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Abstract. Coalgebras provide a unifying semantic framework for a wide
variety of modal logics. It has previously been shown that the class of
coalgebras for an endofunctor can always be axiomatised in rank 1. Here
we establish the converse, i.e. every rank 1 modal logic has a sound and
strongly complete coalgebraic semantics. As a consequence, recent results
on coalgebraic modal logic, in particular generic decision procedures and
upper complexity bounds, become applicable to arbitrary rank 1 modal
logics, without regard to their semantic status; we thus obtain purely
syntactic versions of these results. As an extended example, we apply
our framework to recently defined deontic logics.

1 Introduction

In recent years, coalgebras have received a steadily growing amount of atten-
tion as general models of state-based systems [I8], encompassing such diverse
systems as labelled transition systems, probabilistic systems, game frames, and
neighborhood frames [2I]. On the logical side, modal logic has emerged as the
adequate specification language for coalgebraically modelled systems. A vari-
ety of different frameworks have been proposed; here, we work with coalgebraic
modal logic [15], which allows for a high level of generality while retaining a close
relationship to the established syntactic and semantic tradition of modal logic.

In fact, one can reverse the viewpoint that coalgebraic modal logic is a spec-
ification language for coalgebras and regard coalgebra as a generic semantics
for modal logics of essentially arbitrary nature, including non-normal and non-
monotone ones. Under this perspective, coalgebraic modal logic is a generic no-
tion of modal logic that subsumes e.g. Hennessy-Milner logic, graded modal
logic [], majority logic [13], probabilistic modal logic [12] [7], and coalition
logic [16], but also modal operators of higher arity as e.g. in conditional logic [3].

It has been shown in [20] that every coalgebraic modal logic can be
axiomatized by formulas of rank 1, i.e. with nesting depth of modal operators uni-
formly equal to 1 (logics of arbitrary rank are obtained by restricting the relevant
class of coalgebras, which play the role of generic frames); such axioms may be re-
garded as concerning precisely the single next transition step. Here, we establish
the converse: given a modal logic £ of rank 1, we construct a functor M, that
provides a sound and strongly complete semantics for L£; i.e. coalgebraic modal
logic subsumes all rank-1 modal logics. The functor M, which can be viewed as
a generalization of the neighbourhood frame functor, is moreover a canonical se-
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mantics for £ in a precise categorical sense; a finitary modification of M, provides
a canonical finitely branching semantics.

Besides rounding off the picture in a pleasant way, these results make the
rapidly expanding meta-theory of coalgebraic modal logic applicable to arbi-
trary rank-1 modal logics, even when the latter are given purely syntactically
or equipped with a semantics that fails to be, or has not yet been recognized
as, coalgebraic. This includes results on the Hennessy-Milner property [19] and
bisimulation-somewhere-else [I0], and most notably generic decidability and
complexity results [20, 2], of which we now obtain purely syntactic versions.
As an extended example, we discuss applications of these results to recently
defined variants of deontic logic [5].

2 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic semantics of modal logic.
Coalgebraic modal logic in the form considered here has been introduced in [15],
generalising previous results [9] [T7, [TT, [14]. For the sake of readability, we restrict
the exposition to unary modalities. However, we emphasize that all our results
extend in a straightforward way to polyadic operators, found e.g. in conditional
and default logics [19].

A modal signature is just a set A of (unary) modal operators. The set F(A)
of A-formulas ¢ is defined by the grammar

pu=L | oANY | =9 | Lo

where L ranges over all modalities in A. Other boolean operations are defined
as usual; propositional atoms can be expressed as constant modalities.

Generally, we denote the set of propositional formulas over a set V' by Prop(V'),
generated by the basic connectives — and A, and the set of propositional tau-
tologies by Taut(V'). We use variables € etc. to denote either nothing or —. Thus,
a literal over V is a formula of the form ea, with a € V. A clause is a finite,
possibly empty, disjunction of literals. The set of all clauses over V is denoted
by CI(V). We denote by Up,(V) the set {La | L € A,a € V}. If V C F(A), we
also regard propositional formulas over V' as A-formulas. We sometimes explic-
itly designate V as consisting of propositional variables; these retain their status
across further applications of Up, and Prop (e.g. V is also the set of proposi-
tional variables for Up 4 (Prop(V))). An L-substitution is a substitution o of the
propositional variables by elements of a set L; for a formula ¢ over V, we call
¢o an L-instance of ¢. If L C P(X) for some X, then we also refer to o as an
L-valuation.

Definition 1. A rank-1 clause (in A) over a set V of propositional variables is
an element of Cl(Up,(Prop(V))). A rank-1 (modal) logic is a pair £ = (A, A),
where A is a set of rank-1 clauses in A.

Note that the definition of rank-1 clause rules out axioms involving purely propo-
sitional components, such as Oa — a (results covering also such more general
axioms are under way); the archetypal rank-1 logic is K.
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Given a rank-1 logic £ = (A, A), we inductively define L-derivability -, from
a set @ C F(A) as follows:

¢ € Taut(F(A)) oped DPrkpod,p— peA Pl o=
Db, b LN R0 Db, btrppoc DPbFp Lo — Ly

where o is an F(A)-substitution. The last rule above is referred to as the con-
gruence rule. We write b 1) instead of () 2 .

It has been shown in [20] that rank-1 clauses may be equivalently replaced by
one-step rules ¢/v, where ¢ € Prop(V') and ¢ € Cl(Up,(V)). We shall present
rank-1 logics as pairs £ = (4, R), with R a set of one-step rules, when convenient;
in this case, the penultimate clause above is replaced by

Dlpdo /Y ER
By o '

The extension of R by the congruence rule is denoted R¢. Coalgebraic modal
logic interprets modal formulas over coalgebras, which abstract from concrete
notions of reactive system; here, the interpretation of modalities is given by a
choice of predicate liftings. We recall the formal definitions:

Definition 2. Let T : Set — Set be a functor, referred to as the signature
functor, where Set is the category of sets. A T'-coalgebra is a pair C = (X,§)
where X is a set (of states) and ¢ is a function X — TX called the transition
function. A morphism (X1,&1) — (X2, &) of T-coalgebras is amap f: X1 — Xo
such that & o f = T'f o &. States z, y in coalgebras C, D are behaviourally
equivalent if there exist coalgebra morphisms f: C' — E and g : D — FE such
that f(z) = g(y). A predicate lifting for T is a natural transformation A : Q —
Q o T°P, where Q denotes the contravariant powerset functor Set®® — Set.

We view coalgebras as generalised transition systems: the transition function
maps states to a structured set of successors

Assumption 3. We can assume w.l.o.g. that T preserves injective maps ([2],
proof of Theorem 3.2). For convenience, we will in fact sometimes assume that
TX CTY if X C Y. Moreover, we assume that T is non-trivial, i.e. TX =
) = X =0 (otherwise, TX = () for all X).

Recall that a functor is w-accessible if it preserves directed colimits.

Lemma 4. ([1], Proposition 5.2) For a set functor T, the following are equiva-
lent:

1. T is w-accessible
2. T preserves directed unions
8. For every set X, TX = Uycx finite TY (recall Assumption[3).

The coalgebraic semantics of modal logics is defined as follows. Given a modal
signature A, a A-structure consists of a signature functor 7' and an assignment
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of a predicate lifting [L] for T to every modal operator L € A. The satisfaction
relation =¢ between states x of a T-coalgebra C' = (X,¢) and A-formulas is
defined inductively, with the usual clauses for the boolean operations. The clause
for a modal operator L is

z o L < &(x) € [L][¢]c,

where [¢]c = {z € X | z Fc ¢}. We drop the subscripts C' when C' is clear
from the context. When we speak of a coalgebraic modal logic informally, we
mean a A-structure; if the interpretation of modalities is clear from the context,
this structure is simply referred to as T

Satisfaction of A-formulas is invariant under behavioural equivalence [I5].
Conversely, A has the Hennessy-Milner property for T, i.e. states that satisfy
the same A-formulas are behaviourally equivalent, if T is w-accessible and A is
separating in the sense that ¢ € T'X is determined by the set {(L, A) € AxP(X) |
t e [L])(A)} [19].

Definition 5. Given a A-structure T', we write @ =7 ¢ for a A-formula ¢ and
aset @ C F(L) if, for every state x in every T-coalgebra, x |= ¢ whenever z = @
(i.e. z = ¢ for all ¢ € ). The logic L is sound over T if & =1 ¢ whenever
@ b 1, and strongly (weakly) complete if @ -, ¢ (Fz 1) whenever @ =1 ¢

0 =7 v).

The requirement that axioms are of rank 1 means that every axiom makes asser-
tions precisely about the next transition step. This allows us to capture sound-
ness as a property exhibited in a single transition step as follows. Given a set X
and a P(X)-valuation 7, we define interpretations [¢]7 C X and [¢]r € TX for
¢ € Prop(V) and ¢ € Prop(Up 4 (Prop(V))) by the usual clauses for boolean oper-
ators and by [Lo]T = [L][¢]7. We write X, 7 = ¢ if [¢]7 = X, correspondingly
for TX.

Definition 6. A rank-1 clause ¢ (one-step rule ¢/v) is one-step sound for a A-
structure T if TX, 7 |= 97 for each set X and each P(X)-valuation 7 (such that
X, 7 E ¢). An L-structure for a rank-1 logic £ with signature A is a A-structure
for which all axioms (or rules) of £ are one-step sound.

It is easy to see that one-step soundness impliess soundness, so L is sound for all
L-structures. Additional conditions guarantee weak completeness [20]. In gen-
eral, this is all one can hope for, as many coalgebraic modal logics fail to be
compact [20]. However, it will turn out that £ is indeed strongly complete for
the canonical L-structure constructed below.

Example 7. We give a brief description of some coalgebraic modal logics, illus-
trating in particular the fact that many interesting modal logics are axiomatised
in rank 1. We mostly omit the definition of predicate liftings and the axiomati-
sations; for these and further examples, cf. |20, 21].
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1. The Kripke semantics of the modal logic K, defined in terms of a single
operator O and the axioms OT and O(a — b) — Oa — Ob, is obtained as the K-
structure given by the covariant powerset functor P and [O](A) = P(4) C P(X)
for A C X.

2. Graded modal logic (GML) [4] has operators <y, for k € N of the nature ‘in
more than k successor states, it is the case that’. A GML-structure is given by the
finite multiset functor, which takes a set X to the set of maps A : X — N with
finite support, where A(z) = n is read ‘multiset A contains x with multiplicity n’.
Over this functor, one can also interpret the additional operator W of majority
logic [13], read ‘in at least half of the successor states, it is the case that’.

3. Probabilistic modal logic (PML) [12] [7] has modal operators L, for p €
[0,1] N @, read ‘in the next step, it is with probability at least p the case that’.
A PML-structure is given by the finite distribution functor, which takes a set X
to the set of finitely supported probability distributions over X.

3 From Rank-1 Logics to Coalgebraic Models

In this section we construct for a given rank-1 modal logic £ a canonical L-
structure My for which £ is (sound and) strongly complete. Moreover, we consider
a finitely branching substructure M}?” of M, which is canonical among the
finitely branching £L-structures. For M ’g”, L is (sound and) weakly complete and
has the Hennessy-Milner property, i.e. states satisfying the same formulas are
behaviourally equivalent. This tradeoff is typical: the Hennessy-Milner property
holds only over finitely branching systems, while strong completeness will fail
over such systems due to the breakdown of compactness.

The construction of the canonical structure resembles the construction of
canonical models using maximally consistent sets, but works, like many concepts
explained in the previous section, at the single step level:

Definition 8. Let £ = (A, A) be a rank-1 logic, and let X be a set. One-step
derivability ® % 1 of ¥ € Prop(Up,(P(X))) from @ C Prop(Up,(P(X))) is
defined inductively by

ped  peTaut(Up(P(X)) dH -y DS ¢ e A
X o-X oY @ X pr

where 7 is a P(X)-valuation. (In the last clause, elements of Prop(P(X)) are
implicitly interpreted as elements of P(X) in the obvious way. If £ is presented
by rules ¢/, the last clause is modified accordingly, with additional premise
X, 7 |E ¢.) The set @ is one-step consistent if fo 1, and mazimally one-step
consistent if @ is maximal w.r.t. C among the one-step consistent subsets of
Prop(Up,(P(X))).

The canonical L-structure M, for £ is now given by the functor M, that takes a
set X to the set of maximally one-step consistent subsets of Prop(Up,(P(X))).
Foramap f: X — Y, Mc(f) is defined by

M (f)(®) = {¢ € Prop(Up,(P(Y))) | dos € @},
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where o is the substitution A — f~![A]. This definition is justified by

Lemma 9. For & € My (X), the set Ms(f)(P) is mazimally one-step consis-
tent.

Remark 10. From the point of view of Stone duality, a rank-1 logic defines a
functor L : BA — BA on the category BA of boolean algebras. In this framework,
the functor M, arises as the composition My = USLQ where Q : Set®® — BA
is the contravariant powerset functor, S : BA°® — Stone is part of the duality
between Stone spaces and boolean algebras, and U : Stone — Set is the forgetful
functor; see [I0] for details.

The interpretation of modal operators by predicate liftings for M is now
obvious:

Theorem and Definition 11. The assignment
[LJA={® € M:(X)| LA € §}.

defines an L-structure My, the canonical L-structure.

Note that this immediately implies soundness of £ over M. We now turn to
strong completeness, which is established by a canonical model construction that
generalizes the standard notion of canonical Kripke structure. The carrier of the
canonical model is the set C' of maximally consistent sets of L-formulas. The key
to the construction is the existence proof (rather than the explicit construction)
of a suitable M-coalgebra structure on C, a technique first employed in [20]:

Lemma and Definition 12 (Existence Lemma). There exists a canonical
model, i.e. an M -coalgebra structure ( : C — MpC' such that

C(A) € [L]) iff LocA
forallLe A, ¢e L, AeC, where p={B e C|¢e B}.
Lemma 13 (Truth Lemma). For canonical models (C,(), A = (c,¢) ¢ iff o€ A.
Theorem 14 (Strong completeness). The logic L is strongly complete for M.

Finally, we consider the Hennessy-Milner property (cf. Section B]). The func-
tor M, fails to be w-accessible for obvious cardinality reasons. Intuitively, M-
models have unbounded branching, while the Hennessy-Milner property can only
be expected for finitely branching systems (as is the case already for standard
Kripke models). We thus consider a subfunctor M g” of M, that captures pre-
cisely the finitely branching models.

In order to construct Mf", we can rely on the following general mechanism.
We define the w-accessible part T™ of a set functor T' by

TinX = UYQX finite TY CTX
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(recall Assumption [3)). It is easy to see that T/™ is a subfunctor of 7. By
Lemma @], T/ is w-accessible. Moreover, T/ agrees with T on finite sets. A
predicate lifting A for T' restricts to a predicate lifting A" for T/ given by
MIPA = x ANTX.

We define the canonical finitely branching L-structure M ’2" as the w-accessible
part of M., with modal operators interpreted by restricted predicate liftings as
described above. We then obtain

Theorem 15. L is weakly complete and has the Hennessy-Milner property for
M

Example 16. We give explicit descriptions (up to natural isomorphism) of M,
and MJ™ in some concrete cases.

1. For £ = ({0}, 0), M is the neighbourhood frame functor @ o Q°P.

2. For the standard modal logic K (Example[7]), M I@" is the finite powerset
functor, while Mk is the filter functor [6].

3. For graded modal logic GML (Example[7lZ]), Mgﬁ“ is a modification of the
finite multiset functor where elements of multisets may have infinite multiplicity.

4. For probabilistic modal logic PML (Example [AB]), M %}L is a modification
of the finite distribution functor where events A are assigned ‘probabilities’ PA
which are downclosed subsets of the rational interval [0, 1] N Q. Thus, the space
of ‘probabilities’ essentially consists of the interval [0, 1] and an additional copy
of [0,1]N@Q, where the second copy of ¢ € [0,1]NQ is infinitesimally greater than
the first. The distributions P € M, Jg” (X) are required to obey the axiomatization
of PML [21I] w.r.t. the canonical semantics; it is presently unclear whether this
requirement can be replaced by a simpler condition.

4 An Adjunction Between Syntax and Semantics

We now set up an adjoint correspondence between rank-1 logics and set func-
tors as their semantic counterparts. This establishes the canonical structure of
a rank-1 logic as indeed canonical in a precise sense, i.e. as a universal model
capturing all other ones. This situation is analogous (although not in any obvi-
ous sense technically related) to similar correspondences in equational logics and
type theory: e.g. to a single-sorted equational theory, interpreted over cartesian
categories (i.e. categories with finite products) with a distinguished object, one
associates a Lawvere theory, which is again a cartesian category with a distin-
guished object and may simultaneously be regarded as an initial model and as
a semantic representation of the given theory. The situation is dual for modal
logics: the canonical structure serves as a final model of the given rank-1 logic,
into which all other models may be mapped.

We make the categorical setting precise by collecting all rank 1 modal logics
in a category ModL with morphisms (A1, A1) — (Aa, A2) all maps h : A1 — Ao
such that the induced translation of formulas maps axioms in A; to derivable
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formulas in (Ag, A2). The category of semantic structures is the category Fn =
[Set, Set] of set functors and natural transformations. We have a functor Th :
Fn°® — ModL which takes a functor T to the logic (Ar, Ar), where Ap is the
set of all predicate liftings for T', and Ap is the set of all rank-1 clauses over
Ap which are one-step sound for T'. Given a natural transformation p: T — 5,
Th(p) : Th(S) — Th(T') is the morphism taking a predicate lifting A : Q@ —
Qo S5°P for S to the predicate lifting Quo X for T'. Note that, in this terminology,
an L-structure is just a morphism of the form h : £ — Th(T'). In particular, the
canonical L-structure can be cast as a morphism 7, : £ — Th(M,). The arrows
nc are part of the announced adjunction:

Theorem 17. The canonical L-structure ng is universal; i.e. for each L-
structure h : L — Th(T), there exists a unique natural transformation h¥ :
T — Mg such that Th(h#)ne = h.

In other words, the canonical structure is the final £-structure, where a morphism
of L-structures is a natural transformation between the associated functors which
is compatible with the interpretation of modal operators. A similar result holds
for the canonical finitely branching L-structure M Jg”, which now becomes a

morphism 74" : £ — Th(ME™).

Theorem 18. The L-structure 17}2” is universal among the finitely branching
L-structures; i.e. for each L-structure h : L — Th(T) with T w-accessible, there
exists a unique natural transformation h#* : T — M’g" such that Th(h#)n]z" =h.

Theorems [[7 and [I8 allow us to replace rank-1 logics by functors in the defini-
tion of the coalgebraic semantics: an L-structure may equivalently be regarded
as a natural transformation T' — M ; analogously, an L-structure over an w-
accessible functor T" may be regarded as a natural transformation T — M ’g"
We have

Proposition 19. An L-structure T is separating iff the associated natural trans-
formation T — My is injective.

Thus, we have the following classification result.

Theorem 20. Up to natural isomorphism, the w-accessible L-structures for
which L has the Hennessy-Milner property are precisely the subfunctors of the
canonical finitely branching L-structure M ]g"

5 Applications

A benefit of the coalgebraic semantics constructed above is that we can now
apply results on coalgebraic modal logic to arbitrary rank-1 modal logics, even
when the latter lack a formal semantics. This includes in particular the generic
decidability and complexity results of [20, 21], of which we now obtain purely
syntactic versions.

In [20], a generic finite model construction was given which yields criteria
for decidability and upper complexity bounds for coalgebraic modal logics. The
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generic complexity bounds generally do not match known bounds in particular
examples, typically PSPACE. This is remedied in [21], where a generic PSPACE
decision procedure for coalgebraic modal logics based on a shallow model con-
struction is given, at the price of stronger assumptions on the logic.

A crucial role in the algorithmic methods of [20] is played by the following
localised version of the satisfiability problem:

Definition 21. The one-step satisfiability problem for a A-structure T' is to
decide, given a finite set X and a conjunctive clause ¢ over Up (P (X)), whether
Y is one-step satisfiable, i.e. [¢v] C TX is non-empty.

The satisfiability problem of a coalgebraic modal logic is

— decidable if its one-step satisfiability problem is decidable
— in NEXPTIME if one-step satisfiability is in NP
— in EXPTIME if one-step satisfiability is in P

(cf. [20]). This instantiates to the canonical structure as follows.

Lemma 22. One-step satisfiability in M, is one-step consistency in L.

Corollary 23. The consistency problem of a rank-1 logic L (i.e. deciding
whether an L-formula ¢ is consistent) is

— decidable if one-step consistency (over finite sets) is decidable
— in NEXPTIME if one-step consistency is in NP
— in EXPTIME if one-step consistency is in P.

Corollary 24. The consistency problem of L = (A,R) is decidable if A is finite
and R is recursive (i.e. it is decidable whether a one-step rule ¢/t is contained
in R up to propositional equivalence of premises).

The generic PSPACE-algorithm of [2I] relies on a notion of strictly one-step
complete rule set. Rather than repeating the definition here, we recall that strict
one-step completeness follows from one-step completeness (i.e. TX, T = ¢ im-
plies =% 4 for all ¢ € Prop(Up,(V'))) in combination with resolution closedness.
The latter refers to a notion of rule resolution where propositional resolvents of
the conclusions of two rules are formed and the premises are combined by con-
junction, with possible subsequent elimination of propositional variables; cf. [21]
for a formal definition. As an example, consider the rules

a alhNb—c Ny ai — b

N Kn) yn
(M) Oa (RR) Oa A Ob — Oc (RE) Ni— Ba; — Ob

(n > 0).

The rule set {(NV), (RR)} presents the modal logic K, and its resolution closure
consists of the rules (RK,,). Cf. [2I] for further examples.

In [21], a shallow model property is proved based on strictly one-step complete
rule sets. The canonical semantics allows us to turn this into a shallow proof

property:
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Definition 25. A set X' of formulas is called closed if it is closed under sub-
formulas and negation, where ——¢ is identified with ¢. The smallest closed set
containing a given formula ¢ is denoted X(¢). A subset H of X' is called a Y-
Hintikka set if 1 ¢ H and, for g N € X, ¢ ANy € H iff ¢,¢ € H, and, for
~peX, ~pe Hiff ¢ ¢ H.

Theorem 26. Let L = (A,R), where R is resolution closed. Then . ¢ iff
for every X(¢)-Hintikka set H containing —¢, there exist a clause \/!_, €;L;p;
over X(¢) and a rule ¢/ \/?:l(eiLiai) in Re such that Fz Y[pi/aili=1,..n and
e;Lip; ¢ H for all i.

Theorem 26l implies that for £ as in the statement, every provable formula ¢ has
a tableau proof of linear depth which mentions only propositional combinations
of subformulas of ¢, in particular mentions only the modal operators contained

in ¢.

Remark 27. We hope to generalize Theorem 26lto more general classes of logics
(i.e. beyond rank 1), possibly using purely proof-theoretic methods. This would
also imply wider applicability of the generic PSPACE algorithm discussed below.

Corollary 28. Let £ = (A,R) be a rank-1 logic with R resolution closed, and let
Ao C A. Let Lo = (Ao, Ro) where Ry consists of all R-rules that only mention Ag-

operators. Then L conservatively extends Lo, i.e. @ &r ¢ implies that  Fr, ¢
for all p € F(Loy) and all & C F(Ly).

Applied to majority logic (Example [), this immediately leads to a complete
axiomatisation of the majority operator alone.

Example 29. In the presentation of [2I], a resolution closed set of rules for
majority logic (Example [A2]) was given, consisting of the rules

n v k w
D1 @it Y Gt m < Z]‘:l bj + > =1 ds

(Mm) n v k w
N Crai NN, Wer — \/j:1 O1,05 vV VL W

(me?Z)

with side conditions >, (k; + 1) — Z?:I l; + w— 1 — max(m,0) > 0 and
v—w+2m > 0 (the sums in the premise refer to the — propositionally expressible
— arithmetic of characteristic functions, cf. [21]). By Corollary 28 the rules

Z::1 Crt+m< Z?:l ds

(W) Neei Wer = VL W

(meZ)

with side conditions w — 1 —max(m,0) > 0 and v —w+2m > 0 form a complete
axiomatisation of the majority operator W.

Theorem suggests an obvious recursive algorithm for checking provability
(or, dually, consistency). In order to ensure that this algorithm is feasible, we
need to make sure that we never need to prove ‘small’ clauses by instantiating
propositional variables with identical formulas in ‘large’ rules. We thus further
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require reduction closedness of the rule set, in the sense that every rule instance
where a literal is duplicated in the conclusion can be replaced by an instance of
another rule where all literals are distinct; cf. [2I] for a formal definition.

The main result of [21] states that the satisfiability problem of a A-structure
T is in PSPACE if T has a strictly one-step complete reduction closed rule
set which is PSPACE-tractable, which essentially means that the rules applied
according to Theorem [26] have representations whose size is polynomial in the
matched clause and from which the clauses of the premise are easily extracted
(again, cf. [2I] for a formal definition). Applying this result to the canonical
L-structure, we obtain a purely syntactic criterion for a rank-1 logic to be in
PSPACE:

Theorem 30. The consistency (provability) problem of L = (A,R) is in
PSPACE if R has a resolution closure which has a PSPACE-tractable reduc-
tion closure.

6 Example: Deontic Logic

A typical application area for the above results are modal logics that come from
a philosophical background, such as epistemic and deontic logics, which are often
defined either without any reference to semantics at all or with a neighbourhood
semantics essentially equivalent to the canonical semantics described above. De-
ontic logics [§], which have received much recent interest in computer science as
logics for obligations of agents, are moreover often axiomatised in rank 1.

Standard deontic logic [3] is just the modal logic K'D. This has been criticized
on the grounds that it entails the deontic explosion: if O is the modal obligation
operator ‘it ought to be the case that’, the K-axiom (OaAOb) < O(aAb) implies
that in the presence of a single deontic dilemma, everything is obligatory, i.e.
Oa AO—-a — Ob. Some approaches to this problem are summarized in [5], where
the novel solution is advocated to restrict at least one direction of K to the case
that a A b is permitted, i.e. to P(a Ab), where P is the dual ~O- of O. This leads
to the axioms

(PM) O(a Ab) A P(laAb) — Oa
(PAND)  OaAObAP(aNb) — O(aADd)

(in [B], (PM) is formulated as a rule (RPM)). Two systems are proposed (both
including the congruence rule): given the further axioms (N) OT, (P) -O_, and

(ADD) (Oa AN Ob) — O(a A b),

DPM.1 is determined by (PM), (N), and (ADD), while DPM.2 is given by (PM),
(PAND), (N), and (P). A further system PA, consisting of (PAND), (P), (N),
and the standard monotonicity axiom is rejected, as it still leads to a form of
deontic explosion where everything permitted is obligatory in the presence of
a dilemma.



584 L. Schréder and D. Pattinson

It is shown in [5] that DPM.1 and DPM.2 are sound and weakly complete
w.r.t. the obvious classes of neighbourhood frames, and that both logics are de-
cidable; the proofs are rather involved. In our framework, the situation presents
itself as follows. The neighbourhood semantics of [5] is easily seen to be precisely
the canonical semantics; the new insight here is that the semantics is coalgebraic.
The rest is for free: by Theorem [[4] both DPM.1 and DPM.2 are even strongly
complete (the reason that the strong completeness proof fails in [5] is that an ex-
plicit construction of a canonical model is attempted). Decidability is immediate
by Corollary 24} the finite model property (proved in [5] using filtrations) follows
from the results of [20]. Moreover, the resolution closures of DPM.1 and DPM.2
enjoy the pleasant proof theoretic properties listed in Theorem (The same
holds for PA, and in fact for rather arbitrary variations of the axiom system.) A
challenge that remains is to establish that DPM.1 and DPM.2 are in PSPACE
by the method described at the end of the previous section, the main problem
being to harness closure under reduction.

7 Conclusion

We have established that every modal logic £ of rank 1 has a canonical coal-
gebraic semantics for which £ is sound and strongly complete. Moreover, £
has a canonical finitely branching coalgebraic semantics for which £ is sound
and weakly complete and has the Hennessy-Milner property, and from which
all finitely branching semantics for which £ has the Hennessy-Milner property
are obtained as substructures. This is a converse to the previous insight that
every coalgebraic modal logic can be axiomatized in rank 1 [20]. It allows us
to formulate purely syntactic versions of semantics-based generic decidability
and complexity criteria for coalgebraic modal logic [20] 2], including e.g. the
result that every recursively axiomatised rank-1 logic with finitely many modal
operators is decidable. We have applied this framework to recently defined ver-
sions of deontic logic which accommodate deontic dilemmas [5]. In particular, we
have obtained decidability and strong completeness for these logics as immediate
consequences of our generic results, while the original work has rather involved
proofs and moreover establishes only decidability and weak completeness. Ap-
plication of the generic PSPACE upper bound [21] to these logics remains an
open problem.

We emphasise that the restriction to rank 1 is not an inherent limitation of
the coalgebraic approach — the fact that coalgebraic modal logics are of rank 1
is due to the interpretation of these logics over the whole class of coalgebras
for the relevant functor (in analogy to the standard modal logic K), and logics
outside rank 1 may be modelled by passing to suitable subclasses of coalgebras.
Ongoing work is aimed at pushing the generic results beyond strict rank 1;
preliminary results have been obtained for axioms that combine rank 1 with
rank 0, i.e. a coalgebraic counterpart of KT. A further point of interest is to
obtain completeness and decidability results for coalgebraic modal logics with
iteration, i.e. the coalgebraic counterpart of CTL.
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