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Rank Aggregation Methods for the Web

Cynthia Dwork� Ravi Kumary Moni Naorz D. Sivakumarx

ABSTRACT

We consider the problem of combining ranking results from
various sources. In the context of the Web, the main ap-
plications include building meta-search engines, combining
ranking functions, selecting documents based on multiple
criteria, and improving search precision through word asso-
ciations. We develop a set of techniques for the rank aggre-
gation problem and compare their performance to that of
well-known methods. A primary goal of our work is to de-
sign rank aggregation techniques that can e�ectively combat
\spam," a serious problem in Web searches. Experiments
show that our methods are simple, e�cient, and e�ective.
Keywords: rank aggregation, ranking functions, meta-

search, multi-word queries, spam

1. INTRODUCTION
The task of ranking a list of several alternatives based on

one or more criteria is encountered in many situations. One
of the underlying goals of this endeavor is to identify the
best alternatives, either to simply declare them to be the
best (e.g., in sports) or to employ them for some purpose.
When there is just a single criterion (or \judge") for rank-
ing, the task is relatively easy, and is simply a re
ection of
the judge's opinions and biases. (If simplicity were the only
desideratum, dictatorship would prevail over democracy.) In
contrast, this paper addresses the problem of computing a
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\consensus" ranking of the alternatives, given the individ-
ual ranking preferences of several judges. We call this the
rank aggregation problem. Speci�cally, we study the rank
aggregation problem in the context of the Web, where it is
complicated by a plethora of issues. We begin by underscor-
ing the importance of rank aggregation for Web applications
and clarifying the various characteristics of this problem in
the context of the Web. We provide the theoretical un-
derpinnings for stating criteria for \good" rank aggregation
techniques and evaluating speci�c proposals, and we o�er
novel algorithmic solutions. Our experiments provide initial
evidence for the success of our methods, which we believe
will signi�cantly improve a variety of search applications on
the Web.

1.1 Motivation
As of February 2001, there were at least 24 general-purpose

search engines (see Search Engine Watch [1]), as well as nu-
merous special-purpose search engines. The very fact that
there are so many choices is an indication that no single
search engine has proven to be satisfactory for all Web users.
There are a number of good reasons why this is the case,
even if we restrict attention to search engines that are meant
to be \general purpose." Two fairly obvious reasons are that
no one ranking algorithm can be considered broadly accept-
able and no one search engine is su�ciently comprehensive
in its coverage of the Web. The issues, however, are some-
what deeper.
Firstly, there is the question of \spam" | devious manip-

ulation by authors of Web pages in an attempt to achieve
undeservedly high rank. No single ranking function can be
trusted to perform well for all queries. A few years ago,
query term frequency was the single main heuristic in rank-
ing Web pages; since the in
uential work of Kleinberg [16]
and Brin and Page [7], link analysis has come to be identi-
�ed as a very powerful technique in ranking Web pages and
other hyperlinked documents. Several other heuristics have
been added, including anchor-text analysis [8], page struc-
ture (headers, etc.) analysis, the use of keyword listings
and the url text itself, etc. These well-motivated heuris-
tics exploit a wealth of information, but are often prone to
manipulation by devious parties.
Secondly, in a world governed by (frequently changing)

commercial interests and alliances, it is not clear that users
have any form of protection against the biases/interests of
individual search engines. As a case in point, note that
\paid placement" and \paid inclusion" (see [2]) appear to
be gaining popularity among search engines.
In some cases, individual ranking functions are inadequate
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for a more fundamental reason: the data being ranked are
simply not amenable to simple ranking functions. This is
the case with querying about multimedia documents, e.g.
\�nd a document that has information about Greek islands
with pictures of beautiful blue beaches." This is a problem
conventionally studied in database middleware (see [15]).
Several novel approaches have been invented for this pur-
pose, but this problem cannot be considered well-solved by
any measure. Naturally, these problems fall under the realm
of rank aggregation.
Thus, our �rst motivation for studying rank aggregation

in the context of the Web is to provide users a certain degree
of robustness of search, in the face of various shortcomings
and biases | malicious or otherwise | of individual search
engines. That is, to �nd robust techniques for meta-search.
There is a second, very broad, set of scenarios where

rank aggregation is called for. Roughly described, these
are the cases where the user preference includes a variety
of criteria, and the logic of classifying a document as ac-
ceptable or unacceptable is too complicated or too nebu-
lous to encode in any simple query form. As prototypi-
cal examples, we list some cases that Web users experi-
ence frequently. Broadly, these can be classi�ed as multi-
criteria selection and word association queries. Examples of
multi-criteria selection arise when trying to choose a product
from a database of products, such as restaurants or travel
plans. Examples of word association queries arise when a
user wishes to search for a good document on a topic; the
user knows a list of keywords that collectively describe the
topic, but isn't sure that the best document on the topic
necessarily contains all of them. (See Section 5 for spe-
ci�c examples of both categories.) This is a very familiar
dilemma for Web search users: when we supply a list of
keywords to a search engine, do we ask for documents that
contain all the keywords, or do we ask for documents that
contain any of the keywords? Notice that the former may
produce no useful document, or too few of them, while the
latter may produce an enormous list of documents where it
is not clear which one to choose as the best. We propose the
following natural approach to this problem:

Associations Ranking: Rank the database with
respect to several small subsets of the queries,
and aggregate these rankings.

1.2 Challenges
The ideal scenario for rank aggregation is when each judge

(search engine in the case of meta-search, individual crite-
rion for multi-criteria selection, and subsets of queries in the
case of word association queries) gives a complete ordering
of all the alternatives in the universe of alternatives. This,
however, is far too unrealistic for two main reasons.
The �rst reason is a particularly acute problem in doing

meta-search: the coverage of various search engines is di�er-
ent; it is unlikely that all search engines will (eventually) be
capable of ranking the entire collection of pages on the Web,
which is growing at a very high rate. Secondly, search en-
gines routinely limit access to about the �rst few hundreds
of pages in their rank-ordering. This is done both to ensure
the con�dentiality of their ranking algorithm, and in the in-
terest of e�ciency. The issue of e�ciency is also a serious
bottleneck in performing rank aggregation for multi-criteria
selection and word association queries.
Therefore, any method for rank aggregation for Web ap-

plications must be capable of dealing with the fact that only
the top few hundred entries of each ranking are available. Of
course, if there is absolutely no overlap among these entries,
there isn't much any algorithm can do; the challenge is to
design rank aggregation algorithms that work when there is
limited but non-trivial overlap among the top few hundreds
or thousands of entries in each ranking. Finally, in light of
the amount of data, it is implicit that any rank aggregation
method has to be computationally e�cient.

1.3 Our results
We provide a mathematical setting in which to study

the rank aggregation problem, and propose several algo-
rithms. By drawing on the literature from social choice
theory, statistics, and combinatorial optimization, we for-
mulate precisely what it means to compute a good consensus
ordering of the alternatives, given several (partial) rankings
of the alternatives. Speci�cally, we identify the method of
Kemeny, originally proposed in the context of social choice
theory, as an especially desirable approach, since it min-
imizes the total disagreement (formalized below) between
the several input rankings and their aggregation. Unfortu-
nately, we show that computing optimal solutions based on
Kemeny's approach is NP-hard, even when the number of
rankings to be aggregated is only 4. Therefore, we provide
several heuristic algorithms for rank aggregation and eval-
uate them in the context of Web applications. Besides the
heuristics, we identify a crucial property of Kemeny optimal
solutions that is particularly useful in combatting spam, and
provide an e�cient algorithm for minimally modifying any
initial aggregation so as to enjoy this property. This prop-
erty is called the \extended Condorcet criterion," and we
call the e�cient process that is guaranteed to achieve it \lo-
cal Kemenization."
Our algorithms for initial aggregation are based on two

broad principles. The �rst principle is to achieve optimality
not with respect to the Kemeny guidelines, but with respect
to a di�erent, closely related, measure, for which it is pos-
sible to �nd an e�cient solution. The second principle is
through the use of Markov chains as a means of combining
partial comparison information | derived from the individ-
ual rankings | into a total ordering. While there is no
guarantee on the quality of the output, the latter methods
are extremely e�cient, and usually match or outperform the
�rst method.
We report experiments and quantitative measures of qual-

ity for the meta-search problem, and give several illustra-
tions of our methods applied for the problems of spam re-
sistance and word association queries.

1.4 Organization
We describe our framework, including the notions of rank-

ing, distance measures, and optimal aggregation in Section
2. This section also contains a brief description of concepts
from graph theory and Markov chains we need for this paper.
Section 3 discusses spam, the extended Condorcet principle,
and local Kemenization. Section 4 describes various rank ag-
gregation methods, including the well-known Borda method
and several other new methods. Section 5 presents �ve ma-
jor applications of our methods and Section 6 presents an
experimental study of some of them. Finally, Section 7 con-
cludes the paper with some remarks on future work.

614



2. PRELIMINARIES

2.1 Ranking
Given a universe U , an ordered list (or simply, a list) �

with respect to U is an ordering (aka ranking) of a subset
S � U , i.e., � = [x1 � x2 � � � � � xd], with each xi 2 S, and
� is some ordering relation on S. Also, if i 2 U is present in
� , let � (i) denote the position or rank of i (a highly ranked or
preferred element has a low-numbered position in the list).
For a list � , let j� j denote the number of elements. By
assigning a unique identi�er to each element in U , we may
assume without loss of generality that U = f1; 2; : : : ; jU jg.
Depending on the kind of information present in � , three

situations arise:
(1) If � contains all the elements in U , then it is said to be a

full list. Full lists are, in fact, total orderings (permutations)
of U . For instance, if U is the set of all pages indexed by a
search engine, it is easy to see that a full list emerges when
we rank pages (say, with respect to a query) according to a
�xed algorithm.
(2) There are situations where full lists are not convenient

or even possible. For instance, let U denote the set of all
Web pages in the world. Let � denote the results of a search
engine in response to some �xed query. Even though the
query might induce a total ordering of the pages indexed by
the search engine, since the index set of the search engine is
almost surely only a subset of U , we have a strict inequality
j� j < jU j. In other words, there are pages in the world
which are unranked by this search engine with respect to
the query. Such lists that rank only some of the elements in
U are called partial lists.
(3) A special case of partial lists is the following. If S

is the set of all the pages indexed by a particular search
engine and if � corresponds to the top 100 results of the
search engine with respect to a query, clearly the pages that
are not present in list � can be assumed to be ranked below
100 by the search engine. Such lists that rank only a subset
of S and where it is implicit that each ranked element is
above all unranked elements, are called top d lists, where d
is the size of the list.
A natural operation of projection will be useful. Given a

list � and a subset T of the universe U , the projection of
� with respect to T (denoted �jT ) will be a new list that
contains only elements from T . Notice that if � happens
to contain all the elements in T , then �jT is a full list with
respect to T .

2.1.1 Distance measures

How do we measure distance between two full lists with
respect to a set S? Two popular distance measures are [12]:
(1) The Spearman footrule distance is the sum, over all

elements i 2 S, of the absolute di�erence between the rank
of i according to the two lists. Formally, given two full lists �

and � , the distance is given by F (�; �) =
PjSj

i=1 j�(i)� � (i)j.
After dividing this number by the maximum value jSj2=2,
one can obtain a normalized value of the footrule distance,
which is always between 0 and 1. The footrule distance
between two lists can be computed in linear time.
(2) The Kendall tau distance counts the number of pair-

wise disagreements between two lists; that is, the distance
between two full lists � and � is K(�; � ) = jf(i; j) j i <
j; �(i) < �(j); but �(i) > �(j)gj. Dividing this number by

the maximum possible value
�
jSj
2

�
we obtain a normalized

version of the Kendall distance. The Kendall distance for
full lists is the `bubble sort' distance, i.e., the number of pair-
wise adjacent transpositions needed to transform from one
list to the other. The Kendall distance between two lists of
length n can be computed in n log n time using simple data
structures.
The above measures are metrics and extend in a natural

way to several lists. Given several full lists �; �1; : : : ; �k, for
instance, the normalized Footrule distance of � to �1; : : : ; �k
is given by F (�; �1; : : : ; �k) = (1=k)

Pk

i=1 F (�; �i).
One can de�ne generalizations of these distance measures

to partial lists. If �1; : : : ; �k are partial lists, let U denote
the union of elements in �1; : : : ; �k and let � be a full list
with respect to U . Now, given �, the idea is to consider the
distance between �i and the projection of � with respect to
�i. Then, for instance, we have the induced footrule distance
F (�; �1; : : : ; �k) =

Pk
i=1 F (�j�i ; �i)=k. In a similar manner,

induced Kendall tau distance can be de�ned. Finally, we
de�ne a third notion of distance that measures the distance
between a full list and a partial list on the same universe:
(3) Given one full list and a partial list, the scaled footrule

distance weights contributions of elements based on the size
of the lists they are present in. More formally, if � is a full list
and � is a partial list, F 0(�; �) =

P
i2� j�(i)=j�j � �(i)=j� jj.

We will normalize F 0 by dividing by j� j=2.
Note that these distances are not necessarily metrics.
To a large extent, our interpretations of experimental re-

sults will be in terms of these distance measures. While
these distance measures seem natural, why these measures
are good is moot. We do not delve into such discussions
here; the interested reader can �nd such arguments in the
books by Diaconis [12], Critchlow [11], or Marden [17].

2.1.2 Optimal rank aggregation

In the generic context of rank aggregation, the notion of
`better' depends on what distance measure we strive to op-
timize. Suppose we wish to optimize Kendall distance, the
question then is: given (full or partial) lists �1; : : : ; �k, �nd
a � such that � is a full list with respect to the union of
the elements of �1; : : : ; �k and � minimizes K(�; �1; : : : ; �k).
The aggregation obtained by optimizing Kendall distance is
called Kemeny optimal aggregation and in a precise sense,
corresponds to the geometric median of the inputs. We
show that computing the Kemeny optimal aggregation is
NP-Hard even when k = 4 (see the Appendix). (Note that in
contrast to the social choice scenario where there are many
voters and relatively few candidates, in the web aggregation
scenario we have many candidates (pages) and relatively few
voters (the search engines).)
Kemeny optimal aggregations have a maximum likelihood

interpretation. Suppose there is an underlying \correct" or-
dering � of S, and each order �1; : : : ; �k is obtained from � by
swapping two elements with some probability less than 1=2.
Thus, the � 's are \noisy" versions of �. A Kemeny optimal
aggregation of �1; : : : ; �k is one that is maximally likely to
have produced the � 's (it need not be unique) [24]. Viewed
di�erently, Kemeny optimal aggregation has the property
of eliminating noise from various di�erent ranking schemes.
Furthermore, Kemeny optimal aggregations are essentially
the only ones that simultaneously satisfy natural and impor-
tant properties of rank aggregation functions, called neutral-
ity and consistency in the social choice literature, and the
so-called Condorcet property [25]. Indeed, Kemeny optimal
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aggregations satisfy the extended Condorcet criterion. In
Section 3 we establish a strong connection between satisfac-
tion of the extended Condorcet criterion and �ghting search
engine \spam."
Given that Kemeny optimal aggregation is useful, but

computationally hard, how do we compute it? The following
relation shows that Kendall distance can be approximated
very well via the Spearman footrule distance.

Proposition 1. [13] For any two full lists �; � , K(�; � ) �
F (�; � ) � 2K(�; � ).

This leads us to the problem of footrule optimal aggrega-
tion. This is the same as before, except that the optimizing
criterion is the footrule distance. In Section 4 we exhibit
a polynomial time algorithm to compute optimal footrule
aggregation (scaled footrule aggregation for partial lists).
Therefore we have:

Proposition 2. If � is the Kemeny optimal aggregation
of full lists �1; : : : ; �k and �0 optimizes the footrule aggrega-
tion, then K(�0; �1; : : : ; �k) � 2K(�; �1; : : : ; �k).

Later, in Section 4, we develop rank aggregation methods
that do not optimize any obvious criteria, but turn out to
be very e�ective in practice.

2.2 Basic notions
Readers familiar with the notions in graph theory and

Markov chains can skip this section.

2.2.1 Some concepts from graph theory

A graph G = (V;E) consists of a set of nodes V and a
set of edges E. Each element e 2 E is an unordered pair
(u; v) of incident nodes, representing a connection between
nodes u and v. A graph is connected if the node set cannot
be partitioned into components such that there are no edges
whose incident nodes occur in di�erent components.
A bipartite graph G = (V1; V2; E) consists of two disjoint

sets of nodes V1; V2 such that each edge e 2 E has one node
from V1 and the other node from V2. A bipartite graph is
complete if each node in V1 is connected to every node in V2.
Amatching is a subset of edges such that for each edge in the
matching, there is no other edge that shares a node with it.
A maximum matching is a matching of largest cardinality.
A weighted graph is a graph with a (non-negative) weight
we for every edge e. Given a weighted graph, the minimum
weight maximum matching is the maximum matching with
minimumweight. The minimumweight maximummatching
problem for bipartite graphs can be solved in time O(n2:5)
where n is the number of nodes.
A directed graph consists of nodes and edges, but this time

an edge is an ordered pair of nodes (u; v), representing a
connection from u to v. A directed path is said to exist from
u to v if there is a sequence of nodes u = w0; : : : ; wk = v
such that (wi; wi+1) is an edge, for all i = 0; : : : ; k � 1. A
directed cycle is a non-trivial directed path from a node to
itself. A strongly connected component of a graph is a set of
nodes such that for every pair of nodes in the component,
there is a directed path from one to the other. A directed
acyclic graph (DAG) is a directed graph with no directed
cycles. In a DAG, a sink node is one with no directed path
to any other node.

2.2.2 Markov chains

A (homogeneous) Markov chain for a system is speci�ed
by a set of states S = f1; 2; : : : ; ng and an n � n non-
negative, stochastic (i.e., the sum of each row is 1) matrix
M . The system begins in some start state in S and at each
step moves from one state to another state. This transi-
tion is guided by M : at each step, if the system is in state
i, it moves to state j with probability Mij . If the current
state is given as a probability distribution, the probability
distribution of the next state is given by the product of the
vector representing the current state distribution andM . In
general, the start state of the system is chosen according to
some distribution x (usually, the uniform distribution) on S.
After t steps, the state of the system is distributed accord-
ing to xM t. Under some niceness conditions on the Markov
chain (whose details we will not discuss), irrespective of the
start distribution x, the system eventually reaches a unique
�xed point where the state distribution does not change.
This distribution is called the stationary distribution. It can
be shown that the stationary distribution is given by the
principal left eigenvector y of M , i.e., yM = �y. In prac-
tice, a simple power-iteration algorithm can quickly obtain
a reasonable approximation to y.
An important observation here is that the entries in y de-

�ne a natural ordering on S. We call such an ordering the
Markov chain ordering ofM . A technical point to note while
using Markov chains for ranking is the following. A Markov
chain M de�nes a weighted graph with n nodes such that
the weight on edge (u; v) is given by Muv. The strongly
connected components of this graph form a DAG. If this
DAG has a sink node, then the stationary distribution of
the chain will be entirely concentrated in the strongly con-
nected component corresponding to the sink node. In this
case, we only obtain an ordering of the alternatives present
in this component; if this happens, the natural extended pro-
cedure is to remove these states from the chain and repeat
the process to rank the remaining nodes. Of course, if this
component has su�ciently many alternatives, one may stop
the aggregation process and output a partial list containing
some of the best alternatives. If the DAG of connected com-
ponents is (weakly) connected and has more than one sink
node, then we will obtain two or more clusters of alterna-
tives, which we could sort by the total probability mass of
the components. If the DAG has several weakly connected
components, we will obtain incomparable clusters of alter-
natives. Thus, when we refer to a Markov chain ordering, we
refer to the ordering obtained by this extended procedure.

3. SPAM RESISTANCE AND CONDORCET

CRITERIA
In 1785 Marie J. A. N. Caritat, Marquis de Condorcet,

proposed that if there is some element of S, now known as
the Condorcet alternative, that defeats every other in pair-
wise simple majority voting, then that this element should
be ranked �rst [9]. A natural extension, due to Truchon [22]
(see also [21]), mandates that if there is a partition (C; �C)
of S such that for any x 2 C and y 2 �C the majority prefers
x to y, then x must be ranked above y. This is called the
extended Condorcet criterion (ECC). We will show that not
only can the ECC be achieved e�ciently, but it also has ex-
cellent \spam-�ghting" properties when used in the context
of meta-search.
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Intuitively, a search engine has been spammed by a page in
its index, on a given query, if it ranks the page \too highly"
with respect to other pages in the index, in the view of a
\typical" user. Indeed, in accord with this intuition, search
engines are both rated [18] and trained by human evaluators.
This approach to de�ning spam: (1) permits an author to
raise the rank of her page by improving the content; (2)
puts ground truth about the relative value of pages into the
purview of the users | in other words, the de�nition does
not assume the existence of an absolute ordering that yields
the \true" relative value of a pair of pages on a query; (3)
does not assume unanimity of users' opinions or consistency
among the opinions of a single user; and (4) suggests some
natural ways to automate training of engines to incorporate
useful biases, such as geographic bias.
We believe that reliance on evaluators in de�ning spam

is unavoidable. (If the evaluators are human, the typical
scenario during the design and training of search engines,
then the eventual product will incorporate the biases of the
training evaluators.) We model the evaluators by the search
engine ranking functions. That is, we make the simplifying
assumption that for any pair of pages, the relative ordering
by the majority of the search engines comparing them is the
same as the relative ordering by the majority of the evalua-
tors. Our intuition is that if a page spams all or even most
search engines for a particular query, then no combination
of these search engines can defeat the spam. This is rea-
sonable: Fix a query; if for some pair of pages a majority
of the engines is spammed, then the aggregation function is
working with overly bad data | garbage in, garbage out.
On the other hand, if a page spams strictly fewer than half
the search engines, then a majority of the search engines will
prefer a \good" page to a spam page. In other words, under
this de�nition of spam, the spam pages are the Condorcet
losers, and will occupy the bottom partition of any aggre-
gated ranking that satis�es the extended Condorcet crite-
rion. Similarly, assuming that good pages are preferred by
the majority to mediocre ones, these will be the Condorcet
winners, and will therefore be ranked highly.
Many of the existing aggregation methods (see Section 4)

do not ensure the election of the Condorcet winner, should
one exist. Our aim is to obtain a simple method of modi-
fying any initial aggregation of input lists so that the Con-
dorcet losers (spam) will be pushed to the bottom of the
ranking during this process. This procedure is called local
Kemenization and is described next.

3.1 Local Kemenization
We introduce the notion of a locally Kemeny optimal ag-

gregation, a relaxation of Kemeny optimality, that ensures
satisfaction of the extended Condorcet principle and yet re-
mains computationally tractable. As the name implies, local
Kemeny optimal is a `local' notion that possesses some of the
properties of a Kemeny optimal aggregation.
A full list � is a locally Kemeny optimal aggregation of par-

tial lists �1; �2; : : : ; �k if there is no full list �
0 that can be ob-

tained from � by performing a single transposition of an ad-
jacent pair of elements and for which K(�0; �1; �2; : : : ; �k) <
K(�; �1; �2; : : : ; �k): In other words, it is impossible to re-
duce the total distance to the �'s by 
ipping an adjacent
pair.
Every Kemeny optimal aggregation is also locally Kemeny

optimal, but the converse is false. Nevertheless, we show

that a locally Kemeny optimal aggregation satis�es the ex-
tended Condorcet property and can be computed (see the
Appendix) in time O(kn log n).

We have discussed the value of the extended Condorcet
criterion in increasing resistance to search engine spam and
in ensuring that elements in the top partitions remain highly
ranked. However, speci�c aggregation techniques may add
considerable value beyond simple satisfaction of this crite-
rion; in particular, they may produce good rankings of al-
ternatives within a given partition (as noted above, the ex-
tended Condorcet criterion gives no guidance within a par-
tition). We now show how, using any initial aggregation
� of partial lists �1; : : : ; �k | one that is not necessarily
Condorcet | we can e�ciently construct a locally Kemeny
optimal aggregation of the � 's that is in a well-de�ned sense
maximally consistent with �. For example, if the � 's are
full lists then � could be the Borda ordering on the alterna-
tives (see Section 4.1 for Borda's method). Even if a Con-
dorcet winner exists, the Borda ordering may not rank it
�rst. However, by applying our \local Kemenization" pro-
cedure (described below), we can obtain a ranking that is
maximally consistent with the Borda ordering but in which
the Condorcet winners are at the top of the list.
A local Kemenization (LK) of a full list � with respect to

�1; : : : ; �k is a procedure that computes a locally Kemeny
optimal aggregation of �1; : : : ; �k that is (in a precise sense)
maximally consistent with �. Intuitively, this approach also
preserves the strengths of the initial aggregation �. Thus:

(1) the Condorcet losers receive low rank, while the Con-
dorcet winners receive high rank (this follows from local Ke-
meny optimality)
(2) the result disagrees with � on the order of any given

pair (i; j) of elements only if a majority of those � 's express-
ing opinions disagrees with � on (i; j)
(3) for every 1 � d � j�j, the length d pre�x of the output

is a local Kemenization of the top d elements in �.

Thus, if � is an initial meta-search result, and we have
some faith that the top, say, 100 elements of � contain
enough good pages, then we can build a locally Kemeny
optimal aggregation of the projections of the � 's onto the
top 100 elements in �.
The local Kemenization procedure is a simple inductive

construction. Without loss of generality, let � = (1; : : : ; j�j).
Assume inductively for that we have constructed �, a local
Kemenization of the projection of the � 's onto the elements
1; : : : ; `�1. Insert element ` into the lowest-ranked \permis-
sible" position in �: just below the lowest-ranked element
y in � such that (a) no majority among the (original) � 's
prefers x to y and (b) for all successors z of y in � there is
a majority that prefers x to z. In other words, we try to
insert x at the end (bottom) of the list �; we bubble it up
toward the top of the list as long as a majority of the � 's
insists that we do.
A rigorous treatment of local Kemeny optimality and local

Kemenization is given in the Appendix, where we also show
that the local Kemenization of an aggregation is unique. On
the strength of these results we suggest the following general
approach to rank aggregation:

Given �1; : : : ; �k, use your favorite aggregation
method to obtain a full list �. Output the (unique)
local Kemenization of � with respect to �1; : : : ; �k.
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4. RANK AGGREGATION METHODS

4.1 Borda’s method
Borda's method [6] is a \positional" method, in that it as-

signs a score corresponding to the positions in which a can-
didate appears within each voter's ranked list of preferences,
and the candidates are sorted by their total score. A primary
advantage of positional methods is that they are computa-
tionally very easy: they can be implemented in linear time.
They also enjoy the properties called anonymity, neutrality,
and consistency in the social choice literature [23]. How-
ever, they cannot satisfy the Condorcet criterion. In fact, it
is possible to show that no method that assigns a weights to
each position and then sorts the results by applying a func-
tion to the weights associated with each candidate satis�es
the Condorcet criterion (see the Appendix and [23]).

Full lists. Given full lists �1; �2; : : : ; �k, then for each candi-
date c 2 S and list �i, Borda's method �rst assigns a score
Bi(c) = the number of candidates ranked below c in �i, and

then the total Borda score B(c) is de�ned as
Pk

i=1Bi(c).
The candidates are then sorted in decreasing order of total
Borda score.
We remark that Borda's method can be thought of as

assigning a k-element position vector to each candidate (the
positions of the candidate in the k lists), and sorting the
candidates by the L1 norm of these vectors. Of course, there
are plenty of other possibilities with such position vectors:
sorting by Lp norms for p > 1, sorting by the median of
the k values, sorting by the geometric mean of the k values,
etc. This intuition leads us to several Markov chain based
approaches, described in Section 4.3.

Partial lists. It has been proposed (e.g., in a recent article
that appeared in The Economist [19]) that the right way
to extend Borda to partial lists is by apportioning all the
excess scores equally among all unranked candidates. This
idea stems from the goal of being unbiased ; however, it is
easy to show that for any method of assigning scores to
unranked candidates, there are partial information cases in
which undesirable outcomes occur.

4.2 Footrule and scaled footrule
Since the footrule optimal aggregation is a good approxi-

mation of Kemeny optimal aggregation, it merits investiga-
tion.

Full lists. Footrule optimal aggregation is related to the
median of the values in a position vector:

Proposition 3. Given full lists �1; : : : ; �k, if the median
positions of the candidates in the lists form a permutation,
then this permutation is a footrule optimal aggregation.

Now, we obtain an algorithm for footrule optimal aggrega-
tion via the following proposition:

Proposition 4. Footrule optimal aggregation of full lists
can be computed in polynomial time, speci�cally, the time to
�nd a minimum cost perfect matching in a bipartite graph.

Proof. (Sketch): Let the union of �1; : : : ; �k be S with
n elements. Now, we de�ne a a weighted complete bipar-
tite graph (C;P;W ) as follows. The �rst set of nodes C =
f1; : : : ; ng denotes the set of elements to be ranked (pages).

The second set of nodes P = f1; : : : ; ng denotes the n avail-
able positions. The weight W (c; p) is the total footrule dis-
tance (from the �i's) of a ranking that places element c at

position p, given by W (c; p) =
Pk

i=1 j�i(c) � pj. It can be
shown that a permutation minimizing the total footrule dis-
tance to the �i's is given by a minimum cost perfect matching
in the bipartite graph. 2

Partial lists. The computation of a footrule-optimal aggre-
gation for partial lists is more problematic. In fact, it can
be shown to be equivalent to the NP-hard problem of com-
puting the minimum number of edges to delete to convert a
directed graph into a DAG.
Keeping in mind that footrule optimal aggregation for full

lists can be recast as a minimum cost bipartite matching
problem, we now describe a method that retains the com-
putational advantages of the full list case, and is reasonably
close to it in spirit. We de�ne the bipartite graph as be-
fore, except that the weights are de�ned di�erently. The
weight W (c; p) is the scaled footrule distance (from the �i's)
of a ranking that places element c at position p, given by
W (c; p) =

Pk
i=1 j�i(c)=j�ij � p=nj. As before, we can solve

the minimum cost maximum matching problem on this bi-
partite graph to obtain the footrule aggregation algorithm
for partial lists. We called this method the scaled footrule
aggregation (SFO).

4.3 Markov chain methods
We propose a general method for obtaining an initial ag-

gregation of partial lists, using Markov chains. The states
of the chain correspond to the n candidates to be ranked,
the transition probabilities depend in some particular way
on the given (partial) lists, and the Markov chain ordering
is the aggregated ordering. There are several motivations
for using Markov chains:
(1) Handling partial lists and top d lists: Rather than

require every pair of pages (candidates) i and j to be com-
pared by every search engine (voter), we may now use the
the available comparisons between i and j to determine the
transition probability between i and j, and exploit the con-
nectivity of the chain to (transitively) \infer" comparison
outcomes between pairs that were not explicitly ranked by
any of the search engines. The intuition is that Markov
chains provide a more holistic viewpoint of comparing all n
candidates against each other | signi�cantly more mean-
ingful than ad hoc and local inferences like \if a majority
prefer A to B and a majority prefer B to C, then A should
be better than C."
(2) Handling uneven comparisons: If a Web page P ap-

pears in the bottom half of about 70% of the lists, and is
ranked Number 1 by the other 30%, how important is the
quality of the pages that appear on the latter 30% of the
lists? If these pages all appear near the bottom on the �rst
set of 70% of the lists and the winners in these lists were not
known to the other 30% of the search engines that ranked
P Number 1, then perhaps we shouldn't consider P too se-
riously. In other words, if we view each list as a tournament
within a league, we should take into account the strength of
the schedule of matches played by each player. The Markov
chain solutions we discuss are similar in spirit to the ap-
proaches considered in the mathematical community for this
problem (eigenvectors of linear maps, �xed points of nonlin-
ear maps, etc.).
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(3) Enhancements of other heuristics: Heuristics for com-
bining rankings are motivated by some underlying princi-
ple. For example, Borda's method is based on the idea
\more wins is better." This gives some �gure of merit for
each candidate. It is natural to extend this and say \more
wins against good players is even better," and so on, and
iteratively re�ne the ordering produced by a heuristic. In
the context of Web searching, the HITS algorithm of Klein-
berg [16] and the PageRank algorithm of Brin and Page [7]
are motivated by similar considerations. As we will see, some
of the chains we propose are natural extensions (in a precise
sense) of Borda's method, sorting by geometric mean, and
sorting by majority.
(4) Computational e�ciency: In general, setting up one

of these Markov chains and determining its stationary prob-
ability distribution takes about �(n2k+n3) time. However,
in practice, if we explicitly compute the transition matrix
in O(n2k) time, a few iterations of the power method will
allow us to compute the stationary distribution. In fact, we
suggest an even faster method for practical purposes. For
all of the chains that we propose, with about O(nk) (linear
in input size) time for preprocessing, it is usually possible
to simulate one step of the chain in O(k) time; thus by sim-
ulating the Markov chain for about O(n) steps, we should
be able to sample from the stationary distribution pretty
e�ectively. This is usually su�cient to identify the top few
candidates in the stationary distribution in O(nk) time, per-
haps considerably faster in practice.

We now propose some speci�c Markov chains, denoted
MC1;MC2;MC3 and MC4. For each of these chains, we
specify the transition matrix and give some intuition as to
why such a de�nition is reasonable. In all cases, the state
space is the union of the sets of pages ranked by various
search engines.
MC1: If the current state is page P , then the next state

is chosen uniformly from the multiset of all pages that were
ranked higher than (or equal to) P by some search engine
that ranked P , that is, from the multiset

S
ifQ j �i(Q) �

�i(P )g. The main idea is that in each step, we move from the
current page to a better page, allowing about 1=j probability
of staying in the same page, where j is roughly the average
rank of the current page.
MC2: If the current state is page P , then the next state

is chosen by �rst picking a ranking � uniformly from all the
partial lists �1; : : : ; �k containing P , then picking a page Q
uniformly from the set fQ j � (Q) � � (P )g.
This chain takes into account the fact that we have sev-

eral lists of rankings, not just a collection of pairwise com-
parisons among the pages. As a consequence, MC2 is ar-
guably the most representative of minority viewpoints of
su�cient statistical signi�cance; it also protects specialist
views. In fact, MC2 generalizes the geometric mean ana-
logue of Borda's method. For full lists, if the initial state
is chosen uniformly at random, after one step of MC2, the
distribution induced on its states produces a ranking of the
pages such that P is ranked higher than (preferred to) Q
i� the geometric mean of the ranks of P is lower than the
geometric mean of the ranks of Q.
MC3: If the current state is page P , then the next state

is chosen as follows: �rst pick a ranking � uniformly from
all the partial lists �1; : : : ; �k containing P , then uniformly
pick a page Q that was ranked by � . If �(Q) < �(P ) then
go to Q, else stay in P .

This chain is a generalization of Borda method. For full
lists, if the initial state is chosen uniformly at random, after
one step of MC3, the distribution induced on its states pro-
duces a ranking of the pages such that P is ranked higher
than Q i� the Borda score of P is higher than the Borda
score of Q. This is natural, considering that in any state
P , the probability of staying in P is roughly the fraction
of pairwise contests (with all other pages) that P won | a
very Borda-like measure.
MC4: If the current state is page P , then the next state

is chosen as follows: �rst pick a page Q uniformly from the
union of all pages ranked by the search engines. If �(Q) <
� (P ) for a majority of the lists � that ranked both P and
Q, then go to Q, else stay in P .
This chain generalizes Copeland's suggestion of sorting

the candidates by the number of pairwise majority contests
they have won [10].
There are examples that di�erentiate the behavior of these

chains. One can also show that the Markov ordering implied
by these chains need not satisfy the extended Condorcet
principle.

5. APPLICATIONS
We envisage several applications of our rank aggregation

methods in the context of searching and retrieval in general,
and the Web in particular. We present �ve major applica-
tions of our techniques in the following sections.

5.1 Meta-search
Meta-search is the problem of constructing a meta-search

engine, which uses the results of several search engines to
produce a collated answer. Several meta-search engines exist
(e.g., metacrawler [3]) and many Web users build their own
meta-search engines. As we observed earlier, the problem
of constructing a good meta-search engine is tantamount to
obtaining a good rank aggregation function for partial and
top d lists. Given the di�erent crawling strategies, indexing
policies, and ranking functions employed by di�erent search
engines, meta-search engines are useful in many situations.
The actual success of a meta-search engine directly de-

pends on the aggregation technique underlying it. Since the
techniques proposed in Section 4 work on partial lists and
top d lists, they can be applied to build a meta-search en-
gine. The idea is simple: given a query, obtain the top (say)
100 results from many search engines, apply the rank aggre-
gation function with the universe being the union of pages
returned by the search engines, and return the top (say)
100 results of the aggregation. We illustrate this scheme in
Section 6.2.1 and examine the performance of our methods.

5.2 Aggregating ranking functions
Given a collection of documents, the problem of index-

ing is: store the documents in such a manner that given a
search term, those most relevant to the search term can be
retrieved easily. This is a classic information retrieval prob-
lem and reasonably well-understood for static documents
(see [20]). When the documents are hypertext documents,
however, indexing algorithms could exploit the latent rela-
tionship between documents implied by the hyperlinks. On
the Web, such an approach has already proved tremendously
successful [16, 8, 7].
One common technique for indexing is to construct a rank-

ing function. With respect to a query, a ranking function
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can operate in two ways: (i) it can give an absolute score
to a document indicating the relevance of the document to
the query (score-based) or (ii) it can take two documents
and rank order them with respect to the query (comparison-
based). Based on the underlying methodology used, many
competing ranking functions can be obtained. For instance,
term-counting yields a simple ranking function. Another
ranking function might be the consequence of applying the
vector-space model and an appropriate distance measure to
the document collection. Yet other ranking functions might
be the ones implied by PageRank [7] and Clever [16, 8]. It
is important to note that if the ranking function is score-
based, the ordering implied by the scores makes more sense
than the actual scores themselves, which are often either
meaningless or inaccurate. And, for a particular ranking
function and a query, it is often easier to return the top
few documents relevant to the query than to rank the entire
document base.
Given many ranking functions for a single document base,

we have the case of top d lists, where d is the number of
documents returned by each of the ranking functions. Our
techniques can be applied to obtain a good aggregation of
these ranking functions. Notice that we give equal weight to
all the ranking functions, but this could be easily modi�ed
if necessary.
Such rank aggregation may be useful in other domains

as well: many airline reservation systems su�er from lack
of ability to express preferences. If the system is 
exible
enough to let the user specify various preference criteria
(travel dates/times, window/aisle seating, number of stops,
frequent-
ier preferences, refundable/non-refundable nature
of ticket purchase, and of course, price), it can rank the
available 
ight plans based on each of the criteria, and ap-
ply rank aggregation methods to give better quality results
to the user. Similarly, in the choice of restaurants from
a restaurant database, users might rank restaurants based
on several di�erent criteria (cuisine, driving distance, am-
biance, star-rating, dollar-rating, etc.). In both examples,
users might be willing to compromise one or more of these
criteria, provided there is a clear bene�t with respect to the
others. In fact, very often there is not even a clear order of
importance among the criteria. A good aggregation function
is a very e�ective way to make a selection in such cases.

5.3 Spam reduction
As we discussed earlier, the extended Condorcet princi-

ple is a reasonable cure for spam. Using the technique of
local Kemenization, it is easy to take any rank aggregation
method and tweak its output to make it satisfy the extended
Condorcet principle. In fact, we suggest this as a general
technique to reduce spam in search engines or meta-search
engines: apply a favorite rank aggregation to obtain an ini-
tial ranking and then apply local Kemenization. This extra
step is inexpensive in terms of computation cost, but has the
bene�t of reducing spam by ranking Condorcet losers below
Condorcet winners. Again, we illustrate this application in
Section 6.2.2 by examples.

5.4 Word association techniques
Di�erent search engines and portals have di�erent (de-

fault) semantics of handling a multi-word query. For in-
stance, Altavista seems to use the OR semantics (it is enough
for a document to contain one of the given query terms to be

considered) while Google seems to use the AND semantics
(it is mandatory for all the query words to appear in a doc-
ument for it to be considered). As discussed in Section 1.1,
both these scenarios are inconvenient in many situations.
Many of these tasks can be accomplished by a complicated

Boolean query (via advanced query), but we feel that it is
unreasonable to expect an average Web user to subscribe
to this. Note also that simply asking for documents that
contain as many of the keywords as possible is not necessar-
ily a good solution: the best document on the topic might
have only three of the keywords, while a spam document
might well have four keywords. As a speci�c motivating
example, consider searching for the job of a software engi-
neer from an on-line job database. The user lists a number
of skills and a number of potential keywords in the job de-
scription, for example, "Silicon Valley C++ Java CORBA

TCPIP algorithms start-up pre-IPO stock options". It
is clear that the \AND" rule might produce no document,
and the \OR" rule is equally disastrous.
We propose a word association scheme to handle these sit-

uations. Given a set of query words w1; : : : ; w`, we propose
to construct several (say, k) sub-queries which are subsets of
the original query words. We query the search engine with
these k sub-queries (using the AND semantics) and obtain
k top d (say, d = 100) results for each of the sub-queries.
AND 2. locally Kemenize Then, we can use the methods
in Sections 3 and 4 to obtain a locally Kemenized aggre-
gation of the top d lists and output this as the �nal answer
corresponding to the multi-word query. By examples, we
illustrate this application in Section 6.2.3.

Where do the words come from? One way to obtain such a
set of query words is to prompt the user to associate as many
terms as possible with the desired response. This might be
too taxing on a typical user. A less demanding way is to let
the user highlight some words in a current document; the
search term are then extracted from the \anchor text," i.e.,
the words around the selected words.

5.5 Search engine comparison
Our methods also imply a natural way to compare the

performance of various search engines. The main idea is
that a search engine can be called good when it behaves like
a least noisy expert for a query. In other words, a good
search engine is one that is close to the aggregated ranking.
This agrees with our earlier notion of what an expert is and
how to deal with noisy experts. Thus, the procedure to rank
the search engines themselves (with respect to a query) is as
follows: obtain a rank aggregation of the results from various
search engines and rank the search engines based on their
(Kendall or footrule) distance to the aggregated ranking.

6. EXPERIMENTS AND RESULTS

6.1 Infrastructure
We conducted three types of experiments. The �rst ex-

periment is to build a meta-search engine using di�erent
aggregation methods (Section 4) and compare their perfor-
mances. The second experiment is to illustrate the e�ect of
our techniques in combating spam. The third experiment
is to illustrate the technique of word association for multi-
word queries. While we provide numerical values for the
�rst experiment, we provide actual examples for the second
and third experiments.
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We use the following seven search engines: Altavista (AV),
Alltheweb (AW), Excite (EX), Google (GG), Hotbot (HB),
Lycos (LY), and Northernlight (NL). For each of the search
engines, we focused only on the top 100 queries. Our dis-
tance measurements are with respect to union of the top 100
results from these search engines.
For measuring the performance of our methods (�rst ex-

periment), we selected the following 38 general queries (these
queries are a superset of the 28 queries used in several ear-
lier papers [4, 8]). For the second experiment, we pick some
queries that were spammed in popular search engines. For
the third experiment, we pick multi-word queries that per-
form poorly with existing search engines. Our notion of two
urls being identical is purely syntactic (up to some canonical
form); we do not use the content of page to determine if two
urls are identical.

6.2 Results

6.2.1 Meta-search

The queries we used for our experiment are the follow-
ing: \a�rmative action", alcoholism, \amusement parks",
architecture, bicycling, blues, cheese, \citrus groves", \clas-
sical guitar", \computer vision", cruises, \Death Valley",
\�eld hockey", gardening, \graphic design", \Gulf war",
HIV, java, Lipari, \lyme disease", \mutual funds", \Na-
tional parks", \parallel architecture", \Penelope Fitzger-
ald", \recycling cans", \rock climbing", \San Francisco",
Shakespeare, \stamp collecting", sushi, \table tennis", tele-
commuting, \Thailand tourism", \vintage cars", volcano,
\zen buddhism", and Zener. The average intersection in
the top 100 for any pair of search engines is given in Table
1, which shows the number of pages as a function of number
of search engines in which they are present. For instance,
the fourth column in the table means that 27.231 pages (on
average) were present in exactly three of the search engine
results. The second column indicates that around 284 pages
were present in only one search engine while the last column
indicates that less than 2 pages were present in all the search
engines.

# engines 1 2 3 4 5 6 7
# pages 284.5 84.0 27.2 12.9 8.1 4.7 1.8

Table 1: Overlap among 7 search engine results.

The results of our �rst experiment are presented in Ta-
ble 2. The performance is calculated in terms of the three
distance measures described in Section 2.1. Each row cor-
responds to a method presented in Section 4. Local Kem-
enization (LK) was applied to the result of each of these
methods.

6.2.2 Spam reduction

In the following we present anecdotal evidence of spam
reduction by our methods. We use the following queries:
Feng Shui, organic vegetables, gardening. For each of
these queries, we look at the (top) pages that we consider
spam. Notice that our de�nition of spam does not mean
evil! | it is just that in our opinion, these pages obtained
an undeservedly high rank from one or more search engines.
It is easy to �nd urls that spammed a single search engine.

K IF SF
� LK + LK � LK + LK � LK + LK

Borda 0.221 0.214 0.353 0.345 0.440 0.438
SFO 0.112 0.111 0.168 0.167 0.137 0.137
MC1 0.133 0.130 0.216 0.213 0.292 0.291
MC2 0.131 0.128 0.213 0.210 0.287 0.286
MC3 0.116 0.114 0.186 0.183 0.239 0.239
MC4 0.105 0.104 0.151 0.149 0.181 0.181

Table 2: Performance of various rank aggregation

methods for meta-search. \K" is Kendall distance,

\IF" is induced footrule distance, and \SF" is scaled

footrule distance. \� LK" and \+ LK", respectively,

denote without and with Local Kemenization.

On the other hand, we were interested in urls that spammed
at least two search engines | given that the overlap among
search engines was not very high, this proved to be a chal-
lenging task. Table 3 presents our examples: the entries are
the rank within individual search engines' lists. A blank en-
try in the table indicates that the url was not returned as
one of the top 100 by the search engine. Based on results
from Section 6.2.1, we restrict our attention to SFO and
MC4 with local Kemenization.

6.2.3 Word associations

We use Google to perform our experiments on word asso-
ciations. As noted earlier, Google uses AND semantics and
hence for many interesting multi-word queries, the number
or the quality of the pages returned is not very high. On
the other hand, the fact that it uses the AND semantics is
convenient to work with, when we supply small subsets of
a multi-word query, in accordance to the word association
rule described earlier. The queries, the top 5 results from
Google and some of the top results from SFO and MC4 (af-
ter local Kemenization) appear in the Appendix. We chose
every pair of terms in the multi-word query to construct sev-
eral lists and the apply rank aggregation (SFO and MC4) to
these lists.

6.3 Discussion
Of all the methods, MC4 outperforms all others. In fact,

it beats Borda by a huge margin. This is very interest-
ing since Borda's method is the usual choice of aggregation,
and perhaps the most natural. Scaled footrule and MC3

(a generalization of Borda) seem to be on par. Recall that
the footrule procedure for partial lists was only a heuris-
tic modi�cation of the footrule procedure for full lists. The
above experimental evidence suggests that this heuristic is
very good. MC1 and MC2 are always worse than the other
Markov chains, but they are strictly better than Borda.
In general, local Kemenization seems to improve around

1{3% in terms of the distance measures. It can be shown
formally that local Kemenization never does worse in the
sense that the Kendall distance never deteriorates after lo-
cal Kemenization. Interestingly, this seems to be true even
for footrule and scaled footrule distances (although we don't
know if this true always). We conclude that local Kemeniza-
tion procedure is always worth applying: either the improve-
ment is large and if not, then the time spent is small.
Examining the results in Section 6.2.2, we see that SFO

and MC4 are quite e�ective in combating spam. While we
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url AV AW GG HB LY NL SFO MC4

www.lucky-bamboo.com 4 43 41 144 63
www.cambriumcrystals.com 9 51 5 31 59

www.luckycat.com 11 14 26 13 49 36

www.davesorganics.com 84 19 1 17 77 93
www.frozen.ch 9 63 11 49 121

www.eonseed.com 18 6 16 23 66

www.augusthome.com 26 16 27 12 16 57 54
www.taunton.com 25 21 78 67
www.egroups.com 34 29 108 101

Table 3: Ranks of \spam" pages for the queries: Feng Shui, organic vegetables and gardening.

do not claim that our methods completely eliminate spam,
our study shows that they reduce spam in general.
The results in Section 6.2.3 shows that our technique

of word association combined with rank aggregation meth-
ods can improve the quality of search results for multi-word
queries. In each of the three examples presented, Google
typically produced a total of only around 10{15 pages, and
the top 5 results were often poor (a direct consequence of
the AND semantics). In sharp contrast, the urls produced
by the rank aggregation methods turned out to contain a
wealth of information about the topic of the query.

7. CONCLUSIONS AND FURTHER WORK
We have developed the theoretical groundwork for de-

scribing and evaluating rank aggregation methods. We have
proposed and tested several rank aggregation techniques.
Our methods have the advantage of being applicable in a
variety of contexts and try to use as much information as
available. The methods are also simple to implement, do not
have any computational overhead, and out-perform popular
classical methods like Borda's method. We have established
the value of the extended Condorcet criterion in the context
of meta-search, and have described a simple process, local
Kemenization, for ensuring satisfaction of this criterion.
Further work involves trying to obtain a qualitative un-

derstanding of why the Markov chain methods perform very
well. Also, it will be interesting to measure the e�cacy of
our methods on a document base with several competing
ranking functions. Finally, this work originated in conversa-
tions with Helen Nissenbaum on bias in searching. A formal
treatment of bias seems di�cult but alluring.
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APPENDIX

The Appendix is available through the on-line version of
these conference proceedings.
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