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RANGES OF PERTURBED MAXIMAL MONOTONE
AND m-ACCRETIVE OPERATORS IN BANACH SPACES

ZHENGYUAN GUAN AND ATHANASSIOS G. KARTSATOS

Abstract. A more comprehensive and unified theory is developed for the solv-
ability of the inclusions S C R(A + B), intS C R(A + B), where A : X D
D(A) -» 2Y , B : X D D(B) — Y and S C X. Here, X is a real Banach
space and Y = X or Y = X*. Mainly, A is either maximal monotone or m-
accretive, and B is either pseudo-monotone or compact. Cases are also consid-
ered where A has compact resolvents and B is continuous and bounded. These
results are then used to obtain more concrete sets in the ranges of sums of such
operators A and B. Various results of Browder, Calvert and Gupta, Gupta.
Gupta and Hess, and Kartsatos are improved and/or extended. The methods in-
volve the application of a basic result of Browder, concerning pseudo-monotone
perturbation of maximal monotone operators, and the Leray-Schauder degree
theory.

1. Introduction—Preliminaries

In what follows, X is a real Banach space with dual space X* and normal-
ized duality mapping /. We denote the norms of X and X* by || • ||. For
x € X and x* e X*, we use the symbol (x*, x) or the symbol (x, x*) to
denote the value of x* at x. Let Y be another real Banach space. Unless oth-
erwise stated, or implied, the term "continuous" means strongly continuous. An
operator T : X D D(T) -» Y, is "demicontinuous" if it is continuous from the
strong topology of X to the weak topology of Y. It is "completely continu-
ous" if it is continuous from the weak topology of X to the strong topology of
Y. It is "compact" if it is continuous and maps bounded subsets of D(T) onto
relatively compact sets of Y.

A mapping T : X D D(T) —» 2X" is said to be "monotone" if for every
x, y € D(T),  u € Tx and v e Ty we have

(1.1) (u-v,x-y)>0.

A monotone operator T is "strictly monotone" if (1.1) holds with a strict
inequality whenever x ^ y . It is "strongly monotone" if there exists a positive
constant a suchthat (1.1) holds with 0 replaced by a||x-y||2.
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A monotone mapping T : X D D(T) -* 2X" is said to be "maximal mono-
tone", if R(T + kJ) = X* for every k > 0. This is equivalent to saying that:
T is monotone and

(U - Uq , X - Xo) > 0

for every x e D(T) and u e Tx implies xo 6 D(T) and Uq g Fx0.
A mapping T : X D D(T) ^ X* is said to be "pseudo-monotone" if for every

sequence {x„} c D(T) with x„ —>• x G D(T) and limsup^^Fx« , x„- x) <
0, we have

(Tx, x - y) < liminf(Fx„ , x„ - y)
n—»oo

for every y e D(T). A mapping T : X D D(T) —> X* is said to be "gener-
alized pseudo-monotone" if for every sequence {x„} c D(T) with x„ —- x G
D(T), Txn —» y and limsup„^00(Fx„, x„ - x) < 0, we have y = Fx and
(Fx„, x„) -* (Fx, x). It is said to be of "type (S+) " if for every sequence
{x„} c D(T) with xn ^ x £ X and limsup^^(Txn, xn - x) < 0, we have
x„ —► x. It is said to be of "type (M) " if for any sequence {x„} c D(T)
with x„ —* x G 0(F), Tx„ -* y and limsup„^00(Fx„ , x„ - x) < 0, we have
Fx = y. For the basic properties of mappings of monotone type and the dual-
ity mapping J, we refer the reader to Barbu [1], Browder [6], Cioranescu [9],
Pascali and Sburlan [23] and Zeidler [25]. For Hubert spaces H, the book of
Brézis [2] is also a classical reference.

An operator F : X z> D(T) -+ 2X is called "accretive" if for every x, y G
D(T) there exists j G J(x - y) such that

(u-v,j)>0,

for all u e Tx, v € Ty. An accretive operator F is "m-accretive", if
R(T + XI) = X for all A € (0, oo).

For an m-accretive operator F, the "resolvents" Ji : X —» 0(F) of F are
defined by /¿ = (I + kT)~l  for all As (0, oo). The "Yosida approximants"
Tx : X -» X of F are defined by FA = jC - /¿) •
Some of the main properties of Jx and Tx are given below:

1. \Jxx - Jky\ < \\x-y\\ for all x,y G X.
2. \\Jxx - x|| = k\\Tkx\\ < Ainf{||y|| ; y e Tx} for all x g D(T).
3. F¿ is m-accretive on X and ||F¿x - F¿y||   <  j||x - y\\ for all A >  0,

X ,   y € A.
4. FAx G TJxX for all x G X.

We refer the reader to the books of Barbu [1], Browder [6], Cioranescu [9]
and Lakshmikantham and Leela [21] for facts about accretive operators. For
a survey article on compact perturbations and compact resolvents of accretive
operators, we cite Kartsatos' paper [16]. We denote by Br(0) the open ball of
X or X* with center at zero and radius r > 0.

The purpose of this paper is to present several range results for various per-
turbations of maximal monotone and m-accretive operators. These results are
of the type S c R(A + B) and int 5 C R(A + B), where S is a fixed subset of
X and A, B are (possibly nonlinear) operators with A maximal monotone or
m-accretive. In Section 2 of the paper we study such problems in which A is a
maximal monotone operator and B pseudo-monotone. These results are based
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on a very general result of Browder (see Theorem A), involving finitely con-
tinuous pseudo-monotone perturbations of maximal monotone operators. Sec-
tion 3 of the paper is mainly devoted to compact perturbations B of maximal
monotone operators A, as well as bounded and continuous perturbations B
of maximal monotone operators A that have compact resolvents. These results
are generalizing and improving certain ideas of Kartsatos [18] by using in part
homotopies introduced in [17]. Kartsatos studied in [18] the above problem, in
the " m-accretive" case, with S = Si+S2, where the sets Si, i = 1, 2, satis-
fied two separate conditions involving the operators A and B. Here, we have
managed to replaced these two conditions by a single one, improving thus the
relevant results of [18] in the case of maximal monotone operators A. Numer-
ous results are thus extended and/or improved due to Brézis and Haraux [4],
Brézis and Nirenberg [5], Browder [7], Gupta [13] and Gupta and Hess [14]. In
Section 4, we obtain results for perturbations of m-accretive operators which
parallel those of Section 3. Our results of Section 4 provide very general "inner
product" conditions for the existence of zeros of m-accretive operators. We
have thus answered in the affirmative a problem stated by Kartsatos in the dis-
cussion of [18], to the effect that the methods of ranges of sums can actually be
used in order to improve results involving the existence of zeros of perturbations
of accretive operators.

The following lemma is due to Browder [7, Lemma 1].

Lemma 1.1. Let X be a Banach space, {x„} a sequence in X, {a„} a sequence
of positive constants with a„ —> 0 as n —► oo . Fix r > 0 and assume that for
every h £ X* with \\h\\ < r there exists a constant Ch such that (h, x„) <
an||x„|| + Cf,, for all n . Then the sequence {xn} is bounded.

Lemma 1.2 below follows easily from Browder's Lemma 2 in [7].

Lemma 1.2. Let {xn} c X and {an} a sequence of positive numbers tending to
zero as n —> oo. Fix r > 0 and assume that for every h G X with \\h\\ < r there
exists a constant Q such that

(h, j) < a„\\x„\\ + Ch
for all n and some j = j„ G Jxn. Then the sequence {x„} is bounded.

The next lemma is due to Prüß [24].

Lemma 1.3. A Banach space X is uniformly convex if and only if for each r > 0
there exists a non-decreasing function cor : R+ —<■ R+ such that cor(p) > 0 for
p > 0,  cor(0) = 0 and

(u* - v*, x - y) > cor(\\x - y\\)\\x - y\\
-

for all x, ye Br(0), u* eJx, v* g Jy.

2.  PSEUDO-MONOTONE PERTURBATIONS OF MAXIMAL MONOTONE OPERATORS

We denote by Y the set of all functions ß : R+ —> R+ such that ß(r) —► 0
as r —► oo. For pseudo-monotone perturbations B of maximal monotone
operators A, we have the following fundamental result which is due to Browder
(cf. Pascali and Sburlan [23, Theorem on p. 120] and Zeidler [25, Theorem
32.A]). This result is an extension to infinite dimensional spaces of the well-
known Debrunner-Flor lemma.
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Theorem A. Let X be reflexive and C a nonempty closed, convex set in X. Let
A : D(A) c C —► 2X' be maximal monotone and B : C —> X* demicontinuous,
bounded and pseudo-monotone. Fix s G X* and assume that there exists a point
us G D(A) such that (Bu - s, u - us) > 0 for all u G C with \\u\\ sufficiently
large. Then there exists x G D(A), such that s G Ax + Bx.

Using Lemma 1.1 and Theorem A, we have the following basic result for the
range of the sum A + B.

Theorem 2.1. Let X be reflexive and X* strictly convex. Let C be a closed,
convex set in X. Assume that A : D(A) c C —> 2X* is maximal monotone and
B : C —> X* is bounded, demicontinuous and pseudo-monotone. Let S be a
subset of X* such that: for every s e S, there exist xs G X, K(s) > 0 and
ß = ßs g r such that

(y + Bx-s,x-xs)> -K(s) - ß(\\x\\)\\x\\,

for all x G D(A) with ||x|| sufficiently large and all y e Ax. Moreover,

(Bx,x-x0)>-ßi(\\x\\)\\x\\2,

for some xq g D(A), ßx g Y and all x G C with ||x|| sufficiently large. Then
S C R(A + B) and intS C intR(A + B).
Proof. Since X is a reflexive Banach space with X* strictly convex, the duality
mapping J is single-valued, bounded, demicontinuous and maximal monotone
(see, for example, Zeidler [25, Proposition 32.22]). Because of this, we can show
that B + kJ is pseudo-monotone for any k > 0. For 5 G S, let us consider the
inclusion

(2.1) Ax + Bx + -Jx3s.
n

To show that (2.1) is solvable by virtue of Theorem A, we only need to show
that

(Bx H—Jx - s, x - Xo) > 0,n
for all x G C with sufficiently large ||x||. To this end, we have

(Bx + -Jx - s, x - x0) = (ßx, x - xo) + —(Jx, x -x0) - (s, x - Xo)
n n

> -/M||x||)||x||2 + ^IMI2 - (¿ll*oll + \\s\\)\\x\\ - \\s\\\\x0\\
—* oo

as ||x|| —> oc because ß{(r) —► 0 as ||x|| —* oo. Thus, we have the solvability
of (2.1) for any n G Z+ .

Let xn be a solution of Ax + Bx + (\/n)Jx 3 s for each n G Z+. We have
(\/n)Jxn = -vn - Bx„ +s, for some v„ G Ax„, and, assuming that ||x„|| is
sufficiently large,

(-Jxn, x„ -xs) = -(vn + Bx„ -s,xn -xs) < A:(5) + /J(||x„||)||x„||.n
This implies

¿ll^||2<¿l|xí||||x„|| + y3(||x„||)||x„|| + /:(5),
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which says that (\/n)Jx„ -» 0. It follows that s G R(A + B).
Now, we are going to show intS c int R(A + B). To this end, fix 5 G

int S. Then there exists r > 0 such that for any h G Br(0) we have s + h G S.
Let x„ denote a solution of Ax + Bx + (\/n)Jx 9 5 and assume that {x„}
is unbounded. We may assume without loss of generality that ||x„|| —► 00 as
n —► 00. Then

v„ + Bxn + -Jxn - (s + h) = -h , for some v„ G Axn ,

and

-(h, xn - xs+h) = (vn + Bxn - (s + h), xn - xs+h) + -(Jx„ , x„ - xs+h).

Hence

(n, xn) — (n, xs+f¡)       (Jxn , xn    xs+f¡)

- (v„ + Bxn -(s + h),x„- xs+h)
< (h , Xs+h) + K(S + h) + ß(\\xn\\)\\Xn\\

l,„      „2       .V
- -U\Xn\\    - \\Xn\\\\Xs+h\\)

<(h,Xs+h) + K(s + h) + ß(\\xn\\)\\Xn\\

1 niv 112     ^niv ii2 . iiv    n2^~ -( P^n       ~ tV\\Xn\\    +\\Xs+h\\   ))n L

■     <(h, xs+h) + K(s + h) + ß(\\xn\\)\\xn\\ + ¿||xí+,||2,

for all large n, i.e., by Lemma 1.1, a contradiction to the unboundedness of
{x„}. Thus, {x„} is bounded. Since X is reflexive, C is closed and convex
and {x„} c C is bounded, we may assume that x„ -^ Xo G C. Since B is
bounded, we may also assume that Bx„ -^ yo G X*.

Since Bx„ = -v„ - (l/n)Jxn + s, we have, for x G D(A), y e Ax,

(Bxn, xn — xq) = (Bx„ , xn — x) — (Bxn , xq — x),

(Bx„,x„-x)< (Bxn + v„-y, x„-x)
1

= (s- -Jxn -y, xn -x)
1
n

-> (s - y, xo - x),
and (Bxn , x.q - x) —► (yo, xq - x), where we have used the monotonicity of
the operator A. Thus,

lim sup(Fx„ , xn - x0) < (s - y, x0 - x) - (y0, x0 - x)
n—*oo

= (s-y0-y,Zo-x),
for every x G D(A), y e Ax . We also have inf{(s - y0 - y, x0 - x) : x G
D(A), y G Ax} < 0. If this is not true, then (s - yo - y, x0 - x) > c > 0 for
every x G D(A), y G Ax. Since A is maximal monotone, we have xo G D(A)
and s - yo G Axq . Let x = Xo , y = s - yo- Then (s - yo - y, Xo - x) = 0,
which is a contradiction to the assumed inequality. It follows that

limsup(ßx„,x„-xo)<0.
n—»oo
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Since B is pseudo-monotone, hence generalized pseudo-monotone, we have
Bxo = yo and

(Bxo, xo - x) < liminf(Fx„ , x„ - x).
n—»oo

Now, for any x G D(A), y e Ax,

(s - Bxo -y,x0-x) = (s-y,x0-x)- (Bx0, x0 - x)
> (s - y, xo - x) - lim inf(5x„ , x„ - x)

n—»oo

= lim (s - y, x„ - x) - lim inf(Bxn , x„ - x)
n—»oo n—»oo

> lim inf(s - y - Bx„ , x„ - x)
n—»oo

1
liminf(f„ H—Jxn - v, x„ - x)

n—»oo ft

= lim inf(w„ - y, x„ - x) + lim ( — Jx„ , x„ - x)
n—»oo n—»oo   7Î

>0.

By the fact that ^4 is a maximal monotone, we have Xo G D(A) and 5 — Bxq G
^xo . Thus, 5 G Axo + Bxo, which says that intS c R(A + B). We conclude
that int.S c int R(A + B).    D

Letting S = R(A) + R(B) in Theorem 2.1, we have the following result.

Theorem 2.2. Let X be reflexive and X* strictly convex. Let C be a closed,
convex set in X. Assume A : D(A) c C —> 2X" is maximal monotone and
B : C —► X* bounded, demicontinuous and pseudo-monotone. Assume that for
every (u,v)e D(A) x C there exist xu,„ G X, K(u, v) > 0 and ß = ßu,v G Y
such that

(y + Bx-yu-Bv,x-xu,v) > -K(u, v) - ß(\\x\\)\\x\\,

for all x G D(A) with \\x\\ sufficiently large, all y £ Ax and all yu e Au.
Moreover,

(Bx,x-Xo)>-ßi(\\x\\)\\x\\2,
for some Xo G D(A),  ß\ G Y and all x e C with \\x\\ sufficiently large. Then
R(A + B) = (R(A) + R(B)) and intR(A + B) = int(R(A) + R(B)).

Theorem 2.2 is an extension and an improvement of Theorem 2 of Browder
[7]. Browder assumed that for every v G D(A),  u e X we have

(Bx-Bu,x- v) > -K(u, v) - j?(||x||)||x||.

This inequality implies both inequalities of Theorem 2.2 by letting xUj„ = v . In
addition, the operator A above is multi-valued and the domain of the operator
B is not necessarily all of X .

It is quite clear that by choosing different sets S in Theorem 2.1 we can obtain
a wide variety of results involving ranges of nonlinear operators. We provide
below two theorems of this nature. The second one has several corollaries which
we find to be particularly interesting.

Theorem 2.3. Let X be reflexive with X* strictly convex. Let C be a nonempty
closed convex set in X. Assume A : D(A) c C —► 2X'  is maximal monotone,
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and B : C —> X* is bounded, demicontinuous and pseudo-monotone. Assume
that for every xq g D(A) there exist K(xo) > 0 and ß = ßXo G Y such that

(Bx,x-xo)>-K(x0)-ß(\\x\\)\\x\\,

for all x G C with ||x|| sufficiently large. Then R(A) c R(A + B) and int R(A)
C int R(A + B).
Proof. Let S = R(A) in Theorem 2.1. Then, for 5 G R(A), there exists xs e
D(A) such that s G Axs. Thus, for every x G D(A) with sufficiently large ||x||
and every y G Ax , we have

(y + Bx - s, x - xs) — (y - s, x - xs) + (Bx, x - xs)

>-K(xs) - ß(\\x\\)\\x\\.
The conclusion follows now from Theorem 2.1.   D

Theorem 2.4. Let X be reflexive with X* strictly convex. Let C be a closed,
convex set in X. Assume that A : D(A) c C —► 2X~ is maximal monotone and
B : C —» X* is bounded, demicontinuous and pseudo-monotone. Assume that for
every s G X* there exist xs G X, K(s) > 0 and ß = ßs G Y such that

(y + Bx-s,x-xs)> -K(s) - /?(||x||)||x||,

for all x G D(A) with \\x\\ sufficiently large and all y G Ax. Moreover,

(Bx,x-Xo)>-ßi(\\x\\)\\x\\2,

for some xo G D(A),  ßi G Y and all x G C with \\x\\ sufficiently large. Then
R(A + B) = X*.
Proof. Let S — X* in Theorem 2.1.   D

Corollary 2.1. Let X be reflexive with X* strictly convex. Let C be a closed,
convex set in X. Assume that A : D(A) c C —» 2X' is maximal monotone,
with 0 G D(A), and B : C —» X* is bounded, demicontinuous and pseudo-
monotone. Assume that for every s e X* there exist K(s) > 0 and ß — ßs G Y
such that:

(Bx-s,x)>-K(s)-ß(\\x\\)\\x\\,
for all x eC with ||x|| sufficiently large. Then R(A + B) = X*.
Proof. Fix s G X* and let xs = Xq = 0,  yo G A(0). We have

(y + Bx - s, x) = (y - y0, x) + (Bx - (s - y0), x) > -K(s - y0) - ß(\\x\\)\\x\\,

for all x G D(A) with ||x|| sufficiently large, and

(Bx, x) > -K(0) - ß(\\x\\)\\x\\ > -/?(||x||)||x||2,
for all x G C with sufficiently large ||x||. Thus, our conclusion follows from
Theorem 2.4.   D

Corollary 2.2. Let X be reflexive with X* strictly convex. Let C be a closed,
convex set in X. Assume that A : D(A) c C —► 2X' is maximal monotone
and strongly monotone, B : C —» X* is bounded, demicontinuous and pseudo-
monotone. Assume that there exist x0 G D(A),  ß G F such that

(Bx,x-xo)>-ß(\\x\\)\\x\\2,
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for all x e C with ||x|| sufficiently large. Then R(A + B) = X*.
Proof. For 5 G X*, x G D(A), let y G Ax and y0 G Ax0. We have, for ||x||
sufficiently large,

xo) = (y - yo, x - xo) + (y0, x - x0)
+ (Bx, x - xo) - (s, x - x0)

> c||x-x0||2- ||yo||||x-x0||

-/?(l|x||)||x||2-P||||x-x0||
—»   00

as ||x|| —> 00 because ß(r) —> 0 as r —> 00 . Here, c is the strong monotonicity
constant of A. Thus, Corollary 2.2 follows from Theorem 2.4.   D

It is rather obvious that our results can be viewed as complements of the
basic perturbation result, Theorem A. As Browder noticed in [7], coercivity
assumptions like those of Theorem 2.4 or Corollary 2.1 are considerably weaker
than those of Theorem A, for not only could -K(s) - /?(||x||)||x|| be negative,
but also -K(s) - /?(||x||)||x|| could approach -00 as ||x|| —* 00. Corollary
2.2 says that the coercivity in the problem can be generated by the maximal
monotone operator A itself.

In the following results we assume that \\Bx\\ vanishes as ||x|| —» 00. The
reader should notice that the various functions ß G Y are now replaced by
appropriate functions ß — ß(x). The proofs go over in this case with some
trivial modifications.

Theorem 2.5. Let X be a reflexive with X* strictly convex. Let C be a nonemp-
ty, closed, convex set in X. Assume A : D(A) c C —► 2X' is maximal mono-
tone, and B : C —» X* is bounded, demicontinuous and pseudo-monotone with
\\Bx\\ ̂ 0 as Hxll ̂00. Then Rjlj c R(A + B) and int R(A) c int R(A + B).
Proof. For xo G D(A), x G C with ||x|| sufficiently large and y G Ax we have

(Bx, x - xo) > -||ßx||||x -xoll > -||x0|| - ||/?x||||x||.

By the assumption that ||ßx|| —»0 as ||x|| —► 00 and Theorem 2.3, we have the
result.   D

Theorem 2.6. Let X be reflexive with X* strictly convex. Let C be a closed
convex set in X. Assume that A : D(A) c C -^> 2X' is maximal monotone and
B: C —► X* is bounded, demicontinuous and pseudo-monotone with \\Bx\\ —* 0
as \\x\\ —> 00. Furthermore, assume that for every s G X* there exist xs G X,
K(s) > 0 and ß = ßs G Y such that

(y-s,x-xs)>-K(s)-ß(\\x\\)\\x\\,

for all x G D(A) with \\x\\ sufficiently large and all y G Ax. Then R(A + B) =
X*.
Proof. Given s £ X*,  we have

(y + Bx - s, x - xs) > (y - s, x - xs) + (Bx, x - xs)

> -K(s) - ß(\\x\\)\\x\\ - \\Bx\\\\x\\ - \\Bx\\\\xs\\
= -K(s) - \\Bx\\\\xs\\ - (j8(||x||) + 115*11)11*11,

(y + Bx - s, x -
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for all x G D(A) with sufficiently large ||x|| and all y G Ax. Also, for every
Xo G C,

(Bx, x - x0) > -||5x||||x|| - ||£x||||x0|| > -Htfxllllxll2,
for all x G C with sufficiently large ||x||. By the assumption that ||Fx|| —► 0
as ||x|| -> oo and Theorem 2.1, we have X* c R(A + B).   D

Letting B = 0 in Theorem 2.6, we obtain the following corollary.

Corollary 2.3. Let X be reflexive with X* strictly convex. Let A : D(A) c
X —> 2X" be maximal monotone. Assume that for every s G X* there exist
xs G X, K(s) > 0 and ß = ßs G Y such that

(y-s,x-xs)>-K(s)-ß(\\x\\)\\x\\,
for all x G D(A) with \\x\\ sufficiently large and all y G Ax. Then R(A) = X*.

The "coercivity" inequality for A in Corollary 2.3.is weaker than the usual
coercivity condition for this type of results. See, for example, Theorem 2.10 of
Pascali and Sburlan [23] or Corollary 32.27 of Zeidler [25].

It is clear that more results could be derived from Theorem 2.1. For example,
if we let A — 0 and S = X* there, we have a surjectivity result for a bounded,
demicontinuous and pseudo-monotone operator B. We omit the details of such
an investigation.

3. Compact perturbations and compact resolvents
of maximal monotone operators

In this section we assume that A is maximal monotone and that either B
or the resolvent (A + J)~l is compact. We start with a useful lemma.

Lemma 3.1. Let X be reflexive with X* strictly convex. Assume that A : X d
D(A) —> 2X' is maximal monotone. Let Xo G D(A) and JXo(x) =
J(x - xo)- Then, for every k > 0, the operator (A + A/*0)_1 : X* —* D(A)
is everywhere defined, single-valued, demicontinuous and bounded. Furthermore,
if X is locally uniformly convex, this operator is also continuous.
Proof. The proof that (A + kJXo)~x is everywhere defined, single-valued and
demicontinuous is almost the same as that for the operator (A + kJ)~l , which
can be found, for example, in Pascali and Sburlan [23, p. 112]. Thus, we omit
it.

To show that (A + kJXo)~l is bounded, it suffices to show {(A + kJXo)~lyn}
is bounded for any bounded sequence {y„} c X*. To this end, let xn —
(A + kJXo)~lyn. Then y„ = vn + kJ(x„ - xq) , for some vn G Ax„. Fix Vq G
,4x0. Then we have

k(J(xn - x0), x„ - xo) = (yn , xn - xo) - (vn , xn - x0)
= (yn , xn - x0) - (v„ - Vo , xn - Xo) + (vQ, x„ - Xo) ,

which, by the monotonicity of A,  implies

k\\x„ - xoll2 < (||y„|| + INIDII-*« - *oll,
i.e., the boundedness of {||x„||}.

If X is locally uniformly convex, it is well-known that / is of type (S+). In
order to show that (A+kJXo)~l is continuous, let {y„} g X* with y„ —» yo G X*
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and let u„ = (A + kJXo)~lyn, u0 = (A + kJXo)~[yo- Then, for some v„ G Aun
and v0 G Auo,

(yn - yo , Un - Uo) «= (Vn + kJ(un - Xo) - (V0 + kJ(u0 - X0)) , U„ - U0)

> k(J(un - x0) - J(u0 - Xo) ,Un-Xo~ (Uo - Xo)).

Since y„ —> yo and (A + kJXo)~l is demicontinuous we have u„ -» uo . Thus,
(yn - yo, u„ - uo) -> 0 and

limsup(J(un -xo), un-xo- (uo-xo)) < 0.
n—»oo

Since J is of type (S+), un - Xo —» «o - *o, or u„ —» uq , completing the
proof of the continuity of (A + kJXo)~l.    O

The results of this section improve the maximal monotone analogues of var-
ious results of Kartsatos in [18] involving m-accretive operators A.

In the following three results we assume that A has a compact resolvent, i.e.,
(A + J)~l is compact. Actually, if this is true, then the relation

(kA + p.JX0)-\x) = ((k/fi)A + JX0)-\(l/ß)x) ±{A+ (p/k)JXQ)-l((l/k)x),

for k > 0, p. > 0 and xo G D(A), shows that (kA + pJXo)~l will be compact,
for every k > 0, p. > 0, if we show this fact for (A + kJXo)~l , k > 0. An
analogous statement for (kA + pj)~l can be shown the same way. Let {y„} c
X* be bounded and x„ = (A + kJXo)~ly„. Then y„ G Ax„ + kJ(xn - xn) =
Axn + Jxn + (kJ(x„ - Xo) - Jxn), implying

y„ - (U(x„ - x0) - Jx„) G (A + J)xn
and

x„ = (A + J)-\yn - kJ(x„ - xo) + Jxn).
Since (A+kJXo)~l is bounded, we have that {x„} and {y„-A(J(x„-Xo)-7x„)}
are bounded. Thus, the compactness of (A + J)~]  implies that the sequence
{x„} lies in a compact set. It follows that (A + kJXo)~l is compact.

We now state and prove our first result involving compact resolvents of the
operator A.

Theorem 3.1. Let X be reflexive and locally uniformly convex with X* strictly
convex. Let A : X d D(A) —» 2X" be maximal monotone with (A + J)~]
compact and B : D(A) —» X* continuous and bounded. Furthermore, let S c X*
be such that: for every s € S there exist xs G D(A), K(s) > 0 and ß = ßs G Y
such that

(3.1) (v + Bx - s, x - xs) > -K(s) - ß(\\x\\)\\x\\,
for all x G D(A) with ||x|| sufficiently large and all v g ,4x. Then S c
R(A + B) and int S c int R(A + B).
Proof. Given s £ S, there exits x^ G D(A) such that (3.1) holds. We consider
the inclusion

(3.2) Ax + -J(x - xs) + Bx 3 s,

or, equivalently,
1(3.3) y + B(A + -JXs)~ly-s = 0.
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Since the operator (A + j¡JXs)~l is compact and B is continuous, we have that
B(A + ^¡JXs)~l : X* —> X* is compact. By the Leray-Schauder theory, (3.2) and
(3.3) are solvable if all solutions of

y + t
i

B(A + -JXs)~iy-s = 0

are uniformly bounded with respect to t e [0, 1 ].
Assume that this is not true. Then there exist sequences {ym} c X*  and

{tm} c (0, 1] such that

y m + t„ B(A+X-jXs)-xyn o

and \\y„ oo. Letting xm = (A + j¡JXs)  lym , we see that

y m — Vm +      J (Xm      Xs) ,n
where vm g Axm ,  and

1
^m   >       J (Xm      Xs) + tmtSXm      tmS — U ,n

implying
\\ym\\ = \\tm(Bxm-s)\\<\\Bxm\\ + \\s\\.

Since B is bounded, ||ym|| —> oo implies ||xm|| —> oo. Since

J (xm — Xs) = —vm    tmtsxm + tms,n
for some vm £ Axm , we use the monotonicity of A and our coercivity assump-
tion to obtain

1 2
~"||*m — *i||    = ~tm(Vm + BXm — S , Xm — Xj) — ( 1 — tm)(Vm , Xm — Xs)

< K(s) + ^(||xm||)||xm|| - (1 - tm)(vs, xm - xs)

< K(s) + /J(||xm||)||xm|| + ||^||||xm - xs||,

for some vs £ Axs and all large m. This contradicts the fact that \\xm
follows that (3.2) and (3.3) are solvable.

oo. It

Now, let x„ be a solution of the inclusion

Ax + -J(x - xs) + Bx B s.n
If the sequence {x„} is unbounded, we may assume that ||x„|| —» oo. This
implies

1
-(J(x„ -xs),x„ -xs) = -(vn + Bx„ -s,x„-xs) < A:(5) + ^(||x„||)||x„||,

for all large «, where v„ e Ax„ . Thus, (1/h)||x„ - xs\\ —> 0 as n —► oo. We
conclude that (l/«)||x„-xi|| —» 0 as n —» oo in all possible cases. Consequently,
S£R(A + B),  i.e., S CR(A + B).
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In order to show that int S c int R(A + B), we fix j g int S and observe that
there exists r > 0 such that s + h £ S for every h G Br(0). Let x„ denote a
solution of Ax + \J(x - xs) + Bx 3 s. We have, for some v„ £ Axn ,

vn + -J(x„ - xs) + Bx„ - (s + h) = -hn
and

(h,x„-xs+h) = -(vn + Bx„ -(s + h),xn- xs+h)

— (J(Xn — Xs) , X/j — Xs+h).

Let us assume that ||x„|| —> oo as n —> oo. We find the estimate

(h , x„) = (h , xs+h) - (v„ + Bx„ -(s + h),xn- xs+h)

~ ~ñ      ^X" ~ Xs' ' X" ~~ Xs+h)

<(h,xs+h) + K(s + h) + ß(\\xn\\)\\xn\\

— ( J [Xn — xs), xn — Xs + \XS — Xs+h))

< (h , xs+h) + K(s + h) + )S(||x„||)||x„||

- -(\\x„ - Xs\\2 - x(||x„ - xs||2 + ||*, - xi+A||2))

1 i
< (h, xs+k) + K(s + h) + ß(\\xn\\)\\xn\\ + -\\xs - xs+h\\2

= M(h) + ß(\\xn\\)\\Xn\\,

for all large n,  where M(h) is a constant depending only on h. By Lemma
1.1, {x„} is bounded, i.e., a contradiction. Thus, {x„} is bounded.

From Axn + ^J(xn - xs) + Bxn 3 s we obtain

*„ = (a + jXsy -Bxn +5 + (l-)/(*„ -Xs)n

Since B is bounded, {*„} is bounded and (A + JXs)~l is compact, {*„} lies
in a compact set. Thus, there exists a subsequence of {*„} , which we denote by
{*„} again, such that *„ —> *o, for some *o G D(A). Since B is continuous,
Bxn —* Bxo. Let vn g ,4x„ with v„ + \¡J(x„ - xs) + Bxn = s. We have vn —>
s-Bxq . Since A is maximal monotone, we have *o G D(A) and s-Bxo £ Axo ,
or 5 G R(A+B). Consequently, intS c R(A+B), i.e., intS c intR(A+B).    □

In Theorem 3.1 we assumed that (3.1) is true for some xs in D(A). In the
next result the point xs in (3.1) may be any point in X but we have to assume
that the space X is uniformly convex.

Theorem 3.2. Let X be uniformly convex with X* strictly convex. Assume that
A : X D D(A) —» 2X" is maximal monotone with (A + J)~l compact and
B : D(A) —> X* continuous and bounded. Furthermore, let S c X* be such
that: for every s £ S there exist xs £ X, K(s) > 0 and ß = ßs £ Y such that

(3.1) (v + Bx - s, x - Xs) > -K(s) - jí(||*||)||*||,
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for all x £ D(A)  with  \\x\\  sufficiently large and all v £ Ax.   Then S c
R(A + B) and int S c intF:(^ + B).
Proof. We choose a point *o G D(A) and consider the inclusion

(3.4)

or the equivalent equation

(3.5)

Let

Ax -\—J(x - *o) + Bx 3 s,n

y + B(A + -JX0)

T(t,x) = t 1
n

B(tA + ^JX0)-lx-s

y-s = 0.

t£(0, 1],  X£X*

and F(0, *) = 0, * G X*. In order to show that F is actually a homotopy
of compact operators, we observe first that T(t, •) is compact for every t £
[0, 1]. We now fix r > 0 and set Q = Br(0). We observe that the continuity of
F on [0, 1] will be uniform w.r.t x £ Q if and only if it is uniform at each
t = to £ [0, 1]. In fact, this is the consequence of a simple covering argument.

For to = 0, we have F(0, *) = 0 and is it easy to see that the set

W u
í6[0,l] L

(tA + -JXo) lQ

is bounded. This and the boundedness of B imply the boundedness of the set
B(tA + ^JXo)~lQ uniformly w.r.t.  t £ [0, 1]. We can now use this fact in order
to see that T(t, x) is continuous at to = 0 uniformly w.r.t. to x £ Q.

We let t0£ (0, 1], CG (0, 1] and

K=i(tA + ^JXa)-lx:x£Q,t£[c, 1]

We are going to show that K is compact. To this end, let {ym} c K be
given. We need to show that {ym} has a subsequence which converges to some
point yo in K. Since {ym} c K, there exist tm c [c, 1] and {xm} c Q such
that ym = (tmA + ~JXo)~lxm. Since [c, 1] is compact, Q is convex and X is
reflexive, we may assume that tm —> to and xm -» uq £ Q . We also have

1     T,
tmvm + -J(ynn xo)

for some vm £ Aym ,  or
1

and

tovm + -J(ym - *o) = xm + (t0 - tm)v„n

ym = (toA + -JXo)

= ({oA + -JXo)

[Xm + (to-tm)Vm]

1
n

(toA + -ly^)-'

xm +

to

to - tn (x„ J(ym - Xo))

Xm-:-J(ym — Xo)
ntm
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Since tm > c > 0, xm £ Q, {y«} is bounded and (toA + j¡JXo)~[ is compact,
we have that {ym} lies in a compact set. Thus, there exists a subsequence of
{ym} which converges to some y £ X. Hence K is compact. Since B is
continuous, it is uniformly continuous on K c D(A).

To show that T(t, x) is continuous at to £ (0, 1] uniformly w.r.t. x £ Q,
we only need to show, in view of the above, that (tA + ^JXo)~xx is continuous
at to uniformly w.r.t. x £ Q. To this end, let y(t, x) = (tA + \Jx<J)~lx. If
(tA+^JXo)~l is not uniformly continuous at to £ (0, 1], then there exist e > 0,
\tm} c (0, 1] and {xm} c Q suchthat tm -> t0 and \\y(tm, xm)-y(t0, xm)\\ >
e for all m = 1, 2, ... . For some u(tm , xm) £ Ay(tm , xm),  we have

Xm —      J (y(tm ) Xm)      Xo) + tmU(tm , Xm)

and, for some u(to, xm) G Ay (ta, xm),

1

Moreover,
1

xm = -J(y(h, xm) - xo) + t0u(t0, xm).

-(J(y(tm , xm) - *o) - J(y(to, xm) - xo), y(tm , xm) - y(t0, xm))

= -(tmu(tm, xm) - t0u(t0, xm), y(tm , xm) - y(t0, xm))

= -tm(u(tm , xm) - u(t0, xm), y(tm , xm) - y(t0, xm))

+ (to - tm)(u(to , *m) , y(tm , Xm) - y(t0 , Xm))

< \to - tm\\\u(to, xm)\\ [\\y(tm , xm)\\ + \\y(t0, x„)\\]

= \to - tm\-\\xm - -J(y(to,xm)-xo))\\ [\\y(tm , xm)\\ + \\y(t0, xm)\\].io n

Since Q is bounded,  {xm} c Q,  (tA + j¡JXo)
tm —^ to, we have

is uniformly bounded and

(J(y(tm, xm) - *o) - /(y(f0, xm) - x0), y(tm, xm) - y(t0, xm)) -► 0.

By Lemma 1.3, we have y(tm , xm) - y (to, xm) —» 0, which is a contradiction.
Hence T(t, x) is uniformly continuous in t with respect to x £ Q.

By the Leray-Schauder theory, in order to show that (3.4) or (3.5) is solvable,
we only need to show that all possible solutions of

x + t B(tA + -JXo)~lx -s = 0

are bounded independently of t £ [0, 1], i.e., they all lie in a ball Q = Br(0),
for some r > 0. If this is not true, there exist {tm} c (0, 1] and {ym} c X*
such that

y m + tn B(tmA + -JXo)-lyn 0

and ||y„
where vm £ Axm ,  and

oo. Let xm = (tmA + ±JXo)  lym. Then ym = tmvm + ±¡J(xm-x0),

1
tmvm H—J(xm — *o) + tmBxm — tms = 0,n
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which implies
\\ym\\ = \\tm(Bxm-s)\\<\\Bxm\\ + \\s\\.

Since B is bounded, ||ym|| —► co implies ||xm|| —> oo. From

— J (Xm — Xo) — —trnVm ~ tmt>Xm + tmS ,

for some vm £ Axm , we obtain

— (J(Xm — Xq) , Xm — Xs) = —tm(vm + Bxm — S, Xm — Xs)

and
1 2_ 1
Trll-^m — xo\\   — ~~ tm(vm + Bxm — s, xm — xs)-(J(xm — Xo) , Xq — xs)

< K(s) + 0(||*m||)||*m|| + -||*m - xoJHIxo - *,||,

for all large m. This contradicts the fact that ||*m|| -♦ oo . Thus, (3.4) and (3.5)
are solvable. The rest of the proof follows as the proof of Theorem 3.1. It is
therefore omitted.   D

If we replace inequality (3.1) by two inequalities, which are jointly stronger
than (3.1), then we may do away with the assumption of uniform convexity of
the space X.

Theorem 3.3. Let X be reflexive and locally uniformly convex with X* strictly
convex. Let A : X D D(A) —> 2X" be maximal monotone with (A + 7)_1
compact and B : D(A) —* X* continuous and bounded. Furthermore, let S c X*
be such that: for every s e S there exist p, q with s — p + q, xs £ X, K(p) >
0, K(q) > 0 and ß = ßs £ Y such that

(3.8) (v-p,x-xs)> -K(p) - 0(||*||)||*||

and

(3.9) (Bx-q,x-xs)> -K{q) - ß(\\x\\)\\x\\,

for all x £ D(A) with \\x\\ sufficiently large and all v £ Ax. Then S c
R(A + B) and int S c int R(A + B).
Proof. As in the proof of Theorem 3.2, we consider the inclusion

j
(3.4) Ax + -J(x - x0) + Bx 3 s

n
and the equivalent equation

1 ,(3.5) y + B(A + -JXo)-ly-s = 0.

To show (3.4) and (3.5) are solvable, we only need to show that all solutions of

y + t(B(A + -JXo)~ly-s) = 0

are uniformly bounded with respect to t £ [0, 1 ].
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Assume that this is not true. Then there exist sequences {ym} c X*  and
{tm} c (0, 1] such that

ym + tm(B(A + hXo)-lym-s) = 0

and ||ym|| —* oo. Let xm = (A + j¡JXo)~lym- Then, as in the proof of Theorem
3.1, ||*m|| —> oo. FromII    mil

— J (xm — *o) = —vm — tmBxm + tms,n
for some vm g Axm , we obtain

1 2 1 1
— \\xm — *o||    = — (J(xm — Xo) , Xm — Xs) -I-(J(xm — Xo) , Xs — Xq)n n n

=   — (Vm ~ tmp , Xm — Xs) — tm(BXm — q , Xm — Xs)

1
H-(J(xm - *o) , Xs — *o)n

=   - (Vm - P , Xm - Xs) - ( 1 - tm)(p , Xm - Xs)

- tm(Bxm - q, xm - xs) + -(J(xm - *o), xs - *o)

<K(p) + ß(\\xm\\)\\xm\\ + \\p\\\\xm-x. s\
1

+ K(q) + 0(||*m||)||*m|| + -||*m - *o||||*i - *o||,n
for all large m. This contradicts the fact that ||*m|| -> oo. We conclude that
(3.4) and (3.5) are solvable. The rest of the proof is similar to the proof of
Theorem 3.1. It is therefore omitted.   □

If instead of the compactness of the resolvent (A + J)~l we assume the
compactness of the operator B, we can obtain a similar result. We need the
following result of Nagumo [22, Theorem 7].

Theorem B. Let G c X be open and F : [0, 1] x G —> X continuous and such
that F([0, 1], G) C K, where K is a compact set. Assume that s : [0, 1] —> X
is continuous and such that s(t) <£ (I - T(t, -))(dG) for every t £[0, 1]. Then
d(I-T(t, •), G, s(t)) = const.

Theorem 3.4. Let X be reflexive and locally uniformly convex with X* strictly
convex. Let A : X D D(A) -» 2X' be maximal monotone and B : D(A) —► X*
compact. Let S c X* besuch that: for every s £ S there exist xs £ X, K(s) > 0
and ß = ßs G T such that

(3.1) (v + Bx-s,x-Xs)> -K(s) - 0(||*||)||*||,

for all x G D(A) with ||*|| sufficiently large and all v g Ax. Then S c
R(A + B). If in addition, A is of type (S+) or B is of type (M), int S c
int R(A + B).
Proof. For every s £ S there exists xs G X such that (3.1) is true. Choose a
point *o G D(A) and consider again the inclusion

(3.4) Ax +-J(x - xo) +Bx 3 s,
n
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or the equivalent equation

(3.5) y + B(A + ±JXo)-ly-s = 01 ,
n'

The operators B(tA + (l/n)JXo)~l : X* —> X* are compact for every / G
(0,1]. Let

T(t, x) = t  B(tA + -JXo)~lx

for t £ (0, 1], * G X*, and F(0, *) = 0, * G X*. In the proof of Theorem
3.2 we showed that all possible solutions of * + T(t, *) = 0 are uniformly
bounded. Let us assume that they all lie in the ball G = Br(0), for some r > 0.
From the proof of Lemma 3.1 we can see that the sets (tA + ^JXo)~lG are
uniformly bounded. Thus, B(tA + j¡JXo)~1G - s = Q is compact. This ensures
that the set K = {tx : t £ [0, 1], * G Q} is compact since [0, l]xQ is compact
and multiplication ((t, x) —> tx) is continuous. Obviously, F([0, 1], G) c K .

Since F(0, *) = 0 and Q is uniformly bounded, it is easy to see that
T(t, x) is continuous at (0, *) for every x £ G. Given (t, x) £ (0, l]x G,
we shall show that T(t, x) is continuous at (/, *). To this end, let y(t, x) =
(tA+^JXa)~lx . We only need to show that y(t, x) is continuous at (t, x). This
would imply that T(t, x) is continuous at the same point. If y(t, x) is not
continuous at (t, x), then there exist {tm} c (0, 1] and {xm} c G such that
tm -* t, xm —* * and \\y(tm,xm) - y(t, x)\\ > e for some e > 0. From
y(t, x) = (tA + }\JXo)~lx , we have, for u(t, x) £ Ay(t, x),

1
x = -J(y(t, x) - x0) + tu(t, x)

and j
xm = —J(y(tm , xm) — *o) + tmu(tm , xm),n

where u(tm , xm) £ Ay(tm , xm). Using these two relations, we obtain

1
-(J(y(tm, xm) -*o) - J(y(t, x) -Xo),y(tm, xm)-y(t, *))n

= -(tmu(tm , xm) - tu(t, x), y(tm ,xm)-y(t, *))

+ (xm - x, y(tm , xm) - y(t, x))

= -tm(u(tm , xm) - u(t, x), y(tm , xm) - y(t, *))

+ (xm - x, y(tm , xm) - y(t, *))

+ (t - tm)(u(t, x), y(tm, xm) -y(t, x))

< (\tm - t\\\u(t, x)|| + ||xm - x||)||y(/m , xm) - y(t, *)||

= (\tm - t\-\\x - -J(y(t, x) - *o)|| + \\xm - x\\)\\y(tm , xm) - y(t, *)||.

Since G is bounded, {xm} c G, (tA + }¡JXo)~l  is uniformly bounded, tm —> t
and *,„—>*,  we arrive at

(J(y(tm, x,„) -*o) - J(y(t, x) - *o), y(tm, xm) - y(t, *)) -» 0.

It follows that y(tm ,*,„)- y(t, x) —> 0 (see, for example, Pascali and Sburlan
[23]), which is a contradiction. Hence T(t, x) is continuous at (t, x).
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By Theorem B, d(I + T(\, •), G, 0) = d(I + T(0, ■), G, 0) = 1, and (3.4)
and (3.5) are solvable.

Let *„ be a solution of Ax + j¡J(x - *o) + Bx 3 s. Then
1,1 1
-||X„ - Xolr = ~(J(Xn - *o) , X„ - Xs) + ~(J(X„ - *0) , X, - X0)n n n

= -(v„+ Bxn -s, xn - xs) + -(J(x„ - x0), xs - Xo)n

< K(s) + 0(||*„||)||*„|| + ¿||*„ - xollllx, - *o||,
for all large n , where v„ G Axn . This implies £||x„ - *0|| —> 0 as n —* oo.
So, s £ R(A + B) and S c R(A + B).

To prove that int S c intF(^ + B), let 5 G int S and let x„ be a solution of
^x + ¿/(x - Xo) + 5x 3 5 . As in the proof of Theorem 3.1, we can show that
the sequence {x„} is bounded. Since X is reflexive, the set D(A) is convex
and we may assume that x„ — Wo for some uq £ D(A). Since B is compact,
we may also assume that Bx„ —> yo , for some yo G X*. Let v„ £ Axn be such
that v„ + \J(xn - Xo) + Bx„ = s . Then v„ —> 5 - y0 .

If we assume that B is of type (M), we have yo = Buq . By the fact that A is
maximal monotone, we have «o € Z)(.4) and s-Buq £ Auo, or 5 g Auq+Buq .

If we assume that A is of type (S+ ), then x„ -* «o and vn —* s - yo imply
x„ —* Uq . Since B is continuous, Bx„ —> 5«o . Since A is maximal monotone,
we have wo € £>(^) and 5 G Auo + Buo .   □

If in Theorem 3.4 B is completely continuous, then B is compact and of
type (M). If A is strongly monotone, then A is of type (S+). As in Section 2,
by choosing the set S in a more concrete way we can obtain a variety of results
as a consequence of Theorems 3.1-3.4. We mention a few such situations.

Theorem 3.5. Let X be reflexive and locally uniformly convex with X* strictly
convex. Assume that A : X d D(A) —» 2X" is maximal monotone with (A + J)~l
compact and B : D(A) —» X* is continuous and bounded. Furthermore, assume
that for every x¡ g D(A) and x2 £ D(A) there exist K(xi, x2) > 0 and ß -
ßx,,x2 € T such that

(Bx -Bxi,x- x2) > -K(xi, *2) - 0(||*||)||*||

for all x £ D(A) with \\x\\ sufficiently large. Then R(A) + R(B) c R(A + B)
and int(R(A) + R(B)) c int R(A + B).
Proof. Let S = R(A) + R(B) in Theorem 3.1. Then for every 5 g R(A) + R(B)
there exist *i G D(A) and x2 £ D(A) such that s g Ax2-\-Bxx or s = v2+Bxi,
for some v2 = Ax2. For * G D(A) and v £ Ax, v/e let xs = x2 to obtain

(v + Bx - (v2 + Bxi ), x - x2)
> (v - v2, x - x2) + (Bx - Bxi, x - x2)

>-K(xi,x2)-ß(\\x\\)\\x\\,
provided that ||*|| is sufficiently large. Thus, the result follows from Theorem
3.1.    D
Theorem 3.6. Let X be reflexive and locally uniformly convex with X* strictly
convex. Let A : X d D(A) —> 2X'   be maximal monotone with  (A + J)~l
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compact and B : D(A) -+ X* continuous and bounded. Assume that for every
Xo £ D(A) there exist K(x0) > 0 and ß - ßXo £Y such that

(Bx,x-Xo)>-K(xo)-ß(\\x\\)\\x\\,

for all x £ D(A) with ||x|| sufficiently large. Then R(A) g R(A + B) and
int R(A) c int R(A + B).
Proof. Let S = R(A) in Theorem 3.1. Then for every s £ R(A) there exists
xo G D(A) such that 5 G Axo , i.e., s = v0 for some Vo £ Axq . For x G D(A)
and v £ Ax, we let x, - xo to obtain

(v + Bx - V0 , X - Xo) > (v - Vo , X - Xo) + (Bx, X - Xq)

>-K(xo)-ß(\\x\\)\\x\\,
provided that ||x|| is sufficiently large. Thus, Theorem 3.6 follows from Theo-
rem 3.1.   D

Theorem 3.6 extends and improves Theorem 1 of Gupta [13] and Theorem
1 of Gupta and Hess [14] (when (A + J)~l is compact there and not just
demicontinuous and mapping bounded sets into relatively compact sets). In
Gupta's result X is a Hubert space while Gupta and Hess assumed that A is the
sum of a monotone and a trimonotone operator. Furthermore, the "coercivity"
condition on B is considerably weaker in Theorem 3.6 than that in [13] or [14].
The second example in Section 5 illustrates these facts.

The following statement is an interesting corollary of Theorem 3.6.

Corollary 3.1. Let X be reflexive and locally uniformly convex with X* strictly
convex. Let A : X D D(A) —> 2X" be maximal monotone with (A + J)~l
compact and let B : D(A) —> X*  be continuous and bounded.   Assume that
\\Bx\\ -> 0 as x £ D(A) with \\x\\ -> oo. Then R(A) c R(A + B) and
int R(A) c int R(A + B).
Proof. For every Xo G D(A), x e D(A),

(Bx, x - *b) = - (Bx, x0) + (Bx, x)
> -||5*||||*o||-||fi*||||*||
> -||*o||-0(*)||*||,

provided that ||x|| is sufficiently large, with 0(x) = \\Bx\\. Since 0(x) —> 0 as
||x|| —» oo, Corollary 3.1 follows easily from the proof of Theorem 3.6. The
reader is directed here to the remark preceding Theorem 2.5 concerning func-
tions of the type 0(x).    D

If the assumption that (A + J)~l is compact is replaced by the assumption
of compactness of the operator B, then Theorem 3.4 could be used to obtain
results similar to Theorem 3.5, Theorem 3.6 and Corollary 3.1.

Several results of this section can be extended to situations where the resol-
vent (A + J)~{ is completely continuous and B is just a demicontinuous and
bounded operator defined on all of X. The analogous problem for m-accretive
operators A was dealt with by Kartsatos in [18].

Theorem 3.7. Let X be uniformly convex and X* strictly convex. Assume that
A : X D D(A) -» 2X~  is maximal monotone, with 0 G D(A) and (A + 7)_1
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completely continuous, and B : X —> X* is demicontinuous and bounded. As-
sume, further, that there exists a set S c X* such that: for every s £ S there
exist xs £ X, K = K(s) > 0 and ß = ßs G Y such that

(v + Bx-s,x-xs)> -K(s) - 0(||*||)||*||,

for all x £ D(A) with ||*|| sufficiently large and all v e Ax. Then S c
R(A + B) and int S c int R(A + B).
Proof. Since 0 G D(A), we may assume that 0 G A(0). In fact, if this is not
true, then we replace the operators A, B by the operators A - v and B + v ,
respectively, where î; is a fixed element in A(0). We consider the inclusion

(3.10) Ax + -Jx + Bx 3s,
n

for some fixed s £ S,  or the equivalent equation

y + (A + -jyl(By - s) = 0.
n

We use the homotopy mapping T(t, x) defined by

T(t,x) = (tA + -J)~\t(Bx-s)),        t£(0,l], X£X,
n

and F(0, *) = 0, * G X. It is obvious that the mapping T(t, x) is compact
w.r.t. * for each / G (0, 1], due to the fact that it is the composition of a
demicontinuous and bounded operator B and a completely continuous operator
(tA + (\/n)J)~x in a reflexive space. The fact that the complete continuity of
(A+J)~x implies the complete continuity of (kA+¡uJXo)~l, forany *o £ D(A),
follows from the following lemma.

Lemma 3.2. Let X be reflexive and locally uniformly convex and let X* be
strictly convex. Let A : X d D(A) —» 2X' be maximal monotone and such that
(A + J)~x is completely continuous. Then (kA + pJ)~x is completely continuous
for every k, p. > 0. Actually, (kA + pJXo)~x is completely continuous for every
xo £ D(A) and every k > 0,  p > 0.
Proof. From the discussion preceding Theorem 3.1 we see that it it suffices to
show that (A +kJXo)~l is completely continuous for every k > 0. To this end,
fix k > 0 and let {y„} be a sequence in X* such that y„ —» yo £ X*. Let

xn = (A + kJX0)-lyn.

Then the compactness of (A + J)~x and the discussion preceding Theorem 3.1
imply that the operator (A + kJXo)~x is compact. It follows that there exists a
subsequence of {*„}, denoted again by {*„}, such that x„ —> (some) *o G
D(A) as ai —► oo. Then we have

xn = (A + J)-[(y„-(k-l)Jxn),

which implies, by the complete continuity of (A + J)~x ,  that

*0 = (A + /)-'(y0 - (k - \)Jxo) £ D(A).

This is equivalent to
xo = (A+kJ)-'yo.
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Since we could have started with any subsequence of {*„}, instead of {*„} it-
self, we have actually shown the following: every subsequence of {*„} contains
a further subsequence which converges to the point (A + kJ)~xyo- Thus, {*„}
itself converges strongly to this point, and we have the complete continuity of
(A+kJ)~x.    D

Proof of Theorem 3.7 Continued. It follows that T(t, •) is compact for every
t £ [0, 1]. In order to show that T(t, x) is continuous in t uniformly w.r.t.
* lying in any closed ball Q with Q = Br(0), we show first that T(t, x) is
continuous in t at t = 0 uniformly w.r.t. x e Q. To this end, we observe first
that, as in the case of the set W in the proof of Theorem 3.2, the set

u
Í6[0,l]

(tA + -J)~x(t(BQ-s))

is bounded. To see this, let {tm} c [0, 1],  {*m} c Q. and

um = (tmA + -J)  x(tm(Bxm-s)).
n

Then, for some vm g Aum "= ^"m ,

tmVm H       J Um = tm(t>Xm — S) ,

which implies

(3.11)        0 < -\\um\\2 < tm(vm , um) + -\\um\\2 < /m(||5*M|| + PIDIKII-n n
This implies in turn the boundedness of {um}.

In order to show that T(t, x) is continuous in t at t — 0 uniformly w.r.t.
x £ Q, let us assume that this is not true. Then there exists a sequence {tm} C
(0,1] such that tm —> 0+ and a sequence {xm} c Q such that the sequence
{um} , defined as above, satisfies ||wm|| > e , m £ Z+ , where e is a positive
constant. Since (3.11) still holds in this case, we get the contradiction that um —>
0 as m -> oo.

Now, for the continuity of T(t, x) in t G (0, 1], uniformly w.r.t. x £ Q,
we observe first that there exists a closed ball BJO) such that

(J   [t(BQ-s)]c~B^Q).
(6(0, 1]

A careful examination of the proof of Theorem 3.2 shows that the operator
y(t, x) in that proof (with *o = 0 ) has this uniform continuity property with
the set Q there replaced by the ball Bß(Q). Now, fix t0 g (G, 1] and let {tm} c
(0, 1] be such that tm —> to- We have, for * G Q,

\\(tmA + -J)-x(tm(Bx - s)) - (toA + -J)~x(to(Bx - s))\\n n

< \\(tmA + h)-x(tm(Bx - s)) - (t0A + ^J)-x(tm(Bx - s))\\

+ IKM + -jy\tm(Bx - s)) - (t0A + -J)~x(to(Bx - s))\\n n
= h + h-
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The term F can be handled by the above discussion on the continuity of the
operator y(t,x). For the term I2,  let

1
n

and
uo(x) = t0(Bx -s), v0(x) = (t0A + -J)-[Uo(x).n

We have

(t0Avm(x) + -Jvm(x)) - (toAvo(x) + -Jvo(x)) 3 um(x) - u0(x),n n
which implies, by the monotonicity of A ,

(3.12) \\vm(x) - v0(x)\\ < n\\um(x) - m0(*)|| < Ln\t - t0\,

where
L = sup{\\Bx - s\\} < +00.

xeQ
This completes the proof of the continuity of T(t, *).

It follows that the Leray-Schauder degree d(I + T(t, •), Q, 0) is well-defined
for any ball Q = Br(0), provided that the equation * + T(t, x) — 0 has no
solution * G dBr(0).

In order to show that there is r > 0 such that

d(I + T(t,-),Q,0) = d(I+T(0,-),Q,0) = l,
for every / G [0, 1], we must show that all possible solutions *, of the equation
*, + T(t, *,) = 0 are uniformly bounded. However, since

1
tAxt + tBx, + -Jxt-ts3Q,

this assertion follows exactly as the last part of the proof of Theorem 3.2. It
is therefore omitted. It follows that (3.10) is solvable. If we let *„ denote a
solution of (3.10), we see easily, exactly as in the proof of Theorem 3.2, that
(l//i)*„ —0,  i.e., s£R(A + B).

To show our second assertion, let s, r, h be as in the proof of Theorem
3.1 and let *„ denote a solution of (3.10). Then we may repeat the proof
of Theorem 3.1, with xs replaced by 0, to obtain that {*„} is a bounded
sequence. Then the relation

*„ = {A + J) -Bx„ +s + (1-)/*„
n

the boundedness of B and the compactness of (A + J)~x imply that {*„}
lies in a compact set. Thus, we may assume that *„ —» *o G D(A). From
the demicontinuity B, we obtain that, for some vn £ Ax„, we have v„ —>■
s-Bxo- Since A is maximal monotone, it is demiclosed. Thus, *o G D(A) and
5 - 5*o G Axo- This completes the proof.

4. Perturbations of ^-accretive operators

In this section we study the ranges of operators A + B  with  m-accretive
operators A. We give three theorems in this direction. In view of the results of
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the preceding section, the reader will have no difficulty in obtaining variations to
these theorems as well as several corollaries other than the ones included herein.
Various results of Calvert and Gupta [8] and Kartsatos [18] are improved and/or
extended.

Theorem 4.1. Let A : X D D(A) —► 2X be m-accretive with (A + I)~x compact,
and let B : D(A) —» X be continuous and bounded. Let S c X be such that:
for every s £ S there exist K(s) > 0 and 0 = ßs £ Y such that

(v+Bx-s,j)>-K(s)-ß(\\x\\)\\x\\,

for all x £ D(A) with ||*|| sufficiently large, all v e Ax and some j = jx<s G
Jx. Then S C R(A + B) and int S C R(A + B).
Proof. For ssS,we consider the inclusion

(4.1) Ax + Bx + -x 3 s
n

and the equivalent equation

(4.2) x + B(A + -I)-xx-s = 0.
n

By the assumptions that (A+I)~x is compact and B is continuous, the operator
B(kA + pl)~x : X —> X is compact for every k > 0, p > 0 by the resolvent
identity. Let

T(t,x) = t
| "I

B(tA + -/)-'* -5   ,      fori G (0, 1],  *G X,

and F(0, *) = 0, * G X. Also, let Q = Br(0) cX,  for r > 0.
We are going to show first that T(t, x) is uniformly continuous in t e [0, 1]

with respect to * £ Q,  for any r > 0.
Since the set (tA + ^I)~XQ is uniformly bounded and B is bounded, we

have that the set B(tA + }¡I)~XQ- s is uniformly bounded. Using this fact and
the fact that F(0, *) = 0, it is easy to see that T(t, x) is continuous at to = 0
uniformly w.r.t.  x £ Q.

We now show that T(t, x) is continuous at to £ (0, 1] uniformly w.r.t.
x £ Q. To this end, we show first that K is compact, where

K = {(tA + (l/n)I)~xx : x£~Q,  t £ [c, 1]} ,

for any constant c > 0. In order to see this, let {ym} c K. We need to show
{ym} has a convergent subsequence. Let ym = (tmA + ^I)~xxm, for some
{*m} c Q and {tm} c[c, 1]. For some vm e Aym ,

y m — Xm )

t0Vm + ~ym = Xm- (tm T 'oK

tmVm + nym - Xm,

or
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for a fixed to £ [c, 1 ],  or

(t0A + -I)    l(xm-(tm-to)Vm)n

(t0A + -/)"
n

= (toA + -/)"

. 1 1      '
*m — (¿m - WT-(•'»m — Tr^w)

im n

!±x   i f"-fov
'm '"m

Since {tm} c [c, 1], {xm} c ß and (L4 + ¿/)_1 is uniformly bounded, we
have that the expression in the last display brackets above is bounded. The fact
that (íqA + \¡I)~X is compact implies that {ym} lies in a compact set. Thus,
there exists a subsequence of {ym} , which we denote again by {ym} , such that
y m —> y,  for some y G X. It follows that K is compact.

Since B is continuous, B is uniformly continuous on K and, in particular,
on K. To show that T(t, x) is uniformly continuous at to # 0, we only need
to show y(t, x) = (tA + }¡I)~lx is continuous at /0 uniformly w.r.t. x £ Q
and then apply a simple covering argument. This part of the proof can be found
in Kartsatos [17, Proof of Theorem 3]. It is therefore omitted.

Before we apply the Leray-Schauder theory on a specific ball Q, we are going
to show that all solutions of

x + t
1B(tA + -/)"'* -s 0

for t £ (0, 1], lie in a fixed ball Br(0),   for some r > 0. If this is not true,
there exist sequences {xm} c X,  {tm} c (0, 1] such that

Xm   i   tn B(tmA + -/)-'*,n
0

and ||*m|| -♦ oo. Letting ym = (tmA + j¡I)   xxm , we have tmvm + ¿X
for some vm £ Aym,  and

j
tmvm H      y m + tmBym ~ tms — " ,

\\xm\\ = II - tmBym + tms\\ < \\Bym\\ + \\s\\.
By the fact that B is bounded and ||*m|| —► oo, we have ||ym|| —» oo and

which implies

-ynn -tm(Vm+Bym -S),

which yields, for an appropriate functional j — jm £ Jym ,

-\\ym\\2 =-tm(Vm + Bym-S, j)n
<K(s) + ß(\\yn

for all large m,  i.e., a contradiction to the unboundedness of {ym}- Thus, all
solutions of * + T(t, x) = 0 are in Q = Br(0),  for some r > 0.

By the Leray-Schauder degree theory, we have

d(I + T( 1, •), Q, 0) = d(I + F(0, •), Q, 0) = 1.
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It follows that (4.2) and (4.1) are solvable for each n.
Let *„ be a solution of Ax + Bx + ~x 3 s,  for each n £ Z+ . Thenn

-*„ = -(v„ + Bxn - s),n
for some v„ £ Ax„ ,  and, for some / = /'„ G Jxn ,

1
n \xn\\2 = -(v„ +Bxn-s, j) < K(s) + 0(||*„||)||*„|

This implies (\/n)xn ->0 as n —> oo . Thus, 5 G R(A + B).
To show that int S c R(A + B), fix s £ int S. Then there exists r > 0 such

that s + h £ S, for any h £ X with \\h\\ < r. Let *„ denote a solution of
Ax + Bx + ;i9J and assume that {*„} is unbounded. We have

vn + Bxn + -xn-(s + h) = -h.,n
which implies, for an appropriate functional j = j„ £ Jx„ ,

.
(h , j) = ~(v„ + Bxn -(s + h), j)-(*„ , ;').n

Thus,

(h, j) < -(vn + Bxn -(s + h), j) < K(s + h)- 0(||*„||)||*„||,
for large n, from which we obtain, by Lemma 1.2, that {*„} is bounded, i.e.,
a contradiction. Thus, {*„} is bounded. We also have

1
vn + Bxn H-*„ = 5 ,

or
vn+xn=s-Bxn + (l --)*„,n

or
*„ = (A + I)~x  s-Bxn + (\—*„;

n

Since {*„} is bounded, B is bounded and (A + I)~x is compact, we have that
{*„} lies in a compact set. We may thus assume that *„ —> *o G D(A). Since
B is continuous, we have Bxn -» Bxo and !)„-»{- Bxq . By the fact that
A is m-accretive, and thus closed, we have *o G D(A) and 5 - Bxo G Axo or
intS £ int R(A + B).   D

The above proof illuminates further the proof of Theorem 5 in [18]. For
special sets S in the above theorem, we have the following important corollaries.

Corollary 4.1. Let A: X d D(A) -» 2X be m-accretive with (A + I)~x compact,
and let B : D(A) —> X be continuous and bounded. Assume that for every
p £ Br(0), for some r > 0,  there exist K(p) > 0 and 0 = ßp £ Y such that

(4.3) (v + Bx-p,j)>-K(p)-ß(\\x\\)\\x\\
for all x £ D(A) with \\x\\ sufficiently large, all v e Ax and some j = jXtP £
Jx. Then Br(0) c R(A + B).
Proof. Just take S = Br(0) in Theorem 4.1.   □

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2428 Z. GUAN AND A. G. KARTSATOS

Corollary 4.2. Let A : X d D(A) —> 2X be m-accretive with (A + I)~x compact,
and let B : D(A) —> X be continuous and bounded. Assume that for some p £ X
there exist K > 0 and 0 G Y such that
(4.4) iv + Bx-p,j)>-K-ß(\\x\\)\\x\\
for all x £ D(A) with ||*|| sufficiently large, all v £ Ax and some j = jx £ Jx.
Then p £ R(A + B).
Proof. Just take S = {p} in Theorem 4.1.   D

We should note here that the boundary condition (4.4) is considerably weaker
than the condition
(4.5) (v + Bx-p,j)>0,
which was studied by Kartsatos in [17, Theorem 5]. However, the conclusion
p £ R(A + B) in Theorem 4.1 was derived from the fact that the sequence
{(1/«)*„} converges to zero as n-»oo. This property does not insure that the
sequence {*„} is bounded, which is true in the proof of Theorem 5 in [17]. Due
to this fact, we need new feasible conditions on A, B, other that (4.5), which
will force the point p to lie in the set R(A + B). This was the conclusion
of Theorem 5 in [17]. On the other hand, under (4.3), which is nothing else
than (4.4) for every p £ Br(0), we can insure that the entire ball Br(0) lies
in R(A + B), which is a considerable improvement over a possible analogous
statement for Theorem 5 in [17].

The problem thus arises as to what additional assumptions should be placed
upon the operators A, B so that the solutions *„ of the problem 4.1 with
s = p, with the property (l/«)*„ —» 0 as n —> oo, are actually uniformly
bounded for a fixed point p £ X. Analogous remarks hold for Theorem 4.2
below as well as various results in the previous section.

Theorem 4.2. Let A : X d D(A) -> 2X be m-accretive and let B : D(A) -► X
be compact. Let S c X be such that: for every s £ S there exist K(s) > 0 and
0 = ßs G T such that

(v + Bx-s,j)>-K(s)-ß(\\x\\)\\x\\,
for all x £ D(A) with ||*|| sufficiently large, some j = jXtS £ Jx and all
v £ Ax. Then S c R(A + B). If moreover, X is uniformly convex and B is
completely continuous, then int S c int R(A + B).
Proof. For s £ S, we consider again the inclusion

!
(4.1) Ax + Bx + -X3s,

n
or the equivalent equation

(4.2) x + B(A + -I)-xx-s = 0.
n

Letting T(t, x) = t[B(tA + }jl)~x - s], we can use Theorem B to show the
solvability of (4.1 ). For this proof, we refer the reader to Theorem 3 of Kartsatos
[17] and Theorem 6 of Kartsatos [19].

Let *„ be a solution of (4.1). We have
j

Axn + Bx„ + -*„ 3 s
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and, for an appropriate j = j„ £ Jxn ,

^||*„||2 = -(vn+Bxn-s,j) < K(s) + 0(||*„||)||*„||,

which implies \xn —► as n —► oo . Consequently, s £ R(A + B).
To show the second part of the theorem, let 5 G int S and let x„ be again a

solution of Ax + Bx + j¡x 3 s, for n £ Z+ . As in the proof of Theorem 4.1,
we have that {*„} is bounded. Then, by Lemma 1 of Guan and Kartsatos [10],
we can easily see that s G R(A + B). It follows that int S c int R(A + B).   □

Naturally, corollaries analogous to 4.1 and 4.2 hold for Theorem 4.2 as well.
The next result is an " m-accretive" analogue of Theorem 3.7.

Theorem 4.3. Let X* be uniformly convex. Assume that T : X d D(T) —► 2X
is m-accretive with 0 G D(A) and such that (A + I)~x is completely continu-
ous. Assume that B : X —» X is demicontinuous and bounded. Let S c X be
such that: for every s £ S there exist K(s) > 0 and 0 = ßs £ Y such that

(v + Bx-s,j)>-K(s)-ß(\\x\\)\\x\\,

for all x £ D(A) with \\x\\ sufficiently large, all v £ Ax and some j = jx¡¡ G
Jx. Then S c R(A + B) and int S c R(A + B).
Proof. The proof is modelled after that of Theorem 3.7. As in the proof of that
theorem, we may (and do) assume that 0 G A(0). We consider the inclusion
(4.1), or equivalently, equation (4.2). We also consider the homotopy equation
x + T(t, x) = 0,  where

T(t, x) = (tA + -I)~x (t(Bx - s)),        t£[0, 1], *G X,

and F(0, *) = 0, x £ X. It is easy to see that T(t, x) is a compact operator
for each / G [0, 1]. In fact, this follows from the reflexivity of X and the
complete continuity of (A + /)"'. The complete continuity of (kA + pl)~x,
for every k > 0,   p > 0,  has been shown in the authors' paper [12].

Letting Q be a bounded set in X, we observe that since 0 G A(0), we have

||(M + -/)-'*|| = \\(ntA + I)-X(nx)\\ < n\\x\\,n

for every * G X,  which implies

\\T(t,x)\\<nt\\Bx-s\\<ntL,

where L is an upper bound for \\Bx - s\\ on Q. It follows that the operator
T(t, x) is continuous in t at t = 0 uniformly w.r.t. * G Q. In order to show
the same property of T(t, x) at t - t0 > 0, we let {tm} c [0, 1] be such
that tm —» to- Then, letting um(x), vm(x), uq(x) , Vq(x) be as in the proof of
Theorem 3.7 (with / in place of / ), we obtain from an inequality like (3.11)
(again, with / in place of J ) that (3.12) holds. It remains to show that Ix  in
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(3.11) is continuous at t = in uniformly w.r.t. * g Q. We have

(toA + h.
2\tm - ¿oí

\\(tmA + U)-x(tm(Bx - s)) - (toA + ±I)-x(tm(Bx - s)

< ""     v,\\ntm(Bx-s)\\
'0

2«|im -foL D        n< —■--\\Bx - s\\~~ to
2nT,lif_ -fn\„ 2nL\tm - to<— t

Here, we have used estimates from the proof of Theorem 3 of [17]. It follows
that the Leray-Schauder degree d(I + T(t, •), Q, 0) is well-defined for any ball
Q = Br(0), provided that the equation * + T(t, x) has no solution on dBr(0).

The proof now follows the steps of the proof of Theorem 4.1. We only remark
here that the operator A is demiclosed, being m-accretive in a space X with
X* uniformly convex.   D

5. Discussion—Examples
Pseudo-monotone operators can be found in Zeidler [25, p. 590], where the

following boundary value problem is considered.

- £A(F,(/>w))+ £(") = /on C7,
i=i

u — 0 on oG,
where G is a bounded region in RN with a sufficiently smooth boundary. Here,
TV > 1 and Du = (Diu, D2u, ... , DNu). For * = (&,&,... , £N) £ RN,
we set D¡ = d/d£,¡. Conditions are imposed in [25], on the functions F,-, g,
so that the principal part of the above problem defines, via an appropriate
functional ai(-, •), a continuous maximal monotone operator Fi : Wq'p(G) —»
W~x'q(G), p £ [2, oo), while the Nemytskii operator defines, via a functional
a2(-, •), a completely continuous operator T2 : WQl,p(G) -* W~l'q(G). The
operator T2 is thus pseudo-monotone. Here, we should take X - Wq'p. The
functionals ai, a2 are given byi >      z e i

r Nai(u,v)= / y2Fj(Du(x))DiV(x)dx (=(Txu, v))
1-1

and
a2(u,v)= / g(u(x))v(x)dx (= (T2u, v)),Jg

respectively. In order to apply Theorem 2.3, we need a condition on the operator
T2, which reads as follows: for each «o £ X there exist K(uo) > 0 and
0 = ßUo £ Y such that

(T2u ,u-u0)= [ g(u(x))(u(x) - u0(x))dx > -K(u0) - 0(||«||)||«||,
Jg

for all u £ X with ||w|| sufficiently large. The conclusion is then that F(F) c
F(Fi + T2) and int R(T\) c R(T\ + T2). The reader should note that we are
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not assuming here that T\ satisfies a coercivity condition (like Condition (H 4 )
of Zeidler [25, p. 590]).

We may also obtain important examples of continuous maximal monotone
operators F : X = Wl>p(G) —> X* defined by functional of the type

1 du \p~2 du  dva(u,v)= J2J ak(x)
k=X"G

dxi dxk dxk

+ / ß(x)\u(x)\p~2u(x)v(x)dx,Jg
where \u\ is the Euclidean norm of u G RN,  or functionals of the typeIl J r

N
/       n      v^  Í    /  m^  /   vm-? du  dva(u,v)=¿:     a(x)\Vu(x)\p2 — —

k=] J{J K K

+ [ ß(x)\u(x)\p-2u(x)v(x)dx.
Jg

Such operators can be found in the paper of Kenmochi [20]. Suitable perturba-
tions of these operators by Nemytskii-type pseudo-monotone operators provide
us with other classes of examples where our theory applies.

In what follows, several relations hold a.e. on G or on dG. This will be
assumed without further mention. Let y be a maximal monotone graph in ¿%2
with 0 € y(0) and let

-A _ö_ /    _d_\
fZl8xi\audXj)

be a uniformly elliptic operator with coefficients a¡j lying in the space
CX(G, 31) for every i, j = 1,2,... , n. With this operator we associate the
maximal monotone operator A in L2(G) defined by

D(A) = (u £ H2(G)  :  —^- £ y(u) on Ög\ ,{ dna J

Au = sZu,  u £ D(A).
Here, Jfê- is the outward normal derivative given by

du       A       du       ._

1.7=1

where ñ is the outward normal to dG.
For the operator B we assume that

(Bu)(x) = g{(u(x)) + g2(x, u(x)) + 0(|jw||L2),

where ¿n is as in Gupta and Hess [14], ß £ Y is continuous and g2 satisfies
the following conditions:

(i)   g2 : G x M —» 31 is continuous and there exist positive constants c, d
such that

\g2(x , t)\ < c + d\t\,        (x,t)£Gx3i;
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(ii) for every Uo £ D(A) there exist K(uq) > 0 and F = T(uo) > 0 such
that

(5.1) / g2(x, u(x))(u(x) - u0(x))dx >-K(uo)
J{xeG  :   \u(x)\>T}

for ail u G D(A) with sufficiently large ||w||.
Then, defining the operators B\(u), B2(u) by

(Bxu)(x) = g\(u(x))

and
(B2u)(x) = g2(x, u(x)) + ß(\\u\\Ll),    x G G,  u G L2(G),

respectively, we have, by Theorem 3.6, that R(A + Bx) c R(A + Bx + B2) and
int R(A + Bx) c int/{(^ + Fm + B2).

As in Gupta and Hess [14], the operator Ax = A+Bx : L2(G) D D(A) -» 2l2(g'
is maximal monotone. Also, the operator #2 '■ L2(G) -* L2(G) is continuous and
bounded by well-known facts on Nemytskii operators. Gupta and Hess showed
in [14] that the operator Ax is actually boundedly inversely compact, i.e., for
every bounded Q c X and every bounded Q* c X* the set Q n A\~X(Q*) is
relatively compact in X. This property was then used in [14] to show that the
operator (A\ + J)~x maps bounded sets into relatively compact sets. However,
as we have shown in Lemma 3.1, this operator is also continuous because the
space L2(G) is uniformly convex. Thus, (A\ + J)~x is a compact resolvent. In
order to apply Theorem 3.6, we need to show that for every uo G D(A) there
exist K(uo) > 0 and 0 = 0„o G Y such that

(B2u,u-u0)> -K(uo) - 0(IMIz.2)||m||¿2

for all u £ D(A) with sufficiently large ||w||¿2. To this end, let «0 G D(A) be
given. Then we have

(B2u ,u-u0)= / (g2(x, «(*)) + 0(||w||z,2))(m(*) - uo(x))dx
JG

f= / g2(x, u(x))(u(x) - uo(x))dx
Jg

[ ß(\\u\\Li)(u(x)-u0(x))d
Jg

-   I   0(||W|],,2)(W(*)-Wo(*))if*
G

I\ + I2.

For I2 we have

h > ~ß(\\u\\L2) f \u(x)\dx - ß(\\u\\L2) f \u0(x)\dx
Jg Jg

> -0(||M||L2)||M||L2[meas(G)]1/2 - 0(||M||/.2)||Molb[meas(G)]1/2

> -2ß(\\u\\L2)\\u\\L2[meas(G)]x'2 = -ß(\\u\\L2)\\u\\L2,

with u G D(A) with \\u\\L2 > |[wo||z.2 >  where 0 G T is an obvious function.
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For /i we have

h = / gi(x, u(x))(u(x) - uo(x))dx
J{xeG  :   |K(*)|<r}

J{x€G   :   \u(x)\>T} ■
+ / g2(x, u(x))(u(x) - u0(x))dx

J{x€G   :   \u(x)\>T}

> / g2(x, u(x))(u(x) - u0(x))dx - K(u0)
J{x-Lx€G   :   \u(x)\<T}

g2(x, u(x))u(x)dx
x€G   :   |»W|<T}

g2(x, u(x))u0(x)dx - K(uo)_  f
J{x€G   :   \u(x)\<T}

> -LT meas(G) - L||«0||L2[meas(C7)]1/2 - K(u0)

= -K(uo),

where
L=       max      {\gi(x,t)\}

{xeG, \t\<T}u

and K(uo) is an obvious constant. Thus our conclusion is true.
In order to show that (5.1) is actually satisfied by the operator B2 in the

example of [14], we recall that in that example (B2u)(x) = g2(u(x)), where g2
is as in (i) above and such that g2(t)t > 0 for |f| > F. We have

g2(u(x))(u(x) - uo(x))dx
KEG   :   \u(x)\>T}

= f g2(u(x))u(x)dx
J{xeG   :   \u(x)\>T}

r
(5.2) - / g2(u(x))u0(x)dx

J{xeG   :   \u(x)\>T}

> (\/d)\\B2u\\2L1 - (c/í/)[meas(G)]1/2||F2W||¿2 - k

I
J{xi

- ||F2"||z.2||mo||í,2

= [(l/(dM))\\B2u\\2L2 - \\B2u\\ - (k/M)] M,

where
r -,

M = [(c/d)[meas(G)]x'2 + \\uo\\L2]

and k is an upper bound for

-r / gl(u(x))dx
" J{x€G :   \u(x)\<T}

depending only on F. Here we have used the estimates from page 312 of
[14]. Since for each e > 0 there exists C(e) > 0 such that p < ep2 + C(e), p G
32, we conclude that there exists a constant C = C(l/(dM)) - C(||wo||z.2) sucn
that the last member of (5.2) is bounded below by

[-C(\\u0\\L2) - (k/M)]M = -K(uo),
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where K(uq) is an obvious constant. Our example is thus an improvement
of the example of Gupta and Hess in [14] because the Nemytskii operator g2
depends also on x and the operator B2 is more general in that the condition
(ii) above is more general than the condition g2(t)t > 0, |f| > F. Note that we
also conclude that R(A + Bx) c R(A + Bx + B2).

As we mentioned in Section 3, the coercivity condition in the paper of Gupta
and Hess [14] is considerably stronger than the one of Theorem 3.6. In fact, the
condition in [14] reads as follows: for every k > 0 there exists a constant
C(k) £ 32 such that

(Bx, x) > k\\Bx\\ -C(k),        x£X,
where B : X —» X* is demicontinuous and bounded. To show that this condi-
tion implies the analogous condition of Theorem 3.6, assume that B satisfies
this condition and fix xo G D(A). Then we have

(5.3)        (Bx,x-x0) = (Bx, x) - (Bx, *0) > (Bx,x)- ||F*||||*0||.

Given the number k = ||*o||, there exists a constant A^(*o) = C(||*o||) such
that

(Bx,x)>\\x0\\\\Bx\\-K(xo),        X£X.
Combining this with (5.3), we get

(Bx, x) >-K(xo),        x£X,

which shows our assertion.
One of the things this paper illustrates is the strong connection between the

theory of zeros and the theory of ranges of sums of nonlinear operators. It
is rather natural to ask whether such connections also exist with the eigen-
value problem involving perturbations of nonlinear maximal monotone and m-
accretive operators. For example, given a set S c X*, under what conditions
can we conclude that there exists a number k > 0 such that S c R(A + kB)
and/or int S C R(A+kB) ? We should note here that the same number k should
work for all points in the set S. As far as the authors know, this is a new direc-
tion in the spectral theory of nonlinear operators and the study of such problems
will be undertaken in their future investigations.
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