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ABSTRACT. Rank 2 arithmetically Cohen-Macaulay vector bundles on a gen-
eral quintic hypersurface of the three-dimensional projective space are classified.

1. INTRODUCTION

Let Y ⊂ Pm be a smooth n-dimensional projective variety, embedded by
OY (1), with n > 0. Assume that the coordinate ring RY is Cohen-Macaulay, and
take a vector bundle E on Y . Then the bundle E is called arithmetically Cohen-
Macaulay (ACM) if it has no intermediate cohomology, i.e. if:

Hp(Y, E(t)) = 0, for p 6= 0, n and for all t ∈ Z.

It is natural to ask whether it is possible to classify ACM bundles on a fixed
variety Y . By the results of Horrocks [Hor64] and Knörrer in [Knö87] the answer
is affirmative when Y is a projective space or a smooth quadric hypersurface. On
the other hand, very few varieties are of finite Cohen-Macaulay type. Namely,
by the result of [BGS87] and [EH88], the set of isomorphism classes of ACM
indecomposable bundles over Y is infinite (up to twist by OY (t)) unless Y is: a
rational normal curve, a projective space, a smooth quadric, a Veronese surface in
P4, or a the rational normal scroll S(1, 2) in P4.

Considerable efforts have thus been driven toward a classification of ACM bun-
dles, at least of low rank (say of rank 2), on some special classes of varieties. Sev-
eral techniques are available to approach the problem. To mention a few: derived
categories (see for instance the paper [AO91]); quivers and matrix factorization
(see [Eis80], [Knö87], [Yos90]); liaison theory (see [CH04], [CDH05]); computer-
aided algebra (e.g. Schreyer’s appendix to [Bea00], see also [Fae07]). One relevant
instance of available classifications is the case of prime Fano threefolds, taken up
in [Mad02], [AC00], [AF06], [Fae05], [BF08].

Even more attention has been paid to the case of hypersurfaces in Pm of de-
gree d, which we denote by Yd. Particularly pertinent to our study are the papers
[Mad00], [CM00], [CM04], [CM05], [MKRR07a], [MKRR07b]. If we summarize
the results obtained in the literature, we get that no rank 2 ACM indecomposable
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bundle exists on the general Yd for m ≥ 5, d ≥ 3, and for m = 4, d ≥ 6. More-
over, the geometry of these bundles has been studied in great detail in case m = 4,
d ≤ 4, see for instance the papers [Dru00], [IM00a], [IM00b].

Let us now consider the question for surfaces in P3 of degree d. For d = 1, 2,
we have seen that the issue is settled by Horrocks and Knörrer. For d = 3, 4
the classification follows from [Mad00], [Fae08]. However, the problems remains
wide open for d ≥ 5, except the specific case of bundles admitting a resolution by
linear forms, and even this case can be managed only with the aid of the computer,
see [Bea00].

This paper is devoted to the classification of ACM bundles of rank 2 on a general
quintic surface X . After choosing an initial twist for the bundle E , we completely
classify the pairs of integers which are the Chern classes of an indecomposable
rank 2 ACM bundle over a general quintic surface. More precisely, fix a twist the
bundle E so that H0(X, E(−1)) = 0, H0(X, E) 6= 0 (then E is called initialized).
Our main result is the following:

Theorem. On the general quintic surface X ⊂ P3 there exist initialized indecom-
posable ACM bundles E of rank 2 with the following invariants:

(1.1)
c1(E) −2 −1 0 0 0 1 1 1 2 2 2 2 3 4

c2(E) 1 2 3 4 5 6 8 10 11 12 13 14 20 30

Moreover, these are the only possible Chern classes for such E . The bun-
dle E is stable for c1(E) > 0 and the moduli space of semistable sheaves
MX(2; c1(E), c2(E)) is smooth of the expected dimension at a general point.

Observe that these are also the possible Chern classes of initialized indecom-
posable rank 2 ACM bundles on a general quintic threefold in P4. We do not know
however, for general threefold hypersurfaces of degree 5, if bundles with all the
listed Chern classes actually exist. See [CM05] for a discussion.

Our first method is to degenerate the surface Yd to a reducible surface Yd−1∪H ,
where H ⊂ P3 is a plane. This allows to take care of the cases with c1 ≤ 2 in
(1.1) by an inductive argument. Since this fails for higher c1(E), we introduce a
second degeneration. The idea is to prove the existence on a quintic surface X of
the bundles with the desired property (i.e. with H1(X, E(t)) = 0 for all t ∈ Z) by
deforming a rank 2 bundle F with some nonvanishing intermediate cohomology.
More precisely, we take a general deformation of a bundle F whose cohomology
is as close as possible to the ACM condition, namely only h1(X,F) = 2 (for
c1(F) = 3) or h1(X,F) = h1(X,F(−1)) = 1 (for c1(F) = 4).

In the next section we fix some notation and review some basic results. In Sec-
tion 3 we introduce our inductive method. In Section 4 we write down some general
bounds for ci(E). Section 5 summarizes the classification of ACM bundle of rank
2 on surfaces of degree ≤ 4, while Section 6 contains the proof of our result in the
case c1(E) ≥ 3.
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2. NOTATION AND BASIC RESULTS

We will work on an algebraically closed field k of characteristic zero. The letter
R will denote the coordinate ring of P3, i.e. the polynomial ring in 4 variables,
and R(t) will be its graded piece of degree t. Given a subscheme Z ⊂ P3, IZ will
denote the ideal of Z in R. We will write RZ for the coordinate k-algebra R/IZ ,
and RZ(t) for its homogeneous degree t piece.

A subscheme Z ⊂ P3 is called arithmetically Gorenstein (aG) ifRZ is a Goren-
stein ring. If the subscheme Z is a complete intersection (ci), of hypersurfaces of
degree d1, d2, d3, then its type will be the triple of integers (d1, d2, d3). We will
consider the difference Hilbert function attached to Z:

∆ h(RZ , t) = dimkRZ(t)− dimkRZ(t− 1).

We will consider mainly aG subschemes of codimension three. A description
of the resolution of their ideals follows from the Buchsbaum–Eisenbud structure
theorem (see [BE77]).

As a matter of terminology, any claim about the general element of a given
family will mean that there exists a Zariski closed subset of the relevant parameter
space such that the claim holds in the complement of this set. The parameter space
will often be implicit, for example we will choose the general hypersurface of
degree d in P3 in an open subset of |OP3(d)|.

Let Yd be a surface of degree d in P3, given by a homogeneous polynomial Fd
inR(d) = H0(P3,OP3(d)). We will assume that Yd general enough, to be smooth,
and for d ≥ 4, to have Picard number one. The canonical line bundle of Yd is
then ωYd ' OYd(d − 4). We will identify Pic(Yd) with Z = 〈H〉, where H is the
restriction to Yd of the hyperplane class c1(OP3(1)). For any sheaf E on Yd, the
first Chern class c1(E) can then be identified with an integer. The second Chern
class c2(E) of E will be a multiple of the class of a point in Yd - and thus it will
also be denoted by an integer. We write E(t) for E ⊗OYd(1)⊗ t.

Given a subscheme Z ⊂ Yd ⊂ P3, the symbol IZ,Yd , sometimes simplified to
IZ , will denote the ideal sheaf of Z in Yd. We have the exact sequence:

(2.1) 0→ IZ → OYd → OZ → 0.

Given a coherent sheaf F on a projective variety Y , we will write
hk(Y,F) for the dimension of the cohomology group Hk(Y,F). We will of-
ten omit the dependence on Y . The Euler characteristic χ(F) is defined as∑

k=0,...,dim(Y )(−1)k hk(Y,F). We will denote the moduli space of semistable
sheaves on Y of rank r, with Chern classes c1, c2 by MY (r; c1, c2). We refer to
[HL97] for an account on this notion.

Definition 2.1. For a sheaf E on the surface Yd, define the initial twist as the integer
n such that H0(Yd, E(n)) 6= 0 and H0(Yd, E(n − 1)) = 0. The sheaf E is called
initialized if its initial twist is zero, i.e. if h0(Yd, E) > h0(Yd, E(−1)) = 0.

In some paper on the same subject (e.g. [Mad98]), bundles satisfying the previ-
ous property are called normalized. We prefer to switch to a new terminology, for
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in some classical paper on bundles (e.g. [Har77]), the word normalized has been
used with a different meaning.

Remark 2.2. If E is a bundle on Yd, of rank r, by Riemann-Roch we have:

c1(E(t)) = c1(E) + r t,(2.2)

c2(E(t)) = c2(E) + c1(E) (rk(E)− 1) d t+

(
r

2

)
d t2,(2.3)

χ(E) = −c2(E) +
d

6
(3 c1(E) (c1(E) + 4− d) + r (11− 6 d+ d2)).(2.4)

The following theorem summarizes well-known results about the Serre corre-
spondence between (aG) zero-dimensional locally complete intersection (lci for
short) subschemes Z ⊂ Yd and (ACM) rank 2 bundles on Yd. We refer to [HL97,
Theorem 5.1.1] for a proof.

Theorem 2.3. Let Z ⊂ Yd be a zero-dimensional lci subscheme of Yd, and let c be
an integer. Then the following are equivalent:

i) There exist a rank 2 vector bundle E with c1(E) = c and an extension:

(2.5) 0→ OYd(−c)→ E∗ → IZ → 0.

ii) The pair (OYd(d+ c− 4), Z) has the Cayley-Bacharach property i.e. for any
section s ∈ H0(Yd,OYd(d + c − 4)), and for any Z ′ ⊂ Z with len(Z ′) =
len(Z)− 1, we have s|Z = 0⇔ s|Z′ = 0.

Remark 2.4. The exact sequence (2.5) amounts to the Koszul complex associated
to the section sZ ∈ H0(Yd, E) vanishing along Z. We say that E is associated to
Z. So, a general global section of E vanishes on a subscheme of length len(Z).
Notice that dualizing (2.5) we obtain the exact sequence:

(2.6) 0→ OYd
s−→ E → IZ(c)→ 0.

In particular, when E is initialized, we have:

(2.7) h0(Yd, IZ(c− t)) = 0 ∀t > 0.

Equivalently, E is initialized if and only if Z lies in no surfaces of degree e for
e ≤ c.

The following theorem is essentially well-known, so we only sketch a bit of the
proof. For general reference on aG subschemes and difference Hilbert functions
we refer to the book [IK99].

Theorem 2.5. In the previous setting, the following statements are equivalent:

a) The scheme Z is aG;
b) For all t, we have dimkRZ(t) + dimkRZ(c1(E) + d− 4− t) = len(Z);
c) For all t, we have ∆ h(RZ , t) = ∆ h(RZ , c1(E) + d− 3− t);
d) The bundle E is ACM.
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Proof. The equivalence of (a) and (b) is proved in [DGO85]. To see (b)⇔ (c), just
notice that:

∆ h(RZ , t)−∆ h(RZ , s− t) = dimkRZ(t) + dimkRZ(s− 1− t)−
−(dimkRZ(t− 1) + dimkRZ(s− t)),

so, setting s = c1(E) + d − 4, we get that (c) holds if and only if dimkRZ(t) +
dimkRZ(c1(E) + d − 4 − t) is constant in t. But this constant equals len(Z) for
dimkRZ(t) = len(Z), for big enough t. To see (b) ⇔ (d), we twist by OYd(t)
the sequence (2.5) and take global sections. The cokernel of the transpose of the
induced map H2(Yd, IZ(t)) ' H2(Yd,OYd(t)) → H2(Yd, E∗(t)) agrees, by Serre
duality, with H0(Yd, IZ(d + c1(E) − 4 − t)). Then we compute h1(Yd, E∗(t)) =
h1(Yd, IZ(t))−dimkRZ(d+c1(E)−4− t). But since h1(Yd, IZ(t)) = len(Z)−
dimkRZ(t), we see that h1(Yd, E∗(t)) is zero for all t if and only if condition (b)
is satisfied. �

Remark 2.6. Of course we have H0(Yd,OZ(t)) = RZ(t) = 0 for all negative t,
so by Theorem 2.5, part (c) we get the following equalities:

∆ h(RZ , t) = 0, for t < 0 and for t > c1(E) + d− 3;(2.8)

dimkRZ(t) = len(Z), for t ≥ c1(E) + d− 3.

Similarly one obtains ∆ h(RZ , c1(E) + d− 3) = ∆ h(RZ , 0) = 1. In turn, this
implies dimkRZ(c1(E) + d− 4) = d− 1. We get:

(2.9) h1(Yd, IZ(c1(E) + d− 4)) = 1.

Furthermore, we have:

(2.10) len(Z) =

c1+d−3∑
t=0

∆ h(RZ , t).

Following [Bea00, page 18], given an aG subscheme Z of P3, we will call index
of Z the integer iZ such that ∆ h(RZ , t) = ∆ h(RZ , iZ + 1− t), for all t. It is the
largest integer j such that dimkRZ(j) < len(Z). If Z is the zero locus of a global
section of a bundle E on Yd with c1(E) = c, we have:

iZ = c+ d− 4.

Remark 2.7. The bundle E∗ provides an element of the extension group
Ext1(IZ ,OYd(−c1)). By Serre duality we have:

(2.11) Ext1(IZ ,OYd(−c1))∗ ' H1(Yd, IZ(d+ c1(E)− 4)).

Hence by (2.9) the group Ext1(IZ ,OYd(−c1)) has dimension 1. Then, to the
aG subscheme Z ⊂ X we associate a pair [EZ , sZ ], where EZ fits in the extension
(2.5) and is uniquely determined, and sZ is a global section of EZ (determined up
to a nonzero scalar), and Z = {sZ = 0}.

Remark 2.8. A rank 2 bundle E on Yd is decomposable into a direct sum of line
bundles if and only if, for some integer a, there is a global section s ∈ H0(Yd, E(a))
such that the cokernel of the induced map s : OYd → E(a) is isomorphic to
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OYd(c1(E(a))), i.e. the 0-locus is empty. From the point of view of subschemes,
Z ⊂ Yd is a complete intersection of Yd and two more surfaces if and only if its
associated rank 2 bundle decomposes.

Note that, if an aG subscheme Z is contained in a plane H , it determines an
rank 2 ACM bundle E defined on H , so E splits by Horrocks’ criterion and Z is
complete intersection in P3.

The following result was proved by Beauville in [Bea00], and is analogous to
Buchsbaum-Eisenbud structure theorem. It allows to relate rank 2 ACM bundles
over the hypersurface Yd to skew-symmetric matrices whose determinant has de-
gree 2 d defined on P3. Recall that, to a skew-symmetric matrix f it is associated a
polynomial Pf(f), the Pfaffian of f , with det(f) = Pf(f)2.

Theorem 2.9. Let Yd ⊂ P3 be a smooth surface defined by the homogeneous form
Fd, E be a rank 2 ACM bundle on Yd with c1(E) = c1H . Let ι : Yd ↪→ P3 be
the inclusion. Then the sheafified minimal graded free resolution of the sheaf ι∗(E)
takes the form:

0→ P(E)∗(c1 − d)
f(E)−−→ P(E)

p(E)−−→ ι∗(E)→ 0,

where P(E) =
⊕r

i=1OP3(ai), f(E) is skew-symmetric, and Pf(f(E)) = Fd.
Conversely, given P =

⊕r
i=1OP3(ai) and a general skew-symmetric matrix

f : P∗(c1 − d) → P, with Pf(f) = Fd, the sheaf E = coker(f) is a rank 2 ACM
bundle, defined on the surface Yd given by Fd, with c1(E) = c1H .

3. A DEGENERATION LEMMA

For any variety Y , we denote with Hilbm(Y ) the Hilbert scheme parametriz-
ing closed subschemes of Y of finite length m. Recall that the Hilbert scheme
parametrizing closed subschemes of length m of any smooth surface, is a smooth
irreducible projective variety of dimension 2m (see for instance [HL97, pag. 104]).

Denote by G(m, i) the subset of the Hilbert schemes Hilbm(P3) parametrizing
length m subschemes of P3 consisting of aG schemes of index i. These varieties
are well understood in view of Buchsbaum-Eisenbud’s structure theorem [BE77].
In particular, the number and the dimension of the irreducible components of this
locally closed subset of Hilbm(P3), are well-known, see [Die96] and [IK99]. In
particular a component of G(m, i) is given once we fix the Hilbert function h of
RZ . We denote such a component by Gh(m, i). Write G(m, i, d) for the incidence
variety consisting of pairs (Z, Y ), with Y ∈ |OP3(d)|, Z ∈ G(m, i) and Z ⊂ Y .

Remark 3.1. For any triple of integers (m, i, d), we have the incidence diagram:

(3.1) G(m, i, d)
qd

wwppp
ppp

p pm,i,d

''OOOOOOO

G(m, i) |OP3(d)|.

The fibre p−1
m,i,d(Yd) consists of the family of aG subschemes Z ⊂ Yd, of length

m and index i, while q−1
d (Z) is isomorphic to P(H0(P3, IZ,P3(d))). In view of
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Theorem 2.5, we conclude that the ACM bundle E having Chern classes c1 =
c1(E) and c2 = c2(E) is defined on the general hypersurface of degree d if, setting
m = c2, i = c1+d−4, the map pm,i,d in the diagram (3.1) is dominant. Computing
dimensions in the same diagram, we get that p = pm,i,d is dominant if and only
if, for some Hilbert function h, p−1(Yd) has a component F where the following
holds: (

d+ 3

3

)
+ dim(F ) = dim(Gh(m, i)) + h0(Yd, IZ,Yd(d)).

Summing up we have the criterion:

the map p = pm,i,d
is dominant

⇐⇒ there exists Yd ∈ |OP3(d)| such that p−1(Yd) has a
component of dimension dim(Gh(m, i))− dimkRZ(d)

The following lemma introduces an inductive method on the degree d, to prove
that the map pm,i,d is dominant. Unfortunately the numerical assumption c1 ≤ 3
limits its range of applicability.

Lemma 3.2. Fix integers d,m and fix c1 ≤ 3. Set i = c1 + d − 4. Suppose that
the map p = pm,i,d of diagram (3.1) is dominant for general subschemes Z ⊂ P3

contained in general fibres of p. Then p′ = pm,i,d+1 is also dominant.

Proof. We would like to provide a surface of degree d + 1 satisfying the criterion
introduced above. We start by taking a general surface Yd of degree d, which we
may assume to lie in the image of p by the hypothesis.

In view of the criterion of Remark (3.1), we are allowed to choose a component
G of the quasi-projective scheme G(m, i), and a component F of p−1(Yd) such
that:

dim(F ) = dim(G)− dimkRZ(d).

Now, take the reducible hypersurface Y d+1 defined as the union of the general
hypersurface Yd given above and a general plane in P3. The condition c1 ≤ 3
entails dimkRZ(d) = dimkRZ(d + 1), indeed dimkRZ(t) = len(Z) = m for
any t ≥ c1 + d− 3.

Notice that, up to restriction to an open dense subset of the domain, the map qd+1

is equivalent to a Pk-bundle onto the given component G, where k = h0(IZ(d +
1)) − 1, for a general element Z ∈ G. Indeed, the Hilbert function is constant on
the components of G(m, i). Therefore the total space q−1

d+1(G) is irreducible, and
we consider the restriction of p′ to this space. Observe also that the component F
can be seen as a component of (p′)−1(Y d+1) as well, since a general plane H will
not meet the subscheme Z, so that a subscheme in the neighborhood of Z lies in
Yd if and only if it lies in Y d+1.

Then we are in position to apply [Har77, 3.22.b page 95]. This yields, for a
general fibre of p′ around Y d+1:

dim(p′)−1(Yd+1) ≤ dim p−1(Yd) =

= dim(G(m, i))− dimkRZ(d) =

= dim(G(m, i))− dimkRZ(d+ 1).

(3.2)
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We conclude that the dimension of the image of p′ equals at least the dimension
of |OP3(d+ 1)|. Then equality must hold and p′ is dominant. �

4. GENERAL BOUNDS FOR CHERN CLASSES OF RANK 2 ACM BUNDLE

In the following proposition, we determine the range of c1(E), for an indecom-
posable rank 2 ACM bundle E on a degree d surface Yd ⊂ P3. The value of c2(E) is
uniquely determined only in the two maximal and minimal alternatives for c1(E).
Otherwise, c2(E) can be bounded form above and from below, see Proposition 4.2.

Proposition 4.1. Let Yd as above, d ≥ 4 and let E be a initialized indecomposable
rank 2 ACM bundle over Yd. Then any nonzero section of E vanishes over a zero-
dimensional, locally complete intersection subscheme Z ⊂ Yd with len(Z) =
c2(E) and we have:

(4.1) 3− d ≤ c1(E) ≤ d− 1.

Moreover, we have the implications:

c1(E) = 3− d⇐⇒ c2(E) = 1,(4.2)

c1(E) = 4− d⇐⇒ c2(E) = 2,(4.3)

c1(E) = d− 2 =⇒ c2(E) =
d (d− 1) (d− 2)

3
,(4.4)

c1(E) = d− 1 =⇒ c2(E) =
d (d− 1) (2 d− 1)

6
.(4.5)

Proof. The inequalities (4.1) are similar of the main theorem of [Mad98], where
the same bounds are proved for hypersurfaces with Picard group Z.

Fix a global section s ∈ H0(Yd, E). We have Im(s) 6= OYd by Remark 2.8.
i.e. Z is not empty. If Z contains a divisor A ∈ |OYd(a)|, with a ≥ 1, then
IZ ⊂ OYd(−a), so that h0(Yd, E(−a)) 6= 0, contradicting the hypothesis that E is
initialized. Thus s vanishes in codimension 2, so len(Z) = c2(E) ≥ 1.

Since dimkRZ(t) = 0 for t ≤ −1, applying property (b) of Theorem 2.5
to E , with t = −1, one gets dimkRZ(c1(E) + d − 3) = len(Z) > 0, hence
c1(E) ≥ 3− d. Furthermore, when c1(E) = 3− d (resp. c1(E) = 4− d), again by
property (b) of Theorem 2.5 for t = 0, we get len(Z) = dimkRZ(0) = 1 (resp.
len(Z) = 2 dimkRZ(0) = 2). So (4.2) and (4.3) follow. On the other hand, if
c1(E) ≥ d− 1, we have:

h2(Yd, E(−2)) = h0(Yd, E∗⊗ωYd) = h0(Yd, E(d− c1(E)− 2)) = 0,

for E is initialized. Since E is ACM, and by duality h2(Yd, E(−1)) ≤
h2(Yd, E(−2)), this implies that:

χ(E(−2)) = χ(E(−1)) = 0.

Solving the above equations in c1(E) and c2(E), using Formula (2.4) one easily
obtains (4.5) and (4.4). �

In Proposition 4.1, (4.5) and (4.4) are called, respectively, the maximal and sub-
maximal cases.
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Proposition 4.2. Let Yd and E be as above, d ≥ 4, set c1 = c1(E) and c2 = c2(E).
Then we have the following bounds on c2.

Lower bound: We distinguish the two cases:

c1 ≤ 0 =⇒ c2 ≥ c1 + d− 2,(4.6)

c1 ≥ 1 =⇒ c2 ≥
c1

6
(c1 + 1) (3 d− c1 − 2).(4.7)

Upper bound: According to the parity of c1 + d− 3 we have:

c1 + d− 3 = 2 ` =⇒ c2 ≤
(`+ 1) (`+ 2)

6
(2 `+ 3),(4.8)

c1 + d− 3 = 2 `− 1 =⇒
{
c2 ≤ (`+1) (`+2)

3 `,
c2 is even.

(4.9)

Proof. Take a nonzero global section of E and consider its vanishing locus Z. We
have len(Z) = c2. Recall that the difference Hilbert function ∆ h(RZ , t) is con-
cave and symmetric by Theorem 2.5, part (c).

In case c1 ≤ 0, the lower bound (4.6) amounts to ∆ h(RZ , t) being greater or
equal than 1 for all t between 0 and iZ + 1 = c1 + d − 3. Equality is achieved
for ∆ h(RZ , t) constantly equal to 1, for 0 ≤ t ≤ c1 + d − 3. Such a subscheme
has length c1 + d − 2 and is contained in a line, for dimkRZ(1) = 2, hence
H0(IZ(1)) = 2 by sequence (2.1).

Now, if c1 ≥ 1, by [IK99, Theorem 5.25], we can divide the summation interval
0 ≤ t ≤ c1 + d− 3 into three subintervals:

i) increasing: t ∈ I1 := [0, c1 − 1];
ii) concave: t ∈ I2 := [c1, d− 3];

iii) decreasing: t ∈ I3 := [d− 2, c1 + d− 3];

Notice that:

t ∈ I1 ⇐⇒ c1 + d− 3− t ∈ I3.

So, using property (c) of Theorem 2.5, we obtain:∑
t∈I1

∆ h(RZ , t) =
∑
t∈I3

∆ h(RZ , t).

Putting this into (2.10), we get len(Z) = 2
∑

t∈I1 ∆ h(RZ , t) +∑
t∈I2 ∆ h(RZ , t). Formula (2.7) shows that h0(Yd, IZ(c1 − 1 − t)) = 0, for

all t ≥ 0, so ∆ h(RZ , t) agrees with ∆ h(R, t) =
(
t+2

2

)
for all t in I1 and∑

t∈I1 =
(
c1+2

3

)
.

In the interval I2, see (ii), the function ∆ h(RZ , t) takes value at least
(
c1+1

2

)
since ∆ h(RZ) is concave (see [IK99]). So

∑
t∈I2 ∆ h(RZ , t) is bounded below

by this value, multiplied by the length of the interval (i.e. c1 + d − 2). Summing
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this to the above value for the intervals I1 and I3 we obtain:

(4.10) c2(E) = len(Z) = 2
∑
t∈I1

∆ h(RZ , t) +
∑
t∈I2

∆ h(RZ , t) ≥

≥ c1

3
(c1 + 1) (c1 + 2) +

c1

2
(c1 + 1) (d− c1− 2) =

c1

6
(c1 + 1) (3 d− c1− 2).

Now let us prove the upper bounds. For (4.8), observe that ∆ h(RZ , t) is
bounded above by

(
t+2

2

)
. Using again the symmetry of the difference Hilbert func-

tion and formula (2.10) we get:

(4.11)

c2(E) = len(Z) = ∆ h(RZ , `) +
( `−1∑
t=0

∆ h(RZ , t) +
2∑̀

t=`+1

∆ h(RZ , t)
)

=

= ∆ h(RZ , `)+2

`−1∑
t=0

∆ h(RZ , t) ≤
(
`+ 2

2

)
+2

(
`+ 2

3

)
=

(`+ 1) (`+ 2)

6
(2 `+3).

The case (4.9) is proved analogously; one just needs to observe that the summa-
tion interval for ∆ h is symmetric, so len(Z) is even. �

Remark 4.3. On any Yd, d ≥ 2 there exist initialized indecomposable rank 2
ACM bundles with minimal first Chern class c1(E) = 3 − d, c2(E) = 1. Namely,
let ι : Yd ↪→ P3 be the inclusion, take a point y ∈ Yd and observe that Z = {y}
is an aG subscheme of Yd, and the pair (OYd(−1), Z) has the Cayley-Bacharach
property. We obtain a bundle Ey (indecomposable for y is not ci), and the exact
sequences:

0→ OYd(d− 3)→ E∗y → Iy → 0,(4.12)

0→
OP3(3− 2 d)

⊕
OP3(1− d)3

→
OP3

⊕
OP3(2− d)3

→ ι∗(Ey)→ 0.(4.13)

Similarly, a length-2 subscheme Z2 ⊂ Yd, Z2 is aG and the pair (OYd , Z2) has
the Cayley-Bacharach property. So, on Yd it is defined an rank 2 ACM bundle EZ2

with c1(EZ2) = 4− d, c2(EZ2) = 2. The bundle EZ2 is indecomposable for d ≥ 3
and we have the exact sequences:

0→ OYd(d− 4)→ E∗Z2
→ IZ2 → 0.(4.14)

0→

OP3(4− 2 d)
⊕

OP3(1− d)2

⊕
OP3(2− d)

→

OP3

⊕
OP3(3− d)2

⊕
OP3(2− d)

→ ι∗(EZ2)→ 0.(4.15)

These resolutions are obtained via a standard mapping cone construction from
the obvious resolutions of the ideal sheaves Iy, IZ2 . The fact that the previous
bundles are initialized follows immediately from their resolutions.
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Proposition 4.4. Let E be an initialized indecomposable rank 2 ACM bundle on
Yd, d ≥ 4, and suppose c1(E) = 5−d. Then we have: c2(E) ∈ {3, 4, 5}. A general
section of E vanishes, respectively, along a length 3 ci subscheme of type (1, 1, 3),
a length 4 ci subscheme of type (1, 2, 2), and a length 5 subscheme in Yd contained
in 5 independent quadrics.

All the three possibilities take place on any smooth surface Yd.

Proof. Let Z be a nonzero section of E . Since E is ACM, property (c) of Theorem
2.5 gives ∆ h(RZ , t) = ∆ h(RZ , 2 − t), so ∆ h(RZ , 2) = 1. Furthermore, we
have 1 ≤ ∆ h(RZ , 1) ≤ 3, hence c2(E) = len(Z) runs between 3 and 5.

If c2(E) = 3 (i.e. if ≤ ∆ h(RZ , 1) = 1), then h0(IZ(1)) = 2. This means
that Z is contained in a line and therefore it is ci. Similarly, c2(E) = 4 implies
h0(IZ(1)) = 1, so Z is contained in a plane and thus it is complete intersection.
In case c2(E) = 5, we have h0(IZ(1)) = 0 and h0(IZ(2)) = 5, which means 5
independent quadrics.

Clearly, any hypersurface Yd contains 3 collinear points. Analogously, 4 general
coplanar points in Yd are aG. Finally, 5 general points in Yd are also aG, indeed
it suffices that they are non coplanar, for in this case ∆ h(RZ , t) takes the form
1, 3, 1. �

Proposition 4.5. Let E be an initialized indecomposable rank 2 ACM bundle on
Yd, d ≥ 5, and suppose c1(E) = 6− d. Let Z be the vanishing locus of a nonzero
section of E . Then we have: c2(E) ∈ {4, 6, 8}. If c2(E) ∈ {4, 6}, then Z is a ci
subscheme of type (1, 1, 4), (1, 2, 3). If c2(E) = 8, then Z is contained in three
independent quadrics (and no hyperplane).

All the above possibilities take place over a general hypersurface Yd.

Proof. By Theorem 2.5, in our hypothesis the function ∆ h(RZ) takes one of the
three possible forms: 1, 1, 1, 1 or 1, 2, 2, 1 or 1, 3, 3, 1. In the first two cases the aG
subscheme Z is contained in a plane and thus it is a complete intersection, see Re-
mark 2.8. In the third case, i.e. if c2(E) = 8, then looking at the function ∆ h(RZ),
one sees that Z is contained in three independent quadrics and no hyperplane.

For the second statement, of course any Yd contains 4 collinear points. More-
over, intersecting Yd with a conic C contained in a general plane, one gets 2 d
points on C. Choosing Z to be the union of 6 of them, one can find a cubic inter-
secting C at Z, so we find the subscheme Z ⊂ Yd of type (1, 2, 3). To deal with
the case c2(E) = 8, we can use Lemma 3.2, indeed Z is contained in no hyper-
plane and c1 ≤ 3. It suffices to prove that a general cubic surface Y3 contains the
subscheme Z8 in question. This is clear: just take an elliptic quartic contained in
Y3 and intersect with a general quadric to obtain Z8. �

Remark 4.6. We can say something more precise about the geometry of the sub-
schemes Z ⊂ Yd which are 0-loci of sections of an initialized rank 2 ACM bundle
E on Yd, d ≥ 4, with c1(E) = 6− d and c2(E) = 8.

Namely, assume that Z is a set of 8 points in very uniform position, on an
irreducible quadric Q. Then, up to generalization, either Z is a ci subscheme of
type (2, 2, 2), or it lies on a rational cubic curve C ⊂ Q.
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The first case holds when three independent quadrics containing Z intersect in
a finite set of points. The second one takes place when all the quadrics through Z
contain a common curve.

Observe that both cases occur a general Yd. Indeed, we proved above that the
second one occurs. But since the second case is a degeneration of the first one (see
[IK99, Theorem 5.25]), then also the first case takes place by diagram (3.1).

5. RANK 2 ACM BUNDLES ON SURFACES OF DEGREE UP TO 4

Let us summarize here the well-known classification of rank 2 ACM bundles on
a general surface Yd ⊂ P3 of degree d, for all d ≤ 4.

For d = 2, Y2 is a smooth quadric Q ∼= P1 × P1, and any ACM bundle splits
as a direct sum of twists of OQ(0, 0), OQ(1, 0) and OQ(0, 1). For d = 3 the result
is well-known by [Fae08]. The case d = 4 follows immediately from the classi-
fication of rank 2 ACM bundles on a smooth quartic threefold in P4, achieved by
Madonna in [Mad00]. We reproduce here these results and sketch an easy proof for
the case d = 4. In the following theorem, in the column Difference Hilbert Func-
tion column, the tth place represents the integer ∆ h(RZ , t) (only non-zero values
are displayed). The column Resolution illustrates (an instance of) the generators
P(E) in the sheafified minimal graded free resolution of ι∗(E), in the framework of
Theorem 2.9. Note that, in order to write down the resolution, it suffices to show
the generators P(E), for the syzygies are given by P∗(c1 − d).

Theorem 5.1. Let E be an initialized, indecomposable, rank 2 ACM bundle over
a general surface Yd of degree d ∈ {3, 4} in P3, with c1(E) = c1H , let s be a
general section of E and set Z = {s = 0}. Then E and Z are among the types
summarized by the following table.

(5.1)
degree Chern Diff. Hilbert Function Resolution

3

c1(E) c2(E)

0 1
1 2
2 5

0 1 2

1
1 1
1 3 1

P(E)

OP3 ⊕OP3(−1)3

O3
P3 ⊕OP3(−1)
O6

P3

4

c1(E) c2(E)

−1 1
0 2
1 3
1 4
1 5
2 8
2 8
3 14

0 1 2 3 4

1
1 1
1 1 1
1 2 1
1 3 1
1 3 3 1
1 3 3 1
1 3 6 3 1

P(E)

OP3 ⊕OP3(−2)3

OP3 ⊕OP3(−1)2 ⊕OP3(−2)
O3

P3 ⊕OP3(−2)
O2

P3 ⊕OP3(−1)2

OP3 ⊕OP3(−1)5

O4
P3

O4
P3 ⊕OP3(−1)2

O8
P3

Moreover, any class in the table is non-empty.
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Proof. All the possibilities for the c1 are listed in the table, by the inequalities (4.1)
of Proposition 4.1. The list of possible c2 follows then by (4.2), (4.3), (4.4), (4.5) of
the same proposition, and by Proposition 4.2. The statement about the difference
Hilbert Function follows directly from Theorem 2.5.

Remark 4.3 and Proposition 4.4 prove the existence for c1 < 2. The remaining
cases are a consequence of the main theorem of [Mad00]. Indeed, in the paper, it
is proved that indecomposable ACM bundles with c1 = 2, c2 = 8 and c1 = 3,
c2 = 14 exist on any smooth quartic hypersurface Ỹ4 ⊂ P4. Then just take as Y4 a
hyperplane section of Ỹ4.

Alternatively, in order to prove existence for c1 = 2, c2 = 8 one just needs to
prove that a general quartic can be obtained as the Pfaffian of a skew-symmetric
matrix f : O4

P3(−2) → O4
P3 . Given a general matrix f, set ι(E0) = coker(f),

Y 0
4 = Pf(f), where ι : Y 0

4 ↪→ P3 is the natural embedding. Observe that E0 is a
stable bundle. By a parameter count, our claim is equivalent to the moduli space
MY 0

4
(2; 2, 8) being smooth of the expected dimension 10 at the point [E0]. But since

Y 0
4 is a smooth K3 surface, this is indeed the case, see for instance [HL97, Part II,

Chapter 6]. The same approach has been used by Beauville to prove existence in
the case c1 = 3, c2 = 14, see [Bea00, Lemma 7.7].

To compute the resolutions, whenever ∆ h(RZ , t) starts with 1, s, with s ≤ 2,
the scheme Z is contained in a plane, hence it is ci. The resolution of the ideal
sheaf IZ follows immediately. By a standard mapping cone construction, it is easy
to obtain the resolution of E as well. One settles similarly the case c2(E) = 5. For
the case c2(E) = 14, we see that the matrix f(E) of Theorem 2.9 can only have
linear entries, working as in [Fae08, Theorem 4.1]. Finally, in case c2(E) = 8,
we have two cases, according to whether Z is contained or not in a twisted cubic
curve: in both cases the resolution of E follows easily from that of IZ . On the other
hand, the matrix f(E) cannot have bigger size (say a square matrix of order 8), for
in this case Y4 would be a determinantal quartic, contradicting generality. �

6. RANK 2 ACM BUNDLES ON THE QUINTIC SURFACE

From now on, we will denote by X a general quintic surface in P3, embedded
in P3 by ι, defined by a homogeneous polynomial F of degree d = 5. We will
write E for an initialized indecomposable rank 2 ACM bundle on X . We have the
following result, whose proof amounts to writing the conditions of Proposition 4.2.

Proposition 6.1. Let E and X be as above. Then the Chern classes of E , and the
difference Hilbert function of the zero locus of a nonzero section Z of E fall into
one of the types summarized by the following table.
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(6.1)

Chern Difference Hilbert Function
c1(E) c2(E)

−2 1
−1 2
0 3
0 4
0 5
1 4
1 6
1 8
2 11
2 12
2 13
2 14
3 20
4 30

0 1 2 3 4 5 6

1
1 1
1 1 1
1 2 1
1 3 1
1 1 1 1
1 2 2 1
1 3 3 1
1 3 3 3 1
1 3 4 3 1
1 3 5 3 1
1 3 6 3 1
1 3 6 6 3 1
1 3 6 10 6 3 1

In the Difference Hilbert Function column, the tth place represents the integer
∆ h(RZ , t) (only non-zero values are displayed).

The rest of the paper is devoted to a detailed analysis of the above cases. We
will prove that all of these alternatives take place over the general hypersurface X .

Remark 6.2. In fact, we only need to prove the existence of bundles for the cases
where c1 ≥ 2. Indeed, the cases c1 = −2 and c1 = −1 follow by Remark 4.3. The
cases c1 = 0, 1 are covered by Proposition 4.4 and Proposition 4.5.

6.1. The case c1 = 2. Here we assume c1(E) = 2 and prove the existence of rank
2 ACM bundles whose second Chern class appears in Table (6.1).

Proposition 6.3. On a general quintic surface X there exists an indecomposable
rank 2 ACM bundle E with Chern classes c1 = 2 and c2, for any c2 ∈ {11, . . . , 14}.

Proof. Going back to Diagram (3.1) of Remark 3.1, we need to prove that the map
pm,i,d is dominant, for any triple (m, i, d) = (m, 3, 5), with m = 11, . . . , 14. In
other words, we need to prove the existence, on a general quintic surface, of an aG
set of points with index 3 and degree m = 11, . . . , 14.

We will use Lemma 3.2, and start working on a surface of degree 4, indeed we
are assuming c1 = 2. So take a general quartic hypersurface Y4 in P3 and let Zm
be an aG subscheme Zm ⊂ Y4 with iZm = 3 and len(Zm) = m. We have thus an
exact sequence:

(6.2) 0→ OY4(−3)→ E∗m → IZm → 0,

where, by Theorem 2.5, the sheaf Em is a rank 2 ACM stable bundle, with
c1(Em) = 3 and c2(Em) = m. One sees easily that h0(Y4, E∗m(2)) = 14 − m.
Thus, Em is initialized if and only if m = 14. On the other hand, looking at Table
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(6.1), we assume m ≥ 11. So we distinguish the two cases c2(Em) = m = 14, or
c2(Em) = m ∈ {11, 12, 13}.

Case 1. On a general surface X of degree 5 there exists an initialized stable rank
2 ACM bundle Em with c1(Em) = 2 and c2(Em) = m, for m ∈ {11, 12, 13}.

Proof. In view of the previous discussion, it suffices to check that a general hyper-
surface Y4 contains an aG subscheme Zm with the required Hilbert function.

By Theorem 5.1, over Y4 one has rank 2 ACM bundles E` with c1(E`) = 1 and
c1(E`) = `, for ` ∈ {3, 4, 5}. By Lemma 2.2, we have:

c1(E`(1)) = 3, c2(E`(1)) = `+ 8 ∈ {11, 12, 13}.

Set F`+8 := E`(1). Of course, the bundle Em is also ACM, so the zero locus of
a general section of Em vanishes along the required aG subscheme. �

Case 2. On a general surface X of degree 5 there exists an ACM stable initialized
rank 2 bundle E with c1(E) = 2 and c2(E) = 14.

Proof. We proceed similarly, considering a general hypersurface Y4. This time we
have to provide 14 aG points of index 4 in Y4, with difference Hilbert function
1, 3, 6, 3, 1. Equivalently, we have to provide an initialized rank 2 ACM bundle
with c1 = 3, c2 = 14. As we have already pointed out, this question has been
addressed by Beauville, see also Theorem 5.1. The statement follows. �

The proof of Proposition 6.3 is thus established. �

6.2. The submaximal case: c1 = 3, 20 points. Unfortunately, we cannot use the
degeneration technique of the previous section, because on a quartic surface, an aG
set of 20 points with index 4 yields a bundle with c1 = 4. Instead, we construct a
set of 20 points with the wrong Hilbert function on a general quintic surface and
deform it to the required set of points.

Remark 6.4. We would like to point out that the existence of such E over the
general quintic surface can be addressed by Macaulay2, see Schreyer’s ap-
pendix in [Bea00]. Indeed, it suffices to take a random skew-symmetric matrix
f : O5

P3(−2)⊕OP3(−1)→ OP3(−1)⊕O5
P3 and check that the differential of the

rational map Pf is surjective at [f]. This happens if the space of quintic forms in
the four variables x0, . . . , x3 is generated by the polynomials Pi j k = xk Pf(fi,j),
where fi,j is obtained by f removing the i-th column and the j-th row.

This computation is carried out easily by Macaulay 2, see [GS], and in fact it
proves that on the general surface of degree d ≤ 13 it is defined an initialized rank
2 ACM bundle E with c1(E) = d− 2 and c2(E) = d (d− 1) (d− 2)/3.

In view of the previous remark, the question about existence is thus settled.
However, we give here an abstract proof, in the hope of clarifying why the phe-
nomenon occurs. We will use the notation Cdg for a reduced connected curve of
arithmetic genus g and degree d contained in P3.
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Lemma 6.5. A general quintic surfaces in P3 contain a smooth set of 10 points A0

in uniform position, with difference Hilbert function of the form 1, 3, 4, 2. Moreover
we may assume that A0 lie in a smooth irreducible complete intersection curve
C = C4

6 .

Proof. Take the intersection of a general quartic or quintic surface with a general
quartic elliptic curve D = C1

4 and consider a length 10 subscheme A0 of the
intersection. Since D is complete intersection of two general quadrics and A0

lies in no hyperplanes, one computes ∆ h(RA0 , 2) = 4. The claim on the Hilbert
function follows. Notice that A0 is contained in a smooth quadric surface Q ⊃ D.
Consider the linear system |L| cut onQ by cubic surfaces throughA0. Since cubics
separate the points of A0, |L| has no fixed components. Furthermore, |L| contains
properly all the unions ofC1

4 with hyperplane sections ofQ, so |L| is not composed
with a pencil. Thus a general element C in the linear system |L| is irreducible, by
Bertini’s theorem. The curve C is also smooth, since A0 is smooth and separated
(sheaf-theoretically) by cubics. �

Corollary 6.6. A general quintic surface in P3 contains a set of 20 distinct points
A, in uniform position, with difference Hilbert function of the form 1, 3, 5, 6, 4, 1.

Proof. Fix a general quintic X and consider the set A0 ⊂ X and the complete
intersection curve C, of degree 6, containing A0, given by the previous lemma.
Then the residual intersection A = (C ∩X) \A0 is formed by 20 points. It is easy
to compute the Hilbert function of A and check that it has the desired form.

The linear series cut on C by quintics through A0 has no base points, for A0 is
cut sheaf-theoretically by quintics. Therefore its general element is smooth. Then,
replacing X with another quintic surface X ′ in a neighbourhood of X , we may
assume A consists of distinct points in uniform position.

Finally, since the curve C is contained in a smooth quartic surface, the same
happens to A. �

Recall the notation introduced at the beginning of section 3: G(m, i) denotes
the subset Hilbm(P3) parametrizing aG sets of points with index i. Denote by U
the locally closed subvariety of Hilb20(P3) parametrizing smooth sets of 20 points
given by the previous lemma.

We want to prove that U sits in the closure of G(20, 4). To perform the task,
we take a general A ∈ U and we examine carefully the behavior of sections of a
bundle on Y4 associated to A. We need a series of lemmas.

Lemma 6.7. Take a general A ∈ U , contained in a smooth general quartic Y4.
Then:

i) the subscheme A induces a unique semistable bundle FA of rank 2 on Y4 with
c1(FA) = 4;

ii) the bundle FA(−2) has a global section vanishing on a smooth set B of 4
non-aligned points lying in some plane π;

iii) the bundle FA(−1) has a 5-dimensional space of sections, the general one
vanishing on a smooth set W of 8 points in π, with difference Hilbert function
1, 2, 3, 2 (i.e. with general Hilbert function on π);
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iv) we may assume that the curve Γ = π ∩ Y4 is smooth.

Proof. From the difference Hilbert function, one sees immediately that A is
not separated by quartics, and H1(Y4, IA(4)) = 1. Then by Serre duality,
Ext1(IA(4),OY4) is 1-dimensional and provides an extension, as in sequence
(2.6):

(6.3) 0→ OY4 → FA → IA(4)→ 0,

where, by Theorem 2.3, FA is a rank 2 bundle with Chern classes c1(FA) = 4,
c2(FA) = 20.

Looking at the Hilbert function of A, we get H0(Y4,FA(−3)) = 0,
h0(Y4,FA(−2)) = 1, h0(Y4,FA(−1)) = 5. It turns out then that FA is
semistable, and FA(−2) has a global section s vanishing on a finite set B. We
have c1(FA(−2)) = 0, c2(FA(−2)) = 4, so B has length 4. We have an exact
sequence:

(6.4) 0→ OY4
s−→ FA(−2)→ IB → 0.

We obtain that h0(Y4, IB(1)) = h0(Y4,FA(−1))−h0(Y4,OY4(1)) = 5−4 = 1,
so B is not aligned. Since h0(Y4,FA(−1)) > h0(Y4,OY4(1)), then FA(−1) has
global sections which are not multiple of s. Consequently, a general global section
t ∈ H0(Y4,FA(−1)) vanishes on a set W of finite length 8 = c2(FA(−1)), and
we have an exact sequence:

(6.5) 0→ OY4
t−→ FA(−1)→ IW (2)→ 0.

One easily computes the value of h0(Y4,FA(t)) for all t, hence the Hilbert func-
tions of B and W are known. Let us show that W belongs to π. By construction
the plane π is induced in H0(Y4, IB(1)) by a general section t ∈ H0(Y4,FA(−1)),
thus it corresponds to the vanishing set of the wedge product s∧ t. More precisely,
W corresponds to the intersection of the vanishing loci of s f and t, for any choice
of f ∈ H0(Y4,OY4(1))). Since the plane containing W is induced by any global
section s ∈ H0(Y4,FA(−2)), the two planes coincides.

Finally, we need to show that we may assume B,W and Γ = π ∩ Y4 to be
smooth. Indeed on π the Hilbert scheme of subschemes of finite length is smooth.
Then we may move genericallyB in π to a smooth set of 4 points. Since the Hilbert
function is constant in the family, the space H0(Y4, IB,P2(4)) defines a bundle over
the deformation. Thus Y4 moves in a family of quartic surfaces containing the
4 points. Similarly, Ext1(IB,OY4), which is dual to H1(Y4, IB), has constant
dimension through the deformation. Thus also FA moves in a family of bundles.
Possibly replacing A with some neighbouring general element of U , we can now
assume that the schemes B and Γ are smooth. A similar procedure proves that we
may presume W to be smooth. �

Lemma 6.8. Fix the previous notation. The sections H0(Y4,FA(−1)) determine
a non-complete linear series of degree 8 and dimension at most 4 on the curve
Γ = π ∩ Y4. The dimension of the series is 4, unless FA has infinitely many
sections (modulo the k∗ action) vanishing on W .
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Proof. The datum of W and B corresponds to a linear section of Γ. Indeed we
have the natural exact diagram:

(6.6) OY4(−1)

��

OY4(−1)

��

0 // OY4 // FA(−1)

��

// IW (2)

��

// 0

0 // OY4 // IB(1)

��

//

��

IB,Γ(1)

��

// 0

0 0.

The claim follows, since h0(Y4,FA(−1)) = 5. �

Next, we need a technical result, for deformations of 8 points. We are grateful
to Ciro Ciliberto, who pointed us an elegant a quick proof for it.

Proposition 6.9. Let W be a general set of 8 points in a plane π ⊂ P3. Then in
Hilb8(P3),W sits in the closure of the subvariety defined by complete intersections
of three quadrics.

Proof. In fact, we are going to prove that W is the projection to π of a complete
intersection W ′ of three quadrics Q1, Q2, Q3 ⊂ P3. Then the procedure of projec-
tion determines a deformation of the quadrics which, in turn, defines a deformation
of W ′ to W .

To show the claim, fix a cubic plane curve B ⊂ π which contains W . As W
is general, we may assume B smooth. Call N the linear series cut on B by the
lines of π and consider the complete linear series M = OB(W − 2N ) on B.
This series is a pencil for it has degree 2. Fix a Weierstrass point y for M and
consider the complete linear series N ′ = OB(N + y) on B. Since N ′ has degree
4, it defines a map φ : B → P3, whose image is a quartic curve B′ ⊂ P3. The
curve B corresponds to the projection of B′ from z = φ(y). The subscheme W
sits in the series 2N ′ by construction. Hence W ′ = φ(W ) is the intersection of
B′ and a quadric. Since B′ is itself a complete intersection of two quadrics and the
projection from z maps W ′ to W , the claim follows. �

Remark 6.10. In general one may ask for which values of a, b, c, a general set of
a b c points in π is the limit of a complete intersection of type (a, b, c) in P3. A
simple parameter count proves that the answer is negative as soon as (a, b, c) >
(2, 3, 3). The previous lemma provides a positive answer for (a, b, c) = (2, 2, 2).
A similar argument works for (a, b, c) = (2, 2, n).

Now we are ready to prove:

Proposition 6.11. The subscheme U ⊂ Hilb20(P3) sits in the closure of G(20, 4).
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Proof. Call A a general element in U and fix a quartic surface Y containing A. Let
F be a rank 2 bundle on Y associated toA, with Chern classes c1 = 4 and c2 = 20.
Consider also a smooth set W of 8 points in a plane π, given by a general section
of F(−1) (see Lemma 6.7).

By Proposition 6.9, we have a flat family η : W → ∆ of smooth length-8
subschemes of P3, parametrized by a neighbourhood ∆ of 0, whose fibre η−1(0)
is W and whose general fibre η−1(g) is a set Wg, complete intersection of three
quadrics. Since h0(P3, IW,P3(4)) = h0(P3, IWg ,P3(4)), we may lift Y to a family
of quartic surfaces whose general element Yg contains Wg. Notice that the family
Wg is produced via the choice of a cubic plane curve through W (which moves in
a pencil) plus a Weierstrass point on the curve (they are interchanged in the pencil).
Thus it depends continuously on one parameter.

The rank 2 bundle F corresponds, up the k∗ action, to the choice of an element
in the 2-dimensional space Ext1(IW (2),OY ) ∼= H1(Y, IW (2))∗. Our statement
amounts to the following:

Claim. The deformation η of the 8 points W ⊂ Γ = Y ∩ π can be chosen in such
a way that F extends to a rank 2 bundle Fg on Yg, where Fg(−1) is associated
with a complete intersection set of 8 points.

�

Notice that Ext1(IWg(2),OYg) ∼= H1(Yg, IWg(2))∗, thus Ext1(IWg(2),OYg)

defines a 1-dimensional subset of the 2-dimensional space Ext1(IW (2),OY ), as
Wg goes to W . So the claim is non trivial.

Proof Claim 6.2. The statement is obvious when there are infinitely many sec-
tions of F(−1) vanishing on W (mod k∗), for in this case all the elements of
Ext1(IW (2),OY ) correspond to the same rank 2 bundle F (only the section
varies). Assume this is not the case. Thus F defines a 4-dimensional linear se-
ries in |W |.

Changing the element in Ext1(IW (2),OY ) has the effect of choosing a bundle
F ′ on Y , associated with a 4-dimensional linear series in |W |. This linear series
cannot be fixed as we vary the extension, for |W | has dimension 5, so it is not the
union of disjoint 4-dimensional subspaces, while a general set of 8 points on Γ
determines a rank 2 bundle on Y , hence a 4-dimensional linear subseries. Since
a general set of 8 points can be lifted to a ci subscheme in P3, we have at least a
1-dimensional family of bundles on Y , associated with W , which lifts to a defor-
mation of a set of 8 points on Γ. Possibly replacing now W with a neighbouring
element in |W |, we may assume that W admits a deformation to a complete inter-
section. This completes the proof. �

We are now in position to prove:

Theorem 6.12. The map p = p20,4,5 : G(20, 4, 5) → |OP3(5)| of diagram (3.1) is
dominant. In other words, on a general quintic surface X ⊂ P3 it is defined an
initialized indecomposable ACM bundle E of rank 2, with Chern classes c1 = 3
and c2 = 20.
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Proof. Consider the set U ′ of pairs (A, Y ) where A ∈ U and Y is a quintic surface
containing A. Since U sits in the closure of G(20, 4) and elements of both U and
G(20, 4) are separated by quintics, then U ′ sits in the closure of G(20, 4, 5). So
Corollary 6.6 proves that the map p|U ′ : U ′ → |OP3(5)| is dominant. �

6.3. The maximal case: c1 = 4, 30 points. Here we prove the existence of an ini-
tialized ran 2 ACM bundle on the general surface X , achieving the maximal value
of c1 and c2. This result is already known, and due to Beauville and Schreyer,
see the appendix of [Bea00]. However their proof relies on a Macaulay2 com-
putation, while we outline a geometric approach which makes use of Beilinson’s
theorem and a deformation argument.

Theorem 6.13. On a general quintic surface X there exists an initialized inde-
composable rank 2 ACM bundle E with Chern classes c1 = 4 and c2 = 30.

The rest of this section contains the proof of this theorem. Consider the sheaves
of differentials Ωp

P3(p) = ∧pΩP3(p), for 0 ≤ p ≤ 3. Define the bundle P =

O10
P3⊕Ω1

P3(1)⊕Ω2
P3(2) and the vector space V = H0(P3,∧2(P)(1)). We can view

an element in V as a skew-symmetric matrix f : P∗(−1) → P. So we can define
a rational map Pf : P(V ) 99K P(H0(P3,OP3(5))), which associates to an element
of V the square root of its determinant, defined up to a nonzero scalar.

Lemma 6.14. Assume that on the general quintic surface X there exists an initial-
ized rank 2 bundle F , with c1(F) = 2, c2(F) = 15, and with h1(X,F(t)) = 0,
for each t ∈ Z, except for h1(X,F) = h1(X,F(−1)) = 1. Then the rational map
Pf defined above is dominant.

Proof. Let ι : X → P3 be the natural inclusion. Applying Beilinson’s theorem to
the sheaf ι∗(F(1)), one can write down the following resolution:

(6.7) 0→

OP3(−1)10

⊕
Ω2
P3(2)
⊕

Ω1
P3(1)

f(F(1))−−−−→

O10
P3

⊕
Ω1
P3(1)
⊕

Ω2
P3(2)

→ ι∗(F(1))→ 0.

We still denote by P(F(1)) the target of the map f(F(1)), while we write
Q(F(1)) for the domain of f(F(1)). Notice that P(F(1)) ' P, and Q(F(1)) '
P∗(−1), with P defined above. Observe that there is no obstruction to the lift-
ing of any map P(F(1)) → F(1) to an endomorphism of P(F(1)), thanks to the
vanishing:

Ext1(P(F(1)),Q(F(1))) = 0.

Using this fact one can easily prove, following step by step the proof of The-
orem 2.9 contained in [Bea00], that there is an isomorphism φ : P(F(1)) →
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Q(F(1))∗(−1) such that the following diagram commutes:

0 // Q(F(1))
f(F(1))

//

φ>

��

P(F(1))

φ
��

// ι∗(F(1)) //

κ

��

0

0 // P(F(1))∗(−1)
−f(F(1))>

// Q(F(1))∗(−1) // ι∗(F∗(3)) // 0.

where κ is a skew-symmetric duality of F . Equivalently, the matrix f(F(1)) is
skew-symmetric, i.e. f(F(1)) sits in the vector space V defined above. Now
Pf(f(F(1))) is the equation of the support of F , which is defined over the gen-
eral quintic surface. So our hypothesis implies that the rational map Pf is domi-
nant. �

Now set P′ = O10
P3 , V ′ = H0(P3,∧2(P′)(1)) and consider the restriction Pf ′ of

the rational map Pf to P(V ′), where we think of an element [f ′] of P(V ′) in P(V )
as a block matrix made up of f ′, the identity map on Ω1

P3(1) and Ω2
P3(2), and zero

everywhere else.
Roughly speaking, the next lemma allows to deform the matrix f(F(1)) in such

a way that we can erase the undesired summands from the resolution - namely, the
copies of Ω1

P3(1) and Ω2
P3(2). This will provide us with an initialized rank 2 ACM

bundle as a generalization of F(1).

Lemma 6.15. Set hypothesis as in the previous lemma. Then the rational map
Pf ′ : P(V ′) 99K |OP3(5)| is dominant. In particular, Theorem 6.13 holds.

Proof. Recall by Lemma 6.14 that Pf is dominant, so its differential at a general
element [f] of P(V ) is surjective. Representing [f] as a skew-symmetric matrix
f : P∗(−1)→ P, we can write f in the form: f0 a b

−a> c d
−b> −d> 0

 ,

with:

a : Ω2
P3(2)→ P′, a> : (P′)∗(−1)→ Ω1

P3(1),

b : Ω1
P3(1)→ P′, b> : (P′)∗(−1)→ Ω2

P3(2),

c : Ω2
P3(2)→ Ω1

P3(1), c> : Ω2
P3(2)→ Ω1

P3(1),

d : Ω1
P3(1)→ Ω1

P3(1), d> : Ω2
P3(2)→ Ω2

P3(2).

and with f0 = −f>0 and c = −c>. Consider a matrix f of the form (6.7) provided by
Lemma 6.14. It satisfies d = 0, and the differential of Pf is surjective at the point
represented by such f. In general d must be a scalar multiple of the identity, so we
may set fε = f + ε idΩ1

P3
(1) − ε idΩ2

P3
(2). The differential of Pf will be surjective at

the point [fε] of the space P(V ).
Since c is skew-symmetric, we can choose ζ ∈ Hom(Ω2

P3(2),Ω1
P3(1)) with

ζ− ζ> = c. Consider now the automorphism g of P, written in the form of a block
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matrix like:  1 −b/ε 1/ε2(ε a− b c)
0 ε ζ
0 0 1

 .

We obtain the matrix hε = g> ·fε ·g. The only nonvanishing blocks of the matrix
hε are a block of linear forms f ′ and identity maps of Ω1

P3(1) and Ω2
P3(2), which

we can now factor out. This means that [hε] sits in P(V ′), and the differential of
Pf is surjective at [hε], hence we are done. �

Lemma 6.16. On the general quintic surface X it is defined a rank 2 bundle F
which satisfies the hypothesis of Lemma 6.14.

Proof. Our claim is equivalent to the fact that the general quintic surface contains a
length 15 subscheme Z having difference Hilbert function of the form 1, 3, 6, 4, 1.

We need a slight refinement of Lemma 3.2, where we allow the subscheme Z
to be of the above form, (in particular Z is not aG). Namely we claim that if Z is
given as the vanishing locus of a section of a rank 2 bundle G with c1 ≤ 3 defined
on the general quartic surface Y4, then the general quintic surface X contains a
subscheme with the same Hilbert function as Z. The proof of this claim is similar
to that of Lemma 3.2, so we omit it here.

Counting dimensions, we see that our claim amounts to the fact that on a given
smooth quartic surface Y4 containing Z, with Pic(Y4) = Z, the family of sub-
schemes of Y4 with difference Hilbert function 1, 3, 6, 4, 1 has dimension 24. No-
tice that G is stable and has 7 independent sections, hence it suffices to show that
on such Y4 the moduli space MY4(2; 3, 15) has dimension 18. But since Y4 is a
smooth K3 surface and G is a stable bundle, this is indeed the case, see for instance
[HL97, Part II, Chapter 6]. �

Corollary 6.17. Let X ⊂ P3 be a general quintic surface, and for let c1, c2 be
integers given in the table (1.1) of Chern classes of an ACM rank 2 bundle E on
X , with c1 ≥ 1. Then the component of the moduli space MX(2; c1(E), c2(E))
containing [E ] is reduced and of the expected dimension.

Proof. For all such integers c1, c2, set i = c1 + 1, m = c2. By our main re-
sult, the map pm,i,5 is dominant, so its differential has maximal rank at a gen-
eral point (Z,X). The fibre p−1

m,i,5(X) is thus generically smooth of the ex-
pected dimension. Now, Theorem 2.3 and Theorem 2.5 provide a rational map
ζ : p−1

m,i,5(X) 99K FMs
X(2; c1(E), c2(E)), where the target space is the so-called

moduli space of framed sheaves, i.e. pairs [F , s] with F ∈ MX(2; c1(E), c2(E))
and s ∈ P(H0(X,F)). The map ζ is a locally closed immersion. Since be-
ing ACM is an open condition, the differential at [E ] of the natural projec-
tion FMs

X(2; c1(E), c2(E)) → MX(2; c1(E), c2(E)) is surjective on the tan-
gent space of MX(2; c1(E), c2(E)) at [E ]. It follows that the moduli space
MX(2; c1(E), c2(E)) is smooth in a neighbourhood of [E ]. It easily follows that the
component of MX(2; c1(E), c2(E)) containing [E ] has the expected dimension. �
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