of natural fire disturbance 
regimes to remove woody plants) can be used to initiate recovery.

Weather variations are especially important causes of transient dynamics in 
rangelands featuring high interannual rainfall variability. For example, high winter 
precipitation initiates recruitment of burroweed (Isocoma tenuisecta) in the Sonoran 
Desert and burroweed dominance can be sustained for one to two decades until dry 
periods and senescence cause declines in density (Fig. 9.1b; McClaran et al. 2010; 
Bagchi et al. 2012). Such vegetation changes can be abrupt, but they do not neces-
sarily represent a transition between alternative stable states. This is because vegeta-
tion change is predictably related to recent environmental conditions and it can be 
reversed via plant senescence or subsequent, common weather events (Jackson and 
Bartolome 2002; McClaran et al. 2010).

9.2.2  State Transitions

The hallmark of a state transition (sometimes referred to as a “regime shift”; 
Scheffer and Carpenter (2003)) is long-term persistence of new plant communities, 
or a new range of variation among plant communities that differs from that of the 
previous state. The persistence of new states can be caused by mechanisms that are 
internal to the ecosystem, such as competitive dominance of invaders or plant- 
environment feedbacks favoring new species under the same soil and climate condi-
tions. In addition, directional changes in external environmental drivers, such as 
climate change, can cause the persistence of new states.

State transitions in rangelands have been described with the following sequence 
in some STMs produced in the United States (Fig. 9.1c). Weather variations or dis-
turbances can cause transient dynamics within a historical or “reference” state 
resulting in two (or more) distinct communities (Bestelmeyer et al. 2003; Stringham 
et al. 2003). Certain of these communities may have low resilience and be suscep-
tible to a state transition (called an “at-risk community”; Briske et al. 2008). 
Recovery to communities less likely to undergo a transition can occur with the 
return of favorable weather or reduced disturbance frequency or intensity. 
Alternatively, an intensification of adverse weather or disturbance can cause the 
plant community to cross a threshold (often called a “tipping point”) into a new 
state. The new state may be stable with respect to the dominance of key plant spe-
cies, but still exhibit transient dynamics among a set of plant communities that did 
not exist in the previous state (Friedel 1991).

The persistence of alternative states can be caused by invaders that are superior 
competitors when given a foothold in a community (Seabloom et al. 2003). 
Alternatively, the cessation of natural disturbances can lead to the dominance of 
superior competitors. For example, the cessation of fire in prairie grasslands can lead 
to increases in woody plant density and size. When the density of woody plants lim-
its grass (and fuel) continuity and fire spread, and when woody plants grow to a size 
that limits their mortality in response to fire, then reintroduction of fire can no longer 
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recover the grassland state (Twidwell et al. 2013b) (Chap. 2, this volume). These two 
types of state transitions involve changes in dominant plants, but not necessarily a 
change in plant production or other ecosystem properties. While production and soil 
carbon levels may be maintained (or even increased) with such transitions (Barger 
et al. 2011), the provision of other ecosystem services (e.g., forage for livestock pro-
duction) is often reduced (Eldridge et al. 2011) (Chap. 14, this volume).

Plant production can be reduced when the loss of dominant perennial plants leads 
to a reduction in soil water infiltration, accelerated erosion that reduces soil fertility, 
or rising water tables resulting in salinization (D’Odorico et al. 2013). In arid and 
semiarid rangelands, there may be thresholds in plant patch organization below 
which positive feedbacks between plant patches, resource acquisition, and plant sur-
vival and reproduction break down, resulting in a persistent low- productivity/high 
bare ground state (Kéfi et al. 2011). In other words, if larger plant patches become 
fragmented too much, the plants occupying those patches suffer due to increased soil 
erosion and decreased resource availability (Svejcar et al. 2015). State transitions 
associated with soil degradation are often called “desertification.”

State transitions often have multiple, interacting causes (Fig 9.2; Walker and Salt 
2012). Drivers that are external to the system can cause a gradual or abrupt change in 
controlling (or “slow”) variables. The controlling variables directly determine the 
state variables of interest. An example would be a change in the intensity and duration 
of grazing periods (the driver) that gradually reduces grass root mass, basal cover, and 
soil organic matter (controlling variables) to affect plant foliar cover, production, and 
composition (state variables). Triggering events occurring over relatively short time 

Fig. 9.2 A schematic illustrating the pattern and interaction of variables over time involved in 
state transitions. Elements include external drivers that are returned to pre-transition levels, dis-
crete triggering events occurring over short periods that exacerbate the effects of changing drivers, 
responses of internal controlling (a.k.a slow) variables that may exhibit feedbacks with state vari-
ables, and transitions in state variables. The position of different states and the threshold between 
states are noted. Dashed lines indicate that changes in controlling and state variables need not be 
abrupt
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periods, such as an extreme drought, can amplify the rate and magnitude of change in 
controlling variables and may produce abrupt changes in state variables.

Abrupt changes can occur in both transient dynamics and state transitions. In state 
transitions, however, feedbacks among controlling variables and state variables can 
lead to persistence of the new state. For example, reduced plant cover leads to increased 
soil erosion and reduced litter inputs, accelerating the loss of soil organic matter and the 
ability of the soil to store moisture. Modifications to one or more feedbacks can pro-
duce an abrupt change in state variables (i.e., community structure and composition) to 
create an alternative state, even after the driver has returned to previous levels. The 
threshold between states is the period in time when changes in controlling variables, 
and possibly feedbacks, lead to persistent changes in state variables.

State transitions need not always be abrupt, however. Abrupt changes in controlling 
variables can cause strongly lagged, nearly linear responses in state variables. For exam-
ple, long-lived plants can persist long after the environment required for their establish-
ment has disappeared, leading to a gradual transition after the threshold is crossed. 
Alternatively, controlling variables may change gradually and be tracked by gradual 
changes in plant composition, such as with climate change (see the dashed lines in 
Fig. 9.2; Hughes et al. 2013). Even irreversible state transitions can occur gradually.

9.2.3  Distinguishing Transient Dynamics from State 

Transitions

The criteria used to distinguish transient dynamics from state transitions depend on 
the length of time needed for recovery and the implications of these timelines for 
management. Recovery that does not occur within an acceptable management time-
frame without intensive effort is often categorized as a state transition (Watson and 
Novelly 2012). What is deemed “acceptable” varies among users and contexts, but 
should ideally be based on measurable recovery criteria. For example, recovery that 
takes longer than 3 years following a change in grazing management is treated as a 
state transition in Mongolia by the Mongolian government (National Agency for 
Meteorology and Environmental Monitoring and Ministry of Environment 2015). 
For the US government, changes are called state transitions when they are irrevers-
ible or take “several decades” for recovery of the former state (Caudle et al. 2013).

It is also important to realize that the type of dynamics recognized might depend 
on the specific plant functional groups considered. For example, in the Calden 
(Prosopis caldenia) forests of central Argentina, herbaceous plants can exhibit tran-
sient dynamics and be managed over multi-year timescales (Llorens 1995), even as 
gradual shrub and tree encroachment over decades increasingly constrains herba-
ceous cover and composition, representing a state transition (Dussart et al. 1998). 
Unlike the simpler models of the past, transient dynamics and state transitions can 
be represented simultaneously in STMs.
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9.3  Development of State and Transition Models

STMs should be designed to serve land managers and policymakers by: (1) com-
municating locally relevant indicators of transient dynamics and state transitions 
and their consequences for ecosystem services; (2) describing the drivers and envi-
ronmental conditions affecting susceptibility to transitions; (3) recommending man-
agement to avoid undesirable transitions (i.e., resilience management) and to obtain 
desired ecosystem services; and (4) identifying realistic restoration or adaptation 
options for alternative states (Bestelmeyer et al. 2009a).

Assembling the evidence to support an STM can be accomplished in most cases 
using a combination of sources. Monitoring data, historical records, comparisons of 
plant communities and surface soil characteristics among sites with different man-
agement histories, published experiments, and local knowledge can be combined to 
infer vegetation dynamics (Bestelmeyer et al. 2009b). In any case, it is important to 
recognize that the dynamics represented in STMs are hypotheses that should be 
tested through the outcomes of management decisions.

The structure of STMs represented in the literature to date is highly diverse. 
Different authors have used different conventions to develop model diagrams and 
narratives. Models can be entirely qualitative/descriptive (Knapp and Fernandez- 
Gimenez 2009; Kachergis et al. 2013), quantify only properties of states (Bestelmeyer 
et al. 2010; Miller et al. 2011), or quantify states and/or transitions (Jackson and 
Bartolome 2002; Czembor and Vesk 2009; Rumpff et al. 2011). Across all model 
types, however, there are a set of common elements that define an STM.

9.3.1  Define the “Site”

An STM should focus on the alternative states and dynamics of an environmentally 
uniform area (Peterson 1984). STMs focus on temporal dynamics, so inclusion of sig-
nificant ecosystem differences due to inherent differences in soil or climate confuses 
space and time and may lead to flawed interpretations. In rangelands and forests, ter-
restrial land units such as ecological sites or potential vegetation types approximate 
areas of environmental uniformity and can define the spatial extent of individual STMs 
(Bestelmeyer et al. 2003; Yospin et al. 2014). Attempts to define STMs at too fine a 
spatial scale, however, may result in an unwieldy number of STMs and make compari-
sons among environmental contexts difficult. For this reason, STMs can be developed 
at a relatively broad spatial extent, such as a landscape, and the effects of varying soil 
and climate context within the landscape can be described as a narrative for transitions. 
Grouping land areas according to “disturbance response groups” in the northwestern 
USA similarly seeks to produce more general STMs that sacrifice spatial precision for 
greater efficiency of development and use (T. K. Stringham, pers. comm.).
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9.3.2  Define the Alternative States

Each state that is possible for a site is described. In some instances, plant communi-
ties linked via transient dynamics are represented as “states” in the broad sense 
(Jackson and Bartolome 2002; Bagchi et al. 2012) and in other cases, alternative 
stable states in the narrow sense are emphasized and transient dynamics within 
states are described separately or ignored (Miller et al. 2011).

Descriptions of transient dynamics have been based on differences in species com-
position of plant communities that are relevant to management, such as grazing use or 
wildlife habitat value. Descriptions of alternative states tend to focus on the relationships 
of vegetation structure to the processes maintaining that structure, such as erosion, fire 
frequency, or nitrogen fixation (Petersen et al. 2009; Kachergis et al. 2011). Some STMs 
depict both alternative states and transient dynamics within states by using boxes for 
plant communities and separating certain communities using irreversible transitions 
across a threshold boundary, signifying a state transition (Oliva et al. 1998). US agencies 
developing STMs for Ecological Site Descriptions (see Sect. 9.4.3; Fig. 9.3) identify 

Fig. 9.3 An example of an STM developed for the Gravelly ecological site, including soils that are 
loamy-skeletal Haplocalcids and non-carbonatic Petrocalcids in the 200–250 mm precipitation zone 
of the Southern Desertic Basins, Plains, Mountains Major Land Resource Area (MLRA 42) of New 
Mexico and west Texas, USA. Following conventions used by US federal land management agen-
cies, rapidly reversible community phases are small boxes whereas states defined by important 
management and ecological thresholds are defined by large boxes. Each phase is characterized by 
foliar cover values for dominant or key plant species or functional groups that distinguish it from 
other phases. In the abbreviated narrative, T signifies an unintentional transition whereas R signifies 
a transition caused by restoration action (that can have unintended consequences)
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transient dynamics among communities within a state (called “community phases”) as 
smaller boxes connected by reversible arrows, that are nested within larger boxes repre-
senting alternative states (USDA Natural Resources Conservation Service 2014).

Each community or state is typically given a narrative to describe its character-
istics and, in some cases, the important ecosystem services it provides. Numerical 
values allow quantitative distinction of states (Fig. 9.3). It is useful to describe the 
management actions or natural processes that maintain or weaken the resilience of 
each state and the conditions characterizing low resilience (Standish et al. 2014). 
Alternative states may exhibit variations in resilience, such that undesirable shifts 
can be avoided (Briske et al. 2008) and opportunities for restoration toward desir-
able states can be exploited (Holmgren and Scheffer 2001).

9.3.3  Describe Transitions

Each transition, represented by arrows, is given a narrative. Transient dynamics are 
typically attributed to perturbations such as grazing or fire, rainy periods or droughts, 
or to succession. As described in Sect. 9.2.2 and Fig. 9.2, state transitions can be 
described using four basic elements. First, the mechanisms causing a shift among 
states are described, including external drivers or triggering events, changes in con-
trolling variables and feedbacks, and indicators of change based on controlling vari-
ables (e.g., evidence of soil erosion) or state variables (changes in plant composition). 
Timelines for transitions can be described, such as whether they are gradual or 
abrupt relative to management timeframes. Second, the constraints to recovery of 
the former state can be described (sometimes referred to as a threshold), including 
how altered feedbacks or environmental conditions preclude the appearance of 
some plant communities. Third, strategies for the reversal of transitions through 
restoration actions can be described. Fourth, context dependence in space (such as 
soils or climate) or time (such as weather conditions) that affects the likelihood of 
undesirable transitions or restoration success can be described.

9.4  Development and Applications of STMs in Rangeland 

Management

Although many STMs have been created, four countries have produced groups of 
STMs to support rangeland management. How these efforts originated and progressed 
(or didn’t progress) provide important lessons for future efforts. Below, authors famil-
iar with the history of STM development in Australia, Argentina, the United States, 
and Mongolia offer accounts representing a variety of global contexts.
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9.4.1  Australia2

9.4.1.1  History

Australia was an early adopter of STMs, particularly in their application to range-
land management. This early interest stems from two developments. First, Australian 
rangeland ecologists were at the forefront of considering how concepts of nonequi-
librium dynamics and thresholds were applicable to the management of arid range-
lands (Westoby 1980; Friedel 1991). Second, unlike the United States where formal 
monitoring of rangelands had been instituted based on the range condition and trend 
concept (Dyksterhuis 1949; Shiflet 1973), Australia had no single or dominant insti-
tutionalized model for rangeland monitoring and, consequently, a number of 
approaches were developed (e.g., Watson et al. 2007).

The absence of a widely accepted framework for describing plant community 
dynamics in Australia, coupled with the appeal of the state-and-transition format, 
led to keen interest from the rangeland research community. Adoption was particu-
larly rapid in tropical Australia where the research and management of tropical 
grazing lands was moving away from a long phase of pasture agronomy associated 
with the use of introduced species to one based on sustainable utilization of the 
largely intact, native savannas (Ash et al. 1994; Brown and Ash 1996). STMs pro-
vided an effective approach for describing the dynamics of many plant communities 
in tropical rangelands. This resulted in a special edition of the journal Tropical 
Grasslands on STMs (Taylor et al. 1994).

In addition to providing qualitative STMs for the major plant communities used 
for livestock production across northern Australia, the journal issue raised a number 
of concerns about the broader use of STMs in rangeland management. Major con-
cerns included strategies for communication using models and their role in manage-
ment; the ability (or inability) to define quantitatively both states and transitions for 
specific plant communities; and incorporation of spatial processes, such as water 
flow (Brown 1994; Grice and MacLeod 1994; Scanlan 1994). Shortly afterward, 
Watson et al. (1996) questioned the strong focus on event-driven processes and 
abrupt change and suggested that a model of more continuous, cumulative change 
was just as appropriate to describe vegetation dynamics in many systems. Further, 
they suggested an emphasis on the management of vegetation within an ecological 
state to either prime it for a desired transition or protect it from an undesired 
transition.

Acceptance of STMs was also evident in southern Australia, such as the original 
bladder saltbush model used by Westoby et al. (1989), as well as in arid rangelands, 
particularly where piosphere effects can lead to alternative vegetation states within 
a management unit (Hunt 1992). A strong interest from ecologists in the fragmented 
and remnant temperate woodlands drove further conceptual development of STMs, 

2 Primary authors are A. Ash and J. Brown.
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primarily in the context of restoration (Price and Morgan 2008; Hobbs and Suding 
2009; Rumpff et al. 2011).

9.4.1.2  Current Applications

The early interest in developing and applying STMs was not followed by a well- 
resourced or formal approach to embedding STMs in management of rangelands 
used for livestock grazing. STM development was carried out via research projects, 
or by informal approaches in land management or extension agencies, often driven 
by enterprising individuals, but rarely through systematic institutional initiatives.

One of the limitations in using STMs has been a robust approach to defining 
states and the thresholds between states. There is a lack of quantitative data for the 
majority of plant communities and descriptions of dynamics have tended to be qual-
itative. Moreover, defining and applying threshold concepts in practical manage-
ment can be problematic because of the potential misinterpretation of management 
needs (Bestelmeyer 2006). Thus, a quantitative basis for distinguishing state transi-
tions from transient dynamics is immensely important.

There were early efforts in Australia to describe transitions quantitatively using 
Markov models (Scanlan 1994). The use of Bayesian belief networks to better 
incorporate uncertainty and expert knowledge has provided an improved conceptual 
basis for defining states (Bashari et al. 2009) but to date has had limited application. 
Other approaches included simulation/scenario modeling based on historical rain-
fall, understory grassland growth, and utilization rates by livestock (Hill et al. 2005). 
While the simulation modeling approach has proved useful in research for under-
standing system dynamics, it has not translated well to practical application. Another 
approach to testing the applicability of the state transition concept is to monitor how 
frequently transitions are occurring. Watson and Novelly (2012) used an extensive, 
long-term monitoring dataset from Western Australia to determine how often pre-
defined thresholds were crossed. During a 17-year evaluation period 11 % of grass-
land sites and 1 % of shrubland sites were judged to have undergone a transition. 
More recently, a study in semiarid wetlands in Australia provided a robust approach 
for quantifying the causes of state transitions and using logistic models to generate 
future transition scenarios (Bino et al. 2015). While there has been a range of 
 quantitative approaches tested, a consistent, structured approach to defining and 
testing for state transitions is still lacking.

Following the initial interest in the STM approach and continued, sporadic devel-
opment of models for different plant communities (e.g., Phelps and Bosch 2002), 
there is little evidence that STMs have been formally incorporated into pastoral 
management in Australia, by either individual producers or by land management 
agencies (Watson and Novelly 2012). There is, however, anecdotal evidence that 
STMs have influenced how rangeland professionals communicate with land manag-
ers. One argument is that this “mindset change” is sufficient and that institutional-
izing a highly proscribed approach to STMs will stifle flexibility. However, this may 
be outweighed by the risk of not having a consistent, institutionalized approach to 
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vegetation management in an environment where there are declining resources and 
capacity in management agencies to proactively assist land managers.

Why has the development of STMs slowed in Australia while it has gained momen-
tum in other countries, most notably the USA? Australia lacks the critical mass of 
research and extension personnel to develop a comprehensive catalogue of STMs for 
plant communities at a spatial scale relevant to management. In addition, there is a 
paucity of robust information on the management-scale distribution of soil properties 
and accompanying plant community dynamics, exacerbated by the absence of a well-
supported and consistent national approach to field-based rangeland monitoring. 
While that deficiency is being overcome to some extent through a more coordinated 
national approach to synthesizing information on rangeland condition and trend 
(Bastin et al. 2009), Australia still lacks a widely applied, ecologically based site 
classification system such as “ecological sites” in the USA (Brown 2010) which 
underpins the development of spatially specific STMs.

The lack of formalized STMs does not mean that rangeland management is 
occurring in the absence of general principles and locally explicit guidelines. Many 
rangeland professionals working in land management agencies across Australia 
have been exposed to STMs and either implicitly or explicitly use STM concepts 
when engaging with producers. In addition, considerable effort has been expended 
on developing grazing land management education courses for producers, with the 
most visible example being in northern and central Australia (Quirk and McIvor 
2003). However, in an effort to simplify concepts of land condition and its interac-
tion with grazing management, STMs within these educational courses have been 
replaced by a simple four-level (A[best], B, C, D[worst]) land condition class 
scheme (e.g., Bartley et al. 2014). While this has been effective as a communication 
tool, it has tended to de-emphasize the importance of processes responsible for 
long-term vegetation change. For example, Bartley et al. (2014) showed that even 
with recommended grazing management practices over a 10 year period, the 
improvement from class “C” to “B” was proceeding very slowly. This might indi-
cate a state transition related to soil degradation and/or the presence of an exotic 
grass that was limiting native perennial grass re-establishment. The land condition 
classes cannot distinguish transient from state transition dynamics or capture the 
mechanisms involved.

Having been the leaders in the initial development of STMs, rangeland ecolo-
gists and land administrators in Australia should consider how development of 
STMs has progressed elsewhere in the world to see what innovations in application 
might be relevant to Australia. Recent approaches provide useful frameworks for 
incorporating STMs into practical management (Bestelmeyer et al. 2009b; Suding 
and Hobbs 2009). These frameworks go well beyond the development of STMs 
themselves to include aspects of empirical data to support development of STMs, 
monitoring protocols, and adaptive management. Ultimately, success will be judged 
by the utility and relevance of STMs to rangeland managers.
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9.4.2  Argentina3

9.4.2.1  History

Interest in STMs began in the early 1990s following the publication of the seminal 
paper by Westoby et al. (1989). STMs were motivated in large part by the need for a 
new framework to describe plant community dynamics. A series of STMs developed 
for the arid Patagonian region were the earliest examples (Paruelo et al. 1993). Models 
for arid environments usually involved the effects of grazing, initially causing a loss 
of palatable grass species but eventually causing a reduction in total grass cover 
associated with increasing bare soil and erosion rates. Following these models, a 
decline in plant cover results in a reduction of soil water holding capacity and plant 
production, causing a feedback to water and wind erosion that further inhibits reestab-
lishment of grass species (Cesa and Paruelo 2011) (Chap. 3, this volume). State transi-
tions were regarded as irreversible or difficult to reverse. This sequence corresponds 
to most STMs developed for the Patagonian steppe in Paruelo et al. (1993).

STMs were developed for more humid environments later in the 1990s, includ-
ing montane grasslands (Barrera and Frangi 1997; Pucheta et al. 1997), Pampean 
grasslands (Aguilera et al. 1998; Laterra et al. 1998; León and Burkart 1998), and 
herbaceous vegetation of the Caldenal/Espinal ecoregion (Llorens 1995). These 
STMs emphasized changes in species composition rather than large decreases in 
total plant cover. In these models, grazing did not produce noticeable changes in soil 
physical properties through erosion as observed in the Patagonian region because 
total plant cover is usually not greatly reduced by grazing.

A third type of STM described state transitions in “mallines,” a local name for 
meadows with high productivity and biodiversity within the Patagonian steppe, and 
which are an important source of forage for livestock (Paruelo et al. 1993). 
Overgrazing and trampling by livestock in mallines produces a transition to an alter-
native state due to the loss of plant cover that promotes increased runoff and/or soil 
salinization. Increased runoff and erosion result in gully formation. Consequently, 
altered hydrology causes a shift in plant communities. Similar hydrologically based 
state transitions are observed in alluvial floodplains of the Chaco region (Menghi 
and Herrera 1998).

In contrast to early expectations, these STMs had little impact on science and 
management in Argentina. Exploring the reasons why interest and activity waned 
may provide insights for improving the usefulness of the STM framework in 
Argentina and elsewhere. First, STMs developed in the 1990s did not feature ade-
quate detail. STMs described drivers associated with transitions but provided little 
description on processes and mechanisms controlled by the drivers. Narratives did 
not contain information on thresholds and processes controlling the functions of 
alternative states (i.e., feedbacks). Transitions identified in these models were rarely 

3 Primary authors are D. Lopez and R. Peinetti.
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experimentally tested (López 2011). Most models were superficial representations 
of community dynamics that did not provide useful predictions.

Second, STMs were used to synthesize general regional information on ecosys-
tem dynamics but lacked the site specificity needed for practical applications. They 
contained few recommendations on management practices or restoration actions to 
reverse undesirable transitions. Similar to Australia, the lack of a land classification 
system tied to STMs such as ecological sites (Bestelmeyer et al. 2009b) led to con-
fusion about the spatial domain to which a particular model applied.

Third, important types of state change were simply not addressed by existing 
models. Tree and shrub encroachment and “thicketization” of woody plants repre-
sents one of the most important kinds of state change occurring in several ecosys-
tems in the central and northern parts of the country (Brown et al. 2006). The 
thicketization of forests and grasslands has received a great deal of attention in basic 
and applied sciences (e.g., Dussart et al. 1998), including information about 
management practices, but there have been very few cases in which this understand-
ing was incorporated in STMs.

Finally, there have been few incentives for scientists to expand development of 
STMs. Modern Argentinean ecological science, as directed by funding and reward 
systems over the last few decades, has been focused on short-term studies that yield 
rapid publication and career advancement (Farji-Brener and Ruggiero 2010). In this 
environment, there was little incentive for integration across different case studies at 
a regional level or long-term studies to support STM development.

9.4.2.2  Current Applications

There is a substantial demand from society for responsible natural resource man-
agement, in part due to the alarming deforestation rates of the last 10–15 years in the 
semiarid and humid forests of Argentina (Gasparri et al. 2013). Societal demand for 
rational management forced the establishment of new federal regulations on the use 
of natural resources. To apply these regulations, policymakers have recognized that 
a new suite of management decision tools and a basis for assessment and monitor-
ing are required, leading to a renewed interest in STMs manifest in the recent 
Argentinean Rangeland Congress in 2013  (http://inta.gob.ar/documentos/jornadas-
taller-post-congreso-argentino-mercosur-de-pastizales-cap2013). At this meeting, 
there was general consensus among participants that STMs associated with ecologi-
cal site concepts should be explored as an option to organize the available informa-
tion under a common framework for both rangelands and forests. A research network 
was proposed. It is hoped that this network will serve as a platform for interactions 
between different research groups and thereby stimulate the production of system-
atically structured STMs and ecological site classifications across the nation. As yet, 
funding the network and motivating coordination among researchers via a network 
remains a significant challenge.
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9.4.3  United States4

9.4.3.1  History

The official adoption of STMs in 1997 as a component of land evaluation can be 
considered a paradigm shift in US rangeland science. Clementsian, or succession- 
based, concepts of community dynamics originating in the early twentieth century 
provided acceptable explanations for observed vegetation changes in rangelands, 
particularly in response to livestock grazing. Succession concepts embodied in the 
“range succession” or “range condition” model (Westoby 1980; Joyce 1993) worked 
fairly well in highly resilient prairie ecosystems where much of the grazing livestock 
and conservation efforts were concentrated. Even leading proponents of the range 
condition model (Dyksterhuis 1958; Passey and Hugie 1962), however, noted that 
the scope of this model was limited to forage for domestic livestock and climax 
plant communities dominated by perennial, herbaceous species.

In spite of these caveats, use of the range condition model spread throughout US 
rangelands and was linked to evaluation procedures and financial and technical 
assistance from federal land management agencies. A relatively well-trained and 
mature workforce able to detect discrepancies between model predictions and actual 
conditions, and make ad hoc adjustments to management prescriptions (Shiflet 
1973), created a sense of complacency among adherents (Joyce 1993). Strong con-
nections among universities, agencies, and managers strengthened the ability of the 
rangeland profession to adapt to these inconsistencies (Svejcar and Brown 1991). 
However, as the application of the range condition concepts spread into diverse 
rangeland settings, such as those experiencing long-term shrub encroachment, sig-
nificant limitations in model application became apparent.

As the applicability of the range condition model began to be questioned, theo-
retical ecologists were developing alternatives to the Clementsian model to explain 
how ecosystems, and specifically rangelands, behave (Holling 1973; May 1977). 
The multiple stable state model was less deterministic than the range condition 
model and multiple trajectories were possible, better matching observations of 
rangeland change. Soon afterward in the 1980s, concern about the appropriateness 
of range condition as a universal metric of rangeland function surfaced within US 
land management agencies. The inability to link non-forage values to the range 
condition model was now recognized as a major limitation of assessment proce-
dures (Society for Range Management 1983). By the end of the decade, there was 
widespread dissatisfaction with the application of the range condition model to all 
rangeland ecosystems (Lauenroth and Laycock 1989; Pieper and Beck 1990).

In this context, the impact of the first publication on STMs (Westoby et al. 1989) 
was rapid and substantial. Following this paper, there was a flurry of experimental 
and review papers exploring the application of STMs to particular rangeland eco-
systems, both within and outside of the USA. Federal land management agencies 

4 Primary authors are J. Brown and P. Shaver.
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undertook extensive reviews of the use of the range condition model as a basis for 
technical and financial assistance versus implementation of an STM-based approach, 
culminating in publications by the US National Research Council (National 
Research Council 1994) and the Society for Range Management (Task Group on 
Unity in Concepts and Terminology Committee Members 1995). The two reviews 
called for standardization of rangeland evaluation approaches and replacement of 
the range condition model with a model that could account for multiple stable states. 
Different plant communities could have distinct values to society and call for differ-
ent management approaches, but a primary focus was to preserve “site potential”—
the option to sustain desired plant communities and services—by avoiding 
accelerated soil erosion.

These two reviews were catalysts for adoption of STM concepts by natural 
resource agencies. Beginning in late 1990s, STMs began to be developed and used 
by rangeland specialists, primarily those associated with USDA Natural Resource 
Conservation Service (NRCS), for communication with ranchers about manage-
ment needs and to provide guidance in administering federal financial assistance. 
The policy implications of the latter led to a systematic approach to STM develop-
ment within NRCS. Widespread development of STMs, however, was delayed 
because they had to be linked to “ecological site descriptions” (ESDs; formerly 
called “range site descriptions”). ESDs are documents that had long served as the 
site-specific basis for management recommendations by federal land management 
agencies. ESDs are linked to soil survey databases through the connection of eco-
logical sites to soil maps maintained by the NRCS. Application of the range condi-
tion model via ESDs involved the calculation of plant community similarity between 
an observed and a single, historical climax plant community identified for each 
ecological site (Dyksterhuis 1949). In order for the rangeland condition model to be 
replaced, thousands of STMs would have to be developed for ecological sites across 
the USA, each requiring the description of multiple plant communities.

9.4.3.2  Current Applications

Acceleration of STM development represents a major logistical challenge because 
of the large number of STMs needed, particularly in the eastern half of the 
USA. Added to these logistical concerns, there has been a lack of clear institutional 
guidance on how to structure STMs that were developed in the late 1990s and early 
2000s. Few agency employees have been dedicated to ESD and STM development, 
and in some locations, contracts were awarded to private enterprises to work on 
STMs. In most locations, however, STM development was an added duty for exist-
ing federal agency staff. Much of this work, although creative, lacked coordination. 
In some cases, transitions featuring overwhelming indicators of persistence were 
presented as transient dynamics following the range condition model. In other sys-
tems that feature transient behavior, community variations were presented as alter-
native stable states. The resulting inaccuracies in some STMs have elicited criticism 
of how they are produced (Twidwell et al. 2013a).
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In spite of these problems, STMs have gained greater visibility and are increas-
ingly viewed as useful tools for communicating research and management recom-
mendations. New definitions of STM components, scale considerations, and a 
greater variety of ecosystem attributes linked to STMs (Briske et al. 2008; 
Bestelmeyer et al. 2010; Holmes and Miller 2010) have emerged. Systematic 
approaches to the development, evaluation, and refinement of STMs (Bestelmeyer 
et al. 2009b; Bestelmeyer and Brown 2010), informed by the successes and limita-
tions of early model development efforts, have been incorporated in recent US gov-
ernment guidelines (Caudle et al. 2013; USDA Natural Resources Conservation 
Service 2014). These comprehensive guidelines address priority setting, resource 
allocation, and progress reporting. They also incorporate recent scientific literature, 
diverse agency policies, and user needs. Nonetheless, significant challenges remain, 
particularly (1) funding and expertise required to accelerate STM development and 
deliver STMs to the public, (2) inclusion of information pertaining to ecosystem 
services other than livestock production, such as climate change mitigation and 
adaptation, hydrology, and species of conservation concern, (3) how to make STM 
development more participatory and inclusive to support adaptive management, and 
(4) how to address the impending effects of climate change in models developed 
with a high degree of spatial specificity (Knapp et al. 2011b; Twidwell et al. 2013a). 
Current NRCS and interagency efforts are focused on these concerns.

9.4.4  Mongolia5

9.4.4.1  History

Mongolia is dominated by rangelands, and livestock production is a critical compo-
nent of the national economy and cultural traditions. Nonetheless, Mongolia never 
adopted well-defined or universally accepted rangeland evaluation concepts or pro-
cedures. The shift from a nomadic or transhumant, subsistence herding system into 
a market economy in 1993 led to dramatic increases in livestock numbers and loss 
of herder mobility (Fernández-Giménez 2002). The perception of widespread 
rangeland degradation associated with overgrazing (Bruegger et al. 2014; Hilker 
et al. 2014) motivated interest in rangeland evaluation and monitoring procedures. 
A systematic approach was needed because assertions about rangeland degradation 
have been challenged within the Mongolian government and the broader academic 
community (Addison et al. 2012), creating conflict about the need for interventions 
to reduce stocking rates versus calls by some officials to encourage larger livestock 
numbers. Beginning in 2004, Green Gold Mongolia (GG), a project funded by the 
Swiss Agency for Development and Cooperation, initiated efforts to build a national 
capacity for reporting on the present state and future trend of Mongolian 
rangelands. In addition, GG sought to develop tools to facilitate rangeland 

5 Primary authors are B. Densambuu and B. Bestelmeyer.
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management at local, regional, and national levels. Following exposure to the con-
cept of ESD- based STMs from US scientists and land managers in the mid-2000s, 
GG and its government partners undertook an effort to develop ESDs for Mongolia.

9.4.4.2  Current Applications

In many ways, the relatively recent Mongolian experience with STMs takes advan-
tage of what was learned in the early development efforts of Australia, Argentina, 
and the USA. STM development began in concert in 2008 with the development of 
a standard methodology for vegetation measurement, based on procedures used by 
US government agencies (Herrick et al. 2005). These procedures were officially 
adopted by the Mongolian government in 2011. In addition to providing a sound 
basis for reporting trends in rangeland vegetation, adoption of a unified measure-
ment method ensured that cover and production values reported in STMs were com-
parable to monitoring data produced by the National Agency for Meteorology and 
Environmental Monitoring (NAMEM). Training for a GG research team on meth-
ods to develop STMs and database management began in the USA in early 2009, 
followed by data collection co-occurring with training in Mongolia from 2009 to 
2014. Following recommendations adopted by US agencies (Bestelmeyer et al. 
2009b; Knapp et al. 2011a; USDA Natural Resources Conservation Service 2014), 
inventory of vegetation and soils was conducted at over 600 sites across Mongolia, 
coupled to workshops aimed at eliciting local knowledge about reference condi-
tions, the presumed causes of vegetation change, and to identify informative sites 
for inventory. These data are the basis for STMs that were included as a report for 
the Mongolian government in 2015 (https://www.eda.admin.ch/content/dam/coun-
tries/countries-content/mongolia/en/Mongolia-Rangeland-health-Report_EN.pdf).

A National Ecological Site Core Group was established in 2011 composed of 
experienced plant community ecologists representing different ecoregions across 
Mongolia as well as decision-makers of key institutes able to develop shared inter-
pretations of inventory data. The National Core group (1) reviews published materi-
als to establish reference conditions and causes of state change, (2) works in close 
collaboration with the GG research team in developing STMs, and (3) performs 
outreach to encourage adoption of materials by local government and herder 
cooperatives.

Because of the magnitude of the project, the limited budget, and the need for 
landscape-level information matched to herding and transhumance patterns, the deci-
sion was made to produce broad-level concepts for ecological sites based primarily 
on landforms and large differences in soil texture or hydrology. These classes, called 
Ecological Site Groups (ESG), combine finer-level soil classes that are equivalent to 
ecological sites in the USA (e.g., Moseley et al. 2010). STMs are developed for each 
ESG, resulting in 3–5 STMs per ecoregion and 25 total STMs for Mongolia (http://
jornada.nmsu.edu/files/STM_Mongolian-catalogue- revised_2015.pdf). Because 
vegetation dynamics do not differ strongly across ecological sites within an ESG, 
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the general models are deemed adequate for evaluation and management 
recommendations.

The specification of rangeland management strategies to maintain or recover 
perennial grasses is a primary objective of the STM development effort. In most of 
the sites sampled, the presence of well-distributed, remnant perennial grasses sug-
gests that plant community recovery could occur in a few years to several decades 
with changes to grazing management (Khishigbayar et al. 2015). Thus, STMs are 
being designed to contain detailed information about recommended stocking rates 
and grazing deferment periods, tailored to the objectives of either maintaining a 
state or recovering a former state. Recommendations and expectations are linked to 
specific vegetation cover indicators that can be monitored.

In addition to their use as rangeland management guides by local governments 
and herder groups, STMs are being embedded in the activities of two government 
agencies. NAMEM has responsibility for monitoring 1550 plots across Mongolia to 
report on national rangeland trends. A lack of information about reference condi-
tions and trends in monitoring data has precluded clear statements about rangeland 
health. Based on STMs drafted for most common rangeland communities in differ-
ent ecoregions of Mongolia, NAMEM was able to conclude, preliminarily, that 
Mongolian rangeland communities are in general altered from historical reference 
states but that relatively rapid recovery was possible in the majority of cases.

STMs can provide a link between monitoring interpretations and management 
recommendations at the local level. The Agency for Land Affairs, Geodesy and 
Cartography (ALAGAC) is responsible for land management planning and its 
implementation nationally. STM concepts are being integrated into participatory 
rangeland management plans in several pilot areas. These pilot programs will pro-
vide a test of the value of the information content of STMs and therefore how they 
should be refined. As of 2015, expectations are high. Herder groups are using maps 
based on STMs (including information about recent forage availability and desired 
community change) to plan grazing and resting periods. It is encouraging that STMs 
are being used as a basis for such specific management actions.

9.4.5  Summary of STM Applications

The cases described above suggest that major efforts to develop STMs have taken 
different trajectories following the introduction of the concept in 1989. In Australia 
and Argentina, initial enthusiasm and progress was not sustained due to limitations 
in the data available to develop STMs, the dearth of land classification systems as a 
basis for STMs, and lack of resources and incentives for scientists and managers. In 
the USA, these limitations were overcome to varying degrees by the linkage of 
STMs to rangeland evaluation systems and financial assistance programs supported 
by government agencies. The vast scientific and administrative infrastructure pro-
vided by well-funded US government agencies has supported the nationwide devel-
opment of numerous STMs. While this strategy has dramatically accelerated STM 
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development compared to Australia and Argentina, it also introduced logistical dif-
ficulties associated with managing such a large number of STMs.

The Mongolian effort takes advantage of recent advances and lessons learned. 
STM development there was motivated by national concerns over rangeland degra-
dation that attracted international development support. A dedicated team of scien-
tists worked with government agencies to develop a relatively simple land 
classification system as a basis for STMs and employed a broadly collaborative 
approach to develop STMs. Furthermore, the STMs and related educational materi-
als were purpose-built for collaborative rangeland management at broad spatial 
scales characteristic of transhumant and nomadic grazing systems of the country. 
The Mongolian experience may provide a useful model for STM development 
efforts for many parts of the world.

9.5  Knowledge Gaps6

The limitations to STM use highlighted above and recent evaluations of STMs in 
the USA (Knapp et al. 2011b; Twidwell et al. 2013a) suggest several overarching 
challenges that must be addressed in order to develop more useful STMs and better 
employ them for management. Below, we describe the main challenges and strate-
gies for responding to them.

9.5.1  Reference States, History, and Novel Ecosystems

STMs, such as those used in the USA and Mongolia, often define a reference state that 
represents historical or a “healthy” set of ecosystem conditions for society, such that a 
primary goal of management is to maintain the reference state or to restore it (Fulé 
et al. 1997; Stoddard et al. 2006). Reference states are usually ascertained using his-
torical information or measurements gathered in areas that have not been transformed 
relative to historical conditions. In many ecosystems, the societal significance and 
desirability of the reference state is straightforward when that state is well known and 
when it supports a set of ecosystem services valued by stakeholders.

In other cases, however, there can be difficulties in identifying a meaningful 
reference state. Historical conditions may be poorly understood, such that there is 
controversy about the plant communities present and the nature of disturbance 
regimes (Whipple et al. 2011; Lanner 2012). This may be especially problematic for 
plant and animal species that rely on a variety of states (Fuhlendorf et al. 2012). For 
example, a persistent, low plant cover state associated with prairie dog disturbance 
is necessary to support some native bird species in shortgrass steppe ecosystems 
(Augustine and Derner 2012). Thus, areas that may appear degraded to some 

6 Primary author is B. Bestelmeyer.
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observers, and with respect to some ecosystem functions, may support biodiversity 
and valued species.

Furthermore, the recent concept of “novel ecosystems” acknowledges that it may 
not be practical to target a historical state as a management goal if the likelihood for 
restoration success is low or the costs high (Hobbs et al. 2009) (Chap. 13, this vol-
ume). In such cases, the costs of restoration should be evaluated relative to the 
ecosystem services provided by different states (Belnap et al. 2012). In some cases, 
it may be preferable to manage for alternative states. For some scientists, however, 
evaluations based on ecosystem services rather than historical fidelity are contro-
versial (Doak et al. 2014).

The designation of reference conditions should be based on a broadly collabora-
tive process and take into consideration several factors including history (both recent 
and evolutionary), the physical processes affecting potential plant communities (cli-
mate, soils, and topography), a recognition of specific time scales for disturbance and 
other processes, practicality of use, and the variety of ecosystem services of interest 
in particular ecosystems. Similarly, management objectives should be defined in a 
circumspect and collaborative manner. Managing toward reference conditions may 
be preferred in some locations, while managing for alternative states may be useful 
in others.

9.5.2  Broader Representation of Ecosystem Services

Given that STMs are principally used for communication with particular sets of man-
agers, grazing managers for example, they often emphasize a relatively narrow set of 
ecosystem services (Twidwell et al. 2013a) (Chap. 14, this volume). Minimal recogni-
tion of other ecosystem services, including biodiversity and the regulation of water 
supply, will limit the utility of such STMs for other users. Quantitative interpretations 
about the different ecosystem services provided by ecological states could be added to 
STMs (Brown and MacLeod 2011; Koniak et al. 2011). Such information could be 
used to evaluate the financial costs of restoring a historical state against the change in 
benefits relative to the current state. Similarly, trade-offs among ecosystem services 
associated with transitions between states can be communicated in terms of specific 
variables such as forage provision, species losses, and changes to groundwater 
recharge rates. As noted above, such exercises may reveal that states considered to be 
degraded by some observers offer important ecosystem services to others (Mascaro 
et al. 2012). They may also clarify the trade-offs between specific services, such as 
forage production vs. biodiversity (Fuhlendorf et al. 2012).

Although it is useful to communicate about states in terms of ecosystem services, 
it is prudent to acknowledge our limited ability to comprehensively measure all of 
them effectively. Certain attributes of reference states will be overlooked if they are 
not adequately measured, especially the biodiversity of organisms that are not the 
focus of management (Bullock et al. 2011; Reyers et al. 2012). Historical states will 
continue to be valued for this reason.
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9.5.3  Climate Change

STMs often implicitly assume that long-term climate properties and potential veg-
etation are stable (i.e., stationarity). This assumption leads to an emphasis on recent 
history in designating alternative states (Twidwell et al. 2013a) (Chap. 7, this vol-
ume). Given that climate change is likely to cause directional changes in environ-
mental conditions, plant community responses to management observed in the 
recent past may become less informative in the future. At present, however, fore-
casts of climate change effects on vegetation, especially at the resolution of STMs, 
are not well developed (Settele et al. 2014). STMs could benefit from linkages to 
species distribution models (Bradley 2010) and models examining the role of soil 
profile properties in mediating water availability (Zhang 2005). Narratives high-
lighting the consequences of recent extreme events, such as the tree die-off during 
an extreme drought in the southwestern USA (Breshears et al. 2005), could be read-
ily included in STMs. Particularly in arid rangelands, management strategies aimed 
at promoting resilience to known extreme events (especially water deficits) would 
be similar to strategies implemented to adapt to climate change, at least over the 
next decade or two (Ash et al. 2012).

9.5.4  Testable Mechanisms

The inclusion of sufficient detail on mechanisms of vegetation change has been a 
primary limitation of STMs (Knapp et al. 2011b; Svejcar et al. 2014, Sect. 9.4). For 
example, transitions in some grassland STMs are sometimes ascribed only to the 
driver (e.g., continuous heavy grazing) without more detailed analysis of the mecha-
nisms by which transitions occur. Information on plant demography (plant death, lack 
of recruitment), the timeframe for transitions (1 year or several decades), specific 
indicators of the risk of transition (reduced reproduction rates, indications of erosion), 
and the management strategies used to prevent transitions given the processes (proper 
timing of defoliation to permit successful reproduction during favorable years) are 
often not described in STMs. Richness of detail may be lacking because (1) the infor-
mation is believed to be too complicated to include and therefore best left to direct 
interactions between managers and extension specialists; (2) simple lack of effort on 
the part of model developers; or (3) a lack of detailed knowledge.

These reasons notwithstanding, model developers should strive to include details 
in a systematic way (e.g., Sect. 9.3; the Caldenal STM at http://jornada.nmsu.edu/
esd/international/argentina) in order for STMs to be used and, more importantly, be 
tested and improved via adaptive management (Briske et al. 2008; Bestelmeyer 
et al. 2010) (Chap. 9, this volume). Even when the specific mechanisms of state 
transitions (or resilience of a state) are not well understood, they can be postulated 
by blending local knowledge with the rich body of work in ecological science 
(Kachergis et al. 2013). This can be aided by the development of general STMs at 
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the level of broad ecosystem types that can be refined, if needed, to finer-grained 
land units such as ecological sites. Analysis of historical treatments and new moni-
toring data can then be used to revisit the hypotheses. For example, shrub-domi-
nated coppice dune states of sandy soils in the Chihuahuan Desert were believed to 
resist widespread perennial grass recovery based on historical observations and the 
notion that high erosion rates precluded grass establishment. An unusual sequence 
of years with high precipitation, and other poorly understood factors, led to a flush 
of grass recruitment that was unexpected (Peters et al. 2012). The STM for this 
system has been modified to include this new information. In this way, STMs can be 
regarded as theoretical constructs that synthesize what is known, use that knowl-
edge to generate management hypotheses, and are updated as new knowledge is 
acquired.

9.5.5  Information Delivery and Use

If STMs are to be used as tools for long-term environmental stewardship, then the 
information presented in STMs must be accessible to land managers and/or become 
integrated in outreach and management activities. Developing and conveying the 
information in STMs to users such that they can guide management decisions is a 
multifaceted problem that should be carefully considered by the institutions devel-
oping STMs (and see Sect. 9.4). General approaches to information transfer include 
(1) collaborative development of STMs that include the managers who will use 
them (see Sect. 9.6.1; Knapp et al. 2011a), (2) initiation of collaborative adaptive 
management projects at the scale of landscapes that include STM development and 
use as key components (Bestelmeyer and Briske 2012), (3) the use of web-based 
technologies and mobile devices to link users to STMs pertaining to specific locali-
ties (Herrick et al. 2013), and (4) the distillation of STM information into simple 
presentation materials (such as pictorial field guides, web-based materials) and the 
use of field-based workshops to enable understanding of these materials. The use of 
STMs for management will require concerted efforts by scientists, government 
agencies, educators, and technical experts and cannot be limited to the production 
of reports, publications, and associated databases by a handful of managers and 
ecologists.

9.6  Future Perspectives

Three emerging approaches are currently transforming how STMs are developed 
and used, including participatory development of STMs with stakeholders as part of 
community-based management approaches, structured decision-making via STMs, 
and the use of digital mapping approaches to provide spatially explicit information 
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on ecological states. Here we summarize the current status and future goals of these 
three approaches.

9.6.1  Participatory Approaches to Model Development7

Participatory and collaborative STM development approaches emerged for two 
practical reasons. First, available field data rarely cover the landscape adequately at 
a sufficiently fine resolution, or over timescales sufficient to detect transitions and 
calculate their probabilities. Key types and combinations of management and envi-
ronmental drivers often are not represented in the available data. Second, models 
based solely on the knowledge of individual scientists or land management profes-
sionals may rely too heavily on a single person’s observations and experiences, 
which can result in biases similar to using monitoring data from only a few loca-
tions on a landscape or points in time. These limitations suggest that a more inclu-
sive and participatory approach that integrates multiple knowledge sources may be 
a pragmatic solution to the challenges inherent in STM development (Kachergis 
et al. 2013) (Chap. 11, this volume).

Perhaps even more important, participatory approaches will increase the utility, 
credibility, and use of STMs by managers. Recent surveys have shown that many 
ranchers and natural resource professionals have little knowledge or experience 
with STMs when they are available (Kelley 2010). Engaging these potential “end- 
users” of STMs in the process of developing the models increases STM awareness 
and acceptance, and thus the likelihood that the models will be used to guide and 
refine management. An acknowledged limitation of many existing STMs is a focus 
on a narrow set of ecological attributes and management practices to characterize 
states and transitions, and a limited suite of management interpretations emphasiz-
ing livestock production (Sect. 9.5.2; Knapp et al. 2011b). If STMs are to represent 
multiple ecosystem values and services, and not just changes in vegetation compo-
sition and production for a single or narrow range of uses (e.g., forage production), 
then multiple disciplines and perspectives are needed.

Participatory or collaborative STM development has taken a variety of forms. 
The most familiar in the USA is the “technical team,” an interdisciplinary collabora-
tion of specialists (e.g., rangeland ecology, soils, hydrology, fire, wildlife, geo-
graphic information systems, and cultural resources), often involving several natural 
resources agencies and academic experts, convened to develop STMs for a particu-
lar area. In some areas, such technical teams have been expanded to include land-
owners or ranchers (Johanson and Fernandez-Gimenez 2015). Collaborative STM 
development usually takes place over a period of months to a few years and may 
involve multiple meetings and field trips. The “model development workshop” is 
another type of participatory approach in which a multi-stakeholder group with 
diverse knowledge and interests in a particular ecological site or set of sites is 

7 Primary authors are M. Fernandez-Gimenez and J. Johanson.
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brought together for a single workshop or series of workshops to develop or refine 
STMs (Knapp et al. 2011a). Such workshops often have an explicit aim to include 
the local knowledge of long-time residents in an area as well as professional and 
scientific knowledge. Kachergis et al. (2013) proposed a hybrid approach that 
involves a diverse set of stakeholders and a combination of literature review, work-
shops, and field sampling. When it is not possible or practical to bring diverse stake-
holders together in one location, or when knowledge documentation is an objective, 
interviews or surveys with stakeholders can provide a means of recording valuable 
information that can inform model development (Knapp et al. 2010; Runge 2011).

There is no one best way to facilitate a collaborative or participatory STM devel-
opment process, but several groups with experience using different collaborative 
approaches have described the processes that have worked for them (Knapp et al. 
2011a; Kachergis et al. 2013; T. K. Stringham, pers. comm.). The process outlined 
by T. K. Stringham (pers. comm.), which follows the expanded technical team 
model, focuses on assembling a core team of highly experienced and committed 
disciplinary experts and inviting participation from a broader group of agency 
specialists. The workshop model (Knapp et al. 2011a) and integrated literature, 
workshop, and field sampling approach (Kachergis et al. 2013) draw from a wider 
array of stakeholders and emphasize the value of including long-term residents and 
those whose knowledge is derived from land-based livelihoods. All three of these 
processes begin with a draft graphical model that serves as the basis for initial dis-
cussions and feedback from the group.

Johanson and Fernandez-Gimenez (2015) drew on these experiences together 
with those of participants in 16 collaborative ESD and STM development projects 
in the USA to identify common outcomes, challenges, and keys to success. Most 
efforts were successful in producing an STM or portion of an ESD. Additional out-
puts included publications, applications of the models to management, workshops, 
and databases. Many benefits beyond these tangible outputs were also identified, 
such as improved working relationships and communication among participants 
from different organizations, decreased conflict, increased efficiency of STM devel-
opment, greater use of STMs, and improved data credibility.

Participatory processes are never without challenges. The most frequently cited 
concerns were related to the quality, diversity, management, and analysis of avail-
able data. Reconciling different concepts for classifying ecosystems and their 
dynamics and agreeing on goals for STM development efforts were common chal-
lenges in expanded collaborations. Time and funding constraints and recruitment/
retention of participants were additional obstacles. Because many natural resource 
professionals are unfamiliar with ESDs and STMs, key concepts must be taught to 
all participants and reinforced with additional teaching throughout the process. 
Similarly, when working with nontechnical stakeholders, care must be taken to 
define key terms in a clear and accessible manner and to provide an introduction to 
STM concepts and applications. Although some professionals express skepticism 
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about the accessibility of STMs to nonprofessionals (Knapp et al. 2011b), we have 
found that most people readily grasp these concepts, especially once they are 
engaged in the process of model development.

The keys to successful participatory STM development are similar to those 
for any participatory natural resource management effort (Wondolleck and 
Yaffee 2000; Daniels and Walker 2001). First, involve the right people at the 
right time. Make sure that the needed expertise is present, particularly experi-
enced specialists in soils and rangeland ecology, but also hydrology, fire, wild-
life, geographic information systems, and cultural resources. When integrating 
local knowledge is an important objective, seek diversity and depth of experi-
ence in local knowledge holders. Community referrals are often an effective 
way to identify knowledgeable residents (Knapp and Fernandez-Gimenez 2009; 
Knapp et al. 2010).

Second, it is important to maintain clear and open communication, a willingness 
to learn from others, and focus on mutually beneficial outcomes. In multiagency 
collaborations, conflicts can arise over the differing mandates and procedures of 
different agencies. When multiple stakeholders are involved, careful facilitation is 
required to balance power dynamics and ensure that the contributions of all partici-
pants are respected. Clear ground rules should be established regarding the criteria 
for including states and transitions and how potentially conflicting views of 
ecosystem dynamics will be handled and represented in the model. In multi-stake-
holder STM workshops, the level of agreement among participants about each state 
and transition can be explicitly documented and used to identify uncertainties to test 
through targeted field sampling or adaptive management experiments (Knapp et al. 
2011a; Kachergis et al. 2013). This leads to more efficient use of limited field sam-
pling resources.

Third, support from management within participating agencies is critical. If 
administrators do not value collaboration and support their staff in participating in 
such efforts, it is very difficult to sustain the level of participation and commitment 
needed for success. Fourth, many participants reported that joint field visits were 
key to successful collaborative STM development. Discussing conditions observed 
in specific areas can help resolve misunderstandings and elicit new sources of infor-
mation. Fifth, because many of the challenges identified relate to data collection, 
management, and analysis, it is important to discuss and agree upon responsibilities 
and protocols for these activities up front. Often the university or research partners 
in STM collaborations take the lead on data analysis. However, we strongly encour-
age groups to invite broad participation in data analysis and especially in data inter-
pretation. We also recommend formal data sharing and use agreements to facilitate 
information sharing and protect confidentiality where needed.

Reported participant experiences suggest that collaboration is a good investment 
that increases the efficiency of STM development. It requires significant human, 
financial, and time resources, but yields both tangible and intangible benefits that 
participants perceive to increase the quality, credibility, and utility of STMs.
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9.6.2  Structured Decision-Making via State and Transition 

Models8

In this section, we ask: can STMs be used in a more systematic way to prioritize 
management objectives and to efficiently allocate management funds? Below we 
discuss why managers may benefit from integrating STMs into a structured decision- 
making process, and developing STMs such that they enable quantitative predic-
tions of management outcomes.

Ecosystem management decisions are invariably complex. There may be a lack 
of understanding about the processes underlying a specific problem. Alternatively, 
there may be multiple and potentially competing objectives for management, which 
may not be readily apparent, but which should be determined before developing the 
model. For instance, when faced with an imperative to both manage for a certain 
plant community and protect a threatened species, it may be that the habitat for that 
species does not correspond to the desired vegetation state. In addition, it may be 
that an objective to minimize costs is at odds with the funds required to restore a 
community to the desired state. Stakeholders will not value all of these objectives in 
the same way, but it is the role of the decision-maker to evaluate these trade-offs. 
Last, there may be multiple potential alternative management strategies, but high 
uncertainty and disagreement about ecosystem responses to management. For the 
decision-maker, choosing the best course of action to help achieve the specified 
objectives can be extremely difficult (Runge 2011; Gregory et al. 2012).

Many of these problems can be addressed by using a systematic approach to the 
decision-making process. The term “structured decision-making” broadly refers to 
a framework that incorporates a logical sequence of steps to help decision-makers 
(1) define their decision context; (2) identify measurable objectives; (3) formulate 
alternative management strategies; (4) explore the consequences of those alterna-
tives in relation to the specified objectives; and, if necessary (5) make trade-offs 
among objectives (Gregory et al. 2012). The framework utilizes a broad suite of 
decision-analysis tools that can aid transparent and logical decision-making 
(Addison et al. 2013). Despite the multitude of tools and methods that may be 
applied, the basic premise is a framework that is driven by the objectives, or values, 
of those involved in the decision-making process (Keeney 1996; Runge 2011).

STMs are typically developed as conceptual models, informed by expert knowl-
edge and existing data. Such models may quantify the characteristics of states but 
lack a quantification of transition probabilities given particular values of controlling 
variables and management actions (i.e., they are qualitative or semiquantitative 
STMs). Within the structured decision-making framework (Fig. 9.4), a qualitative 
STM can be used to clarify the decision context among stakeholders, the desired 
direction of change and key attributes of interest (objectives), and the different man-
agement interventions that might be employed to achieve this change (alternatives). 
In addition, qualitative STMs could be used to begin exploring the consequences of 

8 Primary author is L. Rumpff.
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the alternatives in relation to the objectives. As a decision-support tool, a qualitative 
STM is often all that is required to guide a good management decision within the 
structured decision-making process. For instance, an STM (based on Bestelmeyer 
et al. 2010) can be used to identify the interventions required to achieve the ecologi-
cal conditions for a reference state (Bunchgrass savannah; Fig. 9.4). In this instance 
there is one objective (the reference state), and clearly defined interventions. 
However, recognized uncertainty about the effects of climate change may result in 
different models of cause-and-effect, uncertainty about the most effective interven-
tions, or even uncertainty about whether the goal state is attainable. In cases where 
there are numerous alternatives to choose from, multiple and competing objectives, 
conflicting values among stakeholders, differing stories of cause-and-effect, or 
“critical uncertainty” (i.e., uncertainty that bears on key decisions), decision- making 
based on quantitative STMs can help select the best decision.

Quantitative (or process-based) models are useful for identifying and exploring 
the uncertainties that impact management decisions (Duncan and Wintle 2008; 
Rumpff et al. 2011). A process-based model represents the current state of knowl-
edge and assumptions about the dynamics of the system, and allows predictions to 
be made about the efficacy of the different management strategies in relation to the 
objectives of interest. For instance, in Fig. 9.4, the assumptions behind the STM 
have been quantified and converted into a probabilistic model of cause-and-effect (a 
Bayesian network). Probabilistic transition estimates now include uncertainty about 
the efficacy of management interventions under various climatic scenarios.

A management decision will often involve multiple objectives, with no one man-
agement strategy that maximizes all objectives. For example, there may be a trade- 

Fig. 9.4 The structured decision-making framework adapted from Wintle et al. (2011). A concep-
tual STM (adapted from Bestelmeyer et al. 2010) is commonly used to frame the problem, whereas 
the quantitative version of the STM (structured here as a Bayesian network) is useful to identify, 
explore and resolve critical uncertainty
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off between achieving the reference state and maximizing agricultural productivity. 
The quantitative model should first be expanded to enable predictions for both objec-
tives. The predictions can then be combined with value judgments (or preferences) 
that specify which objective should benefit over the other, given the range of possible 
outcomes (Gregory et al. 2012). The true value of an alternative management strat-
egy is a combination of the consequences (including uncertainty), and the weight or 
value attributed to the objectives (step 5, Fig. 9.4). At this point, the decision may be 
obvious, or uncertainty may be obscuring the preferred management strategy.

Uncertainty is inevitable, but decision-makers should pay particular attention to 
resolving critical uncertainties, as this can result in modified and potentially more 
effective management decisions. Monitoring is used to resolve this uncertainty, by 
iteratively updating the knowledge within the process-based model (step 6, Fig. 9.4). 
This is known as adaptive management, which is a form of structured decision- 
making, required when decisions are recurrent and hampered by critical uncertainty 
(Runge 2011). Thus, adaptive management requires extra steps in the structured 
decision-making framework to provide a plan for motivating, designing, and inter-
preting the results of monitoring.

Although the development of quantitative state-and-transition models has increased 
(Bashari et al. 2009; Nicholson and Flores 2011; Rumpff et al. 2011), to date their 
application in a management context is rare. Thus, it can be concluded that STMs 
have yet to reach their full potential as decision-support tools for the implementation 
of natural resource management and the evaluation of its outcomes. Both quantitative 
and qualitative models can be used to capture our current understanding about system 
dynamics, and to identify and explore uncertainty surrounding the response to man-
agement (Rumpff et al. 2011; Runge 2011). The choice of decision support tool should 
be dictated by the availability and form of knowledge, whether qualitative or quantita-
tive predictions are required to make a decision, and whether quantitative skills are 
accessible given the timeframe available for decision-making.

Whether the model is quantitative or qualitative, structured decision-making can 
help to provide a systematic and transparent framework for identifying objectives, col-
late existing knowledge, explore the consequences of management alternatives and 
identify and evaluate uncertainty. The value of qualitative STMs to help frame and 
guide vegetation management decisions in rangelands is not in question. Rather, man-
agers and researchers should acknowledge the complexities of their particular problem 
context, and assess whether structured decision-making approaches are useful.

9.6.3  Mapping State-and-Transition Model Information9

Managers currently represent ecosystem variations across a wide range of scales for 
various uses. In rangelands, potential natural vegetation is mapped via land unit 
classifications such as habitat types (Jensen et al. 2001), range units and range sites 
(Kunst et al. 2006), and ecological sites (Bestelmeyer et al. 2003). More recently, 

9 Primary author is M. Levi.
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attention has focused on the delineation of the current states of a set of land units 
based on its STM (Steele et al. 2012). The product is called a “state map” that can 
make the information within STMs spatially explicit for its use in management.

STMs are typically linked to land units that define the spatial extent to which 
information in STMs should be extrapolated. Soil survey is often used to map land 
units bearing distinct STMs (such as ecological sites), particularly in the 
USA. Hence, STMs can be linked to maps of soil types or landforms. Soil maps thus 
provide a template for mapping ecological states across multiple STMs. One con-
straint in linking soil maps to STMs is that any errors in existing soil spatial data are 
transferred to the state map. Many soil maps in rangelands consist of “soil map 
units” that represent multiple soil types either due to a limitation of mapping scale 
or landscape heterogeneity (Duniway et al. 2010). In some cases, soil types are 
similar and grouped to the same ecological site; however, soil types with contrasting 
properties combined within the same soil map unit may belong to different ecologi-
cal sites and STMs. In the USA, it has been a priority to resolve these discrepancies 
in order to improve the utility of STMs (Steele et al. 2012).

Ecological sites and states can be mapped simultaneously using environmental 
variables, such as from remote sensing products (Browning and Steele 2013; 
Hernandez and Ramsey 2013). One benefit of utilizing remotely sensed data to 
characterize ecological sites and states is the ability to produce scalable information 
that can be tailored to particular needs (Kunst et al. 2006). For example, West et al. 
(2005) outlined a strategy for producing a hierarchical map of ecological units for 
4.5 million hectares area in western Utah based on a variety of data sources. The 
finest level was a “vegetation stand” that is similar to ecological states represented 
in STMs.

Mapping of ecological states can be difficult in rangelands because spectral data 
from conventional sources, such as MODIS or LANDSAT satellites, is often not of 
sufficient resolution or quality to distinguish states. Blanco et al. (2014) integrated 
hyperspectral and multi-spectral remote sensing data to identify ecological sites in 
rangelands of Argentina. This approach could be extended to map states. Steele 
et al. (2012) outlined a framework for mapping ecological sites and states in range-
lands of southern New Mexico using a combination of soil survey spatial data com-
bined with image interpretation of aerial photography to manually delineate 
ecological site and state polygons (i.e., line maps).

Digital soil mapping (DSM) is an emerging technique that can improve estimates 
of soil property and ecological state information at fine spatial scales in rangelands 
by predicting the properties of pixels of varying resolution (e.g., to 5 m) (Levi and 
Rasmussen 2014; Nauman et al. 2014). Although DSM has not yet been applied to 
state mapping, it could fill a much needed gap by increasing automation, using a 
greater range of data sources, and allowing for rapid updating of state maps when 
new data become available. Data-driven classification algorithms can greatly reduce 
the time needed to produce state maps because they provide a means of grouping 
pixels into similar units, thereby reducing the burden of hand digitizing (Laliberte 
2007; MacMillan et al. 2007). DSM approaches can also be scaled up or down to 
meet desired management objectives, which is currently difficult to do with polygon- 
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based maps. In turn, DSM could be used to identify vegetation responses to soil 
properties that may improve STMs (Browning and Duniway 2011).

State mapping can extend the utility of STMs for management. In landscapes 
with a mix of ecological sites and states, state mapping distills information across 
multiple STMs into a simpler classification scheme that can be used for communi-
cation among stakeholders and to develop action plans (Fig. 9.5). For example, a 
state map was used in the southwestern USA in planning for brush control treat-
ments to identify areas that were (1) near a desired reference condition where no 

Fig. 9.5 An example of a product based on an ecological state map for a single ecological site 
type. The map illustrates interpretations of an STM according to brush management treatment 
options (courtesy of Eldon Ayers)
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treatment was needed, (2) areas that had experienced soil erosion where treatment 
would likely not produce increases in perennial grass cover, and (3) areas where 
treatment would be most likely to produce desired changes. In a similar way, state 
mapping can be used to plan for land use changes, such as by prioritizing  development 
away from desirable reference states (Stoms et al. 2013). State mapping could also 
be used to visualize or model spatial interactions in a landscape, such as where 
increases in grass cover would have the greatest impact on water retention within a 
watershed.

9.7  Summary

STMs evolved from the recognition that vegetation change was more complex than 
could be accounted for by succession alone, and could occur along numerous path-
ways, be discontinuous, and result in multiple stable states in the same environment. 
Conceptualizing vegetation as discrete states also provides a useful platform for 
tailoring management actions to the properties and possibilities associated with 
each state. For rangeland managers, the value of STMs resides both in their flexibil-
ity for organizing information and in their ability to foster a general understanding 
about how rangelands function.

Progress toward developing rangeland STMs at a global level has been uneven 
due to several factors, including limitations of data and fiscal and personnel 
resources. As strategies to overcome these limitations are developed, the ultimate 
success of STMs as management tools will require careful attention to several top-
ics. First, there should be a clear understanding of the characteristics of alternative 
states, including a reference state where such a concept is meaningful. Field sam-
pling, synthesis of experimental results and long-term vegetation records, and par-
ticipatory approaches are important resources for defining states. State 
characterization should ideally represent information on a variety of ecosystem ser-
vices. In most cases, this will require coordinated sampling efforts to link variations 
in plant community states to empirical or model-based evaluations of habitat qual-
ity, soil carbon storage potential, and value for livestock, for example.

Second, STMs should attempt to distinguish transient dynamics from state transi-
tions. Evidence-based approaches necessitate clear statements not only about drivers 
of transition but also about the controlling variables and processes  constraining 
recovery and timelines for ecosystem change. STMs should feature logical and test-
able statements about how states will respond to management, such that STMs can 
support experimentation, quantitative models, and eventual revision. Even where 
data are scarce, local knowledge can be framed as testable propositions. Predictions 
regarding the effects of climate change on ecosystems may best be addressed at a 
regional scale, but information on the impact of past extreme events can be high-
lighted. Strategies to manage alternative states, such as through novel uses of states 
invaded by woody plants, may help with climate adaptation over the longer term.
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Third, STM development programs should consider how to make information 
available, useful, and believable to users. Participatory approaches can promote 
understanding and acceptance of STMs. There should be a clear link between STMs 
and specific management actions, which can facilitate the inclusion of STMs into 
collaborative adaptive management programs supported by local communities, non-
governmental organizations, or governmental agencies (Fig. 9.6). Regional or land-
scape collaborative groups can develop STMs and identify ecosystem services of 
interest from different states. The linkage of STMs to maps of ecological states can 
facilitate management application and testing. Hypotheses for management 
responses can be developed for specific land units (Fig. 9.5) and structured decision- 
making approaches can be used for cases when multiple management options are 
possible, trade-offs make decisions difficult, and the preferred decision is unclear or 
controversial. Tests of hypotheses via monitoring can be used to either revise the 
STM or make minor management adjustments.

In order to facilitate their use in collaborative adaptive management, STMs 
should be presented and used in a variety of ways, including simple extension mate-
rials, formal hypotheses for ecological research and tests of management efficacy, 
rangeland evaluation criteria, maps, or Bayesian models. Policymakers, technical 
assistance personnel, regulators, scientists, land managers, and stakeholders should 
be working from the same general understanding of how a rangeland ecosystem 
functions, even if those parties differ in their preferred states or ecosystem services. 
STMs should link understanding across different organizational levels as a basis for 
collaborative adaptive management. Our hope is that the recommendations pre-
sented here will promote development of STMs that are indispensable for the man-
agement of global rangelands.

Fig. 9.6 A schematic of how STMs can be used in collaborative adaptive management, adapted 
from Bestelmeyer and Briske (2012)
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Chapter 10

Livestock Production Systems

Justin D. Derner, Leigh Hunt, Kepler Euclides Filho, John Ritten, 

Judith Capper, and Guodong Han

Abstract Rangelands, 50 % of the earth’s land surface, produce a renewable 
resource of cellulose in plant biomass that is uniquely converted by ruminant 
livestock into animal protein for human consumption. Sustainably increasing 
global animal production for human consumption by 2050 is needed while reduc-
ing the environmental footprint of livestock production. To accomplish 
this, livestock producers can interseed legumes and use bioenergy protein by-
products for increased dietary protein, develop forage “hot spots” on the land-
scape, use adaptive grazing management in response to a changing climate, 
incorporate integrated livestock- crop production systems, improve fertility to 
increase birth rates, and reduce livestock losses due to disease and pest pressure. 
Conceptual advances in livestock production systems have expanded the utility 
of livestock in conservation-oriented approaches that include (1) efforts to “engi-
neer ecosystems” by altering vegetation structure for increased habitat and spe-
cies diversity, and structural heterogeneity; (2) use of targeted grazing to reduce 
invasive annual grasses and invasive weeds, and fuel reduction to decrease wild-
fires; and (3) improvement of the distribution of livestock grazing across the 
landscape. Livestock production systems need to increase output of animal pro-
tein by implementation of knowledge and technology, but this production must 
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be sustainable and society needs to have confidence that animals were raised in a 
humane and environmentally acceptable manner such that the quality and safety 
of the animal protein are acceptable for consumers.

Keywords Adaptations for increasing climatic variability • Adaptive grazing man-
agement • Flexible stocking rate strategies • Forage hot spots on landscape • 
Ruminant livestock • Sustainable intensification

10.1  Introduction

10.1.1  Goals and Objectives

Livestock production systems utilizing global rangelands provide the ability for 
humans to effectively harvest animal protein from plants. These systems, which 
occur on six of the seven continents (Antarctica is the exception), are highly 
diverse, ranging from low-input, pastoral production systems located in arid and 
semiarid environments on communally owned lands to highly intensive produc-
tion systems in more mesic environments which can integrate livestock-crop-
forage systems to improve feed efficiency and reduce time from birth to harvest. 
The goals of this chapter are to review the important conceptual and technologi-
cal advances in livestock production systems of the past 25 years, and look for-
ward to the key opportunities that will influence global livestock production in 
the next 25 years.

For the retrospective look back 25 years, our objectives are to (1) showcase 
global trends that have occurred for ruminant livestock; (2) demonstrate, using 
the USA as an example, the economics of livestock production; (3) review the 
contributions of technological advances; (4) exhibit the shifts in management 
strategy toward increased emphasis on livestock in conservation-oriented 
approaches for land managers; (5) address environmental considerations of live-
stock production with an emphasis on greenhouse gas emissions; and (6) exam-
ine the changes in livestock production systems of South America’s largest beef 
producer, Brazil.

For the prospective look forward 25 years, our overall objective is to demon-
strate the significant influence of increasing global population and a rising mid-
dle class on increasing demand for animal protein. Here, we address (1) 
sustainable intensification of livestock production systems, including options in 
Australia; (2) adaptations to climatic variability; (3) customer influence on live-
stock production systems; (4) the need for increased feed efficiency and fertility; 
(5) reducing losses to disease; and (6) the importance of genetics and genomics, 
including rapidly emerging DNA and RNA genetic tools, and conclude with (7) 
an emerging integrated livestock- crop production system involving pasture, 
crops, and forestry.

J.D. Derner et al.
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10.1.2  Global Significance of Ruminant Livestock

Ruminant livestock, by hosting specialized microbes in their digestive system, serve 
as energy brokers between cellulose in plant biomass and energy and protein avail-
able for human consumption. Worldwide, rangelands provide 70 % of the forage for 
ruminant livestock (Holechek 2013) as domesticated livestock graze about 50 % of 
the world’s land surface (Holechek et al. 2011), primarily occurring on lands which 
are ill suited for crop production (Steinfeld et al. 2006; Fig. 10.1). Furthermore, 
livestock can enhance efficiency of crop production through consumption of plant 
residues and increased rates of nutrient cycling.

10.1.3  Global Livestock Production

Globally, numbers of cattle, goats, and sheep increased from 1979 to 2009, with per-
centage increases of 14 % (cattle), 93 % (goats), and 1 % (sheep) observed (Fig. 10.2, 
FAO 2011). The continents of Africa and Asia experienced the largest percentage 
increases in cattle numbers, whereas Europe had the largest percentage decrease. In 
Africa, Asia, North America, and Oceania the numbers of goats at least doubled; only 
Europe had a decline in goat numbers. Sheep numbers were about 50 % higher in 
2009 for Africa, Asia, and Central America/Caribbean, but about 50 % lower for 

Fig. 10.1 Distribution of livestock production systems (FAO)
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Europe, North America, and Oceania and 25 % lower for South America (Fig. 10.2). 
Increasing incomes in emerging economies of Africa and Asia, as well as increased 
urbanization on these continents, are driving these changes in global patterns of live-
stock production due to greater amounts of animal protein in human diets.

Annual growth rates in meat production over the past three decades for beef, 
sheep, and goats were 3–4 % in developing countries compared to slightly negative 
rates in developed countries1. Beef production is expanding globally. For example, 
breeding cattle (primarily the Angus breed) are being purchased by Russia2 as well as 
former Soviet Republics (e.g., Kazakhstan3), and Brazil (see below), through direct 
purchases from the USA and Australia. Worldwide meat consumption per capita is 
highest in North America and Australia, and lowest in Africa (Fig. 10.3, FAO 2013). 
Beef and African buffalo contribute about one-fourth of the worldwide meat produc-
tion (Table 10.1). Areas of the world with more than half of their total meat produc-
tion from beef and buffalo are eastern Africa, central Asia, and Australia and New 
Zealand. Sheep and goat production contributes about 5 % of the worldwide meat 
production, with western Africa, central Asia, and Australia and New Zealand having 
20 % or more of their total meat production from sheep and goats. Total meat imports 
across the world increased by about 60 % from 2000 to 2010, with percentage 
increases highest for southern and central Asia, and western Africa (Table 10.2). 
Cattle density is highest in India, the eastern Great Plains of the USA, western Europe, 
and southeastern South America (Fig. 10.4). Sheep density is highest in the 
Mediterranean region, and southwestern and southeastern Australia (Fig. 10.4), while 
density of goats is highest in India and the tropical region of Africa (Fig. 10.4).

1 http://faostat.fao.org/
2 http://www.businessweek.com/articles/2012-06-21/beef-the-new-opiate-of-the-russian-masses
3 http://www.themeatsite.com/meatnews/22375/kazakhstan-to-grow-beef-herd

Fig. 10.3 Worldwide annual meat consumption per capita (FAO 2013). Current Worldwide 
Annual Meat Consumption per capita, Livestock and Fish Primary Equivalent, Food and 
Agriculture Organization of the United Nations, viewed 31st March, 2013
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10.1.4  Economics of Livestock Production: The US Cattle 

Example

The cattle production industry in the USA has become increasingly specialized, 
with individual sectors focusing on calf production, yearlings (mostly background-
ing on forages—e.g., wheat or grasslands/rangelands/pasture), feedlots for finish-
ing, processors, packers, and retail marketers. For all sectors, risk management is 
key. For example, cow-calf producers in highly variable environments often employ 
conservative stocking rates as a strategy across years to reduce risk (Torell et al. 
2010). Generally, low-input producers utilize conservative stocking, minimization 
of debt, and enterprise and income diversification to maintain economic sustain-
ability (Kachergis et al. 2014; Roche et al. 2015). Producers having access to 

Table 10.1 Global meat production (1000 tons) in 2010 (FAO 2013 Stats)

Beef and buffalo Sheep and goat

Pig Poultry
Groups of 
countries Total Production

% of 
total Production

% of 
total

World 296,107 67,776 22.9 13,459 4.5 109,370 99,050

Africa 17,309 6684 38.6 2872 16.6 1239 4769

 Eastern 3595 1808 50.3 522 14.5 408 503

 Middle 1189 413 34.7 143 12.0 153 118

 Northern 5977 2504 41.9 1098 18.4 1 2059

 Southern 3075 955 31.1 208 6.8 322 1507

 Western 3473 1004 28.9 901 25.9 354 582

Latin America/
Caribbean

46,253 17,386 37.6 438 0.9 6553 21,310

North America 46,626 13,318 28.6 92 0.2 12,112 20,800

Asia 123,501 16,623 13.5 7716 6.2 62,054 34,858

 Central 2323 1346 57.9 472 20.3 246 155

 Eastern 86,904 7386 8.5 4136 4.8 54,194 19,447

 South-eastern 15,948 1737 10.9 221 1.4 7164 6760

 Southern 12,342 4853 39.3 1941 15.7 352 4951

 Western 5984 1300 21.7 947 15.8 98 3545

Europe 56,628 11,001 19.4 1287 2.3 26,939 16,222

 Eastern 16,825 3166 18.8 302 1.8 6639 6222

 Northern 8099 1978 24.4 369 4.6 3399 2305

 Southern 11,881 2091 17.6 417 3.5 6004 2964

 Western 19,823 3766 19.0 200 1.0 10,897 4731

Oceania 5789 2764 47.7 1053 18.2 474 1092

Australia and New 
Zealand

5297 2744 51.8 1053 19.9 383 1065

Melanesia 478 18 3.8 0 0.0 80 24

Micronesia 3 0 0.0 0 0.0 2 1

Polynesia 12 2 16.7 0 0.0 8 2
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additional forage (e.g., irrigated pastures), crop residues, and grazing of cover crops 
can utilize higher input strategies to optimize economic returns. Relatively cheap 
grains and growth of the feedlot industry since the 1960s have encouraged many 
cow-calf producers to sell calves rather than carry yearlings as costs of gain in feed-
lots have historically been cheaper than cost of gain on forage. Feedlots sell finished 
animals into the packer-processor market where animals are harvested and moved 
into the wholesale market. From here, beef is dispersed into the retail market. Cow 
herd numbers in the USA have decreased over 30 % since the 1970s, and are at their 
lowest levels since the end of World War II (Fig. 10.5), leading to record high cattle 
prices in 2014 and 2015. Production outputs such as weaning weights have increased 
due to implementation of multiple technologies (Ash et al. 2015).

In 1970, there were over three feeder cattle outside feedlots for every animal in a 
feedlot; currently this value is less than two animals as comparatively cheap grains 

Table 10.2 Volume (1000 tons) of total meat imports and exports in 2000 and 2010 and net 
importer or exporter status in 2000 and 2010 (FAO 2013 Stats)

Imports Exports Net importer/exporter

Groups of countries 2000 2010 2000 2010 2000 2010

World 23,441 37,239 24,359 39,530 Exporter Exporter

Africa 778 1753 118 189 Importer Importer

 Eastern 29 74 23 19 Importer Importer

 Middle 181 533 0 0 Importer Importer

 Northern 235 428 10 8 Importer Importer

 Southern 217 322 84 105 Importer Importer

 Western 117 396 2 57 Importer Importer

Latin America/
Caribbean

1858 3266 2424 7840 Exporter Exporter

North America 2320 2197 5881 8029 Exporter Exporter

Asia 7650 11,820 2568 3736 Importer Importer

 Central 89 347 1 1 Importer Importer

 Eastern 5856 6823 1701 1898 Importer Importer

 South-eastern 598 1581 501 753 Importer Importer

 Southern 37 343 312 742 Exporter Exporter

 Western 1070 2725 52 341 Importer Importer

Europe 10,642 17,849 10,909 17,212 Exporter Importer

 Eastern 1680 4519 794 2187 Importer Importer

 Northern 2090 3455 2872 3416 Exporter Importer

 Southern 2875 3453 1072 2187 Importer Importer

 Western 3998 6422 6172 9422 Exporter Exporter

Oceania 193 354 2459 2523 Exporter Exporter

Australia and New 
Zealand

80 229 2456 2521 Exporter Exporter

Melanesia 63 70 2 2 Importer Importer

Micronesia 7 1 0 0 Importer Importer

Polynesia 43 55 0 0 Importer Importer
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Fig. 10.4 World density 
maps in 2005 (numbers of 
animal km−2) for cattle 
(top), sheep (middle), and 
goats (bottom) (FAO)
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have increased the reliance on feedlot gains for cattle. The vast majority of feedlots in 
the USA are located in the Great Plains where most of the corn is produced. In addi-
tion, most of the biofuel (e.g., ethanol) refineries are located in this same region, which 
provides a large supply of by-products for use in feedlots. Feedlots having capacity for 
greater than 32,000 head market around 40 % of fed cattle, and greater feedlot opera-
tion size, have been shown to significantly reduce costs of production. Genetic selec-
tion for animals with greater gains kg of feed−1 has increased carcass weights. Residual 
feed intake is garnering attention as a tool that allows producers to select for efficiency 
while accounting for body weight and a wide range of factors above and beyond sim-
ply total feed consumption and total animal gain (Herd et al. 2003; Herd and Arthur 
2009). Successful technological advances that increase feed efficiency to enhance pro-
ductivity (e.g., improved feeding and management), and structural shifts in the live-
stock sector to reduce adverse environmental impacts, can increase profitability and 
sustainability of livestock production systems (Herrero et al. 2013).

Feedlot operators are increasingly turning to formula and grid markets, where 
prices are determined on actual carcass qualities instead of the traditional markets 
that base price on live or dressed weights. Grid-based prices rely on USDA quality 
and yield grades to impact prices through premiums for those carcasses with desir-
able grades, while many formulas also include premiums for branded beef (e.g., 
Certified Angus Beef) and discounts for characteristics such as injection-site blem-
ishes and hide damage. Cattle price on grids has increased from 14 % in 1996 to 
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Fig. 10.5 US total cattle inventory (1953–2013) (USDA-NASS)
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50 % in 2001, and to 75 % by 2012. The grid system can be a benefit to the cattle 
industry as it sends clear signals to feeders of changing consumer preferences. For 
example, premiums occur for branded products that meet customer preferences for 
reduced used of antibiotics and hormones (e.g., natural beef).

10.2  Looking Back: Livestock Production—The Previous 25 

Years

10.2.1  Technological Advances

Technological advances and implementation of management practices derived from 
experimental research in the past 25 years have focused on increasing the efficiency 
of livestock production and reducing environmental impacts. Technological 
advances include (1) use of artificial insemination for breeding livestock with supe-
rior genetic traits, (2) crossbreeding to achieve heterosis (hybrid vigor), (3) emerg-
ing use of DNA and RNA technology for advances in genetic trait selection, (4) use 
of grains for improved gain efficiency to finish livestock for harvest, and (5) use of 
growth hormones to shorten the time from birth to harvest leading to increased effi-
ciency. Associated with this increased production efficiency has been a reduction in 
greenhouse gas emissions kg beef−1 (Capper and Hayes 2012). Other technological 
advances have included additional water developments—water systems, pipelines, 
spring developments, and installation of ponds—which improve livestock distribu-
tion and utilization of available forage, and dietary supplements (e.g., urea, phos-
phorus, minerals) to overcome seasonal deficiencies in forage quality, especially in 
tropical and subtropical rangelands. Grazing strategies across the globe are quite 
diverse from low-intensity management of pastoral and communal approaches to 
high-intensity management facilitated by infrastructure developments (Roche et al. 
2015). Key management practices that have been developed include (1) the applica-
tion of sustainable stocking rates to maintain or improve the health of rangelands, 
including riparian habitats (Briske et al. 2011), as well as associated optimization of 
net income (Holechek 2013; Kemp et al. 2013), and (2) matching of calving season 
to the prevailing environment to reduce associated harvested feed costs (Grings 
et al. 2005; Griffin et al. 2012).

10.2.2  Shifts in Production Strategies

Within the first decade of the twenty-first century, livestock production strategies 
have increased emphasis on livestock in conservation-oriented approaches to include 
(1) efforts to “engineer ecosystems” by altering vegetation structure for increased 
habitat and species diversity, and structural heterogeneity to achieve desired 
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contemporary outcomes (Derner et al. 2009, 2013); (2) use of targeted grazing 
involving application of a specific kind of livestock at a determined season, duration, 
and intensity to accomplish defined vegetation or landscape goals (Launchbaugh 
and Walker 2006), to reduce invasive annual grasses (Diamond et al. 2010) and 
invasive weeds (Goehring et al. 2010), as well as fuel reduction efforts (Davison 
1996; Clark et al. 2013); and (3) improvement of the distribution of livestock graz-
ing across the landscape through the use of low-stress stockmanship methods using 
herding, strategic location of low-moisture supplement blocks (Bailey et al. 2008), 
patch burn grazing in mesic (Fuhlendorf and Engle 2004) and semiarid (Augustine 
and Derner 2014) ecosystems, and foraging and learning through past experiences 
that increase the likelihood of animals learning to eat different plants (e.g., Provenza 
et al. 2003). These ecological benefits from conservation- management applications 
have been attained without negatively impacting livestock production (Limb et al. 
2011; Augustine and Derner 2014).

10.2.3  Environmental Considerations: Beef Production 

and Greenhouse Gas Emissions

Greenhouse gas emissions kg beef−1 produced between 9.9 kg CO2-eq (carbon diox-
ide equivalent) and 36.4 CO2-eq in intensive systems, and from 12.0 to 44.0 kg 
CO2-eq kg−1 beef in extensive systems (Pelletier et al. 2010; Capper 2012). These 
differences in GHG emissions may be attributed to differences in assessment meth-
odology in addition to the direct consequence of different production systems. 
Assessment methodology differences include variation in the system boundaries 
and underlying assumptions and model complexity that may have a considerable 
effect upon the results of environmental impact assessments (Bertrand and Barnett 
2011). Until a global analysis of environmental impact from beef production is con-
ducted, with similar methodology for each region, it is difficult to draw firm conclu-
sions as to the variation within and between global regions. The study by Herrero 
et al. (2013) is a first approximation to spatially disaggregate a global livestock 
dataset to assist in determinations of greenhouse gas emissions at regional to local 
scales. Most of the developed countries have low greenhouse gas emission intensi-
ties due to improved and intensive feeding practices, and higher feed quality; con-
versely, sub-Saharan Africa is a hot spot for high greenhouse gas emission intensities 
as a result of low-quality feeds and animals with low productive potential animal−1 
(Herrero et al. 2013).

Adverse environmental effects are minimized by improving productivity in the 
metrics of carcass weight and growth rate (Capper and Hayes 2012; White and 
Capper 2013). As productivity increases, the proportion of daily energy allocated to 
maintenance decreases and maintenance requirements of the total animal popula-
tion decreases. Improvement in growth rate reduces time from birth to harvest and 
increases the total production of meat yield in a shorter time frame without affecting 
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herd numbers (Capper 2011a; Capper and Hayes 2012; White and Capper 2013). 
With increasing intensity of a production system, corresponding improvements in 
productivity and efficiency are usually exhibited resulting in “more intensive”-type 
production systems tending to use fewer resources and having lower greenhouse gas 
emissions than “less intensive” or “extensive” systems (Capper 2011b).

Efficiency in the US beef industry markedly increased between 1977 and 2007 
with growth rates (kg head−1 day−1) increasing by 64 %, harvest weights increasing 
by 30 %, and days from birth to harvest decreasing by 20 % (Capper 2011a). These 
advances over the 30 years were attributed to improvements in genetics, nutrition, 
and management, as well as use of fossil fuels and irrigation water development. As 
a result, 12–33 % less land, water, and feed were needed, and greenhouse gas emis-
sions kg beef−1 decreased by 16 % (Capper 2011a). Greenhouse gas emissions unit 
beef−1 were 67 % greater in pasture-finished systems than in feedlot systems (Capper 
2012). To maintain current US beef production (11.8 billion kg) from an entirely 
pasture-based system would require an additional 52 million ha of land (Capper 
2012). If such conversion did occur, the increase in carbon emissions from these 
extensive systems would be equal to adding 25.2 million automobiles to the road 
year−1 (Capper 2012). Questions remain for feedlot systems with respect to long- 
term availability and cost of quantity and quality of water, as well as fossil fuels for 
associated crop production to maintain the current advantage in greenhouse gas 
emissions for these systems.

10.2.4  Beef Production: A Brazilian Example

Beef production in South America is primarily confined to pastures compromised of 
introduced forage species that vary with regional environmental characteristics. For 
example, temperate species of grasses and legumes dominate pastures in southern 
Brazil, while the remainder of Brazil has mostly tropical species. Brazil has approx-
imately 200 million head of cattle. Increases in the numbers of cattle in Brazil are 
occurring in spite of a decrease in total pasture area (Martha et al. 2012). This is a 
result of production intensification and increased efficiency that supports higher 
stocking rates. In addition, age to harvest has decreased, as has the age at the begin-
ning of reproduction. The quality of carcasses produced has markedly improved as 
a result of better animal and forage genetics, better management practices—finan-
cial, nutrition, reproduction, and health—and organization of the beef supply chain. 
For example, beef production increased only 0.3 % year−1 from 1950 to 1975, but 
increased to 3.6 % year−1 from 1975 to 1996, and then further increases to 6.6 % 
year−1 were observed from 1996 to 2006 (Martha et al. 2012). Key beef production 
metrics for Brazil increased from 1994 to 2007 (Table 10.3). For example, over 
these 13 years, harvest rate (13 %), numbers of cattle harvested (73 %), beef produc-
tion (77 %), consumption per capita (13 %), domestic consumption (37 %), and the 
amount (540 %) and value (694 %) of beef exports increased, whereas the amount 
of beef imported decreased by almost half.
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For livestock production in Brazil, improvements in forage management involv-
ing combinations of new grass and legume cultivars developed by breeding programs, 
and associated grazing systems adapted to regional-specific conditions can increase 
livestock production, with the caution that mineral supplementation is necessary due 
to the weathered soils (Ferraz and de Felicio 2010). Greater understanding of soil-
plant-animal interactions in both temperate and tropical areas will result in better 
pasture management, as well as improved livestock production efficiency. The sea-
sonality of forage production in tropical regions can limit sustainability of livestock 
production as forage limitations in dry seasons reduce animal gains. Intensifying 
management in these regions remains a challenge, but opportunities exist for (1) 
adapting stocking rates for seasonal differences in forage production, (2) irrigating 
pastures where water is available and it is recommended, (3) stockpiling of forage for 
dry season, (4) use of diet supplementation, (5) increased use of feedlots as a strategy 
to finish animals, (6) improved animal breeding, and (7) a combination of two or 
more of these strategies. Intensifying management provides important co-benefits 
such as reducing the pressure for clearing new areas for pasture and lessening defor-
estation impacts, decreasing costs of beef production by keeping the production sys-
tems closer to the infrastructure system of roads and industries already in place, and 
contributing to decreases in total greenhouse gas emissions since intensification 
shortens the time to harvest.

10.3  Looking Ahead: Livestock Production in the Next  

25 Years

The global livestock production industry faces a significant challenge in producing 
sufficient animal protein to supply an increasing population, including an expanding 
middle class. Predictions are that animal production will need to increase by 70 % by 
2050 to accommodate an additional two billion humans (from seven to nine billion 

Table 10.3 Key metrics of beef production in Brazil (1994–2007)

1994 1998 2002 2006 2007

Harvest rate (%) 16.4 19.1 19.8 21.7 21.7

Harvest (millions of head) 26.0 30.2 35.5 44.4 45.0

Beef production (1000 tons of carcass) 5200 6040 7300 8950 9200

Consumption per capita (kg of carcass) 32.6 35.8 36.6 36.6 36.7

Domestic consumption (1000 tons of 
carcass)

5017 5797 6395 6780 6880

Export (1000 tons of carcass) 378.4 377.6 1006.0 2200.0 2420.0

Import (1000 tons of carcass) 195.9 135.1 100.7 30.0 100.0

Export (US$ million) 573 589 1107 3800 4552

Import (US$ million) 230.5 220.0 84.0 63.0 210.0

Source: Adapted from CNPC. Available at http://www.cnpc.org.br/site/Balanco.xls
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plus) and a rise in the global middle class (FAO 2009, 2011; Fig. 10.6). Growth in 
demand for animal protein through 2030 will be largely concentrated in the tropical 
regions of Asia (e.g., India and China), Africa, and Latin America (Fig. 10.7). As a 
result, livestock production will need to employ sustainable intensification in terms 
of management to increase production while having neutral environmental effects. 
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The feasibility of sustainable intensification will largely depend on the ability of 
managers to adaptively match forage production, forage demand, and forage quality 
with increasing weather and climatic variability. The flexibility of operational struc-
ture such as cows and calves with yearlings provides substantial economic outcomes 
with adaptive management, but is dependent on high quality and accurate seasonal 
climate forecasts that are not currently available (Torell et al. 2010). Forage quality 
concerns of reduced crude protein concentrations and forage digestibility are pre-
dicted to offset greater forage production associated with increases in atmospheric 
CO2 concentration (e.g., Milchunas et al. 2005; Craine et al. 2010).

Intensification of livestock production will largely occur in mesic, rather than 
xeric, environments. In drier environments, management emphasis will encompass 
resiliency, risk reduction, avoidance of debt and degradation of natural resources, and 
low input for sustainability. Livestock production intensification in more mesic envi-
ronments will be determined by four variables and external forces (Euclides Filho 
1996). First, improvement of efficiency and economic viability of livestock produc-
tion enterprises is dependent on effectively managing available natural resources and 
efficiently utilizing available technologies, including the potential risks and adoption 
rates of best management practices by producers. Second, market- driven competi-
tiveness and achieving consumer expectations will require a capacity to consistently 
provide high-quality products with reliable taste and tenderness within price ranges 
affordable for society. For example, value-added products with unique niche markets 
could be associated with traceability and certification systems to document origin of 
the livestock for the consumer. Third, recognition of constraints in land-use decisions 
related to coexistence of food, feed, fiber, and energy production from lands will 
require increasing integration of these production systems. Fourth, emphasis on eco-
nomic, social, and environmental benefits, including greater improved distribution of 
livestock profits among segments of the supply chain, and an increased concern 
about the collective and individual well-being of both humans and animals. In sum-
mary, livestock production systems must intensify their activities by introducing 
knowledge and technology that not only assures sustainable production, but also 
demonstrates transparency for the general public that will increase confidence in the 
quality of animal protein for consumers, as well as humane treatment of animals and 
environmental impacts of livestock production.

10.3.1  Sustainable Intensification: An Australian Example

Sustainable intensification options in Australia include oversowing native peren-
nial grass pastures with legumes, the development of “mosaic” irrigation for forage 
“hot spots” on the landscape where limited areas of suitable soil on large properties 
are developed with irrigation to produce high-value forages to enable animals to be 
finished for market, and potential on-farm production of low-cost supplements 
such as high-protein algal-based supplements using technology from the biofuel 
industry. While the technology may not yet be in place to support all these 
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developments, and the economics may not be positive in all cases, these options do 
indicate that there is potential to increase livestock production by 2 % annually 
over a 20-year time frame (Ash et al. 2015). Other developments such as genetic 
improvements for feed conversion efficiency, improvement in veterinary care, and 
increased use of supplements can also have an important role in boosting produc-
tivity (Ash et al. 2015).

However, most intensification options require greater managerial commitment 
and capital infrastructure costs, and are often associated with increased risk. The 
economic risk is generally high, because of the large capital costs associated with 
intensification options and frequency and duration of drought which reduces the 
value of livestock due to excess market supply (Coppock et al. 2009; Ash et al. 
2015). Livestock enterprises will also need to adapt to a low-carbon operating envi-
ronment as societal pressure increases to reduce carbon emissions while enhancing 
carbon sequestration. The potential benefits of various intensification options for 
livestock production and environmental sustainability require greater consideration 
on rangelands.

10.3.2  Adaptations for Increasing Climactic Variability

Climatic variability is an area of considerable concern for livestock production 
(Polley et al. 2013; Reeves et al. 2013). A high degree of climatic variability is a key 
feature of arid and semiarid rangelands worldwide as droughts are a major cause of 
land degradation and economic loss (Stafford Smith et al. 2007; Coppock 2011). 
Preparedness of land managers for such events and their responses are crucial to 
minimizing negative effects on natural resources as well as the financial consequences 
for the production enterprise (Kachergis et al. 2014). A high degree of reliance on 
emergency government financial assistance to support drought-affected properties 
has encouraged land managers to maintain current stocking rates with consequential 
land degradation. Adverse effects of poor drought management on other rangeland 
values such as biodiversity and water resources are also of increasing concern.

The use of diverse management strategies is often necessary to manage risk associ-
ated with climate variability (McAllister 2012). Options include adaptation  strategies 
associated with flexible herd management, alternative livestock types and breeds, 
modified enterprise structures, and geographic relocation (Joyce et al. 2013). The 
main livestock management options range from the use of conservative stocking rates 
(Hunt 2008) to adopting a flexible stocking rate strategy in which livestock numbers 
are varied in response to changing and seasonal forage availability (Ritten et al. 2010; 
Torell et al. 2010). Incorporation of a yearling enterprise in addition to cow-calf oper-
ations can increase flexibility by providing (1) extra grazing animals during periods of 
high forage availability, (2) readily marketable animals during drought periods, and 
(3) ability to preserve herd genetics by selling yearlings, rather than the base cow 
herd. Challenges to adding this second enterprise include increased managerial effort 
and skills, contacts in the industry for the supply and sale of yearling animals or other 
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classes of animals, and additional financial outlay, cash flow, and marketing. For 
example, obtaining yearling animals during favorable times and having somewhere to 
send these animals as forage conditions deteriorate can present challenges for land 
managers under a flexible strategy. For more remote areas distant from markets, a 
flexible strategy can present challenges due to logistical difficulties and costs of trans-
porting animals. Transporting livestock from a property with a forage deficit to another 
property with a forage surplus (agistment), where the livestock owner leases the land 
for grazing the livestock, is an important management option in Australia (McAllister 
et al. 2006). Benefits to the livestock owner can include (1) an avoided forced sale of 
livestock with depressed prices, (2) a more rapid vegetation recovery following the 
end of drought by reducing degradation due to drought, and (3) maintaining a core 
breeding herd. A risk is prolonged drought and the leased property also running out of 
forage, potentially forcing the eventual sale of the livestock. Agistment is less com-
mon outside of Australia, although in the USA there was a substantial movement of 
cattle from Texas and California to the Northern Great Plains during recent droughts. 
Nomadism and transhumance are practiced in some African and Asian rangelands as 
a means of buffering the effects of climate variability, but this mobility is rapidly 
being lost (Chap. 17, this volume).

Provision of supplementary feed as a drought management strategy is problem-
atic in many rangelands because of the conflict between drought policies and eco-
nomics of purchasing supplemental feed. The cost of purchase and transport of 
supplemental feed can be considerable, particularly for remote regions and exten-
sive enterprises with large herds or flocks typical of many rangelands, and in the 
case of multiyear droughts (Kachergis et al. 2014). Maintaining livestock on range-
lands by means of supplementary forage can degrade natural resources, including 
vegetation and soils. Providing supplementary feed can only be justified for main-
taining a limited number of animals, such as valuable core breeding stock. For 
example, placing cows in drylots for calving and breeding may be advantageous for 
both cow and subsequent calf performance compared to supplementing cows on 
pastures during these periods, due to controlling rations for protein, energy, and fat 
content (Wilson et al. 2015). In shrub-dominated rangelands experiencing drought, 
livestock will increase use of shrubs (Estell et al. 2012).

10.3.3  Customer-Driven Demand for Livestock Quality 

and Products

Consumers of animal protein and fiber products are becoming increasingly concerned 
about the nature of livestock production systems, the welfare of animals, and the effects 
of livestock production on the environment. Consumers expect these products to be 
produced using humane methods in largely natural environments and without adverse 
environmental consequences, and this affects their buying habits (Grandin 2007). There 
has also been a trend toward the development of “low-stress” stockmanship methods of 
livestock handling and production, and land managers are increasingly adopting such 
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techniques. Adoption of these methods can have an added benefit as there is increasing 
evidence that productivity and profitability of livestock enterprises are improved (Cote 
2004; Grandin 2007). Although survey data overwhelmingly concludes that price, taste, 
convenience, and nutrition are the major factors affecting purchasing decisions (Vermeir 
and Verbeke 2006; Simmons 2009), these are still dependent on the product being mor-
ally or ethically acceptable to the consumer. Furthermore, legislative efforts could 
potentially dictate production practices for livestock production.

10.3.4  Improving Feed Efficiency

The poultry and swine industries have made significant gains in improving feed effi-
ciency over the past several decades, and considerable interest currently exists within 
the beef industry to select cattle for improved feed efficiency. This may be achieved 
through an improvement in residual feed intake (RFI), defined as reduced feed con-
sumption required to support maintenance and production compared to the predicted 
or average quantity (Archer et al. 1999). Steers selected for high efficiency (low RFI) 
consumed less feed over the finishing period compared to low- efficiency (high RFI) 
cohorts in a large-scale feedlot study while maintaining harvest weight and exhibit-
ing a greater dressing percentage (Herd et al. 2009). Furthermore, Angus steers 
selected for low RFI had reduced methane emissions consistent with reduced dry 
matter intake (Hegarty et al. 2007). If productivity can be maintained with reduced 
dry matter intake, then resource use, greenhouse gas emissions, and feed costs would 
also be predicted to decrease unit production output−1. National research programs4 
are evaluating genetic improvements for feed efficiency in beef cattle to reduce feed 
resources, increase production of animal protein without additional feed inputs, and 
reduce greenhouse gas emissions of beef production systems.

10.3.5  Improving Fertility

Livestock fertility is arguably the major factor by which global livestock producers 
could improve the sustainability of animal protein. For example, within the USA, 
89 % of cows bear a live calf each year (USDA 2009), but this number declines to 
50–60 % in South American countries (e.g., Brazil, Argentina, and Chile). Cow-calf 
operations contribute up to 80 % of greenhouse gas emissions unit beef−1 
(Beauchemin et al. 2010) and productivity improvements post-calving cannot com-
pensate for the resource use and greenhouse gas emissions associated with main-
taining a nonproductive cow. Management practices and technologies that improve 
birth rates offer significant opportunities to reduce land and water use, greenhouse 
gas emissions, and feed costs (Capper 2013a).

4 http://www.beefefficiency.org/
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10.3.6  Reducing Losses to Disease

Globally averaged livestock losses due to disease are more than 20 %; thus consid-
erable gains could be made through treating diseases or conditions that have a nega-
tive impact upon livestock performance. For example, prudent use of parasiticides 
in beef cattle improves performance, with associated positive environmental and 
economic impacts (Lawrence and Ibarburu 2007; Capper 2013c). To date, effects of 
many of the less tangible productivity losses within livestock systems such as male 
fertility, clinical and subclinical morbidity, and growth of replacement animals have 
yet to be quantified. Development of new vaccines provides opportunities for tar-
geted protection from losses associated with livestock viruses, including bovine 
viral diarrhea, BVD; bovine respiratory syncytial virus, BRSV; infectious bovine 
rhinotracheitis, IBR; and parainfluenza 3 virus, PI35.

10.3.7  Hormone Use and Sustainability

Consumer aversion to the use of chemicals in food production is often cited as a 
retailer rationale for removing technologies such as hormones, beta agonists, or 
antibiotics from the food supply chain. The market share for organic, natural, or 
local foods is small, but growing. Technologies such as ionophores, steroid implants, 
and beta agonists have had significant roles in reducing environmental impacts of 
ruminant production in those regions where they are registered for use (Capper 
2013b). For example, steroid implants and beta agonists improve growth rates and 
harvest weights which reduce land and water use, as well as greenhouse gas emis-
sions unit beef−1 (Capper 2013b). Removing these production enhancement tech-
nologies from US beef production would increase land and water use, and global 
greenhouse gas emissions, while also resulting in increased imports from countries 
will less efficient production systems (Capper and Hayes 2012).

10.3.8  Genetics and Genomics

Current selection efforts in livestock production, especially beef, have resulted in 
animals with increased growth and carcass qualities. As a result of these selection 
efforts, animals now have a larger mature size with greater maintenance require-
ments, which increase production costs (Williams et al. 2009). However, genetic 
improvement in reproductive performance has not occurred (Garrick 2011). This 
may be attributable to low selection accuracy in traits such as longevity, lifetime 

5 http://purduephil.wordpress.com/2013/10/10/usda-approves-first-combination-mlv- 
vaccine-to-provide-targeted-protection-against-bvd-1b/
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reproductive performance, and fertility (Garrick 2011). Advances in breeding 
programs and best management agricultural practices have produced linear gains 
in global food production equal to 32 million metric tons year−1 (Tester and 
Langridge 2010). However, this rate will need to be increased to 44 million metric 
tons year−1 to accommodate predicted global food production needs by 2050. 
Completion of the Genome Sequencing for cattle (Zimin et al. 2010), goats (Dong 
et al. 2013), and sheep (The International Sheep Genomics Consortium 2009) 
provides the genetic template for using DNA and RNA technologies to improve 
production efficiency of these species. Use of genetic markers for determination 
of parentage has been commercialized with costs of DNA sequencing precipi-
tously decreasing from 1990 to 2012 (Eggen 2012). Genomic selection has been 
put forward as a new breeding paradigm (Meuwissen et al. 2001; Eggen 2012), 
with use of molecular breeding values being combined with traditional expected 
progeny differences as indexes for traits. Fundamental to livestock producers will 
be the combination of new genomic information with traditional pedigree and 
performance data, but the genomic information needs to be cost effective and 
have a high accuracy (Johnston et al. 2012). It is anticipated that rapidly emerging 
DNA and RNA genetic tools (Johnston et al. 2012) will permit the advancement 
of genomic selection programs for individual and multiple traits simultaneously. 
New genetic tools may also allow selection for traits that are difficult to measure, 
such as adaptability and grazing distribution (Bailey et al. 2015). In addition, 
newly emergent genetic field such as epigenetics, which is the study of cellular 
and physiological traits that are heritable and not caused by changes in the DNA 
sequence where inheritance patterns differ even when DNA sequences are the 
same, provides opportunities to turn on or off different sets of genes (e.g., Rada-
Iglesias and Wysocka 2011). Here for example, hair coat color could be modified 
to adapt to seasonal environmental stresses, with hair color darker during the 
colder months and lighter during the hotter months.

10.3.9  Integrated Livestock-Crop Production Systems

Integrated livestock-crop production systems (Sulc and Franzluebbers 2014) are an 
emergent management strategy. Integrated livestock-crop production systems can 
reduce enterprise risk, restore degraded land, increase productivity, diversify pro-
duction, and enhance resiliency of the land (Palmer 2014). In addition, by integrat-
ing livestock with crops as well as with forests, manure from livestock can be used 
as fertilizer to improve soil nutrient status and soil organic matter (Sulc and 
Franzluebbers 2014). Combining crops, livestock, and forestry might be done in 
rotation to capitalize on synergies among the ecosystem components by improving 
physical and chemical characteristics of soils which results in decreasing the need 
of new areas for increased production.
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10.4  Future Perspectives

Livestock production enters a period of opportunity to address increasing efficiencies 
for the provision of animal protein as well as reducing environmental footprints. First, 
the incorporation of adaptive grazing management, with monitoring-informed deci-
sion making, to optimize forage demand with available forage will increase efficiency 
of livestock weight gain on rangelands while providing additional economic benefits 
for producers. This will concurrently reduce negative environmental impacts associ-
ated with improper stocking rate during dry periods and drought, and capture addi-
tional livestock gain during wet periods for increased net economic returns. Second, 
increasing availability and reliability of transportation infrastructure in developed and 
developing countries provide capacity to more efficiently move animals to feed which 
(1) reduces GHG emissions with transportation of feed to animals, (2) reduces land 
degradation associated with drought, and (3) increases animal weight gains due to 
removing constraints in systems that are characterized by extended dry seasons where 
animals typically lose weight. Third, continued advances in genetics for feed efficiency 
and carcass quality provide opportunities to capture additional economic income from 
value-added niche markets for the delivery of animal protein products in highly trans-
parent manner to society with concomitant reductions in the GHG footprint of live-
stock production due to shortened times from birth to harvest. Fourth, improvements in 
birth and weaning rates and reductions in losses to disease and pest provide inherent 
efficiencies to global livestock production to increase provision of animal protein with-
out any increase in land area, thereby again reducing environmental footprints.

With an additional two billion humans and a rise in the middle class by 2050, 
animal protein production will need to increase by 70 % to meet global demand. 
This growth, largely concentrated in the tropical regions of Asia, Africa, and Latin 
America, will require sustainable intensification of livestock production systems. 
Two possible strategies to meet this demand are (1) further increases in “more inten-
sive” production systems that incorporate grains in countries like Brazil to increase 
gain efficiency, reduce time from birth to harvest, and reduce greenhouse gas emis-
sions, and (2) intensification of rangeland systems by interseeding legumes and use 
of bioenergy protein by-products for increased dietary protein, and development of 
forage “hot spots” on the landscape. Further, livestock production efficiencies can 
be increased through (1) adopting a flexible stocking rate strategy to vary livestock 
numbers on rangelands in response to changing seasonal forage availability, (2) 
selecting animals for improved feed efficiency, (3) improving fertility to increase 
birth rates, and (4) reducing livestock losses due to disease and pest pressure. 
Rapidly emerging DNA and RNA genetic tools, combined with completion of 
genomic sequencing for livestock, provide capacity for advancement of genomic 
selection programs for individual and multiple traits simultaneously as well as miti-
gation and adaptation to a changing climate and environmental stresses. In sum-
mary, livestock production systems must intensify their activities by introducing 
knowledge and technology that not only assures sustainable production, but also 
improves transparency for increased confidence in the quality of animal protein.
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10.5  Summary

Ruminant livestock uniquely convert the high cellulose biomass of grasses, forbs, and 
woody plants produced on rangelands, which occupy about 50 % of the world’s land 
surface, as a renewable dietary source of energy and animal protein for human con-
sumption. Globally, increasing incomes in emerging economies of Africa and Asia, as 
well as increased urbanization on these continents, are driving increasing livestock 
numbers and changes in global patterns of livestock production due to greater levels 
of animal protein in human diets. Although livestock production systems have already 
benefited from fossil fuel inputs and many technological and conceptual advances, 
sustainably increasing global animal protein production for human consumption by 
2050 is needed while also reducing the environmental footprint of livestock produc-
tion. Genetic improvement technology involving artificial insemination for breeding 
to increase superior genetic traits, crossbreeding to achieve heterosis or hybrid vigor, 
and emerging use of DNA and RNA technologies combined with the completion of 
genomic sequencing for livestock provide capacity for advancement of genomic 
selection programs through transparent efforts that increase societal confidence in the 
quality of animal protein for consumers, as well as increasing production efficiency 
and reducing land and water use, and greenhouse gas emissions per unit beef. Further, 
increasing abundance of “more intensive”-type production systems that incorporate 
grains, growth hormones, and dietary supplements for improved gain efficiency to 
finish livestock for harvest use fewer resources and have lower greenhouse gas emis-
sions per unit animal protein than “less intensive” or “extensive” systems. Livestock 
producers can interseed legumes and use bioenergy protein by-products for increased 
dietary protein, develop forage “hot spots” on the landscape, use adaptive grazing 
management in response to a changing climate, incorporate integrated livestock-crop 
production systems, improve fertility to increase birth rates, and reduce livestock 
losses due to disease and pest pressure. These management strategies can be used in 
an effort to (1) improve gain efficiency facilitating finishing livestock for harvest 
using fewer resources, (2) reduce time from birth to harvest, and (3) have lower green-
house gas emissions per unit animal protein. Economics of livestock sales for harvest 
are increasingly turning to formula and grid markets, where prices are determined on 
actual carcass qualities instead of the traditional markets that base price on live or 
dressed weights; premiums are paid for carcasses that meet customer demands, 
whereas discounts are associated with less desirable carcasses. Conceptual advances 
in livestock production systems have expanded the utility of livestock in conservation- 
oriented approaches to include (1) efforts to “engineer ecosystems” by altering vege-
tation structure for increased habitat and species diversity, and structural heterogeneity); 
(2) use of targeted grazing to reduce invasive annual grasses and invasive weeds, and 
fuel reduction to decrease wildfires; and (3) improvement of the distribution of live-
stock grazing across the landscape. Livestock production systems need to increase 
their output of animal protein by implementation of knowledge and technology, but 
this production must be sustainable and society needs to have confidence that animals 
were raised in a humane and environmentally acceptable manner such that the quality 
and safety of the animal protein are acceptable for consumers.
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Chapter 11

Adaptive Management of Rangeland Systems

Craig R. Allen, David G. Angeler, Joseph J. Fontaine, Ahjond S. Garmestani, 

Noelle M. Hart, Kevin L. Pope, and Dirac Twidwell

Abstract Adaptive management is an approach to natural resource management 

that uses structured learning to reduce uncertainties for the improvement of man-

agement over time. The origins of adaptive management are linked to ideas of 

resilience theory and complex systems. Rangeland management is particularly 

well suited for the application of adaptive management, having sufficient control-

lability and reducible uncertainties. Adaptive management applies the tools of 

structured decision making and requires monitoring, evaluation, and adjustment of 

management. Adaptive governance, involving sharing of power and knowledge 

among relevant stakeholders, is often required to address conflict situations. 

Natural resource laws and regulations can present a barrier to adaptive manage-

ment when requirements for legal certainty are met with environmental uncer-

tainty. However, adaptive management is possible, as illustrated by two cases 

presented in this chapter. Despite challenges and limitations, when applied appro-

priately adaptive management leads to improved management through structured 

learning, and rangeland management is an area in which adaptive management 

shows promise and should be further explored.
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11.1  Introduction

Adaptive management (AM) is an approach to management that emphasizes 

structured learning through decision making for situations where knowledge is 

incomplete and managers must act despite uncertainty regarding management out-

comes (Walters 1986). Adaptive management produces iterative decisions based on 

information resulting from management, and builds knowledge and improves man-

agement over time (Allen and Garmestani 2015). Natural resource management 

contains numerous uncertainties and ecosystem managers can make better deci-

sions in the future if they can learn, and these ideas underlying AM hold intuitive 

appeal and should be common sense. Indeed, C.S. Holling, the describer of AM, 

recognized, “Adaptive management is not really much more than common sense. 

But common sense is not always in common use” (Holling 1978).

Although AM may be “common sense,” there continues to be confusion regard-

ing what actually constitutes AM. This misunderstanding is largely based upon the 

belief that AM is what management has always been—trial-and-error attempts to 

improve management. However, unlike a trial-and-error approach, AM has explicit 

structure, including a careful description of objectives, hypotheses of problem cau-

sation, alternative management approaches, predicted consequences of implement-

ing management alternatives, procedures for collection and analysis of monitoring 

data, and a mechanism for updating management as learning occurs.

From its inception until the 1960s, fish, wildlife, and range management in many 

nations focused primarily on the management of game and commercially important 

species, including domestic livestock. Game management included such activities 

as the control of predators, the establishment of hunting and fishing regulations, and 

the direct manipulation and creation of habitat considered suitable for target spe-

cies. This focus has gradually broadened and during the last two decades a conver-

gence of the formerly discrete fields of fish and wildlife biology, ecology, rangeland 

ecology, and conservation biology has occurred, reflecting a shift in dominant stake-

holder groups from consumptive to nonconsumptive users (van Heezik and Seddon 

2005). Range management has started to embrace a broader view of management 

that includes non-game species, and management no longer is exclusively focused 

on providing harvestable resources, but increasingly deals with conservation of 

threatened species, invasive species control, and the regulation of populations that 

are perceived as overabundant. Globally, fish, wildlife, and range management has 

followed similar patterns in different countries over the last few decades as interna-

tional boundaries have become more open and communication and travel easier and 

faster. However, attitudes toward “management” and “conservation” still bear the 

stamp of historical contingency and reflect the norms of the cultures and governments 

of the countries within which managers reside.
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A relatively recent trend in fish and wildlife biology is a more explicit focus on 

biodiversity conservation, monitoring, and the protection of endangered species and 

their critical habitat (Baxter et al. 1999). During the 1980s and 1990s, there was an 

increase in awareness of the social issues and uncertainties surrounding fish, wild-

life, and range management (Cutler 1982). Increasingly, managers have implicitly 

or explicitly recognized that managing natural resources includes managing people, 

an area where adaptive management can provide a useful approach.

Adaptive management has been attempted in a variety of settings, including in 

river and watershed management (Habron 2003; Allan et al. 2008; Smith 2011), 

park management (Agrawal 2000; Varley and Boyce 2006; Moore et al. 2011), 

and wildlife harvest management (Williams and Johnson 1995; Johnson 2011), 

with varying success. Varied success is in part because AM is not a panacea for 

the navigation of “wicked problems” (Rittel and Webber 1973; Ludwig 2001) 

and does not produce easy answers. Adaptive management is only appropriate 

for a subset of natural resource management problems in which both uncertainty 

and controllability are high (Fig. 11.1) (Peterson et al. 2003). It is a poor fit for 

solving problems of high complexity, high external influences, long temporal 

extent, high structural uncertainty, and where there is low confidence in assess-

ments—climate change for example (Gregory et al. 2006). Although even in 

these situations, concepts of AM are useful because they emphasize the need for 

clear objectives, flexibility, and learning.

Rangeland management in particular shows promise for application of AM 

(Bashari et al. 2009; Boyd and Svejcar 2009), having a tradition of modeling system 

dynamics (e.g., state-and-transition models) (Westoby et al. 1989; Anderies et al. 
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Fig. 11.1 Adaptive management and scenarios are complementary approaches to understanding 

complex systems. Adaptive management functions best when both uncertainty and controllability 

are high, which means the potential for learning is high, and the system can be manipulated 

(adapted from Peterson et al. 2003)
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2002), identifiable spatial management units (e.g., pastures), clear management 

objectives (e.g., maintain forage production), and reducible uncertainties related to 

management impacts. In this chapter we discuss the techniques and challenges of 

AM and apply them to rangeland systems with two case examples.

11.2  Development of Adaptive Management

Adaptive management was founded in decision approaches of other fields 

(Williams 2011a), including business (Senge 1990), experimental science (Popper 

1968), systems theory (Ashworth 1982), and industrial ecology (Allenby and 

Richards 1994). Adaptive management philosophies in natural resource manage-

ment may be traced back to Beverton and Holt (1957) in fisheries management, 

although the term AM was not used (reviewed in Williams (2011a)). Adaptive 

management did not come into common usage until C.S. Holling, building upon 

his own work on resilience theory (Holling 1973), edited the volume Adaptive 

Environmental Assessment and Management in 1978. The concept of resilience, 

predicated upon the occurrence of more than one ecological state for complex 

systems such as ecosystems, had several ramifications. First, it meant that manag-

ers should be careful not to exceed thresholds that might change the state of the 

system being managed, and that the location of those thresholds is largely 

unknown. Second, for ecological systems in a desired state, management should 

focus on maintaining that regime, and enhancing its resilience, and management 

should not inadvertently erode the resilience of the system being managed. 

Adaptive management was developed as a method to continue management while 

probing the dynamics and resilience of systems using “management experiments” 

to enhance learning and reduce uncertainty (Chap. 6, this volume).

Carl Walters (1986) built upon Holling’s foundational contribution (1973) and fur-

ther developed AM ideas, especially in regard to modeling. Whereas Holling’s origi-

nal emphasis was in bridging the gap between science and practice, Walters 

emphasized treating management activities as experiments designed to reduce uncer-

tainty. Both scientists sought an approach that allowed resource management to con-

tinue while explicitly acknowledging and reducing uncertainties. Walters (1986) 

described the process of AM as beginning “with the central tenet that management 

involves a continual learning process that cannot conveniently be separated into func-

tions like research and ongoing regulatory activities, and probably never converges to 

a state of blissful equilibrium involving full knowledge and optimum productivity.” 

Walters characterized AM as the process of defining and bounding the management 

problem, representing what is known through models, and identifying: (1) assump-

tions and predictions, (2) sources of uncertainty, (3) alternate hypotheses, and (4) 

policies that allow continued resource management while enhancing learning.

Adaptive management has been referenced either implicitly (Beverton and 

Holt 1957) or explicitly (Holling 1978; Walters and Hilborn 1978) for more than 

50 years, but despite a relatively long theoretical history, AM has been difficult to 
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implement in natural resource management. The limited implementation of AM 

stems from four fundamental problems: (1) a lack of clarity in definition and 

approach, with multiple interpretations of AM falling upon a continuum of com-

plexity and design from simple “learning by doing” to more complex processes 

with planning and design linked with evaluation and monitoring (Holling 1978; 

Wilhere 2002; Aldridge et al. 2004); (2) a limited number of successful examples 

(Lee 1993, 1999; McLain and Lee 1996; Moir and Block 2001; Walters 2007); (3) 

management, policy, and funding that favor reactive approaches (Ascher 2001; 

Schreiber et al. 2004); and (4) laws, policy, and management plans built upon 

equilibrium- based conceptions of nature (Garmestani and Allen 2014). These 

challenges have slowed the development of AM and resulted in incomplete and 

inappropriate implementation of AM.

Despite implementation issues, momentum and interest in the subject continues 

to grow. An indication of the growing movement toward taking a more proactive 

approach to natural resource management is the publication by the United States 

Department of Interior of an AM technical guide (Williams et al. 2009) and appli-

cations guide (Williams and Brown 2012), and the policies developed around 

these manuals to:

“Incorporate adaptive management principles, as appropriate, into policies, 

plans, guidance, agreements, and other instruments for the management of resources 

under the Department’s jurisdiction.”—Department of Interior Manual (522 DM 1)

11.3  Process of Adaptive Management

Deciding on the objectives and management options is critical to any management 

approach. This is challenging for natural resource management because social–eco-

logical systems are complex, including multiple objectives and stakeholders, over-

lapping jurisdictions, and short- and long-term effects, and they are characterized by 

multiple sources of uncertainty, both social and ecological (Chap. 8, this volume). 

Decision makers are presented with challenging decisions—predicted consequences 

of proposed alternatives, value-based judgments about priorities, preferences, and 

risk tolerances—often under enormous pressure (economic, environmental, social, 

and political) and with limited resources. This can result in management paralysis, or 

continuation of the status quo, as managers and policymakers become overwhelmed 

by the decision-making process and lose track of the desired social–ecological con-

ditions they are charged with achieving. Resource management can be arduous and 

controversial, particularly with diverse stakeholders. Fortunately, there are methods 

to overcome these pitfalls and maximize the potential for success.

Structured decision making is one method of overcoming management paralysis 

and mediating stakeholder conflicts. Borrowed from the sociological fields, structured 

decision making is an approach to identify and evaluate alternative resource manage-

ment options by engaging stakeholders, experts, and decision makers in the decision 

process and addressing the complexity and uncertainty inherent in resource 
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management in a proactive and transparent manner. Structured decision making uses 

a set of steps to evaluate a problem and integrates planning, analysis, and management 

into a transparent process focused on achieving the fundamental objectives (Fig. 11.2). 

Central to the success of the structured decision-making process are clearly articulated 

objectives, explicit acknowledgement of uncertainty, and transparent incorporation of 

stakeholder interests into the decision process. The conceptual simplicity inherent in 

structured decision making makes the process useful for a variety of decisions.

In addition to structured decision making, AM requires the potential for learning 

through monitoring, evaluation, and adjustment of decisions based on what is learned. 

Combining the essential steps of structured decision making—monitoring, evaluation, 

and adjustment—creates the cycle of AM. Therefore, AM can be seen as a special case 

of structured decision making (Walters 1986; Williams et al. 2002).

11.3.1  Steps of Structured Decision Making

11.3.1.1  Define the Problem

The first step in a structured decision-making process is a clear and concise 

description of the problem and the motivation underlying the need to address the 

problem. Although identifying the problem may seem self-evident, failure to clearly 

Fig. 11.2 The minimum steps necessary to implement a structured decision-making process; 

more complex integration of individual steps may be necessary if future steps clarify the process 

or if the decision is iterative over time
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define the problem to stakeholders and subsequent agreement by stakeholders as to 

the nature of the problem are often cited as the primary reason management and 

policy actions fail. To facilitate this process, decision makers need to ask:

 (a) What decision(s) have to be made?

 (b) What is the scope of the decision?

 (c) Will the decision be iterated over time?

 (d) What are the constraints within which the decision will be made?

 (e) What stakeholders should be involved in the decision process and what are their 

respective roles?

11.3.1.2  Identify Objectives

The centerpiece of the structured decision-making process is a set of clearly elu-

cidated objectives. They define the “why do we care” about the decision by 

describing stakeholder values. Objectives also facilitate the search for alternatives 

and become the metric for comparing and evaluating management outcomes. 

Ideally, objectives are stated with the desired direction of change and in quantita-

tive terms that relate to parameters that can be measured and evaluated. Objectives 

are meant to focus efforts on the importance of the decision in a consistent and 

transparent manner that exposes key trade-offs and uncertainties so decision mak-

ers can generate creative and proactive alternatives. Objectives should be com-

plete, controllable, concise, measurable, and understandable (McDaniels 2000). 

To achieve this requires working closely with stakeholders to identify what is 

important about the decision. The outcome of such efforts may produce a variety 

of objectives that will need to be simplified.

Objectives can be separated into fundamental objectives (the ultimate goals) and 

means objectives (ways of achieving the ends) to ensure that management actions 

really affect the defined problem. For example, “maximize forage” may be an 

important objective for the management of a ranch, but if the property is being man-

aged for multiple objectives including wildlife, forage is primarily important 

because it increases the diversity of wildlife supported. “Maximize forage” is thus a 

means objective for reaching the fundamental objective of “maximizing wildlife 

populations.” Clearly there are other means objectives that would also facilitate this 

fundamental objective (e.g., minimize mortality, maximize forage diversity). The 

benefit of distinguishing the two types of objectives is that the identification of 

means objectives can help lead to alternative management actions, while the 

 identification of fundamental objectives gives a basis for evaluating and comparing 

alternatives. The status of fundamental or means is not an innate quality of an objec-

tive, but rather is context dependent. Consequently, what was a means objective for 

one decision may be a fundamental objective for another.

After developing a careful list of objectives, it can be useful to develop a 

hierarchy, or means-ends diagram, to group similar objectives and clarify the 

links and relationships between means and fundamental objectives. An objectives 
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hierarchy can help clarify the context of each fundamental objective by 

identifying all the important elements that are affected by the decision process 

and demonstrate to stakeholders the importance of all objectives even those that 

are not “fundamental objectives.”

11.3.1.3  Develop Alternatives

Management success is only as likely as the creativity and diversity of manage-

ment alternatives. Unfortunately management paralysis and status quo too often 

limit managers to few options and thereby impede management success. The 

process of identifying management alternatives, like the process of identifying 

objectives, starts with brainstorming. Identifying alternative management 

actions is a process that should be addressed iteratively, as knowledge of best 

practices and the creativity to develop novel ideas should not be expected to 

develop instantaneously. It is important to have a group with a set of interdisci-

plinary skills that represent the larger decision to ensure that the needs of stake-

holders are not overlooked. This is not to say that the stakeholders involved in 

identifying alternative management actions are the same as the larger stake-

holder group, usually they are not. This is primarily due to the technical knowl-

edge necessary to present plausible alternatives. Still there are opportunities 

where the benefit of being naive may present novel actions that might not 

otherwise be considered.

The brainstorming process should begin by identifying alternatives for indi-

vidual objectives, but should also be looking for opportunities when one action 

may fulfill the needs of multiple objectives. Identifying alternatives also means 

acknowledging those actions that must be done (e.g., policy) as well as con-

straints and potential trade-offs between objectives and management actions. It 

is important that the “brainstorming” process focus on developing management 

actions that are (1) designed to address the outlined objectives, (2) built on the 

best known practices, (3) comprehensive enough to include the technical under-

standing for implementation, (4) expose trade-offs between the decision process 

by having mutually exclusive strategies, and (5) achieve the maximum benefit 

for the stakeholders involved.

Once an extensive list of alternatives has been identified, it can be useful to 

group them into strategies based on general similarities in what they aim to 

achieve. Sometimes these represent the needs of specific stakeholder groups or 

specific conditions that could be achieved. For example, management actions 

on a rangeland may be grouped into those addressing the needs of cattle, wild-

life, or diversity; alternatively, they may be grouped based on their ability to 

restore the landscape to 50, 75, or 95 % of historical heterogeneity. Both meth-

ods have merit; the first method makes it clear to the stakeholders what objec-

tives are being met and where trade-offs must occur, and the second minimizes 

the inherent interests of any particular group to make the process less 

contentious.
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11.3.1.4  Exploring Consequences

The list of alternative management actions is only effective if it creates an opportunity 

to evaluate and compare actions in light of the objectives before implementation. It is 

important to realize that the process of identifying management consequences is not a 

value judgment, but an assessment of the likely outcomes of the action(s). Using the 

best knowledge available, this process is an exercise focused on predicting the likely 

outcomes of each alternative and the likelihood that each achieves the desired objec-

tive. Depending upon knowledge of the system this process can be highly quantitative 

where extensive data are modeled and probabilities assigned, or as is often the case, it 

can depend heavily on expert opinion or comparisons to similar systems. In both 

cases, there is a degree of uncertainty associated with predicted outcomes as well as 

the parameters included in the modeling process. Decisions are almost always made 

in the face of uncertainty because system function is rarely precisely understood and 

the effect of management actions is never certain. Uncertainty can make differentiat-

ing among alternatives difficult. It is important that uncertainty be confronted through-

out the decision process and that the uncertainties are identified and the possible 

impacts on the system and the ability to achieve stated objectives documented. These 

uncertainties may be reduced through the addition of monitoring, evaluation, and 

adjustment steps as part of an AM cycle (discussed in detail shortly).

Once the modeling process has predicted the likely outcomes of each management 

action, the next step is to develop a consequence table. The purpose of a consequence 

table is to produce a summary of the anticipated consequences of each potential manage-

ment action on each of the objectives in a table or matrix. A consequence table can take 

a variety of forms, from a simple rating system (e.g., consumer report five-star rating) to 

a complex table with specific probabilities of outcomes and subsequent likelihoods of 

achieving each objective. Independent of the complexity of the underlying models that 

populate the matrix, the purpose of the consequence table is to ease and facilitate direct 

comparison of each management actions’ ability to achieve each objective.

11.3.1.5  Consider Trade-Offs

Ideally the structured decision-making process would lead to a clear management alter-

native that achieves the objectives of all interested parties; unfortunately, this is rarely 

the case. Generally, the process of developing a consequence table will make clear 

which options are the least likely to be effective, but if there are multiple stakeholders 

and multiple objectives most decisions will require a trade-off between the ability of the 

remaining options to achieve each objective. The process of identifying where these 

trade-offs arise is analytical, but the decision process itself is highly value laden and 

dependent upon stakeholders. In most complex decisions, this will involve stakeholders 

choosing between less-than-perfect alternatives. There are a variety of methods to 

facilitate highly value laden decisions by weighting options based on the values of the 

stakeholders and then comparing alternatives to find the “best” compromise solutions. 

However, trade-offs are real and it is unlikely that all parties will be totally satisfied with 
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the eventual outcome. Indeed, the benefit of the structured decision-making process is 

that even if there is disagreement, the process makes the disagreement transparent and 

enables stakeholders to re-evaluate using new knowledge and perspectives.

11.3.1.6  Implement Management Action

The final step in the structured decision-making process is implementation. 

Although this may always seem to be the desired outcome of a decision process, 

social and political pressures to reach “perfection” often impede implementation 

and leave decisions in a continuous state of inaction. To ensure success, managers, 

policymakers, and stakeholders must collaborate to move through the decision pro-

cess in a timely manner to ensure action can be taken. Failure to take action is a 

decision, whether it is made passively or actively.

11.3.2  Monitoring, Evaluation, and Adjustment

The steps of structured decision making are a useful way to begin the planning and 

management process by allowing for transparent decisions, but structured decision 

making alone is not sufficient for AM. In order for a project to be truly AM, there must 

be (1) potential for learning through monitoring and evaluation of results and (2) adjust-

ment of decisions following learning. As such, monitoring and evaluation are key com-

ponents. Ongoing monitoring can be resource demanding and seen as an unnecessary 

expense; budgets often do not incorporate funds and personnel to support monitoring. 

Even when monitoring does occur, it is only as useful as its use in evaluation. Monitoring 

must be conducted rigorously, following a structured protocol, and designed such that 

learning about system dynamics and the impact of management can occur. The learning 

from evaluation must be used to adjust future management.

Monitoring, evaluation, and adjustment are key steps of AM and create an ongoing 

cycle of managing and learning. The cycle of managing and learning can be divided 

into two phases, a setup and an iterative phase (Williams 2011a). The setup phase is 

made up of the structured decision-making steps, while the iterative phase is a cycle 

from decision making to monitoring to evaluation and back again. Learning occurs dur-

ing the iterative phase, but re-evaluation of the structured decision- making process 

should also happen periodically to examine how the context has changed.

11.4  Types of Adaptive Management

There are two prevailing schools of thought emerging from different traditions 

of AM, the resilience-experimentalist school and the decision-theoretic school 

(McFadden et al. 2011). The resilience-experimentalist school emphasizes 
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inclusion of stakeholders throughout the process, active learning about ecosystem 

resilience through experimentation, acknowledgement of cross-scale linkages, 

and potential for surprises in complex systems. Adaptive management involving 

a large degree of stakeholder collaboration has also been called collaborative 

AM or adaptive co-management. The decision-theoretic school includes stake-

holders to properly identify the problem, objectives, and alternatives. Relatively 

simple decision-focused models are then developed following principles of deci-

sion theory to identify the appropriate management action.

The resilience-experimentalist school recognizes a need for bridging organi-

zations to address cross-scale linkages found in nested, complex social–ecologi-

cal systems. Bridging organizations connect stakeholders and policymakers at 

different levels (Olsson et al. 2007). To do so successfully, bridging organiza-

tions must formulate strategies, coordinate joint action, address uncertainty, and 

link diverse stakeholders in a world of increasing complexity. Brown (1993) 

investigated bridging organizations from across the world, and a variety of appli-

cations—regional economic policy in the USA; small-scale irrigation projects in 

Indonesia; and agricultural productivity in Zimbabwe—found that bridging orga-

nizations are independent of stakeholders in a social–ecological system, which 

allows them to negotiate with stakeholders and advocate multiple positions. This 

unique role in the management of social–ecological systems affords bridging 

organizations the capacity to catalyze the formation of policies that are flexible 

and reflective of the realities of ecosystems and institutions (Brown 1993). In 

addition, bridging organizations have the capacity to reduce transaction costs and 

provide a mechanism to enforce adherence to desired policies, despite their lack 

of regulatory authority (Hahn et al. 2006).

Examples of bridging organizations include (1) assessment teams, which are 

made up of actors across sectors in a social–ecological system; (2) nongovern-

mental organizations, which create an arena for trust-building, learning, conflict 

resolution, and adaptive co-management; and (3) the scientific community, 

which acts as a watchdog as well as a facilitator for AM.

The decision-theoretical school applies the tools of decision science to select 

optimal management choices under conditions of uncertainty. A distinction is 

made between passive and active AM. In either case learning occurs, but in pas-

sive management the emphasis is on achievement of the management objective 

with learning a by-product, and in active AM, reducing uncertainty is an objec-

tive and management actions are selected based on the potential for learning 

(Williams 2011a, b).

11.5  Adaptive Management in Rangelands

In this section, we outline the implementation of AM in two case examples that refer-

ence both the decision-theoretical and resilience-experimentalist approach. The first 

example is the US Fish and Wildlife Service (USFWS) Adaptive Harvest Management 
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Plan (AHM), which is often heralded as the most successful case of AM and it 

provides an example of passive AM following the decision-theoretical school. The 

second case is directly tied to the management of rangelands and describes AM in 

prescribed burn associations (PBAs), a private citizen-led management effort in 

rangelands that follows the resilience-experimentalist AM approach.

11.5.1  USFWS Adaptive Harvest Management

Adaptive harvest management (AHM) is one of the most successful efforts to apply 

the principles of AM and demonstrate how to successfully manage natural resources 

through improving our understanding of natural systems through management 

actions. The AM processes of AHM have greatly improved our understanding of the 

harvest potential of waterfowl populations, the ability of managers to regulate har-

vest, and the importance of monitoring and assessment programs to support the 

decision-making process.

Why has AHM succeeded while so many other attempts to implement AM have 

stalled? First, AHM developed a clear and concise objective: maximize long-term 

waterfowl harvest while ensuring long-term viability of waterfowl populations. The 

development and agreement by stakeholders to a concise set of fundamental objec-

tives is paramount to ensuring the success of any AM program. Failure to agree upon 

fundamental objectives will ensure management will fail. The second key to AHM 

success was the simultaneous support for management, research, and monitoring. 

Waterfowl research and management in North America are nearly unequaled by any 

other natural resources management program in terms of history, scope, and invest-

ment (Hawkins et al. 1984). The combination of well-supported management, 

research, and monitoring programs has resulted in a reduction in the uncertainty of 

how waterfowl populations respond to management and enabled managers and poli-

cymakers to meet stated objectives. Unfortunately, attempts to implement AM often 

fail to address all of these requirements. In particular, resources for monitoring and 

research are often undervalued with the outcome being a series of management 

actions with no capacity for understanding the implications of those actions.

The final key to the success of AHM has been the ability to implement manage-

ment and policy decisions based on the best information available. One reason for 

this is that the model predictions have dictated liberal harvest as the supported man-

agement action, meaning tough trade-offs have not needed to be made between 

hunter satisfaction and sustaining waterfowl populations. In many attempts to 

implement AM, the regulatory body charged with implementation of management 

recommendations is unable, or worse unwilling, to implement actions proposed by 

the outcome of the AM process; the body in charge of regulatory control is too often 

a stakeholder in the process of AM with an agenda independent of regulating the 

resource alone. In contrast to AHM, which is regulated by the USFWS with support 

from various stakeholders with parallel interests, several regulatory agencies often 

control resources for a given program, each an independent stakeholder with an 
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independent agenda. Such a situation can make implementation of management 

recommendations challenging, especially if it contradicts long-standing dogma. 

Consider for example the management of Glen Canyon Dam and the waters of the 

Colorado River. Heralded by Congress as an AM success story, the Colorado River 

Adaptive Management Program has fallen short of success despite years of work, 

and the ecological status of the Colorado River and the conflict inherent to the 

development of an AM program continue to worsen (Susskind et al. 2010). The 

regulatory agency that controls the flow of water throughout the Colorado River 

Basin, the Bureau of Reclamation, is also one of the major stakeholders in the AM 

process with an agenda (water storage) that conflicts with several other stakeholders 

and regulatory agencies that manage people and wildlife along the Colorado River 

(e.g., California Department of Water Resources, Mexican National Water 

Commission, USFWS). From these examples one might conclude that AM is diffi-

cult to implement for management of resources where various stakeholders and 

regulators are at odds. Actually, implementation of AM is appropriate in both exam-

ples. The Colorado River Adaptive Management Program example highlights the 

importance of collaboration, the benefits of a single regulatory body, and the need 

to agree upon a priori objectives that guide long-term management decisions despite 

short-term political, societal, economic, or even environmental impacts.

11.5.2  Adaptive Management in PBAs

Prescribed burn associations (PBAs; also referred to as prescribed burn coopera-

tives) have risen to the forefront of prescribed fire management in central North 

America private lands (Twidwell et al. 2013a) and provide an example of the imple-

mentation of the resilience-experimentalist AM approach in rangelands. Prescribed 

fire associations are neighbor-help-neighbor partnerships where members pool 

knowledge, training, and resources to implement prescribed fires for rangeland 

management (Taylor 2005). These associations have emerged as a bottom-up 

response to broad-scale encroachment of Juniperus species and its negative impact 

on multiple grassland services important to rangeland managers (Twidwell et al. 

2013a). We outline how PBAs are now operating under the resilience- experimentalist 

AM framework; however, it is interesting to note that AM was not explicitly consid-

ered during the early formulation of PBAs. Instead, the use of AM has emerged as 

a need to provide solutions to a biome-level threat to rangeland resources. As burn 

associations have matured over the past 20 years, so has their ability to integrate the 

full scope of AM principles outlined previously.

At the heart of PBAs exists a tight coupling among stakeholders, scientists, and 

agency personnel engaged in bridging organizations and shaping decision making. 

University scientists and outreach professionals host workshops regularly, provid-

ing training, scientific outreach, and an open forum that targets adaptive learning 

outcomes among participants. State and federal natural resource agencies recognize 

the joint mission among agencies and landowners, and as a result have started 
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funding prescribed burns associations to help local groups buy equipment and 

conduct prescribed burns. The management objectives of PBAs have triggered 

applied research experiments conducted through a resilience lens, resulting in the 

identification of fire thresholds across alternative states that fire practitioners can 

target and learn from (Twidwell et al. 2013b). Such management-research linkages 

have contributed to the increasing use of high intensity fires in areas that have 

undergone a shift to an alternative state dominated by non-resprouting Juniperus 

trees, while providing a cautionary learning experience for land managers in other 

regions also susceptible to this type of transformation (Twidwell et al. 2013a).

The implementation of AM among PBAs reveals how the resilience- 

experimentalist approach can lead to more flexible policies and legislation. Over the 

last century, controlling and limiting variability in fire behavior has been a central 

priority of natural resource management across the globe. Yet, more flexible poli-

cies are consistently called for in fire management to more closely mimic variation 

in natural fire regimes to manage species dependent upon such variability (Hutto 

2008; Conway and Kirkpatrick 2007; van Wilgen 2013; Odion et al. 2014). In local 

areas, some PBAs, through AM, have successfully shifted regulatory constraints 

governing the use of prescribed fire in the private sector. Special legal exemptions 

have been granted to a small proportion of PBAs to provide flexibility to conduct 

fires during periods of government-mandated outdoor burning bans for restoration 

purposes (Twidwell et al. 2013a). While this has allowed some associations to con-

duct prescribed fires in conditions capable of overcoming woody plant mortality 

objectives, members recognize that legislation can shift to their disadvantage 

(Toledo et al. 2013). As a response, burn associations are moving beyond local affil-

iations of landowners and developing a formal hierarchical structure with existing 

alliances in the state (e.g., Prescribed Burn Alliance of Texas; http://pbatexas.org) 

and region (e.g., Alliance of Prescribed Burn Associations). Ongoing discussions 

are addressing the creation of a national alliance.

Clear recommendations have now been developed for cross-organizational and 

cross-scale monitoring and evaluation of PBA management actions. Such recom-

mendations were provided, in part, to maintain engagement among stakeholders, 

university personnel, and agency professionals throughout both phases of AM—

structured decision making, and monitoring and evaluation—with the intent of 

learning and informing future decisions (Table 11.1).

11.6  Adaptive Governance

Administrative agencies typically change incrementally (Lindblom 1959), and as 

such changes in policy are small because there is not enough information to make 

large overhauls of organization policy. Standard operating procedures often contrib-

ute to organizational inertia, as they slow the bureaucratic process (Allison 1969). 

Further, the lack of organizations matched to the appropriate scale is a significant 

barrier for sound environmental management (Dietz et al. 2003). Within this 
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context, adaptive governance can help overcome this scale mismatch via 

collaboration of a diverse set of stakeholders at multiple scales (Hughes et al. 2005). 

Adaptive governance is a form of governance that incorporates formal organiza-

tions, informal groups and networks, and individuals at multiple scales for purposes 

of collaborative environmental management (Folke et al. 2005). Bridging organiza-

tions, enabling legislation, and government policies can also contribute to the suc-

cess of an adaptive governance framework; governance creates a vision and 

management actualizes the vision (Folke et al. 2005).

Adaptive governance works via sharing of management power and responsi-

bilities and promotes a collaborative, participatory process. It is dependent upon 

adaptive co-management, and adaptive co-management in turn is dependent upon 

social networks for success. Social networks have the capacity to allow for devel-

opment of new ideas, to facilitate communication between entities, and create the 

flexibility necessary for the interplay of the fluid (ecological systems) and the 

rigid (organizations) to be successful for environmental management (Folke et al. 

2005). Leadership has been well established as a critical factor in facilitating 

Table 11.1 Example of how the two-phase process of adaptive management is being implemented 

to foster learning and adjust decision making of prescribed burn cooperatives dealing with 

Juniperus encroachment (adapted from Twidwell et al. 2013a)

Phase I. Structured 

decision making Example of formalizing AM in PBAs

1. Define the problem Juniper encroachment, loss of grasslands, and the services they provide

2. Identify objectives Use fire to prevent juniper encroachment, reduce juniper abundance, 

and restore grassland services

3. Identify 

management 

alternatives

Use mechanical and chemical treatments to supplement fire activities; 

alter grazing practices to increase fuel loading and fire intensity

4. Explore 

consequences

Develop a consequence table summarizing potential consequences of 

each management action and likelihood of achieving objectives

5. Identify and 

evaluate trade-offs

Assess successional trajectory of vegetation following fire, potential to 

trigger invasion of exotic plant or animal species, negative responses 

from neighbors or urban residents impacted by smoke

6. Implement 

management action(s)

Conduct prescribed burns in conditions capable of meeting 

management objectives

Phase II. Monitoring 

and evaluation

7. Monitoring and 

evaluation

Track fire effects on juniper and changes in juniper abundance, the 

reestablishment of grassland vegetation, potential livestock stocking 

rates, and biodiversity and conservation values. Recognize long-term 

monitoring is needed for accurate evaluation of management actions in 

many rangelands (Herrick et al. 2006)

8. Adjustment Adjust management actions and targeted burning conditions based on 

monitoring programs; assess need to adjust structured decision-making 

steps
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good environmental management. Leaders develop and facilitate a vision for 

environmental management, incorporating local knowledge and information 

from social networks (Folke et al. 2005).

Studies of adaptive co-management in Sweden and Canada have concluded that 

this form of management of ecological systems was most effective when there was: 

leadership with vision for the system of interest; legislation that created the envi-

ronment for AM; funds for AM; monitoring of the ecological system; information 

flow (i.e., cross-scale linkages); combination of a variety of sources of knowledge; 

and venue for collaboration (Olsson et al. 2004). These factors are critical to man-

age for resilience in social–ecological systems, as they help to protect the system 

from the failure of management decisions under uncertainty (i.e., imperfect infor-

mation). Adaptive governance is facilitated by informal networks and leadership, 

which creates the capacity for development of novel ideas for environmental man-

agement (Folke et al. 2005). These informal networks have the capacity to generate 

political, financial, and legal support for novel environmental management (Folke 

et al. 2005). Further, adaptive governance is dependent upon polycentric institu-

tions that are redundant (e.g., scale-specific) and are quasi-autonomous (Olsson 

et al. 2006). A comparison of five case studies from around the world concluded 

that in order for a social–ecological system to transition to adaptive governance, it 

must undergo a preparation and a transformation phase, linked by a window of 

opportunity (Olsson et al. 2006).

11.7  Adaptive Management and Law

One of the most significant barriers for managing social–ecological systems is 

that aspects of society, especially the certainty of law and institutional rigidity, are 

not in concert with ecological realities, including multiregimes and nonlinear sys-

tems and responses (Garmestani et al. 2013; Garmestani and Allen 2014). The 

certainty of law and institutional rigidity often limit experimentation that is neces-

sary for AM (Garmestani et al. 2009). This is critical, and some scholars contend 

that environmental governance can only succeed if rules evolve with the system 

of interest (Dietz et al. 2003).

Ecosystem management has been applied within the outdated framework of 

the Endangered Species Act (ESA), but would be better suited for an AM frame-

work (Ruhl 2004). In its current form, the ESA does not have the flexibility in its 

 regulatory language to effectively implement adaptive responses to changing 

environmental conditions (Boyd et al. 2014). The fundamental constraint to AM 

is the current state of administrative law (Ruhl 1998). As the law now stands, the 

procedural rules require a vast amount of work before an agency promulgates a 

rule or issues a permit (Ruhl 2008). This “pre-decision” activity allows for pub-

lic input and prepares agencies for judicial review. Ruhl (2008) contends that 

“agencies will find that interest groups and courts relentlessly will erode adap-

tive agency behavior, using all the tools conventional administrative law puts at 
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their disposal.” Having to operate in an atmosphere where each policy is 

evaluated on the “front-end,” in anticipation of public and legal scrutiny, has 

squelched agencies’ appetite for AM.

US administrative law is a two-step process, in which the first allows for public 

comment on draft documents and alternative options (Ruhl and Fischman 2010). 

The second step is final agency action, which creates “certainty” to the process and 

makes the decision subject to judicial review. This process is based on the assump-

tion that agencies have the capacity to predict the consequences of a “final agency 

action” (Ruhl and Fischman 2010). This establishes a fundamental conflict between 

linear legal processes (i.e., administrative law) based on “stationarity” and environ-

mental management frameworks (i.e., AM) based on the realization of dynamic 

systems characterized by nonstationarity (Ruhl and Fischman 2010).

Only in rare cases, such as AHM and PBAs, has AM been successful within the 

current regulatory framework. In effect, administrative agencies in the United States 

largely do not conduct AM as it was originally conceived (Ruhl and Fischman 

2010). Rather, agencies conduct AM “lite,” a form of partially flexible management, 

because the courts have provided some leeway to AM projects provided they have 

requirements that are legally enforceable (Ruhl and Fischman 2010). The primary 

problem with AM “lite” is that it does not measure up to the standards of AM the-

ory, nor does it hold up under the scrutiny of substantive and procedural law.

11.8  Future Perspectives

Considerable confusion exists regarding what constitutes adaptive management. 

The methods and theory behind AM have been described (here, and citations 

herein), as have the barriers to successful implementation (Allen and Gunderson 

2011). However, implementation remains frequently problematic, with trial-and- 

error approaches described as adaptive management, and frequent application of 

adaptive management to intractable large-scale management problems that are 

inappropriate for adaptive management, largely because controllability is not pres-

ent. A simple process of structured decision making can be applied in such situa-

tions. However, many of the challenges found in range management are appropriate 

for adaptive management, because grazing unit replication is possible and most 

management interventions applied are controlled by managers or landowners. 

Integration of adaptive management and range management should increase the rate 

of learning, necessary in a rapidly changing world.

In order for AM to move past AM “lite” and realize its true potential for 

rangeland management, administrative law will likely need to be reformed. 

Administrative law would then proceed on two trajectories: (1) a fixed-rule track 

that would apply unless an agency can justify otherwise; and (2) an AM track, 

where a new set of administrative law standards specific to AM would hold pre-

cedence, in order to actualize AM as a tool for rangeland management 

(Karkkainen 2005). A recent law review article heeded this call for an AM track 
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and provided a model law for administrative procedures and AM (Craig and 

Ruhl 2014). In particular, the model law highlights the categories of agency 

decision making that are amenable to AM (see Craig and Ruhl 2014).

11.9  Summary

The conceptual underpinnings for AM are simple; there will always be inherent 

uncertainty and unpredictability in the dynamics and behavior of complex ecologi-

cal systems, yet management decisions must still be made. The strength of AM is in 

the recognition and confrontation of such uncertainty. Rather than ignore uncer-

tainty, or use it to preclude management actions, AM can foster resilience and flex-

ibility to cope with an uncertain future, and develop management approaches that 

acknowledge inevitable changes and surprises. Since its initial introduction, AM 

has been hailed as a solution to endless trial-and-error approaches to complex man-

agement challenges. However, it does not produce easy answers, and it is appropri-

ate in only a subset of management problems.

Clearly AM has great potential when applied appropriately. A prime example in 

rangeland management is PBAs, now established throughout the Great Plains. 

Rangelands in general are appropriate for application of AM because of the ability 

to model system dynamics (state-and-transition models), identifiable management 

units across large areas, clear management objectives (e.g., maintain native 

grasses), and reducible uncertainties related to management impacts. Adaptive 

management may be the best way forward for improving how we approach range-

land management, but will require more than most current applications of the strat-

egy. In particular, in order to account for coupled human and natural systems, AM 

will require (at a minimum) legal reform (Craig and Ruhl 2014), integration with 

adaptive governance (Folke et al. 2005), and accounting for scale and cross-scale 

interactions (Garmestani et al. 2013). If these steps are taken, perhaps then AM 

will fulfill its promise for rangeland management.
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Chapter 12

Managing the Livestock–Wildlife Interface 

on Rangelands

Johan T. du Toit, Paul C. Cross, and Marion Valeix

Abstract On rangelands the livestock–wildlife interface is mostly characterized 

by management actions aimed at controlling problems associated with competi-

tion, disease, and depredation. Wildlife communities (especially the large verte-

brate species) are typically incompatible with agricultural development because the 

opportunity costs of wildlife conservation are unaffordable except in arid and semi-

arid regions. Ecological factors including the provision of supplementary food and 

water for livestock, together with the persecution of large predators, result in live-

stock replacing wildlife at biomass densities far exceeding those of indigenous 

ungulates. Diseases are difficult to eradicate from free-ranging wildlife populations 

and so veterinary controls usually focus on separating commercial livestock herds 

from wildlife. Persecution of large carnivores due to their depredation of livestock 

has caused the virtual eradication of apex predators from most rangelands. However, 

recent research points to a broad range of solutions to reduce conflict at the live-

stock–wildlife interface. Conserving wildlife bolsters the adaptive capacity of a 

rangeland by providing stakeholders with options for dealing with environmental 

change. This is contingent upon local communities being empowered to benefit 

directly from their wildlife resources within a management framework that inte-

grates land-use sectors at the landscape scale. As rangelands undergo irreversible 

changes caused by species invasions and climate forcings, the future perspective 

favors a proactive shift in attitude towards the livestock–wildlife interface, from 

problem control to asset management.
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12.1  Introduction

We write this chapter in a time of increasing recognition of the value of rangelands 

as providers of ecosystem services, broadening the traditionally focused view of 

rangelands as areas for the production of commodities from free-ranging livestock 

(Havstad et al. 2007). It is also a time in which ecologists are calling for conven-

tional production-maximizing management approaches to be transformed into a 

“resilience framework” for the stewardship of social–ecological systems (Chapin 

et al. 2009). We are living in the Anthropocene epoch, and have been for quite a 

long time already (Balter 2013), during which we have unwittingly changed just 

about everything on our planet, including the climate. In this time of self-awareness 

of our environmental responsibility, rangelands provide a stage on which new 

approaches to natural resource management can be developed and implemented. On 

a global scale, rangelands are particularly important for wildlife conservation and 

there is urgency in the search for effective ways of reconciling conservation with 

livestock production (du Toit et al. 2010). This is a vast topic with many facets that 

we cannot comprehensively cover and so we focus on what we consider to be the 

key issues, with our treatment of wildlife applying mainly to large (>5 kg) free- 

living mammals. We have structured this chapter to first review some of the main 

conceptual advances over the past 25 years or so, as we see them, at the livestock–

wildlife interface on rangelands. We then suggest the social implications of translat-

ing those concepts—when and where possible—into applications that could 

contribute to rangeland resilience.

12.2  Conceptual Advances at the Livestock–Wildlife 

Interface

Reconciling wildlife conservation with livestock production on rangelands 

requires a departure from the conventional “either/or” model in which conserva-

tion and agriculture are represented by separate, competing sectors of society 

and governmental administration. Integrated approaches are required at the 

landscape scale (Sayer et al. 2013) with local communities empowered to benefit 

from wildlife and livestock together, and with management agencies geared for 

enhancing the resilience of entire social–ecological systems (Biggs et al. 2012). 

Resilient systems can maintain their function, structure, identity, and feedbacks 

by absorbing disturbances and reorganizing within continually changing envi-

ronments (Walker et al. 2004; Chap. 6, this volume). But achieving an integrated 
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approach requires an understanding of the reasons why the sectoral management 

approach persists across most rangelands, together with an understanding of 

how it can be mitigated.

Fundamentally, the practice of livestock production stems from the domestica-

tion of wild species, which has been accomplished through the removal of “wild-

ness” over centuries. That process has built a culture of livestock husbandry that 

sequesters and protects livestock from the ever-present forces of wildness, which is 

obviously necessary in times and places where wildness is overwhelmingly intrac-

table. Now, however, the wildness-to-tameness ratio has long since flipped on most 

of the world’s rangelands and conceptual advances point towards a new and very 

different model for rangeland management, or stewardship (Chapin et al. 2009; 

Walker 2010). Here we review those advances and consider how science and man-

agement might interact to better understand and work with, rather than against, the 

main features that define the livestock–wildlife interface on rangelands.

12.2.1  Competition

Livestock–wildlife competition operates through two sets of processes within the 

social–ecological systems we call rangelands: economic processes influence agri-

cultural and wildlife-based enterprises as sources of income for producer communi-

ties; ecological processes influence the relative efficiencies of livestock and wildlife 

species in utilizing the food and water resources occurring in their shared range.

At the global scale, economic processes generally result in agricultural returns 

outcompeting wildlife returns and the patchwork of land use within rangelands 

intensifying towards croplands and fragmented rangelands (Hobbs et al. 2008). As 

markets, technology, and infrastructure develop, the position of a rangeland on its 

production possibility frontier (PPF) changes (Bastian et al. 1991; Smith et al. 2012) 

with agricultural production becoming specialized, driving down the possibilities 

for wildlife production (Fig. 12.1). The transition begins with a fully intact wildlife 

community (Point A) as still occurs in wildlife reserves, game ranches, and areas 

where diseases (e.g., trypanosomiasis in Africa) exclude livestock. Eventually live-

stock production is so specialized (Point C; irrigated and fertilized pastures, winter 

supplementation, fenced paddocks, etc.) that wildlife production is impossible. In 

some cases, well-regulated hunting for trophies and meat can add to the rangeland’s 

production potential from livestock (Point B), and infrastructure (waterpoints, 

access roads, etc.) provided for livestock production can also be beneficial to the 

sustainable utilization of wildlife. However, in most rangelands the transition has 

proceeded directly to maximizing livestock production (Point C) and restoring the 

wildlife community would necessitate a disproportionate pull-back in agricultural 

production, with unaffordable opportunity costs. Avoiding or overcoming those 

costs—incurred by foregoing land-use opportunities that are incompatible with 

wildlife—requires innovative policies to enable competitive and sustainable returns 

from wildlife to local communities and private landowners (Norton-Griffiths and 
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Said 2010). Wildlife resources on rangelands are especially vulnerable to increasing 

opportunity costs driven by technological advances in exploration for, and exploita-

tion of, groundwater, natural gas, and oil (e.g., Altchenko and Villholth 2013; 

Copeland et al. 2013; Northrup and Wittemyer 2013). Increasingly, arid rangelands 

are being converted to supply agricultural commodity markets (Fig. 12.2) at the 

expense of wildlife habitat. In addition, even the most remote rangelands are influ-

enced by globalization, which can drive price anomalies in certain livestock prod-

ucts. Examples include cashmere wool from goats in Central Asia (Berger et al. 

Arid
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Opportunity

cost
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Fig. 12.2 The opportunity cost of conserving wildlife on a rangeland increases across the rainfall 

gradient, with mesic areas being valuable for agriculture and therefore unavailable as habitat for 

wildlife. In very humid areas the agricultural potential declines but various land-use options (e.g., 

logging followed by cattle production) can still be more lucrative than conserving wildlife for 

ecotourism. Developments in agricultural technology and changing market forces can raise the 

relative value of non-wildlife options and thus inflate the opportunity cost of conserving wildlife 

(from dotted to dashed line, vertical arrow). Then, without a commensurate increase in the value 

of wildlife, the areas in which any particular opportunity cost can be met by wildlife are reduced 

towards the arid end of the gradient (horizontal arrow)
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Fig. 12.1 Production possibility frontiers (PPFs) are represented by hypothetical curves describ-

ing the maximum possible output of goods from wildlife relative to each possible level of output 

of livestock from a shared rangeland. The curve between points A and C is typical, with intensify-

ing livestock production forcing a decline in wildlife resources due to persecution and competition 

for habitats and food. Raising the PPF to include point B is an option where the back-and-forth 

transmission of diseases between livestock and wildlife is not a major concern
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2013) and cattle dung used as fertilizer for organically grown coffee in India 

(Madhusudan 2005). In such cases the producer communities overstock, resulting 

in indigenous herbivores being outcompeted and predators persecuted with added 

intensity because the opportunity costs of tolerating them are hyper-inflated.

Despite the global trend towards degradation and fragmentation of wildlife 

habitats on rangelands, wildlife and mixed wildlife–livestock enterprises can be 

successful in semi-arid rangelands where opportunity costs are low (du Toit 2010). 

Commercial wildlife management (“game ranching”) now predominates over cat-

tle ranching on private land in the dry “bushveld” regions of South Africa where 

climatic, political, and economic changes have increased the relative profitability 

of wildlife enterprises (Carruthers 2008). Elsewhere in the world, some socioeco-

nomic transitions have caused sharp declines in agricultural production resulting 

in land abandonment, most notably in post-Soviet Eastern Europe (Prishchepov 

et al. 2012) and also in Oceania and parts of North America (Queiroz et al. 2014). 

Where land abandonment occurs, low opportunity costs to wildlife conservation 

allow the resilience of social–ecological systems to be rebuilt with projects that 

restore biodiversity and ecological processes.

In the Great Plains of North America, for example, shrinking rural economies in 

the 1980s prompted a proposal that the USA’s federal government should buy back 

failed farmlands and create a vast “buffalo commons” (Popper and Popper 1987). 

Since then, despite political and cultural resistance to that proposal from local com-

munities, and without government buy-backs, the agrarian downtrend has opened 

new opportunities for wildlife restoration. Coordinated initiatives involving the 

nonprofit sector, private landowners, Native American tribes, and federal and state 

agencies are currently using American plains bison (Bison bison bison) as the flag-

ship species for restoring ecologically significant expanses of prairie (Freese et al. 

2007). Similar opportunities exist in Eastern Europe, where abundant habitat is now 

available for European bison (Bison bonasus) in depopulated areas of former farm-

land and rangeland in which livestock numbers have dropped by 60–75 % since the 

early 1990s (Kuemmerle et al. 2011).

The outlook is mixed, however, because in the western USA there are some areas 

that were once rangeland but are being—or already have been—transformed into 

exurban and suburban housing developments. This has been facilitated by the rise 

of the Internet, which enables executives to live in comparatively remote areas 

where they can work from home while enjoying environmental recreation opportu-

nities. The situation is exacerbated in areas with access to both public land and a 

regional airport (Rasker et al. 2013; Fig. 12.3). Thus, whereas livestock ranching 

can be somewhat detrimental to wildlife it does still conserve habitats that are lost 

when converted into housing developments (Hansen et al. 2005).

As for ecological processes, the widespread competitive success of livestock vs. 

wildlife depends on the facilitation of favorable conditions for livestock by humans. 

That is how a small number of livestock species—usually fewer than five in any one 

area—has come to overwhelmingly dominate the herbivore biomass of rangelands 

that were formerly the natural habitats of diverse assemblages of coevolved wild spe-

cies (du Toit and Cumming 1999). The global trend towards sedentary pastoralism on 
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rangelands (Hobbs et al. 2008; Western et al. 2009; Groom and Western 2013) is 

linked as both cause and effect with habitat fragmentation, supplementary fodder 

production, predator eradication, and water provision. In combination those factors 

typically maintain artificially high livestock densities and chronic overutilization of 

the remaining rangeland, outcompeting indigenous herbivores (e.g., Mishra et al. 

2004; Ogutu et al. 2010). Wild ungulates can only coexist with cattle in the few sub-

sistence pastoral systems in which watering points are widely distributed and wildlife 

species are not intensively persecuted (Georgiadis et al. 2007). Wild ungulates gener-

ally do not share watering points with livestock (Sitters et al. 2009) probably because 

of the activities of herders (and their dogs) around watering points. Overall, therefore, 

the combined effect of all aspects of livestock production across most rangelands 

worldwide is that indigenous large herbivores and their predators get ratcheted back 

to isolated habitat refugia and protected reserves. That process is, however, being at 

least partially reversed (large predators excluded) in some areas such as in the western 

USA, where valued game populations are increasingly being allowed to recover on 

rangelands under mixed livestock–wildlife management.

There is growing recognition that some plant–herbivore interactions specific 

to non-livestock large herbivores are potentially valuable and worth conserv-

ing, restoring, or introducing to rangelands. For example, where cattle graze 

Fig. 12.3 Examples of 

urban (above) and exurban 

(below) encroachment on 

rangelands in the western 

United States. Aerial 

photographs show the 

boundary between the 

town of Jackson, 

Wyoming, and the USFWS 

National Elk Refuge 

(above), and a recent 

development outside of 

Pinedale, Wyoming 

(below). Photo credits: 

USGS
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together with wild ungulates in East Africa during the wet season they achieve 

higher weight gains than in foraging areas from which wild ungulates are 

excluded (Odadi et al. 2011). That is probably because zebras (Equus quagga), 

being comparatively large hind-gut fermenters, reduce the stem:leaf ratio in the 

sward and thereby facilitate conditions for grazing ruminants such as cattle. 

Even though competition occurs in the dry season, weight gains from the facili-

tative effect in the wet season are sufficient that a net benefit might be achiev-

able with management. In theory, managers could impose seasonal shifts in 

both the foraging areas used by livestock (currently common) and the mixes of 

livestock and wildlife species foraging together in each season and area (cur-

rently uncommon). In practice, however, there are few areas of rangeland in 

which livestock and wildlife can be actively managed together in a commercial 

operation at the landscape scale. Yet there are mounting scientific arguments in 

favor of selectively exploiting the diverse functional properties of wildlife spe-

cies (du Toit 2011), despite the barriers of command-and-control laws and 

societal inertia.

The megafaunal extinctions that occurred on all continents other than Africa in 

the late Quaternary Period are attributed to a suite of factors that include over-

hunting by humans (Brook and Bowman 2004). Now, introducing morphologi-

cally and ecologically similar surrogates—mostly from Africa—has been 

proposed to restore the ecosystem processes once driven by those now-extinct 

megaherbivores in North America (Donlan et al. 2005) and Australia (Bowman 

2012). Those “rewilding” proposals are contentious because benchmark condi-

tions of archaic ecosystems are unknown, the global climate is continually chang-

ing, and the practicalities are prohibitive (Rubenstein et al. 2006). Also, 

sociopolitical acceptance of the rewilding argument requires a leap of faith in the 

net benefits of quasi-Pleistocene assemblages replete with large predators and 

megaherbivores (Soulé and Noss 1998). Nevertheless, “hybrid” or “novel” eco-

systems (Hobbs et al. 2009) are emerging all the time mainly as a result of unin-

tended species invasions and climate change, as well as the intended engineering 

activities of humans. For example, in the Netherlands 6000 ha of grazing land 

was created from seabed less than 50 years ago and is now a popular wildlife 

refuge called Oostvaardersplassen (Marris 2009). The bold approach adopted 

there was to stock the area with relict breeds of cattle and horses, together with 

indigenous cervids, lagomorphs, and waterfowl that moved in, and allow com-

petitive and facilitative interactions to play out through time. With minimal inter-

vention from managers, Oostvaardersplassen now supports one of Western 

Europe’s richest terrestrial faunas occupying a patchwork of grassland, wood-

land, and wetland habitats. Those plant communities were established naturally, 

mainly from seeds brought in by birds, and the landscape’s heterogeneity is main-

tained by interactions among top-down and bottom-up processes operating 

through herbivory, the climate, and soil.

The ongoing global changes that define the Anthropocene epoch (Zalasiewicz 

et al. 2010) mean that the reference state of an ecosystem cannot be an historic 

condition, but is the most desired of the potential alternative states at some 
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future stage along that ecosystem’s trajectory of change. Some rangelands (e.g., 

in the Great Basin of the western USA) are now so radically altered by invasive 

plants and the fire regimes they support, on top of past overgrazing, changing 

land use, and ongoing climatic changes, that managers cannot restore them to 

their former states (Davies et al. 2012). They are either drifting through hybrid 

states towards thresholds of irreversible change or are reorganizing as novel 

ecosystems and so historic benchmark conditions are irrelevant and misleading. 

Within these novel ecosystems the basis for classifying species as “native,” 

“exotic,” or “feral” has become unclear, apart from legal mandates to conserve 

native threatened and endangered species.

Conserving ecological resilience involves conserving the full suite of functional 

types within a species assemblage, which entails developing a functional typology 

(cataloging the key functional types and quantifying their equilibrium biomass densi-

ties) for each target ecosystem. This is an emerging challenge for wildlife ecologists, 

many (perhaps most) of whom are reluctant to shift from their professionally trained 

focus on the taxonomic typology of the pristine state of the ecosystem at some bench-

mark stage in history. Nevertheless, while conservation biologists debate whether it is 

right or wrong (e.g., Doak et al. 2014; Marvier and Kareiva 2014), biodiversity is inevi-

tably managed more for what it does than for what it is. Building resilience in trans-

formed rangelands would involve finding the “right” combination of large herbivores 

to represent the particular mix of functional types (e.g., large-, medium-, and small-

bodied grazers and browsers) needed to reach a feasibly desired state of the rangeland 

in question. This would enhance heterogeneity at the plant–herbivore interface, facili-

tate processes such as nutrient cycling and seed dispersal, and diversify the portfolio of 

options for stakeholders in the social–ecological system. If the need for a functional 

type could not be filled by species native to the geographical area, or by local livestock 

breeds, then it would be pragmatic to trial selected exotic species within an adaptive 

management framework. A key management consideration would, however, be the 

feasibility of controlling introduced species where they are desired and preventing them 

from invading where they are not, which could be difficult or impossible.

12.2.2  Disease

The impacts of pathogens and parasites were historically ignored by wildlife 

ecologists who mostly considered disease as a compensatory form of mortality. 

That was probably because, with the exception of acute disease outbreaks, 

infectious diseases were not easily observed and those disease outbreaks that 

did result in large-scale die-offs were perceived as random one-time events. 

Only by knowing the disease status of individuals, and following them through 

time, do some of the underlying processes become apparent. Due to these obser-

vational challenges the importance of disease to the functioning of ecosystems 

was undervalued.

J.T. du Toit et al.
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12.2.2.1  Development of Disease Ecology as a Discipline

One of the key developments in disease ecology was when May and Anderson (1979) 

explored how disease dynamics might change when the host population is considered 

to be dynamic rather than assumed to be constant. Then, depending on the specifics 

of how the parasite is transmitted, disease can emerge as a strong factor regulating the 

host population. This development probably sounds obvious to many ecologists, but 

at that time much of disease ecology was borrowed from studies on humans, in less 

variable populations. Many principles of wildlife disease ecology continue to be 

derived from human systems, where the datasets tend to be richer (Grenfell et al. 

2002). However, there are several important ways in which wildlife populations are 

likely to differ from human or livestock populations: wildlife populations fluctuate 

more; reproduction is more closely tied to resources and population density; move-

ments can be more localized; and predation can interact with disease. These differ-

ences, independently or in combination, can have important management implications. 

For example, “critical community size” is the population size required for a disease 

to persist. The concept is implicit in the rationale of those managers who are inclined 

towards reducing a wildlife population’s size as a disease control strategy. It origi-

nated from analyses of measles, which dies out in cities smaller than about 200,000–

300,000 people (Bartlett 1957; Grenfell et al. 2002). With humans the number of new 

susceptible individuals recruited into a population tends to be highly correlated with 

population size. This is also to be expected with livestock, but wildlife populations 

near carrying capacity have much-reduced recruitment and so the number of new 

susceptibles required for the disease to persist might not be correlated with total pop-

ulation size (Lloyd-Smith et al. 2005).

Even when episodic, diseases can have long-term effects on ecosystems (Dobson 

and Hudson 1986). For example, rinderpest, a morbillivirus of artiodactyls 

(Plowright 1962), was introduced to Africa in the late nineteenth century and caused 

massive die-offs across sub-Saharan Africa before being eradicated in the early part 

of the twenty-first century. This outbreak and subsequent die-off resulted in a large- 

scale release of herbivory on trees and shrubs by ungulates, triggering long-term 

disturbances across the African savanna biome, such as in northern Botswana 

(Vandewalle and Alexander 2014). Similar ecosystem-level effects, this time acting 

through release of predation on insects, might occur as a result of the ongoing epi-

demic of a fungal pathogen (Geomyces destructans) causing white-nose syndrome 

in bats in eastern North America (Frick et al. 2010).

Developments in disease ecology have followed a similar progression as those in 

general ecology. First there was a focus on population dynamics of the host and/or 

pathogen and issues of density dependence for each. This was followed by work on 

spatial structure and metapopulations (Hess 1994, 1996a, b). More recently, disease 

ecology has branched out to multi-host/multi-pathogen interactions (Jolles et al. 

2008; Viana et al. 2014), community-level interaction networks (Lafferty et al. 

2006), and the effects of biodiversity on disease dynamics (Johnson and Thieltges 

2010; Johnson et al. 2013).
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Research on the effects of biodiversity on disease dynamics has been motivated, 

in part, by the example of Lyme disease (Ostfeld and Keesing 2000). The causative 

bacterium Borrelia burgdorferi is hosted by white-footed mice (Peromyscus leuco-

pus) that reach higher densities in less diverse ecosystems where mammalian meso-

predators and avian raptors are rare or absent. An ensuing debate has concentrated 

on whether this represents a general relationship between higher biodiversity and 

lower disease or if this is idiosyncratic and system-specific (Lafferty 2012). Yet for 

parasites with complex lifestyles—such as trematodes, cestodes, nematodes, acan-

thocephalans, chytridiomycetes, oomycetes, and myxosporeans that move between 

multiple host species to complete their life cycles—there are multiple different 

mechanisms by which “dilution” or “decoy” effects could moderate disease preva-

lence (Johnson and Thieltges 2010). The debate over the impact of biodiversity on 

disease is similar to the debate over the mechanisms by which biodiversity may 

affect ecosystem processes (Loreau et al. 2001; Hooper et al. 2005).

Traditionally parasites and pathogens were, and mostly still are, viewed as things 

to be controlled or eradicated where possible. More recently, however, researchers 

have been investigating the effects of parasites on ecosystem function and whether 

a stable and resilient ecosystem has a rich parasite assemblage (Hudson et al. 2006; 

Vannier-Santos and Lenzi 2011; Hatcher et al. 2012). Similarly, there is an explo-

sion of research on the microbiome, or the microbial community within an indi-

vidual, and how that community composition affects nutrition and obesity, immune 

function, disease risk, cancer, and so forth (Kau et al. 2011; Vannier-Santos and 

Lenzi 2011). Healthy wildlife populations are not necessarily devoid of pathogens 

(Stephen 2014) but have a mix they coevolved with and which protect them from 

invasions of novel types.

12.2.2.2  Management of Wildlife Diseases

In rangelands, various zoonoses (rabies, bovine tuberculosis, brucellosis, etc.) can 

be hosted by wildlife species but are most commonly transmitted to humans through 

their domesticated animals. For example, brucellosis, which affects most pastoral 

societies, is one of the most common zoonotic infections worldwide with more than 

500,000 new cases annually (Pappas et al. 2006). Also, because human populations 

in rangelands depend to greater or lesser degrees on domesticated animals for their 

livelihoods, nonzoonotic diseases with wildlife reservoirs, such as foot-and-mouth 

disease, are also of concern. Political and social controversies at the interface 

between domesticated and wild animals in rangelands are thus likely to include 

disease issues of some type (Kock et al. 2010).

Such controversies are heightened by the poor success rate of campaigns to 

eradicate diseases in wildlife reservoirs, with the notable exception of fox rabies 

in Europe where a safe and effective vaccine bait was available (Brochier et al. 

1991). In systems where diseases co-circulate in livestock and wildlife, control 

efforts can be successful when they are targeted in livestock, such as with rinder-

pest for example (Mariner et al. 2012; Roeder et al. 2013). Similarly, in Spain, 

J.T. du Toit et al.
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brucellosis in red deer (Cervus elaphus) declined as a result of control efforts in 

livestock (Serrano et al. 2011). In these cases the wildlife populations were not 

competent disease reservoirs, failing to sustain the infection without co-circula-

tion through livestock. In cases where wildlife populations are competent reser-

voir hosts, control efforts are complicated by social, logistical, and ecological 

factors (e.g., Donnelly et al. 2006).

Culling and increased hunting of wildlife are often proposed to control wildlife 

diseases but they are seldom effective. First, it might be difficult to achieve the nec-

essary hunter participation to create large reductions in host density (e.g., Heberlein 

2004). Many hunters will want to maintain high densities to maximize their future 

hunting opportunities. Second, the cost of culling wildlife, particularly in a test and 

cull strategy, can be very high and so is only applicable to localized operations 

(Wolfe et al. 2004). One of the rationales for culling wildlife is that disease trans-

mission might be positively correlated with host density (Lloyd-Smith et al. 2005). 

Although plausible, this assumption is not always supported by data and even if 

transmission is density-dependent, culling can have adverse consequences. For 

example, culling badgers (Meles meles) to control bovine tuberculosis in Britain 

causes the disease to spread even further due to social disruption, with surviving 

badgers roaming more widely to find mates (Bielby et al. 2014). In addition, 

increased hunting in regions of easy access might locally aggregate wildlife in areas 

of limited hunter access even if the regional density declines.

Part of the problem, at least for diseases that can be transmitted back and forth 

between livestock and wildlife, is that disease control measures used on wildlife 

are based on those developed for livestock. Therein lies a mismatch in spatial 

scale, because livestock can be intensively managed within fences at the ranch 

scale but wildlife populations are free-ranging at the landscape scale (Bienen and 

Tabor 2006). There is also a mismatch in temporal scale because disease eradica-

tion campaigns are typically continuous for livestock but in wildlife they can be 

tactically scheduled to take advantage of episodic natural disturbances. For exam-

ple, in the Kruger ecosystem of South Africa, buffalo (Syncerus caffer) in herds 

with a higher prevalence of bovine tuberculosis lose condition faster during dry 

seasons (Caron et al. 2003). It follows that any attempts to minimize the disease in 

the buffalo population should be reserved for immediately after droughts, which 

occur about once per decade. That is when die-offs of 50 % or more leave a smaller 

population size to contend with, and presumably a much reduced proportion of 

infected animals (du Toit 2010).

For rangelands in particular, progress in reducing—or at least accommodat-

ing—the risks of wildlife-borne diseases to livestock will depend upon the better 

integration of veterinary practice and epidemiology with disease ecology. As a 

case in point, before brucellosis was virtually eradicated in cattle in the USA it was 

transmitted to elk (Cervus canadensis) and bison in the Greater Yellowstone Area, 

where it has repeatedly been transmitted back to cattle from elk (Rhyan et al. 

2013). Free- ranging elk are now increasing in the area in which brucellosis is 

endemic and so the veterinary achievements in fighting the disease in livestock 

over the past 75 years must now be followed by ecologically based adaptive 
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management approaches to control the spread of the disease in elk (Rhyan et al. 

2013). Devising such approaches for any wildlife host of a livestock disease will 

depend upon studies at the landscape scale and population level to understand such 

issues as: seasonal movements between feeding areas; joining-and-leaving behav-

ior of contagious individuals moving between social groups; use of habitats at key 

times for disease transmission; effects of climate on the dynamics of populations 

and the aggregation and dispersal of groups and individuals; and responses to fear 

induced by hunting and predation. In addition, there are calls for trade policy 

reforms to relax stringent veterinary regulations such as those responsible for vet-

erinary cordon fences in southern Africa (Fynn and Bonyongo 2011; McGahey 

2011; Thomson et al. 2013). There, the fences have decimated migratory wildlife 

populations that, in the longer term, could be more valuable to local communities 

than export-quality beef. At a minimum, certain wildlife species should be destig-

matized as disease vectors, such as bison in North America and buffalo in South 

Africa, because disease-free herds can be established and used to restock areas 

where they can safely comingle with cattle.

12.2.3  Predation

Considering the obvious risks that large predators impose on humans and the ani-

mals they depend upon for their welfare, it is not surprising that large predators are 

now threatened worldwide (Ripple et al. 2014). The geographic expansion of human 

activities results in large predator populations becoming increasingly fragmented 

(Woodroffe 2000), for example the Iberian lynx Lynx pardinus (Rodriguez and 

Delibes 1992) and the African lion Panthera leo (Riggio et al. 2013). Most species 

have become extirpated from parts of their range with, for example, the African lion 

having lost ~85 % of its range in the last 500 years (Morrison et al. 2007). This 

global erosion of large predator guilds raises concerns about the loss of natural pre-

dation as an ecosystem process. In a visionary article, Hairston et al. (1960) sug-

gested “the world is green” because herbivore populations are limited by their 

predators and so major ecosystem-level effects should result from the dwindling 

abundance and distribution of apex predators. Fifty years later, evidence is mount-

ing that apex predators represent a functionally important component of stable eco-

systems (Sergio et al. 2008; Ritchie and Johnson 2009; Estes et al. 2011; Ripple 

et al. 2014). Their effects flow through trophic cascades, in which lethal and nonle-

thal interactions between predators and prey drive sequential responses down the 

food chain. Artificially replicating predation is problematic because sport hunting 

or culling is selective and episodic, being a pulse disturbance instead of the press 

disturbance imposed by an intact, coevolved, predator guild. As is characteristic of 

a press disturbance, the ecosystem-level effects of predators are most apparent when 

they are either removed or reintroduced. For instance, in some regions of the world 

the eradication of large predators has resulted in problematically high densities of 

native and feral herbivores, with associated impacts on biodiversity (Terborgh et al. 
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2001). Examples include feral horses Equus caballus in the western USA (Garrott 

1991), wild boar Sus scrofa in western Europe (Sáez-Royuela and Tellería 1986), 

and white-tailed deer Odocoileus virginianus in eastern North America (Côté et al. 

2004), for which the ecological effects of their population irruptions are similar to 

those following the introduction of large herbivores to predator-free islands 

(Allombert et al. 2005a, b; Martin et al. 2010). Conversely, some evidence suggests 

that the reintroduction of wolves Canis lupus to Yellowstone National Park in 1995 

triggered a trophic cascade that is ultimately contributing to changes in plant com-

munities as different as riparian thickets and montane grasslands (White et al. 2013). 

The interactions are, however, complex and cannot be predicted from trophic 

dynamics alone (Marshall et al. 2014).

Prey populations are directly influenced by the consumptive effects of predation 

but there are also indirect, nonlethal influences arising from fear-driven behavioral 

responses of prey to their risk of predation. The “ecology of fear” (Lima 1998; 

Brown et al. 1999; Laundré 2010) is now an accepted subdiscipline focusing on how 

prey populations respond to predation risk across a suite of response variables 

including spatial movement and habitat use (Creel et al. 2005; Valeix et al. 2009a; 

Courbin et al. 2015), temporal niche (Valeix et al. 2009b), vigilance level (Laundré 

et al. 2001), group size (Creel and Winnie 2005), and so forth. Spatial heterogeneity 

in predation risk and corresponding behavioral adjustments of prey give rise to “a 

landscape of fear” (Laundré et al. 2001, 2014), which might then influence ecosys-

tem structure and function (Ripple et al. 2001; Ripple and Beschta 2006; Kuijper 

et al. 2013). Predator-induced behavioral adjustments by prey might involve ener-

getic costs and physiological responses (Creel et al. 2007; Barnier et al. 2014) that 

can ultimately affect prey demography (Creel and Christianson 2008; Christianson 

and Creel 2010; Zanette et al. 2011). Indeed, predators could have a greater effect 

on prey demography through fear than through direct consumption of individual 

prey (Preisser et al. 2005). For livestock on rangelands the indirect effects of preda-

tors are likely to include decreased conception rates and weaning weights (Howery 

and DeLiberto 2004; Steele et al. 2013). On the other hand, apex predators dominate 

intraguild relations (Palomares and Caro 1999; Caro and Stoner 2003) such that a 

collapse in an apex predator population typically results in the phenomenon of 

mesopredator release (Prugh et al. 2009; Ritchie and Johnson 2009), which can 

have negative implications for biodiversity conservation (Johnson et al. 2006).

Overall, by promoting biodiversity and trophic web integrity, apex predators con-

tribute to the resilience of ecosystems challenged by biological invasions (Wallach 

et al. 2010), disease outbreaks (Pongsiri et al. 2009), and climate change (Wilmers 

et al. 2006). Conservation of apex predators is now considered a worldwide priority 

and, as a result, large carnivores have been reintroduced to several ecosystems 

(Hayward and Somers 2009). Because large carnivores roam in the matrix outside 

protected areas (Woodroffe and Ginsberg 1998; Elliot et al. 2014a), people in range-

lands have an especially important role to play in their conservation. The livestock 

production that defines these social–ecological systems is inevitably associated with 

an entrenched antipathy towards large predators across all continents. Evidence never-

theless indicates, at least in the USA, that feasible  management options exist for 
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conserving large predators on rangelands without compromising the economic viabil-

ity of the ranching lifestyle (Shivik 2014). Solutions require an understanding of how 

predators directly and indirectly influence livestock production either positively or 

negatively (Fig. 12.4). First, overabundant wild ungulate populations are associated 

with an increased risk of disease transmission to domesticated animals and an increased 

risk of zoonosis. Predators regulate prey populations and also comb out the sick and 

weak individuals, thereby contributing to animal health in rangelands. Additionally, 

they provide carrion for scavengers such as vultures (Wilmers et al. 2003), which have 

a controlling influence on the spread of diseases (Sekercioglu 2006). Some apex pred-

ators are facultative scavengers and so they interact indirectly with obligate scaven-

gers by competing not only at their own kills, but also at carcasses they have stolen or 

found. Second, the dynamics of herbivory and fire are tightly coupled (Gill et al. 2009; 

Holdo et al. 2009) and fire is fundamental to rangeland ecology (Bond et al., this vol-

ume), so predators and diseases can influence a rangeland’s structure and function 

indirectly via the fire regime. Third, abundant wild ungulate populations can create 

political tensions and socioeconomic costs on rangelands, as demonstrated by elk and 

feral horses in the western USA, which could be reduced by apex predators (Beschta 

et al. 2013). Finally, numerous studies have highlighted the perverse consequences of 

apex predator persecution, which include mesopredator release. Sheep ranchers in the 

Rocky Mountains of the USA, for example, might come to appreciate the drop in 

coyote density caused by the return of wolves (Berger and Gese 2007), given that 

 depredation by coyotes is commonly perceived as an important factor in the declining 

sheep industry (Berger 2006).

Apex

predators

Meso-

predators

Scavengers

Wild

ungulates
Livestock

Disease

Food

DepredationCarcasses

Plant

biomass

Fire

Fig. 12.4 Apex predators 

can influence rangeland 

ecosystems in ways that 

are far more complex than 

their best-known role as 

problem animals 

responsible for livestock 

depredation. Interactions 

can be direct (solid arrows) 

and indirect (dashed)

J.T. du Toit et al.



409

Creativity is needed in employing effective tools and management practices to 

mitigate the negative effects of predators because the problem is globally urgent. 

Despite drastically declining populations in most large carnivore species, human–

carnivore conflicts are steadily increasing (Treves and Karanth 2003; Woodroffe 

et al. 2005) with the most common reason being depredation on livestock (Sillero- 

Zubiri and Laurenson 2001; Thirgood et al. 2005). Examples of “problem” preda-

tors include lions, leopards Panthera pardus, spotted hyaenas Crocuta crocuta, 

cheetahs Acinonyx jubatus and wild dogs Lycaon pictus in Africa (e.g., Ogada et al. 

2003), wolves and lynx in Europe (e.g., Sunde et al. 1998), wolves, coyotes Canis 

latrans and grizzly bears Ursus arctos in North America (e.g., Knowlton et al. 

1999), pumas Puma concolor and jaguars Panthera onca in South America (e.g., 

Palmeira et al. 2008), and tigers Panthera tigris and snow leopards Panthera uncia 

in Asia (e.g., Bagchi and Mishra 2006).

Lethal control of predator populations has been the common rule for centuries 

but applied research over recent decades has developed a diverse “toolbox” for 

effective conflict mitigation (Breitenmoser et al. 2005; Thirgood et al. 2005; Shivik 

2014). Technological advances have brought new methods of nonlethal deterrence 

(Shivik 2006) and predator-proof fencing, which can be used with or without 

changes in husbandry practices and guarding (Ogada et al. 2003, Woodroffe et al. 

2005). Additionally, financial instruments can offset the costs of the conflicts and 

ameliorate human–carnivore coexistence (Dickman et al. 2011). With human–wild-

life conflict, and especially depredation, being one of the most widespread and 

urgent issues facing conservation biologists today (Inskip and Zimmermann 2009), 

the publication rate in this field has steadily increased over the past 25 years 

(Dickman 2010). Emerging from this burgeoning literature are three branches of 

research into the prevention or mitigation of human–carnivore conflicts:

12.2.3.1  Consequences of Lethal Control

Lethal control, whether nonselective population reduction, illegal persecution of the 

species (snaring, poisoning), or retaliatory killing in the context of problem-animal- 

control policy, has been practiced for centuries. However, in territorial species (as 

most carnivores are), removal of a territory holder creates a vacuum that is rapidly 

filled by neighboring individuals or dispersers. This has been demonstrated for lions 

in Zimbabwe, where some territories outside the protected area of Hwange National 

Park were successively filled as its occupants were, one after another, removed by 

sport hunters (Loveridge et al. 2007; see also van de Meer et al. 2014 for territorial 

drift in wild dogs). Because of reduced levels of intraspecific competition, vacant 

territories are particularly attractive to dispersing subadults, which are often less 

efficient hunters than adults and less able to compete for occupied territories. 

However, compared with residents, dispersers are more daring and thus more likely 

to use human-dominated landscapes (Elliot et al. 2014a) and kill livestock (Patterson 

et al. 2004). Hence, the vacuum effect caused by indiscriminate retaliatory killing 

might not only compromise the viability of some carnivore populations (Woodroffe 
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and Ginsberg 1998) and disrupt their social stability (e.g., increased infanticide, 

Swenson et al. 1997; Loveridge et al. 2010—and delayed dispersal, Elliot et al. 

2014b), but also be counterproductive for the mitigation of the human–carnivore 

conflicts. Hence, maintaining resident carnivores without disrupting their social 

structure is likely the most effective way forward to efficiently control livestock 

depredation (Fig. 12.5). Indeed, Bromley and Gese (2001a, b) showed that steriliza-

tion successfully reduced coyote depredation on sheep by removing the seasonal 

spike in nutritional demands imposed by provisioning pups, while territorial and 

social behaviors were maintained. Hence, resident (“better-behaved”) sterile coy-

otes can be used as a management tool to exclude itinerant sheep-killing coyotes.

12.2.3.2  Carnivore Behavioral Ecology in Human-Dominated Landscapes

It is now recognized that carnivores create a landscape of fear for their prey (Laundré 

et al. 2001). What is less recognized is that carnivores themselves live in landscapes 

of fear too. People kill carnivores when they are perceived as a threat and so the 

spatial ecology of carnivores is influenced by their fear of humans. Studies on 

wolves (Theuerkauf et al. 2003) and lions (Valeix et al. 2012; Oriol-Cotterill et al. 

2015a) have shown changes in the behavior of carnivores in the vicinity of human- 

dominated areas, as indicated by spatial avoidance, temporal shift, change of travel 

Fig. 12.5 In its most simple form, conflict between humans and large predators on rangelands is 

driven mainly by some level of depredation on livestock resulting in a negative perception that 

leads to retaliatory killing (blue boxes). However, large predators have important functional prop-

erties at the ecosystem level and so there is a mounting need to address the conflict. Recent research 

reveals that local people’s perceptions of the conflict are influenced by a variety of factors that can 

be channeled into finding smarter solutions (green boxes)
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speed, use of suboptimal habitats, and so on. Carnivores appear to balance the ben-

efits of accessing livestock with the costs associated with livestock raiding, support-

ing the hypothesis that fear influences the behavioral ecology of carnivores in 

human-dominated landscapes (Oriol-Cotterill et al. 2015b). This raises new possi-

bilities for the tactical use of fear in managing human–carnivore conflicts (Fig. 12.4) 

just as hunting for fear has been proposed to induce strong behavioral responses in 

ungulates as a way of diverting them from areas where their impacts are undesired 

(Cromsigt et al. 2013).

12.2.3.3  Human Attitudes

Traditionally, research on human–carnivore conflicts has focused on the numeri-

cally tractable aspects of ecology and economy. However, the killing of predators 

is not always simply retaliatory and so the social drivers of human attitudes have 

to be identified (Lindsey et al. 2005; Dickman 2010; Macdonald et al. 2010; 

Guerbois et al. 2012). The difference between expected and observed outcomes of 

mitigation measures is likely to lie in the mismatch between common assumptions 

made by conservation practitioners and the perceptions and attitudes held by local 

people (Calvacanti et al. 2010; Dickman 2010; Marchini and Macdonald 2012). 

This can explain why one conflict mitigation effort might be successful in one area 

but fail elsewhere. In a study inspired by social sciences, Marchini and Macdonald 

(2012) revealed that the intention of ranchers to kill jaguars in Brazil is influenced 

not only by the perceived impact of jaguars on livestock but also by attitudes (an 

individual’s personal feelings about killing a jaguar), subjective norms (an indi-

vidual’s perception of whether important people would approve), and descriptive 

norms (an individual’s perception of whether other people would do the same 

thing). Human–human antagonisms about response options can lie at the core of a 

human–wildlife conflict and so the relevant social issues have to be teased out 

(Fig. 12.5) before workable mitigation measures can be devised (Marshall et al. 

2007; Peterson et al. 2010).

12.3  Societal Implications of Integrating the Management 

of Wildlife and Livestock

Globally, rangelands are crucial for wildlife conservation and much has been writ-

ten about why and how to conserve wildlife while maintaining livestock in semi- 

arid ecosystems (see du Toit et al. 2010). Yet implementation is the crux of the 

problem because rangelands, which comprise about 40 % of global land cover, 

include countries with the lowest standards of governance that are home to the 

most impoverished and war-torn segments of humanity. Responsibility thus rests 

with societies occupying rangelands in those other parts of the world where recon-

ciling agriculture with wildlife conservation is an achievable goal. Conventional 
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approaches to natural resource management place social–ecological systems on 

disappointing trajectories because the economically (and therefore politically) 

dominant sectors of agriculture and mining outcompete the environmental sector, 

commonly with negative implications for the sustainable livelihoods of local com-

munities. As an alternative to this “sectoral approach,” a review conducted for the 

UN’s Convention on Biological Diversity distilled out a “landscape approach” 

(Sayer et al. 2013). The principles of that approach strive for the integration of 

sectoral priorities for the long-term benefit of human livelihoods within defined 

landscapes. In a western USA rangeland, for example, a ranching landscape might 

comprise cattle production on private and public land, mineral extraction, wind and 

solar energy production, irrigated cultivation, hunting and other recreational activi-

ties, and small-scale commerce and industry in rural towns. The landscape approach 

would aim to muddle through land-use conflicts by fostering an integrated long- 

term perspective by, and for, the diverse stakeholders across all active sectors in 

that ranching landscape. In some cases this is beginning to happen where agencies 

are realizing that building local support is the key to cooperative efforts that mini-

mize the potential for legal challenges.

Competition between wildlife and livestock can be both actual and perceived, 

with perceived competition prevailing especially where livestock owners—and 

sometimes land owners—derive no tangible benefits from wildlife (Ranglack et al. 

2015). The absence of benefits is likely because they are not allowed by command- 

and- control laws administered by government agencies. For example, the North 

American model of wildlife management rests on the doctrine that wildlife is held 

in trust by the government for the public and therefore cannot be owned or mar-

keted. That model has resulted in many conservation successes but is at odds with 

global evidence of bottom-up models being more effective for ecosystem conserva-

tion, especially in rangelands (Victurine and Curtin 2010). Now, because ranchers 

in the USA still control access to their land, they can sell temporarily exclusive 

access to outfitter operations whose clients have acquired hunting licenses from the 

state. This inclusion of outfitting operations into a mixed income system does not 

happen easily, because it represents a new way of doing business on ranchland and 

a break from the historic community service provided by ranchers to local hunters 

(Haggerty and Travis 2006).

In the USA, state fish and wildlife management agencies depend on fishing and 

hunting license revenue and so they are most responsive to the demands of their 

hunter constituency. This commodity orientation discounts ecosystem services and 

brings wildlife management into direct competition with livestock production for 

three main reasons: (1) high-value game species include ungulates (such as elk) that 

share food and diseases with livestock; (2) revenue from wildlife goes to the rele-

vant management agency whereas livestock supports local ranching livelihoods; (3) 

ranchers with permits to graze on public land are required (by a federal agency) to 

immediately destock if range quality deteriorates, but without commensurate 

 reductions (by a state agency) of wild ungulate populations. Even where wild ungu-

late population densities are not high enough to measurably reduce range quality for 

livestock, negative effects are perceived and such beliefs are entrenched in ranching 
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communities that have railed against officialdom for generations (Ranglack et al. 

2015). Now, the natural resource management paradigm of the twenty-first century 

is all about “resilience thinking” (Walker and Salt 2006; Allen et al. 2011; Curtin 

and Parker 2014) within a landscape approach (Sayer et al. 2013). For the USA this 

implies the empowerment of local institutions (counties, landowner associations, 

grazing associations, etc.) and landowners to economically benefit from, and 

actively participate in, the management of the local wildlife resource (threatened 

and endangered species aside), requiring substantial changes to the prevailing North 

American model of wildlife management.

An example to illustrate the motivation for the above changes can be found in the 

intermountain rangelands of the western USA. There, quaking aspen (Populus trem-

uloides) forests are vulnerable to chronic browsing of sprouts from the rootstock 

and when aspen stands die off they are typically replaced by coniferous woodland. 

This aspen-to-conifer shift and associated changes to ecosystem function exert neg-

ative impacts on biodiversity (Seager et al. 2013). There is also a catchment-wide 

decline in water yield for runoff and groundwater recharge (LaMalfa and Ryel 

2008). Major browsers of aspen sprouts are elk and deer, for which state wildlife 

agencies set population objectives to satisfy the hunting lobby, which in turn gener-

ates important revenue for the agencies through license fees. To achieve their popu-

lation objectives for elk and deer, state wildlife agencies typically suppress predator 

populations (Beschta et al. 2013). Hunting “tags” are a valuable commodity but 

local communities earn no share of the hunting revenue from public lands. 

Furthermore, around the Greater Yellowstone Area, expanding elk herds occurring 

at higher densities are boosting the spread of elk-borne brucellosis that is now being 

transmitted back to cattle (Rhyan et al. 2013). The costs of elevated elk and deer 

densities in upland catchments thus ultimately settle on local communities that 

incur negative impacts on their ranching enterprises and on the downstream avail-

ability of water for agricultural and urban needs. Finally, integrated management of 

herbivory (by wildlife and livestock), forest dynamics, hydrology, and animal health 

is bedeviled by the fact that each falls within the domain of a separate state or fed-

eral government agency. Meanwhile, in the absence of an integrated approach, the 

biodiversity of these rangelands is being eroded by exurban housing developments 

(Hansen et al. 2005).

Wildlife has to contribute meaningfully to community-level economies and 

become integrated with livestock and other land uses to enhance adaptive capacity 

at the landscape scale. Although still anathema to many in the North American 

wildlife profession, such concepts have been tested elsewhere and lessons can be 

learned. For example, since the latter decades of the twentieth century, integrated 

conservation and development projects (ICDPs) have been the cornerstone of most 

schemes to alleviate concurrent crises in human welfare and biodiversity conserva-

tion in developing countries. Success is contingent upon government hierarchies 

passing down appropriate authority to lower levels, or at least allowing revenue 

sharing, so that rural communities may develop a proprietary interest in their local 

wildlife resources. One such concept emerged in Zimbabwe in the late 1980s in the 

form of CAMPFIRE, a program empowering peasant farmers in communal lands to 
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benefit directly from the wildlife around them. The rapid success of CAMPFIRE in 

strengthening rural communities and fostering bottom-up conservation has made it 

an object lesson in the international development sector (Frost and Bond 2008). 

Unfortunately, ICDP schemes are vulnerable to autocracy and institutionalized cor-

ruption (Garnett et al. 2007) yet that does not diminish the concept’s potential in 

countries with better governance. It offers an example of how a tightly legislated 

top-down wildlife management model can be transformed into a bottom-up model, 

enabling wildlife to contribute to the resilience of social–ecological systems, with 

particular application in rangelands (Ranglack and du Toit 2016).

12.4  Future Perspectives

Achieving the effective integration of livestock and wildlife management at the 

landscape scale requires the negotiation of multiple social and political barriers, and 

for many rangelands the opportunity might be lost before adequate change can occur. 

Nevertheless, there is mounting evidence that rangelands can be managed for both 

livestock and wildlife where the costs of competition, predation, and disease can be 

offset by mixed revenue streams and facilitated grazing. In affluent countries there 

are additional possibilities including marketing strategies, such as labeling livestock 

products as “wildlife-friendly,” which might allow for additional premiums to be 

charged to help offset costs. In developing countries, integrated conservation and 

development projects (ICDPs) are advocated, funded, and technically supported by 

foreign aid agencies and international conservation organizations (Garnett et al. 

2007). Corruption, poverty, and weak institutions hamper conservation on the range-

lands of developing countries, but the flip side has problems too. Paradoxically, the 

developed countries that support ICDPs in developing countries have poor records 

of bringing back and adopting the best practices that have emerged. Tightly legis-

lated and compartmentalized government agencies that exert centralized top-down 

control are not conducive to the emergence of an integrated landscape-scale 

approach. Local communities on rangelands have to muddle through the process of 

building their own management frameworks, for which they need technical support 

from extension services and cooperation from government agencies.

Completely overcoming a “wicked” problem such as livestock–wildlife conflict 

is virtually impossible because it is too complex to be clearly defined and so there is 

no clear solution. Nevertheless, progress towards at least a partial solution should be 

possible with the coordination of efforts in an integrated approach at the landscape 

scale. The key change for rangelands will be a shift in policies and incentives to 

sustain ecosystem services despite the pressure for commodity production (Havstad 

et al. 2007; Norton-Griffiths and Said 2010). Wildlife communities are integral to 

such services and so wildlife and livestock have to be, and can be, woven together 

into an integrated management framework if resilient rangelands are to be sustained 

for the long-term benefit of the people who live off them. But how might these 

changes come about and what forces will drive them?
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In the context of social–ecological systems, it appears that transformations—

whether intended or unintended, desirable or undesirable—are most likely to occur 

when crises force stakeholders to find new ways of doing business (Chapin et al. 

2009). The future perspective for rangelands, already affected by the increasing 

frequency and duration of drought conditions associated with global climate 

change, is not lacking in crisis scenarios. In some areas, such as privately owned 

commercial ranchland in southern Africa, drought crises have already driven tran-

sitions from cattle-based to wildlife-based enterprises that have transformed the 

local ranching culture (Carruthers 2008). Yet a transformation of that type is only 

possible where indigenous wildlife communities and their habitats, and therefore 

the adaptive capacity of the system, remain sufficiently conserved. The lesson for 

global rangelands is twofold: (1) drought-driven transformation is to be expected; 

(2) the outcome could be more desirable than the alternatives if the management 

objective for the wildlife–livestock interface is proactively shifted from problem 

control to asset management.

12.5  Summary

Integrating wildlife conservation with livestock production is implicit in the para-

digm shift from production maximizing to resilience building in the social–eco-

logical systems known as rangelands. Globally, rangelands are especially 

important areas for wildlife conservation in return for which wildlife can provide 

benefits to local communities, both directly through consumptive and noncon-

sumptive uses and indirectly through the facilitation of ecosystem services. The 

main issues to accommodate are human–wildlife conflicts arising from competi-

tion, disease, and predation. Economic competition tends to relegate wildlife con-

servation to the arid side of the rainfall gradient for rangelands, where opportunity 

costs are low. Elsewhere, wild ungulates are generally outcompeted because 

humans facilitate conditions for livestock, persecute wildlife, and fragment and 

transform natural habitats.

Diseases that co-circulate through livestock and wildlife populations are difficult 

to control because veterinary protocols developed for livestock at the ranch scale are 

seldom effective on free-ranging wildlife populations at the landscape scale. 

Consequently there have been few successes in effectively controlling “wildlife dis-

eases,” many of which were transmitted to wildlife from livestock in the first place. 

Discussions about controlling diseases that affect livestock on rangelands tend to 

focus on imposing a spatiotemporal separation at the livestock–wildlife interface. 

That is simply necessary in certain circumstances but a pragmatic view is needed of 

the trade-offs associated with blanket animal health policies that enforce such 

 separation. Innovative trade policy reforms are needed before intact wildlife 

communities can share rangelands with commercially produced livestock, adding 

adaptive capacity to their social–ecological systems.
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Just as with diseases, pragmatic approaches to conserving large predators on 

rangelands require that societal stigmas be overcome. Apex predators have been 

extirpated from most of their former ranges but a growing literature demonstrates 

their diverse and previously underestimated effects at the ecosystem level. This 

is despite the inevitable association between large carnivores and livestock dep-

redation, so achieving their effective conservation is an immense challenge. 

Recent methodological advances do nevertheless enable some innovative 

approaches to mitigating human–carnivore conflicts. These include the use of 

fear as a tactic to promote learning among resident carnivores without disrupting 

their social structures. Additionally, the development of a nonlethal toolbox of 

deterrence methods and changes in livestock husbandry practices should be help-

ful in shifting the balance between persecution and acceptance of large predators 

in rangeland ecosystems. Retaliatory killing can be counterproductive albeit nec-

essary in certain circumstances as a short-term response to placate affected live-

stock owners. Sterilization is a management-intensive option to stabilize 

localized populations of territorial predators and is likely to have longer-term 

effectiveness than lethal control. Finally, carnivore conservation cannot be suc-

cessful without the support of local communities and so the key to coexistence is 

an understanding of the drivers of human attitudes to large carnivores. Conflict 

mitigation requires a balance of practical solutions, outreach, and the best avail-

able information on both the ecology of the carnivore species concerned and the 

human dimensions of the problem.

Mounting evidence confirms that functionally intact wildlife assemblages have 

properties of importance at the ecosystem level. To conserve and restore such func-

tional properties, policy changes and extension programs are needed for local com-

munities to become proprietors of at least a segment of the local wildlife resource. 

The global experience is that livelihoods on rangelands are most likely sustained in 

the face of externally driven challenges if communities can self-organize within 

resilient social–ecological systems. Resilience can be enhanced by weaving wildlife 

into the frameworks of those systems, which requires that centralized wildlife man-

agement agencies adapt to “resilience thinking.” Proactive management of the live-

stock–wildlife interface is integral to the process of strategizing for climate-driven 

transformations of global rangelands.
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Chapter 13

Invasive Plant Species and Novel Rangeland 

Systems

Joseph M. DiTomaso, Thomas A. Monaco, Jeremy J. James, 

and Jennifer Firn

Abstract Rangelands around the world provide economic benefits, and ecological 

services are critical to the cultural and social fabric of societies. However, the prolif-

eration of invasive non-native plants have altered rangelands and led to numerous 

economic impacts on livestock production, quality, and health. They have resulted in 

broad-scale changes in plant and animal communities and alter the abiotic condi-

tions of systems. The most significant of these invasive plants can lead to ecosystem 

instability, and sometimes irreversible transformational changes. However, in many 

situations invasive plants provide benefits to the ecosystem. Such changes can result 

in novel ecosystems where the focus of restoration efforts has shifted from preserv-

ing the historic species assemblages to conserving and maintaining a resilient, func-

tional system that provides diverse ecosystem service, while supporting human 

livelihoods. Thus, the concept of novel ecosystems should consider other tools, such 

as state-and-transition models and adaptive management, which provide holistic and 

flexible approaches for controlling invasive plants, favor more desirable plant spe-

cies, and lead to ecosystem resilience. Explicitly defining reclamation, rehabilita-

tion, and restoration goals is an important consideration regarding novel ecosystems 

and it allows for better identification of simple, realistic targets and goals. Over the 

past two decades invasive plant management in rangelands has adopted an  ecosystem 
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perspective that focuses on identification, management, and monitoring ecological 

processes that lead to invasion, and to incorporating proactive prevention programs 

and integrated management strategies that broaden the ecosystem perspective. Such 

programs often include rehabilitation concepts that increase the success of long-

term management, ecosystem function, and greater invasion resistance.

Keywords Ecosystem resilience • Successional management • Novel ecosystems • 

Management • Rehabilitation • Resilience

13.1  Introduction

The economic impact of invasive plants on livestock production includes interfering 

with grazing practices, lowering yield and quality of forage, increasing costs of 

managing and producing livestock, slowing animal weight gain, reducing the qual-

ity of meat, milk, wool, and hides, and poisoning livestock (DiTomaso 2000). In 

rangelands, these noxious invasive plants were estimated to cause $2 billion (USD) 

in annual losses in the USA (Bovey 1987), which is more than all other pests com-

bined (Quimby et al. 1991).

In the USA, the most prevalent invasive plants have been estimated to occupy 

between 41 and 51 million hectares of public and private land (Duncan et al. 2004) and 

they continue to spread at a rate of about 14 % per year (Westbrooks 1998) with no 

expectation that this rate will decline. Moreover, invasive plants have invaded over 

half of the non-Federal rangelands and they comprise more than 50 % of the plant 

cover in 6.6 % of these lands (USDA 2010). In Australia, more than 600 exotic plant 

species are recorded within rangelands, with 160 of these identified as threats to biodi-

versity (Grice and Martin 2006; Firn and Buckley 2010), and 20 considered Weeds of 

National Significance. Therefore, the challenges posed by invasive plants in range-

lands are of serious concern and it is expected to increase in the next several decades.

Although it is difficult to assign a monetary value to the adverse consequences of 

invasive plants, they also adversely impact all categories of ecosystem services that 

are provided by healthy functional rangelands. Healthy rangelands not only provide 

economic importance around the world, but also multiple ecosystem services that 

benefit millions of people in both rural and urban areas. These services include food, 

fiber, clean water, recreational opportunities, and open space, minerals, religious sites, 

aesthetics, and natural medicines (Havstad et al. 2007; Rudzitis 1999). Furthermore, 

rangelands provide important nontraditional ecological services, including biodiver-

sity, wildlife habitat, and carbon sequestration (Havstad et al. 2007).

Many invasive plant-infested areas have experienced drastic changes in vegeta-

tive structure and function, including plant community composition and forage 

quantity and quality. Plant invasion can reduce biological diversity, threaten rare 

and endangered species, reduce wildlife habitat and forage, alter fire frequency, 

increase erosion, and deplete soil moisture and nutrient levels (DiTomaso 2000). In 

various quantitative assessments, invasive plants have been estimated to decrease 

J.M. DiTomaso et al.
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range productivity by 23–75 % (Eviner et al. 2010), native plant diversity by 44 %, 

and abundance of animal species by 18 % (Vilà et al. 2010). In addition, they have 

increased fire frequency and intensity and the amount of area burned, as well as the 

prevalence of other invasive species (Mack et al. 2000). For example, the domi-

nance of Bromus tectorum dramatically shortened the fire frequency intervals 

throughout the Great Basin region of the USA, leading to near elimination of much 

of the native shrub vegetation (Whisenant 1990). Even in tropical areas of Hawaii 

the invasion of non-native warm- and cool-season grasses has provided an abun-

dance of fine fuels, which have increased fire frequencies (D’Antonio and Vitousek 

1992). This has subsequently led to dominance by more fire-tolerant non-native 

species (Fig. 13.1).

The management of invasive plants on rangelands can be more complicated and 

difficult than weed control in agricultural systems. While control often refers to pop-

ulation reduction of a target weed or invasive plant species, the term management is 

more inclusive and encompasses control efforts within the crop or rangeland ecosys-

tem. In agricultural areas, for example, the goal of weed management is to eliminate 

all vegetation to enhance the yield of the desired crop. In contrast, on rangeland 

systems the goal of a management program is to preserve or enhance all desired spe-

cies, yet remove one or a few undesirable species. In addition, unlike agricultural 

Fig. 13.1 Bromus tectorum (downy brome or cheatgrass) infested area within the western United 
States. The invasive European grass has converted millions of hectare from sagebrush steppe to 
annual grasslands
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production that occurs on private lands, approximately 50 % of rangelands in the 14 

western US states are in public ownership that are managed by several federal, state, 

or local government agencies (Havstad et al. 2007). However, both public and pri-

vately owned rangelands confront similar challenges regarding invasive plant man-

agement. In many other areas of the world, particularly in less- developed countries, 

the motivation to manage invasive plants is more a function of human subsistence 

and survival, than it is about increased profitability or a return to a traditional historic 

community (Hobbs et al. 2009). In these situations, it would be expected that inva-

sive plant management would be seldom attempted. These considerations can impact 

decisions or approaches to managing invasive plants on rangelands.

The overarching goal of this chapter is to summarize proactive strategies, and 

their corresponding conceptual frameworks that offer the greatest success in achiev-

ing desired outcomes in invasive plant management programs on rangelands. Our 

specific objectives are threefold. First, our goal is to clearly define relationships 

between invasive plants and ecosystem services, and to identify management sys-

tems that yield the greatest overall return of ecosystem services. To achieve this goal 

requires greater emphasis on important ecosystem services that can be realized 

through a more integrated management program, as well as to recognize under what 

conditions invasive species removal is possible. The concept of novel ecosystems 

may be more realistic for severely invaded and modified ecosystems. Second, our 

objective is to discuss the societal implications of novel ecosystems, the services 

they provide, and the consequences of short-, medium-, and long-term management 

activities. Integrated within a management program is the need for prevention strat-

egies, including predictive models for assessing invasion risk and understanding the 

biological causes of succession and invasion, and flexible restoration strategies to 

maximize the success of converting degraded communities into functional systems. 

Our final objective is to provide a theoretical framework for recovery of degraded 

communities that contrasts reclamation, restoration, and rehabilitation and the 

expected outcomes and costs for each approach.

13.2  Scope of the Invasive Plant Problem

The widespread invasion and undesirable impacts of rangeland invasive plants have 

been recognized for well over 100 years. Much of the private rangeland in the west-

ern USA is now occupied by a variety of invasive plant species (Fig. 13.2). In the 

USA alone, it is estimated that there are over 3000 non-native plant species that 

have become naturalized and are able to maintain self-sustaining populations within 

rangelands (Kartesz 2010). However, only 37–60 non-native species are considered 

of major economic and ecologic importance (DiTomaso 2000). Many of these inva-

sive plants were introduced with the genuine intention to improve ecosystems for a 

specific land use objective. Some of these introductions have proven successful, but 

many have not (Cook and Dias 2006).

In the western USA, several annual grasses (Bromus hordeaceus (soft brome), 

Avena barbata (slender oat), and Lolium perenne ssp. multiflorum (Italian ryegrass)) 
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and perennial grasses (Phalaris aquatica (hardinggrass), Pennisetum ciliare (buffel-

grass), and Eragrostis lehmanniana (Lehmann lovegrass)) were intentionally intro-

duced as forage species or as potential crops (e.g., Isatis tinctoria (dyer’s woad)). 

However, the majority of invasive species, particularly thistles, were accidentally 

introduced as contaminants in seed, transported on equipment and vehicles, or in fur 

and clothing (DiTomaso 2000). By comparison, the Australian Commonwealth 

Plant Introduction Scheme was initiated in 1929, and over-time introduced more 

than 5000 species of grasses, legumes, and other forage and browse plants,  including 

woody species (Cook and Dias 2006). In tropical Australia, 13 % of introductions 

have become a problem, with only 5 % being considered useful for agriculture 

(Lonsdale 1994). Low (1997) suggested that 5 out of 18 of Australia’s worst tropical 

environmental invasive plants were intentionally introduced as pasture grasses. The 

degradation of these natural ecosystems, including rangelands, has generally 

occurred despite the best intentions of improving an ecosystem to provide ecosys-

tem services people desire (Fig. 13.3).

Fig. 13.2 Non-federal rangeland were invasive plants are present (USDA 2010)
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Among the invasive rangeland plants in the USA, annual bromes (Bromus spp.) 

are the most pervasive and problematic. Of the annual bromes species, Bromus tec-

torum (cheatgrass, downy brome) is by far the most problematic and now infests 23 

million hectares (Duncan et al. 2004) and 28 % of all non-Federal rangelands (USDA 

2010). Downy brome was first introduced to the western USA in 1861, and by the 

early 1900s was widely distributed in many rangelands, particularly Artemisia spp.-

dominated (sagebrush) ecosystems that were overgrazed (Billings 1994). In these 

areas, it altered the natural fire regime to replace native, perennial species as the 

dominant vegetation (Whisenant 1990). Similarly, Centaurea solstitialis (yellow 

starthistle) was introduced from Chile to California around 1850 and to other South 

American countries even earlier (Gerlach 1997). By the early 1900s it was a common 

invasive plant of rangelands, roadsides, grain fields, and alfalfa fields in  northern 

California and Argentina, where it has outcompeted most native annual species. 

Today it is estimated to infest nearly six million hectares of rangeland in the USA 

(Duncan et al. 2004). Some of the other widely distributed and problematic range-

land invasive species in the western USA include medusahead (Taeniatherum caput 

-medusae), other Centaurea species, especially diffuse knapweed (C. diffusa) and 

spotted knapweed (C. stoebe), musk thistle (Carduus nutans), Canada thistle 

(Cirsium arvense), and leafy spurge (Euphorbia esula). Combined they are estimated 

to infest about 16 million hectares in the USA (Duncan et al. 2004). One of the most 

Fig. 13.3 Mitchell grassland normally dominated by native perennial grass (Astrebla spp.) 
invaded by the African shrub Acacia nilotica (prickly acacia). Unlike the western United States, 
this invasive shrub has converted large expanses of the Mitchell grasslands to scrubland
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important rangeland invasive species in Australia, Echium plantagineum (Paterson’s 

curse, salvation Jane) was introduced from the Mediterranean region in 1843, and by 

1900 it was well established in rangelands of southeast Australia (Parsons and 

Cuthbertson 2001). Like Centaurea solstitialis, it has impacted native plant diversity, 

as well as pasture legumes, in Australian grazing lands (Cullen and Delfosse 1985). 

While invasive plants can cause broad-scale changes in plant communities, historical 

cultural practices, particularly overgrazing, can increase invasive plant establishment 

and proliferation. For example, by 1895 overgrazing of rangelands in several 

Canadian provinces and 16 western states of the United States (US) led to dense 

infestations of Salsola tragus (Russian-thistle) (Young and Evans 1979).

13.2.1  Ecosystem Services

While the detrimental effects of invasive plants in rangelands and other plant com-

munities are well documented, there are many instances where they provide benefits 

to the ecosystem (Eviner et al. 2012). Typically, however, there are trade-offs 

between positive and negative impacts of invasive plants. This is most apparent in 

highly altered and degraded landscapes where abiotic conditions are so degraded 

that native species are unable to naturally recover and recovery may not be possible 

even when mediated by restoration efforts. In these systems, invasive plants may 

provide a number of beneficial services, including reduced soil erosion, regulation 

of pests and disturbance regimes, purification of air and water, increasing habitat for 

pollinators and other species, providing nurse sites for native plant establishment, 

and facilitating phytoremediation (Diaz et al. 2007; Richardson and Gaertner 2013).

Invasive plant species were even intentionally introduced to restore key ecosystem 

services in some degraded systems (Eviner et al. 2012). These services included live-

stock or wildlife forage, wildlife habitat, erosion control, honey source plants, and 

medicinal or ornamental value (Duncan et al. 2004). For example, in California the 

largely unintentional introduction of non-native European winter annual grasses, such as 

Bromus hordeaceus (soft brome), Avena barbata (slender oat), and Lolium perenne ssp. 

multiflorum (Italian ryegrass) have greatly altered the survival of grazing- intolerant 

native perennial grassland communities to only a fraction of their original composition 

(Murphy and Ehrlich 1989). Today, however, these annual grasses are considered desir-

able and productive forage species, particularly in the Central Valley and foothill grass-

lands of California. In other parts of the world, including the USA and Australia, 

non-native perennial grasses were also intentionally introduced for increased forage 

production, drought tolerance, and soil stabilization (D’Antonio and Vitousek 1992; 

Cook and Dias 2006; Lonsdale 1994). Among the more widely planted perennial grasses 

include, Agropyron cristatum (crested wheatgrass), Pennisetum ciliare (buffelgrass), 

Eragrostis lehmanniana (Lehmann lovegrass), and Eragrostis curvula (African 

lovegrass; Australia). All these species present significant trade-offs, depending on the 

region in which they had been introduced.
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Despite the use of some invasive plants to provide ecosystem services, there is a 

general lack of understanding of how to predict and manage, or even measure, the 

effects of invasive species on ecosystem services (Eviner et al. 2012; Jeschke et al. 

2014). This can limit the decision-making ability of land managers, yet ecosystem 

services are increasingly being used as criteria for prioritizing efforts to remove or 

manage invasive plants. In many situations, the focus has shifted from preserving 

the historic species assemblages within a particular site, to conserving the function-

ality and services provided by the existing plant community (Hobbs et al. 2011).

13.2.2  Novel Ecosystems and Restoration

While there are a number of factors that contribute to the severity of impacts of non- 

native plants on ecosystems, ecologists have recently recognized that these impacts 

may be a symptom of shifting environmental conditions that will no longer support 

the native community (Eviner et al. 2012; Hobbs et al. 2009). These “novel ecosys-

tems” occur because the species composition and function of greatly altered ecosys-

tems have been completely transformed from the historic system (Hobbs et al. 

2009) (Fig. 13.4). In these situations, invasive species may not be dramatically dis-

rupting ecological processes, but rather, they may be sustaining or restoring impor-

tant ecosystem services under a different set of environment conditions.

Novel ecosystems can be the consequence of abiotic changes brought about 

through impacts of climate, land use, pollution, CO2 and atmospheric nitrogen 
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Fig. 13.4 Creation of novel ecosystems via biotic or abiotic change (modified from Suding et al. 
2004). The “range of variability” and the adaptive four-phase cycle of a natural ecosystem are col-
lapsed into the range of values found in zone A. (a) An ecosystem is altered by directional envi-
ronmental drivers (A → B) or the addition or loss of an important species (A → C). (b) Once in the 
new state (either B or C), internal restructuring due to new biotic and abiotic interactions further 
alters community composition through changes in abundances or species losses, and through 
changes in biogeochemical interactions (from Seastedt et al. 2008)
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enrichment, altered disturbance regimes, and urbanization (Steffen et al. 2004). 

These abiotic changes will almost certainly lead to subsequent changes in species 

composition and biogeochemical cycling that can irreversibly alter the system from 

its historic condition (Seastedt et al. 2008). In addition to abiotic changes, biotic 

modifications may also contribute to the development of novel ecosystems. These 

biotic changes may include new species invasions (plants or animals, including live-

stock), local extinction of keystone species or ecosystem engineers.

While some ecosystems remain intact, many, if not most, are novel and have an 

altered structure and function with unprecedented combinations of species under 

new abiotic conditions, compared to historic systems. This is an important starting 

point for the development and prioritization of invasive species management pro-

grams (Seastedt et al. 2008; Perring et al. 2013). However, it is likely that these 

novel systems are capable of further transformation and may not necessarily repre-

sent a resilient community. This is an important consideration in identifying desired 

outcomes and long-term management strategies that are designed to maximize eco-

system function and services, yet build and maintain ecological resilience (Eviner 

et al. 2012). Innovation, adaptation, and social flexibility will be required to attain 

these goals (Seastedt et al. 2008).

Many restoration efforts have the objective of recreating the historic landscape, 

despite the uncertainty associated with what is actually the “natural” ecosystem 

(Hobbs et al. 2009; Jackson and Hobbs 2009). In most cases outside of Europe and 

Asia, for example, the historic or “natural” ecosystem is defined as what was pres-

ent before Europeans exerted their widespread influence on landscapes (Black et al. 

2006; Bowman 1998). The goal of restoring ecosystems back to their “natural” state 

can only be effective when the historic range of variability in abiotic and biotic 

feedback mechanisms are still present (Seastedt et al. 2008). This may be feasible 

in some systems, for example, high elevation meadows, forests and riparian areas or 

remote and isolated wildlands, where invasive species have had only a limited 

impact. Alternatively, if the definition of a historic system is broadened to include a 

certain amount of modification and addition of new species, it may not be possible 

to conserve or restore the site to near-historic conditions, yet it may represent a 

functionally similar system (Hobbs et al. 2009). With an even broader definition of 

a historic system, it is possible to restore the key features and functions of the eco-

system, without the constraint of eliminating all nonindigenous species. Land man-

agers need to take these considerations into account when assessing the feasibility 

of success, economic realities, and even intrinsic cultural values.

While restoration to a historic or near-historic ecosystem is possible in some 

cases, the abiotic and biotic feedbacks may have been so dramatically altered for 

many rangelands that they now represent novel ecosystems with unique assem-

blages of species and functions that have no analog to historic systems (Hobbs 

et al. 2009). Novel ecosystem recovery to conditions resembling historic condi-

tions through restoration is considered very unlikely or impossible (Jackson and 

Hobbs 2009; Seastedt et al. 2008). Consequently, restoration programs should 

focus on managing for future change that emphasizes ecosystem function, goods, 

and services (Hobbs et al. 2011), maintaining genetic and species diversity, and 
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encouraging biogeochemical processes that favor desirable species (Seastedt et al. 

2008). The challenge for land managers in the future will be to determine what 

extent or type of changes are considered beneficial, while avoiding actions that 

create further ecosystem degradation (Jackson and Hobbs 2009). Restoration 

options that remove the requirement of attaining a historic ecosystem may reduce 

both effort and costs, yet may still achieve a desired outcome (Hobbs et al. 2009).

13.3  Major Conceptual Advances

In the current era of anthropogenic change, native species losses have been exceeded 

by gains in exotic species (Ellis et al. 2012). It is now clear that few native plant 

communities remain undisturbed and that most are accompanied by exotic species 

(Ellis and Ramankutty 2008). While novel ecosystems are not ubiquitous (Murcia 

et al. 2014), the global pattern of species reshuffling due to human disturbances cre-

ates the need to improve our understanding of proactive management possibilities. 

Proactive approaches are warranted because by definition, novel ecosystems have 

experienced simultaneous biotic and abiotic changes with no historical analog sys-

tem or clear understanding of how to restore them (Hobbs et al. 2006; Williams and 

Jackson 2007). Given this high level of uncertainty, we sought to identify some of 

the major conceptual advances in invasive species management that have occurred 

during the past 25 years and explore ways to proactively apply them to rangelands 

that meet the criteria of novel ecosystems.

13.3.1  Integrated Invasive Plant Management

Although more prevalent in past years, invasive plant management has often focused 

on the control of a single species without regard to the unintended consequences of 

the control method. This approach typically relied on a single control technology, 

such as grazing, herbicides, or prescribed burning, and it has generally proven inad-

equate to keep pace with ecological threats emerging worldwide (Hobbs and 

Humphries 1995). This strategy has proven unsuccessful in the long-term (Masters 

and Sheley 2001), but frequently the resident native species or even desirable non-

native species do not benefit from the management strategy and can actually dete-

riorate further (Seastedt et al. 2008). This occurs because removal of the invasive 

species does not necessarily restore the ecosystem to a functional system, but may 

lower the abundance of important desirable plants, and cause further losses in eco-

logical functioning (Pokorny et al. 2005). Instead of recovering rangeland function, 

this control method may degrade the abiotic environment or open niches for reinva-

sion or invasion by other undesirable species (Masters and Sheley 2001). For exam-

ple, the use of the herbicide aminopyralid to control Centaurea solstitialis in 

California can lead to the subsequent invasion and proliferation of even less 
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palatable and equally noxious long-awned annual grasses, such as Aegilops triun-

cialis (barb goatgrass) or Taeniatherum caput-medusae (medusahead), that are not 

susceptible to the herbicide (DiTomaso et al. 2006).

13.3.1.1  Identifying Causes of Invasion

Greater emphasis needs to be focused on the management of invaded systems and 

identification of the underlying causal factors responsible for the invasion (Hobbs 

and Humphries 1995). This would contribute to a more appropriate approach to 

invasive plant management and to development of a broader ecological understand-

ing of the mechanisms and processes that contribute to invasive plant success and 

develop management strategies that promote functional systems, provision of eco-

system services, and resilience to reinvasion (Hulme 2006; Seastedt et al. 2008; 

Sheley and Krueger-Mangold 2003). In some cases, this may require a compromise 

that is logistically practical and cost effective. Consequently, a broader view of inva-

sive plant management emerged as integrated invasive plant management was com-

bined with other aspects of ecosystem function.

13.3.1.2  Applying Multiple Control Tactics

Integrated pest management (IPM) of invasive plants stemmed from the realization 

that the dominance and spread of invasive plants indicates an underlying manage-

ment problem that should be addressed before control can be successful. The basic 

elements of invasive plant management include the use of multiple control tactics 

and the careful integration of knowledge regarding the invasive species into the 

management effort (Buhler et al. 2000). For example, invasive plant management 

emphasized that recovery of degraded rangelands require more than control of the 

invasive plant. It is founded on a systematic, sequential application of multiple, 

combined tactics such as chemical, biological, cultural, and mechanical control 

measures to remediate ecosystem functions and reduce the negative impacts of 

invasive species below an economic threshold (Masters and Sheley 2001). This 

new management approach signified a change in inquiry from “what is that inva-

sive plant and how do I remove it?” to “why is that invasive plant present and how 

can I manage the system to suppress it, prevent its spread, and remediate its 

impacts?” The adoption of invasive plant management was also spurred by the 

need to broaden typical control efforts that relied too heavily on herbicides and 

tillage (Holt 1994) and lessen the occurrence of herbicide-resistant weeds due to 

repetitive use of herbicides (Beckie and Reboud 2009). It is also important to rec-

ognize that an invasive plant management program is very often closely tied to 

restoration, mitigation, and rehabilitation efforts. As will be discussed in more 

detail, the goal of rehabilitation emphasizes both the short- and long-term effects 

on biodiversity and socioeconomic values.
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Recognizing some of the key challenges associated with IPM can enhance the 

application of invasive plant management on rangelands. For example, biological, 

implementation, and research challenges must be addressed when developing inva-

sive plant management systems (Buhler et al. 2000). Some of these challenges include 

failure to account for fecundity and survival of invasive species and excessive empha-

sis on individual populations in a single year as opposed to adopting a holistic 

approach based on analysis, theory, and implementation within an ecosystem. 

Research needs to develop practices capable of directly impacting propagule produc-

tion, plant survival, and the transition from propagules to seedlings (Buhler et al. 

2000). Another challenge of invasive plant management may be the most obvious; 

that is, prioritizing one control practice at the expense of an overall invasive plant 

management strategy that is environmentally and economically viable (Buhler 2002).

13.3.1.3  Successional and Process-Based Management

Integrated plant management has also benefited from the adoption of successional 

theory to understand the causes of succession, and adapting this theory to manage 

rangeland invasive plants. For example, Sheley et al. (1996) suggested that range-

land invasive plant managers need principles and concepts to guide their decisions 

as opposed to prescriptions for invasive plant control. They outlined a theoretical 

framework based on a successional model that emphasized influencing the primary 

causes of succession (i.e., disturbance, colonization, and the performance of spe-

cies) to alter the plant community from an undesired state to a desired state (e.g., 

Pickett et al. 1987). This model was also closely aligned with specific ecological 

processes that should be influenced in order to affect underlying causes of succes-

sion, such as modifying disturbance to address site availability, propagule dispersal 

and reproduction to influence species availability, and altering resource availability 

or applying stress to impact performance of both invasive and desirable species 

(Sheley and Krueger-Mangold 2003; James et al. 2010). For example, the coordi-

nated control of two invasive species—Centaurea stoebe (spotted knapweed or for-

merly Centaurea maculosa) and Potentilla recta (sulphur cinquefoil)—and 

perennial grass habitat restoration was accomplished by successively modifying 

invasive plant performance with herbicides, disturbance with variable seeding tech-

niques, colonization with different seeding rates, and soil resource availability with 

cover crops (Sheley et al. 2006). The link between invasive plant management and 

successional theory has also been augmented by the realization that plant communi-

ties exist in alternative ecological states that may shift in nonlinear ways in response 

to disturbance (Westoby et al. 1989).

Process-based management was not only a core aspect of successional invasive 

plant management, but it also became a central theme of the emerging field of applied 

ecological restoration. Akin to invasive plant management, ecological restoration 

emphasized the importance of developing methodologies for landscape application 

while recognizing the need to target the specific processes responsible for degradation 

and recovery (Hobbs and Norton 1996). This process-oriented approach, based on the 
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goals of renewing and maintaining ecosystem health, became an early working defini-

tion for the Society for Ecological Restoration (Higgs 1997). As the framework devel-

oped, further emphasis was placed on process- oriented restoration principles and 

practices to repair damaged landscapes (Whisenant 1999). This concept of managing 

processes at large scales expanded in the 1990s with the emergence of ecosystem-

based management in federal US agencies (Koontz and Bodine 2008). Although the 

four largest land-management agencies in the USA (i.e., Forest Service, Fish and 

Wildlife Service, National Park Service, and the Bureau of Land Management) had 

formally adopted ecosystem management by 1994, implementing the preservation of 

ecological processes was identified as a primary challenge (Koontz and Bodine 2008). 

In recent years, process- based management has also become a central component of 

resilience- based management, which continues to explore how the role of ecological 

variables and processes influence rangeland dynamics at various temporal and spatial 

scales (Briske et al. 2008a; Bestelmeyer and Briske 2012).

13.3.1.4  Ecosystem Resilience

Resilience-based management should provide physical and ecological conditions 

that allow the system to be self-sustainable and return to pre-disturbance conditions, 

or reasonably close, within a fairly short time frame following removal, stress, or 

disturbance (Walker et al. 2002). In addition, a resilient system should be able to 

resist successful establishment, spread, and ecosystem change from invasive plants 

following the introduction of propagules (D’Antonio and Chambers 2006). The 

“whole-ecosystem approach” is now considered an essential aspect of managing 

invasive species. This is important because the secondary effects of invasive species 

removal can result in unexpected changes in other ecosystem components, such as 

(1) trophic cascades on food-web interactions among producers, consumers, and 

predators, (2) plant-herbivore interactions, and (3) native species reliance on exotic- 

species habitats (Zavaleta et al. 2001). An ecosystem perspective also provides link-

ages between the four common management responses of prevention, rapid response 

and eradication, control/containment, and restoration/mitigation to mirror the inva-

sion processes of introduction, establishment, spread and impact, respectively 

(Table 13.1). Linking stages of invasion to specific management actions has since 

Table 13.1 Relationships among stages of invasion, management strategy, management efficiency, 
and management costs (from Hulme (2006) and Simberloff et al. (2013))

Invasion stage Management strategy
Management 
efficiency Management cost

Introduction Prevention High Low

Establishment Rapid response and prevention Moderate Moderate

Spread Control Low High

Impact Restoration/mitigation Very low Very high

Invasion stage refers to sequential degradation of rangeland ecosystems over time from introduc-
tion of the invasive species to when its presence impacts ecological processes
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been proposed as a unified framework for biological invasions, wherein barriers to 

individual plants, populations, key processes, or entire species must be overcome in 

order for invasive species to pass to the next stage (Blackburn et al. 2011). Another 

theoretical framework similarly built upon invasion stages or processes reduced the 

redundancy among 29 leading invasion hypotheses. This was accomplished by doc-

umenting how propagule pressure, abiotic site characteristics, and biotic character-

istics of the invasive species can be utilized to narrow the number of mechanisms 

and processes involved in invasion, as well as identify sequential steps needed to 

improve invasive plant management (Catford et al. 2009). One such framework for 

predicting the suite of traits that confer invasion success identified three primary 

factors, namely, prevailing environmental conditions, traits of the resident species, 

and traits of the invading species (Moles et al. 2008).

13.3.2  Managing for Ecosystem Function, Functional Species 

Groups, and Functional Species Traits

Because novel ecosystems have experienced extreme species reshuffling (e.g., Ellis 

et al. 2012), irreversible restoration thresholds become a defining characteristic due 

to species extinctions, invasion by exotic species, and highly modified ecological 

composition and structure. When abiotic and biotic characteristics are severely 

modified such that irreversible restoration thresholds are recognized, managing the 

novel ecosystem pursuant of desired functioning and ecological services may take 

precedence over futile endeavors to reconstruct historical biotic and abiotic compo-

sition and functioning (Hallett et al. 2013). This paradigm shifts attention away 

from managing for species composition and toward identification of key obstacles 

to maximizing ecosystem functioning and provisioning of ecosystem services.

Ecosystem function has been studied at multiple levels, including plant communi-

ties, species functional groups, species, and species traits. For example, as the impor-

tance of biodiversity gained prominence in the early 1990s (e.g., Wilson 1992), its 

functional role within plant communities became a theoretical arena to explore alter-

native hypotheses regarding its importance (Johnson et al. 1996). One such hypoth-

esis—the redundancy hypothesis—was introduced by Walker (1992), who proposed 

that when several species regulate ecosystem processes in similar ways they can be 

considered a functional group and redundancy among species performing similar 

function enables the ecosystem to compensate for the loss of one or more species. 

This new interpretation drew attention away from individual species and emphasized 

identification of functional groups and their role in sustaining ecosystem processes 

and functions, including invasion resistance. Accordingly, it is now recognized that 

species and groups of species can have strong effects on their environment and on 

specific ecosystem functions. The presence of specific functional groups may be 

more important than species richness or a specific species, as was shown for novel 

forests that maintained basic ecosystem processes after widespread loss of native 

species and replacement by introduced species (Mascaro et al. 2012).
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The research topic of functional species traits was suggested as a means to make 

comparisons across regions and scales and allow researchers to assess relationships 

between traits and ecological processes (Craine et al. 2002). The importance of 

functional species traits is also based on strong evidence that key ecosystem pro-

cesses can be predicted by structural or functional traits (Diaz et al. 2007). Species 

functional traits have also been used to match traits of invasive species to those of 

native species in an effort to assemble plant communities with greater invasion 

resistance (Funk et al. 2008; Drenovsky et al. 2012). When plant communities are 

composed of, or are created using native species that have functional traits similar 

to invaders, greater invasion resistance is theoretically possible (Funk et al. 2008). 

This is particularly true when native and invasive species are functionally similar in 

phenology, which has been shown to strengthen invasion filters (Cleland et al. 

2013). A flipside of this theory is that functionally dissimilar invasive species may 

be more likely to invade and become abundant due to limited competitive exclusion 

provided by the resident community (Strayer et al. 2006). Given that invasion resis-

tance has been linked to functional species traits, using these traits as a restoration 

tool is a promising research field with far-reaching management potential. In par-

ticular, as the merits of functional traits and species selection for restoration are 

pursued in the future, it will be important to improve our understanding of which 

traits are needed to overcome abiotic and biotic thresholds and promote restoration 

(Jones et al. 2010).

13.3.3  Rationale for Preventive Measures

Accumulation of non-native species in many regions of the global is accelerating in 

response to human activities, necessitating the need for predictive models to assess 

invasion risk (Lockwood et al. 2005). Because novel systems are often infested with 

exotic species, some of which may be highly invasive, preventative measures to 

assess risk is needed to monitor the status of invasive species. Although, exotic spe-

cies arrival to a new region is not necessarily a basis for invasive species status 

(Valéry et al. 2008), preventative measures must still be pursued because multiple 

invasive species concurrently exist within novel ecosystems. When dealing with 

multiple invasive species, which vary in their potential to invade, it becomes impor-

tant to devise strategies to screen species (Pyšek et al. 2004) and set priorities for 

control efforts (Hobbs and Humphries 1995).

It is widely established that invasive species prevention is far more cost effective 

than allocating limited resources to control efforts (Finnoff et al. 2007; Panetta 2009) 

(Table 13.1). Two potential prevention approaches with very different consequences 

have been identified: (1) prevention of invasion in the present with low target inva-

sive plant specificity and no damage costs in the future and (2) no costs for preven-

tion in the present but possibly high costs for specific target invasive plant control in 

the future (Naylor 2000). Although both options come with risk and trade-offs 

between expected benefits and cumulative damage, early detection via proactive 
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assessment of invasive plant flora within novel ecosystems makes good sense to 

detect problematic invasive plants that may exist in low densities before they prolif-

erate and require large investments to control them (Hobbs and Humphries 1995; 

Simberloff et al. 2013). This is particularly true for invasive plants that possess a lag 

phase following initial invasion, but are predicted to rapidly spread and cause signifi-

cant damage when barriers to invasion are removed (Cunningham et al. 2004). 

Preventative measures and control priority should also be given to invasive species 

that dramatically alter the ecosystem—often referred to as engineer and transformer 

species—and that are known to impact ecosystem processes (Hastings et al. 2007).

13.3.4  Negative Impacts of Invasive Species Management

Control of invasive species is often followed by increases in native species abun-

dance (e.g., Flory and Clay 2009). However, this is most often observed when inva-

sive species are recognized as ecosystem “drivers,” and their removal leads to 

ecosystem recovery (Bauer 2012). In contrast, when an invasive species is consid-

ered an ecosystem “passenger” or “back-seat driver,” models suggest the invasive 

species removal will not promote recovery of the native plant community or will 

require both removal and ecosystem restoration to promote recovery (Bauer 2012). 

This establishes that careful consideration should be given to how control measures 

impact entire ecosystems.

In some cases invasive plant management can have negative impacts on ecosys-

tem properties, such that control efforts exacerbate invasion or damage desirable 

species (Kettenring and Adams 2011). For example, when control practices disturb 

soils or release resources, invasive species can often gain a competitive advantage 

over native species (Davis et al. 2000; Cleland et al. 2013). In some cases, invasive 

plant treatment can be worse than the cure, as is the case when nontarget species are 

injured following herbicide treatment (Rinella et al. 2009) or when eradication of 

target species contributes to invasion by other invasive species (Courchamp et al. 

2011). According to this scenario, disturbance created by invasive plant  management 

may cause an open site where the target invasive plant or another undesired species 

from the community readily reinvades (Buckley et al. 2007). Invasive species con-

trol can also exacerbate problems if negative abiotic effects persist after their 

removal and additional restoration steps are not taken to remediate these effects 

(Corbin and D’Antonio 2012). Lastly, while invasive species are primarily attrib-

uted to negative impacts on ecosystem processes and services, in some cases they 

may enhance rangeland functioning (Eviner et al. 2012). Consequently, the decision 

to control an invasive plant or restore a novel ecosystem to a natural system, with 

corresponding ecological services, is not always clear. Only in certain cases is this 

decision straightforward and certain, for instance, when the goods and services pro-

vided by attaining the natural system outweigh the costs of control and when the 

value of the restored systems is low, but restoration is inexpensive and easy (Belnap 

et al. 2012). Policy-makers and managers should rank invasive species and whether 
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to pursue eradication or prevention measures based on two criteria: (1) species 

impact and (2) feasibility of removal or restoration (Parker et al. 1999). High 

emphasis should be given to eradication when both impact and feasibility of removal 

is high. In contrast, high priority should be given to research efforts preceding the 

prevention of species when their potential future impact is high and feasibility of 

removal is limited by lack of clear management strategies.

13.4  Implications of Conceptual Advances

Over the last two decades as invasive plant management has shifted away from a 

focus on tools and technology for short-term invasive plant control and toward an 

emphasis on identifying, managing, and monitoring ecological processes that drive 

invasion, an array of conceptual advances have developed. These advances are 

detailed in the previous section and include a refined understanding of invasive plant 

impact on ecosystem services as well as insight on potential negative impacts of 

invasive plant control efforts on ecosystems. These advances also included develop-

ment of invasive plant management tools and strategies, prevention programs, and a 

better understanding of plant functional trait attributes and how they can be used 

effectively to design site-specific invasive plant control and desired plant restoration 

programs. These conceptual advances have major implications for understanding 

constraints and opportunities for rangeland invasive plant management now and in 

the future. Broadly, implications of these key conceptual advances can be organized 

under four themes, including (1) supporting incentives for ecosystem services, (2) 

deploying long-term invasive plant management programs, (3) addressing socio-

economic dynamics of invasive plant management, and (4) refining how manage-

ment strategies and goals are identified and developed. Each of these implications is 

discussed below.

13.4.1  Incentives for Ecosystem Services

One of the most salient implications of recent conceptual advances is centered on 

the links between rangelands, invasive species, and ecosystem services. While on an 

area basis rangelands represent one of the largest land cover type in the world, mar-

ginal rates of return range from low to subsistence level (Tanaka et al. 2011). 

However, these systems provide a large array of nonmarket ecosystem services to 

society across the globe including carbon sequestration, biodiversity conservation 

and water capture and storage and invasive plants, through various mechanisms, can 

seriously impact these critical services (Eviner et al. 2012; Plieninger et al. 2012). 

Broad recognition of ecosystem services has driven development of markets and 

incentives to maintain or enhance rangeland ecosystem services (Chap. 14, this vol-

ume). Development of markets and incentives vary substantially globally, and can 
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include payments for services (e.g., carbon sequestration, targeted grazing for inva-

sive species, or fire protection), cost-share programs, technical assistance, tax 

incentives, and conservation easements (Lubell et al. 2013). In the majority of situ-

ations, costs for invasive plant control on rangeland greatly exceed market benefits 

and incentive programs have traditionally been central to maintaining invasive plant 

management programs on private rangeland. A recent assessment initiated by the 

USDA Natural Resources Conservation Services (NRCS) (Briske 2011) recognized 

that the conservation benefits of invasive plant control are poorly described (Sheley 

et al. 2011a), making it difficult to identify the return on taxpayer support for these 

management practices . This assessment also found that invasive plant control can 

have pronounced negative effects on ecosystem services (Sheley et al. 2011a). On 

private rangelands, there is generally less support available from incentive programs 

than there is demand for incentive support (Aslan et al. 2009). The minimal efficacy 

of incentive programs question the long-term support that could be allocated to 

these programs. A similar situation exists on public lands where current manage-

ment resources for invasive species only cover a fraction of the potential area where 

management is needed (US Bureau of Land Management 1999). A critical emerg-

ing opportunity is to more strongly define the relationship between invasive range-

land plants and ecosystem services (e.g., Vilà et al. 2010), and identify species and 

management scenarios where management inputs yield the greatest aggregate return 

on ecosystem services.

13.4.2  Deploying Long-Term Invasive Plant Management 

Programs

Developing integrated invasive plant management principles and decision tools that 

provide the foundation for long-term and sustainable invasive plant management 

programs is essential as society begins to closely examine costs and benefits of 

invasive plant management on private and public rangeland.

As highlighted in the NRCS assessment (Sheley et al. 2011a), decision support 

systems are a central component of invasive species management because costs of 

control are high, risk of practice failure and nontarget effects are substantial, and the 

response of ecosystems to control efforts are often difficult to predict (Epanchin- 

Niell and Hastings 2010; Januchowski-Hartley et al. 2011). Stakeholders largely 

agree that invasive plant management is a complex, iterative, and a long-term pro-

cess (Aslan et al. 2009; Brunson and Tanaka 2011) and there are a number of exam-

ples describing how general principles and decision tools can be applied to guide 

long-term invasive plant management efforts (e.g., James et al. 2010; Sheley et al. 

2011b). Despite these conceptual advances there has been little evaluation of the 

adoption or impact of this information in management decisions and almost no data 

available on the long-term efficacy of these alternative strategies (Sheley et al. 

2011a). Variables associated with individual rangeland enterprises often constrain 
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deployment of invasive plant management tools and strategies below the optimum 

scenario. How these constraints influence the efficacy of long-term invasive plant 

management efforts and the conservation or enhancement of ecosystem services is 

generally not known. The evaluation of adoption barriers and assessment of deci-

sion tools in actual management scenarios provides a major opportunity to bridge 

the science and practice of invasive plant management. Greater management- 

science linkages may improve the ability of managers to maintain or enhance eco-

system services with conservation incentives programs and publicly funded invasive 

plant management programs.

13.4.3  Socioeconomic Dynamics of Invasive Plant 

Management

A number of key socioeconomic factors that influence development and deploy-

ment of long-term integrated invasive plant management programs have been iden-

tified over the past two decades. The human dimensions of invasive plant 

management contribute as much as, or more to the success or failure of invasive 

plant management as do the heterogeneous and stochastic environmental conditions 

in which management decisions are made (Chap. 8, this volume). Therefore, iden-

tification and mitigation of some of these factors represents key opportunities to 

advance the adoption and impact of invasive plant management programs on range-

land (Sutherland et al. 2004; Briske et al. 2008b). While invasive plant control fail-

ures have commonly been linked to factors such as insufficient policy, funding, or 

scientific knowledge, the influence of diverse and complex socioeconomic condi-

tions is becoming increasingly recognized (Hershdorfer et al. 2007; Epanchin-Niell 

et al. 2010). The concept of management mosaics has been used to describe the 

increasing extent of rangeland fragmentation in the western United States and the 

increased diversity of land use objectives within these fragmented landscapes 

(Epanchin-Niell et al. 2010). As fragmentation and diversity of land use goals 

increases, invasive species control becomes more difficult because it alters the costs 

and incentives for invasive plant control and prevention. These fragmented manage-

ment mosaics pose a collective action problem because there is little economic 

incentive for a landowner to control invasive plants unless surrounding neighbors 

control invasive plants as well (Hershdorfer et al. 2007; Epanchin-Niell et al. 2010). 

As fragmentation increases, the number of adjacent landowners also increases. As 

each manager becomes responsible for managing a smaller portion of the landscape, 

their optimal invasive plant management actions are increasingly dependent on the 

invasive plant management decisions of neighbors. A greater number of landowners 

also mean a greater likelihood that different landowners will have different incen-

tives, policies, or practices for invasive plant management. Landowners with higher 

control incentives than adjacent neighbors bare a larger proportion of control costs 

than landowners with neighbors having similar or lower control incentives (Wilen 

2007). Land owner interaction can be addressed in one of three possible approaches: 
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top down regulation by centralized government, bottom-up self-governing efforts, 

and middle out civic environmentalism efforts (DeWitt et al. 2006). Each approach 

can have a critical role in determining the amount and impact of invasive species 

management. However, these approaches do not produce the same outcomes in all 

management situations, and in some cases certain approaches can have negative 

effects on invasive plant management adoption, coordination, and impact 

(Hershdorfer et al. 2007; Tanaka et al. 2011).

While numerous opportunities exist to evaluate how these different socioeco-

nomic approaches may enhance long-term progress of integrated invasive plant man-

agement programs, actual and perceived costs-benefit ratios and how these change 

with changing land ownership are not the only socioeconomic dimensions influenc-

ing adoption. Adoption is also highly tied to belief systems, perceived ease and risk 

of implementation, compatibility with the agricultural enterprise and time period in 

which results can be observed (Didier and Brunson 2004; Tanaka et al. 2011). In 

many cases producers adopt non-cost effective conservation practices because they 

have strong lifestyle and conservation values (Didier and Brunson 2004; Brunson 

and Huntsinger 2008). In other cases, adoption occurs because producers or manag-

ers believe the practice has economical or natural resource value, even if the bulk of 

existing data is to the contrary (Sutherland et al. 2004; Briske et al. 2008b). In some 

instances, adoption is less influenced by perceived practice outcomes than the ease in 

which the practice can be learned or applied and the impacts of the practice observed 

(Didier and Brunson 2004; Tanaka et al. 2011). Therefore, as the impacts of increas-

ingly complex socioeconomic landscapes on rangeland invasive plant management 

are quantified and major adoption barriers are identified, there are large opportunities 

to link research and extension efforts that overcome these socioeconomic barriers to 

deploying invasive plant management programs.

13.4.4  Identifying and Developing Management Strategies 

and Goals

Ecological restoration is predominantly focused on the recovery of functional plant 

communities as plants have a controlling influence on energy flows, hydrology, soil 

stability, and habitat quality (Young et al. 2005; Kulmatiski et al. 2006; Pocock et al. 

2012). Consequently, invasive plant management is often tied directly to broader 

goals and paradigms of ecosystem restoration. Recent conceptual advances have 

argued for a more deliberate thought process to determine how ecosystem restoration 

targets, including invasive plant management efforts, are identified (Hobbs et al. 

2011; Monaco et al. 2012; Jones 2013). Systems targeted for invasive plant manage-

ment often are highly modified and a number of ecological and socioeconomic vari-

ables constrain realistic and practical restoration targets. Collectively, this line of 

thinking has argued that restoration ecology, invasive plant management, and con-

servation biology are all subsets of the broader field of intervention ecology (Hobbs 

et al. 2011). One major implication of this inclusive perspective is that it allows 
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managers to select among a number of potential reference states and outcomes on 

which to base their management goals and strategies (Monaco et al. 2012).

State-and-transition models (STMs) have emerged as the leading conceptual 

framework to describe vegetation dynamics and to assess management scenarios on 

rangelands (Quetier et al. 2007). STMs are qualitative flowcharts that describe poten-

tial alternative stable vegetation states on individual ecological sites established by 

different combinations of soil and climate (Chap. 9, this volume). These models also 

identify potential thresholds between states and the existence of restoration pathways 

that may potentially reverse transitions between states. In most cases, alternative 

states, transitions, and restoration pathways are based on management experience 

and expert opinion. STM models provide managers a general framework to identify 

potential management goals and some basic understanding and tools to pursue those 

goals. This provides an opportunity for managers to consider ecosystem states that 

may represent more realistic goals than the historical reference site given current 

socioeconomic and ecological constraints. On public lands, a broad set of stakehold-

ers are vested in invasive plant management and restoration decision-making and 

different stakeholder groups can have different values and goals (Brunson and 

Huntsinger 2008; Brunson and Tanaka 2011). Framing management decision-mak-

ing under the general concepts of intervention ecology and multiple alternative 

states, as well as emphasizing ecosystem function and services instead of historical 

benchmarks, has provided managers a greatly improved foundation for setting man-

agement goals and selecting appropriate tools to achieve identified goals.

A major practical implication of recognizing more than one reference state to set 

management targets and select appropriate tools is an opportunity to incorporate 

plant material genetics and selection of desired species into invasive plant manage-

ment strategies. In many management situations controlling invasive plants does not 

result in long-term reduction in invasive plant abundance unless desired plant spe-

cies are sown following invasive plant control (Sheley et al. 2011a). Historically, 

two competing paradigms have emerged which included a “local is best paradigm” 

that argued for use of plant material from local provenances to preserve genetic, 

cultural, or social values. This paradigm assumes that locally collected material 

would be best adapted to local conditions (Jones 2013). The alternative paradigm 

argues for the development and use of plant material that could excel in a particular 

function (typically productivity) across a range of environmental conditions. Over 

the last two decades the plant materials emphasis has shifted from a taxonomic 

focus of how plant material is developed and incorporated into restoration towards 

a greater understanding of how functional trait variation in potential plant material 

may contribute to management goals, given existing ecological and socioeconomic 

constraints (Drenovsky et al. 2012; Jones 2013). By considering the possibility of 

multiple alternative states and that different functional traits may play different roles 

in each of these states, managers have an improved ability to make decisions about 

what types of plant material to use given their identified reference state and associ-

ated management goals. Managers have a framework to identify when local genetic 

material is appropriate and when enhancing or altering genetic variation among 

selected species may be appropriate for various management applications.
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13.5  Novel Ecosystems: Are They Useful for Rangeland 

Application?

Impacts of invasive plants are arguably greatest on “new world” continents that 

were settled by European immigrants and their traditional agricultural and land 

management strategies. These immigrants aimed to change “foreign and unique 

ecosystems” to deliver services that their European culture was more accustomed 

too (Crosby 1986). For example, both Australia and New Zealand had Commonwealth 

plant introduction societies, whose aims were to replace the “inferior” plant species 

of these foreign ecosystems with “superior” plant species providing more for the 

needs of European culture (Cook and Dias 2006). European landscapes have been 

managed in this manner for centuries. This establishes that novel ecosystems are not 

a new concept (Perring et al. 2013). Not only have Europeans dramatically altered 

their landscapes, but Australian aboriginals and indigenous North America’s had 

also altered landscapes prior to European arrival with use of fire for cultivating 

crops, as well as hunting practices (Gammage 2012). People are dependent on natu-

ral ecosystems for food, water, and their overall livelihoods. Ecosystem conversion 

becomes an issue when land use is changed, often leading to instability and degra-

dation, or when management actions, such as the introduction of exotic species for 

forage production or erosion control, did not succeed.

The concept of novel ecosystems is useful in that it provides new terminology for 

describing complicated ecosystem whose original function, structure, and use are 

no longer accessible in the short or medium-term. Furthermore, it provides an 

explicit model for why managers may choose an alternative stable state, rather than 

attempting to return to the historical state. The concept of novel ecosystems needs 

to be packaged with other tools, such as alternative states models and adaptive man-

agement, which extend beyond new terminology to create a strategy with the goal 

of controlling invasive plants and favoring more desirable plant species.

13.5.1  Invasive Plant Control Strategies Are Dependent 

on Goals

As mentioned above, restoration is considered a science and practice that is driven 

by clearly defined goals to explicitly define realistic short-, medium-, and long-term 

goals (Hobbs 2007). Goals change depending on land use needs and the state within 

which an ecosystem resides. The length of time that a site should be managed under 

each restoration goal will depend on the extent to which biotic and abiotic factors of 

the ecosystem are degraded (e.g., nutrient cycling, hydrology, energy flows, and 

native species richness). For these reasons, restoration goals should be flexible so 

that changes can be made to management strategies when systems do not react 

according to predictions.
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Ecological evidence from more than 20 years of research indicate that increasing 

number of species within a plant community can produce beneficial effects to eco-

logical functions such as increased production and nutrient cycling (Tilman et al. 

1997; Hector et al. 1999). There is agreement that biodiversity matters intrinsically, 

but also for other values (Naeem and Wright 2003), although how and why it mat-

ters remains contested (Kaiser 2000; Naeem and Wright 2003).

The debate has largely concentrated around two hypotheses. One is the “niche 

complementarity” hypothesis, which proposes that species-rich communities are 

able to access and utilize limiting resources more efficiently because they contain 

species with a diverse set of ecological traits. The ecosystem is thought to be more 

functionally “complete” because species complement each other, allowing them to 

optimize resource use (Tilman et al. 1997; Hector 1998). An alternative is the “sam-

pling effect” hypothesis, which proposes that more biologically diverse communi-

ties have increased productivity because they are likely to contain at least one 

species that is particularly efficient in how it uses resources. That is, only one or two 

species within the community may be largely responsible for most of the produc-

tion. In this case, the subordinate and transient species present may not immediately 

contribute to functioning of the system, but their presence could provide an ecologi-

cal buffer by responding to changes in environmental conditions or disturbance 

regimes (Grime 1998). Recent evidence suggests that when the multiple services 

provided by grasslands are considered, even higher levels of biodiversity are needed 

to maintain stability (Isbell et al. 2011).

The benefits of diversity are not limited to ecosystem functions such as produc-

tion and nutrient cycling, but also increased resilience—defined as the ability to 

recover after disturbance (Hautier et al. 2014). This idea is based on the insurance 

hypothesis of ecosystem stability (McCann 2000): an ecosystem with more species 

contains a diverse set of traits, and therefore, has a higher likelihood of recovering 

from disturbance (McCann 2000; Naeem and Wright 2003; Suding et al. 2008). 

Because of the role biodiversity plays in maintaining key functions and building 

resilience to change, there is increasing recognition that encouraging diversity in 

rangelands is not counter to production. Instead, focusing management activities on 

both biodiversity and production could, in the long-run, ensure the sustainability of 

production and environmental integrity (Firn 2007). These issues of sustainable 

production and resilience are highly topical, considering predictions for an increase 

in extreme rainfall variability with global climate change (Hellmann et al. 2008).

However, ecological evidence also suggests that very high biodiversity may 

reduce ecosystem stability (Pfisterer and Schmid 2002). For example, grassland 

plots with the lowest species diversity recovered more quickly from drought condi-

tions (Pfisterer and Schmid 2002). These results along with those of other studies 

(Wardle et al. 1997; Firn et al. 2007) suggest that what matters may not be just the 

number of species, but the “quality” of the biodiversity; more specifically, the col-

lective traits of the species present and how they respond to perturbations, and in 

turn, how these responses effect functionality (Lavorel and Garnier 2002; Suding 

et al. 2008). An increase in “quality” species within a plant community may contrib-

ute considerably to function and resilience, although choosing the optimal set of 
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plant traits may lead to altered abiotic and biotic conditions such as fire frequency, 

grazing intensity, and nitrogen deposition. We infer from this work that with a 

greater number of species there is a higher likelihood that the “right” species will be 

present to maintain ecosystem function.

13.5.2  Adaptable Theoretical Framework for Recovery 

of Degraded Communities

Restoration objectives for degraded ecosystems should be clearly defined for the 

success of management actions, monitored to determine restoration success and 

then adapted when necessary (McCarthy and Possingham 2007). These objectives 

should be more holistic than simply targeting the invasive species, adopting the 

whole-ecosystem approach discussed above (Zavaleta et al. 2001). Three broad 

objectives are suggested for the restoration of degraded rainforests, each represent-

ing different levels of trade-offs between biodiversity and socioeconomic values 

(Lamb et al. 2005) (Fig. 13.5). The benefits of adapting a simple framework to 

underpin the design of restoration goals for rangelands are that trade-offs between 

multiple objectives can be clearly defined and progress monitored and evaluated in 

a systematic manner, and most importantly, that strategies and perhaps even broad 

objectives changed as knowledge of the system increases.

Reclamation involves the complete conversion of an ecosystem to a monoculture 

of a highly productive species, with the prime objective to recover production 

(Lamb and Gilmour 2003; Firn et al. 2013). In a degraded rangeland dominated by 

an invasive plant, the forage species chosen for reclamation should be palatable, 

high in nutritional content, and competitively superior to the invasive species, so as 

to gain and maintain dominance. If the establishment of another species is success-

ful this approach could act to increase the livelihood of enterprise operators once the 

high cost of establishment is recovered (Fig. 13.5; Table 13.2). It could also act to 

increase income in the long-term; however, this will depend on the consistency of 

the management practices, environmental conditions, and the disturbance regime 

over time. Because the prime objective is the recovery of productivity, this approach 

may reduce biodiversity values even further from the degraded state (Fig. 13.5).

In contrast to reclamation, the goal of restoration involves returning the assem-

blage of species that were present prior to the dominance of invasive plant, and here 

the main goal may be to increase biodiversity values (Fig. 13.5). Biodiversity values 

could be defined as native species richness and abundance, conservation of threat-

ened species, and/or properties of an ecosystem. To apply this approach, production 

related activities such as grazing livestock may need to be excluded to provide the 

plant community with an opportunity to recover over time. Sites that have been 

severely degraded may also need costly strategies to reduce soil nutrients, and return 

species that are no longer present in the landscape and seed bank. If an area is pro-

tected then social and economic value, in terms of income, may need to cease. 
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Fig. 13.5 Conceptual model of the trade-offs between approaches for the recovery of a degraded 
rainforest (adapted from Lamb and Gilmour (2003), Lamb et al. (2005)) including reclamation, 
rehabilitation, and restoration. Point A represents an ecosystem that is degraded and each vector a 
different theoretical approach to ameliorate both the biodiversity value and the social/economic 
value from low to high. Reclamation and restoration represent the social/economic and the biodi-
versity value extremes respectively; while, rehabilitation presents a one to one trade-off between 
biodiversity and social/economic values

Table 13.2 Potential short- and long-term outcomes for the application of the different approaches 
to recovery social/economic and biodiversity values in degraded ecosystems

Approaches

Potential Potential

Short-term outcomes Long-term outcomes

Benefits Costs Benefits Costs

Reclamation Income Management 
biodiversity

Income Biodiversity 
resilience 
management

Rehabilitation Income Lost income 
management

Income 
biodiversity 
resilience

Lost income 
management

Restoration Biodiversity Lost income 
management

Biodiversity 
resilience

Lost income 
management

Income is defined as the profit received from products derived from the land and costs is defined 
as the expenditure to manage and produce these products or loss of values such as biodiversity or 
income
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Management costs may then increase from the original degraded state in both the 

short and long-term, while biodiversity may increase over the short and long-term. 

An increase in biodiversity could restore functional resilience over the long-term 

(Table 13.2). There is considerable argument as to whether restoration is an achiev-

able goal (Lamb and Gilmour 2003; Suding et al. 2004; Hobbs et al. 2006) because 

the original suite of species may not be known and no longer present in the seed 

bank if the ecosystem is intended to recover by natural regeneration (passive man-

agement). Setting targets and milestones for assessing progress may also be difficult 

because information on the precise dynamics that governed the original ecosystem 

may also not be known (Lamb and Gilmour 2003; Suding et al. 2004).

A goal of rehabilitation emphasizes biodiversity and socioeconomic values 

equally, in a one-to-one trade-off (Fig. 13.5) (Lamb et al. 2005). This acknowledges 

the short-term value of returning some biodiversity, while continuing to utilize pro-

ductive output. The costs of this approach includes a loss of some income because 

it is likely that production will decline as some implemented strategies will encour-

age the return of slower growing native plant species or more desirable exotics 

(Table 13.1). Over the long-term, the benefits may include more consistent and 

reliable income and, if management practices maintained biodiversity values, 

improved functioning such as nutrient cycling and resilience.

Whether the main goal of a resource manager is production, biodiversity conser-

vation, or both, a rehabilitation approach is an effective option for rangeland 

improvement in the short-term. Investing time and money into the intensive actions 

needed for either reclamation or restoration will not necessarily deliver their respec-

tive and often singularly focused outcomes, particularly in the short-term.

What is clear is there are short-term benefits for the socioeconomic welfare of 

managers in slowly managing the transition of an invasive plant state to a more 

diverse state containing a greater proportion of native species. The intensive actions 

needed to instigate reclamation or restoration does not necessarily provide the 

socioeconomic values or the biodiversity values desired, without significant addi-

tional investments of time and money. Controlling invasive species with intensive 

strategies can detrimentally effect the remaining native species and lead to further 

degradation (Rinella et al. 2009), and the method of plant control has a strong effect 

on ecosystem response (Flory and Clay 2009).

13.5.3  A Revised Rehabilitation-Novel Ecosystem Model

The application of invasive plant control in rangelands is complex because the man-

agement practices used can also detrimentally impact functional integrity, including 

production and nutrient cycling. In this regard, invasive plant control practices 

themselves can result in further short- and long-term income loss, social distress, 

and environmental degradation. Common control strategies for invasive plants have 

generally been designed to eradicate them, but in an enterprise that is dependent on 

forage availability for livestock consumption, removing even low quality vegetation 
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could prove more detrimental to the livelihood of enterprise operators than the 

impacts of the invasive plants. Removing available plant cover, especially in arid 

and semiarid systems, can accelerate soil erosion, nutrient loss, and can lead to the 

dominance of other invasive plant species. In this case, maintaining a small popula-

tion of undesirable invasive grass species may be better, in the short-term, then 

reducing the majority of plant cover, including available forage, and waiting for the 

system to recover. Instead, control strategies are needed that balance multiple objec-

tives, including short-term income for managers, reasonable costs for establishment 

and maintenance of productive species, and increased biodiversity to improve eco-

system functioning and resilience.

A revised model for the socioeconomic and biodiversity values in the rehabilita-

tion of rangelands is needed based on the justification provided above (Fig. 13.6). 
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Fig. 13.6 Revised conceptual model for the rehabilitation approach for pastoral improvement. 
Point A represents a degraded state; point B the initial cost for the rehabilitation efforts and loss of 
income; point C represents the maximum amount of social/economic value that can be gained from 
a diverse pasture community; Point D represents the maximum social/economic value if environ-
mental conditions become unfavorable; and point E represents the initial increase in income asso-
ciated with over-utilization of the resource and shows the projected decrease in both social/
economic and biodiversity value. Management efforts should aim to maintain the ecosystem at 
point C where both biodiversity and social/economic values can be optimized (species that trans-
form an ecosystem), or fragmentation of existing habitats (Seastedt et al. 2008). Theses biotic 
changes have accelerated in the past few decades due to increased human activities arising from 
the breakdown of biogeographic barriers and the global human-mediated transport of non-native 
species (Seastedt et al. 2008). This, in combination with abiotic changes, have increased the rate of 
appearance of new, non-historical, novel environments, unique species combinations, and altered 
ecosystem functioning (Hobbs et al. 2006, 2009)
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Point A represents the socioeconomic and biodiversity values of a degraded state. 

Point B represents the starting point of a rehabilitation approach and illustrates the 

initial drop in social and economic value associated with the financial costs, time, 

and effort to increase biodiversity value. Depending on the time since invasion and 

extent of ecosystem degradation, this drop in socioeconomic value could be higher 

or lower. Point C represents a maximum level of socioeconomic value that could be 

gained from a rehabilitated ecosystem where biodiversity and socioeconomic goals 

are both key. Grazing can increase the diversity of species present within ecosys-

tems, particularly if the dominant species are palatable (Fensham et al. 2014; Lunt 

et al. 2007) and depending on the climatic region and evolutionary history of  grazing 

(Milchunas et al. 1988). In contrast to the model suggested by Lamb et al. (2005) 

for rainforest communities, there is a higher gain in socioeconomic value with every 

unit of increase in biodiversity value in pasture communities. We have represented 

this with a steeper curve (Fig. 13.6) then the model proposed in Fig. 13.5. The graz-

ing pressure should be maintained at a level that encourages diversity within the 

community, but does not reduce the abundance of key dominant species to a level 

that opens an opportunity for less desirable species to become established. For this 

reason, the shape of the curve after point C will likely vary widely depending on the 

biotic and abiotic characteristics of specific ecosystems.

The maximum socioeconomic benefit gain can be reduced if the favorability of 

environmental conditions decreases, as represented by point D (Fig. 13.6). Because 

rangelands are generally quick to respond to environmental fluctuations, grazing 

pressure, and therefore the socioeconomic value would need to be scaled back if 

conditions became unfavorable for an extended period. This represents the princi-

ples of adaptive management because grazing pressure and its impact on biodiver-

sity would need to be regularly assessed to ensure it was at a suitable level for social 

welfare and to not jeopardize benefits associated with biodiversity. Point E repre-

sents the system response if grazing pressure is not matched with the qualities of the 

grazed ecosystem and the environmental conditions. In this case, there may be 

short-term gains in socioeconomic value due to over-utilization of the resource, but 

in the long-term any gains in biodiversity and socioeconomic values may be lost.

13.6  Future Perspectives

While the concept of novel ecosystem is not new, it is a useful construct for control-

ling invasive plant species as it provides explicit terminology for why managers 

may choose not to return an ecosystem to its historical state. The concept of novel 

ecosystems needs to be packaged with other tools, such state-and-transition models 

and adaptive management, which provide holistic and flexible approaches for con-

trolling invasive plants and also considering how abiotic and biotic factors are 

altered so as to favor more desirable plant species. Explicitly defining reclamation, 

rehabilitation, and restoration goals is an important addition to the novel ecosystems 

concept and allows for a more detailed definition and the identification of simple, 
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realistic targets and goals. Most importantly, reclamation, rehabilitation, and resto-

ration goals can be changed as ecosystems and societal needs change, and thus, 

provide the flexibility and practicality needed for adaptive management practices.

13.7  Summary

Global rangelands provide many important ecosystem services, including food, 

fiber, clean water, recreational and open space, minerals, religious sites, aesthetics, 

plant and animal biodiversity, wildlife habitat, and carbon sequestration. Many tra-

ditional management practices, coupled with the introduction, establishment and 

proliferation of invasive non-native plants have led to broad-scale changes in plant 

communities. The most important of these invasive plants can economically impact 

numerous aspects of livestock production, including forage yield and quality, ani-

mal health and weight gain, and the quality of meat, milk, wool, and hides. In addi-

tion, they can reduce the ecological integrity of rangeland communities by altering 

fire frequency, increasing erosion, depleting soil moisture and nutrients, and reduc-

ing plant biodiversity and wildlife habitat and forage. The impacts of invasive plants 

on community diversity and structure can lead to ecosystem instability, and often 

irreversible transformational changes within the system. However, there are also 

many instances where invasive plants can provide benefits to the ecosystem, and 

thus there is often a trade-off between negative and positive impacts. As a result, the 

focus of many restoration efforts need to shift from preserving the historic species 

assemblages to conserving and maintaining a resilient, functional system that pro-

vides diverse ecosystem service, in addition to supporting human livelihoods.

Abiotic and biotic feedback mechanisms can be modified by invasive plants to 

completely and irreversibly transform historic communities to novel ecosystems 

with different species composition, ecosystem services and function. This can occur 

though abiotic changes in climate, land use, pollution and nutrient enrichment, 

altered disturbance regimes, urbanization, or biotic changes associated with local 

extinction of keystone species, introduction of invasive ecosystem engineers, or 

habitat fragmentation. In these novel ecosystems, land managers will need to con-

sider how to feasibly and economically approach long-term management that maxi-

mizes a different set of ecosystem functions and services, yet maintains ecological 

and ecosystem resilience. The primary challenge will be to determine the types of 

changes that are intrinsically desirable and beneficial, without creating other serious 

problems or further degrading the system.

As many rangelands have experienced anthropogenic changes characteristic of 

novel ecosystem functioning, managing invasive species in this new era will 

require proactive strategies and conceptual frameworks that offer greater success 

in achieving desired outcomes. In the last 25 years, invasive species management 

has evolved to incorporate integrated strategies that are guided by both succes-

sional theory and process-based manipulations of abiotic and biotic factors. During 

this time frame, invasive species management has also recognized the need to take 
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a broader ecosystem perspective, which has been facilitated by the development of 

numerous theoretical frameworks that illustrate how management inputs can best 

be applied to modify specific ecological processes, at specific stages along the 

invasion continuum. It has also become clear that proactive invasive species man-

agement must adopt preventative control strategies that are known to be more eco-

nomically feasible for rangeland application.

The role of functional species groups and functional species traits have emerged as 

valuable predictors of ecosystem functioning and as a way to adopt management strat-

egies that foster greater invasion resistance. In particular, research on functional spe-

cies groups and functional species traits hold tremendous promise to support 

assessment of ecosystem susceptibility to invasion and the selection species that offer 

the best trait-matching to compete with invasive species under specific abiotic stresses.

As invasive rangeland plant management has shifted away from a focus on tools 

and technology for short-term invasive plant control and toward an emphasis on 

identifying, managing, and monitoring ecological processes that drive invasion, 

many conceptual advances have developed that have major implications for under-

standing constraints and opportunities for rangeland invasive plant management. An 

emerging opportunity that requires greater attention is a clear definition of the rela-

tionship between invasive rangeland plants and ecosystem services, and to identify 

species and management scenarios where management inputs yield the greatest 

aggregate return on ecosystem services. A second opportunity centers on bridging 

the science and practice of invasive plant management by evaluating adoption 

 barriers and assessing impacts of invasive plant management decision tools under 

actual management scenarios. In addition, as the impacts of invasive plant manage-

ment on socioeconomic systems are quantified and major adoption barriers are 

identified, there are large opportunities to link research and extension efforts 

designed to overcome these socioeconomic barriers to deploying sustainable range-

land invasive plant management programs. Third, while a broad set of stakeholders 

are vested in invasive plant management and restoration decision-making, different 

stakeholder groups can have different values and goals, which makes management 

decision-making challenging. Framing management decision-making under the 

general concepts of intervention ecology and multiple alternative states, as well as 

emphasizing ecosystem function and services instead of historical benchmarks, pro-

vides managers a greatly improved foundation for developing consensus toward 

management goals and selecting appropriate tools to achieve desired outcomes.
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Chapter 14

Rangeland Ecosystem Services: Nature’s 
Supply and Humans’ Demand

Osvaldo E. Sala, Laura Yahdjian, Kris Havstad, and Martín R. Aguiar

Abstract Ecosystem services are the benefits that society receives from nature, 

including the regulation of climate, the pollination of crops, the provisioning of 

intellectual inspiration and recreational environment, as well as many essential 

goods such as food, fiber, and wood. Rangeland ecosystem services are often valued 

differently by different stakeholders interested in livestock production, water qual-

ity and quantity, biodiversity conservation, or carbon sequestration. The supply of 

ecosystem services depends on biophysical conditions and land-use history, and 

their availability is assessed using surveys of soils, plants, and animals. The demand 

for ecosystem services depends on educational level, income, and location of resi-

dence of social beneficiaries. The demand can be assessed through stakeholder 

interviews, questionnaires, and surveys. Rangeland management affects the supply 

of different ecosystem services by producing interactions among them. Trade-offs 

result when an increase in one service is associated with a decline in another, and 

win–win situations occur when an increase in one service is associated with an 

increase in other services. This chapter provides a conceptual framework in which 

range management decisions are seen as a challenge of reconciling supply and 

demand of ecosystem services.
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14.1  Introduction

Ecosystem services are the benefits that society receives from nature (Daily 

1997; MA 2005). They include the provisioning of food, wood and medicinal 

resources, and services that contribute to climate stability, control of agricul-

tural pests, and purification of air and water (Fig. 14.1). Ecosystem services are 

broadly classified in four different categories: provisioning, regulating, cultural, 

and supporting (MA 2005). Provisioning ecosystem services include the contri-

bution of essential goods such as food, fiber, and medicinal. Regulating ecosys-

tem services include carbon sequestration, prevention of soil erosion, and 

natural flood control. Cultural ecosystem services include intellectual, inspira-

tional, and recreational activities. The fourth category is supporting ecosystem 

services, which include services that are dependent on ecological processes 

such as primary production and nutrient cycling and that are intimately related 

to biological diversity.

Since its conceptualization, the focus of ecosystem services has changed from the 

description of the processes involved in delivery of a single service at a point in time 

(Daily 1997) to approaches for analyzing the capacity of nature to produce multiple 

ecosystem services. The next steps have been assessing multiple ecosystem services 

Ecosystem Services

Supporting

-Soil formation

-Biodiversity

-Primary production

-Habitat

Provisioning

-Food and fiber

-Wood

-Clean Water

-Medicinals

Regulating

-Climate Regulation

-Pollination of crops

-Store carbon

-Control flooding

Cultural

-Inspiration

-Recreation

-Education

-Aesthetic

Fig. 14.1 Four categories of ecosystem services as classified by the Millennium Ecosystem 

Assessment (MA 2005). Photo credits (from top): Laura Yahdjian, Magdalena Druille, Felipe 

Cabrera
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under alternative land-use regimes (Foley et al. 2005). Management aimed at 

increasing the supply of one specific ecosystem service may increase or decrease the 

supply of others creating trade-offs and win–win situations, respectively.

Rangelands, the land on which the potential native vegetation is predominately 

grasses, grasslike plants, forbs, or shrubs (Kauffman and Pyke 2001; Chap. 1, this 

volume), encompass hot and cold deserts, grasslands, savannas, and woodlands. 

They occupy approximately 54 % of terrestrial ecosystems, and they sustain 30 % of 

world population, including a myriad of stakeholders (Reynolds et al. 2007; Estell 

et al. 2012). Rangelands produce a great variety of ecosystem services but only few 

of them have market value (Sala and Paruelo 1997). For example, commodities 

produced by rangelands such as meat or wool have market value but other ecosys-

tem services such as regulating, cultural, and supporting services mostly do not 

have a market value although it is possible to estimate it indirectly.

The science of ecosystem services has grown exponentially as indicated by the 

number of academic publications per year on this topic, from a few per year in the 

1980s to a wealth of papers in the last decade (Fig. 14.2). The total number of peer- 

reviewed publications addressing ecosystem services exceeded 1200 and entire books 

and journals have been devoted to this topic. The Millennium Ecosystem Assessment 

was developed around this concept showing the enormous impact of the ecosystem 
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service conceptual framework (MA 2005). The most common approach to study eco-

system services has been related to the assessment of the capacity of ecosystems to 

deliver services, i.e., the supply of ecosystem services. Ecological production func-

tions define how the spatial distribution of ecosystem structure and functioning deter-

mine the delivery of ecosystem services (Daily 1997). Even when ecosystem services 

have been defined as the outcome of ecosystem processes desired by people, the main 

focus of ecosystem service research has been to identify the potential of a region to 

produce ecosystem services independently of whether people are demanding them or 

not. In addition, the economic valuation of ecosystem services has also been a fre-

quent target of research (Costanza et al. 1997; Gomez-Baggethun et al. 2010). In sum-

mary, the science of ecosystem services has developed rapidly in the past decades, but 

it has focused primarily on the supply of services and has largely overlooked the 

human demand for ecosystem services only until recently (Yahdjian et al. 2015).

Human demand represents the other side of an ecosystem service equation of 

supply and demand, which is related to the social beneficiaries. Human consump-

tion of resources and utilization of services that are supplied by ecosystems depend 

upon both their capacity to produce them and the societal value and need placed on 

those resources and services (Tallis and Polasky 2011). Demand for ecosystem ser-

vices changes among stakeholders or social beneficiaries, who are the individuals or 

groups of individuals who have an interest in ecosystem services because they get a 

profit from them and could have an active or passive influence on their delivery 

(Lamarque et al. 2011). Stakeholders not only exhibit different demands, but they 

also have different valuations of various ecosystem services. Indeed, an ecosystem 

service is not a universally applicable physical phenomenon, but one whose value is 

shaped by its users. Sustainable land management depends on reconciling supply 

and demand for ecosystem services by different stakeholders.

Rangelands are ideal for analyzing the balance between supply and demand for 

different types of services because of the variety of ecosystem services that they 

provide and the diverse suite of stakeholders interested in different services. In 

contrast, hyperarid ecosystems provide supporting, cultural, and regulating ser-

vices but few provisioning services. Similarly humid ecosystems are generally 

transformed into crop- and wood-production systems, or are subject to human 

commercial, residential, and industrial development at the expense of cultural, 

provisioning, and regulating services. In addition, rangelands are broadly threat-

ened by land degradation and climate change (Herrick et al. 2013). In general, 

rangelands produce abundant ecosystem services in quantity and variety, but the 

large value and threat of degradation contrast with the fact that humans usually 

assign small value to them, particularly when compared with tropical or temperate 

forests (Martin-Lopez et al. 2012).

The transformation of rangeland ecosystems into croplands is constrained by 

biophysical conditions and economic feasibility (Havstad et al. 2007). For exam-

ple, mesic rangelands have been converted to agriculture land, while arid and 

semiarid rangelands continue to be used as grazing lands, with investments in 

domestic animals, veterinary and reproductive management, fences, and water 

points that in combination result in a significant increase in livestock production 

(Oesterheld et al. 1992).
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In this chapter, we describe the (1) main ecosystem services provided by 

rangelands and the major categories of social beneficiaries and (2) most common 

methods used to estimate supply and demand of these services, and (3) analyze the 

determinants of supply and demand of ecosystem services and discuss the existence 

of trade-offs and win–win conditions in the provision of services. Finally, we pro-

vide a new conceptual framework for the management of rangelands that is based 

on reconciling supply and demand of ecosystem services. This framework is depen-

dent on place, time, and the specific valuation that each stakeholder has of specific 

ecosystem service. The framework recognizes that both supply and demand of eco-

system services change in space and time and are strongly influenced by land man-

agement decisions.

14.2  Categories of Rangeland Ecosystem Services

In this section, we describe the main ecosystem services provided by rangelands in 

each of the four categories of ecosystem services as defined by the Millennium 

Assessment (MA 2005). We then analyze the balance between supply and demands 

for each type of ecosystem service.

Provisioning services are the products obtained from ecosystems that can be 

directly harvested, and, in general, have a market value such as food, fiber, fuel, 

and freshwater. The main goods produced in rangelands are freshwater for drink-

ing and irrigation; forage to produce meat, milk, wool, and leather; and medicinal 

products (Sala and Paruelo 1997). What frequently drives the demand for provi-

sioning services is the immediate need of humans for particular plant or animal 

species, including production of desirable forage species and the harvest of wild 

game (Perrings et al. 2011). The relationship between supply and demand for 

these products changes among regions and among the specific provisioning ser-

vices. At a global scale, the demand for provisioning services in rangelands is 

higher than the supply, but at local scales, supply may exceed demands (Yahdjian 

et al. 2015). In the case of water for irrigation, water is required during specific 

periods when water is scarce, so supply and demand may be spatially or tempo-

rally disconnected, which is particularly important since most rangelands are 

water limited. As such, for provisioning services, the demand surpasses the sup-

ply, which is particularly evident for freshwater and food (Yahdjian et al. 2015). 

The supply of provisioning ecosystem services changes in time at different scales. 

The supply of meat and wool fluctuates with seasons and production systems, but 

also changes at decadal timescales as a result of land degradation and market 

fluctuations (Texeira and Paruelo 2006). Supply of provisioning ecosystem ser-

vices changes in space over multiple scales, from differences among locations 

within a specific community to variation along regional precipitation gradients 

(Adler et al. 2005). Finally, the demand for provisioning services changes among 

beneficiaries depending on their income, education, and urban versus rural resi-

dence (Yahdjian et al. 2015).
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Regulating services are the benefits humans receive from regulating ecosystem 

processes, such as climate regulation, air quality maintenance, water purification, 

and erosion control. Rangelands sequester large quantities of carbon, principally into 

the soil, and avoid carbon losses to the atmosphere that would occur if rangelands 

were to be transformed into croplands or severely degraded (Sala and Paruelo 1997). 

In the case of carbon sequestration, demand is higher than the supply because this 

process cannot offset actual carbon emissions from human activities (Tallis and 

Polasky 2011). Every unit of sequestered greenhouse gas emitted will allow us to 

minimize environmental and economic damage that would have occurred otherwise. 

The whole world benefits from a unit of carbon sequestration regardless of where it 

occurs because greenhouse gases thoroughly mix in the global atmosphere. Carbon 

sequestration in rangelands is important because of the area that rangelands occupy 

although per unit area carbon storage is lower than other ecosystems, such as wet-

lands and forests (Reynolds et al. 2007). Not only do rangelands account for a sig-

nificant fraction of the global carbon cycle, but they also account for most of the 

interannual variability in the global carbon sink (Ahlström et al. 2015).

Cultural services are the nonmaterial benefits that humans obtain from ecosys-

tems and they include cultural diversity, spiritual, and religious values, knowledge 

systems, and recreation. They involve consumptive and nonconsumptive services. 

Cultural services in rangelands are related to human experiences associated with 

activities such as wild game hunting, traditional lifestyles, and tourist ranching 

experiences. The demand for cultural services changes according to the region ana-

lyzed (Tallis and Polasky 2011) and has changed over time. For example, in the 

southwestern USA, the Bureau of Land Management, who administers a large frac-

tion of federal lands in the region, reported an increase in the number of visitors to 

their lands from 20 to 45 M per year for the 2000–2010 period (Yahdjian et al. 

2015). Similarly, the National Park Service reported for the same period an annual 

increase of 15 M visitors from 35 to 50 M per year.

Supporting services are those that are necessary for the production of all other 

ecosystem services such as processes that maintain biodiversity to produce goods or 

cycle nutrients (MA 2005). In rangelands, supporting services are primary produc-

tion, nutrient cycling, conservation of soils, and biodiversity, which represent a 

large storehouse of genetic, species, and functional diversity. Rangelands represent 

the natural ecosystem where annual grasses and legumes are most abundant and 

from where a large fraction of domesticated species originated (Sala and Paruelo 

1997). The key to sustaining biodiversity is harmonizing its protection with the 

delivery of as many other ecosystem services as possible. Land degradation, which 

in most cases results from overgrazing, weed invasions, energy extraction, and exur-

ban development, directly affects the provision of supporting services. Arguably, 

rangeland degradation has a larger and more imminent impact than climate change 

on the ability of these systems to fulfill human needs (Herrick et al. 2013). At the 

global scale, the supply of supporting services is higher than the demand, but human 

use does not directly apply since, by definition, supporting services are not directly 

used by people, even when they influence the supply of provisioning, regulating, 

and cultural services.
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14.3  Social Beneficiaries of Rangeland Ecosystem Services

In the same way that ecosystem services are classified, the social beneficiaries of 

services may be classified in categories according to the particular ecosystem ser-

vices they use. Beneficiaries of ecosystem services are individuals, commercial 

entities, and the public sector and they may be distributed across local, regional, 

national, and global scales (Table 14.1). The demand for ecosystem services is com-

plex and the classification of service beneficiaries, who often vary in their ecosystem- 

service preferences, can be a useful tool for identifying potential trade-offs and for 

balancing multiple, often conflicting, demands for services. If people’s preferences 

for two or more services are known and they can be expressed accurately in the 

same units of value, then making the trade-off decision is (at least conceptually) 

straightforward and involves a simple cost–benefit calculation (Carpenter et al. 

2009). Rangeland managers face the need to manage multiple ecosystem services 

and their interactions (Raudsepp-Hearne et al. 2010) and the demands of multiple 

beneficiaries (Yahdjian et al. 2015).

The supply and demand of ecosystem services occur at different spatial scales. 

Some ecosystem services are very local (pollination service, cultural services) 

whereas others are global (sequestration of greenhouse gases, air and water purifica-

tion). The different scales involved in the provision of ecosystem services raise the 

possibility of a mismatch between supply and demand. Mismatches may also occur 

between those who control the provision of ecosystem services (supply) and those 

who benefit from them (users).

The main beneficiaries in rangelands are ranchers, land-owner producers, land 

tenants, service providers, recreational hunters, conservationists, landscape 

 planners, passive and active nature tourists, and government and nongovernmen-

tal organizations (Scheffer et al. 2000; Castro et al. 2011; Yahdjian et al. 2015). 

While ranchers historically have demanded mainly provisioning services, their 

demands have broadened (Brown and McDonald 1995) while tourists and conser-

vationists classically have demanded more supporting and cultural services. It is 

important here to further highlight that ranchers vary enormously in their demand 

Table 14.1 Potential beneficiaries of ecosystem services across different spatial scales

Spatial scale

Stakeholders Local National/regional Global

Individual Hunter/gatherer, 

subsistence farmers, and 

tourists

Tourists, consumers, 

educators, and students

Tourists, consumers, 

educators, and students

Commercial 

entity

Local entrepreneurs, 

farmers, traders, and 

artisans

Regional economic 

organizations

International enterprise 

including fishery and 

forestry industries

Public sector Local government National and regional 

government

International 

community

Rows represent stakeholders and columns represent various spatial scales at which stakeholders 

interact with rangeland ecosystems (modified from Newcome et al. (2005))
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for ecosystem services. Similarly, people living in urban centers demand clean air 

and water that are provided by adjacent rural areas. The contrasting demands of 

different beneficiaries influence the analysis of land-management actions and their 

consequences on different ecosystem services.

The demand for ecosystem services in rangelands has diversified in the past 

decades, from mainly provisioning services to an increasing demand for more diverse 

services including regulating and cultural services (Yahdjian et al. 2015). The balance 

between supply and demand has also changed greatly from the time of European set-

tlement in North America (Fig. 14.3). The ability of ecosystems to produce services is 

declining and the demand for them is increasing, with serious implications for both 

people and the environment. However, we have not developed sufficient knowledge 

to quantify and model the demand for ecosystem services as we have for their supply. 

So, the question remains, which category of ecosystem services will have greatest 

demand in the future? How provision of and demand for ecosystem services will be 

balanced in rangelands? Which trade-offs among ecosystems services will be most 

important in the future? Who will be responsible for making these decisions?

14.4  Methods for Estimating Supply and Demand

Different tools and models have been developed to assess the production of ecosys-

tem services, including the valuation of market and nonmarket services, in both 

economic and noneconomic terms. The combination of ecological production 

Supply of Ecosystem Services

Use of Ecosystem Services 

Demand for Ecosystem Services

Pre-settlement:

the supply of ES 

surpassed the 

demand

Present:

the demand for ES 

is not fully 

satisfied by the 

supply

Future:

the demand for 

ES will surpass 

the supply

?

Fig. 14.3 Supply and demand for ecosystem services following European settlement (modified 

from data in Carpenter et al. (2009))
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functions and economic valuation describes the monetary value of ecosystem 

services. Recently, the Natural Capital Project has developed a tool to integrate 

biophysical and economic information on ecosystem services (Tallis et al. 2011).

The demand for ecosystem services is related to the social beneficiaries and is 

usually described by the location, type, and intensity of people’s demand for services. 

The demand has been evaluated focusing on the perception of ecosystem services by 

different stakeholders (De Chazal et al. 2008; Quétier et al. 2010; Martin-Lopez et al. 

2012). Preferences have been assessed by compiling responses to questionnaires and 

interviews (Lamarque et al. 2011; Martin-Lopez et al. 2012). During social surveys, 

ecosystem services are identified spontaneously, and the more “visible” services, 

such as recreation, aesthetic, and natural hazard regulation, are commonly described. 

Other questionnaires request that people rank ecosystem services according to their 

preferences. During the ranking exercises more “invisible” services, such as pollina-

tion and soil fertility, often emerge (Lamarque et al. 2011; Martin-Lopez et al. 2012). 

Finally, the traditional surveys formally used to value nonmarket ecosystem services, 

such as the willingness to pay for conservation of certain resources or the existence 

value, may also be included in studies of demands.

The main drivers associated with people preferences for ecosystem services 

were monthly income, level of education (from traditional ecological knowledge to 

formal education), and place of residence (the rural–urban continuum; Yahdjian 

et al. 2015). In addition, other social variables like age, gender, culture, and geo-

graphical location were also associated with the interest that people have in ecosys-

tem services (MA 2005).

The relationship between the supply of ecosystem services and the demand for 

them determines the actual use of ecosystem services by society (Tallis and Polasky 

2011). Food production per hectare or the amount of clean water used for irrigation 

are examples of estimates of the use of provisioning ecosystem services. When global 

analyses are implemented, remote drivers and teleconnections, such as international 

trade practices and agreements, have to be taken into account. Trade patterns, which 

can be dynamic and quite nuanced, show how demand for certain services in one 

country leads to changes in the provisioning services in other countries.

14.5  Trade-Offs and Win–Win Interactions

There are cases of synergistic and antagonistic interactions among different 

types of ecosystem services. Synergistic interactions, or win–win conditions, 

indicate that management leading to the increase of one type of ecosystem ser-

vice may result in the increase of other ecosystem services. For example, some 

ecosystem services respond similarly to specific management practices and eco-

logical conditions, such as those that may lead to increased carbon sequestration 

then resulting in increased water holding capacity, and, many of them, such as 

cultural services and biodiversity conservation, produce multiple intertwined 

values (Bennett et al. 2009).
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Antagonistic interactions, or trade-offs, indicate that management practices or 

events that increase one type of ecosystem service may negatively affect other eco-

system services (Oñatibia et al. 2015). For example, land management practices that 

lead to increases in the provisioning of food may result in a reduction of clean water 

purification, creating trade-offs in the provisioning of ecosystem services (Raudsepp- 

Hearne et al. 2010). Planting trees to increase carbon sequestration or timber pro-

duction may decrease stream flow in arid areas and represents a trade-off (Nosetto 

et al. 2008). In summary, ecosystem service research has advanced to identify nature 

as a complex provider of human benefits (MA 2005).

The rangelands of Patagonia provide an example of trade-offs and win–win rela-

tionships among ecosystem services depending on management. An example of win–

win is the maximization of carbon, nitrogen, and forage availability at intermediate 

grazing intensities (Fig. 14.4). A critical provision service, such as forage biomass, is 
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Fig. 14.4 Example of a 

win–win interaction 

between a supportive 

ecosystem service, carbon 

and nitrogen stocks, and a 

provisioning ecosystem 

service forage production 

as depicted by the 

complementary 

relationships between 

carbon (C) (a) and nitrogen 

(N) (b) in forage of a 

Patagonian rangeland. 

Paddocks are used with 

different stocking rates. 

Exclosure (Exc) includes 

fields without domestic 

animals for at least 27 

years. Moderately (Mod) 

and intensively (Int) grazed 

paddocks had 0.2 and 

0.4 sheep ha−1 (redrawn 

from Oñatibia et al. 

(2015))
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positively related to regulation services such as carbon and nitrogen sequestration at 

intermediate grazing intensities. Carbon and nitrogen stocks (C) in vegetation (above 

and belowground) were significantly higher in moderately grazed paddocks than in 

exclosure and intensively grazed ones (Oñatibia et al. 2015; Fig. 14.4). In this exam-

ple, the relationship between forage biomass and carbon and nitrogen stocks had a 

positive linear relationship indicating that a trade-off did not occur (Fig. 14.4).

A trade-off between a supporting and a provisioning ecosystem service occurred 

in Patagonian rangelands. Grazing intensity shows a unimodal relationship species 

richness with a maximum value at moderate grazing intensities (Perelman et al. 

1997; Fig. 14.5a). A decrease in richness is associated with intensive grazing 

because local extinction of forage species was not compensated by remaining non- 

palatable or weedy species. Patch diversity is another critical component of biodi-

versity in rangelands (Chap. 5, this volume). Abundance of different patch types 

shows a response similar to that of species richness. Under moderate grazing con-

ditions, high-cover patches decrease whereas low-cover patches increase.
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Fig. 14.5 Example of a 

trade-off between a 

supportive ecosystem 

service, biodiversity, and 

grazing intensity, which is 

an indicator of a 

provisioning ecosystem 

service, livestock 

production in the 

Patagonian rangelands, 

Argentina, under different 

management strategies. a 

Species richness along 

three grazing histories (Exc 
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intense grazing, separated 

by vertical dashed lines; 

redrawn from Perelman 

et al. (1997)), and b aerial 

percent cover of two patch 
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high-cover patches under 

three grazing regimes 
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sampling the same 

paddocks as in Fig. 14.4 

(redrawn from Cipriotti 

and Aguiar (2010))
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14.6  Rangeland Management and Ecosystem Services: 

A Historical Perspective

For nearly a century the basic principles of rangeland management have been 

described and re-explained as the nature of goods and services derived from 

rangelands. Early in the twentieth century, Sampson (1923) outlined basic man-

agement principles and practices to support the continued provision of food and 

fiber via livestock grazing from rangelands. The need for these principles grew 

out of an era of resource overexploitation all over the world (Texeira and Paruelo 

2006; Sayre et al. 2012). In that era, the provisioning services of food and fiber 

from rangelands were a central focus. There was either a lack of interest or a 

general unawareness of other goods and services from these “waste” lands at that 

time. This would be true for most rangeland environments on all continents in 

their early stages of settlement and development (Chap. 1, this volume). 

Management principles of the early twentieth century classically focused on 

requirements to control overgrazing and erosion through establishment of proper 

limits of the numbers of livestock, avoidance of grazing forage plants too early 

in their growth cycle, and effective distribution of livestock use across range-

lands. These same principles have persisted to guide livestock grazing as detailed 

in subsequent texts on rangeland management into the early twenty-first century 

(Stoddart and Smith 1943; Vallentine 1989; Heitschmidt and Stuth 1991; 

Holechek et al. 2011).

These traditional principles for sustained provisioning of food and fiber goods 

have proven to be either inadequate or unappreciated, however, in guiding range 

management in the provisioning of multiple ecosystem goods and services in 

recent decades. Though these principles still have application in terms of recog-

nizing limits to the supply of services and extraction of goods, the principles of 

rangeland management would be more appropriately portrayed as those of the 

science of  managing trade-offs among ecosystem services and negotiating 

among stakeholders with competing interests. In reality, the management prin-

ciples, which were articulated by Arthur Sampson nearly a century ago, are 

insufficient to manage landscapes in the twenty-first century. Currently, the pro-

visioning of ecosystem services is dictated by dynamics of land-use fragmenta-

tion, ecological legacies of past management, oppressive constraints of 

antiquated infrastructure, inadequate social institutions, heterogeneous nuances 

of topography, fragilities of specific species, economic pressures of global 

demands for local goods and services, uncertainties of changing climates, politi-

cal expediencies, and an array of cultural factors seldom acknowledged in the 

land management textbooks of the past. These complexities have been in play 

for decades and increasingly so with an expanding human population living on 

or adjacent to the world’s rangelands. The articulation of a more sophisticated 

set of management principles has not kept pace with these newer landscape reali-

ties (Chap. 1, this volume).
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14.7  Rangeland Management and Ecosystem Services: 

Landscape, Time, and Human Interactions

Given these current realities, the provisioning of goods and services from rangelands 

is now more appropriately perceived as a function of landscape, time, and human 

gradients (Fig. 14.6). The landscape gradient is shaped by ecological constraints 

resulting from an array of ecological sites and their existing conditions. It is this land-

scape gradient that was classically addressed through the basic management princi-

ples developed during the twentieth century when rangelands were viewed to provide 

a more narrow set of goods and services than expected in the twenty-first century.

Governance and socioeconomic conditions represent a critical component of this 

new conceptual framework. Complex patterns of land ownership (both public and 

private) and multiple administrative jurisdictions underscore the importance of gov-

ernance and stakeholder engagement in supplying ecosystem services (Petz et al. 

2014). The importance of viewing rangeland landscapes as socio-ecological systems 

with diverse governing institutions engaged in planning and management has been 

well described for some landscapes (Huntsinger and Oviedo 2014). Of additional 

importance are the social and cultural characteristics of resident populations. For 
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Fig. 14.6 Conceptual diagram of landscape, time, and human gradients that influence the provi-

sioning of ecological goods and services from rangelands (adapted from Sayre et al. (2013))
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example, level of education, household income, and place of residence were described 

as the main human aspects driving demand for ecosystem services (Yahdjian et al. 

2015). The need to consider and incorporate these human-related drivers into our 

management models far exceeds the utilities of the basic principles of rangeland man-

agement as articulated frequently throughout the twentieth century.

Land use is a major driver of the array of goods and services that can be supplied, 

and it is a dynamic feature of landscapes around the world (Foley et al. 2005). 

Changes in land use can dramatically shift provisions of goods and services, and 

shifts may signify persistent alterations. Land-use gradients are further complicated 

by the uncertainties of climate variability and climate change. Though climate mod-

els are increasingly sophisticated and generating “near-term” projections (Taylor 

et al. 2012), their limitations and complexities are still problematic. However, recent 

statistical methods have provided tools to downscale global climate models to spa-

tial scales that have application to land management (Abatzoglou 2013). What is 

now emerging is a more focused and applicable set of projections of climatic vari-

ables and their probabilities that would improve the ability of designing rangeland 

management that optimizes the provisioning of different ecosystem services under 

a changing climate. For example, interactive maps for various climate variables for 

the 2040–2060 period based on global climate models scaled down to the county 

level are now available for the USA (Fig. 14.7). Climatic projections at fine scales 

Cochise County
Max Temp Delta:
Min: 3.112 c
Max: 3.248 c
Mean: 3.188 c

Mean Annual Max Temp Delta (c)

1.943 - 2.642

2.643 - 2.951
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3.196 - 3.416
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Fig. 14.7 Projected changes in mean annual temperature for the 2040–2060 period scaled to the 

county level for the five states: California, Nevada, Arizona, Utah, and New Mexico, calculated 

from Abatzoglou (2013) and adapted from Taylor et al. (2012). Details for Cochise Details for 

Cochise County, AZ, are included
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of time and space will be effective in creating more quantitative understandings of 

pending changes that will have direct bearing on either the benefits these landscapes 

can provide or the conditions or processes that lead to desired benefits, either of 

which are definitions of ecosystem goods and services (Bommarco et al. 2013; see 

also Chap. 7, this volume).

The utility of the conceptual framework including landscape, time, and human 

gradients for deriving ecosystem services is evident in recent case studies from spe-

cific landscapes around the world (Fig. 14.6). For example, in the Little Karoo of 

South Africa, four different scenarios were created to evaluate the impact of one 

service, biodiversity, on the resulting supply of livestock forage, carbon storage, and 

water recharge from this 19,730 km2 landscape (Egoh et al. 2010). Mapped habitats 

(landscape gradient) were evaluated for capacities to supply these different services. 

Different realistic land-use potentials (time gradient) were evaluated, such as devel-

opment of tourism or of carbon markets, in terms of resulting impacts on other eco-

system services. Resulting impacts on revenues and opportunity costs for landowners 

(human gradient) were also calculated. Scenarios where biodiversity conservation 

could be achieved with provision of other services were realistic if human factors, 

including incentives to develop markets for services and institutions to encourage 

the supply of nontraditional ecosystem services, were emphasized. The importance 

of understanding landscape capacities to supply various ecosystem services was 

essential, but consideration of time and human gradients was paramount to manag-

ing for ecosystem services over time. Other recent case studies further illustrate the 

importance of inherent ecological capacities and existing ecological conditions, link-

ages of ecosystem services to the presence or absence of adequate infrastructure, 

such as roads and management institutions, subsistence requirements for resident 

human populations, rates of land-use and land-cover changes that can enhance one 

set of services at the expense of others, and importance placed on biodiversity within 

landscapes (Zhao et al. 2004; Muñoz et al. 2013; Pan et al. 2014).

Increasingly, the guidelines for managing ecosystem goods and services material-

ize for any specific landscape out of quantitative efforts to describe and map their 

occurrence or potential at spatial scales of relevance to landscape, human, and time 

gradients (Crossman et al. 2013). Though specific principles guiding processes of 

description and mapping of ecosystem goods and services are incomplete and meth-

ods are diverse, the resulting benefits are tangible. For example, a study both mapped 

and valued ecosystem services occurring across the Ewaso Ng’iro watershed of 

northern Kenya (Ericksen et al. 2011). Ecosystem services included medicinal plants, 

crops, livestock, wildlife, tourism, marketed carbon, wood and fiber, drinking water, 

flood regulation, cultural identification, and open space. The supply of these services 

was highly dependent on land use, inherent landscape capacities, existence of supply 

and their market values, proximity to infrastructure (i.e., accessibility), temporal 

dynamics of supply, social and cultural values of specific services, and spatial arrange-

ment of the watershed and its sub-catchments. In the end, the final services that could 

be valued for uses within the watershed were livestock, tourism, and crops, and they 

were heterogeneously distributed and mapped across the watershed. In this fashion, 

recommendations could be developed based on specific knowledge of landscapes, 
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demands, and values. For example, the market value of tourism within the watershed 

was minimal, but the value was highly dependent on infrastructure (national parks, 

roads). Decisions to further develop tourism could be then made with knowledge of 

costs both to develop the necessary infrastructure as well as evaluate resulting impacts 

on other benefits, such as livestock production.

In south-eastern Australia, one study evaluated and ranked existing land-cover 

types for six ecosystem services of forage production, biodiversity, water regulation, 

provision of water, carbon stock, and timber production (Baral et al. 2013). In this 

fashion, the provisioning of these services could be evaluated both spatially for the dif-

ferent cover types and land use and temporally given the known changes in land use 

and land cover over the past two centuries. In general, their analyses concluded that 

less modified landscapes resulted in a great supply and diversity of these services. 

However, specific land uses that modified cover, such as conversion of pasture to plan-

tation, could result in a greater array of services, such as plantations providing timber 

production from regions within the basin. Their mapping processes provided a basis 

for evaluating possible services and the resulting trade-offs created by land-use deci-

sions. Characterization and quantification of ecosystem services provide a bridge that 

can link our knowledge of ecological processes across landscapes, time, and human 

processes (Fu and Forsius 2015). Continued efforts to clearly establish the principles 

for these characterizations and quantifications are critical to both understanding link-

ages among human and ecological processes for a landscape and sustaining output of 

a demanded supply of goods and services.

Exploitation and utilization of natural resources pose the questions of property 

ownership and legitimate stakeholders (Latour 2013). Are natural resources the prop-

erty of individuals, and if so which individuals, or are they the property of human-

kind? In some regions, provisioning ecosystem services belong to the owners of the 

land. At the same time, all other ecological services (supporting, regulating, and cul-

tural) in general are not marketable and usually are not claimed or owned by a single 

individual (single or organized with economic purposes). The number, nature, and 

diversity of stakeholders have increased in the recent past as the importance of regu-

lating and cultural services has increased relative to provisioning services (Yahdjian 

et al. 2015). Demand for cultural ecosystem services results in the creation of national 

parks or natural reserves as in the example for South American rangelands (Murdoch 

et al. 2010). This strategy raises ethics issue since inhabitants—mostly small ranchers 

and peasants—are forced to migrate and adopt alternative lifestyles. Additionally 

migration may also initiate other social conflicts in urban centers (Easdale et al. 

2009). It is important to keep in mind as we analyze human-induced degradation of 

ecological services that there is a network of stakeholders, in addition to ranchers, and 

sociopolitical processes that are involved (Easdale and Domptail 2014). Many com-

ponent processes have nonlinear dynamics that may potentially exhibit thresholds 

(Walker et al. 1981). More than seven decades since the rise of rangeland science the 

challenge of grazing management remains unresolved because of the changing 

demands for ecosystem services. Integration of human and biophysical dimensions 

through the study of ecological services may be a rewarding path.
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14.8  Conceptual Framework for Ecosystem Services 

and Range Management

The concept of ecosystem services has emerged as a powerful tool for guiding man-

agement of rangelands in the twenty-first century. Ecosystem services serve as a 

way of clarifying what is that different stakeholders want from rangelands, ranging 

in scale from paddocks and counties to regions across national boundaries. 

Ecosystem services also serve to clarify what goods and services that land is able to 

supply. The optimal management strategy results from reconciling supply and 

demand of ecosystem services (Yahdjian et al. 2015) as described in the following 

equation. Land use is a function of:
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= =
∗∑

j

n

j
i

m

j i1 1
∑ ES supply ES Demand

stakeholder 
, PPolitical Power

stakeholder i






































 

(14.1)

Here, land use or, in our specific case, rangeland management practices depend on 

the sum of the supply of all the ecosystem services ESj from 1 to n, and the sum of 

the demand for each ESj from each stakeholder from i to m. Finally, the demand of 

each stakeholder is weighed by their political power.

For example, rangelands all over the world are being invaded by woody plants 

(Estell et al. 2012). This transformation from grasslands into shrublands and savan-

nas affects the provisioning of ecosystem services. Woody-plant encroachment 

affects the provisioning of different ecosystem services from livestock production to 

maintenance of biodiversity and yielding of clean water (MacLeod and Johnston 

1990; Turpie et al. 2008; Anadón et al. 2014). Equation (14.1) can be applied to the 

rangeland management issue of whether to remove or not woody plants. Rangelands 

can supply different services including clean water and livestock production, which 

are enhanced by woody-plant control. On the contrary, the ecosystem service erosion 

control may be diminished by removal of woody plants. Different stakeholders with 

different political power value these different services differently. The final solution 

to the management question of whether to remove woody plants will depend on both 

(1) the effect that woody plants have at each specific location on ecosystem services 

and (2) the valuation that each stakeholder has on each ecosystem service.

Similarly, Anadón et al. (2014) analyzed the impact of woody-plant encroach-

ment on livestock production in US and Argentinean rangelands. These are two 

rangelands, which are similar from the biophysical standpoint and in their abil-

ity to supply ecosystem services. However, these rangelands have contrasting 

socioeconomic conditions that affect the demand for ecosystem services. In 

Argentina, livestock production is the most valued and primary ecosystem ser-

vice of interest. In the USA, on the contrary, rangelands face multiple demands 

for ecosystem services, including biodiversity conservation and recreation, in 

addition to livestock production. Anadón et al. (2014) showed that the different 
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demand for ecosystem services modified the impact of woody-plant invasions 

on livestock production. In Argentina, woody-plant cover accounted for 50 % of 

the livestock production but, in the USA, it explained only half of the variability 

in livestock production.

14.9  Future Directions

Ecosystem services represent an important conceptual link between the biophysical 

constraints and human demand. However, our understanding of the supply and 

demand of ecosystem services is unbalanced. We know much more about the supply 

of ecosystem services than we know about the demand for different ecosystem ser-

vices from different beneficiaries. It will be important to enhance our understanding 

of the demand from different groups of beneficiaries for specific ecosystem services 

within specific landscapes. In addition, it will be necessary to understand and quan-

tify the determinants of the demand for ecosystem services.

In order to predict the future of rangelands and develop appropriate management 

strategies, we need to understand the future supply and the demand for ecosystem 

services. Our strategy to tackle this daunting task is to separate the effect of drivers 

to the response of supply and demand to their drivers. For example, the future sup-

ply of the ecosystem service forage production depends on climate change (the 

driver) and sensitivity of ecosystems to climate (the response to driver). Similarly, 

the demand for the ecosystem service recreation depends on the proportion of urban 

population (driver) and the sensitivity of recreation demand to urbanization 

(response to driver). This requires an interdisciplinary approach where land owners, 

land managers (public and/or private), ecologists, climatologists, and social scien-

tists work in close collaboration.

14.10  Summary

Rangeland ecosystem services are the benefits that society receives from range-

lands. They include the provisioning of food, wood and medicinal resources, and 

services that contribute to climate stability, control of agricultural pests, and purifi-

cation of air and water. Rangeland ecosystem services are classified in four catego-

ries: provisioning, regulating, cultural, and supporting. Provisioning ecosystem 

services include the contribution of essential goods such as food, fiber, and medici-

nal. Regulating ecosystem services include carbon sequestration, prevention of soil 

erosion, and natural flood control. Cultural ecosystem services include intellectual, 

inspirational, and recreational activities. The fourth category is supporting ecosys-

tem services, which include services that are dependent on ecological processes 

such as primary production and nutrient cycling and that are intimately related to 

biological diversity.
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The supply of ecosystem services is mostly determined by biophysical factors such 

as climate, soils, as well as historical land use. Human demand represents the other side 

of the rangeland ecosystem service equation, which is related to the social beneficia-

ries. Human consumption of resources and utilization of services that are supplied by 

rangelands depend upon both their capacity to produce them and the societal value and 

need placed on those resources and services. Demand for ecosystem services changes 

among social beneficiaries, who are the individuals or groups of individuals who have 

an interest in ecosystem services. Different methods have been developed to assess the 

demand for specific ecosystem services, including collation of responses to question-

naires and interviews and classical economic tools such as willingness to pay.

There are cases of trade-offs and win–win interactions among different types of 

ecosystem services. Win–win conditions occur when management aimed at increas-

ing one type of ecosystem service results in the increase of other ecosystem ser-

vices. For example, grazing management that results in increased forage supply also 

increases carbon and nitrogen stocks in rangeland soils. Trade-offs occur when 

management results in the increase of one ecosystem service and the decrease in 

other. For example, increasing grazing intensity and livestock production may, in 

certain cases, decrease biodiversity.

Principles of range management developed in the twentieth century focused pri-

marily on the biophysical components of the rangeland ecosystems and the require-

ments to control overgrazing and erosion through the establishment of general 

management principles, including proper limits on numbers of livestock, avoiding 

grazing of forage plants too early in their growth cycle, and effectively distributing 

livestock use across rangelands. In the twenty-first century, principles for managing 

rangelands need to be much broader. Currently, the provisioning of ecosystem ser-

vices is dictated by dynamics of land-use fragmentation, ecological legacies of past 

management, infrastructure, fragilities of specific species, economic pressures of 

global demands for local goods and services, uncertainties of changing climates, 

political expediencies, and an array of cultural factors seldom acknowledged in the 

land management textbooks of the past.

Here, we propose a novel conceptual framework for rangeland management based 

on the premise that management always aims at reconciling supply and demand of 

ecosystem services. The supply of each ecosystem service is based mostly on bio-

physical characteristics and the use history that could have affected its potential. The 

demand for each ecosystem service is different for each group of beneficiaries or 

stakeholders. Finally, the demands of each group of beneficiaries do not have the same 

impact because of their differential capacity to influence decision making. Therefore, 

demands for ecosystem services here are weighed by the political power of each group 

of beneficiaries or stakeholders. In conclusion, there is not a universally optimal man-

agement strategy for a rangeland because demands for ecosystem services, power of 

each group of beneficiaries, and supply of ecosystem services change through time.
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Chapter 15

Managing Climate Change Risks in Rangeland 

Systems

Linda A. Joyce and Nadine A. Marshall

Abstract The management of rangelands has long involved adapting to climate 

variability to ensure that economic enterprises remain viable and ecosystems sus-

tainable; climate change brings the potential for change that surpasses the experience 

of humans within rangeland systems. Adaptation will require an intentionality to 

address the effects of climate change. Knowledge of vulnerability in these systems 

provides the foundation upon which to base adaptation strategies; however, few vul-

nerability assessments have examined and integrated the climate vulnerability of the 

ecological, economic, and social components of rangeland systems. The capacity of 

ecosystems, humans, and institutions to adjust to potential damage and to take 

advantage of opportunities is termed adaptive capacity. Given past attempts to cope 

with drought, current adaptive capacity is not sufficient to sustain rangeland enter-

prises under increasing climatic variability. Just as ecosystem development is 

affected by past events, historical studies suggest that past events in human commu-

nities influence future choices in response to day-to-day as well as abrupt events. All 

adaptation is local and no single adaptation approach works in all settings. A risk 

framework for adaptation could integrate key vulnerabilities, risk, and hazards, and 

facilitate development of adaptation actions that address the entire socio- ecological 

system. Adaptation plans will need to be developed and implemented with recogni-

tion of future uncertainty that necessitates an iterative implementation process as 

new experience and information accumulate. Developing the skills to manage with 

uncertainty may be a singularly important strategy that landowners, managers, and 

scientists require to develop adaptive capacity.
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15.1  Introduction

The management of rangelands has long involved adapting to climate variability in 

order that economic enterprises remain viable and ecosystems sustainable (Marshall 

and Stokes 2014). Rangeland management has never been just about the land; “man-

agers have sought to maintain a relationship between rangelands and the people who 

hoped to benefit from the land, and to do it in such a way that those benefits were 

realized while the land retained its capacity to provide what society valued” (Brunson 

2012). This relationship and the corresponding benefits will be challenged under 

climate change (IPCC 2014a; Crimp et al. 2010; Chap. 7, this volume).

Climate change brings to this relationship the potential for large-scale modifica-

tions, including those that surpass the experience of humans currently living on 

rangelands. Since the early 1990s, the global scientific community has been study-

ing and reporting on the nature of these global changes in climate, the human and 

natural activities contributing to these global changes, and the associated impacts to 

land and water (IPCC 2014a). Warming temperatures are projected as well as 

changes in seasonal precipitation patterns, total annual precipitation, and the poten-

tial for increased drought (Chap. 7, this volume). While rangeland managers and 

enterprise owners have incorporated strategies to address variability in climate, 

these future changes may be beyond the variability they have experienced in their 

lifetime. The enterprise owner and their family, the manager, and employees are 

embedded within social and economic networks and institutions that are interdepen-

dent with the ecological system which includes soil, plants, animals, and ecosystem 

processes. This interdependent system is formally called a socio-ecological system 

(Berkes and Folke 1998; Brunson 2012). We view the socio-ecological rangeland 

system as a collective of economic enterprises (livestock and other market outputs) 

and the ecological system (Fig. 15.1) (Chap. 8, this volume). We use this framework 

to explore adaptation to climate change.

The global conversation about adaptation has expanded from an initial focus on 

ecological and economic impacts and adaptation strategies to a broader vision of 

ecological, economic, and social impacts and adaptation strategies. Adaptive capac-

ity is the ability of plants, animals, and humans, as well as the systems and institu-

tions to adjust to potential damage or to take advantage of opportunities under climate 

change (Table 15.1). Social values of the enterprise owner influence management 

goals while at the same time community values, local and regional economics, and 

government policy are influencing the owner’s values and decisions. Thus under-

standing the interdependent nature of the socio-ecological rangeland system is key to 

understanding and facilitating adaptation in rangeland systems (Fig. 15.1).

This chapter explores adaptation to climate change in the context of socio- 

ecological systems. We review the evolving concept of adaptation and the devel-

opment of strategies for adaptation to current and future climate change. We 

explore what we might learn about past attempts to cope with climatic events 

and how a historical perspective could frame future adaptation strategies on 

rangelands. Four case studies from around the world are summarized to describe 
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past and future adaptation strategies. We examine what adaptation management 

on rangelands might look like in the future. The biophysical consequences of 

climate change on rangelands are described in Chap. 7 of this volume.

15.2  Evolution of Climate Change Adaptation

Our understanding of what adaptation means in response to a changing climate has 

evolved through the last 25 years and likely will continue to evolve. This evolution 

is most visible in the five assessment reports of the Intergovernmental Panel on 

Climate Change (IPCC) where each report (1992, 1995, 2001, 2007, 2014) synthe-

sized the most current published scientific literature on climate change. Two threads 

in these reports that highlight an evolution in our scientific understanding are of 

specific interest. First, the definition of adaptation as applied to climate change and 

related topics such as adaptive capacity has evolved. Second, the discussion of 

rangelands has shifted from an emphasis on the mismanagement of rangelands to an 

exploration of the effects of climate change and potential adaptation responses.

Increasingly, the assessment of climate change impacts, vulnerability, and adapta-

tion in the IPCC reports has come to include the economic and social impacts of 

climate change, and the role of humans in managing natural systems. In the first three 

IPCC reports, chapters related to rangelands or ecosystems focused on ecological 

Fig. 15.1 This adaptive decision-making framework emphasizes how the sustainability of indi-

vidual ranching operations depends on their capacity to adapt to the changing parameters of the 

social-ecological systems in which their enterprises are embedded (Lubell et al. 2013)
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effects of climate change with very brief discussions of adaptation options (IPCC 

1990; Allen-Diaz et al. 1996; Gitay et al. 2001). In the first IPCC report, rangeland 

adaptation responses were broadly identified as developing emergency and disaster 

preparedness policies, improving the efficiency of natural resource use and needed 

research on control measures for desertification, and enhancing adaptability of crops 

to saline conditions (IPCC 1990). In the Third Assessment Report, the overuse of 

rangeland resources and the associated rangeland degradation were seen as more 

impactful than the future effects of climate change (Gitay et al. 2001). Consequently, 

adaptation options such as selection of plants (legume-based systems) and improved 

livestock management were identified as a means to address current rangeland deg-

radation as well as the potential effects of climate change.

As the focus expanded to include societal impacts and responses, the structure 

of the IPCC assessment reports included a more in-depth discussion of adaptation 

limits and transformation in social and natural systems. The Third Assessment pro-

Table 15.1 Definitions of terms used in this chapter

Term Definition

Adaptation Process of adjustment to actual or expected climate and its effects. In 

human systems, adaptation seeks to moderate or avoid harm or exploit 

beneficial opportunities. In some natural systems, human intervention 

may facilitate adjustment to expected climate and its effects

Incremental adaptation—adaptation actions where the central aim is to 

maintain the essence and integrity of a system or process at a given scale

Transformational adaptation—adaptation that changes the fundamental 

attributes of a system in response to climate and its effects

Adaptation options Array of strategies and measures that are available and appropriate for 

addressing adaptation needs. They include a wide range of actions that 

can be categorized as structural, institutional, or social

Adaptive capacity Ability of systems, institutions, humans, and other organisms to adjust to 

potential damage, to take advantage of opportunities, or to respond to 

consequences

Mitigation (of 

climate change)

A human intervention to reduce the sources or enhance the sinks of 

greenhouse gases

Resilience Capacity of social, economic, and environmental systems to cope with a 

hazardous event or trend or disturbance, responding or reorganizing in 

ways that maintain their essential function, identity, and structure, while 

also maintaining the capacity for adaptation, learning, and transformation

Risk Potential for consequences where something of value is at stake and 

where the outcome is uncertain, recognizing the diversity of values. Risk 

is often represented as probability of occurrence of hazardous events or 

trends multiplied by the impacts if these events or trends occur. Risk 

results from the interaction of vulnerability, exposure, and hazard

Sustainable 

development

Development that meets the needs of the present without compromising 

the ability of future generations to meet their own needs

Vulnerability Propensity or predisposition to be adversely affected. Vulnerability 

encompasses a variety of concepts and elements including sensitivity or 

susceptibility to harm and lack of capacity to cope and adapt

All definitions from Agard et al. (2014) unless otherwise noted
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vided a definition of adaptation that specifically included humans: “the adjustment 

in natural or human systems in response to actual or expected climatic stimuli or 

their effects, which moderates harm or exploits beneficial opportunities” (IPCC 

2001). In this report, adapting to climate change was seen not only as reducing 

vulnerability to climate change but also as promoting sustainable development, 

development that meets the needs of the present without compromising the ability 

of future generations to meet their own needs. Adaptation was characterized in 

terms of purposefulness (autonomous versus planned), timing (anticipatory, proac-

tive, reactive), temporal scope (short versus long term), spatial scope, form (e.g., 

structural, legal, institutional), and criteria to evaluate its performance. Although 

the Third Assessment report did not discuss adaptive capacity with respect to 

rangelands, adaptive capacity was defined and that definition has been retained by 

subsequent reports (Table 15.1). In the Fourth Assessment report, adaptive capac-

ity was recognized as being influenced by social variables, in addition to biophysi-

cal and economic resources (Adger et al. 2007).

By the Fourth Assessment Report, the scientific and management communities 

had contributed an extensive literature that could be reviewed in chapters focused 

on the assessment of adaptation practices, options, constraints and capacity, and 

interrelationships between adaptation and mitigation. Adaptation rarely was 

implemented in response to climate change alone and high adaptive capacity did 

not, in general, lead to actions to reduce vulnerability to climate change. The 

report identified significant barriers to implementing adaptation that spanned the 

inability of natural systems to adapt to the rate and magnitude of climate change, 

but also constraints in technology, financing, cognitive and behavioral compo-

nents, and social and cultural settings. With respect to ecosystems, adaptation 

options focused only on altering the context in which ecosystems developed and 

little attention was given to the human systems component. It was acknowledged 

that identifying adaptation responses and options for ecosystems was a rapidly 

developing field (Fischlin et al. 2007). However, it would take a reframing of 

adaptation in the context of risk to bring the ecological, economic, and social 

components into a more integrated framework.

In the Fifth Assessment, the definition of adaptation became “the process of 

adjustment to actual or expected climate and its effects.” The definition expands 

on the human role. “In human systems, adaptation seeks to moderate harm or 

exploit beneficial opportunities. In natural systems, human intervention may 

facilitate adjustment to expected climate and its effects” (Table 15.1). Though 

subtle, this definition is different from previous IPCC definitions in that there is 

intentionality to the adaptation action. It is not just the restoration of a rangeland 

ecosystem; the adaptation action includes specific consideration of climate 

change objectives in management. The definition of adaptation was further 

nuanced. Moving beyond adaptation categories of anticipatory and reactive, pri-

vate and public, and autonomous and planned, only two types of adaptation 

were defined in the Fifth Assessment: incremental and transformational 

(Table 15.1). The report notes that adaptation options to date have been mainly 

incremental and stresses that adaptation may require transformational changes, 

15 Managing Climate Change Risks in Rangeland Systems
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in which potentially impacted systems move to fundamentally new patterns, 

dynamics, and/or locations.

The concept of risk is used in this most recent IPCC Assessment to frame 

decision making in a changing world, with continuing uncertainty about the 

severity and timing of climate change impacts and with limits to the effective-

ness of adaptation (IPCC 2014b). Risk is defined as “the potential for conse-

quences where something of value is at stake and where the outcome is uncertain, 

recognizing the diversity of values” (Table 15.1). This introduction of risk 

allows the discussion of adaptation to integrate the risk of climate-related 

impacts, climate-related hazards, and vulnerability and exposure of human and 

natural systems as these risks, hazards, and vulnerabilities interact and are 

impacted by socioeconomic and climate drivers (Fig. 15.2). When climate 

change factors from more than one economic sector or geographic region are 

included in a risk assessment, risks that were not previously assessed or recog-

nized emerge. An example of such interaction is the policy to encourage the use 

of bioenergy to mitigate climate change by reducing fossil fuel emissions, but 

which has led to shifting cropland acreage from food production to bioenergy 

crop production and consequently raising prices for food crops, resulting in a 

reduction in food security and increasing human vulnerability to climate change 

Fig. 15.2 Schematic of the interaction among the physical climate system, exposure, and vulner-

ability to produce risk. Risk of climate-related impacts results from the interaction of climate- 

related hazards (including hazardous events and trends) with the vulnerability and exposure of 

human and natural systems. Vulnerability and exposure are largely the result of socioeconomic 

pathways and societal conditions (although changing hazard patterns also play a role). Changes in 

both the climate system (left side) and socioeconomic processes (right side) are central drivers of 

the different core components (vulnerability, exposure, and hazards) that constitute risk 

(Oppenheimer et al. 2014; Fig. 19.1)
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(Oppenheimer et al. 2014). This Fifth Assessment report summarizes the key 

risks globally (Oppenheimer et al. 2014); we will explore the key risks identified 

for rangelands later in this chapter.

15.3  Assessing Vulnerabilities to Implement Adaptation 

Actions

Knowledge of vulnerability provides the foundation upon which to develop and select 

specific adaptations and strategies. However, assessing vulnerability has been chal-

lenging as the definition of vulnerability has varied across the ecological-socio- 

economic spectrum and there has been no standard methodology to assess vulnerability 

of climate change (Fussel and Klein 2006; Glick et al. 2011; USGCRP 2011). Social 

characteristics of individuals and communities have been incorporated into vulnerabil-

ity assessments with respect to disasters; however, most existing climate vulnerability 

assessments of plants, animals, or ecosystems have limited information on the related 

social and economic effects of climate (USGCRP 2011). Further, most approaches to 

assessing vulnerability in natural resource settings have not directly addressed risk.

Within ecological systems, the commonly used framework has focused on quanti-

fying exposure, sensitivity and adaptive capacity of individual plant or animal species, 

or the ecosystem (Fig. 15.3) (Glick et al. 2011; Furniss et al. 2013). In some cases, the 

sensitivity of plants, animals, and ecosystems to changes in climate has been docu-

mented in the scientific literature or observed in long-term resource inventories 

(Peterson et al. 2011); additional sources of information include traditional knowledge 

(Laidler et al. 2009) and expert knowledge (Alessa et al. 2008; McDaniels et al. 2010; 

Moyle et al. 2013). Tools have also been developed to quantify ecological responses 

to future climate scenarios (Joyce and Millar 2014), although natural resource vulner-

ability assessments have been qualitative as well as quantitative.

Vulnerability of economic enterprises on rangelands has not been widely addressed. 

Few studies have explored the intersection of environmental variability and risk with 

economic variability and risk in livestock operations (see Torell et al. 2010). Few 

adaptation strategies identified in ecological or economic vulnerability assessments 

address social vulnerabilities. However, often the need for understanding the social 

Fig. 15.3 Key components 

of vulnerability, illustrating 

the relationship among 

exposure, sensitivity, and 

adaptive capacity for 

ecological systems 

(modified from Glick et al. 

2011)
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component is identified: for example recognizing that rangeland manager perceptions 

about climate change inhibit their receptivity to adaptation options (Briske et al. 

2015). Vulnerability of the agricultural economic sector has been quantified using 

market models to identify likely shifts in livestock and crop management strategies 

based on economic return (Heyhoe et al. 2007; McCarl 2011; Mu et al. 2013).

Box 15.1: Adaptively Managing Environmental and Economic Risks:  

Pawnee National Grassland, Colorado, USA

East of the Rocky Mountain Front Range, the Pawnee National Grassland, 

managed by the USDA—Forest Service, sits within a mosaic of private and State 

of Colorado land, and the USDA Central Plains Experimental Range. The Pawnee 

National Grassland is managed for multiple ecosystem goods and services—

domestic livestock grazing, wildlife, threatened and endangered plants and 

animals, recreational opportunities, and oil and gas development. These multiple 

goods and services interconnect the interests of public land managers with private 

land ranchers (Fig. 15.6). Drought can occur at any time in the region and 

multiyear droughts of 8–14 years occurred in the 1930s and the early 1950s 

(Lauenroth and Burke 2008; Evans et al. 2011). Facilitating ecosystem resilience 

and reducing risk of resource degradation are important to these grassland 

managers. Reducing economic risks when drought reduces forage availability 

from public and private land is important to the private land livestock owners. 

Drought often brings conflict between environmental and economic interests 

because it directly involves environmental and socioeconomic systems.

(continued)

Domestic livestock grazing on Pawnee National Grasslands (photo courtesy of David Augustine) 
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Adaptive grazing management has been used to create and maintain diverse 

vegetation structure—a combination of short and mid-tall vegetation patches—

that is needed to meet habitat needs for wildlife. The desired objective of 

rangeland management is to provide available forage for both wildlife and 

domestic livestock in a manner that is consistent with other resource objec-

tives. Grazing management is accomplished on a total of 162 active allotments 

in partnership with two grazing associations. The majority of livestock grazing 

occurs May through October and most allotments are continuously grazed for 

this period. Annual grazing allocations are cooperatively determined at spring 

meetings with the FS Range Staff and Grazing Association Boards.

The 2002 drought and high temperatures severely impacted many eco-

nomic sectors in Colorado (Pielke et al. 2005). In the years preceding 2009, 

very dry conditions forced grazing allotments on Pawnee to be vacated ear-

lier than initially planned. Grazing association boards and permittees 

desired more notice about stocking adjustments in order to make more 

informed decisions about their overall operation. To address these concerns, 

an annual stocking strategy was developed that employs resource and man-

agement information to allocate livestock at the start of the season with a 

mid-season reevaluation of stocking levels. Resource and management 

information includes (1) precipitation over the previous year and the last 15 

years both annually and for the growing season; (2) stocking rates for the 

previous year and the last 15 years; and (3) management and objectives 

including the current management, desired condition of the rangeland, cur-

rent trends, and priority natural resources to be managed. Using this infor-

mation, initial stocking recommendations for each allotment reflect 

condition assessments (poor, moderate, good). Midseason grazing adjust-

ments are based on soil water availability and midseason allotment condi-

tion. This strategy is designed to be adaptive, as well as lay out possible 

scenarios so that the permittees are able to better anticipate their grazing on 

federal lands and make appropriate adjustments in their overall operations.

Allotment strategy development recognizes the risks of the federal manag-

ers and the risks of the private landowners and permittees. USFS personnel 

have the responsibility to manage the environmental risk as weather and other 

environmental stressors affect ecosystem services produced from the Pawnee 

National Grassland. The individual livestock owner has the responsibility to 

manage the economic risk as influenced by the supply and quality of forage 

from both federal and private land and livestock market fluctuations. When a 

drought is widespread, increased demand and high cost of forage may be 

coincident with volatile and declining cattle prices. The adaptive process 

gives the federal grassland managers and the permittees information and a 

timeline in which to make decisions relative to the risks they manage.

(continued)
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Vulnerability has been characterized as a function of both people’s sensitivity to 

a change event and their capacity to adapt to it (Marshall et al. 2013). Consequently, 

people can be vulnerable because they are highly sensitive to change, or have insuf-

ficient adaptive capacity to accommodate change, or both. Importantly, people that 

are highly sensitive to change are not necessarily vulnerable if they have correspond-

ingly high levels of adaptive capacity. According to this characterization, it is pos-

sible to identify who is more vulnerable than whom, and why. Climate sensitivity 

within the social subsystem is typically measured as a function of resource depen-

dency (Marshall 2011). That is, the more dependent landowners are on the current 

rangeland enterprise, the more sensitive they are likely to be to climate change. 

Dependency can be described in economic terms, such as the goods and services 

produced, income sources, and alternative employment opportunities, and in social 

terms, including occupational identity, place attachment, employability, networks, 

environmental knowledge, and awareness (Marshall 2011).

Few assessments have contributed directly to implementation of adaptation actions 

on the ground (Noble et al. 2014). This lack of action can be ascribed to several factors 

(Yuen et al. 2013; Joyce and Millar 2014). The assessment could lack clear definitions 

of vulnerability and adaptive capacity, or have too narrow of a focus, such as natural 

resources that cannot be managed or changed. Weak quantitative components could 

include incomplete data, or inadequate descriptions of the interactions between cli-

mate change and other environmental stressors. The assessment may have no connec-

tion to management decisions such as insufficient information or a method to 

successfully prioritize among sensitive resources or to evaluate adaptation manage-

ment. Lastly, the assessment may have failed to engage decision makers and/or the 

public. Further, few adaptation actions incorporate incentives to encourage human 

behavior toward management to sustain resilient ecosystems (for example, sustained 

drought management, Marshall 2010; Marshall and Smajgl 2013). Vulnerability 

assessments may often fail to implement adaptation because opportunities for collec-

tive learning by managers, the public, and decision makers are minimized or over-

looked (Yuen et al. 2013). Collective learning arises when various goals, values, 

knowledge, and points of view are made explicit and questioned to accommodate 

conflict and reach common agreement. Collective learning represents the basis for 

identifying the collective action to tackle a shared problem (Yuen et al. 2013) and may 

be particularly important in a vulnerability assessment of a socio-ecological system.

Codependency between ecological and socioeconomic subsystems suggests that 

vulnerabilities are intrinsically linked. Further these systems operate in larger societal 

institutional systems. Using the vulnerability components of exposure, sensitivity, 

and adaptive capacity, linkages between the ecological and the social subsystems can 

be conceptualized (Marshall et al. 2014). In this portrayal of a linked socio- ecological 

system, ecological vulnerability to climate change can be seen as the exposure to 

climate change in the social subsystem (Fig. 15.4). Vulnerability in the socioeco-

nomic subsystem is a function of the sensitivity of the social subsystem (dependency 

on natural resources), the adaptive capacity of the socioeconomic subsystem, and the 

vulnerability of the ecological subsystem (Marshall et al. 2014). There is feedback 
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from the socioeconomic system to the ecological system—this feedback may 

positively or negatively affect ecological vulnerability. We have added an institu-

tional component to the model where the exposure term for the institutional subsys-

tem is the vulnerability of the social subsystem. Vulnerability of the institutional 

subsystem feeds back to the socioeconomic and the ecological subsystems. 

Institutional components can be market structures, as when collapse of livestock 

enterprises led to restructuring of the regional livestock market in the 2012 drought in 

the USA. Institutional components involve government intervention as in the case 

with drought relief programs in the USA or national relief following dzud (severe 

winter weather disaster) in Mongolia. These interventions often do not reflect collec-

tive learning or desired collection action across the social and the institutional subsys-

tems and thus may not facilitate resilient decision making at the enterprise or 

individual level (Thurow and Taylor 1999; Fernández-Giménez et al. 2012). As new 

markets, new government regulations, and climate change introduce new learning 

opportunities, vulnerabilities can arise at the household unit or livestock enterprise.

Fig. 15.4 A framework for conceptualizing vulnerability across ecological, socioeconomic, and 

institutional domains (modified from Marshall et al. 2014). Social vulnerability consists of sensi-

tivity to change, the degree of resource dependency (ecological vulnerability), and adaptive capac-

ity. Similarly, institutional vulnerability consists of institutional sensitivity to change, exposure 

(social vulnerability), and institutional adaptive capacity
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Box 15.2: Collaborative Management as a Means to Minimize Climate 

Risk: Mongolian Plateau, China

Inner Mongolian rangelands can be environmentally challenging for people and 

the primary industry of raising livestock. The climate of Inner Mongolia is cold; 

average annual temperatures vary between 1 and 2.5 °C. Precipitation is low 

and erratic with the majority occurring during three summer months. Winter 

storms can be harsh and frequent drought is associated with wind erosion. The 

culture had adapted to this harsh climate using strategies based on three core 

components: mobility, cooperation, and reciprocity (Dalintai et al. 2012). These 

strategies helped to sustain the resilience of this tightly connected socio-

ecological system. For drought, these strategies included otor and surug. In 

otor, herds, through kinship relations, were moved to better grasslands in 

response to drought conditions; surug was a system in which herder leased a 

core number of their young female animals to herders in areas not as affected by 

drought. When the conditions in the original herders’ area improved, they took 

back their livestock—this short-term leasing provided a way to maintain the 

core of their herd by matching forage production with animal demand.

The social setting in this area of China has seen a continual change since 

the 1950s with collectivization between 1950s and mid-1980s and then mar-

ket reforms in the early 1980s. These changes affected many of the tight 

connections in the socio-ecological system. Collectivization strengthened 

production but weakened the mobility component by encouraging semi-

nomadism. Market-oriented reforms emphasized rights of ownership by indi-

vidual households, attempting to incentivize herders to use their grasslands 

rationally and sustainably. However, these changes eroded the strategies to 

adapt to the harsh climate. Mobility of herders was limited; consequently 

grasslands were overgrazed. Further, government structures assumed the role 

of providing services, weakening the kinship-based social structure of coop-

eration and exchange. At the start of the twenty-first century, a top-down 

effort by the government was initiated to address the degradation of grass-

lands. Grazing management strategies included restrictions on where and 

when grazing could occur, thus making it difficult for herders to migrate 

herds. Grass planting occurred and the government instituted a supplemental 

feed program. Herders were also moved away from the grasslands. These 

changes exacerbated the herders’ poverty. However, degradation continued; 

Dalintai et al. (2012) suggest that the policy aimed at protecting the grass-

lands and improving herder’s living standards proved ineffective because 

these most recent changes were implemented in a top-down manner. 

Essentially, over all of these social and economic changes, the vulnerability of 

the socio-ecological system to drought and winter storms increased.

A project was implemented to address issues of poverty and environmental 

degradation and to help preserve the traditional culture in the Sonid Left 

Banner area of Inner Mongolia, located on the south-eastern part of the 

(continued)

L.A. Joyce and N.A. Marshall



503

Mongolian Plateau (Dalintai et al. 2012). The climatic risks and uncertainties 

remained as in the past; however the overgrazing had heightened environmen-

tal risks which were compounded with greater economic risks. This project 

attempted to nuance the land tenure structure to bring back the traditional 

ways but with a new structure that meshed with the land tenure and market 

systems. Cooperatives were created to facilitate a collective approach for the 

use of the grassland and a cooperative division of labor. The boundaries of 

land units from several households were merged, with the households still 

retaining ownership of the land. All animals were herded together. Herders 

were encouraged to take on the responsibility to restore the grassland. 

Collective decisions on grazing methods drew on traditional ways and infor-

mation provided by research ecologists collecting data and working with the 

herders. The collective purchasing and marketing of products was an attempt 

to reduce the economic risks as well as improve market negotiation skills. 

Herders recognized that reducing the costs of a disaster is in its own way a 

kind of income. Project scientists realized that lowering the risks to herder 

production operations was more practical than attempting to increase their 

incomes. The cooperative’s main problem is learning how to adjust to the 

government’s grassland protection policies to better meet the local needs of 

the herders (Dalintai et al. 2012). The breadth of decisions that the local herd-

ers can take on directly affects the final performance of the community-based 

grassland management projects. Eventually, the restoration of the arid ecosys-

tem and incomes both increase with greater local decision making.

(continued)

The grand challenge for vulnerability assessments in rangeland systems and in 

getting adaptation on the ground is to connect awareness of vulnerability with the 

potential for adaptation across ecological, socioeconomic, and institutional systems. 

An assessment could identify the level of risk, urgency of action, efficacy, and cost-

effectiveness of adaptation options, and engage and empower stakeholders, includ-

ing vulnerable populations, in adaptation planning (Salinger 2005; Marshall and 

Johnson 2007; Joyce and Millar 2014). Processes that facilitate collective learning in 

the vulnerability assessment could help to identify adaptation approaches that most 

effectively accommodate and support rangeland managers and enterprise owners.

15.4  Resilience in Heterogeneous Systems

15.4.1  Resilience in Socio-Ecological Systems

Resilience has emerged as an important concept to guide and support more inclu-

sive and effective approaches to the management of combined social and ecological 

systems (Ludwig et al. 1997; Berkes and Folke 1998; Levin et al. 1998). Resilience 
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was first characterized as persistence of ecological systems and described as their 

ability to absorb change and disturbance and still maintain the same relationships 

among component parts (Holling 1973; see Chap. 6, this volume). At this time, 

human and natural systems were treated independently and it was implicitly 

assumed that ecosystems responded to human use in linear, predictable, and con-

trollable ways (Folke et al. 2002). The concept of resilience has since gained sub-

stantial momentum through recognizing the complexity and variability of natural 

and social systems (Gunderson 1999; Walker and Janssen 2002; Davidson-Hunt and 

Berkes 2004). For example, social and natural resource systems are intrinsically 

linked through intricate and dynamic cycles that are, by their very nature, adaptive 

(Holling and Meffe 1996; Holling 2001). These linked systems continually face 

interventions or disruptions that “reset” the natural cycles of recovery, growth, and 

adaptation (Holling 1996). Adaptive systems are flexible, continually change, and 

can cope and reorganize. Change and adaptation are now understood to be integral 

features of the dynamics of socio-ecological systems and have replaced the previ-

ous concept of ecological stability (Holling 1973; Folke et al. 2002).

The concept of resilience is especially apt when rangelands are envisioned in a 

socio-ecological context. Rangelands will have to continually adapt to climate- 

induced changes, including drought, heat waves, wildfires, flooding, greater weather 

variability, and shifts in rainfall and seasonal patterns (Walker and Schulze 2008), 

and increased pests and diseases (Volney and Fleming 2000). In addition, rangeland 

systems will have to address cultural change, including the acceptance and adoption 

of new best practices, and technology that enhances adaptation to climate change 

and reduces greenhouse gas emissions (Darnhofer et al. 2010; Fleming and Vanclay 

2010; Marshall et al. 2016). In some instances, these climate-induced changes may 

be so severe or adaptive capacity very limited, that climate-related regulatory 

change through governance or social institutions will also need to be addressed 

(Cabrera et al. 2006).

Management of socio-ecological systems involves the maintenance of system 

properties and feedbacks that confer resilience without compromising the ability 

to cope and adapt to future change (Holling and Meffe 1996). Specifically, suc-

cessful adaptation on the rangelands means that landowners and their enterprises 

will remain viable through time despite an increasing volatility within social and 

ecological subsystems (Fig. 15.1). Remaining viable depends not only on maxi-

mizing productivity during any one season, but also on minimizing negative con-

sequences to future productivity (McKeon et al. 2004). Climate change requires 

that landholders make the most of good years and avoid losses and reductions in 

resource condition in drought years to an extent as yet unprecedented (Hobbs et al. 

2008). If stocking rates are too high at the onset of drought, for example, soil ero-

sion will be accelerated and the productivity of future years will be diminished 

(Watson 2004; 2008). These decisions involve trade-offs between short-term profit 

maximization and risk avoidance (Hammer et al. 1996; Hammer 2000; Hansen 

2002; Hertzler 2007).
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15.4.2  Variations in Adaptive Capacity of Landowners

Natural systems have an inherent adaptive capacity that has evolved from 

responding to past disturbances including climate. Adaptation has previously 

focused on the manipulation of natural resources, and economic resources. 

However understanding social heterogeneity among enterprise owners is impor-

tant for effective management of rangelands and climate adaptation planning 

(Emtage et al. 2007). Adaptive capacity is the ability to convert existing 

resources—natural, financial, human, social, or physical resources—into a suc-

cessful adaptation strategy (Marshall et al. 2014). Characteristics that contribute 

to adaptive capacity include creativity and innovation for identifying adaptations; 

testing and experimenting with various adaptations; recognizing and responding 

to effective feedback mechanisms; employing adaptive management approaches; 

possessing flexibility; being able to reorganize given novel information; manag-

ing risk; and having necessary resources at hand (Marshall et al. 2010).

We emphasize that adaptive capacity is not solely dependent on having financial 

or ecological resources. On rangelands, and at the landowner scale, adaptive capac-

ity has been more comprehensively operationalized according to four measurable 

attributes reflecting landowners’ and managers’ skills, circumstances, perceptions, 

and willingness to change (Marshall et al. 2012). These have been described as (1) 

how risks and uncertainty are managed; (2) the extent of skills in planning, learning, 

and reorganizing; (3) the level of financial and psychological flexibility; and (4) the 

anticipation of the need and willingness to contemplate and undertake change 

(Marshall 2011; Park et al. 2012). While other measures have been developed in 

other contexts (e.g., Cinner et al. 2009) these four dimensions have served as the 

basis from which several studies on rangelands have examined adaptation processes 

(Marshall et al. 2011; Webb et al. 2013; Marshall and Stokes 2014).

Australian enterprise owners, as a group, exhibited highly heterogeneous levels 

of adaptive capacity (Marshall and Smajgl 2013). In fact, of the 16 possible combi-

nations describing adaptive capacity on rangelands, all combinations were repre-

sented to some extent. Only some individuals had the capacity to respond 

successfully to policies and practices that enhance climate adaptation. This suggests 

that the current social heterogeneity in adaptive capacity will profoundly limit the 

extent to which landowners in Australia can respond to lower summer rainfall and 

increasing drought projected to occur in 2030 (Cobon et al. 2009).

Landowners that can anticipate or effectively react to the effects of climate 

change are more likely to adapt to new climate conditions. Landowners with a 

higher adaptive capacity tend to display consistent characteristics that have enabled 

researchers to more clearly define or describe what makes for a higher adaptive 

capacity (Marshall 2010). While management actions cannot eliminate risks of 

impacts from climate change, management can increase the inherent capacity of 

ecosystems to adapt to a changing climate (Settele et al. 2014). For example, 

humans can select adaptation actions that guide the transition or transformation of 
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a socio- ecological system toward an alternative system that may be more resilient 

to novel climatic conditions (Hobbs et al. 2013). Understanding social heterogeneity 

across enterprise owners could help tailor climate adaptation planning.

15.5  Management Responses to Past Change

15.5.1  Drought

Human activities can fundamentally alter the social-ecological interactions within 

rangeland systems (Stafford Smith et al. 2007), particularly as enterprise owners 

and managers respond to biophysical drivers such as climate, or socioeconomic 

drivers such as local, regional, and international markets (Reynolds and Stafford 

Smith 2002; Reynolds et al. 2007; Chap. 8, this volume). Semiarid and arid range-

land systems may be among the most tightly coupled socio-ecological systems 

because of the high degree of climate variability and dependency among system 

components (Stafford Smith et al. 2007). We look to studies of past management 

response to change for insights that could benefit climate change adaptation.

Drought is a normal part of climate and, although common in arid and semiarid 

rangelands, drought can occur in all types of climate (Thurow and Taylor 1999; Wilhite 

and Buchanan-Smith 2005). Drought is referred to as a slow-onset natural hazard, 

where effects of drought accumulate slowly over time. This slow onset, and the tempo-

rary nature of drought, often leads to a lagged response by landowners and managers. 

Drought impacts can be costly, with reductions in water supplies, forage, and livestock 

productivity. Herd liquidations, one response to drought, often occur on the downside 

of the price curve for livestock and restocking on the upside of the price curve (Bastian 

et al. 2006), resulting in financial challenges for the landowner (Torell et al. 2010).

Drought has been a learning experience at the scale of an individual livestock 

enterprise; however, some enterprises may still be underprepared for subsequent 

droughts. Over 500 cattle ranchers in the state of Utah were surveyed after the 

1999–2004 drought, described as the sixth most severe drought since 1898 in Utah 

(Coppock 2011). Herd size varied from less than 5 brood cows to over 300 head and 

grazed ecosystems included desert, grassland, and high-elevation grasslands. Only 

14 % of cattle enterprises were prepared for the 1999–2004 drought. The experience 

of this drought increased the number of ranchers that self-identified as being better 

prepared for subsequent drought to 29 % when they were surveyed in 2006. A nega-

tive experience in the 1999–2004 drought and the perception that another drought 

was inevitable were primary motivations for increasing drought preparedness. The 

most common risk management actions put in place by ranchers after the 1999–

2004 drought included improving water for livestock, and diversifying family 

income (Table 15.2). While adaptive capacity for drought improved with this expe-

rience, still greater than 50 % of the livestock operators were only somewhat 

 prepared or not prepared for the next drought. This lack of adaptive capacity ensures 

that crisis drought management will begin again when the next drought occurs.
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Table 15.2 Risk-management actions used by Utah ranchers in 2009 for drought preparedness 

(Coppock 2011)

Tactic

Percentage of respondents 

saying “Yes, I am doing 

this” (%)

Improving water for livestock 76 ± 4.0

Diversifying family income 68 ± 4.4

Improving irrigation for hay production 67 ± 4.3

Improving land management 57 ± 4.5

Reducing stocking rates 56 ± 4.9

Enrolling in government disaster compensation programs 55 ± 5.0

Increasing capacity for hay production 53 ± 4.4

Purchasing feed insurance 38 ± 3.9

Seeking extension information 37 ± 3.8

Using Internet drought forecasts 31 ± 4.2

Using forward contracting for livestock sales 30 ± 4.2

Increasing capacity for hay storage 29 ± 3.8

Planning to use grassbanks 26 ± 3.7

Renegotiating bank loans 17 ± 3.5

Other (19 tactics). Most common: (1) expanding grazing land and 

investing in improved grazing systems (seven), (2) researching 

drought and drought management (two)

9 ± 2.3

Using forward contracting for hay purchases 8 ± 2.5

Total survey response was 96.7 %, resulting in 509 responses

Managers of rangelands enterprises also confront volatility in the meat and 

fiber market, in addition to climatic variability, and these two events are often 

interrelated. Using a series of historical drought episodes in Australia (Fig. 15.5), 

Stafford Smith et al. (2007) identified the linkages between operator decisions 

and broader social and economic developments. During every drought, a com-

mon set of events occurred: (1) good climatic and economic conditions for a 

period, leading to local and regional social responses of increasing stocking 

rates, setting the preconditions for rapid environmental collapse, followed by (2) 

a major drought coupled with a market decline making destocking financially 

unattractive, further exacerbating grazing impacts, and then (3) permanent or 

temporary declines in grazing productivity, depending on follow-up seasons cou-

pled again with market and social conditions. One conclusion authors drew from 

this study is that learning from climate and economic events is often temporally 

mismatched. Decisions were driven by short- term economic cycles. However, 

the return times of some climatic events were outside of the life spans of enter-

prise operators, which limited this information from influencing the short-term 

decisions. In addition, institutional and government responses, including moni-

toring and post-drought surveys, were too slow to stop the degradation. Drought 

management responses require information sharing among managers, industry, 
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science, and institutions at regional and multigenerational scales. Drought-

monitoring systems put in place after widespread drought, such as the national 

monitoring in Australia, or the National Integrated Drought Information System 

(NIDIS) and the Drought Portal in the USA, offer real-time information about 

drought as well as local and regional climate.

Drought planning for enterprise operators on rangelands is readily available 

through government and academic institutions and long-term management strate-

gies for climate variability have been developed. Yet few enterprise operators 

employ risk management strategies such as conservative stocking or flexible stock-

ing. The use of flexible grazing management that fluctuates with favorable and unfa-

vorable years can produce greater economic return than a set conservative strategy 

(Torell et al. 2010). However, the return on this approach was highly dependent on 

the accuracy of seasonal climate forecasts and a careful trade-off analysis of stock-

ing and destocking. Enterprise operators were hesitant to use near-term climate 

forecasts unless they saw economic and environmental benefits associated with sea-

sonal forecasts (Marshall et al. 2011) or forecast tools were tailored specifically to 

users’ needs (Dilling and Lemos 2011).

Management actions to address proactively as well as during drought are widely 

available through extension agents, consultants, or professional organizations. 

Further, governments, industries, and communities have introduced a range of 

Fig. 15.5 Drought episodes in Australia were used to describe the interactions between the eco-

logical and the social processes in socio-ecological rangeland systems (from Stafford-Smith et al. 

2007). Shading indicates pastoral areas (sheep or cattle), forward hatching indicates episode 

regions with longer droughts, and back hatching indicates shorter droughts (diamonds indicate that 

New South Wales had one of each)
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economic and policy initiatives. These have included regulatory instruments, 

 educational instruments, and voluntary and market-based instruments (Moon and 

Cocklin 2011). However, these efforts have been variable in their success (Sankey 

et al. 2009; Briske et al. 2011). Research suggests that a significant part of the rea-

son that sustainable practices are not adopted by rangeland enterprise owners is that 

policies and practices are typically founded on the “average” or “typical” resource 

user and do not appreciate the extent of diversity among these populations (Marshall 

and Smajgl 2013; Briske et al. 2015; Roche et al. 2015). Implementing resource- 

protection strategies without sufficient knowledge of the capacity of people to cope 

and adapt to them may impose levels of stress upon individuals and communities to 

such an extent that their ability to adapt, tolerate, or prosper under the new condi-

tions is compromised. Strategies that generate stress and conflict are also likely to 

result in poor compliance and leave the natural resource unprotected (May 2004).

The greatest challenge under a changing climate may not necessarily be the 

identification of specific management options, but rather the need to encourage 

human behavioral changes to sustain the socio-ecological rangeland system. 

Drought intensity and duration are likely to increase under climate change (Dai 

2011, 2013). Few past strategies incentivized human behavior toward management 

to sustain resilient ecosystems (Marshall and Smajgl 2013). Future management 

may need to be responsive to the decision-making processes that rangeland owners 

and operators use. Four distinct patterns of decision making in drought were identi-

fied in surveys of cattle ranchers in western USA. The patterns encompassed using 

a long-term strategy dealing with climatic uncertainty, facing drought by building 

efficiency into the operation and relying on strong local ranching networks, second-

career perspective with reliance on outside income and conservative stocking, and, 

last, an experimental approach to ranching using evidence-based adaptation to 

drought (Wilmer and Fernández-Giménez 2015). Outreach by extension or aca-

demia to these different patterns of decision making cannot rely on one approach, 

but rather needs to reflect on decision-maker ways of knowing.

15.5.2  The Influence of History in the Human Response 

to Change

We close this section with four case studies that identified motivations and adaptive 

responses to different types of socio-ecological disturbances: environmental change 

caused by human activity in the Solomon Islands; economic change resulting from 

closure of a timber mill in Canada; political, social, and economic change in a mul-

tiethnic rural village in Romania; and responses to policies for adapting to sea-level 

change in Australia (Fazey et al. 2015).

Change in each of these case studies was occurring daily; however, the adaptive 

responses to sudden change were influenced by historical legacies. In the mill clo-

sure case study, one community had previously experienced several economic 

changes (fur trading to mining to timber) and, given this experience, could cultivate 
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a new economy with the mill closure, a contrast to the community without this 

historical legacy. In the sea-level policy development, the past practice of compen-

sating for damage and current favorable attitudes toward private property rights 

facilitated the influence of a minority group on resisting change.

Change and the response to change can accelerate further change. On the 

Solomon Islands, population pressure resulted in subsistence resources dwindling, 

and the initiation of cash cropping practices, which reduced or moved food gardens 

from the more fertile areas, increasing pressure on the ecological systems. The 

increasing numbers of people attempting to respond to this need also resulted in an 

acceleration of change in the community.

Connections among ecological, economic, and social processes constrained and 

enhanced the likelihood of success in the multiethnic community. Power in this 

community was intertwined with conforming to the social norm of a combination of 

subsistence agriculture and cash-making activities. Political power and education 

allowed one ethnic group to work outside the village accumulating cash. Newly 

arrived immigrants creatively adapted; however, their ways did not conform to soci-

ety’s expectations, particularly in subsistence agriculture. Consequently, they were 

unable to gain important political capital and integrate into village life according to 

the prevailing social norm.

The development of future adaptation approaches/strategies will need to con-

sider underlying socio-ecological assumptions, values, and principles, and how 

understanding past change can provide inspiration for new and transformative 

futures (Fazey et al. 2015). It is recognized that past disturbances influence the 

response of ecological systems to future disturbances. Equally important, adapta-

tion planning for climate change must recognize that the legacy from historical 

events influences how individuals and a community will respond to current events 

and plans for the future.

15.6  Developing Adaptation Options

As we have previously noted, the emphasis on adaptation planning has shifted from 

a narrow focus on biophysical vulnerability to a broader vision of social, economic, 

and biophysical vulnerability, including the capacity of humans to respond. Broadly, 

adaptation needs have been defined by the Intergovernmental IPCC as those cir-

cumstances requiring action to ensure safety of populations and security of assets in 

response to climate impacts (Agard et al. 2014). Effective adaptation planning 

requires an assessment of the risk of climate-related impacts and hazards, and the 

vulnerability and exposure of human and natural systems as impacted by socioeco-

nomic and climate drivers (Fig. 15.4). Ecosystem services such as food security, 

clean water, biodiversity, and disease and flood control are dependent upon ecologi-

cal processes within the socio-ecological system. Consequently, biophysical needs 

include sustaining these systems and resources under climate change. Social needs 
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include sustaining financial, human, social, and cultural assets (Noble et al. 2014). 

In the socio-ecological rangeland system, social needs can involve addressing 

financial flexibility in a livestock enterprise, risk perceptions of rangeland manag-

ers, cultural patterns of grazing, or psychological stresses related to extreme events 

such as wildfire or drought.

Adaptation options can be classified as structural and physical, social, and insti-

tutional (Noble et al. 2014). Within structural and physical, engineering options for 

drought management could include new or enlarged reservoirs to store water, more 

efficient water delivery systems, and communications technology as cell phones 

and drought or flash flood warning systems. Physical adaptation also includes man-

agement of ecosystems and watersheds such as enhanced invasive species man-

agement, minimized soil erosion, and restoration of ecosystems after natural 

disturbances (Millar et al. 2007). Social adaptation options could include changes in 

the enterprise operation such as supplemental feed, conservative stocking, and 

changing type of livestock (Joyce et al. 2013) as well as options to improve the 

adaptive capacity of enterprise owner (Marshall and Smajgl 2013).

The private sector and local institutions will bear the greatest responsibility for 

developing and implementing adaptation strategies and practices (Noble et al. 

2014). Livestock enterprise owners and industries associated with these enterprises 

will be motivated to protect their financial investments under a changing climate—

productivity of their land, value of their genetic stock, infrastructure supporting 

markets, as well as the markets themselves. Local institutions will be key actors in 

adaptation, as they attempt to implement the top-down flow of policy, such as pro-

grams to address responses to extreme climatic events. However, limited availabil-

ity of funding and resources, especially in developing countries, and the lack of 

national government support will challenge the ability of the private sector to imple-

ment adaptation options. Goals of private sector adaptation actions may not be con-

sistent with local and national adaptation policies (Noble et al. 2014); similarly 

governmental actions in response to extreme climate events could further exacer-

bate local adaptation efforts (Fernández-Giménez et al. 2012).

All adaptation is local and no single adaptation approach works in all settings 

(Noble et al. 2014). Management actions rarely have been motivated by a single 

objective; consequently, adaptation options have been identified for managing 

plants, animals, and ecosystem processes along the lines of no-regret, low-regret, 

and win-win strategies. The motivation here is that these strategies may make eco-

logical and economic sense locally in the current climate and may provide a means 

of protection as climate continues to change (Millar et al. 2007, 2012; Joyce et al. 

2013). For example, in the face of an impending stress such as heat waves or drought, 

management would focus on actions that protect the existing assets and maintain 

what humans currently value in ecosystems. Protecting existing animals during 

increasing temperatures might imply implementing some type of heat stress man-

agement. Maintaining what humans value might imply off-enterprise employment 

to supplement expenses incurred by drought and other weather extremes. These 

strategies might be considered no-regret or low-regret strategies as heat waves and 
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drought are frequent challenges on rangelands. A more intensive response to 

impending climate stresses could focus on ensuring that current ecosystems can 

regenerate or recover after disturbances such as drought or wildfire. These options 

could involve aggressive invasive species management, alternative feed strategies 

during drought, or planting after disturbance events—all focused on keeping the 

ecosystem resilient and sustaining ecosystem services and the current enterprise 

structure.

As climate continues to change, incremental adaptation actions may not suffice 

(Kates et al. 2012; Joyce et al. 2013) and, in some cases, may institutionalize man-

agement practices that are maladaptive under the continually changing climate 

(Dilling et al. 2015). Enabling socio-ecological rangeland systems to adapt may be 

a desired strategy. This approach would assist climatically driven transitions to 

future novel states while mitigating and minimizing undesired and disruptive out-

comes, such as loss of ecosystem productivity, or socioeconomic welfare in the 

community. Given that shifts in climatic trends and variability will continue into the 

future, adaptation planning represents an iterative process where climate-related 

risks and hazards must be continually reevaluated.

Where socio-ecological systems have been resilient in challenging environ-

ments, collective learning is likely at the core of that resilience. This collective 

learning occurs as societies deal with the variability across the biological and 

socioeconomic environments. Strategies in rangeland communities range from 

diversifying use of plants and habitats and income opportunities, migration of 

herds and households, flexibility in social organizations and livelihood strategies, 

grass banking or grazing reserves, and institutions of reciprocity and exchange 

(Fernández- Giménez et al. 2012). In Mongolia, the “otor” is one such strategy that 

has developed over time. Here herders and a portion of the household migrate to 

fatten animals in the fall, to seek better pastures in a drought or to flee bad weather 

and poor forage in a dzud. The mobility of herders is somewhat restricted by gov-

ernment policy but not always monitored or checked. However, Fernández-

Giménez et al. (2012) concluded that while household units were well prepared for 

a dzud through the use of otor, these households became vulnerable when in-

migration of livestock from other communities occurred. Further, short-term gov-

ernment relief aid in response to these extreme events minimizes loss of life and 

impoverishment, but it may contribute to social vulnerabilities in the long term, 

such as lack of individual initiative (Fernández-Giménez et al. 2012; Chap. 17, this 

volume). Under climate change, adaptation will be a continual process, as indi-

viduals and communities seek to adapt to new environmental conditions that arise 

gradually or through abrupt change.

Collective learning can also occur where local and diverse groups come to real-

ize the challenges that they face, such as the threat of development and rangeland 

fragmentation (Case Example 15.3) or concern that regulation or legislation will be 

put in place to protect wildlife or habitat on which the private sector depends (Case 

Example 15.4). In some cases these groups can self-organize to begin the process of 

addressing their concerns. In other cases, the group can be motivated by a third 

party who has little or no stake in the environmental or economic concerns.
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Box 15.3: Self-Organizing Community Linking Management and 

Science: Malpai Borderlands Group in Southwest, USA

A group of private landowners identified the threat of fragmentation from 

subdivision and development on their landscape in the southwestern cor-

ner of New Mexico and the southeastern corner of Arizona. Residential 

development expanding from urban areas had already resulted in subdivi-

sion of some ranches. Additional landscape fragmentation and woody spe-

cies encroachment of grasslands could permanently limit future options 

for sustaining rural livelihoods as well as affect ecosystem productivity 

and biodiversity. The Malpai Borderlands Group (MBG), formally orga-

nized in 1994, is a collaborative effort with environmental groups and 

state and federal agencies, built around goals shared by neighbors within 

the community and directed at protecting and restoring ecological diver-

sity and productivity of around 324,000 ha. The Board of Directors 

includes local ranchers, scientists, and other stakeholders. The landscape 

includes about 57 % private land, 20 % state trust lands, 11 % National 

Forest, and 7 % Bureau of Land Management-administered land.

The Group’s goal is “To preserve and maintain the natural processes that 

create and protect a healthy, unfragmented landscape to support a diverse, 

flourishing community of human, plant, and animal life in the borderlands 

region (http://www.malpaiborderlandsgroup.org/).” To help facilitate this 

goal, the MBG incorporated as a 501(c)(3) nonprofit organization, and was 

therefore capable of accepting tax- deductible contributions and holding con-

servation easements. The MBG has protected 32,000 ha of private land 

through conservation easements. These easements have had the indirect 

effort of easing management challenges by enabling ranchers to consolidate 

properties through purchase of additional properties and for other ranchers, 

the opportunity to avoid defaulting a mortgage or avoid the need to take a 

mortgage (Rissman and Sayre 2012). These easements have strengthened the 

social networks among landowners with easements and the MBG that holds 

the easement. The resources available for easement owners, such as financial 

incentives, have promoted increased management on these protected lands.

One of the more innovative projects devised by MBG is the concept of a 

“grassbank.” Originated by the Animas Foundation, owner of the Gray Ranch 

and a partner in MBG, a grassbank is a concept in which grass on one ranch is 

made available to another rancher’s cattle in return for the conveyance of land-use 

easements prohibiting subdivision. Grassbanking experiences of three ranchers 

changed their perceptions of grazing effects and resulted in 30–65 % reductions 

in their stocking rates on their ranches, a reduction not stipulated in the grass-

banking arrangement (Rissman and Sayre 2012).

From the beginning MBG has been strongly committed to using the best 

available science and technology to achieve their objectives. The Group draws 

upon the input of a Science Advisory Committee to establish priorities and seek 

resources. This collaborative effort has resulted in a number of conservation 

treatments, enabling 28,000 ha of prescribed burn. The collaboration among the 

MBG and scientists from a wide array of disciplines and affiliations has resulted 

in enhanced science and management to support adaptation on the ground.

http://www.malpaiborderlandsgroup.org/
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Box 15.4: Adapting to Climate Change with Social Learning: Gunnison 

Basin, Colorado, USA

The Nature Conservancy, a global nongovernmental organization that empha-

sizes conservation, began to engage community members in the Gunnison 

Basin, Colorado, USA, about climate change. A workshop was held in 2009 to 

explore the potential effects of climate change, using climate scenarios and a 

structured vulnerability assessment. Many questions about the potential effects 

remained within the community. The Nature Conservancy and several other 

organizations formed a working group which began the process of exploring 

the potential impacts of climate change (http://www.conservationgateway.org/

ConservationByGeography/NorthAmerica/UnitedStates/Colorado/science/

climate/gunnison/Pages/default.aspx). Building on this interest, in 2011, the 

Gunnison Climate Working Group was officially formed as a chartered part-

nership of 14 public and private organizations in Colorado’s Upper Gunnison 

Basin (http://southernrockieslcc.org/project/gunnison- climate/). Goals of the 

Gunnison Climate Working Group are to (1) increase understanding and 

awareness of threats posed by climate change to species, ecosystems, and the 

benefits they provide to the people of Gunnison Basin; (2) identify and priori-

tize strategies and techniques for helping people and nature cope with climate 

change; and (3) promote coordination, collaboration, and effective implemen-

tation of strategies.

The US Fish and Wildlife Service’s Southern Rockies Landscape 

Conservation Cooperative (LCC) provided funding to the Nature Conservancy, 

on behalf of the Working Group, to (1) complete a comprehensive vulnerabil-

ity assessment to identify species and ecosystems most at risk to climate 

change; (2) develop a set of adaptation strategies for priority species and eco-

systems; (3) design and begin implementation of a local adaptation demon-

stration project; and (4) document tools, methods, and lessons learned to 

share with others across the Southern Rockies LCC through a climate adapta-

tion learning network.

The Climate Change Vulnerability Assessment for the Gunnison Basin is 

a first attempt at identifying ecosystems and species of the Gunnison Basin, 

Colorado, that are likely to be affected by climate change and why they are at 

risk. Climate projections suggest that the natural environment, ecosystems, 

and species of the Gunnison Basin will change significantly over the coming 

decades (Neely et al. 2011). The results indicate that many of the natural 

features of the Basin (50 % of ecosystems and 74 % of species of conserva-

tion concern) are susceptible to loss, degradation, or other changes associated 

with warming temperatures. This report provides a foundation for the 

Gunnison Climate Working Group’s next step: developing social- ecological 

adaptation strategies to support resilience of social-ecological systems, 

including species, ecosystems, and human livelihoods in the Gunnison Basin. 

(continued)
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Many adaptation options have been suggested for the management of ecosys-

tems and socioeconomic systems. Often, these options have been broad, such as 

drought management planning. In other cases, the options focus on ecosystem 

management and not the corresponding needs of the resource manager or enter-

prise owner. In most cases, adaptation options have not been specific enough in 

terms of the how, the who, and under what conditions these actions can be imple-

mented (Heller and Zavaleta 2009). Further adaptive capacity is influenced not 

only by physical and economic resources, but also by social factors, factors miss-

ing in many of the early papers on this topic. Perhaps the most serious drawback 

in many of the currently proposed adaptation options is the lack of a linkage 

across the socio- ecological system. Adaptation in one part of the socio-ecological 

system, such as energy policy encouraging bioenergy crops, can reduce the 

adaptive capacity of another part of the system, shifting cropland to bioenergy 

and reducing food security. What is needed is an organizing framework that can 

identify key vulnerabilities and risks and integrate adaptation actions across the 

The tools, methods, and findings of the Gunnison Basin vulnerability assess-

ment go beyond habitat adaptation strategies applied to support populations 

of Gunnison sage-grouse. The new tools build ecosystem resilience and sup-

port the Gunnison Basin agricultural and recreational economies. The vulner-

ability assessment provides a scientific foundation for a robust decision-making 

process which can be carried out over a larger landscape to inform and direct 

conservation delivery mechanisms for use by multiple partners.

Following completion of the vulnerability assessment, the Gunnison 

Climate Change Working Group applied for Wildlife Conservation Society 

funding to design and implement an on-the-ground climate adaptation dem-

onstration project. Wildlife Conservation Society funds, matched by the US 

Fish and Wildlife Service grant, enabled the Working Group to complete the 

first phase of a priority strategy. This strategy was considered to be one of no-

regrets because it is considered to be effective in the face of a range of future 

climate change projections. The goal is to enhance ecosystem resilience of 

wetland and riparian habitats to increase the adaptive capacity to manage for 

Gunnison sage-grouse. After completing a spatial analysis to identify sites for 

treatment, the team selected 12 potential sites based on local expertise and 

conducted rapid field evaluations to determine the top two private land sites 

for work in 2012. Simple restoration treatments, including one-rock dams, 

were designed to help retain water in impaired drainages. Partners designed 

and completed construction of over 100 rock structures on private lands to 

improve or restore wet meadows—which function as brooding habitat for the 

Gunnison sage- grouse. This vulnerability assessment and field project dem-

onstrates an approach that facilitated collective learning by a group of diverse 

users who then went on to implement an adaptation project on the ground.

(continued)
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socio-ecological system. In this manner, the adaptation strategies can be con-

structed to develop a response to the social, economic, and ecological vulnerabili-

ties. The next section discusses development and application of a risk-management 

framework for adaptation planning.

15.7  Managing Climate Change Risks Through Adaptation

Rangeland systems have coped or adapted to a wide range of past extreme events, 

lowering the risk of these events in the future. Risk is quantified as the product of 

the probability of occurrence of hazardous events and the impact of these events. 

Climate change could increase the risk of loss of rangeland ecosystem functions 

such as regeneration and recovery, soil development, and nutrient cycling, and 

the risk of loss of biodiversity including domestic as well as native plants and 

animal species. Climate change, coincident with resource management, could 

increase the risk of degradation or desertification. Future extreme weather events 

could enhance the risk of loss of infrastructure (buildings, fences, equipment, 

water systems), enterprise assets (livestock including genetic stock, resource 

productivity through soil erosion and degradation), and social networks (trans-

portation, informational, and financial). While many risks can be identified, the 

challenge is to identify those risks that are most important to the sustainability of 

the socio-ecological system in the future.

Key risks to rangelands are those that portend potentially adverse consequences for 

humans and social-ecological systems resulting from the interaction of climate- related 

hazards with the vulnerability of societies and systems exposed. Identifying these 

types of climate-related risks involves framing the risk as resulting from the interac-

tion of vulnerability, exposure, and hazard (Fig. 15.4). Risks in this climate- related 

context are considered “key” due to high hazard or high vulnerability of societies and 

systems exposed, or both. In this framework, emergent risks, not previously consid-

ered, can arise from indirect impacts of climate change. For example, encouraging the 

production of bioenergy crops may decrease food security by reducing the land area 

producing food crops. The following are identified as key risks (Oppenheimer et al. 

2014): risk of food insecurity and the breakdown of food systems linked to warming, 

drought, flooding, and precipitation variability and extremes, particularly for poorer 

populations in urban and rural settings; risk of loss of rural livelihoods and income 

due to insufficient access to drinking and irrigation water and reduced agricultural 

productivity, particularly for farmers and pastoralists with minimal capital in semiarid 

regions; and risk of loss of terrestrial and inland water ecosystems, biodiversity, and 

ecosystem goods, functions, and services they provide for human livelihoods.

Risk perception influences human behavior. Risk perception of owners and 

managers of rangeland systems builds from past management of drought, wildfire, and 

extreme heat; however, social considerations, rather than physical vulnerability to 

climate change (e.g., availability of water), are known to determine managers’ 

perception of the risk of climate change (Marx et al. 2007; Moser and Ekstrom 2010; 
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Safi et al. 2012). For ranchers and farmers in Nevada, their risk perception of climate 

change was greater the more dependent their enterprises were on agriculture as their 

primary income. However, general beliefs about the causes of climate change and link-

ing locally observed impacts to climate change were found to be the factors that most 

influenced their risk perception of climate change (Safi et al. 2012). Risk perception, 

informed by collective learning, can be motivation for action (see Case Example 15.4).

Managing climate change risks through adaptation is about planning for the future 

even though the future is uncertain. In fact, there is a strong link between managing 

future risks and managing for uncertainty. The extent to which landowners can man-

age for uncertainty and the associated risks of dealing with uncertainty is one of the 

more important determinants of the adaptive capacity that landowners possess 

(Marshall 2010). While some landowners will be unable to develop plans for their 

enterprise without solid knowledge of what the future may hold, other landowners 

will be able to develop plans that take into account that the future is unknowable. An 

important premise in managing uncertainty on rangelands is that they represent com-

plex nonlinear systems which do not always have a definite or repeatable cause-and-

effect relationship. Developing the skills to manage under such conditions may be a 

singularly important strategy for landowners to develop if rangeland systems are to 

be sustained. Inaction has been shown to be more detrimental than assessing risk and 

making decisions based on that risk calculation (Howden et al. 2007).

A constructive approach for climate adaptation planning is to plan for a range of 

plausible climate scenarios, and take the path of “least regrets,” which accounts for 

a range of uncertainties about the future. Uncertainty in the future climate of a 

region can be ascribed to several sources. We identify six here, each of which need 

to be explicitly addressed if the risks of climate change are to be effectively man-

aged (www.adaptnrm.org):

 1. Natural variability—uncertainty will exist around the ecological conditions, and 

the spatial and temporal variation in these conditions within a period of time and 

geographical area.

 2. Observation/data error—observation error is the failure to properly observe, 

measure, or estimate processes and quantities. It results both from imperfect 

methods of observation, or overlooking key factors, and from sampling error.

 3. System uncertainty—system understanding is limited by the understanding of all 

the links—thus, even with complex models, any projections (qualitative or quan-

titative) will have uncertainty.

 4. Inadequate communication—inadequate communication relates to the difficulty 

of effectively conveying information between scientists, managers, and stake-

holders. When communication is ineffective, information is lost, which can 

manifest itself as uncertainty.

 5. Unclear objectives or lack of goal setting—unclear management objectives are 

ones that are expressed vaguely, not fully conceived, scaled improperly, or dif-

ficult to quantify, and enhance uncertainty within the system.

 6. Outcome uncertainty—when actions are not implemented properly and it is not 

clear whether the model was incorrect or the practices themselves.

15 Managing Climate Change Risks in Rangeland Systems
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The achievement of greater adaptation action will require integration of climate 

change-related issues with other risk factors, such as climate variability and market 

risk, and with other policy domains, such as sustainable development (Howden et al. 

2007). Dealing with the uncertainties among all aspects of rangeland life will require 

a comprehensive and dynamic approach covering a range of scales and issues. For 

example, landowners and managers will need to work with policy makers, practitio-

ners, scientists, and others in their social networks to better assess the climate-related 

risks and hazards and to establish efficient means to respond to them.

15.8  Knowledge Gaps

This chapter has identified a number of areas where scientific knowledge is limited, 

quantitative methods are needed to capture ecological and social processes to bound 

uncertainty, and interdisciplinary research is needed to integrate the ecological and 

the social components of rangeland systems. Vulnerability assessments and adapta-

tion planning must recognize the variation in the adaptive capacity of both ecologi-

cal systems and the adaptive capacity of human systems. The previous section 

identified areas where uncertainty needs to be quantified and bound in order for 

risks associated with climate change to be identified and prioritized. This is a key 

area for knowledge development.

One area where very little research is ongoing is the experimentation of 

proposed adaptation management actions. Adaptation strategies are built on cur-

rent understanding and practice, but they must recognize and attempt to incorpo-

rate future change. Field experimentation testing different proposed adaptation 

actions would provide a greater understanding of the likely success as well as 

offer comparisons of how natural systems might respond to the changing climate 

without adaptation treatments.

15.9  Summary

Climate change adaptation has evolved since the early 1990s and will continue 

to evolve as the scientific, management, and policy communities grapple with 

key vulnerabilities, risks, and strategies to adapt to climate change. The greatest 

learning may take place within the private sector and in local institutions where 

the greatest responsibility for adaptation may reside. The private sector will be 

highly motivated to protect their assets and maintain their positions in markets. 

Local institutions will likely be required to implement top-down adaptation 

policy developed by regional or national government institutions that may not 

be consistent with adaptations implemented by the private sector in response to 

local climatic extremes.

L.A. Joyce and N.A. Marshall



519

All adaptation is local and no single adaptation approach works in all settings. 

Understanding the key vulnerabilities and climate risks within the local setting is 

critical and the base on which adaptation strategies are developed. These vulnera-

bility assessments must connect the understanding of ecological, economic, and 

social vulnerability with the potential for adaptation. The assessment must provide 

insights that can assist in the development of land management strategies for range-

land resilience; engage vulnerable populations early in the process; and guide 

development of strategies that enable decision and policy makers to tailor a range 

of adaptation approaches that most effectively accommodate the divergent require-

ments of various resource users. As part of this process, vulnerability assessments 

must recognize that just as the adaptive capacity of rangeland ecosystems varies 

across geographic regions, the adaptive capacity among resource managers and 

owners also varies greatly.

Collective learning is the basis for development of collective action among 

diverse resource users to tackle shared problems. This learning occurs when 

information emerges from experience and human interaction such that different 

goals, values, and knowledge are made explicit and questioned to accommodate 

conflicts. The challenge for developing and implementing adaptation actions is 

how to incorporate these learning opportunities into public processes so that 

underlying ecological and social assumptions about management of the socio-

ecological system can be collectively visualized. Getting adaptation options on 

the ground may be closely tied to the success of such opportunities.

Adaptation requires an intentionality to address the effect of climate change. 

Specific consideration of how management actions need to respond to projected 

climate change is a part of the adaptation management strategy. The lack of drought 

planning in the past suggests that the current adaptive capacity is insufficient to 

sustain livestock enterprises under more frequent and intense drought in the future. 

Adapting to future change will require a different strategy than coping with past 

climatic events; the greatest challenge may be to encourage human behavioral 

changes to sustain the socio-ecological rangeland system. Just as past events influ-

ence future ecosystem development, past events in human communities influence 

future choices in response to day-to-day activities as well as to sudden and drastic 

events. The diverse history, experiences, and goals of individual managers repre-

sent a heterogeneous adaptive capacity that will greatly affect adaptation planning 

and the strategies selected and implemented. Adaptation strategies and policies 

need to reflect this heterogeneity, rather than managing for the average enterprise. 

Landowners may have different perceptions of risk, administrative or financial 

skills, access to trusted social networks, dependency to sense of place, or willing-

ness to experiment with novel management practices. Landowners may have dif-

ferent ways of knowing and different past experiences that influence current and 

future decisions.

Adaptation to climate change will be a continual and iterative process. 

Landowner enterprises must remain viable as the productivity of the land varies 

through time. Managing for socio-ecological resilience on rangelands is related 

to the maintenance of system properties that confer resilience without compro-
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mising the ability to cope and adapt to future change. Near-term responses may 

be incremental; however as climate continues to change, these actions may not 

suffice and transformative changes in the socio-ecological system may be 

needed.

Adaptation will need to occur within a system that is complex and where there 

are not always definite or repeatable cause-and-effect relationships. In addition, 

adaptation plans will need to occur under significant uncertainty of the future. 

Uncertainty exists not only within the natural system, but also within the models 

and modes of understanding of how the system works. Different sources of uncer-

tainty, including uncertainty in other aspects of managing rangelands such as mar-

ket risk, all need to be managed such that efficient responses can be identified and 

pathways of “least regrets” can be realized.
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Chapter 16

Monitoring Protocols: Options, Approaches, 
Implementation, Benefits

Jason W. Karl, Jeffrey E. Herrick, and David A. Pyke

Abstract Monitoring and adaptive management are fundamental concepts to 

rangeland management across land management agencies and embodied as best 

management practices for private landowners. Historically, rangeland monitoring 

was limited to determining impacts or maximizing the potential of specific land 

uses—typically grazing. Over the past several decades, though, the uses of and dis-

turbances to rangelands have increased dramatically against a backdrop of global 

climate change that adds uncertainty to predictions of future rangeland conditions. 

Thus, today’s monitoring needs are more complex (or multidimensional) and yet 

still must be reconciled with the realities of costs to collect requisite data. However, 

conceptual advances in rangeland ecology and management and changes in natural 

resource policies and societal values over the past 25 years have facilitated new 

approaches to monitoring that can support rangeland management’s diverse infor-

mation needs. Additionally, advances in sensor technologies and remote-sensing 

techniques have broadened the suite of rangeland attributes that can be monitored 

and the temporal and spatial scales at which they can be monitored. We review some 

of the conceptual and technological advancements and provide examples of how 

they have influenced rangeland monitoring. We then discuss implications of these 

developments for rangeland management and highlight what we see as challenges 

and opportunities for implementing effective rangeland monitoring. We conclude 

with a vision for how monitoring can contribute to rangeland information needs in 

the future.
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16.1  Changing Needs for Rangeland Monitoring

Monitoring has long been recognized as a critical tool for rangeland management. 

The collection and use of monitoring data to protect and improve rangelands (i.e., 

principles of adaptive management) have been promoted since the early twentieth 

century (West 2003a). In 1915, just 3 years after the creation of the Jornada 

Experimental Range in southern New Mexico, a large network of monitoring plots 

was established to better understand and address the rapid degradation that was 

already occurring from excessive livestock grazing (Gibbens et al. 2005). In the first 

textbook on range management, Sampson (1923) promoted the idea of “a system-

ized study, designed to secure the data that will lead to permanent improvement in 

management and to increased profits from the lands.” The basic concepts of moni-

toring and adaptive management are now fundamental to rangeland management 

across land management agencies and embodied as best management practices for 

private landowners (West 2003a; Boyd and Svejcar 2009).

Historically, rangeland monitoring was limited to determining impacts or maxi-

mizing the potential of specific land uses—typically grazing. Because of the recog-

nized heterogeneity of rangelands, uneven distribution of land uses (e.g., grazing), 

and expense associated with obtaining measurements across large areas, monitoring 

activities were focused on areas where impacts were either observed or expected 

(Dyksterhuis 1949; Bureau of Land Management 1996).

Over the past several decades, though, the uses of and disturbances to rangelands 

have increased dramatically. Historically, grazing, has been a dominant land use on 

rangelands worldwide. In the United States, though, it is increasingly a minor com-

ponent in some rangelands compared to other uses such as energy development, 

recreation, and conservation. Diffuse and widespread disturbances that alter the 

character and potential of rangelands like non-native plant invasion, woody plant 

encroachment, and altered wildland fire regimes are prevalent. Additionally, range-

lands are increasingly being valued for providing ecosystem services including 

clean and reliable water supplies, clean air, recreational opportunities, and habitat 

for many plants and animals, as well as numerous, diverse soil microorganisms 

(Sala and Paruelo 1997). These changes have altered the need for and character of 

rangeland monitoring.

The diverse uses and disturbances to rangeland ecosystems are also occurring 

against a backdrop of global climate change that adds more uncertainty to predic-

tions of future rangeland conditions. The effects of changing climatic conditions on 

plant community composition and production are expected to be variable regionally 

(Briske et al. 2015), and increasing inter-annual variability of precipitation (IPCC 

2007) and temperature may make detecting management-related changes more 

challenging (Fuhlendorf et al. 2001). Accordingly there is a need for monitoring 

data to establish baselines of rangeland conditions and to document changes in con-

dition to both understand impacts of climate change and differentiate those effects 

from other disturbances or management activities. Monitoring data will also be 

needed to develop and evaluate climate adaptation and mitigation strategies.

J.W. Karl et al.
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Current multidimensional monitoring needs for rangeland management, however, 

must be reconciled with realities of costs to collect the requisite data. Monitoring of 

large rangeland landscapes is complicated by logistical constraints, high variability 

of rangeland indicators due to inter-annual climate fluctuations and environmental 

heterogeneity, and costs of monitoring. Despite the fact that it has long been recog-

nized as an important aspect of rangeland management, monitoring often has been 

perceived as an incidental activity that takes funds away from management actions 

(Wright et al. 2002). The varied reasons for this include a lack of linkages between 

monitoring and management decision-making and perceptions of redundant moni-

toring efforts. Thus the challenges of monitoring rangelands include institutional 

hurdles to valuing and effectively using monitoring data.

Relative to rangeland management or research, monitoring generally refers to 

the systematic collection, analysis, and use of quantitative information on rangeland 

resources over time to support management decision-making (Bedell 1998). Two 

related activities are assessments (estimating or judging the condition or value of an 

ecological system or process at a point in time) and inventories (systematic acquisi-

tion and analysis of information for rangeland resource planning and management) 

(Pellant et al. 2005). Whereas there are many specific definitions for these three 

terms in rangeland management, the ideas discussed here apply across all these 

activities. Thus, for brevity, we use the term monitoring generically.

Conceptual advances in rangeland ecology that were introduced in the early 1990s 

and subsequently developed over the past 25 years have facilitated new approaches 

to monitoring that can support rangeland management’s diverse information needs 

(Text Box 16.1). Additionally, technological advances have broadened the suite of 

Text Box 16.1: Knowns and Unknowns “As we know, there are known 

knowns. There are things we know we know. We also know there are known 

unknowns. That is to say we know there are some things we do not know. But 

there are also unknown unknowns, the ones we don’t know we don’t know”.—

Donald Rumsfeld, US Defense Secretary (2002).

The quote above was one of the most famous quotes from U.S. Defense 

Secretary Donald Rumsfeld. It was given in response to a question from a 

reporter about the existence and veracity of evidence to support the assertion 

that Iraq possessed weapons of mass destruction. While this quote was almost 

universally mocked as being an evasion of the question rather than an answer, 

the idea of known unknowns and unknown unknowns has a longer history 

(Morris 2014) and is relevant to monitoring of rangeland resources.

Most successful monitoring programs are intended to address the known 

unknowns. They are built around answering specific questions for which criti-

cal data are lacking. These questions should lead to selection of a minimal set 

of indicators and methods and development of a sampling design to provide 

(continued)
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rangeland attributes that can be monitored and the temporal and spatial scales at which 

they can be monitored. Below we review some of these conceptual and technological 

advancements and provide examples of how they have influenced rangeland monitor-

ing. We then discuss implications of these developments for rangeland management. 

We highlight what we see as challenges and opportunities for implementing effective 

rangeland monitoring, and conclude with a vision for how monitoring can contribute 

to rangeland information needs in the future.

16.2  Conceptual Advances in the Past 25 Years

Conceptual advances in rangeland monitoring over the past 25 years have been 

driven by developments in ecological theory, changes in natural resource policies 

and societal values, and emergence of new technologies. The 1980s and early 1990s 

were a critical period for development of ecological theories that have proven to be 

pivotal for rangeland management. During this time scale theory was formally 

defined (see Wiens et al. 2007) and the field of landscape ecology was founded (see 

Wiens 1999). For rangeland management, perhaps the biggest conceptual advance 

the identified missing information. This is the classic model of natural 

resource monitoring, and it has been proven effective when it is applied.

However, one of the hopes when implementing rangeland monitoring is 

that the data collected will be at least somewhat informative for new resource 

concerns that arise. In other words, this information can hopefully address the 

unknown unknowns too. Recently, rangeland managers in the western USA 

have experienced information shortages related to the status and trend of 

Greater sage-grouse (Centrocercus urophasianus) habitat and the impacts of 

energy development (oil and gas, wind, solar, transmission lines) on range-

land ecosystems. Many of the existing monitoring programs which were 

developed around livestock grazing objectives are ill-equipped to inform on 

these new objectives. The hope, then, is that monitoring programs built around 

concepts of core indicators and methods and statistically based sampling 

designs will provide greater opportunities to compile existing monitoring data 

for new objectives. While it is naive to think that general monitoring programs 

or compilations of existing monitoring data will address all of the information 

needs of a new question, robust and interoperable monitoring programs would 

provide a better foundation from which to begin.

Text Box 16.1 (continued)

J.W. Karl et al.



531

was the recognition that rangeland systems are characterized by nonlinear dynamics 

(Briske et al. 2005; Kefi et al. 2007) and cross-scale processes (Peters et al. 2004) 

that can produce multiple ecosystem states (Chap. 6, this volume). This change in 

thinking brought into focus the importance of measuring ecological processes and 

functions at and across characteristic scales on which they operate (Addicott et al. 

1987; Peters et al. 2004; Nash et al. 2014).

Rangeland Reform ’94 (U.S. Bureau of Land Management and U.S. Forest 

Service 1994) was the first attempt by federal agencies in the USA to change how 

rangeland under Bureau of Land Management (BLM) and U.S. Forest Service 

(USFS) management would be evaluated since the environmental policies of the 

1970s (e.g., Federal Land Policy and Management Act of 1976, National Forest 

Management Act of 1976, Public Rangeland Improvement Act of 1978 BLM and 

USFS 1994). Two goals of Rangeland Reform ’94 were to bring the two manage-

ment programs closer together and more consistent in conducting ecosystem man-

agement and to accelerate the restoration and improvement of public rangelands to 

proper functioning condition. The changes brought forth in Rangeland Reform ’94 

were strongly influenced by the National Research Council (1994) report on range-

land health. Each state developed standards of rangeland health that reflected the 

need to monitor not just plants important for livestock grazing, but biological diver-

sity, soil stability, hydrologic functioning, energy flow, and nutrient cycling (Veblen 

et al. 2014).

As part of the goal to bring agencies together in their management of rangelands, 

the USDA Natural Resources Conservation Service, USFS, and BLM entered into 

a Memorandum of Understanding in 2005 to define and describe rangelands using 

a standard classification system, ecological sites (Caudle et al. 2013). This resulted 

in federal and non-federal rangelands being classified using the same process where 

soils, landforms, and climate describe potential plant communities and their produc-

tion. This led to common terminology and similar metrics for determining range-

land status and trends. Standardized terms and metrics position land managers to 

take advantage of new technology that cross-cuts management and political bound-

aries through remote sensing and database access (Chap. 9, this volume).

Technological advances in the past quarter century have dramatically increased 

efficiency of monitoring data collection and analysis as well as opened new possi-

bilities for synoptic rangeland monitoring. The development of robust mobile com-

puting technologies has encouraged electronic capture of data in the field, reducing 

the potential for recording and transcription errors. The ubiquity and reliability of 

global positioning system (GPS) technologies not available two decades ago makes 

it easy to accurately locate (and relocate) monitoring areas. Also during this time 

period, many of the imaging sensors and analytic techniques that have made remote 

sensing a staple part of monitoring were developed.

The changes described above—theoretical, policy, and technological—have had 

a significant impact on how rangelands are monitored and how those data can be 

used for management decision-making. The following are some of the major con-

ceptual advances to rangeland monitoring from the last 25 years.

16 Monitoring Protocols: Options, Approaches, Implementation, Benefits
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16.2.1  Monitoring Land Health Instead of Land Uses

Governments throughout the world have shifted from monitoring plant commu-

nity responses to a single land use (usually livestock production), to documenting 

and understanding changes in land health (i.e., the degree to which the integrity of 

soils, vegetation, water, air, and ecological processes are sustainable, Bedell 1998) 

in response to multiple land uses. In Australia, Landscape Function Analysis 

(LFA) was developed to more effectively document and monitor changes in the 

“leakiness” of water- and nutrient-limited rangeland ecosystems (Ludwig et al. 

(2004). In the United States, NRCS and BLM have both adopted a suite of mea-

surements that were selected largely because they generate indicators of ecosys-

tem function, while also providing more traditional indicators of plant community 

composition. These were designed to complement the Interpreting Indicators of 

Rangeland Health (IIRH) assessment protocol which, like the new BLM and 

NRCS monitoring systems, was developed in response to the recommendations of 

the National Research Council and Society for Range Management (National 

Research Council 1994; Adams et al. 1995). Monitoring systems promoted by 

private consultants, and NGO’s have also taken a more holistic approach, includ-

ing those directly or indirectly associated with “Holistic Management” such as 

LandEKG (http://landekg.com) and Bullseye (Gadzia and Graham 2013). These 

changes have been driven by a number of synergistic factors, including (a) an 

increasing number of uses of rangelands, in both developed and developing coun-

tries, (b) climate change, (c) a more profound understanding of rangeland ecosys-

tem processes and their interactions, and particularly (d) how land uses contribute 

to transitions in plant communities.

Rangelands that had been exclusively managed for livestock production are 

increasingly used for energy and crop production and for recreation. Each of these 

uses introduces novel disturbances, with often unpredictable effects. This has 

required the development of monitoring systems that are sensitive to the impacts of 

both current known land uses and unknown future ones. Monitoring the health of 

the fundamental properties and processes upon which rangelands depend provides 

managers with the confidence that they will be able to detect the impacts of land 

uses that don’t even yet exist. For similar reasons, climate change has also driven a 

shift to monitoring land health (Chap. 7, this volume). Because of uncertainty 

around how climate will change at specific locations and how these changes will 

affect ecosystem structure and processes, monitoring systems designed to reflect 

general changes in land health are more likely to detect climate change impacts than 

those that are narrowly designed to reflect changes in plant community composition 

in response to grazing.

Arguably the most important conceptual development contributing to the trans-

formation of rangeland monitoring programs has been the increased awareness of 

threshold transitions and the potential for development of alternative stable states. 

Previous conceptual models of change in rangelands had been based on linear pro-

cesses of succession and retrogression that focused primarily on changes in plant 

J.W. Karl et al.
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community composition in response to preferential livestock grazing of “decreaser” 

species and avoidance of “increaser” species (Dyksterhuis 1949). As a result, these 

models largely failed to account for how changes in soil properties and especially 

soil hydrology can accelerate and even precede more visible changes in plant com-

munity composition (see “Developing and measuring soil indicators” below). Land 

health necessarily requires a broader and more holistic focus (Herrick et al. 2012).

16.2.2  Functional Indicators of Land Health

An indicator is an aspect of an ecosystem or process that can be observed or mea-

sured and provides useful information about the condition of the system being mon-

itored (Suter 2001; White 2003). Indicators may be direct measures of an important 

ecosystem attribute or service (e.g., vegetation biomass is a direct measure of eco-

system productivity) or indirect measures that are correlated with an ecosystem 

feature or process that is difficult to measure directly (e.g., wind erosion is related 

to vegetation height and bare ground amount). In either case, to be useful for moni-

toring, an indicator must be both measurable and related in a known way to the 

structure and function of the ecosystem being monitored (Suter 2001). For example, 

the amount of bare ground on a site and its arrangement can be an indicator of risk 

of soil erosion, soil nutrient loss, decreased water infiltration, and species invasion 

if the site’s potential is known.

In the past, rangeland monitoring focused on measuring a few indicators specific 

to the impacts of land uses (primarily indicators related to forage production and 

utilization). The shift to focusing on measuring and monitoring rangeland health and 

the need to consider how different land uses affect land health have triggered a shift 

toward monitoring indicators that are functionally related to ecosystem processes. 

West (2003b) suggested that “… the recent switch to functional attributes rather than 

singular utilitarian variables is likely to assist in staying the course longer in future 

monitoring efforts. It is also easier for range professionals to interact with other 

disciplines and multiple land owners when more general structural and functional 

attributes of ecosystems are used as proxies for more practical ones.” Several useful 

frameworks for selecting functional indicators for ecosystem monitoring have been 

developed (Breckenridge et al. 1995; Tegler et al. 2001; Fancy et al. 2009).

Noon (2003) observed that a lack of ecological theory or logic to justify the 

selection of indicators may explain why monitoring programs historically have 

failed to provide useful information for natural resource management. A significant 

advancement in land management from the past 25 years that has helped in this 

regard is the development and use of conceptual models of rangeland structure and 

function to identify and interpret suitable functional indicators for monitoring 

(Noon 2003; Miller et al. 2010).

Conceptual models document what is known about the important components of 

an ecosystem, the nature and strength of interactions among them, and attributes 

that characterize different states of the ecosystem (Noon 2003; National Park 
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Service 2012). Conceptual models illustrate, commonly through visual and narra-

tive summaries, how ecological processes, disturbances, and management actions 

affect an ecosystem. While not necessarily statistical or predictive in nature, con-

ceptual models are useful for supporting a monitoring program because they docu-

ment the known (or hypothesized) impacts of management and other disturbances 

on plant communities and soils (Fig. 16.1). This knowledge identifies the aspects of 

the system that should be measured (i.e., indicators) and provides an understanding 

of how to interpret observed changes in those indicators. Conceptual models can 

also highlight knowledge gaps in ecosystem structure or function (Karl et al. 2012c).

16.2.3  Core Indicators and Methods

A common criticism of rangeland monitoring (in fact, natural resource monitoring 

in general) is that there is little consistency among monitoring programs in the indi-

cators that are monitored and the methods used to monitor them. This may hinder 

the ability of data to be used to address multiple resource concerns or combined 

across projects or jurisdictions. Examination of almost any monitoring methods text 

(e.g., Elzinga et al. 1998; Bonham 2013) shows myriad quantitative and qualitative 

methods for measuring almost any indicator. Additionally, the rangeland profession 

has not adopted a routine practice of validating new methods before they are imple-

mented in monitoring programs (West 2003a).

Although the root causes of method proliferation in rangeland monitoring are 

diverse (e.g., isolated nature of monitoring programs historically, perceived need for 

quick and easy to implement methods, methods developed in one region that do not 

work well in other regions), the effect has been extreme difficulty in combining 

measurements among monitoring programs and significant challenges in assessing 

or monitoring rangeland resources above local scales. West (2003a) claimed that 

“Lack of consistent and comparable monitoring procedures within and between the 

federal management, advisory, and regulatory agencies has made it impossible to 

conclude reliably what the overall condition and trends in conditions of our public 

rangelands are.” In their report on resource conditions in the United States, the 

Heinz Center (2008) concluded that the lack of consistent indicators collected using 

standardized methods precluded all but a cursory assessment of natural resource 

conditions. Even for rangelands managed by a single agency and land use, the BLM 

used five types of data (frequency, cover, production, utilization, and photos) from 

15 different methods to monitor range trend plots across 310 allotments in six states 

(Veblen et al. 2014).

A consistent, minimal (i.e., core) set of standard indicators and methods for range-

land monitoring offers several potential advantages. First, it provides the ability to 

combine datasets from different monitoring programs (e.g., across jurisdictions). 

Second, it allows for data to be scaled up to support inferences to areas of larger 

extent. Third, standard indicators give an opportunity for data to be reused for 

different purposes. For example, when a new management concern arises, existing 

J.W. Karl et al.



535

F
ig

. 
1
6
.1

 
C

o
n
ce

p
tu

al
 m

o
d
el

s 
ar

e 
sy

n
th

et
ic

 d
ep

ic
ti

o
n
s 

ab
o
u
t 
w

h
at

 i
s 

k
n
o
w

n
 o

r 
h
y
p
o
th

es
iz

ed
 a

b
o
u
t 
h
o
w

 a
n
 e

co
sy

st
em

 i
s 

o
rg

an
iz

ed
 a

n
d
 f

u
n
ct

io
n
s.

 T
h
is

 i
n
fo

rm
a-

ti
o
n
 c

an
 b

e 
u
se

fu
l 

in
 i

d
en

ti
fy

in
g
 i

n
d
ic

at
o
rs

 f
o
r 

m
o
n
it

o
ri

n
g
, 

th
re

sh
o
ld

s 
o
r 

re
fe

re
n
ce

 r
an

g
es

 f
o
r 

th
o
se

 i
n
d
ic

at
o
rs

, 
an

d
 i

n
te

rp
re

ta
ti

o
n
s 

o
f 

in
d
ic

at
o
r 

ch
an

g
es

. 
T

h
e 

st
at

e-
an

d
-t

ra
n
si

ti
o

n
 c

o
n
ce

p
tu

al
 m

o
d
el

 a
b
o
v
e 

is
 o

n
e 

ex
am

p
le

 o
f 

h
o
w

 a
 c

o
n
ce

p
tu

al
 m

o
d
el

 f
o
r 

a 
sa

g
eb

ru
sh

 s
te

p
p
e 

ec
o
sy

st
em

 i
n
 t

h
e 

G
re

at
 B

as
in

, 
U

S
A

, 
co

u
ld

 b
e 

o
rg

an
iz

ed
. 
M

o
d
el

 r
ep

ri
n
te

d
 f

ro
m

 M
il

le
r 

et
 a

l.
 (

2
0
1
0
).

 G
en

er
al

 s
tr

u
ct

u
re

 f
o
ll

o
w

s 
B

es
te

lm
ey

er
 e

t 
al

. 
(2

0
0
3
) 

an
d
 S

tr
in

g
h
am

 e
t 

al
. 
(2

0
0

3
)

16 Monitoring Protocols: Options, Approaches, Implementation, Benefits



536

monitoring data may be available to provide initial estimates of resource conditions 

and trends. These potential benefits stem from core indicators resolving incompati-

bilities between data types used to describe rangeland ecosystems. West (2003a) 

summarized this need as “… there remains some desirability in choosing at least a 

short list of variables and means to monitor and in presenting their responses across 

as wide array of rangelands as possible so that the user could say that a generally 

approved approach had been employed.”

The idea of a minimum set of standard ecosystem indicators and methods for 

measuring them has been suggested before (West 2003b, H. John Heinz III Center 

for Science 2008). However, it has only been recently that terrestrial indicators have 

been actually implemented (e.g., Herrick et al. 2010; Mackinnon et al. 2011; Toevs 

et al. 2011).

The concept of core indicators is not without criticism. One argument against 

standardized core indicators is that each region or area has a unique set of ecosys-

tem and management properties and is constrained by historic events, therefore 

each monitoring program (including selected indicators) must be designed for its 

specific system (White 2003; Fancy and Bennetts 2012). While this is undoubtedly 

true, there are indicators that are informative over large regions (e.g., amount of 

bare ground, woody plant cover) and larger scale questions that can be asked (e.g., 

what proportion of rangelands have more than 15 % cover of annual grasses?) if 

core indicator data are available. Also, current implementations of core indicators 

(e.g., Mackinnon et al. 2011) provide for additional, supplemental indicators to 

meet local needs.

Another argument against standardized core indicators is that the need to maxi-

mize efficiency of a monitoring program (e.g., to minimize costs or to achieve a 

desired sample size) should encourage strict parsimony in selecting the most infor-

mative indicators (White 2003). This argument assumes that enough is known about 

an ecosystem when designing a monitoring program to select informative indica-

tors, and there will not be need in the future to measure additional indicators. It also 

takes a narrow view of efficiency—i.e., efficiency is maximized only within a single 

objective and not among a suite of management information needs. The develop-

ment and adoption of rangeland core indicators, however, is currently being driven 

by the need to find efficiencies in monitoring at larger organizational levels. 

Monitoring data that can be used to address more than one management objective 

and answer questions at more than one scale are more efficient in terms of cost than 

data that cannot.

Such a set of core indicators—measurable ecosystem components that are appli-

cable across many different ecosystems and informative to many different manage-

ment objectives—would be the basis for national-level monitoring programs and 

comprise a minimal set that should be measured in all monitoring programs. While 

it is not possible to select a set of indicators that will satisfy all management infor-

mation needs across scales, the criteria listed in Table 16.1 are useful for consider-

ing which core indicators to select.

Core indicators provide no utility for rangeland monitoring without an accom-

panying set of standardized core methods for measuring them. Seemingly minor 
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differences among methods can result in incompatible data (Bonham 2013). For 

instance, differences in definitions between soil and rock can cause one method to 

produce higher estimates of an exposed soil indicator relative to another method. 

Similarly, for plant-cover indicators, foliar cover methods usually yield different 

estimates than total-canopy cover methods (Toevs et al. 2011). Core methods repre-

sent a minimal set of information that should be collected in almost all monitor-

ing efforts and are intended to encourage combination and “scaling-up” of 

monitoring datasets.

In selecting core methods, the repeatability, quality, and objectivity of data that 

the method provides should be considered. The attributes of a method that should be 

Table 16.1 Criteria for selecting core indicators for rangeland monitoring

Criteria Description

Relevant to ecosystem 

structure or function*

Indicators must relate in a known way (e.g., documented in a 

conceptual model) to the structure or function of an ecosystem of 

interest.

Usability* Sufficient documentation exists to select appropriate methods and 

calculate indicators from measurements or observations.

Cost-effectiveness* Cost of collecting indicator data is lower than for other competing 

indicators.

Cause/effect* A clear understanding exists of how changes in ecosystem 

attributes will result in changes to the indicator.

Signal-to-noise ratio* Changes in indicator values are primarily related to the intended 

ecosystem attribute and not natural variability or other factors.

Quality assurance* Quality assurance and control procedures are available and 

adequate.

Anticipatory* Indicator provides early warning of widespread ecosystem 

changes.

Historical record* Information on the indicator has been collected over a period of 

time such that a reference set of data exist.

Retrospective* Provides information about historic conditions (e.g., tree rings), 

over extended time periods (e.g., soil carbon), or can be applied to 

previously collected data (e.g., remote-sensing imagery).

New information* Provides new information (i.e., not redundant with other 

indicators).

Minimal environmental 

impact*

Collection of information for measuring the indicator causes the 

least amount of disturbance to the environment.

Used by other monitoring 

programs

Priority should be given to indicators that are in use by other 

(especially regional to national) monitoring programs to facilitate 

cross-program data combination.

Easy to understand and 

explain

Indicators that are intuitive are likely to be more effective at 

informing and influencing management decisions.

Applicable to policy and 

management

Indicators that relate to aspects of an ecosystem that can be 

managed or that are tied to range management policies should be 

prioritized.

* denotes criteria proposed by White (2003) for selecting environmental monitoring indicators in 

general. While it may not be possible to meet all criteria when selecting indicators, priority should 

be given to the indicators that satisfy as many as possible
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prioritized when selecting core methods are similar to those for core indicators 

(Table 16.2). Selection of core methods is an exercise in optimizing these attributes 

in combination with a set of selected core indicators.

In some cases, monitoring objectives may not be able to be addressed through 

the core indicators. In these cases, it is appropriate to specify additional supplemen-

tal indicators to meet management and monitoring objectives. Supplemental indica-

tors can be specific to land uses (e.g., grazing), programs (e.g., off-road vehicle 

management), or management actions (e.g., restoration following a fire). For exam-

ple, the core indicators provide information for assessing impacts of grazing (e.g., 

cover of forage plants, amount of bare ground). However, this information is some-

times not sufficient to evaluate the effectiveness of grazing management actions. 

Supplemental indicators, such as forage production, utilization, or residual cover, 

may be selected in addition to the core indicators to inform grazing management. 

Where only residual cover is required, it can be easily calculated using data from 

whichever core method is used for monitoring vegetation cover and composition, 

eliminating the need for a supplementary method. Supplemental indicators are often 

intended to meet local management needs, so there may be little expectation to 

combine or share these indicators across management boundaries.

However, standard methods should be applied whenever possible (i.e., caution 

should be used in selecting supplemental methods that duplicate indicators that can 

be calculated from the core methods). Additionally extra expenses of implementing 

Table 16.2 Desired properties of core methods for monitoring rangeland ecosystems

Property Description

Quantitative A method should record measurements or direct observations of a 

site’s biophysical features.

Repeatable and 

efficient

Measurements should be repeatable within a stated margin of error 

and should be able to be collected at minimal cost.

Low potential for 

non-sampling error

Methods that minimize sources of error (e.g., inter-observer 

variability) and perform consistently across a wide range of 

environments.

Objective Methods should minimize the opportunity for observer bias to 

influence the results.

Established and 

validated

Methods implemented for monitoring programs should be well 

documented and tested. Quality assurance and quality control 

procedures should be well defined.

Implementable with 

minimal training

Ideally methods should be able to be learned quickly and reliable data 

collected by individuals without extensive experience. Comprehensive 

training and calibration programs should accompany any method 

implemented in a monitoring program.

Can be used to 

calculate many 

indicators

The more indicators that can be derived from a method’s data, the 

more value it can offer as a core method.

Used in other 

monitoring programs

Methods that are already implemented in other (especially large- 

scale) monitoring programs should.
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supplemental methods should be justified. In selecting supplemental indicators, the 

same criteria apply as in selecting core methods.

16.2.4  Statistical Sampling Designs and Monitoring 

at Appropriate Scales

Given the increasing number of land uses, disturbances, and contention over 

management of rangeland resources, statistical approaches to sampling designs 

that can support monitoring for multiple objectives and scaling up and down of 

monitoring data are necessary. While the shift in emphasis from managing pas-

tures to landscapes has occurred primarily in the last 25 years, rangeland man-

agers have long recognized the need to combine site-level monitoring and 

management with landscape-scale observations relative to grazing. The key 

area concept, monitoring of selected areas in an allotment or pasture that are 

indicative of typical grazing use, was developed in an effort to determine graz-

ing impacts across a landscape when the distribution of livestock was not con-

sistent across the area (Standing 1938). The key area concept originally was 

stated as a livestock expected use area within which monitoring locations 

would be randomly selected (Stoddart and Smith 1943, see also Holechek et al. 

2001). In practice, however, key areas have often been located subjectively, 

usually based on best professional judgment, in areas that would receive the 

most typical grazing use and avoid areas that saw unusually heavy livestock 

use (e.g., around water access points) or areas that received no use (e.g., too far 

from water, or too steep) (e.g., Bureau of Land Management 1999; Schalau 

2010). Key areas typically maintain key species, those species used by live-

stock, are abundant and productive, and are representative throughout the area. 

Key species generally do not include highly desirable species that livestock 

may overuse, nor do they include species that may have the potential to grow 

on the area, but were eliminated by past use (Holechek et al. 2001). Key areas 

and species were thought to be an efficient means for assessing rangeland con-

ditions relative to grazing in order to quickly detect changes with the fewest 

number of monitoring plots possible.

Key areas (or any other subjective or haphazardly selected sets of monitoring 

locations), however, have several disadvantages that significantly limit their utility 

for rangeland monitoring. First, selection of key areas is often a subjective process. 

The validity of a key area for monitoring grazing impacts in a larger landscape can 

be contested because of differences of opinion on what it means to be representative 

(Gitzen et al. 2012). Second, indicator values from key areas, when the key area has 

been subjectively or haphazardly selected cannot be statistically extrapolated to 

larger areas (Lohr 2009). Therefore indicator estimates from subjectively selected 

locations cannot be scaled up to larger reporting units (West 2003b). Third, assum-
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ing that key areas can be selected to be truly representative of the conditions in an 

area, a set of key areas will underestimate the variance of any indicator because they 

are a sample of only the average conditions in the area. As a result, confidence inter-

vals will underestimate the uncertainty in the indicator estimates, and statistical 

tests will tend to show significant differences more than is warranted (i.e., inflated 

Type I errors). Finally, key areas are often representative of a single land use. 

Because the spatial distribution of different land uses and resource concerns vary 

across a landscape, a set of key areas selected for monitoring livestock impacts may 

not be representative for other objectives. Additionally, the ability of a key area to 

represent the land condition also may change over time as conditions within a land-

scape change (e.g., new roads are created or range improvements installed).

A statistically valid sample of a resource has several properties (Thompson 

2002; Lohr 2009). First, the estimates of an indicator for that resource are unbi-

ased. Unbiased in this context means that there is nothing inherent in the sampling 

design approach that would result in systematically over- or underestimating the 

indicator values. This is accomplished through explicit and careful definition of the 

study area (i.e., population) and sampling units (Table 16.3). The use of random-

ization techniques in selecting sampling units for monitoring allows the uncer-

tainty about indicator estimates to be characterized and confidence intervals to be 

constructed around monitoring results. Uncertainty estimates (often expressed as a 

standard error or confidence interval, or used as part of a statistical test) are not 

direct measures of the variability of an indicator, but a reflection of how close an 

indicator estimate is to the actual indicator value in the study area.

Table 16.3 Descriptions of the basic components of a sampling design following the definitions 

of Thompson (2002) and Lohr (2009)

Sampling design 

component General definition.

Element An item upon which some type of information is collected (i.e., observation 

or measurement).

Sampling unit A unique set of one or more elements that can be selected for being included 

in a sample. In rangeland monitoring, a sampling unit is often an area (e.g., 

a plot). The sampling unit may contain zero elements.

Sampling frame The complete set of sampling units within the geographic area of the target 

population (e.g., the list of all plots available to be selected for sampling).

Sample 

population

All elements associated with the sampling units listed in the sample frame. 

Ideally this coincides with the target population, but constraints (e.g., safety, 

accessibility) may limit sample population to less than the target population.

Target population All elements of interest within some defined area and time period.

Sample A selected set of sampling units. Measurements or observations from the 

sample are used to draw inferences about the target population.

Successful rangeland monitoring efforts carefully consider and explicitly define each of these com-

ponents. Table adapted from Beck et al. (2010, see also Strand et al. 2015)
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In a statistically valid sample, the area that each sample location represents 

can be quantified. It then becomes possible to “scale up” monitoring results to 

other reporting units or to combine similar monitoring datasets to make better 

predictions for a monitoring area (Fig. 16.2). Note that a statistical sampling 

design and consistent indicators and methods are necessary for this to be pos-

sible (Toevs et al. 2011).

16.2.5  Summary

The past 25 years has seen a rapid increase in the uses of and disturbances to range-

lands that has taxed our ability to monitor these ecosystems with traditional tech-

niques. However, the same time period has brought about conceptual developments 

that lay a foundation for more effective, and ultimately more efficient, rangeland 

monitoring. The cornerstones of this foundation are an understanding the nonlinear, 

cross-scale dynamics of rangeland ecosystems, and the development of functional 

indicators of critical ecosystem processes. The standardization of indicators (and 

measurement methods) to the extent possible and adoption of statistically valid and 

scalable sampling designs will help ensure monitoring data that not only satisfies 

initial objectives, but also is able to be combined with other datasets and analyzed 

for other or larger scale purposes.

Fig. 16.2 A stratified random sampling design for three Bureau of Land Management (BLM) 

Field Offices in Northern California, implemented in 2013, allows for statistically valid estimates 

of indicators to be generated at multiple scales within the project area. Uncertainty of the indicator 

estimates is also calculated at each scale. Figure by S. Lamagna, BLM National Operations Center 

(unpublished data)
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16.3  Remote-Sensing Developments for Monitoring

The widespread application of remote-sensing technologies to natural resource 

inquiries has been one of the most significant developments of the past 25 years. 

Several seminal papers have discussed the role and potential of remote sensing for 

rangeland monitoring. Hunt et al. (2003) provided an overview of the many ways in 

which remote sensing had been applied in rangeland management to that point. 

Booth and Tueller (2003) propose a framework for integrating remote sensing into 

rangeland monitoring and management. Washington-Allen et al. (2006) provide a 

technique for using remote sensing to understand past changes in rangelands. In the 

time since these papers were published, however, new applications, sensors, and 

methods have increased markedly. Here we briefly survey some of these develop-

ments, but a thorough review of remote-sensing developments in rangeland moni-

toring is beyond the scope of this chapter.

In 1990, there were only a handful of publicly available sources of satellite imag-

ery, and this imagery was expensive and difficult to process (Fig. 16.3). Satellite 

imagery was generally panchromatic or multi-spectral only and of moderate (e.g., 

30-m) or coarse (e.g., ≥1 km) resolution. Aerial photography was largely analog 

(i.e., on film) and challenging to incorporate into emerging GIS technologies. 

Contrast that to 2015 where there are now over 100 sources of satellite imagery 

(https://directory.eoportal.org/web/eoportal/satellite-missions, accessed April 20, 

2015), many of them free and delivered in near real-time, and the emergence of 

inexpensive and autonomous unmanned aerial vehicles (UAVs) has caused a rena-

scence of aerial photography research and applications.

Fig. 16.3 Satellite-based sensors have become more numerous and higher-resolution over time. 

This increases opportunities for remote-sensing applications in rangeland monitoring. Source 

https://directory.eoportal.org/web/eoportal/satellite-missions (accessed April 20, 2015)
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16.3.1  Developments in Remote Sensors

The launch of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor 

in 2000 ushered in a new era of remote sensing due to its ability to image large 

swaths of the earth on a daily basis. The synthesis of MODIS imagery into high- 

quality, standard products available every 7, 8, or 16 days has greatly facilitated the 

use of satellite imagery for looking at changes in rangeland landscapes among and 

within years. Reeves et al. (2006) predicted aboveground green biomass from 

MODIS net photosynthesis estimates throughout the growing season and character-

ized inter-annual variability in grassland vegetation. Wylie et al. (2012) used MODIS 

time series data from 2000 to 2008 to develop expected annual greenness profiles for 

rangelands in southern Idaho to detect significant departures due to management 

changes or disturbance. Browning et al. (in review) related a time series of MODIS 

normalized difference vegetation index (NDVI) to changes in overall plant biomass 

across years and to changes in plant functional group responses within years.

Hyperspectral imaging—collection of many, narrow contiguous spectral bands 

through the visible and infrared portions of the electromagnetic spectrum (Govender 

et al. 2009)—has also seen increasing application in rangeland monitoring. 

Hyperspectral imaging has been used to detect and monitor infestations of non- native, 

invasive plants (e.g., Ustin et al. 2004; Glenn et al. 2005; Mundt et al. 2005). Weber 

et al. (2008) used hyperspectral data to map biological soil crusts in South Africa.

Light detection and ranging (LiDAR) is a remote-sensing technology for mapping 

elevations from laser impulses reflected off a surface. LiDAR has been used in range-

lands to estimate shrub height and crown area (e.g., Streutker and Glenn 2006; Glenn 

et al. 2011; Mitchell et al. 2011) and for mapping fine-scale topography to monitor 

processes like shrub invasion, dune formation, and soil erosion (e.g., Perroy et al. 

2010; Sankey et al. 2010). LiDAR has also been used in conjunction with other 

remote-sensing products (e.g., multispectral or hyperspectral imagery) to improve the 

accuracy of vegetation classifications (e.g., Mundt et al. 2006; Bork and Su 2007).

Interest in the use of unmanned aerial systems (UAS)—small remotely piloted or 

autonomous aircraft—for rangeland monitoring has increased as imaging sensors 

have become smaller and software for processing large amounts of digital imagery 

improves. With a UAS, it is often possible to acquire imagery at resolutions <5 cm 

and with more flexibility than traditional aircraft (Rango et al. 2009). For example, 

Laliberte et al. (2012b) used 6–8 cm UAS imagery to map vegetation types in Idaho 

and New Mexico rangelands. Breckenridge et al. (2012) found that estimates of 

vegetation cover and bare ground from UAS images agreed well with field-based 

measurements. d’Oleire-Oltmanns et al. (2012) used overlapping UAS images to 

monitor gully formation and soil erosion in Moroccan badlands.
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16.3.2  Developments in Remote-Sensing Techniques

Over the past 25 years many new remote-sensing techniques have been developed 

and applied to rangeland monitoring. In some cases (e.g., digital photogrammetry, 

object-based image analysis) these new techniques were made possible by comput-

ing advances that have enabled faster and more efficient processing of large amounts 

of imagery. In other cases (e.g., multi-temporal image analysis), new approaches 

were developed around a new type or increased availability of remote-sensing prod-

ucts. Below are four techniques that have changed how remote-sensing imagery has 

been applied in rangeland monitoring.

Manual interpretation and grid-point cover estimation methods for aerial photo-

graphs were some of the first remote-sensing analysis techniques. While these 

approaches have gone out of vogue in favor of statistical classification algorithms 

for many remote-sensing applications, the recent increase in easily obtainable very- 

high resolution (VHR, <5 cm ground sampling distance) digital imagery from 

piloted aircraft, UAS, or even pole-mounted digital cameras has brought about a 

resurgence in image interpretation techniques. Booth et al. (2006) developed 

SamplePoint, a computer application for quickly and easily estimating vegetation 

cover from VHR aerial photography via point sampling. Many studies have looked 

at the accuracy and efficiency of image interpretation compared to field techniques 

and have found comparable results for estimating cover of functional groups (e.g., 

shrubs, perennial grasses) (e.g., Booth et al. 2005; Cagney et al. 2011; Duniway 

et al. 2011; Pilliod and Arkle 2013). Image interpretation of VHR images has also 

been used to estimate other rangeland indicators like canopy gaps (Karl et al. 2012b) 

or to evaluate wildlife habitat quality (e.g., Beck et al. 2014). Duniway et al. (2011) 

and Karl et al. (2012a) explored how VHR image interpretation could be employed 

in large-scale rangeland monitoring programs. A distinct advantage to VHR image 

interpretation techniques is that they can be employed by rangeland management 

staff with minimal expertise in remote sensing.

The increase in availability of VHR imagery from piloted aircraft or UAS has 

also spurred an interest in using digital photogrammetric techniques to create three- 

dimensional representations of rangeland sites from pairs of overlapping VHR 

images. Advances in photogrammetry software have made this process much easier, 

more accurate, and less expensive. Gillan et al. (2014) used stereo aerial photo-

graphs to model shrub heights in the Mojave Desert. Gong et al. (2000) created digi-

tal surface models from VHR stereo imagery to monitor changes in crown closure 

and tree height in a hardwood rangeland. Marzolff and Poesen (2009) used 3D digi-

tal surface models from digital photogrammetric techniques to monitor the gully 

development. Gillan et al. (2016) mapped soil movement following experimental 

juniper removal treatments by differencing digital surface models from before and 

after treatments. Recently, a new photogrammetric technique called structure from 

motion (SfM) has estimated three-dimensional surfaces from sequences of VHR 

images (Turner et al. 2012; Fonstad et al. 2013). An advantage of SfM is that, unlike 

traditional photogrammetric techniques, accuracy of surface elevation models 

increases with the number of overlapping photos. Genchi et al. (2015) used SfM 
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with images acquired from a UAS model soil surfaces and cliff faces to estimate soil 

excavation and nesting habitat for birds. Another benefit of SfM is that it can accom-

modate both downward-looking (i.e., nadir) and oblique images together to produce 

“LiDAR-like” point clouds. This provides an opportunity to estimate canopy struc-

ture and ground surfaces below vegetation—something that is possible from 

ground-based (e.g., Greaves et al. 2015) and aerial (e.g., Streutker and Glenn 2006) 

LiDAR but not traditional photogrammetry (Fig. 16.4).

Traditional remote-sensing algorithms analyze and assign meaning to the individ-

ual pixels of an image. While these techniques have been used successfully for many 

rangeland applications, pixel-based approaches are challenged in many rangeland 

landscapes because of inherent heterogeneity and patchiness. In these situations, the 

variability within and context of patches at different scales is an important trait for 

their correct identification or description. Object-Based Image analysis (OBIA) 

groups adjacent pixels in an image together based on their similarity and then treats 

the resulting “objects” as analysis units rather than the individual pixels (Burnett and 

Blaschke 2003). With OBIA, additional measures of variability, patchiness, and jux-

taposition within and between patches can be factored into classifications or models. 

By changing the amount of variability acceptable within an object, objects of different 

sizes (i.e., scales) can be created for the same area. It is possible to define optimal 

analysis scales with OBIA that maximize the accuracy of a remote-sensing product 

(Feitosa et al. 2006; Laliberte and Rango 2009; Karl and Maurer 2010a). The OBIA 

technique has shown to yield more accurate classifications of rangeland vegetation 

than pixel-based techniques in many cases (Karl and Maurer 2010b; Dingle Robertson 

and King 2011; Myint et al. 2011; Whiteside et al. 2011). The OBIA technique has 

been applied for quantifying rangeland vegetation cover and distribution at both fine 

(e.g., Luscier et al. 2006; Laliberte et al. 2012a; Hulet et al. 2013, 2014a) and coarse 

(Laliberte et al. 2006) scales. Karl (2010) used OBIA in predictions of three rangeland 

indicators in a southern Idaho study area. Laliberte et al. (2004) used an OBIA method 

Fig. 16.4 Structure from Motion (SfM) is a new photogrammetric technique that estimates the 

structure and height of three-dimensional objects from a sequence of two-dimensional images. The 

SfM algorithm was applied simultaneously to a set of downward-looking and oblique images to 

produce a point cloud of the canopy structure of creosote (Larrea tridentata (DC.) Coville) and soil 

surface elevation below the shrub canopy in the Chihuahuan Desert, New Mexico (J. Gillan, 

unpublished data)
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to detect shrub encroachment in southern New Mexico rangelands using historic aer-

ial and current high-resolution satellite imagery.

Several satellite sensors (e.g., AVHRR, Landsat, MODIS) have now been opera-

tional long enough to provide a reliable record of change in rangeland ecosystems. For 

example, Homer et al. (2004) developed a National Land Cover Dataset for the United 

States from 2001 Landsat imagery that has been subsequently updated to assess change 

over time (Xian and Homer 2010; Jin et al. 2013). Homer et al. (2013) quantified 

annual and seasonal changes in bare ground and cover of shrubs, sagebrush, herba-

ceous plants, and litter using Quickbird and Landsat imagery. Additionally, sensors like 

MODIS are providing image products at a temporal resolution (e.g., MODIS NDVI 

composites are available on 8-day cycles) that was not previously available for 

rangeland studies. This combination of temporal extent and resolution has spawned a 

host of multi-temporal remote-sensing techniques for rangeland monitoring. Wylie 

et al. (2012) used 9 years of MODIS NDVI data to construct estimates of expected 

production for a southern Idaho study area and detect departures from this expectation. 

Sankey et al. (2013) used MODIS and AVHRR NDVI time series as a proxy indicator 

for post-fire recovery in rangelands. Brandt et al. (2014) used a combination of SPOT-

Vegetation, Landsat long-term data record, and MODIS NDVI products to assess 

degradation and vegetation biomass changes in the Sahel region of Africa from 1982 to 

2010. Maynard et al. (in review) demonstrated that significant seasonal and between-

year breaks in a MODIS NDVI time series decomposes using the Breaks for Additive 

Season and Trend (BFAST) algorithm (Verbesselt et al. 2010) correlated to changes in 

biomass and functional group composition in a Chihuahuan Desert rangeland.

16.3.3  Modes of Remote-Sensing Implementation 

for Monitoring

Three general modes of applying remote sensing have emerged in rangeland moni-

toring. The first mode is to use remote-sensing technologies and products to replace 

field measurements. Numerous studies have shown that interpretation or classifica-

tion of high-resolution imagery can match or outperform many field-based measure-

ments of certain attributes (e.g., Booth et al. 2005; Seefeldt and Booth 2006; Cagney 

et al. 2011; Hulet et al. 2014b). Land cover classifications or predictions of vegeta-

tion attributes (e.g., cover) have been used for landscape-scale rangeland assessment 

and monitoring (e.g., Hunt and Miyake 2006; Marsett et al. 2006; Homer et al. 2013). 

Regression models (e.g., Homer et al. 2012) or geostatisical techniques (e.g., Karl 

2010) are used to predict rangeland indicators over landscapes from a set of field 

samples. In these cases, it is more important that the field sample locations represent 

the range and extremes of the indicators being predicted than to be randomly selected 

(Gregoire 1998). Historic analysis of rangeland condition is also possible using 

archives of aerial photography (e.g., Tappan et al. 2004; Rango et al. 2005) or satel-

lite imagery (e.g., Washington-Allen et al. 2006; Malmstrom et al. 2008).

The second mode of remote-sensing application is to supplement or augment 

field-based activities. For example, high-resolution aerial photographs may be 
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acquired at field sample locations and at nearby, similar sites for use in a double- 

sampling approach (see Duniway et al. 2011; Karl et al. 2012a). Another example 

of this mode of remote-sensing application is model-assisted inference which uses 

a statistical model developed between field measurements and remote-sensing prod-

ucts (e.g., NDVI) to improve indicator estimates in larger areas (Gregoire 1998; 

Opsomer et al. 2007; Stehman 2009). This mode of remote sensing can also be 

employed to make improved spatial predictions of indicators such as vegetation 

cover (Karl 2010). Gu et al. (2013) used biomass models developed from MODIS 

NDVI to remove artifacts from rangeland productivity estimates due to administra-

tive boundaries (i.e., state and county lines).

Finally, remote-sensing techniques can be used to generate new or synthetic indi-

cators of rangelands that are difficult or impossible to characterize through field 

techniques. For example, Ludwig et al. (2007a) defined a “leakiness index” to char-

acterize the ability of water to move through a rangeland site and increase soil ero-

sion. Cocke et al. (2005) defined the differenced normalized burn ratio as a measure 

of the extent and severity of wildland fire. Kefi et al. (2007) used changes in vegeta-

tion patch-size distributions as an indicator of impending desertification. Nijland 

et al. (2010) mapped soil moisture at depths to 6 m using electrical resistivity 

tomography. While the diversity of new indicators available from remote-sensing 

techniques is increasing, a challenge with this remote-sensing mode for rangeland 

monitoring, however, is translating the remote-sensing-derived indicators into state-

ments of rangeland quality or health.

16.3.4  Summary

Remote-sensing technologies and applications for rangeland monitoring have bur-

geoned in the past 25 years. Rapid advancements in sensor technologies and ana-

lytical techniques coupled with decreasing costs of remote-sensing products have 

resulted in myriad examples of the utility of remote sensing to quantitatively moni-

tor rangelands in ways previously not possible. Integration of remote-sensing tech-

niques as replacements for and supplements to existing field-based monitoring 

efforts will continue. However, development of novel remote-sensing-specific indi-

cators will quicken, spurred in part by the increasing availability (e.g., frequency of 

imagery, ease of access) and flexibility (i.e., ability to control image acquisition 

parameters and timing) of remote-sensing products.

16.4  Societal Implications of Conceptual Advances

The conceptual advances described above have influenced how rangeland monitor-

ing is conducted and have increased the utility of monitoring data for management 

decision-making.
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16.4.1  Increases in Monitoring Program Efficiency

The shift of focus to land health and the adoption of core indicators and methods has 

led to increases in the efficiency of monitoring programs. In the past, monitoring 

efficiency was gained through optimizing an individual monitoring program relative 

to its specific objectives. One form of this optimization was minimizing the number 

of required sample sites by restricting sample populations, employing specialized 

sampling designs, or resorting to subjective sampling. In highly heterogeneous 

rangeland systems, this drove monitoring to selected areas that were considered 

representative of a larger landscape (Stoddart and Smith 1943; Holechek et al. 

2001), and emphasized the need to maximize the value of individual observations. 

This approach, however, is only efficient if a single monitoring objective or indica-

tor is being considered. It is an inefficient approach if a separate monitoring pro-

gram is needed for each management objective. Additionally, monitoring programs 

designed tightly around a single objective (e.g., monitoring of grazing use impacts) 

may be inappropriate for informing other management objectives.

Overall efficiency of monitoring programs increases as the number of questions 

that can be answered with a dataset increases, and if data from multiple efforts can 

be combined. This is because monitoring data that have been collected for one pur-

pose can be reused to answer other objectives. For example, data collected since 

2004 (NRCS) and 2011 (BLM) by the National Resource Inventory (NRI) program 

are designed to generate regional and national estimates of rangeland status and 

trend. As of 2015, many of these data were being used to support the development 

and revision of ecological site descriptions. In the future, it is anticipated that they 

will be combined with local to regional monitoring data to address more specific 

questions, such as habitat suitability for wildlife species or for use in developing 

remote-sensing products provided restrictions regarding confidentiality of data can 

be overcome.

Combining datasets is only possible, however, if indicators and methods are con-

sistent between programs and if the datasets were based on a probabilistic sampling 

design. Although combining different datasets is not always straightforward statisti-

cally (e.g., for monitoring over large landscapes or when sample size requirements 

are high due to variability in an indicator), it can be worth the effort.

16.4.2  Cross-Jurisdictional Monitoring

Another benefit of the recent adoption of core indicators and methods is that it 

opens up new opportunities for monitoring conditions across boundaries of owner-

ship or administration. Land owners or agencies that use core methods and statisti-

cally based sampling designs can interchange and combine datasets to address 

management questions related to the context of a management unit in a larger land-

scape or pertaining to resources or disturbances that cross boundaries. This can be 
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particularly useful in rangelands where ownership is fragmented, and can be applied 

at all scales from local to national.

For example, monitoring the status and condition of seasonal habitats is neces-

sary for the conservation of greater sage-grouse (Centrocercus urophasiuanus) 

across its range. Approximately 52 % of the current greater sage-grouse distribution 

occurs on land managed by the BLM, whereas the remainder is managed by private 

(31 %) or other (17 %) federal and state agencies (U.S. Fish and Wildlife Service 

2010). The mixed land ownership has resulted in multiple sage-grouse habitat mon-

Fig. 16.5 Use of consistent indicators and methods and statistically valid sampling designs permit 

aggregation of data across jurisdictional boundaries. This map shows an example of how habitat 

suitability indicators for greater sage-grouse can be calculated from the National Resources 

Conservation Service’s National Resources Inventory (NRI) and the Bureau of Land Management’s 

(BLM) Landscape Monitoring Framework (LMF) for all non-federal (e.g., private, state, tribal) 

and BLM-managed rangelands in the western USA. These results are based upon NRI rangeland 

data collected in the field on 3658 non-Federal and LMF data from 2876 BLM rangeland sites 

during the period 2011 to 2013

16 Monitoring Protocols: Options, Approaches, Implementation, Benefits



550

itoring programs. Knowledge of the condition or trend of greater sage-grouse on 

lands managed by one agency or land owner may be informative for some questions 

relative to the affairs of that organization. However it provides an incomplete pic-

ture of habitat for the species as a whole. Because the BLM Landscape Monitoring 

Framework and the NRCS National Resources Inventory both adopted the core 

indicators and methods, these datasets have been combined to produce estimates of 

greater sage-grouse habitat indicators across private, tribal, and BLM lands from a 

sample of over 6500 locations between 2011 and 2013 (Fig. 16.5).

16.4.3  Effectiveness Monitoring

Monitoring the effectiveness of specific management actions is important and 

sometimes mandated. Current philosophies of rangeland management are built upon 

the concept of adaptive management (Walters and Holling 1990) where management 

actions, developed as a result of best-available knowledge, are treated like hypotheses 

to be evaluated by data collected following implementation of actions. This learning 

phase of adaptive management is essential for translating data on treatments and man-

agement adjustments into further management actions. However, this step of adaptive 

management has often been short-circuited (Moir and Block 2001; Walters 2007).

Effectiveness monitoring of a single project or action provide information on 

whether a project met an objective. Yet projects or site-specific actions and their cor-

responding effects carry with them environmental variability that may sometimes 

lead to failures merely by chance. Adaptive management requires across- project 

comparisons where projects are implemented over multiple time frames under differ-

ent environmental conditions to determine the likelihood of success under future 

conditions. If all projects use the same core indicators for addressing common man-

agement objectives, then decisions on future management actions will likely be more 

successful if adaptive management adjustments are applied to future decisions.

For example, Arkle et al. (2014) and Knutson et al. (2014) used the same core 

indicators to monitor long-term plant responses with and without revegetation after 

wildfires to address multiple objectives: did revegetation (1) increase perennial 

plant cover; (2) reduce annual grass cover; and (3) provide greater sage-grouse habi-

tat? They found that higher elevation and mean annual precipitation of locations 

related to meeting objectives of perennial and annual plants and to providing herba-

ceous cover, but not shrub cover for greater sage-grouse. They were able to identify 

potential levels of elevation and precipitation below which objectives would not 

likely be met. They were also able to point to potential changes in techniques to 

enhance shrub cover for greater sage-grouse. These results are available for adapt-

ing post-fire revegetation to better meet these objectives where possible. In addition, 

this information is available during the decision process after fires to determine if 

the likelihood of success is worth the expense of a revegetation project.
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16.5  Future Perspectives

16.5.1  Developing Functional Indicators at Broad Scales

Much of the advancement in developing functional indicators for rangeland man-

agement has been at the site scale owing to the fact that most research has been 

conducted at this scale (Peters et al. 2015). In some cases these site-based indicators 

can be scaled up meaningfully to larger (e.g., landscape or regional) scales (Peters 

et al. 2004). For example, cover of invasive annual grasses at a site is meaningful 

for local management, and the proportion of sites in a region having some minimal 

amount of the invasive grass is also useful for decision-making.

However, interactions between monitoring objectives and rangeland resources 

are scale-dependent, and informative indicators (and appropriate methods) may be 

different at different scales (West 2003b). Some site-based indicators such as those 

that need to be referenced to land potential to be interpreted (e.g., bare ground 

amount, shrub cover) or those tied to attributes that exhibit strong cross-scale inter-

actions (Peters et al. 2004) or threshold effects (Briske et al. 2006), may not scale 

up meaningfully. For example, average shrub cover in a region is only marginally 

meaningful because the region contains many areas with different potential to sup-

port shrubs. Additionally, indicators derived from site characteristics can be infor-

mative of the overall conditions in a larger summary (i.e., reporting) unit, but do not 

capture the distribution or pattern of indicators within those areas.

A major challenge in developing effective monitoring programs and applying moni-

toring data to rangeland management is the paucity of functional indicators of ecosys-

tem processes at landscape to regional scales. This is due in part to a critical knowledge 

gap: we simply don’t understand how the relationships between ecosystem properties, 

processes, and functions vary across space and time. Principles of landscape ecology 

state that characteristics like connectivity, patch size and shape, and habitat diversity 

are critical to sustaining ecosystem processes. But quantifiable indicators and specific 

thresholds tied to these ecosystem attributes are not common in monitoring programs. 

The lack of broad-scale indicators may be limiting the  utility of remote sensing in many 

monitoring programs, relegating it to a pattern description.

There are some examples, however, where specific indicators related to ecosys-

tem processes have been developed at fine and broad scales. Greater sage-grouse 

habitat has been described at four distinct scales and habitat suitability indicators 

defined for each scale (Connelly et al. 2000; Doherty et al. 2010; Stiver et al. 2015). 

A regional decision matrix has been proposed (Chambers et al. 2014) and is being 

tested in these regions for greater sage-grouse management. It is based on landscape 

cover of sagebrush (i.e., percent of pixels classified as sagebrush using a 5-km2 

moving window), an indicator of greater sage-grouse lek longevity, in combination 

with soil temperature and moisture as a surrogate for ecosystem resistance to inva-

sive annual grasses and resilience to fire. Ludwig et al. (2004) defined landscape 

functional integrity indicators to assess grazing effects on Australian rangelands at 

fine to coarse scales using cover and bare ground indicators within and between 

vegetation patches. Bertiller et al. (2002) described changes due to cattle grazing in 
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plant composition, patch structure, and vegetation cover at different scales in 

Patagonian Monte rangelands.

16.5.2  Developing and Implementing Soil Indicators

Monitoring ecosystem functions should reflect changes in soil processes (Chap. 4, 

this volume). While it is not always, or even usually, the case that “monitoring veg-

etation has to take a backseat to monitoring soils” (West et al. 1994), directly moni-

toring soil degradation and recovery may provide better information for rangeland 

management decisions. In systems where vegetation cover and composition either 

do not reflect, or lag behind, fundamental changes in water and nutrient cycling and 

the energy flows upon which ecosystem services ultimately depend, soil indicators 

are appropriate. For example, soil compaction can increase runoff, and increased 

soil surface disturbance can increase soil erodibility and drive declines in soil 

organic matter. Both of these changes can occur without causing detectable differ-

ences in plant cover (e.g., Herrick et al. 1999; Bird et al. 2007).

Despite the recognized value of soil indicators, they are rarely included in moni-

toring programs. There are multiple reasons, including cost and measurement con-

sistency. Even where sufficient financial resources and trained personal are able to 

ensure consistent measurement of a sufficient number of samples to detect change, 

the logistical challenges of collecting, processing, transporting, and storing samples 

for laboratory analysis quickly overwhelm institutional capacities. For this reason, 

only a field measurement of soil aggregate stability was selected for measurement 

in US national rangeland monitoring system.

The future, however, is bright as new field soil sensors and remote-sensing tech-

niques are being rapidly developed and deployed. For example, Pastick et al. (2014) 

mapped soil organic layer thickness in interior Alaska from Landsat ETM+ and 

ancillary data. Field spectroscopy, in particular, appears to hold a high level of 

promise for predicting soil organic matter and other variables that are related to 

spectral properties (Shepherd and Walsh 2007).

16.5.3  Accounting for Inter-annual Climate Variability

A perennial challenge in monitoring rangelands is dealing with climate differences dur-

ing the intervals between measurement periods. Because many rangeland ecosystem 

indicators (e.g., cover, production, and recruitment of herbaceous plants) are sensitive 

to yearly fluctuations in timing and amount of precipitation, it can be difficult to deter-

mine whether observed differences are due to management or disturbance, climate 

variability, or an interaction of the two. Conventional approaches to this problem have 

included comparing only like years, sampling across several years to encompass both 

dry and wet periods (West 2003b), or selecting indicators that are less sensitive to cli-

mate fluctuations (e.g., woody plant cover, density, perennial grass basal cover).
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Advances in remote sensing, specifically the increasing availability of high- 

frequency remote-sensing products (e.g., MODIS NDVI), offer several new opportu-

nities for addressing this challenge (e.g., White et al. 2005). This can be accomplished 

by constructing indicator ranges from different climate years and analyzing for depar-

ture (e.g., Wylie et al. 2012; Rigge et al. 2013). Alternatively, remote-sensing-derived 

indicators can be analyzed directly for trends over time or used as a covariate to ana-

lyze or interpret field observations (e.g., White et al. 2005; Dardel et al. 2014; Brandt 

et al. 2014). Finally, remote-sensing time series can be decomposed and inter-annual 

variability “factored out” to isolate management changes. Effective strategies for 

using remote-sensing products to account for inter- annual climate variability in range-

land monitoring still need much development and research.

16.5.4  Operationalizing Remote Sensing

Despite the advances in remote-sensing technologies and the potential uses for 

monitoring, adoption of remote sensing in many formal rangeland monitoring pro-

grams has been slow. Reasons for this are diverse and include historically variable 

performance of remote-sensing products (especially in rangelands), misunderstand-

ings of what remote-sensing indicators actually mean in a rangeland context, and 

high skill and computing requirements to produce and use remote-sensing products 

(see Kennedy et al. 2009). Nevertheless, substantial incorporation of remote sensing 

into monitoring programs is necessary to meet the information needs of rangeland 

management in the future (Booth and Tueller 2003).

Operational use of remote sensing in rangeland monitoring programs requires not 

only clear articulation of the monitoring objectives but also analysis of  remote- sensing 

options, desired accuracy requirements, and costs (Kennedy et al. 2009). Changes in 

sensor technology, data availability, and processing techniques also must be consid-

ered. In many cases remote-sensing-based indicators will not be adequate on their 

own and an integrated field and remote-sensing approach will be required (Ludwig 

et al. 2007b). The sources of error and uncertainty in indicator estimates must also be 

characterized for remote-sensing products that are used in rangeland monitoring pro-

grams to determine whether differences in indicator estimates are likely due to model 

error, sensor or analytical differences, or real changes on the ground.

16.5.5  Considerations with Evolving Technologies 

for Measuring Indicators

The conventional wisdom that has been taught to many rangeland management practi-

tioners is that once you pick a monitoring method you should always stick with it. This 

advice likely stems from the facts that rangelands are heterogeneous, diverse systems 

and many techniques for measuring rangeland attributes can contain a large degree of 

16 Monitoring Protocols: Options, Approaches, Implementation, Benefits



554

imprecision. Thus, the perception is that changing from one data collection technique 

to another may introduce more noise into the monitoring data and make it even harder 

to detect differences. This thinking, however, is flawed and has stymied adoption of 

more efficient and accurate approaches for monitoring rangeland indicators.

The development of new techniques and instruments for making quantitative indica-

tor measurements happens in all science fields, and there are established procedures for 

phasing new technologies into existing monitoring programs. For example, the 

U.S. Historical Climatology Network, which tracks temperature averages and trends in 

the United States, began in the 1980s to shift from liquid-in-gas (e.g., alcohol or mer-

cury) analog thermometers to digital thermistor sensors (Menne et al. 2010). Studies 

showed that biases and differences in variance could exist between these two different 

types of thermometers, and methods were developed to reconcile these differences so 

that analyses of long-term trends could be performed (Peterson et al. 1998).

Decisions to incorporate new measurement techniques into existing monitoring 

should be a part of ongoing reevaluations of the monitoring program (Lindenmayer 

and Likens 2009; Reynolds 2012). When considering changes to existing methods, 

however, it is critical to ensure indicators calculated from the new methods are con-

sistent (in both definition and interpretation) with the original monitoring objec-

tives. It is also important to study the results of both methods relative to each other 

to understand potential biases and differences in precision (Bland and Altman 

1999). New methods should be well defined and documented and then only be 

adopted in a monitoring program if they (1) provide more accurate or precise data, 

or (2) bring the program into better alignment with other monitoring programs.

While changes to a monitoring program are possible over time, they should not 

be taken lightly because changes can be difficult and impose complexity in data 

analysis. Oakley et al. (2003) proposed a modular approach for defining monitoring 

protocols so that incremental changes to increase precision or efficiency could be 

more easily made. It is also helpful in designing monitoring programs to clearly 

distinguish indicators from methods (Toevs et al. 2011) so that the best available 

methods can be used to provide indicator estimates.

16.5.6  Collaboration and Sharing Monitoring Efforts 

and Data

Sharing monitoring data and participatory monitoring offer tremendous opportuni-

ties for both dramatically reducing future monitoring costs, and increasing our abil-

ity to interpret both historic and future data.

Sharing monitoring data reduces costs by reducing redundancy: individuals and 

organizations that would have previously each collected their own data to address 

different objectives can take advantage of others’ data, freeing up resources for sup-

plementary measurements, data management, analysis, and interpretation. It also 

increases the quality of interpretation because a larger reference pool of informa-
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tion, often covering greater areas and time periods, can be used. This can help to 

address the challenges of accounting for inter-annual climate variability, even if the 

same methods are not used, provided that generally co-varying indicators, such as 

foliar and canopy cover, were measured. Where standard methods and statistical 

designs were used, even greater benefits can be realized through data integration 

and direct comparisons. In some cases, issues of data confidentiality or proprietary 

ownership currently impede data sharing. To the extent possible, these issues should 

be addressed to foster better data sharing.

Participatory monitoring reduces costs and can improve interpretation. Costs 

may be reduced due to lower labor costs, although these savings are often offset by 

increased data management costs due to higher quality control costs. Perhaps the 

most intriguing, and often ignored, benefit of participatory monitoring is for inter-

pretation. Individuals engaged in participatory monitoring often have both local 

knowledge and information that trained, paid field crews lack. Their knowledge 

may span both seasons and years, allowing them to identify possible drivers of 

change, as well as explain anomalous results or outliers.

16.5.7  Defining the Reference: The Challenge of Applying 

Monitoring to Management?

Perhaps the greatest challenge faced by managers seeking to apply monitoring data 

to management decisions is defining the reference. The first time monitoring data 

are collected at a location defines the baseline, but says nothing about where the 

baseline is relative to short- and long-term potential. Existing global assessments of 

land degradation are based largely on the opinions of multiple experts (Oldeman 

1994), interpretation of satellite-based greenness indices (Bai et al. 2008), or a syn-

thesis of multiple estimates based on one or more of these (e.g., Scherr 1999) to 

estimate the extent of land degradation. Expert opinion is limited by lack of a clearly 

defined reference. Greenness indices use spatial and temporal deviations from max-

imum greenness as the reference. Spatial differences are confounded by soil-based 

differences in potential productivity, while temporal differences are confounded by 

weather. Use of both spatial and temporal variability to determine the reference is 

particularly problematic in rangelands, where an increase in green woody cover 

often reflects degradation rather than recovery. While nearly all of these challenges 

can be addressed through the application of fine-scale information of phenology, 

weather, and vegetation, it is quite difficult to collect and apply this information 

across large areas

Two steps are required to reliably define reference conditions. The first is to 

describe the factors that determine land potential, including soil, topography, and 

climate (Herrick et al. 2013). Where an ecological site classification (Bestelmeyer 

et al. 2009) is available, identification of the ecological site can substitute for docu-

mentation of the individual edaphic, topographic, and climatic variables (Chap. 9, 
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this volume). The second is to define the natural range of variability for response 

variables (vegetation and dynamic soil properties) for the ecological site.

The USDA National Resource Inventory is one of the few examples in which 

ecological site-specific references have been defined and applied at the national 

level to provide a context for assessments and baseline monitoring data (Herrick 

et al. 2010). Definition of reference conditions is based on the natural range of 

variability in the reference state of the state-and-transition model for the ecologi-

cal site, where available, and on a combination of scientific literature, observa-

tions and measurements from reference plots, and local knowledge (Pyke et al. 

2002; Pellant et al. 2005). These assessments were completed at the same time 

that quantitative baseline data were collected, providing both a snapshot of cur-

rent levels of land degradation, and information that can be used to interpret the 

baseline monitoring data.

16.6  Summary

Rangeland ecology has benefited from recent developments in theory, policy, and 

technology. These developments, together with the increasing diversity of uses of 

rangelands, have changed the need for resource monitoring as well as the approaches 

for how it is carried out. Monitoring data are needed to establish baselines and 

changes in rangeland condition for documenting the impacts of climate change, 

disturbances, and management activities. The myriad monitoring needs for range-

land management, however, must be reconciled with realities of costs associated 

with collecting, analyzing, and using monitoring data. Thus the challenges of imple-

menting useful and efficient monitoring of rangelands include both practical and 

institutional hurdles.

Traditional approaches to monitoring and management, however, are entrenched 

in agencies, organizations, and universities and often applied to objectives and sys-

tems beyond those for which they were designed. While aspects of this legacy of 

rangeland management are helpful (e.g., rangeland scientists were pioneers of 

landscape- scale thinking), relying too heavily on monitoring techniques focused on 

grazing management will not serve management needs in the future. West (2003b) 

concluded, “The range profession has put so much of its training efforts into identi-

fication of plant species, sampling within plots, and application of conventional 

statistical analysis that it hasn’t had the background to examine other possible ways 

of answering the questions really being asked.” Going forward, monitoring of 

rangeland resources needs to be grounded in the conceptual and technological 

advances of the past 25 years.

The recognition that rangelands are nonlinear systems characterized by 

thresholds and cross-scale processes has led to a realization of the importance 

of monitoring ecological processes and functions at different scales. This 

advance translated to a shift in thinking from monitoring plant community 

responses to land uses to monitoring changes in land health. The adoption of 
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conceptual models as a mechanism for documenting and illustrating how eco-

logical processes, disturbances, and management affect an ecosystem, has con-

tributed to the identification and selection of functional ecosystem indicators. 

Conceptual models not only identify what parts of an ecosystem should be mon-

itored, they provide insight into how monitoring data should be interpreted and 

used for making management decisions.

Differences in indicators and measurement methods among monitoring pro-

grams has hindered the ability of data to be used for multiple objectives or com-

bined to understand conditions over larger scales. A consistent core set of standard 

indicators and methods for rangeland monitoring provides the ability to combine 

datasets from different monitoring efforts, allows data to be scaled up to larger 

extents, and expands opportunities to reuse data for other purposes. Core methods 

represent a minimal set of information that should be collected in almost any moni-

toring effort. When monitoring objectives are not served by the core indicators or 

methods, supplemental indicators and methods should be added.

Statistical approaches to sampling design for rangeland monitoring are necessary 

in our era of expanding land uses and disturbances and increasing contention. 

Conventional approaches that relied on targeted or haphazard sample site selection 

have disadvantages that severely limit their utility for rangeland monitoring. Most 

statistically based sampling designs can support monitoring for multiple objectives 

and scaling up and down of monitoring data. Additionally, randomization tech-

niques for selecting sampling locations guard against bias and allow for character-

ization of uncertainty in indicator estimates.

The widespread application of remote-sensing technologies to rangeland research 

and monitoring has been one of the most significant developments of the past 25 

years. Technological developments in remote sensing have happened at such a rate 

that the periodic summaries of remote-sensing applications for rangeland manage-

ment have become quickly outdated. In addition to new sensors being continually 

developed, imagery is becoming available at higher resolutions and more frequently 

while being cheaper and easier to access. These innovations have been accompanied 

by new analytic techniques that has improved the ability to extract meaningful 

information from remote-sensing products. In particular, the nexus of inexpensive 

yet capable UAS with new digital photogrammetric software has led to cheap, easy 

3D analysis for rangeland ecosystems.

The conceptual and technological advances in rangeland science and manage-

ment have important implications for monitoring. First is the potential to increase 

monitoring efficiency. Historically efficiency was maximized through parsimonious 

monitoring program design. Under the weight of so many monitoring efforts, how-

ever, efficiencies across programs can only come through coordination of monitor-

ing efforts such as adopting core indicators and methods and scalable, statistical 

sampling designs. Second, coordinated monitoring based on functional indicators 

of land health opens up opportunities for monitoring conditions across jurisdictional 

boundaries. This will be crucial for managing large-scale and diffuse disturbances 

(e.g., invasive species) as well as conservation of landscape-scale species (e.g., 

greater sage-grouse). Robust monitoring programs also help complete the learning 
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cycle that is often missing from evaluating effectiveness of monitoring actions, and 

enable comparisons across projects to begin to understand the factors that affect the 

success of management actions.

Despite the advances of the past few decades, there are challenges but also many 

opportunities for rangeland monitoring in the future. One set of challenges deals with 

the development and implementation of monitoring indicators. A significant chal-

lenge for rangeland monitoring is developing functional indicators of land health at 

landscape and regional scales. In many cases empirical research has not been done to 

understand the interaction of ecosystem components and processes at broad scales. 

Another challenge is in developing and incorporating indicators of soil degradation 

and recovery into rangeland monitoring programs when such indicators may provide 

better or more timely information to managers than vegetation indicators.

A second set of challenges relates to technical aspects of rangeland monitoring. 

Variability of precipitation and temperature (and thus plant biomass and species 

composition) on rangelands both within and between years is a perennial challenge 

for monitoring. Conventional approaches to dealing with temporal variability in 

monitoring data include comparing only like years or averaging over multiple years. 

Advances in remote sensing, specifically the increasing availability of high- frequency 

remote-sensing products (e.g., MODIS NDVI), offer several new opportunities for 

addressing this challenge. However, despite the promise of remote sensing, its for-

mal adoption in many rangeland monitoring programs has been slow. Operational 

use of remote sensing for rangeland monitoring will require a clear statement of 

objectives and roles for remote-sensing products as well as accuracy needs.

For the future, rangeland professionals (both upcoming and current) need instruc-

tion on monitoring that focuses on development and selection of functional indica-

tors, monitoring rangelands at multiple scales, and efficiencies of core indicator 

monitoring with supplementation as necessary. Additionally, effort should be 

invested to improve our understanding of statistical principles of monitoring design 

and data analysis and increasing the availability of professionals with the skills to 

execute these tasks for rangeland monitoring.

Most sources on rangeland monitoring point out that monitoring is worthless if 

the data are never analyzed, reported, and ultimately used to address the original 

objectives. At the same time, however, many rangeland monitoring manuals focus 

almost exclusively on data collection protocols and leave out substantial treatment 

of data analysis and reporting. Going forward, considerable effort needs to be placed 

on translating monitoring results into management actions that are supported by 

analyses and data visualization. It is our experience that in many cases difficulties 

in sustaining funding for monitoring programs stem in part from the lack of tangible 

and useful analyses and results from the data that were collected. Monitoring pro-

grams can and should be designed to produce interim as well as long-term products 

that are useful to rangeland managers.

Technologies involved in rangeland monitoring will continue to evolve (e.g., 

remote sensing will supplant some field efforts), and strategies need to be put in 

place for adopting new techniques into monitoring programs. Ultimately, selection 

of technologies and methods for monitoring needs to be based on relevant manage-
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ment questions and a thorough understanding of the processes governing rangeland 

responses to management and disturbance.
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Chapter 17

Rangeland Systems in Developing Nations: 
Conceptual Advances and Societal 
Implications
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Elisabeth Huber-Sannwald, Catherine Schloeder, Corinne Valdivia, 

José Tulio Arredondo, Michael Jacobs, Cecilia Turin, and Matthew Turner

Abstract Developing-country rangelands are vast and diverse. They are home to 

millions who are often poor, politically marginalized, and dependent on livestock 

for survival. Here we summarize our experiences from six case-study sites in sub- 

Saharan Africa, central Asia, and Latin America generally covering the past 25 

years. We examine issues pertaining to population, natural resource management, 

climate, land use, livestock marketing, social conflict, and pastoral livelihoods. The 

six study sites differ with respect to human and livestock population dynamics and 
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the resulting pressures on natural resources. Environmental degradation, however, 

has been commonly observed. Climate change is also having diverse systemic 

effects often related to increasing aridity. As rangelands become more economically 

developed pastoral livelihoods may diversify, food security can improve, and com-

mercial livestock production expands, but wealth stratification widens. Some sig-

nificant upgrades in rural infrastructure and public service delivery have occurred; 

telecommunications are markedly improved overall due to widespread adoption of 

mobile phones. Pressures from grazing, farming, mining, and other land uses—

combined with drought—can ignite local conflicts over resources, although the 

intensity and scope of conflicts markedly varies across our case-study sites. 

Pastoralists and their herds have become more sedentary overall due to many fac-

tors, and this can undermine traditional risk-management tactics based on mobility. 

Remote rangelands still offer safe havens for insurgents, warlords, and criminals 

especially in countries where policing remains weak; the resulting civil strife can 

undermine commerce and public safety. There has been tremendous growth in 

knowledge concerning developing-country rangelands since 1990, but this has not 

often translated into improved environmental stewardship or an enhanced well-

being for rangeland dwellers. Some examples of demonstrable impact are described, 

and these typically have involved longer-term investments in capacity building for 

pastoralists, local professionals, and other stakeholders. Research is shifting from 

ecologically centered to more human-centered issues; traditional academic 

approaches are often being augmented with participatory, community-based 

engagement. Building human or social capital in ways that are integrated with 

improved natural resource stewardship offers the greatest returns on research invest-

ment. Our future research and outreach priorities include work that fortifies pastoral 

governance, enhances livelihoods for a diverse array of rangeland residents, and 

improves land and livestock management in a comprehensive social-ecological sys-

tems approach.

Keywords Bolivian Altiplano • Ethiopian Boran •  Afghan Kuchi • Mexican range-

lands • Mongolia • Peruvian Altiplano • Sahel

17.1  Introduction

In this chapter we focus on rangelands of the developing world. By rangelands we 

refer to landscapes—largely unsuitable for sustained cultivation—providing forage, 

water, and cover for grazing and browsing animals. These landscapes occur in des-

erts, grasslands, shrublands, savannas, woodlands, and alpine systems [definition 

modified from Holechek et al. (2011, p. 1)].

“Developing nations” refer to countries having a relatively low standard of living, 

an underdeveloped industrial base, a low gross domestic product per capita, and a low 

Human Development Index (Sullivan and Sheffrin 2003). The rangelands of develop-

ing nations have endured a wide array of challenges including poverty, environmental 

D.L. Coppock et al.
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degradation, social conflicts, displaced people, and climate change (Seré et al. 2008; 

Thornton et al. 2009). Rangelands collectively represent about 70 % of the world’s 

land surface (Holechek et al. 2011) and are home to 2.1 billion people—35 % of the 

world’s population.1 In sum, the rangelands of the developing world greatly matter to 

anyone who ponders how to improve the human condition or the stewardship of natu-

ral resources.

Rangelands of the developing world are also places where major conceptual 

advances for research and development have occurred over the past 30 years. These 

advances have affected range science and range management globally and include 

rangeland production modeling (Penning de Vries and Djiteye 1982), nonequilib-

rium ecology (Ellis and Swift 1988), resilience theory (Walker 2002), climate 

change (Olsson et al. 2005), pastoral management of livestock gene pools (Krätli 

2007), coupled social-ecological systems (Stafford-Smith et al. 2009), action 

research and gender (Coppock et al. 2011), and decentralized or community-based 

natural resource governance (Reid et al. 2015).

The dominant economic use of rangelands in the developing world is livestock 

production as practiced by pastoralists using communal resources on state-owned or 

community-owned lands and, to a lesser extent, by producers using resources on 

privately held lands (Holechek et al. 2011). Other economic uses are on the rise and 

include dryland farming, hard-rock mining, oil and gas extraction, renewable energy 

production, recreation, and tourism. Important national parks and protected areas 

occur in rangelands worldwide (Chape et al. 2008). Developing-country rangelands 

provide vital global ecosystem goods and services, including carbon sequestration 

that mitigates effects from greenhouse gas emissions (Safriel et al. 2005). Climate 

change will affect the use of these landscapes (Feng et al. 2010; Long et al. 2006), 

as many developing-nation rangelands are projected to become warmer, drier, and 

subjected to more frequent extreme weather (IPCC 2013; Nicholson 2013; Stahle 

et al. 2009).

The coauthors of this chapter average over 20 years of experience in the develop-

ing world. They have contributed insights related to six case-study sites to capture 

broad patterns across social-ecological systems in a rangeland-development  context. 

Grouped into two tiers according to a Human Development Index (HDI) calculated 

for 187 nations and territories (UNDP 2013), the case study sites include a less 

developed, lower tier with Afghanistan, southern Ethiopia, and the Sahelian belt 

(subsites in Niger, Mali, and Senegal—henceforth called the Sahel), and a more 

economically developed upper tier with Mongolia, the high Andes (Bolivia and 

Peru—henceforth called the Altiplano), and northern Mexico. The first tier has HDI 

country rankings that vary from 187 (Niger) to 154 (Senegal) while the second-tier 

HDI rankings range from 108 (Bolivia and Mongolia) to 61 (Mexico). The case 

study sites are mapped in Fig. 17.1. The sites illustrate wide variation in geographic, 

biophysical, and socioeconomic attributes. They have been monitored by the same 

scholars over extended periods of time and thus provide an unusual opportunity for 

credible long-term assessments, cross-site comparisons, and learning.

1 http://www.un.org/en/events/desertification_decade/whynow.shtml
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17.2  Global Trends: Rangelands of the Developing World

Some socioeconomic and agroecological features for the six case study sites are 

shown in Table 17.1. The ecosystems vary from warm, subtropical savannas to cold, 

shrub steppe. Economic uses are dominated by extensive livestock production, but 

variation in the predominant livestock species, livestock products, and livestock 

population trends is notable. With some exceptions (i.e., Mongolia, Mexico) the 

rangeland inhabitants largely represent indigenous societies that are economically 

or socially marginalized within their home countries.

The material that follows in this section combines empirical information from 

the case study sites with other literature to integrate and describe some commonly 

observed patterns concerning populations, socioeconomics, and natural resources. 

Each subsection begins with a concise summary paragraph. Becoming aware of this 

background is especially important for readers who are less familiar with pastoral-

ism or rangelands. Those who want to skip the background and focus on current 

conceptual or operational issues can go directly to Sect. 17.3.

Fig. 17.1 Condensed world map showing nine nations that host the rangeland study sites reviewed 
in this chapter (illustration courtesy of Publication Design and Production, Utah State University)

D.L. Coppock et al.
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re
a

V
eg

et
at

io
n
 z

o
n
es

L
an

d
 u

se
L

iv
es

to
ck

 s
p
ec

ie
s 

an
d
 p

ro
d
u
ct

s
P

eo
p
le

C
o
m

m
en

ts

S
ah

el
ia

n
 B

el
t

N
ig

er
 (

D
an

ti
an

d
o
u
 

D
is

tr
ic

t)
d

L
o
w

-a
lt

it
u
d
e 

h
ar

d
-p

an
 

p
la

te
au

 d
is

se
ct

ed
 b

y
 f

o
ss

il
 

v
al

le
y
s 

w
it

h
 s

an
d
 d

ep
o
si

ts
; 

T
ig

er
 b

u
sh

 t
h
ic

k
et

s 
o
n
 

p
la

te
au

; 
m

o
sa

ic
 o

f 
v
al

le
y
 

cr
o
p
la

n
d
s 

(m
il

le
t,

 c
o
w

p
ea

, 
ro

se
ll

e)
; 

sc
at

te
re

d
 t

re
es

 
(C

o
m

b
re

tu
m

, 
F

a
id

h
er

b
ia

 
sp

p
.)

 a
n
d
 s

h
ru

b
s 

(G
u
ie

ra
 

sp
p
.)

, 
an

n
u
al

 h
er

b
ac

eo
u
s 

p
la

n
ts

 (
M

it
ra

ca
rp

u
s,

 S
id

a
, 

C
a
ss

ia
 s

p
p
.)

S
ed

en
ta

ry
 (

v
il

la
g
e)

 
fa

rm
in

g
 a

n
d
 r

ea
ri

n
g
 

li
v
es

to
ck

 (
7
5
 %

 o
f 

p
o
p
u
la

ti
o
n
) 

an
d
 

re
ce

n
tl

y
 s

et
tl

ed
 

ag
ro

-p
as

to
ra

li
st

s 
(2

5
 %

);
 f

ew
 

tr
an

sh
u
m

an
t 

p
as

to
ra

li
st

s 
fr

o
m

 
N

ig
er

ia
 o

r 
B

en
in

 i
n
 

w
et

 s
ea

so
n
s

C
at

tl
e 

(7
8
 %

 o
f 

b
io

m
as

s)
, 
sh

ee
p
 

(1
1
 %

),
 g

o
at

s 
(9

 %
),

 
d
o
n
k
ey

s 
(2

 %
),

 
h
o
rs

es
, 
ca

m
el

s.
 L

iv
e 

an
im

al
s 

fo
r 

d
o
m

es
ti

c 
an

d
 e

x
p
o
rt

 m
ar

k
et

s;
 

so
u
r 

m
il

k
, 
b
u
tt

er
; 

m
ea

t 
fo

r 
h
o
m

e 
co

n
su

m
p
ti

o
n

Z
ar

m
a 

fa
rm

er
s;

 
F

u
la

n
i 

ag
ro

- p
as

to
ra

li
st

s;
 

H
ao

u
ss

a 
an

d
 K

el
 

T
am

as
h
eq

G
ra

zi
n
g
 r

es
tr

ic
te

d
 t

o
 u

n
cr

o
p
p
ed

 
la

n
d
s 

fr
o
m

 J
u
n
e 

to
 O

ct
o
b
er

, 
th

en
 

o
p
en

 g
ra

zi
n
g
 i

n
cl

u
d
in

g
 c

ro
p
 

st
u
b
b
le

s 
an

d
 w

ee
d
s;

 t
ra

n
sh

u
m

an
ce

 
n
o
rt

h
w

ar
d
 i

n
 w

et
 s

ea
so

n
 a

n
d
 

ea
st

- 
an

d
 s

o
u
th

w
ar

d
s 

in
 d

ry
 

se
as

o
n
; 

W
at

er
 p

o
in

ts
 i

n
cl

u
d
e 

p
o
n
d
s,

 d
ee

p
 w

el
ls

, 
b
o
re

h
o
le

s,
 

ar
te

si
an

 s
o
u
rc

es

8
4
6
 k

m
²

M
al

i 
(H

o
m

b
o
ri

 
D

is
tr

ic
t)

e

L
o
w

-a
lt

it
u
d
e 

se
d
im

en
ta

ry
 

b
as

in
 w

it
h
 i

so
la

te
d
 

m
o
u
n
ta

in
s.

 F
ix

ed
 d

u
n
es

 a
n
d
 

sa
n
d
 d

ep
o
si

ts
 (

6
0
 %

 o
f 

la
n
d
sc

ap
e)

; 
sh

al
lo

w
 s

o
il

 o
n
 

ro
ck

-h
ar

d
-p

an
 o

u
tc

ro
p
s 

(3
0
 %

),
 l

o
am

y
-c

la
y
 b

o
tt

o
m

 
la

n
d
s 

(1
0
 %

).
 A

n
n
u
al

 
h
er

b
ac

eo
u
s 

p
la

n
ts

 m
o
st

ly
 

g
ra

ss
es

 (
C

en
ch

ru
s,

 A
ri

st
id

a
, 

S
ch

o
en

ef
el

d
ia

 s
p
p
.)

 w
it

h
 

sc
at

te
re

d
 t

re
es

 (
A

ca
ci

a
 s

p
p
) 

an
d
 s

h
ru

b
s 

(B
o
sc

ia
, 

E
u
p
h
o
rb

ia
 s

p
p

.)
; 

so
m

e 
m

il
le

t

S
ed

en
ta

ry
 f

ar
m

er
s 

(H
o
m

b
o
ri

 m
o
u
n
ta

in
s)

; 
se

d
en

ta
ry

 a
g
ro

-
p
as

to
ra

li
st

s 
p
ra

ct
ic

e 
se

as
o
n
al

 
tr

an
sh

u
m

an
ce

; 
n
o
m

ad
ic

 p
as

to
ra

li
st

s;
 

tr
an

sh
u
m

an
t 

p
as

to
ra

li
st

s 
fr

o
m

 i
n
n
er

 
d
el

ta
 o

f 
N

ig
er

 R
iv

er
 

an
d
 n

o
rt

h
 G

o
u
rm

a

C
at

tl
e 

(8
3
 %

 o
f 

b
io

m
as

s)
, 
sh

ee
p
 

(6
 %

),
 g

o
at

s 
(7

 %
),

 
d
o
n
k
ey

s 
(3

 %
),

 
ca

m
el

s 
(1

 %
).

 L
iv

e 
an

im
al

s 
fo

r 
d
o
m

es
ti

c 
an

d
 e

x
p
o
rt

 m
ar

k
et

s;
 

so
u
r 

m
il

k
, 
b
u
tt

er
; 

m
ea

t 
fo

r 
h
o
m

e 
co

n
su

m
p
ti

o
n

S
o
n
g
h
ay

, 
D

o
n
g
o
n
, 
F

u
la

n
i 

(M
ac

in
an

k
é,

 
D

je
lg

o
b
é,

 F
o
u
la

n
 

k
ri

ab
é)

, 
k
el

 
T

am
as

h
eq

 (
k
el

 
G

o
ss

i)

O
p
en

-a
cc

es
s 

g
ra

zi
n
g
 b

y
 h

er
d
ed

 
li

v
es

to
ck

 (
ex

ce
p
t 

cr
o
p
la

n
d
s 

in
 w

et
 

se
as

o
n
s)

; 
o
p
p
o
rt

u
n
is

ti
c 

lo
ca

l 
m

o
b
il

it
y
; 

so
m

e 
n
o
m

ad
is

m
; 

lo
n
g
-r

an
g
e 

tr
an

sh
u
m

an
ce

 f
ro

m
 

M
ac

in
a 

(w
et

 a
n
d
 c

o
o
l 

se
as

o
n
s)

; 
n
o
m

ad
s 

fr
o
m

 N
o
rt

h
 G

o
u
rm

a 
in

 
d
ry

 s
ea

so
n
s;

 w
at

er
 p

o
in

ts
 i

n
cl

u
d
e 

p
o
n
d
s,

 s
h
al

lo
w

 a
n
d
 d

ee
p
 w

el
ls

; 
w

at
er

 l
im

it
s 

fo
ra

g
e 

ac
ce

ss
 i

n
 d

ry
 

p
er

io
d
s

2
9
2
3
 k

m
²

S
en

eg
al

 (
T

és
sé

k
ré

 
D

is
tr

ic
t)

f

L
o
w

-a
lt

it
u
d
e,

 fi
x
ed

 d
u
n
e 

sy
st

em
 o

n
 fl

at
 s

an
d
st

o
n
e 

se
d
im

en
ts

. 
S

ca
tt

er
ed

 t
re

es
 

(A
ca

ci
a
, 
C

o
m

b
re

tu
m

, 
S
cl

er
o
ca

ry
a

 s
p
p
.)

 a
n
d
 s

h
ru

b
s 

(B
o
sc

ia
, 
G

re
w

ia
 s

p
p
.)

; 
an

n
u
al

 
h
er

b
ac

eo
u
s 

p
la

n
ts

, 
m

o
st

ly
 

g
ra

ss
es

 (
A

ri
st

id
a

, 
C

en
ch

ru
s,

 
B

ra
ch

ia
ri

a
, 
S
ch

o
en

ef
el

d
ia

 
sp

p
.)

; 
so

m
e 

m
il

le
t

S
em

is
ed

en
ta

ry
 

p
as

to
ra

li
st

s;
 

o
p
p
o
rt

u
n
is

ti
c 

lo
ca

l 
m

o
b
il

it
y
; 

lo
n
g
-d

is
ta

n
ce

 
tr

an
sh

u
m

an
ce

 t
o
 t

h
e 

S
o
u
th

 f
o
r 

g
ra

zi
n
g
 a

n
d
 

m
ar

k
et

in
g

C
at

tl
e 

(7
3
 %

 o
f 

b
io

m
as

s)
, 
sh

ee
p
 

(2
0
 %

),
 g

o
at

s 
(5

 %
),

 
d
o
n
k
ey

s 
(2

 %
),

 
h
o
rs

es
; 

li
v
e 

an
im

al
s 

fo
r 

lo
ca

l 
o
r 

re
g
io

n
al

 
m

ar
k
et

s 
in

cl
u
d
in

g
 

D
ak

ar
; 

so
m

e 
m

il
k
 

an
d
 b

u
tt

er

F
u
la

n
i;

 s
o
m

e 
W

o
lo

f 
in

 s
m

al
l 

to
w

n
s;

 v
il

la
g
es

 
se

tt
le

d
 s

in
ce

 
b
o
re

h
o
le

s 
d
u
g
 i

n
 

1
9
5
0
s

O
p
en

-a
cc

es
s 

g
ra

zi
n
g
 b

y
 

fr
ee

-r
an

g
in

g
 h

er
d
s 

(e
x
ce

p
t 

tr
ee

 
p
la

n
ta

ti
o
n
s 

an
d
 c

o
n
se

rv
at

io
n
 

ar
ea

s)
; 

lo
ca

l 
m

o
b
il

it
y
 c

en
te

re
d
 o

n
 

p
o
n
d
s 

(w
et

 s
ea

so
n
),

 b
o
re

h
o
le

s 
(d

ry
 

se
as

o
n
),

 a
n
d
 c

am
p
s 

(y
ea

r 
ro

u
n
d
);

 
re

g
io

n
al

 m
o
b
il

it
y
 t

o
 t

h
e 

so
u
th

 f
o
r 

d
ry

-s
ea

so
n
 p

as
tu

re
 a

n
d
 l

iv
es

to
ck

 
tr

ad
e

1
7
5
9
 k

m
²

T
a
b

le
 1

7
.1

 
(c

o
n
ti

n
u
ed

)



T
ie

r
S

it
e 

n
am

e
L

o
ca

ti
o
n
 a

n
d
 a

re
a

V
eg

et
at

io
n
 z

o
n
es

L
an

d
 u

se
L

iv
es

to
ck

 s
p
ec

ie
s 

an
d
 p

ro
d
u
ct

s
P

eo
p
le

C
o
m

m
en

ts

U
p
p
er

–
M

o
n
g
o
li

ag
T

ai
g
a 

(4
 %

 o
f 

la
n
d
sc

ap
e)

 t
o
 

al
p
in

e 
(3

 %
),

 f
o
re

st
- 

an
d
 

m
o
u
n
ta

in
-s

te
p
p
e 

(2
5
 %

),
 

st
ep

p
e 

(2
6
 %

),
 d

es
er

t-
st

ep
p
e 

(2
7
 %

) 
an

d
 d

es
er

t 
(1

5
 %

);
 

h
er

b
ac

eo
u
s 

g
en

er
a 

in
cl

u
d
e 

S
ti

p
a
, 
P

o
a
, 
C

le
is

to
g
en

es
, 

A
g
ro

p
yr

o
n
, 
P

o
te

n
ti

ll
a
, 
an

d
 

A
st

ra
g
a
lu

s;
 s

h
ru

b
 g

en
er

a 
in

cl
u
d
e 

A
rt

em
is

ia
 a

n
d

 
C

a
ra

g
a
n
a

S
em

in
o
m

ad
ic

 
(t

ra
n
sh

u
m

an
ce

) 
w

it
h
 

re
g
u
la

r 
w

in
te

r/
sp

ri
n
g
 

ca
m

p
si

te
s 

an
d
 v

ar
ia

b
le

 
su

m
m

er
/a

u
tu

m
n
 

p
as

tu
re

s;
 s

m
al

l-
sc

al
e 

cu
lt

iv
at

io
n
 a

n
d
 w

il
d
 

h
ay

 h
ar

v
es

t;
 i

n
cr

ea
si

n
g
 

m
in

in
g
 a

n
d
 t

o
u
ri

sm

C
at

tl
e 

an
d
 y

ak
s 

(6
 %

 
o
f 

b
io

m
as

s)
, 
h
o
rs

es
 

(6
 %

),
 c

am
el

s 
(1

 %
),

 
sh

ee
p
 (

4
5
 %

),
 g

o
at

s 
(4

3
 %

);
 l

iv
e 

an
im

al
s,

 
m

ea
t,

 m
il

k
, 
d
ai

ry
 

p
ro

d
u
ct

s,
 fi

b
er

, 
(c

as
h
m

er
e)

, 
h
id

es
, 

sk
in

s

K
h
al

k
h
a 

d
o
m

in
at

e 
n
u
m

b
er

s;
 r

es
t 

ar
e 

K
h
az

ak
h
, 
D

o
rv

o
d
, 

B
ay

aa
d
, 
B

u
ri

at
, 

T
sa

at
an

, 
an

d
 o

th
er

 
et

h
n
ic

 g
ro

u
p
s

S
in

ce
 t

ra
n
si

ti
o
n
in

g
 t

o
 d

em
o
cr

ac
y
 

an
d
 a

 m
ar

k
et

 e
co

n
o
m

y
 i

n
 1

9
9
0
, 

h
er

d
 s

iz
e 

h
as

 g
ro

w
n
 a

n
d
 

co
m

p
o
si

ti
o
n
 s

h
if

te
d
 t

o
 i

n
cl

u
d
e 

m
o
re

 c
as

h
m

er
e 

g
o
at

s;
 r

an
g
el

an
d
 

g
o
v
er

n
an

ce
 i

n
 fl

u
x
 w

it
h
 w

ea
k

 
re

g
u
la

ti
o
n
 o

f 
co

m
m

o
n
 p

as
tu

re
s 

an
d
 g

ro
w

in
g
 i

n
fl

u
en

ce
 o

f 
co

m
m

u
n
it

y
-b

as
ed

 o
rg

an
iz

at
io

n
s.

 
M

in
in

g
 c

o
m

p
et

es
 w

it
h
 p

as
to

ra
li

sm
 

fo
r 

la
n
d
 a

n
d
 h

as
 i

n
cr

ea
si

n
g
 s

o
ci

al
 

an
d
 e

n
v
ir

o
n
m

en
ta

l 
im

p
ac

ts

1
,5

6
4
,1

1
6
 k

m
2

A
lt

ip
la

n
o

g
B

o
li

v
ia

h
T

h
e 

A
lt

ip
la

n
o
 i
s 

a 
p
la

te
au

 t
h
at

 
is

 1
1
0
0
 k

m
 l
o
n
g
 a

n
d
 

1
2
0
–
1
6
0
 k

m
 w

id
e 

at
 a

n
 

av
er

ag
e 

al
ti

tu
d
e 

o
f 

4
0
0
0
 m

; 
to

ta
l 
ar

ea
 i
s 

3
0
6
,0

0
0
 k

m
2
; 
th

e 
A

lt
ip

la
n
o
 i
s 

d
iv

id
ed

 i
n
to

 
n
o
rt

h
er

n
, c

en
tr

al
, a

n
d
 s

o
u
th

er
n
 

re
g
io

n
s 

(L
a 

P
az

, P
o
to

si
, a

n
d

 
O

ru
ro

, r
es

p
ec

ti
v
el

y
);

 c
u
lt

iv
at

ed
 

la
n
d
 o

cc
u
rs

 o
n
 1

 %
 o

f 
th

e 
la

n
d
, 

w
it

h
 o

v
er

 h
al

f 
as

 f
al

lo
w

; 
th

e 
cl

im
at

e 
is

 s
u
b
h
u
m

id
 i
n
 t
h
e 

n
o
rt

h
 n

ea
r 

L
ak

e 
T

it
ic

ac
a,

 
ch

an
g
in

g
 t
o
 s

em
ia

ri
d
 i
n
 t
h
e 

ce
n
tr

al
 r

eg
io

n
 a

n
d
 a

ri
d
 i
n
 t
h
e 

so
u
th

; 
im

p
o
rt

an
t 
g
en

er
a 

fo
r 

ra
n
g
e 

p
la

n
ts

 i
n
cl

u
d
e 

g
ra

ss
es

 
su

ch
 a

s 
F

es
tu

ca
, 
H

o
rd

eu
m

, 
D

is
ti

ch
li

s,
 M

u
h
le

n
b
er

g
ia

, 
W

er
n
er

ia
, a

n
d
 J

u
n
cu

s 
sp

p
.;

 
sh

ru
b
s 

in
cl

u
d
e 

P
a
ra

st
re

p
h
ia

 
sp

p
.;
 c

u
sh

io
n
 p

la
n
ts

 o
n
 s

al
in

e 
si

te
s 

in
cl

u
d
e 

S
a
li

co
rn

la
 a

n
d
 

A
n
th

o
b
ri

u
m

 s
p
p
.

P
as

to
ra

li
st

s 
ar

e 
se

m
is

ed
en

ta
ry

 w
it

h
in

 
ar

ea
s 

u
n
d
er

 h
o
u
se

h
o
ld

 
co

n
tr

o
l;

 a
g
ro

-
p
as

to
ra

li
st

s 
ar

e 
se

d
en

ta
ry

—
lo

ca
l 

ra
n
g
el

an
d
s 

an
d
 f

al
lo

w
 

fi
el

d
s 

u
se

d
 f

o
r 

g
ra

zi
n
g
; 

so
m

e 
im

p
ro

v
ed

 p
as

tu
re

 
(a

lf
al

fa
) 

fo
r 

cr
o
ss

-b
re

d
 

ca
tt

le
 a

n
d
 s

h
ee

p
; 

cu
lt

iv
at

io
n
 d

o
m

in
at

es
 

m
o
re

 t
o
 t
h
e 

n
o
rt

h
, 

m
ix

ed
 a

g
ro

-p
as

to
ra

li
sm
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17.2.1  Human Populations

Summary. Human population growth is a driver that profoundly affects all ecosys-

tems. Human populations in developing-country rangelands are affected by demo-

graphic, ecological, economic, and political forces. Human population densities 

tend to rise in response to increasing annual precipitation and agricultural produc-

tivity as one goes from the arid to semiarid and subhumid zones. As nations or 

regions become wealthier, however, net human population growth in the rangelands 

tends to decrease and there are more chances for rangeland dwellers to emigrate in 

search of employment (typically males). In some of these situations, women can 

then become the primary stewards of local rangeland resources. Change in eco-

nomic opportunities can dramatically affect the magnitude and direction of rural-to-

urban migrations, especially as nations develop. Persistent warfare, poverty, and 

drought—and even organized crime—can be profoundly disruptive, however, 

resulting in a depopulation of some rangeland systems.

Human population growth is a driver that strongly influences the use of natural 

resources and the adoption of new technology in agro-ecosystems (Boserup 1965, 

1989). Thus, human population issues merit our review. Images of important range-

land people in our case-study sites are shown in Fig. 17.2a–f. The evidence is mixed 

concerning human population trends across our six case-study areas. Population 

densities tend to be higher in agro-pastoral settings compared to pastoral settings 

because the former produce more food for people per unit area.2

Marked net increases in rangeland human populations have been noted for south-

ern Ethiopia and the Sahel. Here increased fertility and decreased child mortality 

among pastoralists—as well as immigration by outsiders—have contributed to high 

rates of sustained growth, i.e., from 2 to 3 % per annum.3 Emigration from pastoral 

zones in southern Ethiopia remains low, probably due to low exposure to formal 

education and lack of wage labor opportunities across the nation (Coppock et al. 

2011). In the Sahel, emigration of agro-pastoral men to urban areas seeking wage 

labor has mitigated some population growth in the rangelands (Guengant et al. 

2002; Wane et al. 2010). In contrast to the African examples, the number of Kuchi 

still using Afghanistan’s rangelands is lower today than in the past despite the Kuchi 

having one of the world’s highest fertility rates (e.g., 7.28; NRVA 2008). Reasons 

for this include high infant mortality rates caused by lack of health care and basic 

services, sedentarization4 resulting from land conversions and resource degrada-

tion, recurring drought, social conflict, and chronic food insecurity.

2 Agro-pastoral systems routinely combine crop and livestock production, while pastoral systems 
focus on livestock production (Jahnke 1982).
3 Increased fertility and decreased mortality among pastoralists have occurred as a result of many 
factors. In some cases, development of clean water sources, provision of disease control for both 
people and livestock, improvements in infrastructure, and provision of food relief can be included.
4 Defined here as the transition from a nomadic or seminomadic lifestyle to a society that perma-
nently resides in one place.
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Fig. 17.2 (a-f). Pastoral and agro-pastoral people who reside in the rangeland study sites reviewed 
in this chapter: (a) Aymara woman on the Peruvian altiplano (photo credit: Cecilia Turin); (b) 
Borana family in southern Ethiopia (photo credit: Claudia Radel); (c) goat ranching family in 
northern Mexico (photo credit: José Tulio Arredondo); (d) Pashtun family in Afghanistan (photo 
credit: Michael Jacobs); (e) senior herd owners at a political meeting in Mongolia (photo credit: 
María Fernández-Giménez); (f) women drawing water from a well in the Sahel (photo credit: 
Matthew Turner)
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Fig. 17.2 (continued)
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Fig. 17.2 (continued)

Rural population growth in the Altiplano is variable depending on location, but 

rates have been generally low in recent years (i.e., 0.4–0.7 %; Vera et al. 2006a, b). 

Seasonal emigration by Andean men seeking jobs in the cities or tropical lowlands 

is also common, especially in pastoral communities (Turin and Valdivia 2013). The 

human population of the northern Mexican rangelands can be broken out into two 

main groups: commercial ranchers (ganaderos) and a peasant class of pastoralists 

(ejidatarios). Numbers of people have risen and fallen—both with respect to birth 

rates and emigration—depending on the economy and the level of land degradation. 

Increases in the ganaderos community have occurred when the beef cattle industry 

expanded in the 1990s, but emigration of the ejidatarios has subsequently acceler-

ated in response to land degradation (Schwartz and Notini 1994), drought (Feng 

et al. 2010), and US employment opportunities (Arredondo and Huber-Sannwald 

2011; Ribeiro-Palacios 2012).

Patterns for Mongolia have been especially dynamic (Fernández-Giménez 2001; 

Leighton 2013). Following the transition from communism to a free-market econ-

omy in 1990, there was an influx of urban dwellers into the rangelands as people 

sought to claim livestock during privatization, when state property was distributed 

to local citizens. This trend has since reversed as more people now leave pastoral 

areas to seek urban employment. Fertility rates among Mongolian women have 

markedly declined over the past 20 years.5

5 http://data.worldbank.org/indicator/SP.DYN.TFRT.IN?page=4
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When compared to sites in the upper tier, the Ethiopian site in the lower tier is 

characterized by more rapid net growth in residents that is related to a higher intrin-

sic rate of reproduction and relatively less opportunity for out-migration. Migration 

opportunities vary widely, however, across sub-Saharan Africa. In the Sahel, migra-

tion rates are high as people can move to cities and coastal nations of western Africa, 

northern Africa, and southern Europe (Tabutin and Schoumaker 2004). In the Sahel 

there has been a shift in livestock ownership to include agro-pastoralists as well as 

pastoralists (Turner et al. 2014). Ethiopian pastoralists, in contrast, have far fewer 

options (Coppock et al. 2011). Trends for Afghanistan are more difficult to discern 

as data are lacking. High losses of livestock due to conflict, insecurity, and drought—

and few, if any, employment opportunities—however, suggest that human popula-

tions in the remote pastoral areas are also declining. These people appear to be 

settling near urban areas or joining refugee camps (UNHCR 2011).

In the upper tier, emigration from the rangelands is increasingly common, and 

this tends to occur more for men who seek employment as laborers in construction, 

mining, or farming. Women can thus be left behind to serve as caretakers of families 

and rangeland resources (Valdivia et al. 2013). Recently in Mexico women and chil-

dren have joined men as migrants. A few decades ago it was job opportunities in the 

US that triggered emigration, but recent causes also include public insecurity related 

to organized crime (Martínez-Peña 2012). In Mongolia, recent rural to urban migra-

tion is influenced by the “push” factor of livestock loss in extreme weather disasters 

and the “pull” factor of people seeking better education and health care in urban 

areas (Leighton 2013).

17.2.2  Livestock Populations

Summary. Livestock (primarily including cattle, sheep, goats, equines, and came-

lids) provide the food and traditional economic basis for people living in the range-

lands of developing countries; cultivation or wage employment opportunities are 

typically rare or nonexistent. The indigenous species and breeds are adapted to 

often harsh production conditions, and the flexibility of herd movement is very 

important for helping pastoralists cope with erratic rainfall patterns and disease out-

breaks. Unlike the people on rangelands, population trends for livestock are more 

difficult to discern. Overall, livestock populations in some cases may exhibit 

“boom-and-bust” patterns where growth periods are followed by sudden die-offs 

due to combinations of weather, disease, or level of forage competition among live-

stock. The spatial scale and frequency of herd crashes vary markedly. The difficulty 

in mitigating large herd losses is due to low levels of economic development and 

public investment. Mitigating such losses matters, however, because recurrent die-

offs translate into large economic losses for pastoral societies. For less-developed 

regions where human survival is most closely linked to livestock survival, the ratio 

of animals to people provides an important indicator of both food and asset security. 

Where this ratio has been monitored, the evidence shows that it has markedly 
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declined in recent decades. Politics, economics, and armed conflicts also influence 

range livestock populations, and examples of each are provided. Overall, there is no 

consistent long-term trend in livestock populations that is evident across our six 

case-study sites. Some populations follow a regular boom-and-bust pattern, while 

others show sustained increasing or declining trends in response to macro-level 

factors.

As shown in Table 17.1, range livestock produce multiple products for household 

consumption or sale at all case-study sites. These are largely indigenous breeds that 

are adapted to local climatic and foraging conditions (Krätli 2007). Examples of key 

species and breeds from the six case-study sites are pictured in Fig. 17.3a–f. Other 

food-producing animals found among rangeland dwellers include poultry, honey-

bees, and guinea pigs; these can be locally important to supplement household diets 

or incomes, but are generally insignificant in the rangelands when compared to the 

economy based on hoofed animals.

Because of low and highly variable precipitation, the world’s rangelands have a 

comparative advantage in terms of extensive animal production, whereby uncon-

fined animals seek and consume forage that is scattered across a landscape. Extensive 

animal production—while having its own risks and challenges—is far more reliable 

than rain-fed cereal cultivation in these environments—explaining why pastoralism 

prevails as the environment becomes more arid. The prevalence of agro-pastoral-

ism, where producers combine crop cultivation with herding livestock, generally 

increases as the reliability and amount of precipitation increase (Jahnke 1982).

Commercial production of cattle, sheep, goats, camelids, and equines tends to be 

somewhat recent and increasing in many developing-country rangelands. The final 

market destination of these animals varies considerably among case-study sites, 

with some being sold domestically and others exported. Commercial livestock pro-

duction is a departure for indigenous systems in which animals were traditionally 

produced for home consumption, often referred to as subsistence production (Jahnke 

1982). Some regions such as the Sahel, however, have long-been centers of com-

mercialized livestock trade (Kerven 1992).

The livestock population dynamics in most of our case-study sites are character-

ized by boom-and-bust patterns at different spatial and temporal scales. In the 

boom-and-bust, periods of steady growth in animal numbers are followed by sudden 

collapses when death rates soar due to starvation or disease that is triggered by 

weather events such as dry periods, multiyear droughts, extreme temperature fluxes, 

or heavy snowfall. Disease epidemics can also be implicated.6 In the case of con-

flict-ridden Afghanistan, when drought coincides with warfare herd losses can be 

catastrophic (FAO 2006). Both density-independent (e.g., weather) and density-

6 In some cases previous development efforts to improve water access or reduce the prevalence of 
disease outbreaks were successful enough that such controls on animal numbers were relaxed. This 
resulted in more animals and a heightened demand for forage, with rangeland degradation as the 
ultimate outcome. Increased animal numbers, in theory, could be reduced by providing more mar-
keting opportunities, but the traditional economic and cultural rationale in most pastoral societies 
to accumulate animals adds another layer of complexity that limits the rate of sustained offtake.
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Fig. 17.3 (a-f). Livestock that are produced in the rangeland study sites reviewed in this chapter: 
(a) Improved Angus cattle in northern Mexico (photo credit: José Tulio Arredondo); (b) indige-
nous goats, sheep, and horses in Mongolia (photo credit: María Fernández-Giménez);  
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Fig. 17.3 (continued) (c) indigenous sheep in Afghanistan (photo credit: Michael Jacobs); (d) 
indigenous zebu cattle and dromedary camels in southern Ethiopia (photo credit: Brien E. Norton); 
(e) indigenous zebu cattle of the Sahel (photo credit: Matthew Turner); (f) llama on the Peruvian 
altiplano (photo credit: Cecilia Turin)
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Fig. 17.3 (continued)

dependent (e.g., stocking rate or numbers of animals per unit area) factors can con-

tribute to herd crashes. The number of years between consecutive herd crashes 

typically varies from 10 (Mexico; Garza-Merodio 2002) to 6 [southern Ethiopia 

(Desta and Coppock 2002) or Mongolia (Fernández-Giménez et al. 2012)]. Extreme 

cold events have contributed to a herd crash interval of less than 3 years in the 

Peruvian Altiplano (Moya and Torres 2008).

In the Sahel herd crashes occur at different spatial scales. The largest crashes 

have occurred following major regional droughts in 1972–1974 and 1983–1984 
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(Toulmin 1987) as well as after a period of “cold rains” in 1991 (Toulmin 1987).7 

Sahelian herd dynamics tend to be non-equilibrial (Ellis and Swift 1988). This 

means that livestock mortality events are influenced more by climatic factors rather 

than competition for forage among increasing animal numbers. It is more challeng-

ing for management to mitigate the effects of climatic factors compared to the 

effects of too many animals. In some systems interactions of high animal numbers 

with sudden drought or heavy snowfall can lead to sudden crashes in livestock 

populations.

Because the well-being of subsistence-oriented pastoralists is closely tied to live-

stock numbers, the ratio of livestock (e.g., tropical livestock units or TLUs8; Jahnke 

1982) to people (e.g., African Adult Male Equivalents9) is an important measure of 

pastoral socioeconomic sustainability.10 And the higher this ratio is, the better.11 The 

ratio has been tracked in the two African sites where it has been shown to be in a 

steady decline over several decades, even going as low as 1:1 (Desta and Coppock 

2004; Hiernaux and Turner 2002). This offers a stark contrast from historical highs 

that often exceeded a ratio of 10:1 (Gallais 1984). A sustained decline in the ratio 

means that per capita supplies of food (i.e., milk or meat) and capital assets (i.e., 

marketable animals on the hoof) are also declining; the inevitable result is thus 

increasing food insecurity and poverty unless livelihoods are diversified towards 

non-pastoral pursuits. The downward trend in the ratio for eastern Africa primarily 

occurs because the rate of human population increase exceeds that for livestock; 

this is partially due to the fact that far more animals perish during the “bust” phases 

than people do. Animals can be suddenly and severely limited by a scarcity of for-

age and water, and thus quickly starve to death. The people, in contrast, tend to 

suffer minimal losses to life as either they are rescued by human intervention (i.e., 

imported food aid) or they can migrate elsewhere and return when local environ-

ments improve. Patterns for the Sahel are somewhat different as growth rates for 

human populations in pastoral areas are low, but losses of animals occur because of 

shifts in livestock ownership from pastoralists to government officials, traders, and 

7 There were also major droughts in the Sahelian zone during the early twentieth century, but 
deaths of animals and people were lessened because the pastoralists were more mobile. The instal-
lation of permanent wells by governments began a process of settlement and a modification of 
pastoral risk management behavior (Sandford 1983).
8 A tropical livestock unit (TLU) is 250 kg live weight [where one cow, sheep, goat, donkey, horse, 
or camel equals 0.8, 0.1, 0.08, 0.6, 1.0, or 1.2 TLUs, respectively (Jahnke 1982)].
9 An African adult male equivalent (AAME) is a measure of daily energy demand based on body 
size [where a male = 1.0 AAME and is ≥16 years old and weighs 55 kg; an adult female = 0.8 
AAME; a male or female youth = 0.8 AAME; and a child = 0.6 AAME (FAO 1982)].
10 Two livestock population statistics are of primary importance in pastoral systems, namely live-
stock holdings per capita and livestock stocking rate. The former is described in the text above. 
The latter is measured by the number of animals per unit area for a given period of time. Stocking 
rate becomes significant when one examines human or livestock support capacity per unit area. 
Shifts in stocking rate can influence herd or flock responses to droughts, with higher stocking rates 
increasing herd vulnerability in some cases.
11 One analysis suggests that an increase of one person must be matched by a sixfold increase in 
TLUs for that extra livelihood to be sustainable (Thurow, personal communication).
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farmers. In West Africa most livestock are sold before they die of hunger except 

when a severe drought prevails (Turner, personal observation).

In any case, a period of herd rebuilding follows a crash, but this can be stressful 

because both food and assets remain in short supply (Desta and Coppock 2002). 

The ratio of TLUs to people has declined in most places and societies cope via 

diversification into agriculture, trade, or wage labor.

Long-term trends in livestock numbers across our case-study sites are difficult to 

discern largely because of inadequate data. It is still noteworthy, however, that the 

sites appear to vary with respect to overall trends. Some herd dynamics are complex 

and vary according to time frame as well as livestock species [i.e., sheep versus 

camelids in the Altiplano; Vera et al. 2006a, b], while other populations have either 

been steadily growing (i.e., cattle in northern Mexico; Perramond 2010) or mark-

edly decreasing (i.e., sheep and goats in Afghanistan; FAO 2006).

Politics, economics, and armed conflict also influence range livestock popula-

tions. The best example of politics is Mongolia, where the collective era (1960–

1990) was characterized by lower and stable numbers of livestock while the 

free-market era has witnessed several boom-and-bust cycles. Following privatiza-

tion in 1992, animal numbers increased steadily until 1999–2003, when 30 % of the 

animal population perished in a series of severe winters. The population recovered 

and then crashed again during the winter of 2009–2010 (MNSO 2012). An example 

of economic effects is Mexico, where growth in the commercial production of beef 

cattle on the range dramatically increased in response to new US markets created by 

the North American Free Trade Agreement (NAFTA) in 1994.12 Armed conflict has 

influenced large-scale migrations of pastoral livestock in southwest Asia. During the 

Soviet-Afghan war in the 1970s and 1980s, many pastoral herds moved out of 

Afghanistan to Iran and Pakistan (Colville 1998; UNHCR 2011).

It is therefore difficult to generalize about range livestock populations. A boom-

and-bust pattern is perhaps the only feature that most of our case-study sites share, 

but the spatial scale and time interval vary markedly from place to place. The boom-

and-bust is indicative of poorly diversified rural economies (i.e., animals comprise 

the main investment option), the limited capacity of herders to manage risks and 

engage in asset diversification, and the inability of markets to absorb large numbers 

of animals quickly during crises. The Sahelian zone (and other locations) provides 

exceptions to this pattern, as herd losses do not occur with the same regularity there 

as observed in the other sites; the very large spatial scale of Sahelian pastoralism 

may be a factor in this distinction. And it is useful to note that large-scale die-offs 

are not simply dead animals, but rather represent large economic losses for range-

land dwellers in terms of capital assets and foregone income, the latter represented 

by a sudden drop in milk supply. Desta and Coppock (2002) speculated that several 

livestock herd crashes over 20 years in southern Ethiopia and northern Kenya may 

have resulted in a cumulative loss of nearly US$1 billion, value that poverty-stricken 

pastoralists can ill afford to lose.

Livestock numbers may increase in response to commercial opportunities, but 

this appears more evident (as with northern Mexico) when commercial opportuni-

12 http://www.ustr.gov/trade-agreements/free-trade-agreements/north-american-free-trade-agreement- 
nafta
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ties grow in a sustainable fashion. Other examples include an increase in the popu-

lation of cashmere goats in Mongolia in response to global demand for cashmere 

fiber (Fernández-Giménez, personal observation) and an increase in sheep holdings 

among agro-pastoralists in the Sahel in response to the large demand associated 

with Muslim holidays (Turner, personal observation). Pastoral livestock popula-

tions, however, are probably declining in Afghanistan (Thompson et al. 2005). 

Thus, overall, there is no evidence for consistent trends in livestock numbers across 

the six case-study locations.

17.2.3  Socioeconomic Trends

Summary. Overall, range livestock and their products are increasingly important for 

developing-country economies, although the relative contribution is low as other 

sectors expand. Rangeland dwellers are experiencing an expansion of livestock 

marketing options due to increasing domestic and export demand—and in some 

cases transportation infrastructure is also being improved. Ready access to public 

services such as potable water, electricity, health care, education, and banking ser-

vices remains elusive for most rangeland dwellers, although access tends to be 

greater in the upper-tier sites compared to that of the lower-tier sites. 

Telecommunications have improved across the board, however, largely due to 

mobile phone networks. Traditional pastoralists have lower access to public ser-

vices than do settled pastoralists or agro-pastoralists. Transition from communism 

to a free-market system in Mongolia has undermined the access of pastoralists to 

public services; other structural adjustments in the Sahel dismantled state-run vet-

erinary and livestock services. Livelihoods are diversifying among agro-pastoral-

ists, residents of settlements, and households whose members find employment 

outside of the rangelands. Wealth stratification among rangeland dwellers appears 

to be increasing overall as fewer people control more resources—a negative out-

come of globalization.13 Food insecurity and extreme poverty occur in the lower-tier 

sites, but less so in the upper-tier. Social conflict takes a variety of forms, but it tends 

to be focused more on local control over natural resources in the Andean, Mongolian, 

and Sahelian situations. In contrast, the other case-study sites are subjected to a 

much wider array of conflicts—from resource-access squabbles among neighbors 

to struggles between drug cartels and long-term, major insurgencies.

Several of our case-study sites are in nations where rangelands are the predomi-

nant portion of the productive land area, with the main exceptions being Bolivia and 

Peru which have large portions of their lowlands in the moist tropics or subtropics. In 

Ethiopia, the Sahel, Afghanistan, Mongolia, and northern Mexico range livestock 

production is vitally important with respect to domestic supplies of live animals or 

animal products including hides, skins, and fiber (de Bruijn and van Djik 1995; Desta 

13 Globalization has been defined in many ways. Albrow and King (1990) define it as “all those 
processes by which the peoples of the world are incorporated into a single world society.”

17 Rangeland Systems in Developing Nations: Conceptual Advances and Societal…



590

et al. 2006; Niamir-Fuller 1999; Perramond 2010, Schloeder and Jacobs 2010; Turner 

et al. 2014; Zoljargal 2013). There is more variation with respect to the economic 

importance of range-related exports (Williams and Spycher 2003). Range livestock 

generate very significant proportions of national export revenue for Ethiopia (Desta 

et al. 2006), the Sahel (Zoundi and Hitimana 2008), and Afghanistan (Schloeder and 

Jacobs 2010). Such exports are relatively less important at the national scale, how-

ever, for Mongolia (World Bank 2013a), Mexico (Peel et al. 2011), or for nations that 

share the Altiplano (Valdivia 1991). On the Altiplano, fiber from alpaca and vicuña 

is locally important for artisan or textile industries, and there has been a surge in 

smallholder dairying in the agro-pastoral sector in response to increasing demand for 

milk among urban residents at high elevations (Valdivia 1991).

Markets for range livestock have grown overall during the past two decades as 

the global economy has expanded, stronger consumer countries have emerged, per-

sonal incomes have increased, rates of urbanization have accelerated, and trade bar-

riers have been reduced (Meyers and Kent 2004). This bodes favorably for 

pastoralists over the long term, but producers living in remote areas—or subject to 

trade monopolies or intense competition—often remain isolated from market 

opportunities.

This isolation is often related to poor infrastructure, inefficient marketing net-

works, and lack of progressive policies. Road construction and rehabilitation are 

currently common across the rangelands of eastern Africa, spurred to a large extent 

by investors such as the People’s Republic of China (Zafar 2007). Livestock mar-

keting in general is a major priority in regional development initiatives concerning 

improvement in food security for the Greater Horn of Africa (Knips 2004) and the 

Sahel (CRCM 2013). Trends to improve rural infrastructure have also been observed 

for Mongolia (primarily stimulated by mining development), northern Mexico [pri-

marily related to NAFTA and neoliberal policies including privatization of com-

munal land (Perramond 2008)], and the high Andes (primarily related to international 

trade, especially in the Lake Titicaca region). Government decentralization has 

shifted more development funds and attention to the local level for some marginal-

ized rangeland communities, with notable progress observed on the Bolivian 

Altiplano. Impact from decentralization has also occurred in southern Ethiopia 

(Coppock et al. 2011). Improvements in rural infrastructure, overall, are rare in the 

Sahel (Hesse et al. 2014) or Afghanistan (Mohmand 2012).

Public service provision for rangeland dwellers remains as a major obstacle for 

progress. Poor nations typically do not have the resources to make development 

investments in remote locations. There are two distinct subpopulations emerging 

in the rangelands of the developing world: one consists of traditional, mobile 

pastoralists still largely dependent on livestock, while the other consists of seden-

tary or semisedentary residents of growing rangeland towns and cities that have 

more diversified livelihoods. The latter group includes agro-pastoralists, former 

pastoralists, sedentary pastoralists, and immigrants from other sectors. Sedentary 

pastoralists may have households where some members are fully settled and have 

wage employment, with other members traveling to distant locations as they herd 

the family’s livestock.
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In such settlements access to potable water, electricity, health care, schools, and 

banking services can still be lacking. Public awareness of the need for services is 

increasing, and appreciation of education is rising among many rangeland dwellers 

(Coppock et al. 2011). Service provision to mobile pastoralists is much worse than 

that for town dwellers across all of our case-study locations. Most traditional range-

land populations have never had public services, so any progress is an improvement. 

An interesting exception, however, is Mongolia where during the communist era 

nomads received heavily subsidized services including education, health care, and 

veterinary care (Fernández-Giménez 1999). This resulted in high rates of literacy as 

well as successful vaccination campaigns. In the free-market era these services have 

been lost or greatly diminished. The one bright spot in service provision on the 

rangelands concerns improved telecommunications; each of our case-study sites 

have witnessed expansion of mobile phone use in the past 5 years.

Pastoral households across our case-study sites are commonly near or below the 

poverty line. Compared to the past, trends indicate that traditionally oriented pasto-

ralists are generally getting poorer and thus have a higher risk exposure to perturba-

tions caused by weather, economy, or conflict. Although illiteracy rates remain high 

in most cases, more pastoral children are reportedly attending school and, where 

local circumstances allow, pastoral households increasingly attempt to diversify 

incomes and assets by mixing pastoral with non-pastoral activities (Coppock et al. 

2011). Food insecurity remains common for pastoralists in the lower tier; Afghan 

and African pastoralists often receive food aid (Coppock et al. 2014; Schloeder, 

unpublished data). One extreme case, for example, is the 40 % of Afghan Kuchi 

pastoralists who remain in refugee camps (Colville 1998; USAID 2007). Food aid 

is pervasive in the Sahel14 as well as in the Greater Horn of Africa.15

Livelihoods for pastoralists in the upper tier are relatively better in that food 

(both in terms of production and access) is less of a problem. A common concern for 

rangeland dwellers in Mongolia, the Altiplano, and northern Mexico is the cost and 

effort needed to gain access to secondary or tertiary education (Fernández-Giménez, 

personal observation; Kristjanson et al. 2007; Martínez-Peña 2012).16

In Mongolia, the proportion of rural households living in poverty greatly 

increased in the early years of the free-market transition (Griffin 2003; Nixson and 

Walters 2006). There has since been a gradual recovery, but this has been disrupted 

by large herd crashes caused by severe winter weather. Considerable development 

attention has recently been given to strengthening community-based organizations 

to fill resource governance gaps created by de-collectivization (Fernández-Giménez 

et al. 2015; Leisher et al. 2012; Upton 2012).

In Afghanistan, socioeconomic progress was halted by war with the Soviet 

Union, and poverty rates remain high following the NATO17 intervention that began 

14 http://ec.europa.eu/echo/aid/sub_saharian/sahel_en.htm
15 https://na.unep.net/geas/getUNEPPageWithArticleIDScript.php?article_id=72
16 Residents of ejido villages in northern Mexico now have access to low-cost distance education 
programs.
17 North Atlantic Treaty Organization: http://www.nato.int/cps/en/natolive/topics_8189.htm
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in 2001. Weak government institutions, corrupt administrations, lack of physical 

security, and a ruined rural economy have stymied development progress in general 

for Afghanistan (Mohmand 2012). In addition, there has been a lack of development 

aid targeted specifically for pastoralists in Afghanistan. For 2008, for example, pas-

toralists reportedly received only US$0.20 per person compared to US$60.00 per 

person for non-pastoralists (Mohmand 2012).

For Mexico, increasing affluence of consumers has translated into an accelerated 

demand for grain-fed beef. In response, mega-ranches with intensive feedlot pro-

duction have emerged in northern Mexico, while traditional smallholders on com-

munal lands are being squeezed out of the market (Henriquez and Patel 2004). 

Government subsidies and high remittances are common inputs for Mexican pro-

ducers—this makes them distinct when compared to rangeland residents in our 

other case-study sites. The NAFTA has opened cross-border markets with the US as 

well (NAFTA 2000).

All of our case-study sites exhibit trends where stratification among rangeland 

producers is widening the gap between the haves and have-nots. This is often trig-

gered by elites18 who have the connections and skills to take advantage of com-

mercial livestock opportunities, build larger herds, and gain de facto control over 

more natural resources.19 Stratification can leave the majority of the population 

more marginalized (Coppock et al. 2014). In other cases such as the Altiplano 

(Kristjanson et al. 2007), however, increased vulnerability is observed primarily 

among the elderly.

Finally, ethnically based or resource access-related social conflicts at large spa-

tial and temporal scales are pervasive challenges for rangeland dwellers in 

Afghanistan and the African sites. In Mongolia, social conflict over resources is 

more localized and related to pasture and water access (Fernández-Giménez et al. 

2008), although conflicts between herders and mining interests are increasing 

(Fernández-Giménez, personal observation). Similarly, in the Altiplano, conflicts 

have occurred around water resources and between herders and mining interests 

(Turin, unpublished data). In northern Mexico, unequal access to agricultural land 

and contested grazing rights for non-ejidatarios have caused long-lasting internal 

conflicts in the communal areas (ejidos). More recently, extensive drug trafficking 

and conflicts between government and drug lords have disrupted ranching as well as 

other forms of commerce (Martínez-Peña 2012). In the Sahel, insurgencies tied to 

radical Islamic ideology have emerged (Larémont 2011). Such developments in 

Mali, however, have not affected pastoral mobility patterns. Banditry associated 

with general insecurity is viewed as a more chronic problem overall (Turner, per-

sonal observation).

18 Defined as a group of people who exercise the major share of authority or influence within a 
larger group, often associated with a greater degree of wealth.
19 This process is not unique to developing country rangelands; rather, it is the rule, not the excep-
tion. There are similar examples of elite takeover during the rangeland settlement era in the US and 
Australia, for example. It is desirable to learn from the past and mitigate hardships in developing 
nations as change accelerates (Thurow, personal communication).
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17.2.4  Trends in Resource Use and Ecological Condition 

of Rangelands

Summary. This section describes the environments of the six case-study sites. 

Although climate, landscapes, vegetation types, and land use vary greatly among 

the case-study sites, all share common patterns of soil erosion, vegetation change, 

or rangeland fragmentation due to intense and chronic exploitation of natural 

resources by people and livestock, regardless of whether a site occurs in the upper 

or lower tier. Both subsistence and commercial livestock production systems appear 

to push resource use to the limits. Climate change assessments typically portray a 

warmer and drier future for most of the sites except the Sahel, which may become 

wetter. Forage supplies are often barely sufficient to carry livestock through the dry 

seasons of “normal” rainfall years, let alone droughts, contributing to the boom-

and-bust herd dynamic previously described for some locations. The most damag-

ing and irreversible result of extractive land use is the accelerated erosion of topsoil. 

Although overgrazing is often mentioned as the main cause of accelerated soil ero-

sion, dryland farming, overharvest of wood for fuel and building materials, and 

poorly designed roads can sometimes be more important in this regard.

The environments in our case-study sites are described in Table 17.1. They mark-

edly vary in terms of climate and plant communities. Images of representative land-

scapes are shown in Fig. 17.4a–f. Overall, despite high variation in human and 

livestock features of our case-study sites, trends in resource use and ecological con-

dition of rangelands are similar.

Afghanistan is a very mountainous country located in the arid-subtropics of 

Asia. In the mountains the winters are cold and snowy. Nationwide, the summers 

are hot and dry.20 Multiyear droughts are common, as are major dust storms. The 

range livestock are dominated by five breeds of sheep and two breeds of goats and 

their crosses. Breeds vary in their tolerance of poor forage quality and resistance to 

disease, and hence their dominance varies by region. The seasonal grazing patterns 

followed by most Afghan herders include pasturing of livestock: (1) near camps and 

residences at low elevations during winter where snowfall is moderate21; (2) at sites 

close to the winter range that green-up early during spring; (3) at progressively 

higher elevations during summer (up to 2500 m or more) as animals follow an alti-

tudinal gradient of green-up; and (4) back at the same type of sites in the fall that 

were previously used in the spring.

Land degradation in the form of soil erosion is commonly attributed to overgraz-

ing by goats and sheep, although hard causal evidence is often lacking. Major con-

tributors to excessive soil erosion are more likely to include dryland cultivation (in 

general) and the overharvest of woody and nonwoody materials for fuel, food, 

medicinal plants, and building supplies (Jacobs et al. 2015). Dust storms also con-

20 http://www.ncdc.noaa.gov/oa/climate/afghan/afghan-narrative.html
21 Hand feeding of natural forage may occur in high snowfall years.
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Fig. 17.4 (a-f). Landscapes in the rangeland study sites reviewed in this chapter: (a) Borana encamp-
ment in southern Ethiopia (photo credit: Brien E. Norton); (b) Gourma landscape in the Sahel (photo 
credit: Matthew Turner); (c) grassland in the Peruvian altiplano (photo credit: Cecilia Turin);  
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Fig. 17.4 (continued) (d) herding camp in Mongolia (photo credit: María Fernández-Giménez); (e) 
irrigated wheat and hillside range in Afghanistan (photo credit: Michael Jacobs); (f) tobosagrass 
rangeland in northern Mexico (photo credit: José Tulio Arredondo)
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Fig. 17.4 (continued)
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tribute to wind erosion. Climate change studies indicate warming and drying trends, 

both in the recent past and future forecasts (Savage et al. 2009). Currently, unsus-

tainable dryland cultivation is the greatest threat to livestock survival during winter, 

spring, and fall when the high-elevation summer pastures are unavailable. 

Sustainable dryland cultivation is the greatest threat in terms of the fragmentation 

of pastoral migration routes and staging areas.22 Both situations will only get worse 

if climate change scenarios are verified, as more cultivated areas are abandoned in 

the most fragile landscapes and drought becomes the norm rather than just a tempo-

rary or cyclic event.

The Ethiopian situation illustrates too many people and livestock (i.e., cattle, 

sheep, goats, and camels) exploiting a diminishing natural resource base. This tra-

jectory was predicted over 20 years ago (Coppock 1994). Symptoms are ecological 

and socioeconomic (Coppock et al. 2014). The former include bush encroachment 

and gullying on certain soil types. The latter include land-use fragmentation due to 

de facto privatization of grassland parcels annexed from communal resources, loss 

of dry-season grazing to maize cultivation, and occupation of former drought graz-

ing reserves by people who have arrived from overpopulated places elsewhere. 

Bush encroachment has been exacerbated by decades of overgrazing and (past) offi-

cial bans on the use of prescribed fire that have shifted the competitive balance from 

perennial grasses to woody plants (Coppock 1994). This loss of grasses means a 

decline in fine fuels that are needed to carry fires that might otherwise control the 

recruitment of woody seedlings. Maize cultivation by pastoralists is a food insecu-

rity response to a declining ratio of livestock to people and thus is symptomatic of 

the trend of increasing poverty (Desta and Coppock 2004). Chronic food insecurity 

has led to dependence on food aid, the provision of which effectively delays resolv-

ing the root causes of hunger (Coppock et al. 2014).

The Sahel differs from southern Ethiopia in many respects, but shares some of 

the same broad outcomes. The Sahelian belt occurs at a continental scale, with far 

more variation in terms of climate, land use, and rangeland ecology (Table 17.1). 

Sahelian production systems vary from pure pastoralism to highly integrated agro-

pastoralism where crop residues provide livestock fodder, and livestock manure 

enhances crop yields (Heasley and Delehanty 1996; Turner et al. 2014). In the Sahel 

the overall challenge for pastoralists is how to exploit the highly variable occur-

rence of fodder over space and time most efficiently. Fragmentation of landscapes 

and natural resource endowments has occurred due to population growth, spread of 

cultivation, and national policies that attempt to reassert tougher border controls, 

although efforts have occurred to accommodate pastoral mobility across national 

borders (Zoundi and Hitimana 2008). In some instances, however, cultivation has 

remained stable or retreated due to variation in local population growth and climate 

patterns (Tappan et al. 2004). Pressure on grazing resources from cultivation is par-

ticularly a problem in the southern Sahel where seasonal, long-distance livestock 

movements to the north during the rainy season (e.g., transhumance) have been 

22 Staging areas are places where livestock rest for extended periods before continuing on to lower 
or higher elevations.

17 Rangeland Systems in Developing Nations: Conceptual Advances and Societal…



598

historically important. Interestingly, a “re-greening” of the Sahel has been observed 

over the past 30 years from satellite images (Olsson et al. 2005) and verified by field 

work (Dardel et al. 2014) where rainfall and net primary productivity have increased, 

and this mitigates some otherwise negative trends (Gardelle et al. 2010; Hiernaux 

et al. 2009, Leduc et al. 2001). Vegetation change in the Sahel appears to be more 

influenced by precipitation than livestock effects and thus is an example of nonequi-

librium dynamics (Ellis and Swift 1988)23,24.

Mongolian rangelands today are increasingly at risk from heavy livestock grazing 

(Liu et al. 2013) as well as soil degradation associated with road networks (Keshkamat 

et al. 2013) and pollution of soil and water from the expansion of mining (Thorslund 

et al. 2012). There is debate, however, about the causes of declining range conditions 

in Mongolia (Addison et al. 2012). Livestock pressure may be interacting over space 

and time with dynamic climate belts to alter vegetation cover, with the mix of drivers 

likely changing in different ecological zones (Cheng et al. 2011; Wang et al. 2013; 

Wesche et al. 2010). As in the Sahel, several studies have shown that livestock grazing 

has less impact on vegetation than precipitation in the desert-steppe region of Mongolia 

(Fernández-Giménez and Allen-Diaz 1999; Wesche et al. 2010). Livestock play a 

more significant role in vegetation dynamics of the wetter mountain steppe and steppe 

zones, where livestock populations have increased most dramatically in the past 20 

years (Fernández-Giménez and Allen-Diaz 1999).

The Altiplano is also comprised of diverse landscapes. Indigenous pastoral and 

agro-pastoral production systems were very efficient in growing crops or rearing 

livestock at different elevations in the Andes, but this was dismembered during the 

Spanish Conquest (Flores-Ochoa 1976). Today, lower elevations on the Altiplano 

(3700–4000 m) are dominated by agro-pastoralism that includes sheep and cattle, 

while higher elevations (>4000 m) are dominated by pastoralists raising camelids 

(CIRNMA 1997). Forage resources are either communal or privatized. Population 

growth is reducing the per capita base of natural resources and there is pressure to 

reduce long fallow periods for dryland crops. Climate research has documented that 

23 Work by Ellis and Swift (1988) concerned the nomadic pastoral system of South Turkana, 
Kenya. The system components include a diverse assemblage of livestock species that forage in a 
drought-pulsed, arid region subtended by sandy and volcanic soils. Plants are dominated by annual 
grasses, dwarf shrubs, and Acacia shrubs and trees. Ellis and Swift proposed that South Turkana 
was a nonequilibrium system, meaning that livestock stocking rates would not get high enough to 
effect significant change in the plant community via their foraging and trampling activities. 
Frequent droughts in South Turkana decimate livestock numbers to keep their influences low, and 
the annual grasses and sandy soils, in any case, are resistant in the face of livestock pressure. The 
productivity and abundance of annual grasses, in particular, are thus primarily affected by the pat-
tern and amount of annual rainfall, not livestock. This is in contrast to an equilibrium system where 
livestock can exert directional pressure over time on the perennial grass community and the upland 
soils (i.e., soils having a mix of sand, silt, and clay). This pressure can lead to soil erosion and 
significant changes in plant community composition. An example of an equilibrium system is 
found less than 500 miles from South Turkana in a higher elevation, semiarid region called the 
Borana Plateau (Desta and Coppock 2002).
24 There are examples in the Sahel, however, where people have had a decisive role in overriding 
climate effects and impacting the environment. Intense grazing and cultivation in some parts of 
Niger have proven incompatible with the arid climate, resulting in large areas of formerly produc-
tive Andropogon grasslands now being devoid of topsoil (Thurow, personal communication).
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the Altiplano is becoming warmer and drier (Seth et al. 2010). This has implications 

for reducing forage quality (Zorogastúa-Cruz et al. 2012) and drying of evergreen 

peat bogs (bofedales) that are fed by glacial melt and provide key grazing for cam-

elids (i.e., alpaca and, to a lesser extent, llama). There are also instances where 

increased land pressure occurs when too many families reside in the same area or 

when remittances are heavily invested in livestock (Turin and Valdivia 2011).

Emigration of men or youths seeking urban jobs or secondary schooling has 

undercut the labor supply for herding and managing natural subirrigation systems. 

In some instances introduced forages (e.g., alfalfa) have been successfully estab-

lished in agro-pastoral zones, reducing pressure on native range and allowing 

expansion of smallholder dairy operations (Turin and Valdivia 2013). For Bolivia, 

Healy (2001) documents how tractor introduction—in support of expanding quinoa 

cultivation—has displaced llama production.

The rangelands of northern Mexico are comprised of highly diverse landscapes 

(Table 17.1). The large, private ranchers focus on beef cattle, and they have access 

to land mostly situated in the most productive, semiarid grassland region. African 

forage grasses (i.e., Cenchrus ciliaris, Eragrostis curvula) have been introduced to 

boost rangeland productivity. A peasant class of pastoralists (ejidatarios) is found in 

the arid and semiarid hilly desert scrub (ejido) region where cattle, goats, and sheep 

can be herded in a traditional, seminomadic fashion; animals feed on native forage 

and crop residues. Ranches utilize cow-calf production systems based on grass for-

age. Steers are finished at large feedlots in preparation for export to the US. Animals 

produced in the ejido system are typically sold in local markets.

Livestock grazing pressure has been intense in Mexico since the arrival of the 

Spanish. Large portions of the semiarid zone have been subjected to nonirrigated 

cultivation, and deforestation has occurred. Multiyear droughts are common. Nearly 

half of the rangelands have endured severe soil erosion and woody encroachment 

due to heavy grazing and lack of fire (SEMARNAT 2005). Other trends include 

unfavorable shifts in land cover and plant species composition, including the expan-

sion of introduced invasive species; this is most apparent in desert scrub ecosystems 

(SEMARNAT 2005). Climate studies indicate that precipitation patterns have been 

changing; warmer, drier conditions are expected (Piñeda-Martínez et al. 2007).

17.3  Four Major Stewardship Themes for Rangelands 

of the Developing World

We propose four major themes that are most vital to better understand how commu-

nity-based organizations, traditional leaders, researchers, development practitio-

ners, policy makers, and other change agents can help rangeland societies better 

navigate the challenges that face them. These themes are (1) pastoral land tenure 

and managing mobility; (2) sustainable rural livelihoods; (3) livestock development 

and marketing; and (4) conflict and crisis management. For each theme, we first 

frame the pivotal issues and conceptual advances and then provide supporting 
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observations from the six case-study sites. We close with a synthesis and discussion 

of priorities for research and outreach.

17.3.1  Pastoral Land Tenure and Managing Mobility

Summary. One of the most unique aspects of pastoral production systems is the 

need for herd mobility. Mobility is required to optimally exploit an ever-changing 

landscape of forage production that is caused by high spatial and temporal dynam-

ics in precipitation. Typically, as rangeland areas become more arid, the variability 

of precipitation in any one location increases; consequently, arid systems require 

more herd mobility than semiarid systems. This considers horizontal and vertical 

mobility, as the latter becomes important in places having marked elevation gradi-

ents. Access to diverse forage resources is influenced by multiple factors including 

availability of drinking water, physical insecurity, competition for land among vari-

ous user groups, availability of herding labor, and restrictions imposed by land ten-

ure regimes. The latter have traditionally emphasized flexibility and reciprocal user 

rights that enable pastoralists to better manage livestock production risks under 

fluctuating environmental conditions. Forage access has been traditionally managed 

under informal rules that underlie the use of communal resources; this can promi-

nently include restricted access of producers to water or key forage resources during 

periods of resource scarcity. When rules do not exist or are ignored, environmental 

degradation due to open access can occur. Environmental degradation can also 

occur, however, due to other processes irrespective of management. Risks of envi-

ronmental degradation are often used to justify state control over, or privatization of, 

communal grazing lands. The problem is that neither state control nor privatization 

can typically offer the creativity and flexibility required to foster reliable access to 

local or regional resources under highly diverse circumstances. Our six case-study 

sites share one major trend overall: herd mobility has declined in terms of distance 

and frequency almost everywhere. Common causes of declining mobility include 

territorial fragmentation of rangelands, poor rangeland governance, increased set-

tlement of previously mobile pastoralists, and a gradual loss of herding labor due to 

herder emigration. In general, there is an increasing awareness at local, national, 

and regional levels of the need to restore or maintain herd mobility where possible, 

but overcoming key constraints can be daunting. One commonly shared view is that 

change agents can help restore herd mobility and flexible resource use in some situ-

ations by improving rangeland governance.

17.3.1.1  Pivotal Issues and Conceptual Advances

Forage production on rangelands is typically influenced by precipitation regimes 

that vary greatly over space and time. This requires pastoralists to be highly oppor-

tunistic, and mobile herds of livestock are precisely the harvesting tool needed to 
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effectively exploit forage resources and mitigate the inherent risks of animal pro-

ductivity. The more arid the rangeland system, typically the more mobile a pastoral 

society needs to be.

Many arid and semiarid rangelands are communal resources from which it is 

difficult to exclude potential users, but where use by the animals of one individual 

reduces the amount of forage remaining for the others. If there are no rules to deter-

mine who may graze, or to place restrictions on the amount, timing, or spatial dis-

tribution of grazing, the situation is termed “open access,” and there is a risk of 

overuse and degradation (Ostrom 1990). Most rangelands are not open access; 

instead they are subject to some type of property regime—a set of formal or infor-

mal rules that define the rights and obligations of specific individuals or groups to 

access, use, manage, or transfer (sell or gift) a resource. Pastoral land tenure refers 

to the set of rules that define who may access, use, or manage land or other pastoral 

resources. In the developing world, many pastoral land tenure systems were tradi-

tionally based on well-established, albeit unwritten, rules in which communities 

held collective use and management rights to forage (Lane 1998). This form of 

tenure is called common property (Ostrom 1990).

Many of these traditional systems are now in transition to more formal systems 

in which common property becomes state property managed by government author-

ities, private property owned by individuals, or—less commonly—common prop-

erty officially possessed and managed by a defined community of users through a 

formal legal agreement (Galvin 2009; Lane 1998; Toulmin 2009).25 In still other 

cases the state may have formal control over an area but lack the capacity to manage 

it effectively; much of the Sahel is “state property” in a formal sense, but the state 

has little influence over resource rights or use (Turner, personal observation). In the 

past, some development practitioners mistakenly believed that rangeland degrada-

tion was a result of common property systems and thus advocated greater govern-

ment control or privatization of commons. Today we recognize that while open 

access (the lack of rules) can lead to degradation,26 communal property is often the 

most appropriate land tenure system in highly variable semiarid and arid rangelands 

where sustainable grazing management depends on pastoralists’ ability to move 

their herds and have flexible access to heterogeneous resources across extensive 

land areas. Under these circumstances, dividing a large commons into many smaller 

private parcels is likely to lead to ecological degradation and increased vulnerability 

of pastoralists to climate risks like drought or severe winter weather (Galvin 2008). 

25 Central governments, following the precedent set by colonial regimes of claiming ownership of 
rangelands and weakening traditional (tribal) authority over land use, may set up appropriate regu-
lations for land management but have neither the incentive nor the personnel to enforce those regu-
lations. One result has been less control over local land use and hence more degradation. The main 
remedy is to return to some form of local authority, with or without government participation. One 
solution has been to establish government-instituted local authorities for land management that 
operate in parallel with traditional (tribal) leaders. The challenge then is to find mechanisms to 
ensure that both actors work together.
26 Sites having high variability of forage and water can lead to shifting grazing patterns with little 
potential for overgrazing in systems that lack formal rules (Turner, personal observation).
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Alternatively, dividing rangeland into a few very large, ecologically viable private 

parcels is not socially viable because large numbers of residents would be 

displaced.

Nevertheless, solving the dilemma of pastoral land tenure is not simple because 

herders need both secure access to local key resources such as dry season or winter 

pastures and flexible access to distant pastures during disasters, and it is difficult for 

most formal land tenure systems to meet both of these requirements simultaneously 

(Fernández-Giménez 2002; Turner 2000). Formalizing tenure by allocating exclu-

sive rights over key resources assures security, but may limit flexibility. Allowing 

maximum flexibility may result in lack of secure rights to key pastures for some 

herders, when others come to use their pasture during a disaster. In any location it is 

important to understand the historical, environmental, and sociocultural context for 

the existing land tenure system, its strengths and limitations in meeting pastoralists’ 

needs for security and flexibility, its potential to support increased or sustained eco-

nomic activity, and its compatibility with land health and wildlife conservation 

goals (Turner 2000).

When tenure systems change, there are always winners and losers, and thus the 

social equity consequences of changing tenure must also be considered. Historically, 

pastoralists have often been dispossessed of their traditional grazing territories 

when their lands, designated as “vacant” or “wasteland,” were seized by the govern-

ment for conservation (e.g., national parks) or economic development (i.e., mining, 

cultivated agriculture, renewable energy production) purposes. There is no one-

size-fits-all tenure system that assures economic productivity, environmental sus-

tainability, and social equity, but many systems have evolved in different regions 

that enable productive use of rangelands compatible with sustaining land health and 

meeting conservation goals. These may be based on common property regimes or, 

increasingly, a mosaic of private, public, and common property resources (Galvin 

2009; Toulmin 2009; Turner 2000). The key is that when development reduces the 

effectiveness of previous controlling factors for rangeland access and use, it is vital 

that new controlling factors are created and adopted by the community.

17.3.1.2  What Has Been Observed?

Afghanistan. As noted above, Afghan pastoralists must migrate seasonally from 

low-lying areas in the winter and spring to higher elevation sites in summer—a pat-

tern that tracks the availability of green forage as the snow melts. This pattern has 

been disrupted repeatedly over the past century. The most recent disruptions have 

included the Soviet occupation (1979–1989) and subsequent periods of ethnic 

unrest, civil strife, insurgencies, drought, government land annexation, corruption, 

and class conflict. A lack of regulatory institutions and development investment has 

compounded the problems. Individually and collectively, these forces have had very 

negative effects on pastoral common property management regimes as well as on 

the resource use by non-pastoral groups in Afghan society (Barfield 2004; Jacobs 

and Schloeder 2012; Wily 2013).
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For the Kuchi, one outcome has been a marked reduction in livestock mobility 

and animal health (Jacobs et al. 2009). In response to landscape fragmentation, 

some pastoralists are now hiring trucks to move their animals between spring and 

summer range in an effort to avoid either having to pay for grazing rights, finding 

that their leases are no longer honored or available because key lands have been 

cultivated, or risk of losing animals to criminals or corrupt officials. This option for 

trucking is only available to wealthier individuals or clans, however, leaving the 

less affluent highly vulnerable to complete herd losses. Others who have already 

lost their animals hire out as long-term herders for wealthier pastoralists with the 

agreement that profits are shared between the herder and owner when certain ani-

mals are sold.

In the last decade there has been some progress towards addressing the country’s 

environmental, social, and economic challenges. This includes endorsing the 

Millenium Development Goals and the implementation of the Afghanistan National 

Development Strategy. Land-use policy, on the other hand, has been slow to evolve. 

Consequently, the land rights situation has worsened rather than improved since 

2001 in most rural areas (Wily 2013). As rangeland becomes increasingly unavail-

able due to unchecked forces previously described—as well as the failure to address 

historic grievances—poverty and food insecurity for the Kuchi will grow further 

because those still herding will increasingly find that they are unable to meet their 

most basic needs for survival (Jacobs and Schloeder 2012).

While an increasing population has resulted in more grazing pressure on range-

lands—particularly close to villages—probably the greatest impact to extensive 

livestock production after years of conflict has been the loss of relationships between 

herders and the villagers they encounter during their annual migrations. Decades of 

fighting have left very little trust among people. Herders who may have had strong, 

traditional relationships with villagers are now met with unfamiliar, fearful, mis-

trusting people nervous about herders moving past their villages. Both the herders 

and villagers are well armed, making the situation tense and ripe for land-access 

conflicts. This insecurity has not only restricted the movements of livestock but is 

threatening the survival of this highly evolved animal production system. 

Implications affect industries dealing with meat, dairy, hides and skins, wool, and 

carpet making.

Ethiopia. In southern Ethiopia, local and regional human population growth has 

had more negative effects on traditional common property management and herd 

mobility than has land annexation by outsiders (Desta and Coppock 2004). Human 

population growth drives the need for more food, be it milk from livestock or maize 

from cultivation. This, in turn, increases the competition for forage and land, mani-

fested in the creation of privatized grazing sites (kalo), expansion of cultivated 

fields, and demise of traditional fallback areas that were once used for grazing dur-

ing droughts. This fragmentation reduces herd mobility and pastoral resilience to 

drought (Desta and Coppock 2002, 2004). Grazing management can be conceptual-

ized as traditionally occurring within several nested levels of spatial resolution. 

From higher to lower resolution, these are (1) olla, (2) arda, (3) rera, and (4) dedha. 

These vary in size from square kilometers (olla) to tens of thousands of square kilo-
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meters (dedha). Traditional grazing managers and water managers for the Boran 

have customarily overseen the integrated use of these strata; creativity and flexibil-

ity are needed to effectively balance forage supply and demand every year.

In the past 20 years, however, the traditional system has been augmented by 

pastoral associations (PAs) which are governmental administrative and political 

units; PAs have become involved in resource-use decision making, and contestation 

of authority between traditional and PA institutions has led to problems (Homann 

et al. 2008). Resource fragmentation problems now occur at all spatial levels, while 

another challenge at the most local level is ultimately an inability to control stock-

ing rate, and hence forage utilization (Tezera et al., unpublished data). Annual rates 

of forage utilization among four PAs have been estimated to vary from 70 to 90 %—

one outcome of such heavy use is soil erosion and bush encroachment, as previ-

ously noted. Coping with such challenges has largely been left up to the traditional 

leadership of the Borana pastoralists in concert with decision makers from govern-

ment agencies, but it is evident that population pressure, emergence of very wealthy 

pastoralists, and reduced adherence to traditional pasture-use norms have under-

mined grazing regulation in recent decades.

Progress, however, is being made on several fronts. This includes (1) finalization 

of a land-use plan by government that should limit cultivation on grazing lands; (2) 

efforts to restore traditional grazing access beginning at the dedha scale of resolu-

tion; and (3) workshops to address the need to reduce stocking rates and limit forage 

utilization at the local level to help arrest rangeland degradation. Thus, there are 

opportunities to assist pastoralists to update traditional grazing rules and regulations 

to better accommodate the new reality of higher demand on natural resources. 

Increasing scarcity of surface water and forage is recognized by pastoralists as a 

critical problem that merits new, collaborative approaches for problem solving 

(Coppock et al. 2014).

Sahel. In the Sahel, pastoralists exploit the high variability of rainfall across 

space and time via highly mobile livestock.27 Population growth, land-use change 

and resulting land fragmentation, and unfavorable policies, however, have contrib-

uted obstacles for herd mobility at local and regional scales. Traditional pastoral 

institutions facilitated access to constantly shifting patches of natural resources (de 

Bruijn and van Djik 1995; Niamir-Fuller 1999). Colonial and postcolonial land 

policies, however, ignored pastoral rights and this, coupled with socially malleable 

rights to pastoral resources among pastoral groups, has made pastoral resources 

vulnerable to competing land uses, especially with the rapid growth of human popu-

lations since the 1950s (Guengant et al. 2002).

Since the 1990s, programs to decentralize natural-resource management author-

ity, as well as recurrent attempts to privatize land, have contributed to the enclosure 

of key pastoral resources (Marty 1993). While these changes have generally not 

caused widespread sedentarization of pastoralists and their livestock, they have 

reduced mobility, altered movement patterns, reduced livestock access to grazing, 

27 The movements of pastoral livestock are organized in response to long-established seasonal and 
spatial criteria that also allow for local tactical adjustments (Hiernaux, personal observation).
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water, and mineral resources, and increased conflicts (Turner et al. 2014). There is 

growing recognition within policy circles of the importance of the livestock sector 

and livestock mobility, especially in the context of climate change (Bonnet and 

Hérault 2011). This has led to national (République du Mali 2001; Wabnitz 2006) 

and international (CRCM 2013) laws, policies, and agreements in support of pasto-

ral livelihoods and tenure rights. These initiatives are important, but they alone can-

not lead to a significant transformation of pastoral rights. Significant political and 

institutional questions have to also be addressed for effective implementation 

(Brottem 2013).

In general, local understanding and enforcement of existing laws are weak. 

Some newly organized formal community-based rangeland management groups 

have creatively circumvented these challenges by working closely with their local 

government to obtain use rights over defined pasture areas, create their own man-

agement plans, and then lobby local government to pass an ordinance or decree 

that gives certain elements of their plan the force of law (Fernández-Giménez 

et al. 2012; Upton 2008, 2009). For example, if a group of herders wants to rest a 

certain pasture area for a season, they ask the local government to issue an edict 

forbidding grazing in that area for the rest of the season, with violations punish-

able by a fine.28

Mongolia. The pasturelands of Mongolia are state property used in common by 

the herders within a given administrative district. Privatization of pasture is uncon-

stitutional, but herders may obtain long-term private leases on nomadic winter and 

spring campsites (Fernández-Giménez and Batbuyan 2004; Upton 2009). 

Mongolia’s Law on Land contains provisions related to pastureland tenure and man-

agement, devolving most decisions and authority to regulate stocking rates and sea-

sonal movements to the local level (Fernández-Giménez and Batbuyan 2004). 

Under Mongolian law, organized groups of herders may obtain collective use agree-

ments for defined areas of pasture, but “use” does not denote the right to exclude 

other potential users. Pastureland “possession” would confer exclusive rights to a 

given pasture area, but pasture possession is not authorized under the current 

law.Mobility has been a hallmark of Mongolian pastoralism for centuries and con-

tinues to be an important strategy today. Mobility patterns historically have varied 

widely across the country, depending largely on local topography and climate. 

During the collective era, the collectives allocated pasture to their member herders 

and both regulated seasonal movements and provided transportation for moves 

(Fernández-Giménez 1999). In addition, collectives arranged for long-distance 

moves in weather disasters such as severe winter storms. Following privatization of 

livestock and the dismantling of collectives, no formal institutions have filled the 

role of allocating pasture and enforcing seasonal mobility, although the current law 

28 Over the last two decades, multiple proposals have been made for a national pastureland law, but 
none has reached a vote in parliament. Debates on the proposed laws continue over the central 
tension between authorizing formal possession rights in pasture for groups of herders or individu-
als with the risk of reducing access and flexibility for some and keeping the current vague, but 
flexible and locally adaptable, system in place.
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gives this authority to local governments. As a result, mobility has decreased in 

many areas, and conflicts over pastures have increased, together with unsustainable 

season-long grazing in some areas (Fernández-Giménez 2002).

When disasters such as prolonged drought or severe winter weather strike, many 

herders undertake long-distance movements to escape these conditions and create 

pasture shortages at their destination (Fernández-Giménez et al. 2012; Upton 2012). 

Flexibility to make these movements in response to disaster is essential to the sus-

tainability of this system, but lack of coordination and cross-jurisdictional gover-

nance mechanisms create hardships for herders in the host communities as well as 

exacerbate pasture degradation problems.

Altiplano. In the Altiplano, the loss of labor for herding and irrigating the bofe-

dales has been the major contemporary factor in reducing the mobility of range 

livestock (Turin and Valdivia 2011). Privatization of key resources has also occurred. 

One example is fencing off parcels of bofedale that were formerly communal graz-

ing sites for the exclusive use of a few alpaca producers (Buttolph and Coppock 

2001). Ninety percent of Andean rangelands, however, remain as public land 

accessed by rural communities, but there are persistent challenges of landscape 

fragmentation and privatization due to human population encroachment, especially 

in Peru. This can lead to local limits on herd mobility and thus rangeland degrada-

tion (Turin, unpublished data). In some cases highly dynamic land tenure systems 

have been discovered in Bolivian agro-pastoral settings. For example, pastures used 

for sheep grazing in the vicinity of San José Llanga are traditionally regarded as 

private-access sites in higher precipitation years, while they become communal 

sites in drier years (Coppock et al. 2001).

Mexico. In northern Mexico, a gradual process of livestock commercialization 

and land-use fragmentation has also reduced livestock mobility. In the past there 

was a large-scale transhumance of livestock in the region, but today this has been 

replaced with local movements of beef cattle from private rangelands to private 

croplands at the end of the growing season to harvest crop residues (Martínez-Peña 

2012). As previously noted, goat and sheep herding by ejidatarios occurs on desert-

scrub (ejido) land; animals are trekked on long-distance orbits. Following recent 

agrarian reforms, some ejido lands, however, are now shared among a few ejida-

tarios having certain privileges to own land, and this has caused land to become 

fragmented and fenced. These land users, however, are forced to establish earthen 

ponds to supply water for cattle, fundamentally altering hydrological processes at 

the landscape scale (Huber-Sannwald et al. 2012).

The ejido system comprises roughly 54 % of Mexican rangelands today and 

is the most common form of land tenure (Arredondo and Huber-Sannwald 

2011). The ejido concept originated in the Mexican Constitution of 1917 as a 

postrevolutionary, communal land-management institution. Ejido governance 

is idiosyncratic, depends on the local biophysical and socioeconomic context, 

and is largely independent of federal funding support. For decades ejidos were 

subject to strict regulations specifying that only ejidatarios can use the land for 

agrarian purposes and that the land cannot be sold, rented, or mortgaged. 

Changes have occurred in the ejido system over the past 20 years, however.
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In 1992, a Constitutional Agrarian Land Reform was passed allowing ejidatarios 

to assume full domain over their communal land with the right to divide and sell it 

(DGAHML 2003). One motivation for this reform was to introduce a mechanism 

for wealthy ranchers to appropriate communal land, introduce technology and new 

livestock breeds, and enhance livestock production to improve Mexico’s position in 

global markets (Martínez-Peña 2012). However, adoption of this neoliberal policy 

has not translated into the expected, massive privatization of ejido lands. Possible 

reasons include the following: (1) that some ejidal assemblies preferred to maintain 

communal lands as such (DGAHML 2003), or (2) because communal lands were 

unattractive to wealthy ranchers because of inadequate resources or remoteness 

(Manzano et al. 2000). The risk of privatization and fragmentation of prime ejido 

lands still exists, however, and this risk is primarily related to the potential displace-

ment of residents who could otherwise make a sustainable living on the landscape. 

In the course of the “private revolutions” during 1937–2007, private ranchers have 

managed to consolidate and expand their ownership of land by giving cattle to their 

wives or children. Private land holdings include anything from small (300–1000 ha) 

to mega (>10,000 ha) ranches.

17.3.2  Sustainable Rural Livelihoods

Summary. Sustainable livelihood concepts were first introduced nearly 30 years 

ago. Significant advances in defining terms and integrating ideas concerning sus-

tainable livelihoods into research and development projects are more recent, how-

ever. Livelihoods are founded on production strategies. A livelihood is sustainable 

when it allows an individual or a household to rebound from an economic or eco-

logical shock. Various resources are drawn upon in a recovery process. Increasing 

and diversifying income and assets are core processes that help livelihoods become 

more sustainable in risky environments. Pastoral societies have also traditionally 

had safety nets linking relatives and neighbors where people who have suffered 

from a calamity can receive animals to restock themselves. Rangeland dwellers 

such as pastoralists or agro-pastoralists are the epitome of risk managers who have 

survived droughts and economic downturns via traditional tactics. These tactics 

have included a high reliance on mobile livestock as well as participation in social 

networks that provided safety nets and allowed for the opportunistic and reciprocal 

use of communal resources. While livestock production remains a core strategy in 

all of our case-study sites, it has become increasingly difficult for most pastoralists 

to survive from livestock alone. This is due to increases in the numbers of people 

and reductions in the numbers of livestock per family due to declining supplies of 

forage and other natural resources; the forage base simply cannot keep up with the 

growing numbers of animals required to sustain an expanding human population. 

As a result, many research and development efforts today emphasize ways to build 

capacity and assist rangeland dwellers to diversify their livelihoods away from 

too heavy a reliance on livestock. This often involves participatory activities. 
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Diversified livelihoods can pose their own risks and are not a panacea for all, but 

they offer a chance for more people to be hopeful and pursue some prosperity in a 

rapidly changing world.

17.3.2.1  Pivotal Issues and Conceptual Advances

Sustainable livelihood concepts first began to be addressed as part of mainstream 

research and development in the 1980s. They arose from a need to better understand 

interrelationships of people with natural resources and to help chart pathways for 

poverty reduction and social justice in the developing world (Martens 2006). In the 

1990s, conceptual progress was made in terms of articulating components of sus-

tainable livelihood frameworks (Chambers and Conway 1992; Scoones 1998; Singh 

and Gillman 1999). A livelihood is sustainable when it allows an individual or a 

household to recover from an internal or external shock; the ability to recover from 

a shock is referred to as resilience. Livelihoods draw on various capital assets—

social, human, financial, physical, and natural—as people pursue production strate-

gies that involve intensification, extensification, or diversification.29 Increasing and 

diversifying income and assets are thus means to promote sustainable livelihoods.

Pastoralists and agro-pastoralists provide useful models for the study of sustain-

able livelihoods because they are the ultimate risk managers. Subjected to the 

impacts and unpredictable occurrence of drought, disease, social conflicts, and eco-

nomic crises, pastoralists have traditionally managed risk via several avenues 

(Coppock 1994). These have included (1) opportunistic exploitation of vast land-

scapes by mobile livestock; (2) reliance on a diverse assortment of livestock spe-

cies; (3) opportunistic engagement in cereal cultivation or petty trade; (4) 

membership in complex social-reciprocity networks that offer safety nets during 

times of stress as well as a means to restock following herd collapses; and (5) use of 

grazing reserves or fodder storage. The problem, however, is that steady human 

population growth, annexation of key pastoral resources, assertion of government 

control over national and regional borders, recurrent drought, or other extreme 

weather events have undermined such coping mechanisms.

In some pastoral systems, pastoralists periodically “drop out” of the pastoral 

economy—often following drought or other weather-induced disasters—because 

they can no longer support themselves via traditional means. These former herders 

reside in settlements or urban areas and survive via relief food, petty trade, or other 

occupations. This often happens to pastoral women (Holden et al. 1991). In some 

situations dropouts may eventually return to pastoralism, but in others they make a 

29 Intensification characterizes high-input systems and involves investing capital, labor, and other 
resources in land or animals to increase per unit productivity. Extensification, in contrast, charac-
terizes low-input systems and involves expanding the land base or animal numbers to increase 
overall operational output. Diversification is a process of expanding the types of enterprises under-
taken by an operation, leading to more variation in income sources or assets.
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permanent exit.30 While sedentarization of former pastoralists is typically maligned 

as negative for environmental management, human nutrition, and maintenance of 

pastoral culture (Fratkin and Roth 2005), a growing pool of settled people can offer 

opportunities to educate people and build capacity for people to engage in collective 

action to diversify livelihoods and pursue non-pastoral lifestyles (Coppock and 

Desta 2013). There are also cases where households pursue mixed strategies by hav-

ing some members maintain livestock in the pastoral sector with others engaged in 

urban economies.

17.3.2.2  What Has Been Observed?

Afghanistan. In Afghanistan, few pastoralists are able to depend solely on livestock pro-

duction for a livelihood. Livelihood diversification is the key to success, particularly on 

a landscape predicted to experience drought on a more frequent basis in the future. 

Women should be encouraged to contribute to livelihood diversification in areas accept-

able to the family (i.e., carpet weaving, dairy production, small animal husbandry).

One conceptual advance that has helped change agents in Afghanistan to think 

more clearly about their work has been to encourage communities to communicate 

and self-advocate more effectively. This is because management of any natural 

resource has little chance of being successful without including the people most 

impacted by the process. Until change agents can fully engage local people and 

understand their challenges and aspirations, imposing top-down management strat-

egies will most likely fail. The typical approach in Afghanistan has been top down; 

donors support government ministries to develop rural strategies without any com-

munity participation. This is justified by arguments that the rural poor lack the edu-

cation or wisdom to “know what they want” and because in most instances 

community involvement takes longer than the donor or government is willing to 

wait. Successful projects, in contrast, are those where a healthy dialogue is devel-

oped between the change agents and project beneficiaries, and both are willing to 

make the time needed for meaningful interaction. The vital role of the change agent 

then becomes assisting communities to better articulate their challenges, needs, and 

aspirations, providing professional guidance and “reality checks,” and making the 

commitment to support a long-term process. Once there is a commitment and com-

munity members become skilled communicators and self-advocates, they will then 

have the ability to resolve, or at least better manage, conflicts with neighbors and 

effectively engage government agencies.31

30 The specter of periodic waves of permanent dropouts occurring within dynamic production envi-
ronments is universal for farmers, ranchers, and pastoralists in developed as well as developing 
countries (Thurow, personal communication).
31 A blend of bottom-up and top-down is therefore the prescription; despite the importance of hear-
ing community voices, people cannot ask for things that they cannot imagine—hence the role of 
outside knowledge and demonstration activities. Fruitful engagement is also greatly promoted by 
simply having more time for change agents and communities to interact and make the correct deci-
sions. Time constraints are ultimately imposed by the short-term funding cycles that characterize 
most development projects today.
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Ethiopia. In southern Ethiopia, traditional pastoralism is no longer a sustainable 

livelihood for the vast majority of households given sharp declines in the number of 

livestock units per capita, as previously noted. Another trend is a steady increase in 

wealth concentration—fewer people own more of the aggregate cattle herd, for 

example (Coppock et al. 2014; Desta and Coppock 2004). Over 40 % of the popula-

tion now have only a few head of livestock per household and are caught in a per-

petual poverty trap.32 Traditional safety nets have been tattered, and food aid has 

become pervasive in much of the system because milk production can no longer 

meet the basic needs for a growing segment of the population. One option to 

improve the welfare of the poor is to encourage livelihood diversification via micro-

finance and collective action activities–programs that can inspire women, in par-

ticular (Coppock et al. 2011).

Sahel. In the Sahel, key features of livelihood strategies in this resource-poor and 

highly variable region are diversification, mobility of production, and wealth stores 

(Agrawal 2008). As described above, livestock, as mobile stores of wealth which 

are not vulnerable to local deficits of rainfall (unlike crop agriculture), figure promi-

nently in the livelihood strategies of all rural people whether their identity is tied to 

farming, commerce, fishing, or livestock husbandry (Turner et al. 2014). Thirty 

years of recurrent drought have increased the diversification of economic activities 

within rural households. Farmers will own livestock and livestock producers will 

farm and all, if they are able, will send family members on a seasonal or semiper-

manent basis to work in cities, mines, and plantations to the south (de Bruijn and 

van Djik 1995; Turner et al. 2014).

Differential vulnerabilities to economic and climatic shocks are observed not 

only between families but within families, with women being particularly vulnera-

ble (Creevey 1986; Gray and Kevane 1999; Turner 2000). Livestock play an impor-

tant role in addressing such vulnerabilities as individually owned wealth stores, 

owned separately by women and men, which have an additional benefit of being not 

easily fungible to cash and therefore less vulnerable to being dissipated by daily 

demands for small amounts of cash from family and friends (Turner 2000).33

While case studies illustrate the reliance on livestock by rural families, they also 

point to the limitations of livestock ownership in buffering household income in 

response to episodic climatic and economic shocks. Livestock prices predictably 

decline in relation to grain prices during periods of food shortage (e.g., the hunger 

season at the end of the rainy season prior to the next harvest) and decline precipi-

tously, in a less predictable manner, during drought (Fafchamps and Gavian 1997; 

Watts 1983). As a result, the effective wealth stored in livestock depends on when 

they are sold in relation to annual and drought cycles of grain shortage.

32 A poverty trap is a spiraling mechanism which forces people to remain poor. The mechanism is 
binding such that poor people cannot escape it; it is often caused by a lack of capital or credit for 
people who also have no prospects for employment.
33 Such problems are also exacerbated by inaccessible or unreliable financial institutions in the 
rangelands of developing nations. Investing in livestock thus becomes the most viable alternative, 
despite the sometimes high risk of animal death losses.
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Modeling work based on retrospective surveys in the Dantiandou study site 

(Lesnoff et al. 2012) demonstrates the limited potential for livestock wealth recov-

ery among sampled families. This is not only due to recurrent drought over the past 

30 years, but also due to other extreme events (i.e., livestock disease epidemics) and 

the generally low productivity of livestock husbandry due to the limited access to 

pastoral resources (land-use change, civil insecurity, etc.) aggravated by the poor 

access to and high cost of inputs (i.e., veterinary drugs, feed supplements).

Mongolia. In Mongolia, following the transition to a market economy, poverty in 

rural areas increased dramatically, and the gap between rich and poor widened (Griffin 

2003; Nixson and Walters 2006). Many development programs have sought to address 

this through a variety of income-generation and diversification measures; however, 

progress has been slow due to a number of limitations to livestock improvement and 

marketing (see section below). The most common approaches to income diversifica-

tion are small-scale vegetable growing, value-added processing such as felt making 

and handicraft production, and small-scale enterprises such as shop-keeping, trading, 

driving, or collecting rent for properties in nearby settlements. Felt making has a lim-

ited market that is rapidly saturated. Artisanal mining, primarily for gold, is the most 

important source of income diversification in recent years. In a recent household sur-

vey in 36 districts, respondents in 10 reported income from mining. In these districts 

from 10 % to over 50 % of surveyed households obtained some income from mining 

(MRRP, unpublished data). Over the long term, payment for ecosystem services and 

sustainability certification seem to be among the most promising approaches that 

directly build on livestock-based livelihoods, but these are still in their infancy.

Altiplano. For the Altiplano, multiple factors explain the diversity of livelihoods 

and livelihood strategies. The roles of livestock in livelihoods change with eleva-

tion, geography, climate, and distance to markets (Valdivia et al. 2010). An example 

of a high degree of livelihood diversification is provided by the agro-pastoralists of 

San José Llanga in the central Altiplano (Valdivia 2001). Such households are typi-

fied by activities such as growing potatoes, oats, native tubers, and quinoa, as well 

as raising sheep for meat and wool and cattle for meat and dairy. Off-farm employ-

ment comprises additional activities. Men and women divide labor responsibilities 

on the farm, with men assuming the more demanding physical activities (i.e., cattle 

breeding and planting and harvesting crops). Women are in charge of herding and 

milking animals as well as selecting seeds and making planting decisions. Women 

also oversee cultural events. The process of livelihood diversification and market 

integration at San José was initiated by investments in infrastructure (transportation 

and irrigation), extension of production technology (i.e., alfalfa, crossbred dairy 

cows), and government decentralization policies that facilitated market develop-

ment (see next section). Dairying has contributed to managing risks of the overall 

economic portfolio because it provides access to cash on a monthly basis. When 

there is a drought or frost and a potato crop is lost, for example, farmers can use the 

earning from the dairy cows to obtain new seeds and plant. When barley and oats 

are lost to drought, the stubble still provides a feed source for the livestock (Valdivia 

2004).

An example of less diversified pastoralism is provided by the Apopata commu-

nity at high elevations in the Peruvian northern Altiplano (Turin, unpublished data). 
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Primary livestock products among pure pastoralists are alpaca meat and fiber; non-

livestock endeavors include off-farm employment, handicraft production, fishing, 

and harvesting wood of shrubs for fuel. Price incentives dictate the degree of market 

involvements. Men and women have complementary roles in alpaca pastoralism, as 

men handle the shearing, breeding, and marketing as well as provide oversight of 

pasture irrigation systems. Women herd and provide health care for animals and 

cover domestic chores. When men migrate in search of work, however, women 

assume the tasks typically undertaken by men (Turin et al. 2010; Valdivia et al. 

2003). In both Andean pastoralism and agro-pastoralism, traditional social networks 

have been very important to help manage economic and climate-related risks. These 

networks have been supplemented of late with new government partnerships 

whereby herders can direct public investments to best serve local needs. For exam-

ple, in the Peruvian municipality of Mazocruz, pastoralists have led the way on 

decisions to use public monies to build livestock shelters (cobertizos) that markedly 

reduce losses of camelids during periods of extreme cold (Turin, unpublished data).

Mexico. In northern Mexico, the main livelihood of people living in the drylands 

is ranching. Some diversify with mining activities, wage labor in nearby towns, 

seasonal migration, and remittances from migrants. The latter is a trend of the 

younger generation who seek alternative lifestyles. Subsistence farming with exten-

sive and semi-intensive livestock production (i.e., cattle, sheep, and goats) and rain-

fed agriculture are the main economic activities in the region (INEGI 2002). For the 

last 3 to 4 decades, government assistance programs have opened alternative pro-

duction opportunities for ejidatarios. Seed money or crop seedlings are provided to 

engage in planting programs of plantations of opuntia for vegetable and tuna fruit 

production for local markets. Also, in some villages professional music groups 

(Mariachi, Banda, Trios) have formed. In matorral-dominated rangelands, the gov-

ernment has locally supported the collection and processing of “ixtle,” a strong, 

high-quality fiber extracted from the leaves of wild populations of Agave lechu-

guilla, for the brush-making industry. In central and northern Mexico, some ejida-

tarios collect wild plants of Agave salmiana and Dasylirion wheeleri to supply 

mezcal and sotol distilleries. Also, to reduce illegal trade in rare cacti, the govern-

ment has helped install greenhouses for commercial cactus production. More 

recently, leasing ejido land to foreign wind farm companies has emerged as an alter-

native income generator for some ejidatarios.

17.3.3  Livestock Development and Marketing

Summary. Livestock development can be defined in several ways, including the 

process of sustaining or increasing livestock outputs per capita, or in terms of 

addressing multiple societal goals to improve the livelihoods of livestock producers 

whose ranks tend to be dominated by the rural poor. The developing world is cur-

rently undergoing a “livestock revolution,” whereby increasing consumer incomes 

and rates of urbanization spur a demand-driven surge for high-value animal 
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products such as milk and meat. This supply can be met, in part, via the commer-

cialization of subsistence agriculture. Rural livestock producers in both farming and 

pastoral systems should benefit from this trend, but pastoralists must overcome 

more obstacles to do so simply because they tend to be more isolated from major 

centers of consumption. A transition from subsistence to commercial practices for 

pastoralists can be painful as it yields winners and losers; it will prominently involve 

overcoming high transaction costs for livestock marketing. Barriers to commercial-

ization include the need to transform the quality and types of animals and animal 

products produced, as well as the need to upgrade transportation infrastructure, 

communication networks, and other marketing infrastructure such as slaughter 

facilities and holding grounds. The need to not have a region classified as a disease 

quarantine zone preventing export is also vital. The boom-and-bust pattern of herd 

population dynamics often observed on rangelands also conflicts with the need for 

stability in market supply required by modern animal-processing industries. An 

overview of our six case-study sites reveals that most pastoral herds remain domi-

nated by indigenous breeds with a low per head productivity, but these animals are 

durable when facing endemic disease, poor nutrition, and harsh environmental con-

ditions. There is evidence of increased market participation in most of our cases, but 

levels of sustained livestock market development vary greatly. Use of mobile phones 

to transmit market information has become ubiquitous in the past decade—this is a 

major success story. The best examples of demand-driven range livestock develop-

ment, with attendant changes in livestock policies, the upgrading of indigenous live-

stock via crossbreeding, and use of increased production inputs, may be found in two 

of the case-study sites in the upper tier. These are (1) the expansion of peri-urban 

dairy and wool production among agro-pastoralists in the Bolivian Altiplano and (2) 

the rapid growth of commercial beef production among ranchers in northern Mexico.

17.3.3.1  Pivotal Issues and Conceptual Advances

“Livestock development” is defined in several ways. In its simplest form, it can be 

described as the maintenance or enhancement of livestock output, preferably 

expressed on a per capita rather than per hectare basis (Jahnke 1982). More recently, 

livestock development has been defined as a process of addressing interrelated 

socioeconomic, environmental, and productivity goals that would reduce poverty 

among people who raise livestock for a living.34 Others have noted contributions of 

livestock to food security and sustainable development (Sansoucy et al. 1995).

Worldwide, it is clear that as rates of urbanization accelerate and societies gain 

wealth, one of the first things to follow is an increased demand for animal-based 

foods. With more income, people reduce their intake of less expensive carbohydrates 

and increase intake of more expensive animal protein, including milk and meat 

(Delgado 2003). This relationship is the linchpin of a projected “livestock revolu-

tion” for the early twenty-first century as populations in developing countries 

34 http://www.fao.org/ag/againfo/programmes/en/pplpi/docarc/rep-ipalp_ldg.pdf
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become more urbanized and economies expand. There should be a concomitant 

opportunity for livestock producers to meet this growing demand (Delgado et al. 

2001). A “traditionalist” might contest the assertion that pastoralists need to become 

more commercialized, given the downside risks of market participation. Yet it is 

clear today that most rural agriculturalists—whether they be smallholder farmers or 

pastoralists—have to commercialize and join the cash economy given that they can 

no longer survive in a pure subsistence mode (Fitzhugh, personal communication).35

Who has, or will, benefit from market growth varies, however. Livestock produc-

ers who inhabit remote rangeland areas of the developing world are expected to 

benefit less than other livestock or dairy producers, simply because the socioeco-

nomic and geographic isolation inherent for most rangelands increases the transac-

tion costs36 for efficient market participation. There are many barriers for livestock 

marketing transactions in the rangelands for both buyers and sellers (Holloway 

et al. 2000; McPeak and Little 2006; Sandford 1983; Zant 2013). Barriers include 

things like poor roads, lack of transportation, inadequate holding grounds or slaugh-

ter facilities, inefficient communication on prices, limited access to banking ser-

vices, tax policies creating disincentives for cross-border trade, overabundance of 

middlemen in marketing chains, illiteracy, and lack of legal protections. The objec-

tive of much research in applied economics on rangelands today is discovering 

ways to help producers overcome or mitigate high transaction costs (Valdivia, per-

sonal communication). Mitigation of transaction costs increases market efficiencies 

and promotes market integration (Valdivia 2004).

There are other barriers that slow livestock commercialization on rangelands that 

are not immediately related to market transactions per se. One is related to tradi-

tional values and needs among pastoral people. For example, the sex and age com-

position of pastoral livestock holdings have long been shaped by cultural or risk 

management goals rather than commercialization goals (Coppock 1994; Fafchamps 

and Quisumbing 2005; Valdivia 2004). The upshot is that the mix of animals sup-

plied by pastoralists in terms of age, size, or body condition can be suboptimal when 

compared to urban consumer preferences driving demand (Desta et al. 2006).37 In 

addition, the dynamic nature of livestock inventory in pastoral regions—previously 

35 Most pastoralists have been integrated into a market economy to some degree for decades. In 
reality there is a continuum between pure subsistence pastoralism (which is rare today) and pure 
commercial production (also rare today). Most pastoralists in the developing world will continue 
to produce for both self-consumption and markets, but if market signals were stronger in reward-
ing quality over quantity, this could alter incentive structures and transform pastoral livestock 
systems. And market integration for producers has both positive and negative dimensions, positive 
in terms of income generation and price stabilization, yet negative in terms of adding risk 
exposure.
36 Transaction costs include the added time, effort, and expense associated with making an eco-
nomic exchange (i.e., selling or buying).
37 For meat, consumers often demand animals of a certain age, sex, and size. If leather making is a 
consideration, consumers often demand unblemished hides and skins. For milk, consumers should 
demand undiluted, hygienic products. Slaughterhouses may also demand uniform size-classes for 
processing as well as demand disease-free animals. In the latter case, disease imported to a slaugh-
ter facility by range stock could lead to a shutdown if discovered by health inspectors.
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noted as often weather-related, boom-and-bust cycles—creates big problems for 

processing industries further up the value chain that require stability of product 

flows to stay in business.

Another key issue in livestock development concerns livestock breeding. The 

rangelands of the developing world have long been populated by indigenous breeds of 

multipurpose cattle and small ruminants. Although such breeds are not very produc-

tive on a per head basis, they are nonetheless well adapted to survive in harsh environ-

ments that include shortages of feed and water, disease challenges, and temperature 

extremes. Improved (e.g., European or exotic) breeds often have the opposite attri-

butes, namely higher productivity but increased vulnerability to stressful environmen-

tal circumstances (Coppock 1994; Kosgy et al. 2006). Crossbreeding indigenous with 

improved stock has occurred on a limited basis, and the typical outcome has been that 

crossbred animals cannot be sustained under indigenous rangeland production condi-

tions. In the past 20 years the mantra has shifted to goals that include the conservation 

of breeds indigenous to rangelands and other environments.

Overall, it is fair to say that livestock development is like a three-legged stool—

you cannot put up one leg, then another, and then another and expect the stool to 

stand in the process. The legs of the stool must come together simultaneously. Why 

should a private investor attempt to improve market infrastructure if the supply is 

dominated by underweight or diseased livestock? Why should livestock production 

improve if there is no market to encourage the effort and offset the extra costs? The 

problem is that pulling off such coordinated projects is very expensive and time 

consuming, something most donor agencies don’t have the mechanisms in place to 

provide. As a result, in most cases, livestock development occurs in a series of stut-

ter steps, as will be illustrated.

17.3.3.2  What Has Been Observed?

Afghanistan. Commercial livestock production among the Kuchi remains con-

strained by the lack of financial inputs and chronic political instability. Livestock 

marketing, however, is vital to helping the pastoralists meet their annual needs for 

cash income (Schloeder and Jacobs 2010). The livestock holdings of the Kuchi are 

dominated by five breeds of indigenous sheep (i.e., Qaraqul, Turki, Qaragh, Arabi, 

and Baluchi) and two breeds of goats. The species and breed that predominate in 

any given region is a function of ecological constraints, the most important being 

disease resistance, water availability, and forage quality.

Recent trends indicate that—as animal numbers dwindle—more must be sold to 

meet basic family needs.38 Sales can start as early as May but are most common in 

the fall when market prices are highest (Schloeder and Jacobs 2010). Sales are also 

common during drought when there is a need to purchase food and other household 

38 Ten sheep per family member is reported as a minimum by Thompson (2007).
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essentials, even as animal prices plummet due to the influx of animals to markets. In 

either event, the increased need to sell will ultimately decimate herds over time. It 

will also result in an ever-greater dependency of the Afghan nation on meat imports.

Access to live-animal market information is critical for informed decision mak-

ing by the Kuchi. Currently, the Kuchi rely on family members and other sellers 

attending markets for current prices (Schloeder and Jacobs 2010). Final sales price 

is the result of negotiations between the buyer and seller, with price a function of 

animal type, breed, age, sex, and body condition. Mobile phones have improved the 

ability to acquire current market information except in the more remote places 

where summer grazing occurs and phone coverage is limited. Additionally, produc-

ers are often unaware of prices in terminal markets where animals are often resold 

at much higher prices by traders. A Livestock Market Information System (LMIS) 

was established in 2008 by Texas A&M University, in partnership with the Afghan 

Government, to overcome this challenge. Apathy on the part of government part-

ners, however, in ensuring observer attendance on market days and collecting reli-

able price data undermined the program, despite high interest from producers and 

traders (Schloeder and Jacobs 2010).

Animals brought to market in Afghanistan are often underweight and diseased. 

Most of these problems can be overcome with quality medicines and a 1-month 

intensive feeding program, which adds considerable value per animal (Schloeder 

and Jacobs 2010). Unfortunately, the Kuchi lack reliable access to effective veteri-

nary supplies. Additionally, pastoralists are reluctant to pay for such supplies and 

services that were once freely provided by the government, particularly as herd 

sizes dwindle. Supplemental forage (e.g., alfalfa) is also a constraint due to limited 

supplies and high prices. Pastoralists throughout Afghanistan conduct supplemental 

feeding during winter months when conditions can hinder extensive grazing. 

Traditional supplements largely consist of local native plants that are cut and car-

ried. In many instances, however, these materials are of low nutritive value and may 

even be toxic (Jacobs and Schloeder 2012).

In summary, these are all challenges that greatly undermine the prospects for 

commercialized livestock development. Finding a solution to one problem will not 

solve the rest and—more importantly—any one intervention is probably doomed to 

fail unless other, interrelated problems are unaddressed at the same time. Success 

would require many interventions and forces working in a synergistic fashion.

Ethiopia. The Borana pastoralists of southern Ethiopia largely produce indige-

nous breeds of dual-purpose cattle (the Boran), Somali hair sheep, East African 

goats, and dromedary camels (Coppock 1994). All of these breeds are well adapted 

to the local semiarid environments and all are increasingly in demand for domestic 

and export markets (Desta et al. 2006). Exotic Dorper sheep and Boer goats are 

being considered by government researchers as candidates for crossbreeding pro-

grams to upgrade the size and productivity of indigenous stock, but it is doubtful 

that local management systems can sustain improved crossbreeds (Coppock, per-

sonal observation). In terms of cattle, there has been a long-term concern by govern-

ment that the genotype of the Boran has been gradually undermined by crossbreeding 
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with inferior stock from the adjacent southern highlands. This occurs when pasto-

ralists actively trade for breeding cows when they build their herds during post-

drought recovery periods (Coppock 1994). Government researchers endeavor to 

have Boran breeding bulls on government ranches to provide breeding capacity to 

help maintain local gene pools, but the strategy has not been widely implemented 

(Coppock, personal observation). A process of herd diversification is also being 

observed where camels are increasing relative to cattle in some regions (Coppock, 

unpublished data). This probably reflects adaptation to climate change, where cam-

els are better suited to warmer, drier weather, an increased market value for camels, 

and the ability of camels to supply milk during dry periods when compared to cattle. 

Camel milk, however, is inferior to cow milk for making butter (Coppock 1994).

As in Afghanistan, the trend for most pastoralists in southern Ethiopia is also 

to sell a higher proportion of their livestock inventory to meet cash needs; this is 

due to a rising human population relative to livestock and increasing demand for 

non-pastoral goods. In the past decade there has been some improvement in 

value chain development with respect to the finishing of range-bred stock, but 

this varies greatly with terminal market destination (Desta et al. 2006). Livestock 

health interventions remain as a significant constraint; outbreaks of highly con-

tagious diseases in the Greater Horn can still result in export trade bans. While 

livestock marketing and animal health remain as significant challenges in south-

ern Ethiopia, evidence from recent participatory rural appraisals indicates that 

neither ranks as highly as the need for improved water access or expanded human 

services (Coppock et al. 2014).

Southern Ethiopia is indeed now better connected to global livestock markets, 

and there has been a surge in pastoral livestock marketing in the past decade (Desta 

et al. 2006). Communications have improved as a result of rapid adoption of mobile 

phone technology (Coppock, personal observation). Producer and marketing coop-

eratives have been recently formed. New questions have emerged, however, namely 

which segment of pastoral society, the wealthy minority or other strata, is best 

poised to benefit from further improvements in livestock marketing. And if wealth 

is further concentrated via marketing profits, what does this imply for concentrating 

access to communal forage and water resources that may be increasingly used to 

produce more animals for commercial, rather than subsistence, purposes?

Sahel. In the Sahel, active marketing of livestock is long-standing with an 

emphasis by herd managers to develop more breeding herds and flocks, with 

sales dominated by male cattle, sheep, and goats. The Sahel harbors a large 

diversity of livestock breeds. Cattle are dominated by zebu breeds such as the 

Gobra, Bororo, Azaouak, and White Fulani as well as a few trypanosomiasis-

resistant taurine breeds such as the Kuri and Ndama. Most sheep are thin-tailed 

hair breeds with a couple wool-bearing breeds (Macina, Arara). Goats become 

more prevalent in general with increased aridity, although dwarf goats occur in 

subhumid locations. Crossbreeding efforts to improve indigenous stock were 

initiated during the colonial era, but crossbred animals have not been sustained 

in most of the Sahelian region. There has been some recent success, however, 
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with crossbreeding programs in peri-urban dairy systems (Hiernaux, personal 

observation).

Offtake fractions of herds are higher among poorer households with the prices of 

animals shaped by the timing of sale in relation to season and the drought cycle as 

well as location of the sale with respect to competitive markets (Turner and Williams 

2002). The shift in livestock ownership away from livestock specialists, as well as 

the expansion of the urban markets, has led to a reorientation of marketing toward 

the sales of small ruminants (especially sheep) for meat; this particularly occurs on 

Islamic holidays (Manoli et al. 2014). For these markets, there is evidence for the 

stratification of livestock production with the raising of small ruminants in the more 

arid north with subsequent fattening to the south and in peri-urban areas (Amanor 

1995). Mobile phones have played an important role in facilitating the trekking of 

livestock and the distribution of market information (i.e., price and sales volume). 

Development initiatives have generally focused on the promotion of livestock fat-

tening, livestock market infrastructure, and expansion of the availability of market 

information via mobile phones.

Mongolia. For Mongolia during the collective era, livestock husbandry was pro-

fessionalized, and substantial effort was invested in breeding programs and live-

stock improvement. There were both positive and negative elements to this. One of 

the lessons learned was that local breeds were often best adapted to Mongolia’s 

harsh conditions, and attempts to “improve” them with more productive animals 

from western European stock were largely unsuccessful, especially considering 

species like dairy cattle.

Following the transition to a market economy, combined with growing concerns 

about increasing livestock populations and overgrazing, the emphasis has been on 

incentives for herders to increase animal quality and decrease the quantity (MMAI 

2010; World Bank 2013a). In the early 1990s these proposals were largely rejected 

by herders, but since the most recent winter weather catastrophe in 2009–2010, 

many herders appear genuinely interested in this approach and much more receptive 

to making these types of changes. Under the collective system all livestock that 

were not for personal consumption belonged to the state and were part of the gov-

ernment procurement apparatus.

With the transition out of collectives, herders were faced for the first time with 

the challenge of selling their livestock and livestock products on an open market. 

Initially, many opportunistic itinerant traders took advantage of this situation, and 

terms of trade for isolated rural herders were often exploitive. With time, herders 

became savvy, and many began to take their products to market directly, either to 

the provincial markets or the capital city; this allowed producers to obtain a better 

price for their products and also to purchase needed supplies more cheaply. However, 

this is not possible for all herders.

All Mongolian herders sell live animals for meat, primarily sheep and goats. 

Most sales and slaughter take place in the fall. A smaller number of herders who 

are located near settlements and urban centers sell dairy products in local markets, 

primarily during the summer. Fueled by international demand, cashmere goat hair 

has become the cash crop of Mongolian herders, and herd compositions through-
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out Mongolia reflect the demand for this high-value livestock product, which is 

combed and sold in the spring.

Both development organizations and the Mongolian government have attempted 

to encourage herders to form marketing cooperatives in order to make marketing 

more efficient and profitable, but many of these efforts are still in their infancy 

(MMAI 2010; World Bank 2013a). In addition, there are many barriers to marketing 

livestock products that perish quickly. At the national scale, Mongolia’s slaughter-

houses do not meet standards for international export to most countries, limiting the 

potential for foreign markets (Zoljargal 2013).

Altiplano. For the Altiplano, the traditional livestock at higher elevations have 

been comprised of native camelid species (i.e., llama, alpaca, and vicuña). Llamas 

have been traditionally used for portage and meat, while alpaca and vicuña have 

been primarily used for high-quality fiber production. Dual-purpose cattle and hair 

sheep at lower elevations in the rangelands of rural areas are dominated by unim-

proved criollo breeds descended from stock brought by the Spanish Conquistadors.

Market expansion in the vicinity of the large urban centers of highland Bolivia has 

been important in providing incentives for agro-pastoralists, in particular, to crossbreed 

cattle and sheep to increase milk and wool production, respectively (Markowitz and 

Valdivia 2001). Crossbreeding programs of criollo cattle with Holsteins and criollo 

sheep with Corriedale, Targhee, and Merino have now been sustained for over 20 

years. A particularly strong demand for milk has been a major driver for rural develop-

ment (Valdivia 2004). Public–private partnerships have helped catalyze change via 

producer training and technology adoption programs. Synergisms have also occurred 

due to timely improvements in road infrastructure and rural extension. In contrast to the 

growing dairy industry, however, the fiber industry has not been innovative. Fiber mar-

kets tend to be dominated by a few, large textile manufacturers that seek to dominate 

producers; this results in low, fixed prices (Valdivia 1991). As a consequence, camelid 

production, in general, tends to focus more on meat than fiber, but this has also occurred 

in response to growing demand for camelid meat (Turin et al. 2010). There are NGOs 

working with producers to create niche markets for woolen handicrafts, thus undermin-

ing the monopoly imposed by the textile industry (Turin, unpublished data).

Mexico. The Mexican government has been actively promoting development of 

the livestock industry in northern Mexico. This has been in response to challenges 

of drought and economic uncertainty. Hence, agricultural subsidy programs have 

been promoted that facilitate the sustained production of food staples in rural areas. 

In combination with the previously mentioned Constitutional Agrarian Land Reform 

of 1992, these programs have a large effect in driving changes in land use and land 

cover. One example is the Direct Support to Rural Areas Program (PROCAMPO) 

that was launched in 1993 to grant an annual subsidy per unit of land for food grain 

production (SAGARPA 2009, 2010). Another is the Program of Incentives to 

Livestock Production (PROGAN), launched in 2003 to provide subsidies for ranch-

ers in support of livestock production, land conservation and restoration, and water 

development (SAGARPA 2009).

Marked changes in cattle trading patterns between the US and Mexico and 

changes associated with new US–Mexico cattle and beef trade relationships after 
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NAFTA, the Mexican peso devaluation (Peel 1996), fluctuations in US cattle 

prices, and a continuously increasing domestic livestock market have turned 

Mexico into a net importer of meat mostly from the US and recently also from 

Canada (and potentially from South America). While most of the national meat 

market was once satisfied by grass-fed livestock (Peel 2005), in recent years a 

change in meat preference by Mexican beef consumers has increased the demand 

for grain-finished beef. This new consumer pattern has strong implications on the 

use of arable land, where an increasing demand of grain for feed is competing with 

food production in a country with a growing human population (Arredondo and 

Huber-Sannwald 2011). As a nation that is becoming more affluent, beef consump-

tion has been rapidly growing, such that Mexico has turned from a formerly cow-

calf exporter to the US to a net importer of grain-finished beef. International cattle 

markets are operated by large ranchers, while ejido livestock is marketed at the 

local level.

17.3.4  Conflict and Crisis Management

Summary. Conflict—whether in the form of simple arguments among neighbors, 

banditry, ethnic hostilities, or international warfare—has long been part of the 

social fabric in the world’s rangelands. Rangelands are remote, sparsely popu-

lated, and difficult for central governments to police. Rangelands thus provide 

places where local problems can fester and where rebels or criminal elements can 

find safe haven. In contemporary times there have been coordinated efforts by 

government and other stakeholders to help mitigate rangeland conflicts. This is 

because persistent conflicts can impair social welfare, undermine economic 

development, and endanger public safety. There has been increasing recognition 

of the importance of conflict management practices, whereby antagonists are 

brought together by facilitators in face-to-face settings to problem-solve. Many 

such approaches have been pioneered in the western USA over the past three 

decades, and similar efforts have occurred more recently in the developing world. 

Our six case-study sites vary widely in terms of the scope and severity of social 

conflicts. The Altiplano and Mongolia are fortunate to have the narrowest spectra 

of conflicts that are largely focused on land-use competition, while Afghanistan 

suffers from the widest conflict spectrum that has been incubated by decades of 

war and ineffectual central governments. It could be hypothesized that the inci-

dence of social conflict should be on the increase across all of our six case-study 

sites simply as one outcome of more people chasing fewer resources per capita. 

However, there is no evidence here to support this idea.
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17.3.4.1  Pivotal Issues and Conceptual Advances

Over the past 25 years there has been a growing interest in how to better manage 

social conflicts that arise from competition among stakeholder groups for access to, 

or use of, natural resources. While such conflicts have not been confined to one 

region of the world, the development of conflict management techniques, as 

grounded in collaborative learning processes, has been focused more in the western 

US where various user groups—having divergent value systems for natural 

resources—often collide when using public lands (Cheng et al. 2010; Daniels and 

Walker 2001).39 More collaborative learning differs in significant ways from previ-

ous approaches for dealing with policy making, public discourse, and crisis man-

agement. Current approaches can include systems thinking and alternative dispute 

resolution concepts such as social arbitrage. A variety of approaches have evolved 

(Conley and Moote 2003). The rangelands of the western US have endured numer-

ous “culture clashes” that require problem solving (Huntsinger and Hopkinson 

1996). Coordinated resource management (CRM; Cleary and Phillippi 1993) is one 

approach that has been employed to mediate conflicts among stakeholders sharing 

watersheds or other communal resources.

Conflicts have long been recognized as a major part of rangeland societies in the 

developing world; the traditional culture of intertribal cattle raiding in eastern Africa 

is a notable case in point (Gray et al. 2003). Warfare historically has been an impor-

tant means for various pastoral groups in Ethiopia to gain access to resources 

(Coppock 1994). Resource-based conflict has also occurred over hundreds of years 

in the Andes (Coppock and Valdivia 2001) and central Asia (Weatherford 2004).

Livestock raiding behavior, in particular, can be exacerbated by drought, pov-

erty, firearm proliferation, cultural rivalries, revenge-seeking, and meddling by 

commercial and political interests (Krätli and Swift 1999). While long a part of the 

social and ecological fabric in some situations, when raiding is sharply intensified 

due to a competitive imbalance in weaponry, for example, the survival of entire 

communities can be jeopardized (Gray et al. 2003). Rangelands in some corners of 

the developing world are ideal places to generate such problems because they are 

vast, remote, and difficult to police. They are places where traditional rivalries can 

fester, insurgents hide, and banditry goes unpunished.40 Open conflict can therefore 

hobble efforts to help pastoral societies make progress in economic development. 

There is a need to improve how disputes can be better managed in contemporary 

pastoral societies (Krätli and Swift 1999; Niamir-Fuller 1999).

39 There has also been a groundswell of literature on relationships between social learning and 
participatory approaches to natural resource management more generally. This literature has 
emerged from scholars who work in the developing world (Reed 2008).
40 Our case-study sites, however, exhibit marked variation in the occurrence of conflict or banditry, 
so this statement is not meant to be generalized for all pastoral situations.
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17.3.4.2  What Has Been Observed?

Afghanistan. Afghanistan has historically been a troubled nation in terms of chronic 

conflicts and civil unrest. In recent times, insecurity due to insurgent and criminal 

activities has been on the rise since the initial NATO intervention in 2002 (HRW 

2006–2014). Ethnic conflict is also on the rise, mostly in terms of revenge acts in 

response to heinous acts committed in the past. The situation is exacerbated by a 

weak government having little interest in better managing traditional disputes. 

Reducing conflict at a local or regional scale has been shown to improve access to 

resources and build economic ties among pastoralists (Jacobs et al. 2009). Building 

governance capacity in general is also crucial, but will take time. Training local 

people in methods for conflict management has been shown to yield impressive 

results, and hence is a viable approach in the interim (Jacobs 2013).

Ethiopia. The central Borana Plateau of southern Ethiopia is over 600 km away 

from the seat of national political power in Addis Ababa. It is thus a relatively 

remote area in a region buffeted by drought, growing human populations, increas-

ing poverty, firearm proliferation, and tensions arising from political and religious 

factors (Coppock, personal observation). Local conflicts periodically occur, but they 

rarely become magnified at larger spatial scales. The relatively peaceful environ-

ment is related to (1) a palpable government and security presence; (2) a strong, 

traditional Oromo culture of peace and acknowledged need for coexistence; and (3) 

provision of extensive safety net programs in recent years, most notably food aid.

Published research on conflict here remains rare. The southern Ethiopian range-

lands share a border with Somalia to the east and Kenya to the south; both countries 

have been the source of periodic tensions with Ethiopia over the past 50 years, 

especially Somalia. Ethnic clashes occur between the Boran and their Gabra, Gurre, 

and Gugi neighbors on the Borana Plateau. Clashes are diverse in terms of causes 

and effects. Causes are often related to local or regional political issues, while 

effects can vary from the near-trivial to catastrophic displacement of thousands of 

people along with the deaths of hundreds. Crisis can be ignited by key events such 

as a drought (with subsequent intensified competition over natural resources 

between adjacent groups) or personal confrontations among individuals. The gov-

ernment actively intervenes as an agent for conflict mediation in concert with local 

officials and traditional tribal leaders. In recent participatory rural appraisals with 

pastoral leaders on the Borana Plateau, the need to build increased capacity for 

conflict mediation was noted (Coppock et al. 2014).

Sahel. In the Sahel, livestock herders following a significant fraction of their 

family’s wealth (namely their animals) are vulnerable to various predations while 

away from their home territory. The military insecurity and widespread banditry in 

the northern Sahelian region have heightened the dangers faced by herders with 

evidence that some have changed their movements to reduce their exposure to these 

risks (de Bruijn and van Djik 1995; Turner et al. 2014). For example, herders in the 

Dantiandou study area report remaining within their home territory or, when mov-

ing north during the rainy season, remaining near larger towns or staying away from 

insecure rural areas in the far north. This, in turn, can lead to changes in grazing 

pressures elsewhere with implications for herd productivity and the environment. 
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Livestock movements themselves can lead to conflict among herders over pasture 

and water or with farmers over crop damage or access to water points or travel cor-

ridors (Moritz 2006). There is often a strong insider–outsider dynamic to these con-

flicts with those that are seen as outsiders often in more vulnerable positions due to 

their more limited connections to local authorities. It is not surprising, therefore, 

that herders have historically relied on local hosts to mediate with local communi-

ties (Heasley and Delehanty 1996). Where formal government authority plays a 

stronger role relative to customary practices in mediating disputes, these host-

stranger relationships are less important, and some herder groups move through 

areas without developing social ties to local communities.

Mongolia. Mongolia is fortunate not to experience the types of ethnic or political 

conflict that plague some rangelands of the world. Nevertheless, conflicts between 

herders over pastoral resources have escalated since privatization (Fernández-

Giménez et al. 2008). It is unclear whether the trend towards formal community-

based rangeland management organizations will help ameliorate these conflicts 

(among members of a given group) or potentially exacerbate them (between mem-

bers and outsiders). The incursion of mining companies and ninja (i.e., artisanal or 

wildcat) miners into herder’s traditional grazing territories is likely to be a more 

significant source of conflict in the coming years. Already there have been some 

organized protests by herders, sometimes in alliance with urban environmentalists, 

and there have been reports of strategic violence against such protesters on the part 

of mining interests. Herders widely report that they have no voice in decisions about 

mines and mining (Schmidt, personal communication).

Altiplano. As with Mongolia, social conflict is less prevalent on the Altiplano 

when compared with the other case-study locations. Conflicts among herders for 

water and grazing lands are on the increase, however. The major friction of note 

today is related to growing competition between mining companies and herders for 

groundwater (Turin, personal observation).

Mexico. In northern Mexico, unequal access to communal and agricultural land 

among ejidatarios and non-ejidatarios (immigrants to ejidos) causes long-lasting, 

cross-generational social conflicts in ejidos. This has led to divisions in communities, 

potentially affecting key issues such as water rights (Martínez-Peña 2012). Drug 

trafficking in Mexico has had detrimental effects on national security and has par-

ticularly affected the sparsely populated north. It is unclear, however, how conflicts 

associated with drug trafficking have affected local populations or local economies.

17.4  Future Perspectives

17.4.1  Priorities for Applied Research and Outreach

As rangeland professionals seek to serve rangelands and pastoral peoples in the 

twenty-first century, an important question is this: What are the emerging priorities 

for applied rangeland research and outreach in the developing world? To answer 
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this question based on their extensive experiences, the coauthors considered the 

needs of pastoral populations as well as research knowledge gaps and the likelihood 

of successful, practical outcomes.

Table 17.2 illustrates priorities for applied research and outreach topics as ranked 

across the six case-study locations. It is important to note that the views embodied 

in this table are those of developed-world experts, and these are inevitably shaped 

by bias. The priorities will likely differ from those of pastoralists, development 

agents, or researchers affiliated with host-country institutions. For example, it is 

reasonable to expect that pastoralists might emphasize priorities more closely linked 

to the alleviation of their acute problems.41

The seven topics were distilled from a longer original list, and hence the analysis 

represents rankings based on two levels of resolution. In addition, the case-study 

sites for northern Mexico and the Altiplano were broken out to represent two very 

distinct and equally important subpopulations because the experts for these sites felt 

that the ranks would not be meaningful if lumped together.

It is notable that the rankings within six of the topics were highly variable across 

the case-study sites (i.e., ranging from a low of 1.1 to a high of 6.2, on average). The 

one exception, however, was topic 7, “Restore or create new pastoral institutions” 

(Table 17.2). The rankings for this topic only varied from 5.0 to 7.0. Thus, consid-

ered overall, support to pastoral institutions was clearly first, followed by (2) liveli-

hood diversification; (3) livestock and rangeland management (tied); (5) conflict 

management or mitigation; (6) marketing; and (7) limiting expansion of non-pasto-

ral activities on pastoral lands.

It was also evident from the coauthors that the seven topics are not mutually 

exclusive. Strengthening pastoral institutions, for example, is also tied to conflict 

management, control over pastoral lands, pursuit of sustainable markets, and 

improved rangeland management. Distinctions were also made in the realm of live-

stock and rangeland research—namely to emphasize ecological sustainability and 

conservation over an emphasis on increasing productivity and profitability. And 

there are also instances where a topic could be ranked differently in terms of out-

reach need versus research gaps, but we consolidated this to try to keep things sim-

pler. Thus, it may be most accurate to consider a final ranking of aggregated topics 

as follows: (1) pastoral institution building; (2) livelihood diversification; and (3) 

livestock and rangeland management.

The most successful approaches will thus be increasingly broad and integrative. 

Such approaches fall within the sphere of building resilience within social-ecologi-

cal systems (Berkes et al. 2008); Walker et al. 2004) or in a similar context of cou-

pled human and natural systems (Dong et al. 2011). The human dimension also 

needs to include capacity building for institutions external to pastoral systems that 

affect pastoral development or resilience-building processes (Dong et al. 2011).

41 See Thurow et al. (2007) concerning survey results for university education in rangeland science 
as a case-in-point; there was little agreement among professors, ranchers, and agency staff in what 
the priorities should be.
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17.4.2  How Have Our Knowledge Base and Field Activities 

Changed?

Our review of the six case-study sites has been limited in breadth and depth, but 

overall it indicates that a vast amount of new knowledge has been generated during 

the past 25 years. Over a generation has passed since the publication of seminal, 

synthetic works on rangeland ecology and management relevant to the developing 

world. These include efforts by Huss and Aguirre (1974) for Mexico, Penning de 

Vries and Djiteye (1982) and Le Houérou (1976) for the Sahel, Pratt and Gwynne 

(1977) for East Africa, as well as Florez and Malpartida (1988) for the Peruvian 

Andes, and Sandford (1983) for the developing world more broadly. Other books of 

the 1970s focused on North America—but that ostensibly also had relevance to the 

developing world—include Stoddart et al. (1975).

When considering the body of work conducted in our case-study sites over the 

past 25 years—as well as the current priority rankings from Table 17.2—it is inter-

esting to see how the overall thematic emphasis has changed. Taking the landmark 

works from the 1970s and 1980s as the baseline, there has been a decided shift from 

ecology-focused or top-down, technology-driven work to bottom-up, human-ori-

ented work.42 Another notable transformation within the human dimension research 

sphere has been a shift from methods grounded in detached observation of human 

communities to one of active engagement and collaboration with communities as 

research partners. Twenty years ago, human-dimensions research almost solely con-

sisted of surveys, interviews, and participant observation—and much of this effort 

was conducted by cultural anthropologists and economists. Today, there is far 

greater emphasis on participatory action research, participatory rural appraisal, and 

stakeholder involvement from a wide array of research angles, to the extent that 

pastoralists and policy makers are also active members of research teams. Finally, 

there is another trend to treat some development interventions as experiments with 

sound experimental designs and impact-monitoring protocols (Coppock et al. 2011).

The ten coauthors of this chapter debated on the scholarly contributions that have 

most shaped their work over the past 25 years. About 10 works were nominated, and 

the top 5 are listed in Table 17.3. Prominent among the 5 are pieces related to sys-

tems thinking and integrated problem solving on pastoral lands. Most of these works 

offer different ways to better unify thought with respect to human and ecological 

processes.

42 A similar transition has occurred in the study of US rangelands, although it could be argued that 
interdisciplinary, human-focused work is relatively stronger today in the developing-country 
rangeland context than it is in the US. In either case, the transition is obviously more complex than 
simply “top-down leading to bottom-up.” It has been necessary for scientists to first grasp the 
complexities of how rangelands function in an ecological sense, and then to understand how man-
agement can meet the challenge of promoting sustainable resource use. Once management assumes 
center stage, then so do people.
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Table 17.3 Five of the most influential works (in alphabetical order by first author) over the past 
25 years as noted by the coauthorsa

Reference and Google Scholar citations totalb Justification

Chambers, R. 1994. The origins and practice 
of participatory rural appraisal. World 

Development 22: 953–969. (Citations = 1814)

Provides an overview of a stakeholder-based 
field approach that is valuable in analyzing 
complex local problems

Ellis, J., and D. Swift D. 1988. Stability of 
African pastoral ecosystems: Alternate 
paradigms and implications for development. 
Journal of Range Management 41(6): 
450–459. (Citations = 977)

Outlined a concept for nonequilibrium 
ecosystems whereby vegetation dynamics are 
most influenced by climate and less so by 
herbivore populations

Ostrom, E. 1990. Governing the Commons. 
Cambridge University Press. 
(Citations = 21,122)

Classic overview of theory and practice 
concerning common-property management 
systems. Offers important insights into 
community-based management of forage and 
water resources

Raynaut C. 2001. Societies and nature in the 
Sahel: Ecological diversity and social 
dynamics. Global Environmental Change 11: 
9–18. (Citations = 77)

This long-term, multidisciplinary analysis of 
decades of monitoring rural systems reveals 
driving links among environmental crises, 
agricultural dynamics, and social change

Reynolds, J., D. Smith, E. Lambin, and 
B. Turner. 2007. Global desertification: 
Building a science for dryland development. 
Science 316: 847–851. (Citations = 656)

The Drylands Development Paradigm offers an 
excellent framework that urges professionals to 
treat rangelands as social-ecological systems 
with complex dynamics

aBy influential works we refer to works that best reflect systems thinking and integrated problem 
solving on developing-country rangelands
bAs of April 2, 2015. Also Raynaut (2001) is in French as Raynaut C. (ed.), 1997. Sahel: Diversité 
et Dynamiques des Relations Societies-Nature. Karthala, Paris. 430 pp. (Citations = 108)

17.5  Summary and Societal Implications of Conceptual 

Advances

It is clear that the volume of knowledge concerning developing-world rangelands 

has markedly grown—and that, overall, the approaches to pastoral development and 

research have changed. Yet the question remains as to whether the circumstances of 

life have also changed for the better for rangeland dwellers as a result of increased 

scientific knowledge and shifting development paradigms. Are rangelands more 

productive or better managed compared to situations prevailing in 1975? Are people 

better fed, more empowered, or leading otherwise improved lives? These are impor-

tant questions, but they can be difficult to answer.43

It is tempting, in response to the question above, to say that the overall conditions 

appear generally worse today when compared to 1975, for example, given decades 

43 In this chapter we do not directly tackle issues pertaining to human or livestock health. It is likely 
that progress has occurred in developing-country rangelands with respect to the reduction of dis-
ease epidemics for both livestock and people (Thurow, personal communication).
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of violence in Afghanistan, expanding poverty in southern Ethiopia, growing ineq-

uities between ranchers and ejidatarios in northern Mexico, and what appears to be 

a downhill slide in condition and trend for natural resources in most of our case-

study sites. This can be countered, however, by observations in several places that 

pastoral women are gaining more opportunities, livestock marketing is more preva-

lent, communications have improved, and access of some populations to public ser-

vices and political processes is better. And, although conflict persists, some 

case-study sites have seen peaceful transitions to more democratic systems of gov-

ernment where pastoralists are freer to make their own choices when compared to 

their lives under dictatorial, totalitarian regimes. It is probably most accurate to say 

that there has been a mix of failure and progress—perhaps with the former dominat-

ing. The process of development and change will always yield winners and losers.

And some may logically argue that the proposition as to whether research and 

development have led to meaningful changes in developing-country rangelands is 

unfair. There are many arenas in the world where the progress of humanity, or lack 

thereof, cannot be attributed to the incremental contributions of researchers or 

change agents. Academics and others charged with a research mandate rarely also 

have a mandate to achieve real-world impact on the human subjects they study. 

Similarly, development agents at the forefront of change are often ill equipped or 

unmotivated to document impacts they observe. Much that happens therefore goes 

unrecorded, whether positive or negative. Achieving impact, in any case, is doubly 

difficult in places such as developing-country rangelands where the residents are 

often voiceless in their national political discourse, and the natural resources they 

depend upon have been regarded as having little economic value. It is difficult to 

promote positive change for marginalized people living on marginalized lands 

under the best of conditions. Despite all this, it remains quite reasonable that we can 

celebrate even the small steps in positive directions that have been achieved.

The contributors to this chapter were polled and asked whether they felt that their 

work had any demonstrable impact on the people or resources in the six case-study 

sites. The poll results were understandably mixed. There are three instances, however, 

where there is clear evidence of impact from combined research and development 

activities. As previously noted, systemic change has also occurred in both the Altiplano 

and northern Mexico, but such change is very broad scaled and cannot be directly 

attributable to contributions from our coauthors; thus it will not be detailed further.

For Afghanistan, Schloeder and Jacobs describe their conflict mitigation pro-

gram that was undertaken from 2008 to 2012.44 They trained 560 leaders from 31 

provinces in conflict mediation/mitigation methods; these trainees then have pro-

ceeded to resolve 3450 conflicts in both farming and herding communities along 5 

major migration routes. Over half of these conflicts dealt with access and user rights 

to land, forage, and water; the remainder was comprised of social conflicts. About 

204,600 households were positively impacted by these efforts. The ripple effect 

continues as of this writing, despite that the project ended in 2012.

44 The Peace Ambassador and Kuchi Shura Programs (http://pdf.usaid.gov/pdf_docs/pa00hwhk.
pdf).

D.L. Coppock et al.
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For southern Ethiopia and northern Kenya, over 30,000 pastoral and agro-pasto-

ralists were beneficiaries of a capacity-building program focused on poor women. 

The program was based on action and participatory research and included inte-

grated training for volunteers in collective action principles, micro-finance, small 

business management, and livestock marketing (Coppock et al. 2011, 2013b). The 

project officially ended in 2009, but many graduates of the program continue to be 

successful today and women’s collective action has spread45.

For Mongolia, Fernández-Giménez and colleagues have sustained over 20 years 

of continuous effort in integrated rangeland research and outreach activities. This 

has resulted in the training of over 230 Mongolians in both ecological and social 

science research methods. Trainees vary from undergraduate interns to graduate 

students, postdoctoral fellows, university faculty, and other professionals. The team 

has organized outreach workshops involving hundreds of additional participants 

from pastoral communities, government, and nongovernmental organizations to 

share research results and engage herders and local government in discussions about 

transforming scientific results into local action and regional policy recommenda-

tions. As a result of these activities, the team’s research results are sought after and 

valued by decision makers, and policy makers consider ecological and social theo-

ries and evidence when debating rangeland policy reform. In recognition of such 

efforts, Fernández-Giménez received a national award from the Government of 

Mongolia46. In essence, one of our scientific peers has been recognized for achiev-

ing widespread impact in a developing-country rangeland.

It is thus apparent that on-the-ground impact can occur in developing-country 

rangelands as a result of projects that incorporate research, action, community par-

ticipation, outreach, or other development-oriented components. Having research as 

one of the focal points of such projects is crucial for several reasons, but in a practical 

sense it matters because it increases the likelihood that impacts will be documented 

and knowledge will be publicized. Lack of easily accessible documentation regard-

ing the lessons learned from pastoral development projects is a major hindrance in 

knowledge accumulation for eastern Africa (Coppock, personal observation).

Another common thread of impactful projects is the high investment they make in 

training students, other professionals, and rangeland residents. Formal training in the 

context of degrees, certificates, diplomas, or workshop exposure has proven to be a 

wise investment. Those who have achieved advanced degrees, in particular, have 

tended to fill positions that ultimately have influenced many rangeland management 

and policy decisions (Cheruiyot et al. 2007). The value of informal training for mem-

bers of the pastoral community in topics as varied as conflict management, entrepre-

neurism, and self-advocacy remains underappreciated in many projects; impacts 

(rather than just outputs) are increasingly assessed by documenting personal empow-

erment via anecdotal evidence or testimonies (Coppock et al. 2011). Because range-

45 This project was recognized for scientific excellence in 2015 by BIFAD (Board for International 
Food and Agricultural Development) of USAID. 
46 Recipient of “The Order of the Polar Star’’ (http://president.mn/eng/newsCenter/viewNews.
php?newsId=1872).
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land residents have often been deprived of formal education and other opportunities 

for skill development, they can be at a disadvantage when coping with change that 

involves their interface with the modern world. This can be referred to as a gap in 

human development potential. It has long been argued that human, rather than live-

stock, development should be the priority for rangelands in the developing world 

(Jahnke 1982).

We also contend that investment in people (i.e., the building of human and social 

capital), is relatively low risk in these settings because the gap to be filled is vast, 

and the returns are very likely to be captured and multiplied over long periods of 

time. For example, parents passing skills and knowledge on to their children. The 

skills and knowledge include how to better sustain and diversify their livelihoods, 

how to advocate for themselves to increase their political voice, how to better pro-

tect and manage their natural resources, how to better market their livestock, and 

how to better manage conflicts.

The success of such investments in human capital provides a stark contrast with 

investments in the ecological resources of developing-country rangelands. Although 

they can be vital and productive if well managed, technical investments such as 

improvements in forages, livestock breeds, or water resources are riskier than 

investments in people, especially in situations that are dominated by exploitation 

under conditions of open access or weak rangeland governance. Droughts, wild-

fires, disease epidemics, and similar natural phenomena can also quickly erase some 

of the technology gains slowly achieved via livestock or rangeland management. 

Thus, priority investment in the rangeland dwellers themselves is a sound course of 

action. When rangeland users demonstrate good self-governance and emerging 

management capacity, technical investments can be appropriately made to support 

them in achieving their stewardship, social, and economic development goals. In 

sum, both the social and ecological aspects of rangeland development must ulti-

mately be integrated. It does little good to empower and educate people if there is 

not a corresponding environment that will allow success. This requires investment 

in range stewardship and improvements so that people can begin to operationalize 

what they have learned.

This perspective of a human-centered or human well-being emphasis for future work 

in developing-country rangelands reaffirms the trends that we have documented for 

applied research, outreach, and emerging combinations thereof. Despite the enormous 

challenges that remain, we feel that we are collectively headed in the right direction.
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