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Abstract
Algorithms to construct/recover low-rank matrices satisfying a set of linear equality constraints
have important applications in many signal processing contexts. Recently, theoretical guarantees
for minimum-rank matrix recovery have been proven for nuclear norm minimization (NNM),
which can be solved using standard convex optimization approaches. While nuclear norm
minimization is effective, it can be computationally demanding. In this work, we explore the use
of the PowerFactorization (PF) algorithm as a tool for rank-constrained matrix recovery. Empirical
results indicate that incremented-rank PF is significantly more successful than NNM at recovering
low-rank matrices, in addition to being faster.
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I. Introduction
THERE has been significant recent interest in solving the affine rank minimization problem
[1]-[3], defined as

(1)

where  is the unknown matrix to be recovered, and the linear operator
 and vector  are given. While this kind of optimization problem is NP-

hard in general [1], a number of heuristic algorithms have been proposed in the literature
[4]-[6]. Of particular note is the nuclear norm heuristic [4], which replaces (1) with

(2)

where  is the nuclear norm of X, and is defined as the sum of its singular values. The
nuclear norm is convex, and its use as a surrogate for matrix rank is analogous to the way
that the l1 norm is used as a surrogate for vector sparsity in the emerging field of compressed
sensing [7], [8]. Similar to results in compressed sensing, theoretical conditions for the
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equivalence of (1) and (2) have been derived [1]-[3], and rely on  having special restricted
isometry or incoherence properties.

Nuclear norm minimization (NNM) can be cast as a semidefinite programming problem
(SDP), and can be solved using off-the-shelf interior point solvers like SDPT3 [9] or
SeDuMi [10]. However, for large problem sizes, these methods are limited by large
computation and storage requirements. As a result, various fast algorithms for NNM have
appeared [1], [11], [12].

In this work, we propose to use the PowerFactorization (PF) algorithm [13] to solve a rank-
constrained analogue of (1). PF seeks to find a matrix that can be factored as X = UV, with

 and  so that rank(X) ≤ r. This type of low-rank parameterization has been
used in previous NNM algorithms [1], [11] to improve computational efficiency at the
expense of introducing nonconvexity. In contrast to NNM methods, PF optimizes U and V
in alternation to find a local solution to

(3)

We find that PF solutions, with gradually incremented r, are often superior compared to
solutions of (2) at recovering low-rank matrices from a small number p of measurements.
This suggests that in many cases, the rank constraint alone is sufficient for robust matrix
recovery, and that use of NNM can be suboptimal. This performance improvement is not
surprising, in the sense that the known theoretical conditions for a unique rank-constrained
data consistent solution to (1) (see [1, Theor. 3.2]) are significantly less stringent than the
known conditions for NNM-based recovery without rank constraints (see [1, Theor. 3.3]).
What is surprising is that the nonconvexity introduced by the low-rank parameterization
frequently does not confound the simple PF procedure.

II. The PowerFactorization Algorithm
We begin the description of PF by introducing additional useful notation. In particular, we
express the action of the linear operator  as

(4)

for appropriate constants aijk, and for k = 1,2,…,p. As a consequence, we can write

(5)

where vec(·) stacks the columns of its matrix argument into a single column vector. The
matrices  and  are defined as

(6)

and

(7)
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respectively, for k ∈ {1,…,p}, l ∈ {1,…,r}, j ∈ {1,…,n}, and i ∈ {1,…,m}.

The PF algorithm iterates by alternatingly optimizing U and V using a linear-least squares
(LLS) procedure. The algorithm runs as follows.

1.
Initialize (arbitrarily) . Set iteration number
q = 0.

2. Holding V(q) fixed, find U(q+1) by solving

(8)

3. Now fixing U(q+1), find V(q+1) by solving

(9)

4. Increment q. If q exceeds a maximum number of iterations, if the iterations

stagnate, or if the relative error  is smaller than a desired
threshold ε, then terminate the iterative procedure. Otherwise, repeat steps 2)–4).

For matrix recovery, we have obtained best results by starting PF with r = 1, and gradually
incrementing until the desired rank constraint is achieved (or until the point where the
relative error is smaller than ε in the case where the true rank is unknown). In this
incremented-rank version of PF (IRPF), we initialize the new components of U and V using
a rank-1 PF fit to the current residual.

The main computation in the PF procedure is solving the LLS problems in (8) and (9).
However, LLS problems are classical, and a number of efficient algorithms exist to compute
solutions [14]. We do note that in some cases, the matrices AU and AV will not have full
column rank, meaning that the LLS solution is nonunique; for example, if V is initialized to
be identically zero, then AV is also identically zero. In these situations, it is beneficial to
choose a LLS solution that is distinct from the minimum-norm least-squares solution; in our
implementation, we randomly choose a vector from the linear variety of LLS solutions.

By construction, PF monotonically decreases the cost function in (3), and thus the value of
the cost function is guaranteed to converge since it is bounded below by 0. In general, the
iterates themselves are not guaranteed to converge, particularly in the case when there is
sustained rank-deficiency in the LLS problems. Our empirical results show this is not
generally an issue when the number of measurements p is large enough.

III. Empirical Results
The IRPF algorithm was implemented in MATLAB and compared in several ways with an
SDP implementation of NNM. All SDPs were solved using SDPT3 [9]. Our experiments are
similar to those of [1]-[3] and [12].

A. Speed Comparison
To test the speed of IRPF versus NNM, we generated a test set of random  operators and
matrices X for a series of different problem sizes. The aijk defining the  operators were
sampled from an i.i.d. Gaussian distribution. The X matrices were generated by sampling
two matrices  and , each containing i.i.d. Gaussian entries, and setting
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X = MLMR. All experiments used m = n. The IRPF algorithm was stopped at r = 3 (i.e., the
true rank), and was iterated until it had a relative error of ε = 10−10. The matrices were
successfully recovered in all cases for both algorithms, where recovery was declared if the
estimated matrix X ̂ satisfied ||X ̂ – X||F/||X||F < 10−3, where || · ||F is the Frobenius norm.

Table I shows the result of this speed comparison, and reports the execution time in seconds
(on a 3.16-GHz CPU) for each of the two algorithms, averaged over 5 realizations. There is
a clear order-of-magnitude difference in the speed of IRPF versus NNM with SDP.

B. Recovery Comparison
The matrix recovery capabilities of IRPF were compared to those of NNM using two sets of
experiments. In the first set of recovery experiments, linear operators  and 30 × 30
matrices X were generated at random from the Gaussian distribution, as in the previous
speed comparison experiment. Test cases were generated for many different combinations of
the number of measurements p and rank(X) (assumed to be known), and 10 realizations
were computed for each (p, r) pair. The second set of recovery experiments was identical to
the first set, except that the linear operators  were chosen to directly observe p entries
(selected uniformly at random) from X. This corresponds to the so-called matrix completion
problem [2], [11]-[13]. Theoretical properties of NNM for Gaussian observations and matrix
completion are discussed in [1] and [2], respectively.

Fig. 1 shows the results of the experiment with Gaussian observations. While NNM is able
to successfully recover a large fraction of the low-rank matrices, IRPF is able to recover a
significant additional fraction that NNM is unable to recover. As in NNM [1]-[3], there
appears to be phase-transition behavior for IRPF with Gaussian measurements, though the
boundary of this phase transition appears in a different location.

Fig. 2 shows the results of the matrix completion experiment. Again, there is a significant
fraction of matrices that is successfully recovered by IRPF, but that is not recovered by
NNM. However, in this experiment, we observe a small number of cases when NNM
succeeds while IRPF fails because it becomes trapped at a stationary point of the cost
function. These few cases are easily identified without knowing the true X, due to a large
residual data error. For moderate-size problems, this can be efficiently overcome by
performing IRPF several times with randomly selected initializations.

These results were obtained from relatively small matrices. Preliminary experiments indicate
that an advantage of IRPF over NNM is maintained for larger matrices, although the
asymptotic behavior is unknown.

C. Recovery Using PF Versus IRPF
While IRPF is more successful at matrix recovery and can converge faster than classical PF,
PF alone can also perform surprisingly well given sufficient measurements and
appropriately-chosen r. To illustrate this, we again generated Gaussian observation operators

 for various p values, and random 40 × 40 matrices X of rank 8. We tested PF with this
dataset, allowing r to range from 1 up to 20. The results of this experiment, averaged over
ten realizations, are shown in Fig. 3.

IV. Conclusion
This work investigated the IRPF algorithm as an alternative for NNM in the context of low-
rank matrix recovery. IRPF is significantly faster than SDP-based NNM algorithms, and
empirically has better recovery properties than NNM. While its theoretical properties are not
yet fully established, IRPF has promising potential for practical matrix-recovery problems.
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Fig. 1.
Matrix recovery results for (a) IRPF and (b) NNM with Gaussian observations. The color of
each cell corresponds to the empirical recovery rate, with white denoting perfect recovery
and black denoting failure in all 10 experiments. The vertical axis is r(2n – r)/p, which is the
ratio of the number of degrees of freedom for an n ×n rank-r matrix to the number of
measurements p.
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Fig. 2.
Matrix completion results for (a) IRPF and (b) NNM. The color of each cell corresponds to
the empirical recovery rate, as in Fig. 1.
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Fig. 3.
Mean relative reconstruction error using PF for various r values. The true rank is 8. Blue
indicates untested cases (the number of degrees-of-freedom exceeded p). The success/failure
regimes for NNM and IRPF are indicated with yellow and pink lines, respectively.
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TABLE I

EXECUTION TIMES FOR IRPF AND NNM

Unknown X Time (s)

size (n × n) p
(2n − r)r

p/n2 IRPF NNM

5 0.95 1.6 123.5

30×30 4 0.76 1.4 141.1

3 0.57 1.5 89.9

5 0.72 3.8 768.5

40×40 4 0.58 3.5 555.1

3 0.43 3.6 413.2

5 058 7.1 2331.1

50×50 4 0.47 6.8 1616.7

3 0.35 7.2 1223.6
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