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Abstract: Centrality is widely used to measure which
nodes are important in a network. In recent decades, nu-
merous metrics have been proposed with varying com-
putation complexity. To test the idea that approximat-
ing a high-complexity metric by a low-complexity metric,
researchers have studied the correlation between them.
However, these works are based on Pearson correlation
which is sensitive to the data distribution. Intuitively, a
centrality metric is a ranking of nodes (or edges). It would
be more reasonable to use rank correlation to do the mea-
surement. In this paper, we use degree, a low-complexity
metric, as the base to approximate three other metrics:
closeness, betweenness, and eigenvector. We first demon-
strate that rank correlation performs better than the Pear-
son one in scale-free networks. Then we study the cor-
relation between centrality metrics in real networks, and
find that the betweenness occupies the highest coefficient,
closeness is at themiddle level, and eigenvector fluctuates
dramatically. At last, we evaluate the performance of us-
ing top degree nodes to approximate three other metrics
in the real networks. We find that the intersection ratio of
betweenness is the highest, and closeness and eigenvec-
tor follows; most often, the largest degree nodes could ap-
proximate largest betweenness and closeness nodes, but
not the largest eigenvector nodes.
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1 Introduction
Centrality is used to address the research question “which
are the most important or central nodes or vertices in a
network”. In the study of networks, sociologists have per-
haps done the longest work to establish the best traditions
in both quantitative and empirical ways [1]. The idea of
centrality was, of course, first introduced by a socialist,
Bavelas, in the 1950s, when he tried to characterize the hu-
man communication in small groups of people [2, 3]. Since
then, centrality has been used to investigate the adoption
of innovation [4], robustness of networks [5, 6], the en-
gagement in higher education [7] andmore. Whilst a num-
ber of metrics have been proposed, the definition of cen-
trality itself is still not beyond the general descriptors such
as node prominence or structural importance [8]. This am-
biguous definition of centrality leads the interpretations
of centrality metrics varied, including autonomy, control,
risk, exposure, influence, independence, power and so on.

To answer the question “what is centrality”, Free-
man [9] first reviewed a number of published metrics and
reduced them into three basic concepts with the canonical
formulation. These three canonical metrics were degree,
closeness, and betweenness that are still widely used to-
day. Borgatti [8, 10] provided a more comprehensive an-
swer in both network flow and graph structure perspec-
tives. In the network flow context, centrality is centered on
the outcomes of the nodes throughwhich the network traf-
fic goes. On the other hand, the graph-theoretic perspec-
tive is centered on how centrality metrics are calculated.

Today, the research of network centrality falls into
twomain fields: application of centrality concept into new
realms and enhancement of the computing performance
for specified metrics. In the application field, as where it
was first introduced, the concept of centrality is broadly
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used in social networks. Besides the early investigation of
influence, power, control in the context of organization or
small group networks [4, 11–13], today centrality is still
an important tool to quantify social impact and to iden-
tify the most influential people in large online social net-
works. For instance, Weng et al. [14] took advantages of
topical interests in Twitter to identify individual social in-
fluence; Yafang et al. proposed a parameter-free commu-
nity detection method based on centrality. Beyond the so-
cial networks, the centrality is also introduced into tech-
nological networks. For example,Hypertext InducedTopic
Search (HITS) is a very famous web page ranking method
proposed by Jon Kleinberg [15]. Its sibling PageRank [16]
has been used byGoogle search engine to indexweb pages
for years. In biological networks, the concept of central-
ity is widely utilized to identify the most influential per-
son in epidemic networks [17], to validate the drug target
in protein-protein interaction networks [18], and to distin-
guish the most important nodes in weighted functional
brain networks [18].

Though we have a flourish of centrality applications,
the enhancement of computation of many difficult met-
rics moves slowly. For example, computing betweenness
of large networks is still a hard task. Even though there
are no big breaks in mathematical theories, researchers
have made significant progress in other aspects. As ob-
served that large networks are often sparse networks,
Brandes [19] proposed a betweenness computing algo-
rithm for large sparse networks, which has been the de
facto algorithm that widely used in many network analy-
sis tools. And there are many following works, e.g. [20].
In addition, many parallel computing techniques [21–23]
have been brought into the graph algorithms, which make
them much faster.

In the early stage of network analysis, it is often hard
to determine which centrality metric is the most suit-
able. Moreover, it is never an easy task to calculate met-
rics with high-complexity, e.g. betweenness for large net-
works. In computation perspective [8], somemetrics could
be aligned into one family. For example, when constrain-
ing the counts of walks from one to infinite, we could get
differentmetrics such as Freeman degree, Bonacich eigen-
vector, Katz status and others, indicating a possible corre-
lation among these metrics. This possible correlation mo-
tivates us to think is it feasible to approximate a high-
complexity metric by a low-complexity one? In fact, some
studies [24, 25] showed that metrics like degree and be-
tweenness are indeed highly correlated. However, these
works use Pearson correlation that is sensitive to the data
distribution. As we know that Pearson correlation is a
parametric measurement that is restricted by several as-

sumptions, e.g. the bivariate should be approximately nor-
mally distributed; while the assumptions for rank correla-
tion, e.g. Spearman correlation, are quite loose. Consider-
ingmany real networks are scale-free networks,we believe
that rank correlation would be a better choice to use.

In this paper, we study the correlation between cen-
trality metrics, especially the rank correlation. We first
demonstrate that rank correlation coefficients performbet-
ter than the Pearson’s in scale-free networks. Then we in-
vestigate the correlation between centrality metrics in real
networks. We find that betweenness occupies the high-
est coefficient, closeness is in the middle level, and eigen-
vector fluctuates dramatically. And at last, to evaluate the
performanceof approximatinghigh-complexitymetrics by
degree, we conduct two experiments in real networks. We
find that the intersection ratio of betweenness is the high-
est, followed by closeness and eigenvector; most often,
the largest degree nodes could approximate the largest be-
tweenness and closeness nodes, but not the eigenvector
ones.

The remaining part of the paper is organized as fol-
lows. We first describe the data and methods in section 2.
Then in section 3, we show the results for both scale-free
networks and real networks. And finally, wemake the con-
clusion of our analysis in section 4.

2 Data and methods
Networks are always represented as a graph G(V , E),
where V is the vertex set and E is the edge set. The total
number of vertices is denoted as N and the total number
of edges is denoted as M. In this section, we would first
review the four widely used centrality metrics in a man-
ner of time computation complexity: degree, closeness,
betweenness, and eigenvector; then we describe the dif-
ference between Pearson and rank correlation; and finally
we introduce how we prepare the data.

2.1 Definition of centrality metrics

(1) Degree Dc: The degree centrality is the simplest met-
ric,which is definedas thenumber of links incident upona
node (i.e. the number of ties that a nodehas). The degree of
vertex i, Dc(i), can be formulated as Cd(i) =

∑︀
j aij, where

aij is a element of its adjacency matrix A. The normalized
formulation is C

′

d(i) = Cd(i)/(N − 1). The computing of de-
gree of all nodes takes O(|V|2) in a dense adjacencymatrix
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representation. However, for sparse large real networks,
the computation complexity could be reduced to O(|E|).
(2) Closeness Cc: The concept of closeness metric comes
from the term distance that is how close the distance be-
tween node i and other nodes. In graph theory, the dis-
tance dij is measured by the shortest path length be-
tween i and j. The closeness Cc(i) is defined as Cc(i) =
1/

∑︀
j dij and the normalized one is defined as C

′
c(i) =

(N − 1)/
∑︀

j dij. The essential to compute closeness is to
solve the shortest paths problem, which has been stud-
ied for decades. Depending on the types of the graph (di-
rected, undirected, weighted, unweighted), the computa-
tion complexity of the shortest path problem varies from
|O(E)| to O(V2).
(3) Betweenness Bc: The betweenness metric is defined
as Cb(i) =

∑︀
j= ̸i= ̸k∈V σjk(i)/σjk, where σjk is the total num-

ber of shortest paths from j to k and σjk(i) is the number of
those paths that pass through i. The normalized between-
ness is defined by dividing the number of pairs of vertices
excluding i, which is (n −1)(n −2) for directed graphs and
(n − 1)(n − 2)/2 for undirected graphs. The state-of-the-art
algorithm for unweighted graphs is Brandes’ algorithm, of
which the computation complexity is O(|V||E|).
(4) Eigenvector Ec: The concept of eigenvector metric is
that the importance of a vertex not only depends on the
number of its neighbors but also relies on their impor-
tance. If the importance of vertex i is noted as xi, this idea
could be defined as matrix formulation x = cAx. This
equation means that x is the eigenvector of matrix A with
corresponding eigenvalue λ = c−1. Though there could
be multiple eigenvalues for a certain eigenvector, how-
ever, with the restriction that A is nonnegative, only the
largest magnitude eigenvalue λ1 makes the correspond-
ing eigenvector meaningful as a metric of centrality. Other
metrics like HITS and PageRank also borrowed the idea
fromeigenvector.When calculating Ec, weusually take the
power iterationmethod,which runs at the time complexity
O(|V|2) for each iterationand followsa linear convergence.

2.2 Correlation coeflcients

Correlation is a bivariate analysis that measures the
strengths of association between two variables. In statis-
tics, the value of the correlation coefficient varies between
+1 and −1. If the coefficient goes to ±1, then it is said they
are perfectly associated. If the coefficient tends to 0, there
is almost no relationship between them.

Usually, there are two types of correlation analysis,
shown in Table 1. While the parametric statistical proce-
dures are more powerful as they use more underlying in-

Table 1: Parametric vs. non-parametric correlations¹

Parametric Non-
parametric

Assumed
distribution

Normal Any

Assumed variance Homogeneours Any
Typical data Ratio or

Interval
Ordinal or
Nominal

Data set
relationships

Independent Any

Usual central
measure

mean median

Correlation test Pearson Spearman,
Kendall

formation from the normal distribution, we believe rank
correlation is more suitable for the centrality metrics anal-
ysis, because the underlying distribution is not necessary
to be normal.

Here we present the measurement of assortativity as
a good example to support that rank correlation is better
than the Pearson one for this particular network param-
eter. The assortativity is a way of measuring mixing pat-
terns that refer to the extent for nodes to connect to other
similar or different nodes. We often start to examine the
assortativity in terms of degree. That is to say, that degree
assortativity is used to answer questions like do the high-
degree vertices in a network associate preferentially with
other high-degree vertices or low-degree one. In social net-
works, it is also called homophily to explain phenomena
like rich clubs. The assortativity coefficient was first intro-
duced by Newman [26], which is, in fact, a Pearson cor-
relation coefficient. However, Litvak et al. [27] argued that
thismeasurement suffers a problem: for disassortative net-
works, with the increase of network size, the coefficient
decreases significantly. Furthermore, they explained this
problemmathematically, proposedanewmethodbyusing
rank correlation measures, e.g. Spearman’s rho, and their
experiments proved that Spearman’s rho performs better.

In this paper, we would examine the correlation be-
tween centrality metrics by Spearman and Kendall coeffi-
cients, which shows some different results from the Pear-
son one.

1 Please visit http://changingminds.org/explanations/research/
analysis/parametric_non-parametric.htm

http://changingminds.org/explanations/research/analysis/parametric_non-parametric.htm
http://changingminds.org/explanations/research/analysis/parametric_non-parametric.htm
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2.3 Scale-free networks

If the degree distribution of a network follows a power-law
distribution (or at least asymptotically), we call it a scale-
free network. Many real-world networks have been ob-
served that theyhavepower-lawdegree distributions. Pref-
erential attachment and the fitness model have been pro-
posed as mechanisms to explain conjectured power-law
degree distributions in real networks. The BAmodel [28] is
an algorithm that uses the preferential attachment. There
are two key general concepts in the BA model.

1. Growth: starting with a small number of vertices
(m0), at every timestepwe add a new vertexwith ∆m
(∆m ≤ m0) edges that link the new vertex to ∆m dif-
ferent vertices already present in the system.

2. Preferential attachment: the probability P(ki) that a
new vertex will be connected to vertex i depends on
the connectivity ki of that vertex, such that P(ki) =
ki∑︀
j kj

After t timesteps themodel leads to a randomnetwork
with n = t + m0 vertices and mt edges.

In this paper, we use the BA model to generate scale-
free networks. In each experiment, we would give the pa-
rameter values we used to generate the scale-free network
instance. In addition, we also use the Configurationmodel
to generate randomnetworkswith power-lawdistribution.
In the Configuration model, we use the generated BA net-
work as input and rewire the edges while keeping the de-
gree sequences.

2.4 Real networks

Thanks to the Internet, we have a chance to get rich net-
work datasets from other researchers. The datasets in this
paper are downloaded from four sites: personal site of
Newman, SNAP, Pajek, and CCNR (please see Appendix
Table A1).We know that network could be divided as undi-
rected and directed. The interpretation and computation
of network centrality between undirected and directed are
a little different. To make it simple and comparable, we
treat all of our networks as undirected.

In [29], Newman adopted a loose classification that di-
vided real networks into three categories: social, techno-
logical and biological. In [30], he added a new category,
information networks, consisting of knowledge networks
like citation network and World Wide Web (WWW) net-
work. Appendix Table A1 shows the real networks we an-
alyzed in this paper. Please note that we adopt the former

classification anddonot distinguish the technological and
informational networks.

3 Results

3.1 Correlation between centrality metrics
in scale-free networks

In section 2.2, we compared Pearson correlation with rank
correlation (e.g. Spearman). Here we would conduct an
experiment in scale-free networks to demonstrate that
rank correlation performs better in such a context. The
scale-free networks in the experiment are generated by BA
model and Configuration model. We choose four different
parameter settings for BA model: ∆m = 1, 2, 5, 10 (see
section 2.3, we set m0 = ∆m). The Configuration model
uses BA network instances as input and rewires edges ran-
domly while keeping the degree sequences. Thus we have
four groups of different network settings. For each group,
we compare the three correlation coefficients in three pairs
of centralitymetrics. Tomake our results robust, the size of
the network grows from 210 to 220, and at each exponent
integer, we generate 20 samples for each network settings.

The results are shown in Figure 1 and Figure 2. For
example, in Figure 1, the vertical panel represents four
groups of different network settings and they are: BA
model with ∆m = 1, Configuration model inputting from
BA model with ∆m = 1, BA model with ∆m = 2
and Configuration model inputting from BA model with
∆m = 2. The horizontal panel represents three corre-
lations of different pairs of metrics: the degree with be-
tweenness (corr(D, B)), closeness (corr(D, C)) and eigen-
vector (corr(D, E)). In each subfigure, we show the results
of three correlation coefficient with the growth of network
sizes. Each point represents the mean values of the coef-
ficient from the 20 samples. The error bar represents 95%
confidence interval. To better refer to these subfigures, we
locate them by the panel coordinate, e.g. panel (0, 0) rep-
resents the first subfigure in the top left directions (the first
row and first column in the panel).

From these two figures, we have the following obser-
vations.

1. For each subfigure, compared with Pearson coeffi-
cients, rank correlation coefficients drop very little
along the growing of networks. In some cases, e.g.
Panel (1, 2) and (2, 2), r goes down dramatically.

2. For almost all cases, the deviations of rank correla-
tion coefficients are almost invisible, while we could
oftenobserve a largedeviation for r, especially in the
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Figure 1: Correlation between centrality metrics in scale-free networks. Three correlation coeflcients are used: one is Pearson’s r (blue
color); two are rank correlation coeflcients, Spearman’s ρ (orange) and Kendall’s τ (green). Three pairs of centrality metrics are measured:
the degree with betweenness (corr(D, B)), closeness (corr(D, C)) and eigenvector (corr(D, E)). We use BA model and Configuration model
to generate scale-free networks. The BA model uses two parameter settings: ∆m = 1 and ∆m = 2. And the configuration model uses
the generated BA networks as input and rewire the edges while keeping the degree sequence. In total, we have four groups of network
settings, shown in vertical panel; three pairs of centrality metrics, show in horizontal panel. In each subfigure, the network size grows from
210 to 220 and we generate 20 network instances for network size at each exponent integer
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Figure 2: Correlation between centrality metrics in scale-free networks. The BA model uses two parameter settings: ∆m = 5 and ∆m = 10.
Please refer Figure 2 for more information

corr(D, E) panel column and (0, 0). In fact, in some
cases, e.g. Panel (0, 3) and (1, 0), we could see small
deviations of rank correlation coefficients when the
size of networks are rather small. However, when
networks grow big enough, e.g. more than 105, no

deviations of rank correlation coefficients could not
be visible anymore.

3. From the view of each panel column, most of-
ten corr(D, B) is the highest (at least 0.75 in
terms of Spearman’s ρ), followed by corr(D, E) and
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Figure 3: Correlation between centrality metrics in real networks. 52 real networks are used in this experiments, and are roughly divided
into three categories: social, technological and biological. Two correlation coeflcients are used, the Pearson’s r (blue) and Spearman’s ρ
(red). Three pairs of centrality metrics are measured: the degree with betweenness ((a) corr(D, B)), closeness ((b) corr(D, C)), and eigen-
vector ((c) corr(D, E))

corr(D, C) (both are around or less than 0.50 in
terms of ρ). This suggests that the degree metric
is likely to have the same ranking order as the be-
tweenness metric.

4. Among all these subfigures, we find no distribution
difference between the two rank correlation coeffi-
cients (ρ and τ), except that ρ is always larger than
the τ.

These results demonstrate that rank correlation coef-
ficients perform better than the Pearson’s in scale-free net-
works. The high correlation between degree and between-
ness makes it possible to approximate the betweenness
metric by using degree metric.

3.2 Correlation between centrality metrics
in real networks

There are 52 different real networks, categorized as social,
technological and biological networks. Figure 3 shows the
correlation coefficients for these real networks (see Ap-
pendix TableA2). Again,wemeasure three pairs of central-
ity metrics. Since there is no much difference of the distri-
bution between ρ and τ, to avoid the figure is too dense to
read, we show the line of ρ only. From the figure, we have
the following observations.

1. In general, the coefficients of corr(D, B) is the high-
est, which is consistent with the results in scale-
free networks. However, the coefficient of corr(D, E)
varies so much that it almost reaches the two ends
(1 and −1) of the range. This suggests that our met-

ric approximation idea couldbe appliedbetweende-
gree and betweenness, while it could be infeasible
for degree and eigenvector.

2. In (b), ρ (mean value is 0.61) is much higher than
r (mean value is 0.26). This implies that Spearman
correlation is capable of capturing the underlying
ranking correlation between degree and closeness.

3. Among different network categories, we do not find
significant signals.

These results suggest that real networks are much
more complex than the model generated ones. Though
we find that the coefficients of corr(D, B) are the highest,
which is consistent with the model generated ones, the
corr(D, E) in real networks varies so much that it is infea-
sible to approximate eigenvector by degree metric. In ad-
dition, in corr(D, C), we find that ρ is much higher than r,
which could be a signal indicative of a better performance
of rank correlation.

3.3 Approximate high-complexity metrics by
degree

The results of real networks show a high correlation be-
tween degree and betweenness, suggesting that we could
use degree as the preliminary metric to approximate be-
tweenness. But we never know whether this approxima-
tion is really good in applications. Again, we do find that
ρ is much higher than r in corr(D, C), but we don’t have
the evidence to prove ρ does better than r in real networks.
Furthermore, the correlation coefficients evaluate the sim-
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ilarity between metrics in an overall way. However, we are
often only interested in the most important nodes, which
are the top ranking nodes of a certain metric. Here, we use
the top ranking nodes to evaluate the performance of ap-
proximating high-complexity metrics by degree.

To conduct the evaluation, we define twometrics. One
is to measure how many nodes with the highest degree
are also the top ranking nodes in another centrality met-
ric. The other one is to measure how bad it could be if we
treat the largest degree nodes as another centrality met-
ric. These two metrics are defined for selected nodes, ei-
ther the top ranking nodes of a specified centrality or the
largest degree nodes. We would evaluate the two metrics
for all instances of real networks.

1. We denote the top ranking nodes in a centrality
metric c as V topc , where c is one of degree (D),
betweenness(B), closeness (C) and eigenvector (E).
The first experiment question is that to approximate
the same amount of V topc from other three metrics,
how well does V topD perform. To measure it, we de-
fine the ratio of intersection as:

r∩(c) = |V topD ∩ V topc |/|V topD |. (1)

2. We denote the vertices with the largest degree as
∆. Our second experiment question is that how bad
could ∆ performs in the other threemetrics. Suppos-
ing the index of a ranking metric is from 0 to |V|−1,
we define the ranking ratio of nodes v in a centrality
metric c as

rrank(v, c) = idx(v, c)/(|V| − 1), (2)

where the function idx returns the ranking index
of node v in the centrality metric c. For nodes with
same metric values, the idx returns the mean rank-
ing index.

The results of these two experiments are shown in Fig-
ure 4. Figure 4 (a) shows the distribution of r∩ for these
three centrality metrics in real networks. Each point repre-
sents themean value of r∩ and the error bar indicates 95%
confidence interval. From Figure 4 (a), firstly, we could see
that r∩(B) is the highest (more than 0.6) in these threemet-
rics. This is not a surprising result, considering the high
correlation coefficients of corr(D, B) in real networks. Sec-
ondly, we find that r∩(B) is also very reasonable (around
0.5). Remember that we have ρ̄ = 0.61 and r̄ = 0.26,
here we believe this result provides evidence that Spear-
man correlation performs better than the Pearson one in
real networks.

Figure 4 (b) shows the Complementary Cumulative
Distribution Function (CCDF) of rrank. The horizontal axis
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Figure 4: The performance of approximating high-complexity met-
rics by degree in real networks. (a) Distribution of r∩. r∩ is the ratio
of intersected vertices between top ranking degree and another
metric, see equation 2. The proportion of the top ranking seqence is
from 10−3 to 10−1. Each point reprensents the mean value and the
error bar represents 95% confidential interval. (b) Complementary
Cumulative Distribution Function (CCDF) of rrank. The horizontal axis
is the ranking position of vertices with largest degree (∆) in another
metric, denoted as x. The vertical axis is the probability of real net-
works, whoes rrank is equal or larger than x, denoted as Pr(X ≥ x).

is the ranking position of vertices with the largest degree
(∆) in other metrics, denoted as x. The vertical axis is the
probability of real networks, whose rrank is equal or larger
than x, denoted as Pr(X ≥ x). In this CCDF figure, we find
that ∆ performs perfectly in betweenness and centrality
metrics. In these real networks, more than 95% of them,
their ∆ would also be ranked in the top 0.1% betweenness
metric; 80% of them could archive that for closeness met-
ric; the worst case of closeness metric is that ∆ is ranked
around the top 2.5%. For eigenvector metric, the perfor-
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mance is not good enough, even though in about 50% of
real networks, it could perform as well as betweenness,
∆ becomes the smallest eigenvector vertices in the worst
cases. When investigating these worst cases, we could see
that the correlation coefficients tend to be −1.

In one word, there are many overlapping nodes be-
tween top ranking degree set and another top ranking cen-
tralitymetric set. And the largest degree nodes are also the
top first or near the top first nodes in other centrality met-
rics for most real network instances.

4 Conclusion
Over the decades, a number of centrality metrics have
been proposed with different computation complexity.
Researchers have studied the correlation between them.
However, the Pearson correlation is commonly used in
these studies, which we argue that it is not suitable for
scale-free networks. At the same time, many real networks
are reported as scale-free networks. Therefore, in this pa-
per, we study the rank correlation between centrality met-
rics. We first demonstrate that rank correlation performs
better than the Pearson one in scale-free networks. Then
we study the correlation between centrality metrics in real
networks. And lastly, we evaluate the performance of us-
ing top degree nodes to approximate three other metrics
in the real networks.

Actually, we did apply the idea of this paper to other
works. For example, in our previous work [31], when we
tried to find out who are the most important accounts in
the spread ofmisinformation.We first used the k-coremet-
ric to narrow the network to the most density part – the
main core network part. Then we can use different metrics
tomeasure the importance of nodes fromdifferent aspects,
e.g. retweetedmost often, retweetingmost often and so on.

Of course, our analysis has unavoidable limitations.
Firstly, we only focused on four types of centrality met-
rics, even though they are the most popular ones. There
are many other metrics that are also widely used, such as
k-core, PageRank and so on. The future analysis could take
more metrics into consideration.

Secondly, to demonstrate that rank correlation is bet-
ter than Pearson’s, we conducted experiments on scale-
free network instances. Neither all models are tested nor
different parameters are tested. Moreover, for real net-
works, we did not test their scale-free property. In fact,
it is not an easy task to check the scale-free property of
the empirical data. Few real networks followpower-law for
the whole set of nodes, thus the evaluation is often con-

ducted for nodes with degree larger than a specified value.
Thanks to Clauset et al., who proposed a very good statis-
tical framework to test the scale-free property in empiri-
cal data [32]. Furthermore, Broido et al. [33] presented the
scale-free property results for nearly 1000 real networks.
In our work, we acknowledged that only a portion of real
networks are scale-free. But we would like to demonstrate
that rank correlation is at least as good as the Pearson one
and most often better than it. Theoretically, Pearson cor-
relation assumes a normal distribution of two variables,
whilst rank correlation is open for any distribution. Here
weuse scale-freenetworkmodels to demonstrate this idea.
It does not necessarily mean that the network should be
scale-free. In fact, if the two centrality values do not fol-
low thenormal distribution, theoretically, rank correlation
should beused to test their correlation. Thuswedonot em-
phasize that real networks must be scale-free.

Finally, though we applied our analysis on many real
networks, we still cannot say that our coverage is enough.
Nevertheless, our analysis could provide some highlights
in the study of network centrality.

Acknowledgement: C.S. was supported by the China
Scholarship Council. X.J. was supported in part by
the National Natural Science Foundation of China (No.
61272010). The funders had no role in study design, data
collection and analysis, decision to publish or preparation
of the manuscript. This research was supported in part by
Lilly Endowment Inc., through its support for the Indiana
University Pervasive Technology Institute.

References
[1] Newman M., Networks: an introduction. Oxford University

Press, 2010.
[2] Bavelas A., A mathematical model for group structures, Applied

anthropology, vol. 7, no. 3, pp. 16–30, 1948.
[3] Bavelas A., Communication patterns in task-oriented groups,

The Journal of the Acoustical Society of America, vol. 22, no. 6,
pp. 725–730, 1950.

[4] Coleman J. S., Katz E., Menzel H., et al., Medical innovation: A
diffusion study. Bobbs-Merrill Indianapolis, 1966.

[5] Dong G., Gao J., Tian L., Du R., He Y., Percolation of partially in-
terdependent networks under targeted attack, Physical Review
E, vol. 85, no. 1, p. 016112, 2012.

[6] Dong G., Gao J., Du R., Tian L., Stanley H. E., Havlin S., Robust-
ness of network of networks under targeted attack, Physical Re-
view E, vol. 87, no. 5, p. 052804, 2013.

[7] Fitzgerald H. E., Bruns K., Sonka S. T., Furco A., Swanson L., The
centrality of engagement in higher education, Journal of Higher
Education Outreach and Engagement, vol. 20, no. 1, pp. 223–
244, 2016.



1018 | C. Shao et al.

[8] Borgatti S. P., Everett M. G., A graph-theoretic perspective on
centrality, Social networks, vol. 28, no. 4, pp. 466–484, 2006.

[9] Freeman L. C., Centrality in social networks conceptual clarify-
cation, Social networks, vol. 1, no. 3, pp. 215–239, 1979.

[10] Borgatti S. P., Centrality and network flow, Social networks, vol.
27, no. 1, pp. 55–71, 2005.

[11] Laumann E. O., Pappi F. U., New directions in the study of com-
munity elites, AmericanSociological Review, pp. 212–230, 1973.

[12] Granovetter M., Getting a job: a study of careers and contacts,
1995.

[13] Burt R. S., Toward a structural theory of action, 1982.
[14] Weng L., Menczer F., Topicality and social impact: Diverse mes-

sages but focused messengers, arXiv preprint arXiv:1402.5443,
2014.

[15] Kleinberg J. M., Authoritative sources in a hyperlinked environ-
ment, Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632,
1999.

[16] Brin S., Page L., Reprint of: The anatomy of a large-scale hyper-
textual web search engine, Computer networks, vol. 56, no. 18,
pp. 3825–3833, 2012.
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Appendix A: Real networks
In appendix 4, we show the data collection of 52 real net-
works. They are classified into three loose categories: so-
cial, technological and biological. Table A1 gives a sum-
mary of the datasets. Table A2 shows the results of real
networks. We have 9 centrality correlations: 3 correlation
methods combined with 3 centrality pairs. To make the ta-
ble tight so that we can list them all, we use (D, B) to rep-
resent centrality correlation between degree and between-
ness, which was noted as (CD , CB) before, and (D, C) for
(CD , CC), (D, E) for (CD , CE).

In Table A2, you may notice the ‘NA’ values, most of
them are related to eigenvector centrality(Ce or E) corre-
lation. These NAs are caused by the failure of eigenvec-
tor calculation. In the eigenvector calculation, power iter-
ation is a commonly used algorithm. R program also takes
this algorithm and the default maximum number of iter-
ation is 1000. If R is running to the maximum iteration,
but fails to get to the convergence, an error occurs. In this
case, we treat the eigenvector as ‘NA’, an unknown value.
Therefore, the following correlation calculation related to
the eigenvector is also set to be ‘NA’.
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